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ABSTRACT

The highest risk factor for chronic diseases is chronological age, and age-related chronic
diseases account for the majority of deaths worldwide. Targeting senescent cells that
accumulate in disease- related tissues presents a strategy to reduce disease burden and
to increase healthspan.

Our goal was the computational identification of senotherapeutic repurposing candidates
that potentially eliminate senescent cells, based on their similarity in gene expression
effects to dasatinib, a tyrosine-kinase inhibitor that induces apoptosis in certain senescent
cell types, and that is frequently used as a senolytic together with quercetin.

The natural senolytic piperlongumine (a compound found in long pepper), and the natural
senomorphics parthenolide, phloretin and curcumin (found in various edible plants) were
identified as potential substitutes of dasatinib. The gene expression changes underlying
the repositioning highlight apoptosis-related genes and pathways. The four compounds,
and in particular the top-runner piperlongumine, may be combined with quercetin to obtain
natural formulas emulating the dasatinib + quercetin (D+Q) formula that is frequently used

in clinical trials targeting senescent cells.
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1. Introduction

Cellular senescence was investigated by Hayflick and Moorhead as early as 1961. They
found that cultured human fibroblasts could only undergo a certain number of replications
until a state of replicative arrest was entered, now known as replicative senescence
(Campisi, 2000; Fyhrquist et al., 2013; Hayflick & Moorhead, 1961). Non- replicative
cellular senescence can also be triggered by various factors including DNA damage,
sustained inflammation, radiation, UVB light, DNA damaging chemotherapeutics,
oncogene-activation, or PTEN tumor suppressor loss (Childs et al., 2014). Senescent
cells feature cell cycle arrest, but they do not undergo apoptosis and instead remain
metabolically active, usually displaying the so called senescence-associated secretory
phenotype (SASP), the secretion of a diverse, often deleterious collection of pro-
inflammatory cytokines, chemokines and proteases, leading to inflammation and tissue
damage. Senescent cells accumulate with increasing age and contribute substantially to
age-associated diseases. In senescent cells, signaling pathways are activated that
sustain their resistance to apoptosis and, in contrast to proliferating cells, senescent cells
are believed to need these pathways, termed senescent cell anti-apoptotic pathways, in
order to stay alive (Y. Zhu et al., 2015).

As a consequence, a lot of effort has been invested into finding drugs (termed senolytics)
that kill senescent cells, e.g., by inhibiting anti-apoptotic pathways. By disabling these
pro-survival pathways, they enable the selective elimination of senescent cells via the
induction of apoptosis (Y. Zhu et al., 2017). Target genes of senolytics include BCL2-
family proteins such as BCL2L1, the kinases PIK3CA and AKT, the transcription factor
TP53, cyclin-dependent kinase inhibitor 1A (CDKN1A, also known as p21), the
chaperone protein HSP90, and plasminogen-activated inhibitor-2 (SERPINB2) (Zhu, et
al., 2015; Zhu et al., 2020). Unlike senolytics, senomorphics are drugs that can suppress
SASP factors or hinder stressed cells from becoming senescent, e.g. by activation of the
NRF2 or FOXO pathways, by decreasing/inhibiting NF-kB or mTOR activity, by inhibition
of IkB kinase (IKK), by scavenging free radicals, or by inhibiting the JAK-pathway (Martel
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et al., 2020; Niedernhofer & Robbins, 2018; Romashkan et al., 2021). We use the term

“senotherapeutic” to cover senolytics and senomorphics.

Two known senolytics are dasatinib and quercetin, often studied in combination.
Dasatinib is a drug developed for the treatment of leukemia, and it exerts its antitumoral
activity by dual inhibition of SCR/ABL1 kinases, and by inhibiting the BCL-ABL1 fusion
protein that causes chronic myeloid leukemia (Braun et al., 2020; Hochhaus & Kantarjian,
2013). Quercetin is a polyphenol (flavonol) known as a potent natural antioxidant, found
in many fruit and vegetables (Bravo, 1998; Drewnowski & Gomez-Carneros, 2000). The
joint senolytic activity of the two compounds was discovered through a hypothesis-driven
approach (Kirkland & Tchkonia, 2020). Dasatinib can act as a senolytic through ephrin-
dependent receptor ligands, partly by inhibition of SRC-kinase (Zhu et al., 2015; Kirkland
and Tchkonia, 2020), and quercetin can act as senolytic partly by inhibition of the BCL2-
family protein BCL2L1 and HIF1A, and PIK3CA (Zhu et al., 2015; Kirkland and Tchkonia,
2020).

