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Abstract

Polygenic risk scores (PRS) calculated from genome-wide association studies (GWAS)
of Europeans are known to have substantially reduced predictive accuracy in non-
European populations, limiting its clinical utility and raising concerns about health
disparities across ancestral populations. Here, we introduce a novel statistical framework
named X-Wing to improve predictive performance in ancestrally diverse populations. X-
Wing quantifies local genetic correlations for complex traits between populations,
employs a novel annotation-dependent estimation procedure to amplify correlated
genetic effects between populations, and combines multiple population-specific PRS into
a unified score with GWAS summary statistics alone as input. Through extensive
benchmarking, we demonstrate that X-Wing pinpoints portable genetic effects and
substantially improves PRS performance in non-European populations, showing 18.7%-
122.1% gain in predictive R? compared to state-of-the-art methods based on GWAS
summary statistics. Overall, X-Wing addresses critical limitations in existing approaches
and may have broad applications in cross-population polygenic prediction.
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Introduction

Genome-wide association studies (GWAS) have identified tens of thousands of genotype-
phenotype associations for human complex traits'-2. Polygenic risk score (PRS) based on
GWAS, typically calculated as a weighted sum of trait-associated allele counts across
numerous loci in the genome, is an effective tool to quantify the aggregated genetic
propensity for a trait or disease3’. With rapid advances in GWAS sample size and
statistical methodology for modeling summary-level data, PRS has shown substantially
improved prediction accuracy and great potential in disease risk screening and precision
medicine® 19, However, since the vast majority of GWAS participants are of European
descent, current PRS models are more effective in Europeans but are known to have
substantially reduced accuracy in other populations, which severely limits their clinical
utility’-15. There is an urgent need to improve the effectiveness of PRS in diverse human

populations and provide equitable access to genomic advances in precision medicine'3:16-
19

There have been three types of approaches to improve cross-ancestry genetic prediction
in the literature. First, prioritizing causal variants using functional genomic annotations
can improve the portability of PRS based on European GWAS20-22, Second, several
studies combine multiple PRS trained in various populations using linear regression to
optimize the predictive performance in the target (non-European) population'®2223, The
third approach parametrizes the degree to which genetic effects are correlated across
populations, and integrates GWAS summary statistics from multiple populations in a
multivariate model to improve effect size estimation and prediction accuracy in each
respective population?®2426, These models have achieved moderately improved
predictive performance compared to conventional single-population approaches, but
several critical limitations and challenges still remain. First, previous studies used
epigenetic regulatory annotations to prioritize variants for PRS20-22. While these
annotations improved PRS portability for some traits, they are not designed to quantify
the correlated genetic effects between populations?’, and there is no guarantee that the
same set of annotations will improve PRS performance for all complex traits. Additionally,
existing statistical frameworks that leverage functional annotation data to improve PRS28-
32 do not apply to multi-ancestry predictive modeling. Finally, in order to combine multiple
population-specific PRS through regression, the current practice requires additional data
from the target (non-European) population. This includes individual-level genotype and
phenotype samples that are independent of the GWAS used to train single-population
PRS. In practice, this type of data can be nearly impossible to obtain33. In order to have
broad applications, PRS models need to use the increasingly accessible GWAS summary
statistics from global populations34-3¢ as input.

In this work, we introduce a cross-population weighting (X-Wing) framework for genetic
prediction. There are three main innovations in our approach. First, we introduce an
annotation framework based on cross-population local genetic correlation. This
annotation builds upon our previous work3” and directly quantifies correlated (portable)
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genetic effects between multiple ancestral populations. Second, we introduce a novel
Bayesian method to incorporate functional annotation data into multi-population PRS
modeling, where annotation-dependent statistical shrinkage amplifies the effects of
annotated variants (i.e., variants with correlated effects between populations). Finally, we
resolve a long-standing challenge in the field and introduce a method to combine multiple
PRS trained in various populations using GWAS summary data alone as input. We
demonstrate the superior performance of X-Wing PRS through extensive benchmarking
using numerous GWAS datasets, including UK Biobank (UKB)38, Biobank Japan (BBJ)%°,
and Population Architecture using Genomics and Epidemiology Consortium (PAGE)
study?°.

Results
Methods overview

The X-Wing workflow is illustrated in Figure 1. We have previously developed a scan
statistic approach?” for identifying genomic regions with correlated effects on two complex
traits. In this paper, we first extend this approach to identify correlated genetic effects on
the same trait between two populations. Once identified, these genomic regions explain
the shared genetic basis of the phenotype between populations and could be an
informative annotation for prioritizing single-nucleotide polymorphisms (SNPs) in PRS
models. Next, to quantitatively incorporate this annotation in multi-population PRS
modeling, we introduce a Bayesian framework in which annotation-dependent shrinkage
parameters allow variable degrees of statistical shrinkage between annotated and non-
annotated SNPs. Coupled with other shrinkage parameters that do not depend on
functional annotations, this framework amplifies SNP predictors that show correlated
effects between populations while ensuring robustness to diverse types of genetic
architecture*'-44, Although we only explore its performance using the annotation derived
from local genetic correlation in this paper, we note that this is a general framework that
allows an arbitrary collection of annotation variables as input and also accounts for
population-specific linkage disequilibrium (LD) and allele frequencies. Finally, we
introduce an innovative strategy to linearly combine multiple PRS trained in different
populations using summary association data alone. We employ a summary statistics-
based repeated learning approach motivated from our recent work* to estimate the
regression weights for combining multiple PRS. The entire X-Wing procedure only
requires GWAS summary data and LD references as input, which is a major advance
compared to existing approaches. We present the statistical details and technical
discussions in Methods and Supplementary Note.
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Figure 1: X-Wing workflow. X-Wing uses GWAS summary statistics and population-matched LD
references as input. It first employs a scan statistic approach to detect genome segments showing local
genetic correlation between populations. Next, it incorporates the local genetic correlation annotation into
a Bayesian PRS model, amplifying SNP effects that are correlated between populations. Finally, it uses
summary statistics-based repeated learning to combine multiple population-specific PRS and produce the
final PRS with improved accuracy.

