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Abstract 
 
Polygenic risk scores (PRS) calculated from genome-wide association studies (GWAS) 
of Europeans are known to have substantially reduced predictive accuracy in non-
European populations, limiting its clinical utility and raising concerns about health 
disparities across ancestral populations. Here, we introduce a novel statistical framework 
named X-Wing to improve predictive performance in ancestrally diverse populations. X-
Wing quantifies local genetic correlations for complex traits between populations, 
employs a novel annotation-dependent estimation procedure to amplify correlated 
genetic effects between populations, and combines multiple population-specific PRS into 
a unified score with GWAS summary statistics alone as input. Through extensive 
benchmarking, we demonstrate that X-Wing pinpoints portable genetic effects and 
substantially improves PRS performance in non-European populations, showing 18.7%-
122.1% gain in predictive R2 compared to state-of-the-art methods based on GWAS 
summary statistics. Overall, X-Wing addresses critical limitations in existing approaches 
and may have broad applications in cross-population polygenic prediction. 
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Introduction 
 
Genome-wide association studies (GWAS) have identified tens of thousands of genotype-
phenotype associations for human complex traits1,2. Polygenic risk score (PRS) based on 
GWAS, typically calculated as a weighted sum of trait-associated allele counts across 
numerous loci in the genome, is an effective tool to quantify the aggregated genetic 
propensity for a trait or disease3-7. With rapid advances in GWAS sample size and 
statistical methodology for modeling summary-level data, PRS has shown substantially 
improved prediction accuracy and great potential in disease risk screening and precision 
medicine8-10. However, since the vast majority of GWAS participants are of European 
descent, current PRS models are more effective in Europeans but are known to have 
substantially reduced accuracy in other populations, which severely limits their clinical 
utility11-15. There is an urgent need to improve the effectiveness of PRS in diverse human 
populations and provide equitable access to genomic advances in precision medicine13,16-
19. 
 
There have been three types of approaches to improve cross-ancestry genetic prediction 
in the literature. First, prioritizing causal variants using functional genomic annotations 
can improve the portability of PRS based on European GWAS20-22. Second, several 
studies combine multiple PRS trained in various populations using linear regression to 
optimize the predictive performance in the target (non-European) population15,22,23. The 
third approach parametrizes the degree to which genetic effects are correlated across 
populations, and integrates GWAS summary statistics from multiple populations in a 
multivariate model to improve effect size estimation and prediction accuracy in each 
respective population15,24-26. These models have achieved moderately improved 
predictive performance compared to conventional single-population approaches, but 
several critical limitations and challenges still remain. First, previous studies used 
epigenetic regulatory annotations to prioritize variants for PRS20-22. While these 
annotations improved PRS portability for some traits, they are not designed to quantify 
the correlated genetic effects between populations27, and there is no guarantee that the 
same set of annotations will improve PRS performance for all complex traits. Additionally, 
existing statistical frameworks that leverage functional annotation data to improve PRS28-

32 do not apply to multi-ancestry predictive modeling. Finally, in order to combine multiple 
population-specific PRS through regression, the current practice requires additional data 
from the target (non-European) population. This includes individual-level genotype and 
phenotype samples that are independent of the GWAS used to train single-population 
PRS. In practice, this type of data can be nearly impossible to obtain33. In order to have 
broad applications, PRS models need to use the increasingly accessible GWAS summary 
statistics from global populations34-36 as input. 
 
In this work, we introduce a cross-population weighting (X-Wing) framework for genetic 
prediction. There are three main innovations in our approach. First, we introduce an 
annotation framework based on cross-population local genetic correlation. This 
annotation builds upon our previous work37 and directly quantifies correlated (portable) 
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genetic effects between multiple ancestral populations. Second, we introduce a novel 
Bayesian method to incorporate functional annotation data into multi-population PRS 
modeling, where annotation-dependent statistical shrinkage amplifies the effects of 
annotated variants (i.e., variants with correlated effects between populations). Finally, we 
resolve a long-standing challenge in the field and introduce a method to combine multiple 
PRS trained in various populations using GWAS summary data alone as input. We 
demonstrate the superior performance of X-Wing PRS through extensive benchmarking 
using numerous GWAS datasets, including UK Biobank (UKB)38, Biobank Japan (BBJ)39, 
and Population Architecture using Genomics and Epidemiology Consortium (PAGE) 
study40.  
 
 
Results 
 
Methods overview 
 
The X-Wing workflow is illustrated in Figure 1. We have previously developed a scan 
statistic approach37 for identifying genomic regions with correlated effects on two complex 
traits. In this paper, we first extend this approach to identify correlated genetic effects on 
the same trait between two populations. Once identified, these genomic regions explain 
the shared genetic basis of the phenotype between populations and could be an 
informative annotation for prioritizing single-nucleotide polymorphisms (SNPs) in PRS 
models. Next, to quantitatively incorporate this annotation in multi-population PRS 
modeling, we introduce a Bayesian framework in which annotation-dependent shrinkage 
parameters allow variable degrees of statistical shrinkage between annotated and non-
annotated SNPs. Coupled with other shrinkage parameters that do not depend on 
functional annotations, this framework amplifies SNP predictors that show correlated 
effects between populations while ensuring robustness to diverse types of genetic 
architecture41-44. Although we only explore its performance using the annotation derived 
from local genetic correlation in this paper, we note that this is a general framework that 
allows an arbitrary collection of annotation variables as input and also accounts for 
population-specific linkage disequilibrium (LD) and allele frequencies. Finally, we 
introduce an innovative strategy to linearly combine multiple PRS trained in different 
populations using summary association data alone. We employ a summary statistics-
based repeated learning approach motivated from our recent work45 to estimate the 
regression weights for combining multiple PRS. The entire X-Wing procedure only 
requires GWAS summary data and LD references as input, which is a major advance 
compared to existing approaches. We present the statistical details and technical 
discussions in Methods and Supplementary Note.  
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Figure 1: X-Wing workflow. X-Wing uses GWAS summary statistics and population-matched LD 
references as input. It first employs a scan statistic approach to detect genome segments showing local 
genetic correlation between populations. Next, it incorporates the local genetic correlation annotation into 
a Bayesian PRS model, amplifying SNP effects that are correlated between populations. Finally, it uses 
summary statistics-based repeated learning to combine multiple population-specific PRS and produce the 
final PRS with improved accuracy.  
 