Senolytics are cell-type specific (see Table 2); dasatinib and quercetin both target human
preadipocytes and human umbilical vein endothelial cells (HUVECSs) but with different
effectivities, i.e. quercetin is more effective in kiling HUVECs than preadipocytes, and
dasatinib kills senescent human preadipocytes more effectively than HUVECs (Zhu et al.,
2015). Combining dasatinib and quercetin (D+Q) successfully reduced viability in both
cell types (Zhu et al., 2015). Further, D+Q reduced abundance of senescent primary
mouse embryonic fibroblasts and senescent bone marrow derived mesenchymal stem
cells (Zhu et al., 2015), and induced apoptosis in senescent (fibrotic) alveolar epithelial
type Il cells, as was shown in an ex vivo model of lung fibrosis (Lehmann et al., 2017). In
murine models, D+Q prevented uterine age-related dysfunction and fibrosis, reduced
intestinal senescence and inflammation and modulated the gut microbiome in aged mice,
reduced senescent cell load in the context of age-related hepatic steatosis, and protected
retinal ganglion cell loss by early removal of senescent cells (Cavalcante et al., 2020;
Ogrodnik et al., 2017; Rocha et al., 2020; Saccon et al., 2021). Long-term treatment by
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D+Q reduced the number of senescent cells and ameliorated age-dependent
intervertebral disk-degeneration in mice, along with downregulation of circulating
proinflammatory factors and an increase in physical strength (Novais et al., 2021). In
humans, D+Q showed improved disease-related outcomes e.g. leading to reduced
adipose tissue senescent cell burden in individuals with diabetic kidney disease and it
improved physical strength and function in patients with idiopathic pulmonary fibrosis
(Hickson et al., 2019; Justice et al., 2019). However, as with other antitumor drugs,
adverse events of dasatinib are frequent, such as respiratory events, skin irritation,
myelosuppression, fluid retention events or diarrhea (Justice et al., 2019). Hence, finding
non- toxic analogs of dasatinib, especially from natural sources, possibly for combination

with quercetin, would be of high value.

In this regard, traditional drug discovery is a time-consuming, costly and labor-intense
process with high failure rates (Everett, 2015). Computational methods to identify existing
drugs for a new purpose (known as drug repositioning, or repurposing) offers an
alternative to de novo drug discovery, as it imposes fewer risks, resources and economic
effort (Jarada et al., 2020; Lima et al., 2019; Xue et al., 2018). A common repositioning
approach is built on the hypothesis that if two drugs induce similar gene expression
profiles and thus may be assumed to have similar modes of action, both could be
considered to treat the same condition (Jarada et al., 2020). Transcriptomic gene
expression profiles capture some of the dynamics of the cellular response to a drug
intervention and measure the transcriptional activity of hundreds or thousands of genes
simultaneously, and therefore help understanding how genes act under the same or
similar circumstances (Jarada et al., 2020). Two key resources for drug repositioning are
the Connectivity Map and the Library of Integrated Network-Based Cellular Signatures
(LINCS) projects. The Connectivity Map is a database where genes, drugs and diseases
are connected by common gene expression signatures (Subramanian et al., 2017).
LINCS, in turn, is a program funded by the National Institutes of Health to generate an
extensive reference database of cell- based perturbation- response signatures (Koleti et
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al., 2018). LINCS is an expanded version of the Connectivity Map and comprises over a
million gene expression profiles of chemically perturbed human cell lines that can be used
to discover mechanisms of action of small molecules, based on a compacted

representation of the transcriptome (Duan et al., 2016; Subramanian et al., 2017).