X-Wing pinpoints local genetic correlation between ancestral populations

We first carried out simulations to assess the performance of our approach in identifying
cross-population local genetic correlations. Using European and East Asian samples in
1000 Genomes Project phase lll data*, we simulated chromosome 22 genotypes of
50,000 individuals, and simulated quantitative traits in two populations under an
infinitesimal model with varying heritability levels (Methods). When the traits in two
populations are independent, X-Wing showed well-controlled type-l error rates
(Supplementary Table 1). Since no existing method can estimate local genetic
correlation between two distinct ancestral populations, we compared our results with
PESCA#, a recently developed approach for estimating the risk SNP proportion shared
by two populations, to gain some perspective on the statistical property of our inference
results. PESCA also showed well-controlled type-l error across simulation settings, but
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X-Wing consistently achieved higher statistical power, especially when heritability is large
(Figure 2a).

To assess the robustness of our method to model mis-specification, we considered
additional data-generating models in which SNP heritability is enriched in certain genomic
regions®’ or is dependent on LD and minor allele frequency (MAF)*8. We also investigated
binary phenotypes using a liability threshold model. We obtained highly consistent results
in these analyses, with our method showing well-controlled type-I error (Supplementary
Tables 2-4) and superior statistical power (Figure 2b and Supplementary Figure 1).
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Figure 2. X-Wing achieves superior statistical power in identifying cross-population local genetic
correlation. (a, b) Statistical power in simulations under a heritability enrichment framework. Panels (a)
and (b) illustrate results for continuous and binary trait outcomes, respectively. (¢) Number of regions with
significant cross-population genetic correlations identified by X-Wing and PESCA for 31 complex traits. (d)
Proportion of total genetic covariance explained by significant local regions for 31 complex traits. In both
panels (c) and (d), GWAS sample sizes are indicated by the color of each data point, and the diagonal line
is highlighted in red.
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Local genetic correlation between Europeans and East Asians for 31 traits

We estimated local genetic correlations for 31 complex traits (Supplementary Table 5)
between Europeans and East Asians using GWAS summary statistics from UKB (N =
314,921 ~ 360,388)% and BBJ (N = 42,790 ~ 159,095)%. In total, we identified 4,160
regions with significant cross-population local genetic correlations across 31 traits (FDR
< 0.05; Supplementary Table 6). Of these, the vast majority (4,008 regions) showed
positive correlations. 958 identified regions have genome-wide significant SNPs in both
populations and 2,119 have significant SNPs in only one population (Supplementary
Figure 2). The number of significantly correlated regions identified for each trait pair is
proportional to the global genetic correlations estimated from genome-wide data?*
(Supplementary Figure 3; correlation r = 0.49). As a comparison, we also applied
PESCA to these data, and identified 1,968 risk regions shared by two populations
(Supplementary Table 6). Our approach identified more significant regions in 30 out of
31 traits (Figure 2c). The regions identified by our approach also explained larger
proportions of cumulative genetic covariance in all 31 traits (Figure 2d).

Overall, regions with significant local genetic correlations cover 0.06% (basophil) to 1.73%
(height) of the genome, but explain 13.22% (diastolic blood pressure) to 60.17% (mean
corpuscular volume) of the total genetic covariance between Europeans and East Asians
(Figure 3a and Supplementary Table 7), showing fold enrichments ranging from 28.09
to 546.83. Cross-population genetic correlations inside X-Wing-identified regions are
substantially higher than the genome-wide genetic correlation estimates, while
correlations in the remaining genome are consistently lower (Figure 3b). Notably, among
the traits we analyzed, basophil count has the lowest cross-population genetic correlation
(r, = 0.23) which is consistent with previous reports*®*°. But even for basophil count, we
observed a substantial genetic correlation in regions identified by our approach (r; = 0.83).
To guard against statistical artifacts, we performed falsification tests by simulating a trait
that is uncorrelated between populations (Methods). We did not identify significant global
or local correlations for this simulated trait (Figure 3b).