X-Wing pinpoints local genetic correlation between ancestral populations 
 
We first carried out simulations to assess the performance of our approach in identifying 
cross-population local genetic correlations. Using European and East Asian samples in 
1000 Genomes Project phase III data46, we simulated chromosome 22 genotypes of 
50,000 individuals, and simulated quantitative traits in two populations under an 
infinitesimal model with varying heritability levels (Methods). When the traits in two 
populations are independent, X-Wing showed well-controlled type-I error rates 
(Supplementary Table 1). Since no existing method can estimate local genetic 
correlation between two distinct ancestral populations, we compared our results with 
PESCA47, a recently developed approach for estimating the risk SNP proportion shared 
by two populations, to gain some perspective on the statistical property of our inference 
results. PESCA also showed well-controlled type-I error across simulation settings, but 
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X-Wing consistently achieved higher statistical power, especially when heritability is large 
(Figure 2a).  
 
To assess the robustness of our method to model mis-specification, we considered 
additional data-generating models in which SNP heritability is enriched in certain genomic 
regions37 or is dependent on LD and minor allele frequency (MAF)48. We also investigated 
binary phenotypes using a liability threshold model. We obtained highly consistent results 
in these analyses, with our method showing well-controlled type-I error (Supplementary 
Tables 2-4) and superior statistical power (Figure 2b and Supplementary Figure 1).  
 

 
Figure 2. X-Wing achieves superior statistical power in identifying cross-population local genetic 
correlation. (a, b) Statistical power in simulations under a heritability enrichment framework. Panels (a) 
and (b) illustrate results for continuous and binary trait outcomes, respectively. (c) Number of regions with 
significant cross-population genetic correlations identified by X-Wing and PESCA for 31 complex traits. (d) 
Proportion of total genetic covariance explained by significant local regions for 31 complex traits. In both 
panels (c) and (d), GWAS sample sizes are indicated by the color of each data point, and the diagonal line 
is highlighted in red. 
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Local genetic correlation between Europeans and East Asians for 31 traits  
 
We estimated local genetic correlations for 31 complex traits (Supplementary Table 5) 
between Europeans and East Asians using GWAS summary statistics from UKB (N = 
314,921 ~ 360,388)38 and BBJ (N = 42,790 ~ 159,095)39. In total, we identified 4,160 
regions with significant cross-population local genetic correlations across 31 traits (FDR 
< 0.05; Supplementary Table 6). Of these, the vast majority (4,008 regions) showed 
positive correlations. 958 identified regions have genome-wide significant SNPs in both 
populations and 2,119 have significant SNPs in only one population (Supplementary 
Figure 2). The number of significantly correlated regions identified for each trait pair is 
proportional to the global genetic correlations estimated from genome-wide data24 
(Supplementary Figure 3; correlation r = 0.49). As a comparison, we also applied 
PESCA to these data, and identified 1,968 risk regions shared by two populations 
(Supplementary Table 6). Our approach identified more significant regions in 30 out of 
31 traits (Figure 2c). The regions identified by our approach also explained larger 
proportions of cumulative genetic covariance in all 31 traits (Figure 2d).  
 
Overall, regions with significant local genetic correlations cover 0.06% (basophil) to 1.73% 
(height) of the genome, but explain 13.22% (diastolic blood pressure) to 60.17% (mean 
corpuscular volume) of the total genetic covariance between Europeans and East Asians 
(Figure 3a and Supplementary Table 7), showing fold enrichments ranging from 28.09 
to 546.83. Cross-population genetic correlations inside X-Wing-identified regions are 
substantially higher than the genome-wide genetic correlation estimates, while 
correlations in the remaining genome are consistently lower (Figure 3b). Notably, among 
the traits we analyzed, basophil count has the lowest cross-population genetic correlation 
(𝑟! = 0.23) which is consistent with previous reports49,50. But even for basophil count, we 
observed a substantial genetic correlation in regions identified by our approach (𝑟! = 0.83). 
To guard against statistical artifacts, we performed falsification tests by simulating a trait 
that is uncorrelated between populations (Methods). We did not identify significant global 
or local correlations for this simulated trait (Figure 3b). 
 
We also sought to replicate local correlations between Europeans and East Asians for 
four lipid traits (HDL cholesterol, LDL cholesterol, total cholesterol, and triglycerides) in 
independent data. We used European GWAS from the Global Lipids Genetics 
Consortium (GLGC, N = 95,454 ~ 100,184)51 and East Asian GWAS from the Asian 
Genetic Epidemiology Network (AGEN, N = 27,657 ~ 34,374)52 as the replication datasets 
(Supplementary Table 8). In total, we identified 124 significant regions for four lipid traits 
in the replication analysis. 102 of them overlapped with significant regions identified in the 
discovery stage (Figure 3c). Regions identified in the discovery stage showed substantial 
enrichment for genetic covariance in the replication data (greater than 100-fold for all four 
traits; Supplementary Table 9). Further, we ranked the regions identified in the discovery 
stage by their p-values. The cumulative proportion of genetic covariance explained by 
these regions were nearly identical between discovery and replication analyses (Figure 
3d and Supplementary Figure 4).  
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Figure 3. X-Wing identifies genomic regions strongly enriched for correlated genetic effects 
between Europeans and East Asians. (a) Scatter plot shows the proportion of SNPs in regions identified 
by X-Wing and the proportion of cross-population genetic covariance explained by these SNPs. All data 
points are above the diagonal line highlighted in red, showing substantial enrichment. (b) Cross-population 
genetic correlation for 31 complex traits. Three bars denote the global genetic correlation estimated from 
genome-wide data (light green), genetic correlation in regions identified by X-Wing (brown), and genetic 
correlation outside regions identified by X-Wing (dark green). Results for a simulated uncorrelated trait are 
labeled as ‘Control’. All traits are ordered according to the global genetic correlation estimates. Error bars 
indicate standard errors. A list of trait acronyms can be found in Supplementary Table 5. (c) Bar plot shows 
the number of significant regions identified only in discovery stage (purple), only in replication stage 
(orange), and in both stages (blue) for four lipid traits. HDL, LDL, TC, TG stand for HDL cholesterol, LDL 
cholesterol, total cholesterol, and triglycerides, respectively. (d) Cumulative proportion of genetic 
covariance explained by regions identified in the discovery stage for triglycerides. Analogous results for 
HDL cholesterol, LDL cholesterol, and total cholesterol are shown in Supplementary Figure 4. Pink 
dashed line indicates FDR cutoff of 0.05. Red line represents the diagonal line of y=x.  
 