Because the dasatinib and quercetin (D+Q) combination has been studied extensively in
regard to cellular senescence and senolysis, and gene expression data of dasatinib-
interventions are available online, the gene expression- based approach of repositioning
was used to find candidate compounds that may replace dasatinib, to be used together
with quercetin as a senolytic combination. Therefore, here we aimed to identify
compounds that show similar senolytic activity as dasatinib through computational drug
repositioning, focussing on compounds found in dietary sources that could act as safe
substitutes of dasatinib. More specifically, we aimed to (i) find studies about dasatinib that
include publicly available gene expression data; (ii) identify differentially expressed genes
(DEGs) associated to senescence and aging in these dasatinib intervention studies; (iii)
search for dasatinib analogs, especially natural compounds, based on the DEGs related
to dasatinib, employing the LINCS data and (iv) use the gene expression data underlying
the repositioning to find hypotheses for potential senotherapeutic molecular mechanisms
that dasatinib and its analogs may have in common. The molecular-mechanistic insights
from (ii) and (iv) suggest that the gene expression profile of dasatinib that we used for the
repositioning is strongly linked to cellular senescence and apoptosis, as are the gene
expression changes underlying the repositioning in case of the analogs (specifically, in
case of piperlongumine). Thus, our approach should give us maximum confidence in
senotherapeutic effects, also in vivo in humans, by the analog itself or, at least, by the

analog in combination with quercetin.
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2. Results

We considered gene expression data from the Gene Expression Omnibus (GEO) (Clough
& Barrett, 2016) describing (1) the long-term effects of dasatinib in the AML cell line
Kasumi-1, (2) transcriptomic differences in dasatinib-sensitive and dasatinib-resistant
prostatic cancer cell lines, (3) the effect of dasatinib-treatment on the breast cancer cell
line MDA-MB-468 (see Table 1).

2.1 Genes associated with aging and cellular senescence, and with biological
processes associated with apoptosis, in the treated Kasumi-1 (AML) cell line

GEO accession GSE39073 entailed microarray gene expression profiles from AML-
derived Kasumi-1 cells upon treatment with dasatinib. The aim of these experiments was
to study the effect of the longterm exposure to dasatinib in leukemic cells, which usually
triggers drug resistance and thus is a major problem for the treatment of patients with
AML (Herrmann et al. 2014). Here, the expression data from these experiments was re-
analyzed to identify DEGs, which produced 190 up- and 192 downregulated genes
between both conditions (Supplementary Table 1). From these DEGs, eight genes
(KNYU, c-FOS, ITGB2, PRKCD, BCL2, MPO, APP, TIMP2) were annotated with the GO
term aging and one gene, PRKCD, with the term cellular senescence (Supplementary
Table 2). PRKCD (Protein kinase C) was upregulated with a log2 fold change (LFC) of
3.37 and it is a tumor suppressor protein and positive regulator of cell cycle progression;
PRKCD may regulate apoptosis (see NCBI Gene ID 5580), and it plays a role in the

regulation of senescence-induction in human diploid cells (Katakura et al., 2009). Also
associated with cellular senescence, based on the literature, is the apoptosis regulator
BCL2, which was upregulated with LFC=2.62. BCL2 is an integral mitochondrial
membrane protein that blocks apoptosis of e.g. lymphocytes (NCBI Gene ID 596). Itis a
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pro-survival protein and a target of senolytics inducing apoptosis, and may influence
human lifespan (Ukraintseva et al., 2021; M. Zhu et al., 2020). Biological processes
related to apoptosis were also enriched in the DEG list (adjusted p-value < 0.05) and
included cell death, programmed cell death, regulation of cell death, apoptotic process,
and regulation of programmed cell death (see Supplementary excel sheet “GO-
gprofiler.5-23-22_AML”, for the enriched genes in the “intersections” column).

2.2 Genes associated with aging and cellular senescence, and with biological
processes associated with apoptosis, in the dasatinib-sensitive prostatic cancer cell

lines

GEO-Accession GSE9633 features base-line gene expression profiles of dasatinib-
sensitive and dasatinib-resistant prostatic cancer cell lines. We identified 198 differentially
expressed genes, with 138 upregulated and 51 downregulated genes between dasatinib-
sensitive and dasatinib-resistant prostatic cancer cell lines.
A large number of genes were annotated to the term aging (Supplementary Table 3), but
some of these were also associated with cellular senescence in the literature, including
SERPINB5 among the upregulated genes, a tumor suppressor and senescence-
associated marker (Bascones-Martinez et al., 2012; Sheng et al., 1996), the expression
of which is linked to genotoxic and oxidative stress (Bianchi-Frias et al., 2010). TGFBR2
was also upregulated in dasatinib-sensitive cell lines. This growth factor receptor may
play a role in the interplay between cell survival and apoptosis in determining human
lifespan (Ukraintseva et al., 2021) as it is involved in the phosphorylation of transcription
factors associated with proliferation, cell cycle arrest, immunosuppression and
tumorigenesis (NCBI Gene ID 7048). Another upregulated gene is CDKN2A (p16) that

encodes a well-established marker of cellular senescence (Bernard et al., 2020).