We also sought to replicate local correlations between Europeans and East Asians for
four lipid traits (HDL cholesterol, LDL cholesterol, total cholesterol, and triglycerides) in
independent data. We used European GWAS from the Global Lipids Genetics
Consortium (GLGC, N = 95,454 ~ 100,184)%" and East Asian GWAS from the Asian
Genetic Epidemiology Network (AGEN, N = 27,657 ~ 34,374)% as the replication datasets
(Supplementary Table 8). In total, we identified 124 significant regions for four lipid traits
in the replication analysis. 102 of them overlapped with significant regions identified in the
discovery stage (Figure 3c). Regions identified in the discovery stage showed substantial
enrichment for genetic covariance in the replication data (greater than 100-fold for all four
traits; Supplementary Table 9). Further, we ranked the regions identified in the discovery
stage by their p-values. The cumulative proportion of genetic covariance explained by
these regions were nearly identical between discovery and replication analyses (Figure
3d and Supplementary Figure 4).
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Figure 3. X-Wing identifies genomic regions strongly enriched for correlated genetic effects
between Europeans and East Asians. (a) Scatter plot shows the proportion of SNPs in regions identified
by X-Wing and the proportion of cross-population genetic covariance explained by these SNPs. All data
points are above the diagonal line highlighted in red, showing substantial enrichment. (b) Cross-population
genetic correlation for 31 complex traits. Three bars denote the global genetic correlation estimated from
genome-wide data (light green), genetic correlation in regions identified by X-Wing (brown), and genetic
correlation outside regions identified by X-Wing (dark green). Results for a simulated uncorrelated trait are
labeled as ‘Control’. All traits are ordered according to the global genetic correlation estimates. Error bars
indicate standard errors. A list of trait acronyms can be found in Supplementary Table 5. (c) Bar plot shows
the number of significant regions identified only in discovery stage (purple), only in replication stage
(orange), and in both stages (blue) for four lipid traits. HDL, LDL, TC, TG stand for HDL cholesterol, LDL
cholesterol, total cholesterol, and triglycerides, respectively. (d) Cumulative proportion of genetic
covariance explained by regions identified in the discovery stage for triglycerides. Analogous results for
HDL cholesterol, LDL cholesterol, and total cholesterol are shown in Supplementary Figure 4. Pink
dashed line indicates FDR cutoff of 0.05. Red line represents the diagonal line of y=x.

Local genetic correlation annotation improves PRS portability across populations

Next, we investigated whether incorporating the annotation based on local genetic
correlation can improve the cross-ancestry portability of PRS. We used European GWAS
from UKB and East Asian GWAS from BBJ to train PRS for 31 complex traits, and
evaluated PRS performance using independent East Asian samples in UKB (N = 2,683).
In this analysis, our approach jointly models GWAS in two populations and outputs
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separate SNP weights for Europeans and East Asians (Methods). Here, we used
annotation-informed PRS based on posterior SNP effects estimated for Europeans, and
report its performance in the East Asian target sample (thus, quantifying the portability of
European scores in the East Asian population). PRS performance is quantified using
partial R? adjusting for covariates (Methods). Our annotation-informed PRS showed a
6.9% and 49.6% average improvement in R? compared to PRS-CSx' and XPASS?°
(Figure 4a; Supplementary Figure 5; Supplementary Table 10), demonstrating the
effectiveness of incorporating local genetic correlation annotation. In fact, we found both
higher overall R and larger increase of R? in annotated genomic regions (i.e., regions
with correlated effects between populations) using our approach. PRS using only SNPs
outside annotated regions did not show any improvement (Figures 4b-c and
Supplementary Table 11). Also, we note that basophil count, the trait with the lowest
genetic correlation between Europeans and East Asians in our analysis (Figure 3b),
showed the highest R? improvement, once again demonstrating the importance of
amplifying local SNP effects that are correlated between populations. We also compared
our results with PolyFun-pred?®, an approach that uses functional fine-mapping to improve
PRS performance. Our PRS showed a substantial 74.5% gain in R2, suggesting that fine-
mapping in European population alone is a sub-optimal approach compared to multi-
population joint modeling (Supplementary Figure 6 and Supplementary Table 10).
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Figure 4. Local genetic correlation annotation improves PRS portability for 31 traits in East Asians.
(a) The percentage increase in R2 for portability of annotation-informed European PRS over PRS-CSx
European PRS. A list of trait acronyms can be found in Supplementary Table 5. (b) The percentage
increase in R2 for portability of annotation-informed over PRS-CSx European PRS using only annotated
and non-annotated SNPs. (¢) Comparison of R2 between annotation-informed European PRS using only
annotated and non-annotated SNPs. Each point represents a trait. X-axis is the R2 for PRS based on non-
annotated SNPs. Y-axis is the R2 for PRS based on annotated SNPs.

X-Wing combines multiple population-specific PRS using GWAS summary
statistics

Next, we investigated the benefit of combining multiple PRS trained for different
populations into a single score. We evenly split the East Asian target sample in UKB into
a validation set in which we fit a regression model to combine the European and East
Asian scores, and a testing set in which we evaluate the performance of combined PRS.
We compared the prediction accuracy of X-Wing PRS with PRS-CSx and XPASS using
the same regression approach to combine scores. X-Wing showed an average R?
increase of 4.5% and 81.6% compared to PRS-CSx and XPASS in East Asian target
samples (Figure 5a, Supplementary Figure 5, and Supplementary Table 10). We also
assessed the combined scores based on PAGE, UKB, and BBJ in admixed Americans.
Our method showed a 4.1% increase in R? compared to PRS-CSx (Supplementary
Figure 7 and Supplementary Table 12). XPASS was excluded since it cannot take more
than two GWAS datasets as input. We also performed sensitivity analyses by varying the
size of genetic correlation annotation and estimating the global shrinkage parameter
using a model tuning approach instead of the full Bayesian procedure (Supplementary
Note). We obtained highly consistent results in the analyses, demonstrating the
robustness of X-Wing to these choices (Supplementary Figures 8-11, Supplementary
Tables 13-15).