Local genetic correlation annotation improves PRS portability across populations 
 
Next, we investigated whether incorporating the annotation based on local genetic 
correlation can improve the cross-ancestry portability of PRS. We used European GWAS 
from UKB and East Asian GWAS from BBJ to train PRS for 31 complex traits, and 
evaluated PRS performance using independent East Asian samples in UKB (N = 2,683). 
In this analysis, our approach jointly models GWAS in two populations and outputs 
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separate SNP weights for Europeans and East Asians (Methods). Here, we used 
annotation-informed PRS based on posterior SNP effects estimated for Europeans, and 
report its performance in the East Asian target sample (thus, quantifying the portability of 
European scores in the East Asian population). PRS performance is quantified using 
partial R2 adjusting for covariates (Methods). Our annotation-informed PRS showed a 
6.9% and 49.6% average improvement in R2 compared to PRS-CSx14 and XPASS20 
(Figure 4a; Supplementary Figure 5; Supplementary Table 10), demonstrating the 
effectiveness of incorporating local genetic correlation annotation. In fact, we found both 
higher overall R2 and larger increase of R2 in annotated genomic regions (i.e., regions 
with correlated effects between populations) using our approach. PRS using only SNPs 
outside annotated regions did not show any improvement (Figures 4b-c and 
Supplementary Table 11). Also, we note that basophil count, the trait with the lowest 
genetic correlation between Europeans and East Asians in our analysis (Figure 3b), 
showed the highest R2 improvement, once again demonstrating the importance of 
amplifying local SNP effects that are correlated between populations. We also compared 
our results with PolyFun-pred18, an approach that uses functional fine-mapping to improve 
PRS performance. Our PRS showed a substantial 74.5% gain in R2, suggesting that fine-
mapping in European population alone is a sub-optimal approach compared to multi-
population joint modeling (Supplementary Figure 6 and Supplementary Table 10). 
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Figure 4. Local genetic correlation annotation improves PRS portability for 31 traits in East Asians. 
(a) The percentage increase in R2 for portability of annotation-informed European PRS over PRS-CSx 
European PRS. A list of trait acronyms can be found in Supplementary Table 5. (b) The percentage 
increase in R2 for portability of annotation-informed over PRS-CSx European PRS using only annotated 
and non-annotated SNPs. (c) Comparison of R2 between annotation-informed European PRS using only  
annotated and non-annotated SNPs. Each point represents a trait. X-axis is the R2 for PRS based on non-
annotated SNPs. Y-axis is the R2 for PRS based on annotated SNPs. 
 
X-Wing combines multiple population-specific PRS using GWAS summary 
statistics 
 
Next, we investigated the benefit of combining multiple PRS trained for different 
populations into a single score. We evenly split the East Asian target sample in UKB into 
a validation set in which we fit a regression model to combine the European and East 
Asian scores, and a testing set in which we evaluate the performance of combined PRS. 
We compared the prediction accuracy of X-Wing PRS with PRS-CSx and XPASS using 
the same regression approach to combine scores. X-Wing showed an average R2 
increase of 4.5% and 81.6% compared to PRS-CSx and XPASS in East Asian target 
samples (Figure 5a, Supplementary Figure 5, and Supplementary Table 10). We also 
assessed the combined scores based on PAGE, UKB, and BBJ in admixed Americans. 
Our method showed a 4.1% increase in R2 compared to PRS-CSx (Supplementary 
Figure 7 and Supplementary Table 12). XPASS was excluded since it cannot take more 
than two GWAS datasets as input. We also performed sensitivity analyses by varying the 
size of genetic correlation annotation and estimating the global shrinkage parameter 
using a model tuning approach instead of the full Bayesian procedure (Supplementary 
Note). We obtained highly consistent results in the analyses, demonstrating the 
robustness of X-Wing to these choices (Supplementary Figures 8-11, Supplementary 
Tables 13-15). 
 
Finally, we demonstrated that population-specific PRS can be combined using GWAS 
summary data alone. We used summary-statistics-based repeated learning (Methods), 
instead of regressions trained on reserved samples, to linearly combine multiple PRS. 
This analytic strategy showed almost identical results compared to the gold-standard 
regression approach in both East Asian and admixed American target samples 
(regression slope = 0.983 and 1.007) (Figure 5b, Supplementary Figure 12, and 
Supplementary Table 16). Notably, if no external individual-level data are available for 
regression model training, the current best PRS approach in practice is to use posterior 
SNP effects estimated for one population (Methods). Compared to the best-performing 
population-specific scores, X-Wing PRS can be trained using the same input data but 
showed a substantial improvement in prediction accuracy, with the R2 increase ranging 
from 31.0%-96.1% in East Asians and 18.7%-122.1% in admixed Americans (Figure 5c 
and Supplementary Figure 12-13).  
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Figure 5. Performance of X-Wing in combining population-specific PRS using GWAS summary 
statistics for 31 traits in East Asian samples. (a) The percentage increase in R2 of X-Wing PRS over 
PRS-CSx. The dashed line represents the average increase. A list of trait acronyms can be found in 
Supplementary Table 5. (b) Comparison of R2 for linearly combined PRS with mixing weights obtained 
using GWAS summary statistics and individual-level data. The X-axis represents the R2 using weights 
estimated from individual-level data, while the Y-axis shows the R2 using summary statistics-based weights. 
The dashed line represents the diagonal line of y=x. (c) The percentage increase in R2 of X-Wing PRS over 
PRS-CSx using GWAS summary statistics. PRS-CSx PRS is calculated based on European posterior mean 
effects. The dashed line represents the average increase. 
 