Accumulation of p16-positive cells (suggested to be senescent) during adulthood
negatively influences lifespan and promotes age-dependent changes and diseases in
various organs and tissues (D. J. Baker et al., 2016). Although the GO term “cellular

senescence” was not enriched, the enrichment analysis showed that the cellular
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senescence pathway (KEGG accession ko04218) was enriched, and genes associated
with this pathway were all upregulated, including some of the ones mentioned above
(TGFBR2, TGFB2, HLA-A, CDKN2A, ZFP36L1, HLA-E, HLA-G, GADD45A, FOXO(1,
RRAS and GADDA45B). Enriched biological processes also included processes
associated with apoptosis (see Supplementary excel sheet “GO-gprofiler.5-23-22_PC-
cancer” for enriched genes found in the “intersections” column), including apoptotic
process and positive regulation of apoptosis, programmed cell death and positive
regulation of programmed cell death (adjusted p-value < 0.05).

2.3 Genes associated with aging and cellular senescence, and with biological processes
associated with apoptosis, in the MDA-MB-468 breast cancer cell lines

The gene expression dataset with the accession PRJNAS559155 includes expression
profiles of the dasatinib-treated breast cancer cell line MDA-MB-468. Differential
expression analysis resulted in 189 upregulated and 80 downregulated genes between
dasatinib-treated- and control MDA-MB-468 cells. Among the differentially expressed
genes, some of the genes were annotated with the term aging (see Supplementary Table
4). Among these genes, the CCL11 gene was most significantly downregulated with an
LFC of -9.78 in the dasatinib-treated cell lines. CCL11 (also known as eotaxin-1) is
considered to be an aging- and inflammation-associated plasma chemokine and a SASP-
factor (Camell et al., 2021; Cameron et al.,, 2016). It acts as an eosinophil
chemoattractant, is associated with allergic responses and Th2 inflammatory disease,
colon tumorigenesis (Polosukhina et al., 2021), and with cell migration in rheumatoid
arthritis (Wakabayashi et al., 2021). CCL11 is a putative biomarker for the prediction of
severity and mortality of elderly patients with sepsis-induced myocardial injury (Li et al.,
2020). The GO term “cellular senescence” was not enriched, and none of the GO
biological processes were associated with apoptosis (see Supplementary excel sheet
“GO-gprofiler_5-23-22_BC”).
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2.4 Natural compound identification

Candidate compounds were identified using the L1000CDS? webtool, using the output of
50 predictions (corresponding to LINCS perturbations) that mimic or reverse the input
signature (the up- and downregulated genes identified from the differential expression
analysis of dasatinib).
Reverse matching was chosen for AML, and prostatic cancer (PC) datasets to reverse
the disease-associated signature, so that input downregulated genes are intersected with
input upregulated genes, and vice versa (Duan et al., 2016). Mimic was chosen for the
breast cancer (BC) dataset to mimic the effect of dasatinib, intersecting downregulated
genes with downregulated genes from the reference L1000 genes (and upregulated
genes with upregulated genes). The selected compounds obtained from L1000CDS?
were labeled manually as natural compounds as appropriate (Table 3). In reverse mode,
natural compounds from the AML-dataset were piperlongumine, parthenolide and
curcumin on ranks 1, 20 and 40, respectively. Also in reverse mode, natural compounds
from the PC-dataset were piperlongumine and parthenolide on ranks 27 and 39. In mimic
mode, natural compounds from the BC-dataset were phloretin and parthenolide on ranks
7 and 32.