Finally, we demonstrated that population-specific PRS can be combined using GWAS
summary data alone. We used summary-statistics-based repeated learning (Methods),
instead of regressions trained on reserved samples, to linearly combine multiple PRS.
This analytic strategy showed almost identical results compared to the gold-standard
regression approach in both East Asian and admixed American target samples
(regression slope = 0.983 and 1.007) (Figure 5b, Supplementary Figure 12, and
Supplementary Table 16). Notably, if no external individual-level data are available for
regression model training, the current best PRS approach in practice is to use posterior
SNP effects estimated for one population (Methods). Compared to the best-performing
population-specific scores, X-Wing PRS can be trained using the same input data but
showed a substantial improvement in prediction accuracy, with the R? increase ranging
from 31.0%-96.1% in East Asians and 18.7%-122.1% in admixed Americans (Figure 5¢
and Supplementary Figure 12-13).
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Figure 5. Performance of X-Wing in combining population-specific PRS using GWAS summary
statistics for 31 traits in East Asian samples. (a) The percentage increase in R2 of X-Wing PRS over
PRS-CSx. The dashed line represents the average increase. A list of trait acronyms can be found in
Supplementary Table 5. (b) Comparison of R2 for linearly combined PRS with mixing weights obtained
using GWAS summary statistics and individual-level data. The X-axis represents the R2 using weights
estimated from individual-level data, while the Y-axis shows the R2 using summary statistics-based weights.
The dashed line represents the diagonal line of y=x. (¢) The percentage increase in R2 of X-Wing PRS over
PRS-CSx using GWAS summary statistics. PRS-CSx PRS is calculated based on European posterior mean
effects. The dashed line represents the average increase.

Discussion

In this paper, we introduced X-Wing, a sophisticated statistical framework for improving
PRS performance in ancestrally diverse populations. X-Wing quantifies cross-population
local genetic correlation, and incorporates it as an annotation into a Bayesian framework
which amplifies correlated SNP effects between populations through annotation-
dependent statistical shrinkage. It also combines multiple population-specific PRS to
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further improve prediction accuracy while using GWAS summary data alone as input.
Applied to numerous GWAS traits, we demonstrated that local genetic correlations help
pinpoint portable genetic effects and the annotation-informed PRS show consistently and
substantially improved performance across populations.

Our study presents several methodological innovations that will likely be generalizable
and impactful. First, we introduced the concept of cross-population local genetic
correlation and developed a scan statistic method to map correlated regions.
Complementary to global genetic correlation, local genetic correlation refines the
resolution in identifying shared genetic components between populations and provides
critical insights into the genetic architecture of complex traits in diverse human
populations. Second, we developed a new Bayesian framework that allows the integrative
analysis of functional annotation data in multi-population PRS modeling. In this work, we
showcased its effectiveness in cross-population risk prediction using an annotation
derived from local genetic correlations. But we note that it is a general framework that can
incorporate arbitrary sets of annotation data, such as the epigenetic annotations used in
the PRS literature or LD and allele frequencies which have been shown to improve
heritability estimation202232.53 (Supplementary Note). It may also be applied to improve
PRS portability across other non-ancestry-related demographic groups®*. Finally, we
introduced a strategy to combine multiple population-specific PRS into one improved
score using summary statistics alone. This is highly novel since fitting a regression model
in an independent sample has long been considered the standard (and only) approach
for combining multiple scores. This represents a significant advance in the field since
obtaining additional individual-level samples that are independent from input GWAS can
be a major challenge in practice. This is also generalizable since the same technique
could be used to improve any PRS by creating an “omnibus” score over a number of
methods, and the application is not limited to trans-ancestry risk prediction.

In addition to these methodological innovations, our local genetic correlation analysis
identified many regions that are of biological interest. We have demonstrated that
genomic regions identified by our approach show a substantial effect correlation on
basophil count between two populations despite the low genetic correlation estimated
from genome-wide data. More specifically, a region spanning 219 KB on chromosome 3
shows correlated effects between Europeans and East Asians for basophil count
(Supplementary Figure 14). Candidate gene GATAZ at this locus encodes a zinc-finger
transcription factor which plays an essential role in proliferation, differentiation, and
survival of hematopoietic cells®®. In particular, expression of GATAZ2, coupled with CCAAT
enhancer-binding protein a (C/EBP a) and transcription factor STAT5, directs the
differentiation of granulocyte/monocyte progenitors (GMPs) into basophils®6-57. Another
correlated region for basophil count is a locus spanning 51 KB on chromosome 3
(Supplementary Figure 15). Gene IL5RA, which encodes a subunit of a heterodimeric
cytokine receptor that specifically binds to interleukin-5 (IL-5), lies 13 KB away from the
identified region. Binding of the receptor to its ligand IL-5 is required for the biological
activity of IL-5. Notably, IL-5 is a human basophilopoietin that promotes the formation and
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differentiation of human basophils®8-59, Many other traits have interesting findings too. For
example, a region spanning 48 KB on chromosome 1 is associated with C-reactive protein
in two populations (Supplementary Figure 16). The locus covers the gene NLRP3, which
was identified as a risk gene associated with C-reactive protein levels in an independent
GWASS®0, NLRP3 encodes a pyrin-like protein that constitutes the NLRP3 inflammasome
complex®'. It was suggested that the NALP3 inflammasome can activate nuclear factor-
kB signaling®? which affects C-reactive protein levels in Hep3B cells®63. These results
provide insights into the shared genetic basis of complex traits across ancestrally diverse
populations. The local genetic correlation estimation procedure implemented in X-Wing
may have broad applications in future studies that involve joint modeling of multi-
population GWAS associations.