 
Discussion 
 
In this paper, we introduced X-Wing, a sophisticated statistical framework for improving 
PRS performance in ancestrally diverse populations. X-Wing quantifies cross-population 
local genetic correlation, and incorporates it as an annotation into a Bayesian framework 
which amplifies correlated SNP effects between populations through annotation-
dependent statistical shrinkage. It also combines multiple population-specific PRS to 
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further improve prediction accuracy while using GWAS summary data alone as input. 
Applied to numerous GWAS traits, we demonstrated that local genetic correlations help 
pinpoint portable genetic effects and the annotation-informed PRS show consistently and 
substantially improved performance across populations. 
 
Our study presents several methodological innovations that will likely be generalizable 
and impactful. First, we introduced the concept of cross-population local genetic 
correlation and developed a scan statistic method to map correlated regions. 
Complementary to global genetic correlation, local genetic correlation refines the 
resolution in identifying shared genetic components between populations and provides 
critical insights into the genetic architecture of complex traits in diverse human 
populations. Second, we developed a new Bayesian framework that allows the integrative 
analysis of functional annotation data in multi-population PRS modeling. In this work, we 
showcased its effectiveness in cross-population risk prediction using an annotation 
derived from local genetic correlations. But we note that it is a general framework that can 
incorporate arbitrary sets of annotation data, such as the epigenetic annotations used in 
the PRS literature or LD and allele frequencies which have been shown to improve 
heritability estimation20,22,32,53 (Supplementary Note). It may also be applied to improve 
PRS portability across other non-ancestry-related demographic groups54. Finally, we 
introduced a strategy to combine multiple population-specific PRS into one improved 
score using summary statistics alone. This is highly novel since fitting a regression model 
in an independent sample has long been considered the standard (and only) approach 
for combining multiple scores. This represents a significant advance in the field since 
obtaining additional individual-level samples that are independent from input GWAS can 
be a major challenge in practice. This is also generalizable since the same technique 
could be used to improve any PRS by creating an “omnibus” score over a number of 
methods, and the application is not limited to trans-ancestry risk prediction.  
 
In addition to these methodological innovations, our local genetic correlation analysis 
identified many regions that are of biological interest. We have demonstrated that 
genomic regions identified by our approach show a substantial effect correlation on 
basophil count between two populations despite the low genetic correlation estimated 
from genome-wide data. More specifically, a region spanning 219 KB on chromosome 3 
shows correlated effects between Europeans and East Asians for basophil count 
(Supplementary Figure 14). Candidate gene GATA2 at this locus encodes a zinc-finger 
transcription factor which plays an essential role in proliferation, differentiation, and 
survival of hematopoietic cells55. In particular, expression of GATA2, coupled with CCAAT 
enhancer-binding protein α  (C/EBP α ) and transcription factor STAT5, directs the 
differentiation of granulocyte/monocyte progenitors (GMPs) into basophils56,57. Another 
correlated region for basophil count is a locus spanning 51 KB on chromosome 3 
(Supplementary Figure 15). Gene IL5RA, which encodes a subunit of a heterodimeric 
cytokine receptor that specifically binds to interleukin-5 (IL-5), lies 13 KB away from the 
identified region. Binding of the receptor to its ligand IL-5 is required for the biological 
activity of IL-5. Notably, IL-5 is a human basophilopoietin that promotes the formation and 
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differentiation of human basophils58,59. Many other traits have interesting findings too. For 
example, a region spanning 48 KB on chromosome 1 is associated with C-reactive protein 
in two populations (Supplementary Figure 16). The locus covers the gene NLRP3, which 
was identified as a risk gene associated with C-reactive protein levels in an independent 
GWAS60. NLRP3 encodes a pyrin-like protein that constitutes the NLRP3 inflammasome 
complex61. It was suggested that the NALP3 inflammasome can activate nuclear factor-
κB signaling62 which affects C-reactive protein levels in Hep3B cells60,63. These results 
provide insights into the shared genetic basis of complex traits across ancestrally diverse 
populations. The local genetic correlation estimation procedure implemented in X-Wing 
may have broad applications in future studies that involve joint modeling of multi-
population GWAS associations. 
 
Our study also has some limitations. First, although our method does not require any 
individual-level sample with both genotype and phenotype information, it remains crucial 
to have LD reference panels that match the input GWAS. We observed an improvement 
in PRS performance when applying our method to highly diverse samples such as the 
PAGE study, but it remains unclear how to best select LD references for multi-ancestry 
GWAS and admixed populations64. Second, we generally believe that statistical methods 
alone cannot fully solve the challenges in cross-population risk prediction13,16. It is an 
important future direction to apply state-of-the-art methods to the large and highly diverse 
GWAS conducted in global biobank cohorts35, and carefully benchmark/combine various 
annotation data types and PRS training procedures.  
 
Taken together, X-Wing addresses major challenges in existing PRS methods, 
showcases multiple innovations in trans-ancestry GWAS modeling, and substantially 
improves the portability and overall performance of PRS in non-European populations. 
These methodological advances, in conjunction with the ever-growing GWAS sample size 
especially in non-European populations, give hope to broad and equitable applications of 
genomic precision medicine around the globe.  
 