Piperlongumine was the highest-ranking compound identified with the AML-dataset
GSE39073. The highest overlap (in terms of overlapping genes) was seen with
piperlongumine- treated NOMO1 cells (Duan et al., 2016); treatment dose was 10um.
NOMO?1 is an AML cell line (Quentmeier et al., 2004) just like the Kasumi-1 cell line.
Overlapping genes of the input upregulated and the piperlongumine-based signature
downregulated genes were ACSL1, ATP8B4, CTSG, EIF1AY, FLT3, HCK, KDM5D, LYZ,
PLAC8, PRKCD, PTPN6, RNASE2, RPS6KA1, TNFRSF10B and TNS3. Overlapping
genes of the input downregulated and the signature upregulated genes were DDAH1,
FBXO21, SLC38A1 and TSPAN13 (Supplementary Table 5). Enriched biological

processes (adjusted p-value < 0.05) in the aggregate list of 19 genes include apoptosis-
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related processes (see Supplementary Table 6), e.g. negative regulation of apoptotic
process, intrinsic apoptotic signaling pathway, TRAIL-activated apoptotic signaling
pathway, negative regulation of glial cell apoptotic process, negative regulation by
symbiont of host apoptotic process and intrinsic apoptotic signaling pathway in response

to oxidative stress.

Piperlongumine was also found on rank 27 with the PC-dataset where PC3 cells were
treated with 10uM piperlongumine. PC3 is a dasatinib-resistant prostate cancer cell line
(Wang et al., 2007). Input upregulated and signature downregulated overlapping genes
include AHNAK2, ALDH1A3, AREG, C3, CAPG, CST6, DDX60, FERMT1, ITGA3, KRT7,
LAMA3, RAC2, RRAS, S100A2, TGFBR2 and ZBEDZ2; one overlapping gene between
input downregulated and signature upregulated genes was identified, which was LEF1
(see Supplementary Table 7). Here, the biological process positive regulation of apoptotic
cell clearance was associated with the gene C3, and the gene RAC2 was associated with

the process engulfment of apoptotic cell clearance (See Supplementary Table 8).

Curcumin was also identified from the AML dataset, on rank 40, where PL21 cells were
treated with 48uM curcumin (Duan et al., 2016). PL21 is also an AML cell line (Kubonishi
et al., 1984). Overlapping genes of the input upregulated and the curcumin signature
downregulated genes were ADCY7, AHNAK, ATP8B4, BEX1, CXCR4, DDX3Y, EIF1AY,
EPB41L3, KDM5D, PRKCD, RASSF2 and VIM. One gene overlapped with the input
downregulated genes and the signature upregulated genes, which was MEST. Enriched
apoptosis-associated biological processes (p-value < 0.05) included regulation of glial cell
apoptotic process and intrinsic apoptotic signaling pathway in response to oxidative

stress.

Parthenolide is a sesquiterpene lactone of the chemical class of terpenoids (Gali-
Muhtasib et al., 2015) and was identified with L1000 using all three datasets, though at
low ranks in all of these: on rank 20 with the AML- dataset, on rank 39 with the PC-
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dataset, and on rank 32 with the BC-dataset (Table 5). Phloretin is a dihydrochalcone
flavonoid found in fruits such as apples, kumquat, pear, strawberry and in vegetables.
Phloretin appeared on rank 7 from the expression signature of BC-dataset
PRJNA559155.

3. Discussion

The process of aging involves most (if not all) aspects of life and in molecular terms, it
thus involves a wide variety of signaling pathways at least to some degree. Aging is
considered to be the causal process underlying age-associated disease and dysfunction
(Fuellen et al., 2019). Accordingly, increasing chronological age is the foremost risk factor
for the development of all kinds of chronic diseases such as type 2 diabetes,
cardiovascular disease, osteoporosis, arthritis, Alzheimer’s disease and cancer, along
with age-associated dysfunction such as frailty and sarcopenia. Shared molecular
mechanisms behind these diseases and dysfunctions, and thus considered to be
hallmarks of aging, include the accumulation of senescent cells, the buildup of
macromolecular and genetic damage, metabolic dysfunction, loss of proteostasis and
defective stem cell function (Lopez-Otin et al., 2013).