Our study also has some limitations. First, although our method does not require any
individual-level sample with both genotype and phenotype information, it remains crucial
to have LD reference panels that match the input GWAS. We observed an improvement
in PRS performance when applying our method to highly diverse samples such as the
PAGE study, but it remains unclear how to best select LD references for multi-ancestry
GWAS and admixed populations®+. Second, we generally believe that statistical methods
alone cannot fully solve the challenges in cross-population risk prediction'316, It is an
important future direction to apply state-of-the-art methods to the large and highly diverse
GWAS conducted in global biobank cohorts®5, and carefully benchmark/combine various
annotation data types and PRS training procedures.

Taken together, X-Wing addresses major challenges in existing PRS methods,
showcases multiple innovations in trans-ancestry GWAS modeling, and substantially
improves the portability and overall performance of PRS in non-European populations.
These methodological advances, in conjunction with the ever-growing GWAS sample size
especially in non-European populations, give hope to broad and equitable applications of
genomic precision medicine around the globe.

Methods
Quantifying local genetic correlations between ancestral populations

We extend the LOGODetect®” framework to detect genomic regions showing local genetic

correlations between two ancestral populations. Suppose the association z-scores for two

populations are denoted as z, = iXﬁY,{,k = 1,2. Here, Y, is a Ni-dimensional vector

N
of standardized phenotype values with mean 0 and variance 1, and X, is the standardized
genotype matrix of dimension N, x M where N, is the GWAS sample size for population
k. We define the scan statistic as

QRR) =

Yicr Z1iZ2i

(Bier Zoii * 2:2,1'1')9
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where R is the index set for SNPs in a genomic region, X, is the variance-covariance
matrix of z, and X, ;; denotes the i-th diagonal element of Z,. We note that the X, matrix

2 ~
can be estimated using X, = N’I‘Wh" VZ + (1 — h)V,. Here, hi is the trait heritability which

can be estimated using GWAS summary statistics?4, V,, is the LD matrix which can be
— (ref) _
estimated using a reference panel, VZ = %Vﬁ —#Vk is an unbiased

N
estimator of the squared LD matrix, and N,Eref) is the sample size of the LD reference
panel. The numerator in the scan statistic is the inner product of association z-scores for
two populations in a genomic region, which quantifies the correlation of SNP effect sizes.
The denominator in the scan statistic adjusts for the effect of LD in two populations, where
a tuning parameter 6 controls the impact of LD. Technical details of the scan statistic and
selection procedure for 8 can be found in the Supplementary Notes.

To perform statistical inference, we use the maximal scan statistic over all possible
genomic regions as the test statistic:
Qmax = m&%IQ(R)I'

where C controls the upper bound of the region size and is pre-specified as 2000 in our
analyses. Similar to local genetic correlation analysis in a single population3’, we draw
5000 Monte Carlo simulations of z-scores for each population to assess the null
distribution of Q,,,4,, and we apply the scanning procedure to identify significant genomic
regions showing cross-population local genetic correlations. Significant regions with a
distance less than 100KB in-between are merged into a single segment.

An annotation-dependent Bayesian horseshoe regression model for PRS

Next, we describe our Bayesian PRS framework with annotation-dependent statistical
shrinkage. Consider an additive genetic model:

Y, = Xy By + €, € ~ MVN(0,0%1,),p(0?) x 0, %,k = 1,2, ...K,
where B, is a M-dimensional vector of SNP effect sizes in population k, €, is a vector of
error terms with variance o/, to which we assign a non-informative Jeffreys priors. MVN
denotes multivariate normal distribution, and I, is an identity matrix.

We introduce an annotation-dependent shrinkage parameter, in addition to the global and
local shrinkage parameters used in literature'®, to employ variable degrees of statistical
shrinkage for SNPs in different annotation categories*!4244. Here we only consider one
annotation for simplicity, but our model allows incorporating multiple annotations
(Supplementary Note). Consider an annotation with A categories, we assign an
annotation-dependent horseshoe prior to fy,:

2
By ~N (o,;—’;gz)zpjaf(j)lk),j =12, .. Mk=12..K.
Here, Bj, denotes the effect of SNP j in population k, ¢ is the global shrinkage
parameter shared across all M SNPs and K populations, y; represents the local
shrinkage parameter for SNP j, A, denotes the annotation-dependent shrinkage
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parameter for SNP j in population k, f:j - a € {1, ... A} is a function that maps the j-th
SNP to its corresponding category a in the annotation. The annotation-dependent
shrinkage parameter is shared across SNPs that are in the same annotation category for
a given population, but varies between populations to account for population-specific
annotation.