 
Methods 
 
Quantifying local genetic correlations between ancestral populations 
 
We extend the LOGODetect37 framework to detect genomic regions showing local genetic 
correlations between two ancestral populations. Suppose the association z-scores for two 
populations are denoted as  𝒛" =

#
$%!

𝑿"&𝒀" , 𝑘 = 1,2. Here, 𝒀" is a 𝑁"-dimensional vector 
of standardized phenotype values with mean 0 and variance 1, and 𝑿" is the standardized 
genotype matrix of dimension 𝑁" ×𝑀 where 𝑁" is the GWAS sample size for population 
𝑘. We define the scan statistic as  

𝑄(𝑅) =
∑ 𝑧#'𝑧(''∈*

5∑ 𝚺#,'' ∗ 𝚺(,'''∈* 8,
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where 𝑅 is the index set for SNPs in a genomic region,	𝚺"  is the variance-covariance 
matrix of 𝒛" and 𝚺",'' denotes the i-th diagonal element of 𝚺". We note that the 𝚺" matrix 
can be estimated using 𝚺" =

%!-!
"

.
𝐕"(; + (1 − ℎ"()𝐕". Here, ℎ"( is the trait heritability which 

can be estimated using GWAS summary statistics24,	𝐕" is the LD matrix which can be 

estimated using a reference panel, 𝐕"(; = %!
($%&)		0	#

%!
($%&)		0	(

𝐕"( −
.

%!
($%&)		0	(

𝐕"  is an unbiased 

estimator of the squared LD matrix, and 𝑁"
(234) is the sample size of the LD reference 

panel. The numerator in the scan statistic is the inner product of association z-scores for 
two populations in a genomic region, which quantifies the correlation of SNP effect sizes. 
The denominator in the scan statistic adjusts for the effect of LD in two populations, where 
a tuning parameter 𝜃 controls the impact of LD. Technical details of the scan statistic and 
selection procedure for 𝜃 can be found in the Supplementary Notes. 
 
To perform statistical inference, we use the maximal scan statistic over all possible 
genomic regions as the test statistic: 
 𝑄678 = 𝑚𝑎𝑥

|*|:;
|𝑄(𝑅)|, 

where 𝐶 controls the upper bound of the region size and is pre-specified as 2000 in our 
analyses. Similar to local genetic correlation analysis in a single population37, we draw 
5000 Monte Carlo simulations of z-scores for each population to assess the null 
distribution of 𝑄678, and we apply the scanning procedure to identify significant genomic 
regions showing cross-population local genetic correlations. Significant regions with a 
distance less than 100KB in-between are merged into a single segment.  
 
An annotation-dependent Bayesian horseshoe regression model for PRS 
 
Next, we describe our Bayesian PRS framework with annotation-dependent statistical 
shrinkage. Consider an additive genetic model: 

𝒀" = 𝑿"𝜷" + 𝝐" , 𝝐" ∼ 𝑀𝑉𝑁(𝟎, 𝜎"(𝑰"), 𝑝(𝜎"() ∝ 𝜎"0(, 𝑘 = 1,2, …𝐾, 
where 𝜷" is a 𝑀-dimensional vector of SNP effect sizes in population 𝑘, 𝛜" is a vector of 
error terms with variance 𝜎"(, to which we assign a non-informative Jeffreys prior65. 𝑀𝑉𝑁 
denotes multivariate normal distribution, and 𝑰" is an identity matrix. 
 
We introduce an annotation-dependent shrinkage parameter, in addition to the global and 
local shrinkage parameters used in literature15, to employ variable degrees of statistical 
shrinkage for SNPs in different annotation categories41,42,44. Here we only consider one 
annotation for simplicity, but our model allows incorporating multiple annotations 
(Supplementary Note). Consider an annotation with 𝐴  categories, we assign an 
annotation-dependent horseshoe prior to 𝛽<": 

𝛽<" ∼ 𝑁S0, =!
"

%!
𝜙𝜓<𝜆4(<),"X , 𝑗 = 1,2, …𝑀, 𝑘 = 1,2, …𝐾. 

Here, 𝛽<"  denotes the effect of SNP 𝑗  in population 𝑘 , 𝜙  is the global shrinkage 
parameter shared across all 𝑀  SNPs and 𝐾  populations, 𝜓<  represents the local 
shrinkage parameter for SNP 𝑗 , 𝜆4(<),"  denotes the annotation-dependent shrinkage 
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parameter for SNP 𝑗 in population 𝑘, 𝑓: 𝑗 → 𝑎 ∈ {1,…𝐴} is a function that maps the 𝑗-th 
SNP to its corresponding category 𝑎  in the annotation. The annotation-dependent 
shrinkage parameter is shared across SNPs that are in the same annotation category for 
a given population, but varies between populations to account for population-specific 
annotation. 
 
Given this prior and marginal least squares estimates 𝜷̀" obtained from GWAS summary 
statistics, posterior mean effects in population 𝑘 is  

𝐸b𝜷"c𝜷̀"d = (𝑫" + 𝑺"0#)		𝜷̀" , 
where 𝑺" = 𝑑𝑖𝑎𝑔j𝜙𝜓#𝜆4(#)," , 𝜙𝜓(𝜆4(()," , … , 𝜙𝜓.𝜆4(.),"k  and 𝑫𝒌  is the LD matrix for 
population 𝑘. 
 
To provide an intuition of annotation-dependent statistical shrinkage, suppose all SNP 
are unlinked (i.e., no LD), then the LD matrix 𝐷" = 𝐼 and the posterior mean effect for 
SNP 𝑗 in population 𝑘 is 

𝐸b𝛽<"c		𝛽n<"] =
1

1 + 𝜙0#𝜆4(<),"
0# 𝜓<0#

𝛽n<" = p1 −
1

1 + 𝜙𝜆4(<),"𝜓<
q𝛽n<" . 

Since SNPs in an important annotation explain more phenotypic variance (𝜆4(<)," tends to 
be big), the shrinkage factor 1 −	 #

#?@A&((),!B(
  will be small if the j-th SNP is in an important 

annotation. Consequently, there is less statistical shrinkage on SNP effects in genomic 
regions marked by an important annotation. 
 