Senescent cells contribute to aging and age-associated disease and dysfunction partly
because of their high metabolic activity despite growth arrest, associated with the
secretion of a complex, multi-component SASP which acts on the tissue
microenvironment, usually in an unfavorable way (Wiley & Campisi, 2021). Resistance to
apoptosis is a hallmark of senescent cells, primarily facilitated through upregulation of
BCL2 family proteins; resistance to oxidative stress is another factor (Childs et al., 2014;
X. Zhang et al., 2018). The SASP collection of proinflammatory cytokines, chemokines,
bioactive lipids and damage-associated molecular patterns contribute to what is termed
“‘inflammaging”, a chronic inflammation that is a common attribute in aged tissues that is

— at least in part — due to the accumulation of senescent cells (Cevenini et al., 2013;
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Franceschi & Campisi, 2014; Wiley & Campisi, 2021). This accumulation leads to the
abnormal activation of pathways such as NF-kB, that are needed to maintain many
physiological functions, but when constitutively activated lead to accelerated aging (Amiri
& Richmond, 2005; R. G. Baker et al., 2011; Garcia-Garcia et al., 2021; Salminen et al.,
2008; L. Zhang et al., 2021). Still, the accumulation of senescent cells can be subject to
“senotherapeutic” intervention: by direct killing (senolysis), by modification of the SASP
(senomorphics) or simply by slowing down the process by which cells become senescent

(gerostatics).

Using L1000CDS? we obtained lists of compounds that have either similar or opposite
gene expression profiles as compared to the input gene lists describing the action of
dasatinib. Natural compounds were curated manually,, and we found four natural
candidate-compounds as analogs of dasatinib, all of which are found in common foods
and all of which have been under investigation already for their anti-inflammatory, anti-
cancer or anti-aging effects: piperlongumine, phloretin, curcumin and parthenolide.

Piperlongumine is a known natural senolytic compound that was found based on the
differentially expressed genes between dasatinib-treated Kasumi-1 (AML-dataset
GSE39073) and untreated cells, which show an overlap with the L1000 dataset of the
piperlongumine- treated AML cell line NOMO1. This overlap of DEGs featured an
enrichment in genes and processes involved in apoptosis, including positive regulation of
apoptosis and programmed cell death. Moreover, in the overlap with the PC-dataset,
genes such as SERPINB5 and CDKNZ2A were differentially expressed, both encoding for
senescence-associated markers. Piperlongumine is one of the few natural compounds
shown to selectively kill senescent cells, that is, human WI-38 fibroblasts made senescent
by ionizing radiation, replicative exhaustion or by expression of the oncogene Ras (Y.
Wang et al., 2016; Y. Zhu et al., 2015) and therefore, it is a promising repurposing

candidate in our context.
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Piperlongumine is a natural compound with a strong safety record, and it has selective
toxicity toward cancer cells and senescent cells, but does not induce significant toxicity
in non-senescent, non-cancerous cells (Adams et al.,, 2012; Y. Wang et al., 2016),
including peripheral blood T cells (PBTs) (Liang et al., 2020). 72h after incubating
senescent WI human fibroblasts with piperlongumine leaves 30% of the senescent cells
viable (Y. Wang et al., 2016), by the 10uM dose-regimen that was also used for the L1000
data. When combining piperlongumine with ABT-263 (navitoclax, a potent BCL2
inhibitor), a synergistic effect was observed, killing almost all senescent cells; the authors
suggested that piperlongumine eradicated the subpopulation of senescent cells that was
resistant to ABT-263 (Y. Wang et al., 2016). While BCL2 family proteins are thought to
be primarily responsible for a senescent cells ability to resist apoptosis, and
BCL2/BCL2L1/BCL2L2 inhibitors are effective senolytic drugs (e.g. ABT-263) (Chang et
al., 2016), there is a concern that BCL2 inhibitors have on-target and off-target toxicities,

such as thrombocytopenia and neutropenia (Rudin et al., 2012).