Given this prior and marginal least squares estimates g, obtained from GWAS summary
statistics, posterior mean effects in population k is

E[Bi|Bi] = (D + S Br,
where Sy = diag{dV12;q) 1 P25 @000 - PPuArank) and Dy is the LD matrix for
population k.

To provide an intuition of annotation-dependent statistical shrinkage, suppose all SNP
are unlinked (i.e., no LD), then the LD matrix D, = I and the posterior mean effect for
SNP j in population k is

A 1 A
E|Bjk| Bjrl = = _ﬁ-=<1— )ﬂ--
[ Jk| jk 1+¢ 1/1f(1j),k¢j 1 Fjk 1+ (plf(j),klpj jk
Since SNPs in an important annotation explain more phenotypic variance (4, tends to
be big), the shrinkage factor 1 — will be small if the j-th SNP is in an important

1+Ar(p i)
annotation. Consequently, there is less statistical shrinkage on SNP effects in genomic
regions marked by an important annotation.

To perform the full Bayesian model fitting, we assign half-Cauchy priors to the global,
local, and annotation-dependent shrinkage parameters as follows:
1 1

= 1 =
PP~ CH(1), 2 ~ CH(), A%, ~ CT(D),j =12, . Mk =12,..K,a=12,..,4
where C*( 1) is the standard Cauchy distribution with the scale parameter equal to 1.

We employ a simple and efficient block Gibbs sampler to fit the PRS model using GWAS
summary statistics and LD reference panel (Supplementary Note)®. Following Ruan et
al.’®, we recommend using 1000 x K Markov Chain Monte Carlo (MCMC) iterations with
the first 500 X K iterations as burn-in. We use the full Bayesian approach as default,
which does not require validation data to tune the model. An alternative strategy is to
select the optimal global shrinkage parameter ¢ from {107%,107%,107%,1} that
maximized the R? in the validation sample (Supplementary Note)'5. Our method outputs
the posterior mean of population-specific SNP effects. PRS for the target cohort is
calculated subsequently as the sum of allele counts weighted by poster effect estimates.

Incorporating local genetic correlation annotation in PRS
Below we explain how to incorporate annotations based on local genetic correlation in

our PRS model. Without loss of generality, we assume population 1 is the target
population. We break down our algorithm into three steps:
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Step1: Obtain annotation information through local genetic correlation analysis
We perform local genetic correlation analysis between population 1 and population k
(k = 2, ...K) to identify top s regions with positive local genetic correlation. We denote the
set of regions as Q. We selected s = 1000 in our primary analysis and demonstrated
that PRS performance is robust to the choice of s (Supplementary Figure 10 and 11).

Step2: Estimate posterior mean effects for all SNPs

Our annotation-dependent shrinkage procedure is designed based on two key intuitions.
First, we expect poor PRS portability when using GWAS from various ancestral
populations (e.g., European and African) to predict trait values in a different target
population (e.g., East Asian), Therefore, we want to amplify SNP effects that are more
portable (i.e. correlated) between each non-target population and the target population.
Second, we do not expect any portability issue when the GWAS population and the target
population are the same (e.g., using an East Asian GWAS to build PRS for East Asian
target samples). Thus, we do not employ any annotation-dependent shrinkage when
estimating posterior SNP effects for the target population.

Specifically, when estimating posterior SNP effects for the target population, we let
Arche = 1forallj=1,2,..M,k =1,..K. When estimating the posterior SNP effects for
the non-target population k (k = 2,...K), we used As¢jyx = 41 if SNP j is not annotated
by Qi, Ar(j)x = A2 if SNP j is annotated by Q,, and A, = 4, for k' =1,....k —
1,k+1,..,K. We provide an example for the case where K = 3 in the Supplementary
Note.

Step3: Linearly combine multiple population-specific PRS
Based on the posterior mean effects of population k obtained in step2, we can calculate
population-specific score PRS;,. A common practice to combine these population-specific
scores is to fit a regression model using the same phenotype Y™ and K population-
specific PRS in an independent validation dataset from the target population:

Y® ~w,PRS” + w,PRSS” + -+ wy PRSY.
Here, superscript v highlights the fact that phenotypes and PRS in this regression
exercise need to be obtained from a validation dataset that is different from any data used
for GWAS and PRS modeling training. Instead of fitting a regression in independent
samples, we employ a novel strategy to obtain the least squares estimates of regression
weights (i.e. wy, ... wg) using GWAS summary statistics. We introduce this approach in
the next section. The final X-Wing PRS is then calculated as:

K
PRSLC' = ZWRPRSR
k=1

Combining multiple PRS with GWAS summary statistics
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First, we briefly illustrate that we do not need any individual-level data from the validation
sample, and summary statistics is sufficient for estimating the least squares estimator w
of PRS combination weights. Then, we provide detailed justifications on how to estimate
w using only input GWAS data instead of summary statistics from a validation sample.
Suppose we have a validation dataset of N® individuals, w can be estimated as follows:

W = [PRS®TPRSW ] 1PRSVTY™),
Here, Y™ is the phenotype vector and PRS®™ is the N x K matrix of K population-
specific scores in this sample. Further, PRS®™ can be denoted as PRS™) = X b where
X® is the N, x M genotype matrix and b is the M x K matrix for SNP effects. For
simplicity, we assume Y® is centered, X is standardized, and b quantifies
standardized SNP effects. We note that PRS®TPRS™ /N®) quantifies the covariance of
K population-specific PRS which can be approximated by the sample covariance
obtained from a reference panel (e.g. LD reference of the target population). Therefore,
we have

N (ref)

N
where X®Ty® can be obtained from the summary statistics of the validation sample
(Supplementary Note) and b is obtained from the PRS training procedure. N™¢/) and
PRSUe) denote the sample size and PRS matrix in the reference panel. Taken together,
this shows that in order to estimate w, we only need the LD reference and summary
statistics from a validation sample.