To perform the full Bayesian model fitting, we assign half-Cauchy priors to the global, 
local, and annotation-dependent shrinkage parameters as follows: 

𝜓<
#
( ∼ 𝐶?(1), 𝜙

#
( ∼ 𝐶?(1), 𝜆7,"

#
( ∼ 𝐶?(1), 𝑗 = 1,2, …𝑀, 𝑘 = 1,2, …𝐾, 𝑎 = 1, 2, … , 𝐴, 

where 𝐶?(	1) is the standard Cauchy distribution with the scale parameter equal to 1.  
 
We employ a simple and efficient block Gibbs sampler to fit the PRS model using GWAS 
summary statistics and LD reference panel (Supplementary Note)66. Following Ruan et 
al.15, we recommend using 1000	 × 𝐾  Markov Chain Monte Carlo (MCMC) iterations with 
the first 500	 × 𝐾 iterations as burn-in. We use the full Bayesian approach as default, 
which does not require validation data to tune the model. An alternative strategy is to 
select the optimal global shrinkage parameter 𝜙  from {100C, 100D, 100(	, 1}  that 
maximized the R2 in the validation sample (Supplementary Note)15. Our method outputs 
the posterior mean of population-specific SNP effects. PRS for the target cohort is 
calculated subsequently as the sum of allele counts weighted by poster effect estimates.  
 
Incorporating local genetic correlation annotation in PRS 
 
Below we explain how to incorporate annotations based on local genetic correlation in 
our PRS model. Without loss of generality, we assume population 1  is the target 
population. We break down our algorithm into three steps:  
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Step1: Obtain annotation information through local genetic correlation analysis 
We perform local genetic correlation analysis between population 1 and population 𝑘 
(𝑘 = 2,…𝐾) to identify top 𝑠 regions with positive local genetic correlation. We denote the 
set of regions as Ω". We selected 𝑠 = 1000 in our primary analysis and demonstrated 
that PRS performance is robust to the choice of s (Supplementary Figure 10 and 11).  
 
Step2: Estimate posterior mean effects for all SNPs 
Our annotation-dependent shrinkage procedure is designed based on two key intuitions. 
First, we expect poor PRS portability when using GWAS from various ancestral 
populations (e.g., European and African) to predict trait values in a different target 
population (e.g., East Asian), Therefore, we want to amplify SNP effects that are more 
portable (i.e. correlated) between each non-target population and the target population. 
Second, we do not expect any portability issue when the GWAS population and the target 
population are the same (e.g., using an East Asian GWAS to build PRS for East Asian 
target samples). Thus, we do not employ any annotation-dependent shrinkage when 
estimating posterior SNP effects for the target population.  
 
Specifically, when estimating posterior SNP effects for the target population, we let 
𝜆4(<)," = 1 for all 𝑗 = 1, 2, …𝑀, 𝑘 = 1,…𝐾. When estimating the posterior SNP effects for 
the non-target population 𝑘 (𝑘 = 2,…𝐾), we used  𝜆4(<)," = 𝜆#," if SNP	𝑗 is not annotated 
by Ω" , 𝜆4(<)," = 𝜆(,"  if SNP	 𝑗  is annotated by Ω" , and 𝜆4(<),"* = 𝜆#,"*  for 𝑘E = 1,… , 𝑘 −
1, 𝑘 + 1,… , 𝐾. We provide an example for the case where 𝐾 = 3 in the Supplementary 
Note. 
 
Step3: Linearly combine multiple population-specific PRS 
Based on the posterior mean effects of population 𝑘 obtained in step2, we can calculate 
population-specific score 𝑷𝑹𝑺". A common practice to combine these population-specific 
scores is to fit a regression model using the same phenotype 𝒀(𝒗)  and 𝐾 population-
specific PRS in an independent validation dataset from the target population: 

𝒀(𝒗)	~	𝑤#𝑷𝑹𝑺𝟏
(𝒗) +𝑤(𝑷𝑹𝑺𝟐

(𝒗) +⋯+𝑤I𝑷𝑹𝑺𝑲
(𝒗). 

Here, superscript 𝑣  highlights the fact that phenotypes and PRS in this regression 
exercise need to be obtained from a validation dataset that is different from any data used 
for GWAS and PRS modeling training. Instead of fitting a regression in independent 
samples, we employ a novel strategy to obtain the least squares estimates of regression 
weights (i.e. 𝑤}#, …𝑤}I) using GWAS summary statistics. We introduce this approach in 
the next section. The final X-Wing PRS is then calculated as: 

𝑷𝑹𝑺K; =	~𝑤}"𝑷𝑹𝑺"

I

"L#

 

 
Combining multiple PRS with GWAS summary statistics 
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First, we briefly illustrate that we do not need any individual-level data from the validation 
sample, and summary statistics is sufficient for estimating the least squares estimator 𝒘}  
of PRS combination weights. Then, we provide detailed justifications on how to estimate 
𝒘}  using only input GWAS data instead of summary statistics from a validation sample. 
Suppose we have a validation dataset of 𝑁(M) individuals, 𝒘}  can be estimated as follows: 

𝒘} = [𝑷𝑹𝑺(M)&𝑷𝑹𝑺(M)]0#𝑷𝑹𝑺(M)&𝒀(M). 
Here, 𝒀(M)  is the phenotype vector and 𝑷𝑹𝑺(M)  is the 𝑁(M) × 𝐾  matrix of 𝐾  population-
specific scores in this sample. Further, 𝑷𝑹𝑺(M) can be denoted as 𝑷𝑹𝑺(M) = 𝑿(M)𝒃 where 
𝑿(M)  is the 𝑁M ×𝑀  genotype matrix and 𝒃  is the 𝑀 × 𝐾  matrix for SNP effects. For 
simplicity, we assume 𝒀(M)  is centered, 𝑿(M)  is standardized, and 𝒃  quantifies 
standardized SNP effects. We note that 𝑷𝑹𝑺(M)&𝑷𝑹𝑺(M)/𝑁(M) quantifies the covariance of 
𝐾  population-specific PRS which can be approximated by the sample covariance 
obtained from a reference panel (e.g. LD reference of the target population). Therefore, 
we have   