Data on piperlongumine’s mode of action in general, and specifically on how it induces
apoptosis in cancer cells is available from a number of studies (e.g. Thongsom et al.,
2017). Senescent cells and cancer cells share some pro-survival pathways and have in
common e.g. active DNA damage responses (Ghosal & Chen, 2013), high metabolic
activity including increased glycolysis (Dorr et al., 2013), and the reliance on dependence
receptors to resist apoptosis (Goldschneider & Mehlen, 2010). Data from these studies,
including the data we found from L1000 (especially the overlapping genes associated
with apoptosis) based on repurposing dasatinib-associated expression data, thus suggest
piperlongumine-induced apoptosis in senescent cells (Y. Wang et al., 2016; Y. Zhu et al.,

2015a).
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In more detail, piperlongumine has been shown to kill senescent fibroblasts without the
induction of reactive oxygen species (Y. Wang et al., 2016), though it was later
demonstrated that it inhibits the OXR1 (oxidation-resistance 1) protein that in turn leads
to the expression of antioxidant genes. OXR1 is upregulated in senescent human WI38
fibroblasts and thus it is a proposed senolytic target (X. Zhang et al., 2018). When
piperlongumine binds to OXR1 (see Supplementary Figure 1), the protein is degraded,
leading to increased production of reactive oxygen species in senescent cells, mediated
by low or zero levels of antioxidant genes such as heme oxygenase 1 (HMOX1),
glutathione peroxidase 2 (GPX2) and catalase (CAT), presumably due to
missing/reduced OXR1. Then, senescent cells are more susceptible to oxidative stress,
leading to their apoptosis (X. Zhang et al., 2018; Bago et al., 2021). Of note, GPX2 (or
glutathione) is the major hydrogen peroxide and organic hydroperoxide scavenger (also

regulated by NRF2), induced by e.g. cigarette smoke (Singh et al., 2006).

Piperlongumine has also shown to interfere with T-cell differentiation and is considered
to be a selective immunosuppressant (Liang et al., 2020), partly, again by a pro-oxidative
action, here due to intracellular depletion of glutathione levels (Bago et al., 2021). This
was linked to the inhibition of the transcription factors RORC (RORyt), HIF1A and STATS,
resulting in lowered production of IL22, IL17A, IL17F, and subsequent inhibition of Th17-
differentiation, but not of regulatory Th1 and Th2 cells (Tregs), along with reduced
expression of CD69 and CD35 expression markers (Bago et al., 2021; Liang et al., 2018,
2020). This is interesting and important, because the Th17/Treg ratio increases during
aging, and increasing Th17/Treg imbalance possibly contributes to an altered pro-
inflammatory/ anti-inflammatory immune response and thus indicates a higher risk to

develop inflammatory diseases with increasing age (Schmitt et al., 2013).
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In our analyses, we specifically focused on overlapping genes between the dasatinib-
associated gene expression changes and piperlongumine-treated cells from the L1000
database, looking for apoptosis-related genes. One of the downregulated genes in the
piperlongumine-based signature (Supplementary Table 5), PTPNG6 (also known as SHP-
1) is a tyrosine phosphatase that has been shown to interfere with cellular senescence
via p16 signaling, and was proposed to regulate senescence in nasopharyngeal
carcinoma (NPC) cells (Sun et al., 2015). Two downregulated overlapping genes were
FLT3 and HCK, both enriched in the biological process apoptotic process, and
additionally in the pathway FLT3 signaling through SRC family kinases (HAS-9706374).
FLT3 and HCK are described as attractive targets for cancer therapy. Experimentally,
FLT3 inhibition led to apoptosis in FLT3 positive AML cells (Lee et al., 2018), and
dasatinib was shown to reverse induced resistance to FLT3-inhibition in the treatment of
AML (Weisberg et al., 2012). HCK has an important role in the production of TNF and IL-
6, enhances the secretion of growth factors, and targeting HCK has been proposed to

alleviate excessive inflammation (Poh et al., 2015; Smolinska et al., 2011).

In the overlapping genes between the PC-data and the piperlongumine effects as known
from L1000, the CS3 gene was positively associated with the regulation of apoptotic cell
clearance (see supplementary excel sheet overlap PL_PC3_PC-dataset), and it is

downregulated in response to piperlongumine in PC cells.

Other identified compounds were phloretin, parthenolide and curcumin, which are

described in more detail in the supplementary information.

To conclude, datasets corresponding to three different experiments studying the effects
of dasatinib in gene expression were analyzed, from which we identified four natural

compounds with potential senotherapeutic properties, all of which are readily available
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from dietary sources: the senolytic piperlongumine, and the senomorphics parthenolide,

curcumin and phloretin.