[pRs(Tef)TpRs(Tef)] —1bTx(U)Ty(U)'

~
w=

However, summary statistics from a validation sample are still difficult to obtain in practice
and it is tempting to replace it with the input GWAS used for PRS training. But this cannot
be done since it is a textbook example of overfitting. This motivates us to use repeated
learning (or a similar cross-validation approach; see Supplementary Note)¢7:68 to
estimate w. Typically, repeated learning (or cross-validation) requires individual-level
genotype and phenotype data since it involves sample splitting. Generalizing the
technique in our recent work*®, we introduce a summary statistics-based repeated
learning strategy, which does not need individual-level GWAS data. This approach has
three main steps which we describe below. Since this approach does not involve a
separate validation sample, we will perform analysis using input GWAS from the target
population (e.g. BBJ GWAS when East Asian is the target population). Without loss of
generality, we denote k = 1 for this (target) population.

Step1: Subsample GWAS summary statistics from training and validation sets
Suppose we divide the full GWAS sample (X,,Y,) into a training set (X", ¥y with N, —
N® individuals, and a validation set (X{”,¥") with N individuals. Given the
xTy,
VN1
reference panel, association summary statistics based on training and validation sets can
be sampled as:

association z-scores (

) from GWAS summary statistics and genotype data from the
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1
thr)TYEtr) ngl Nl(v) 2 X(ref)T
= 9
N, —N® N \N, —NP) JNCeD

ng)Tygv) ~ X'{Yl . thr)Tygtr)

N(”) - N(”)
1 1
where Xf) is a N("¢f) x M standardized genotype matrix from the reference panel for
the target population, N¢/) is the sample size of the reference panel, g is a N/
dimensional vector with elements drawn from a standard normal distribution
(Supplementary Note).

)

Step2: PRS model training

We train our PRS model using the training summary statistics subsampled for the target
population in step1 and full GWAS summary statistics (without subsampling) for other
populations. The output of PRS training is a M x K matrix b with the k-th column showing
standardized SNP effects for population k (Supplementary Note).

Step3: Estimate the linear combination weights
We then estimate PRS weights by

N (ref) 1
~[PRSTNTPRSTeD] " pT XYY,

W= @
Nl
where PRSef) = x(ref)p denotes the Nef) x K PRS matrix calculated in the reference

panel, X&”)TYE") is the subsampled validation summary statistics. In practice, we force any
negative estimates w;, to be 0 and center PRS in the reference panel. We also normalize

PRS weights by W = =

K .~ -
Zk:l Wk

At last, we perform P-fold repeated learning. The final linear combination weights wy;,,;
is the average of the normalized mixing weights across P times:

N Z;F;:l wp

Wrinalt = Tr
where w,, represents the normalized weights in p-th fold. To avoid overfitting, we used
distinct reference panels from the target population for GWAS summary statistics
subsampling, PRS model training, and estimating weights for PRS combination. We
provide the equally divided reference panels from 1000G phase 3 data for Europeans,
East Asians, Africans, Central/South Asians, and admixed Americans to the users. We
also present the extensions of our approach to handle tuning parameters in PRS model,
negative mixing weights from least squares, and multicollinearity between PRS in
Supplementary Note.

Simulations

We used HAPGENZ2%9 to simulate genotypes for 50,000 individuals of European and East
Asian ancestry respectively from population-matched 1000 Genomes Project data. We
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only included SNPs with MAF greater than 5% on chromosome 22. After removing strand-
ambiguous variants, 55,000 SNPs remained in the dataset and were used for subsequent
analysis.

First, we carried out simulations to assess the type | error rates of two methods (i.e. X-
Wing and PESCA). We generated the effect size of each SNP for two populations
independently (i.e. under the null) following an infinitesimal model, where the per-SNP
heritability was fixed as a constant. Trait heritability for two populations were set to be the
same and varied between 0.001 and 0.01. We also compared two methods in three
additional model settings: heritability enrichment model, LDAK model*® (SNP heritability
is dependent on LD and MAF), and binary trait scenario. In the heritability enrichment
model, 30% of heritability was attributed to 1,000 randomly selected SNPs and 70% of
heritability to the remaining SNPs. LDAK model assumes that the effect size of the j-th
SNP follows the normal distribution N(0,h7) and the per-SNP heritability A} is

proportional to [f; * (1 — £;)]""" *w,, where f; is MAF and u; is LDAK weight computed
by the LDAK software. In the binary trait scenario, we first simulated the continuous
liability following the same infinitesimal model as described above, then assigned the
samples with top 50% liability as cases and others as controls. We repeated each
simulation setting 100 times. Type | error rate was defined as the proportion of simulation
repeats in which correlated regions (for X-Wing) and causal SNPs shared by two
populations (for PESCA) were identified.