𝒘} ≈
𝑁(234)

𝑁(M) [𝑷𝑹𝑺
(234)&𝑷𝑹𝑺(234)]0#𝒃&𝑿(M)&𝒀(M), 

where 𝑿(M)&𝒀(M) can be obtained from the summary statistics of the validation sample 
(Supplementary Note) and 𝒃 is obtained from the PRS training procedure. 𝑁(234) and 
𝑷𝑹𝑺(234) denote the sample size and PRS matrix in the reference panel. Taken together, 
this shows that in order to estimate 𝒘} , we only need the LD reference and summary 
statistics from a validation sample. 
 
However, summary statistics from a validation sample are still difficult to obtain in practice 
and it is tempting to replace it with the input GWAS used for PRS training. But this cannot 
be done since it is a textbook example of overfitting. This motivates us to use repeated 
learning (or a similar cross-validation approach; see Supplementary Note)67,68 to 
estimate 𝒘} . Typically, repeated learning (or cross-validation) requires individual-level 
genotype and phenotype data since it involves sample splitting. Generalizing the 
technique in our recent work45, we introduce a summary statistics-based repeated 
learning strategy, which does not need individual-level GWAS data. This approach has 
three main steps which we describe below. Since this approach does not involve a 
separate validation sample, we will perform analysis using input GWAS from the target 
population (e.g. BBJ GWAS when East Asian is the target population). Without loss of 
generality, we denote 𝑘 = 1 for this (target) population. 
 
Step1: Subsample GWAS summary statistics from training and validation sets 
Suppose we divide the full GWAS sample (𝑿#, 𝒀#) into a training set (𝑿#

(N2), 𝒀#
(N2)) with 𝑁# −

𝑁#
(M)  individuals, and a validation set ( 𝑿#

(M), 𝒀#
(M))  with 𝑁#

(M)  individuals. Given the 
association z-scores (𝑿+

,𝒀+
$%+

) from GWAS summary statistics and genotype data from the 
reference panel, association summary statistics based on training and validation sets can 
be sampled as: 
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𝑿#
(N2)&𝒀#

(N2)

𝑁# − 𝑁#
(M) =

𝑿#&𝒀#
𝑁#

+ �
𝑁#
(M)

𝑁# − 𝑁#
(M)�

#
( 𝑿(234)&

√𝑁(234)
𝒈	 

𝑿#
(M)&𝒀#

(M)

𝑁#
(M) =

𝑿#&𝒀# − 𝑿#
(N2)&𝒀#

(N2)	
𝑁#
(M) , 

where 𝑿(234) is a 𝑁(234) 	× 	𝑀 standardized genotype matrix from the reference panel for 
the target population, 𝑁(234)  is the sample size of the reference panel, 𝒈 is a 𝑁(234) -
dimensional vector with elements drawn from a standard normal distribution 
(Supplementary Note).  
 
Step2: PRS model training 
We train our PRS model using the training summary statistics subsampled for the target 
population in step1 and full GWAS summary statistics (without subsampling) for other 
populations. The output of PRS training is a 𝑀 × 𝐾 matrix 𝒃 with the 𝑘-th column showing 
standardized SNP effects for population 𝑘	(Supplementary Note).   
 
Step3: Estimate the linear combination weights 
We then estimate PRS weights by 

𝒘} ≈
𝑁(234)

𝑁#
(M) b𝑷𝑹𝑺

(234)&𝑷𝑹𝑺(234)d
0#
𝒃&𝑿#

(M)&𝒀#
(M), 

where 𝑷𝑹𝑺(234) = 𝑿(234)𝒃 denotes the 𝑁(234) × 𝐾 PRS matrix calculated in the reference 
panel, 𝑿#

(M)&𝒀#
(M) is the subsampled validation summary statistics. In practice, we force any 

negative estimates 𝑤}" to be 0 and center PRS in the reference panel. We also normalize 
PRS weights by 𝒘� = 𝒘R

∑ TR-
!.+ !

	. 

 
At last, we perform 𝑃-fold repeated learning. The final linear combination weights 𝒘}4'U7V 
is the average of the normalized mixing weights across 𝑃 times: 

𝒘}4'U7V =	
∑ 𝒘�WX
WL#

𝑃 , 
where 𝒘�W represents the normalized weights in 𝑝-th fold. To avoid overfitting, we used 
distinct reference panels from the target population for GWAS summary statistics 
subsampling, PRS model training, and estimating weights for PRS combination. We 
provide the equally divided reference panels from 1000G phase 3 data for Europeans, 
East Asians, Africans, Central/South Asians, and admixed Americans to the users. We 
also present the extensions of our approach to handle tuning parameters in PRS model, 
negative mixing weights from least squares, and multicollinearity between PRS in 
Supplementary Note.  
 
Simulations 
 
We used HAPGEN269 to simulate genotypes for 50,000 individuals of European and East 
Asian ancestry respectively from population-matched 1000 Genomes Project data. We 
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only included SNPs with MAF greater than 5% on chromosome 22. After removing strand-
ambiguous variants, 55,000 SNPs remained in the dataset and were used for subsequent 
analysis.  
 