Next, we compared the statistical power of X-Wing and PESCA under the heritability
enrichment model. We randomly selected a genome segment on chromosome 22
spanning 1,000 SNPs as the correlated signal region. We attributed 30% trait heritability
to the signal region. We jointly simulated SNP effect sizes in the correlated signal region
for two populations with a correlation set as 0.9, and then simulated effect sizes of the
rest of the genome independently between populations. Trait heritability for two
populations were set to be the same and varied between 0.001 and 0.01. We also
investigated the LDAK model and the binary trait model. Each simulation setting was
repeated 100 times. Statistical power was defined as the proportion of simulation repeats
in which at least one identified region (for X-Wing) and one shared causal SNP (for
PESCA) overlapped with the true signal region.

Analysis of GWAS data from UKB, BBJ, and PAGE study.

We evaluated the prediction accuracy of X-Wing PRS using 31 traits in East Asians and
13 traits in admixed Americans. European and East Asian GWAS summary statistics
were obtained from UKB and BBJ (see URLs). Trans-ancestry GWAS summary statistics
for 13 traits were obtained from the PAGE study’® (Supplementary Table 5). East Asian
and admixed American target samples in UKB were identified based on the Pan-UKB
population assignment’!. We removed samples already included in the UKB European
GWAS. We also used KING”? to infer sample relatedness, and only kept individuals
without any relatives at the third-degree or higher. We further excluded individuals with
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conflicting genetically-inferred and self-reported sex. The final East Asian and admixed
American target sample consist of 2, 683 and 749 individuals, respectively. We calculated
PRS for these samples using the imputed genotype data provided by UKB but restricted
to the autosomal SNPs with info score >0.9, MAF > 0.01, missing rate < 0.01, and Hardy
Weinberg equilibrium test p-value > 1.0e-6.

We applied X-Wing to obtain the annotations based on pairwise local genetic correlation
between European, East Asian, and admixed American population using UKB, BBJ, and
PAGE GWAS summary statistics. We annotated SNPs in the top 500, 1000, 1500
correlated regions and excluded regions with negative correlations. We then incorporated
the annotation into our PRS model, using 1000G phase3 data provided in Ruan et al'® as
LD reference panel and independent LD block provided by LDetect”® for block Gibbs
sampler. When the target population is East Asian, we used UKB and BBJ GWAS as
training data. For the admixed American target population, we used UKB, BBJ, and PAGE
GWAS as training data. We randomly and evenly split the target cohort into a validation
dataset to linearly combine population-specific PRS and used the remaining samples as
the test dataset to evaluate PRS performance. When the PRS model involves model-
tuning, the validation dataset is also used to select tuning parameters. We used partial
R? averaged across 100 random splits to benchmark the predictive accuracy of different
methods, adjusting for age, sex, age?, age X sex, age? x sex, and the top 20 genetic
principal components. We used the percentage increase in partial R? for X-Wing over
other methods to compare their performance.

We implemented 4-fold repeated learning to estimate the PRS combination weights using
GWAS summary statistics and our equally divided 1000G reference panel*®74. In each
fold, we first subsampled East Asian (or admixed American) summary statistics for 75%
BBJ (or PAGE study) samples as the training and the remaining 25% as the validation
set. We applied X-Wing using the UKB and subsampled 75% BBJ training data (or UKB,
BBJ, and 75% simulated PAGE summary statistics) to obtain the posterior mean effects
for each population. We then used these posterior mean effects to calculate PRS in the
1000G dataset for East Asian (or admixed American) samples and estimated the linear
combination weights. We calculated the average weight values over four repeats, used
these weights to combine population-specific PRS, and compared its prediction accuracy
with the combined PRS based on individual-level data in the same target population.

Implementation details of XPASS, PESCA, PolyFun-pred, and PRS-CSx are described
in the Supplementary Note.

URLs

Phase 3 data of the 1000 Genomes Project ftp://ftp.1000genomes.ebi.ac.uk/voli/fip/rele

ase/20130502/; HAPGENZ2, https://mathgen.stats.ox.ac.uk/genetics software/hapgen/h
apgen2.html; LDAK, https://dougspeed.com/Idak/; PESCA, https://github.com/huwenbos
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hi/pesca; PRS-CSx, https://github.com/getian107/PRScsx; Idetect, https://bitbucket.org/
nygcresearch/ldetect-data/src/master/; XPASS, https://github.com/YangLabHKUST/XP

ASS; Pan UK Biobank: https://pan.ukbb.broadinstitute.org; UKB GWAS summary statist
ics: http://www.nealelab.is/uk-biobank; BBJ GWAS summary statistics: http://jenger.rike
n.jp/en/result; PAGE study GWAS summary statistics: https://www.ebi.ac.uk/gwas/publi
cations/31217584; PolyFun-pred PRS coefficients: http://data.broadinstitute.org/alkesgr
oup/polypred results.

Data and code availability

X-Wing software is freely available at hitps://github.com/qglu-lab/X-Wing;
X-Wing posterior SNP effect size estimates in this work are available at https://github.co
m/qlu-lab/X-Wing.
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