First, we carried out simulations to assess the type I error rates of two methods (i.e. X-
Wing and PESCA). We generated the effect size of each SNP for two populations 
independently (i.e. under the null) following an infinitesimal model, where the per-SNP 
heritability was fixed as a constant. Trait heritability for two populations were set to be the 
same and varied between 0.001 and 0.01. We also compared two methods in three 
additional model settings: heritability enrichment model, LDAK model48 (SNP heritability 
is dependent on LD and MAF), and binary trait scenario. In the heritability enrichment 
model, 30% of heritability was attributed to 1,000 randomly selected SNPs and 70% of 
heritability to the remaining SNPs. LDAK model assumes that the effect size of the 𝑗-th 
SNP follows the normal distribution N(0, ℎ<()  and the per-SNP heritability ℎ<(  is 
proportional to b𝑓< ∗ 51 − 𝑓<8d

Y.[\ ∗ 𝑢<, where 𝑓< is MAF and 𝑢< is LDAK weight computed 
by the LDAK software. In the binary trait scenario, we first simulated the continuous 
liability following the same infinitesimal model as described above, then assigned the 
samples with top 50% liability as cases and others as controls. We repeated each 
simulation setting 100 times. Type I error rate was defined as the proportion of simulation 
repeats in which correlated regions (for X-Wing) and causal SNPs shared by two 
populations (for PESCA) were identified.  
 
Next, we compared the statistical power of X-Wing and PESCA under the heritability 
enrichment model. We randomly selected a genome segment on chromosome 22 
spanning 1,000 SNPs as the correlated signal region. We attributed 30% trait heritability 
to the signal region. We jointly simulated SNP effect sizes in the correlated signal region 
for two populations with a correlation set as 0.9, and then simulated effect sizes of the 
rest of the genome independently between populations. Trait heritability for two 
populations were set to be the same and varied between 0.001 and 0.01. We also 
investigated the LDAK model and the binary trait model. Each simulation setting was 
repeated 100 times. Statistical power was defined as the proportion of simulation repeats 
in which at least one identified region (for X-Wing) and one shared causal SNP (for 
PESCA) overlapped with the true signal region.  
 
Analysis of GWAS data from UKB, BBJ, and PAGE study. 
 
We evaluated the prediction accuracy of X-Wing PRS using 31 traits in East Asians and 
13 traits in admixed Americans. European and East Asian GWAS summary statistics 
were obtained from UKB and BBJ (see URLs). Trans-ancestry GWAS summary statistics 
for 13 traits were obtained from the PAGE study70 (Supplementary Table 5). East Asian 
and admixed American target samples in UKB were identified based on the Pan-UKB 
population assignment71. We removed samples already included in the UKB European 
GWAS. We also used KING72 to infer sample relatedness, and only kept individuals 
without any relatives at the third-degree or higher. We further excluded individuals with 
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conflicting genetically-inferred and self-reported sex. The final East Asian and admixed 
American target sample consist of 2,683 and 749 individuals, respectively. We calculated 
PRS for these samples using the imputed genotype data provided by UKB but restricted 
to the autosomal SNPs with info score >0.9, MAF > 0.01, missing rate ≤ 0.01, and Hardy 
Weinberg equilibrium test p-value ≥ 1.0e-6.  
 
We applied X-Wing to obtain the annotations based on pairwise local genetic correlation 
between European, East Asian, and admixed American population using UKB, BBJ, and 
PAGE GWAS summary statistics. We annotated SNPs in the top 500, 1000, 1500 
correlated regions and excluded regions with negative correlations. We then incorporated 
the annotation into our PRS model, using 1000G phase3 data provided in Ruan et al15 as 
LD reference panel and independent LD block provided by LDetect73 for block Gibbs 
sampler. When the target population is East Asian, we used UKB and BBJ GWAS as 
training data. For the admixed American target population, we used UKB, BBJ, and PAGE 
GWAS as training data. We randomly and evenly split the target cohort into a validation 
dataset to linearly combine population-specific PRS and used the remaining samples as 
the test dataset to evaluate PRS performance. When the PRS model involves model-
tuning, the validation dataset is also used to select tuning parameters. We used partial 
R2 averaged across 100 random splits to benchmark the predictive accuracy of different 
methods, adjusting for age, sex, age2, age × sex, age2 × sex, and the top 20 genetic 
principal components. We used the percentage increase in partial R2 for X-Wing over 
other methods to compare their performance. 
 
We implemented 4-fold repeated learning to estimate the PRS combination weights using 
GWAS summary statistics and our equally divided 1000G reference panel45,74. In each 
fold, we first subsampled East Asian (or admixed American) summary statistics for 75% 
BBJ (or PAGE study) samples as the training and the remaining 25% as the validation 
set. We applied X-Wing using the UKB and subsampled 75% BBJ training data (or UKB, 
BBJ, and 75% simulated PAGE summary statistics) to obtain the posterior mean effects 
for each population. We then used these posterior mean effects to calculate PRS in the 
1000G dataset for East Asian (or admixed American) samples and estimated the linear 
combination weights. We calculated the average weight values over four repeats, used 
these weights to combine population-specific PRS, and compared its prediction accuracy 
with the combined PRS based on individual-level data in the same target population. 
 
Implementation details of XPASS, PESCA, PolyFun-pred, and PRS-CSx are described 
in the Supplementary Note. 
 
 
URLs 
 
Phase 3 data of the 1000 Genomes Project ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/rele
ase/20130502/; HAPGEN2, https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/h
apgen2.html; LDAK, https://dougspeed.com/ldak/; PESCA, https://github.com/huwenbos
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hi/pesca; PRS-CSx, https://github.com/getian107/PRScsx; ldetect, https://bitbucket.org/
nygcresearch/ldetect-data/src/master/; XPASS, https://github.com/YangLabHKUST/XP
ASS; Pan UK Biobank: https://pan.ukbb.broadinstitute.org; UKB GWAS summary statist
ics: http://www.nealelab.is/uk-biobank; BBJ GWAS summary statistics: http://jenger.rike
n.jp/en/result; PAGE study GWAS summary statistics: https://www.ebi.ac.uk/gwas/publi
cations/31217584; PolyFun-pred PRS coefficients: http://data.broadinstitute.org/alkesgr
oup/polypred_results. 
 
Data and code availability 
 
X-Wing software is freely available at https://github.com/qlu-lab/X-Wing;  
X-Wing posterior SNP effect size estimates in this work are available at https://github.co
m/qlu-lab/X-Wing. 
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