The use of piperlongumine was described in cancer research, yet it would be interesting
to investigate the systemic effect of piperlongumine (in terms of e.g. inflammatory markers
in the blood) and its effect on overall health in humans. In particular, its combination with
quercetin (“P+Q”) may be a natural-compound alternative to the combination of dasatinib
and quercetin (“D+Q”") that was used by Hickson et al. (2018) and Justice et al. (2019) in
the context of diabetic kidney disease and idiopathic pulmonary fibrosis; and is used in
followup work, including a variety of senotherapy trials all over the world, see the

clinicaltrials.org website.

4. Methods
See Figure 1 for a Methods overview.
4.1. Expression Data

Searches for gene expression studies about drug interventions with dasatinib were
conducted in the European Nucleotide Archive, the European Genome-phenome archive,
the Gene Expression Omnibus (GEO) and Google Datasets

(https://datasetsearch.research.google.com). Only RNA-seq and microarray datasets

were considered. The search keywords included: “aging”, “senescence”, “inflammation”,
“cancer”, “apoptosis”, “SASP” and “senolysis”, and they were used in combination with
“dasatinib”. We found nine datasets from which the following three are subject of this
paper (Table 1): dataset GSE39073, a microarray dataset containing gene expression
profiles of the acute myeloid leukemia (AML) cell line Kasumi-1 subjected to long- term
treatments of dasatinib (Herrmann et al., 2014); GSE9633, microarray data from
experiments related to dasatinib- sensitive and dasatinib- resistant prostatic cancer cell
lines (D-sensitive cell lines: 22Rv, WPMY1, VCaP, MDAPCaZ2b, PWR1E; D-resistant cell

lines: PC3, DU145, LNCaP, HPV7, HPV10, RWPE1, RWPEZ2, NB11, W99, DUCaP; the
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strength of this dataset lies in its use of more than one cell line) (X.-D. Wang et al., 2007);
and PRJUNAS559155, with RNASeq expression data from breast cancer cell lines exposed

to either dasatinib, salinomycin, or combinations of both (Bellat et al., 2020).

The remaining datasets were excluded for reasons described in the following. Drug
repositioning with gene expression signatures did not result in the identification of natural
substances at the chosen cutoffs (dataset GSE59357); gene expression analysis did not
result in significantly differentially expressed genes (dataset GSE69395); single-cell RNA-
seq experiments cannot be directly compared against pooled cell data as stored in LINCS
(accession GSE161340); cells were neither exposed to dasatinib, nor
sensitivity/resistance to dasatinib was assessed as part of the experiment (datasets
EGADO00001001016 and GSE14746); too few RNAseq reads were obtained after
quantification of single-end reads (-r) from fastq-files in mapping-based mode (i.e. salmon
quant) to the human transcriptome using salmon (Patro et al., 2017) (dataset
PRJNAG13485).

4.2. Expression analysis

Differential expression analysis of the two microarray datasets was done using the web
program GEO2R (accessed May 6™ 2021). This program relies on GEOquery (version
2.58.0) for data retrieval, and on the R package Limma (Ritchie et al., 2015) (version
3.46.0) for the assessment of differential expression. Accordingly, these methods were
applied for the selected microarray datasets (accessions GSE39073 and GSE9633). In
turn, raw RNAseq sequencing reads from the accession PRJNA559155 were
downloaded from the NCBI Sequence Read Archive (SRA), and mapped to the human
transcriptome (GENCODE release 38) using salmon v1.4.0 (Patro et al., 2017).
Differential expression analysis was then performed using DESeq2 version 1.32.0 (Love
et al., 2014), for the comparison between the treatment (MDA-MB-468 cells exposed to
dasatinib), and control (untreated MDA-MB-468 cells) groups. The obtained sets of
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differentially expressed genes were then filtered according to expression fold changes
and adjusted p-values as in Supplementary Table 1.

4.3 Functional Analyses

Gene ontology and KEGG pathway enrichments were obtained with the g:profiler
webtool (Raudvere et al., 2019; accessed 2021-11-25 and 2022-05-23) and GOnet
(https://tools.dice-database.org/GOnet/) was used to perform gene annotation analysis
to find genes annotated with aging and senescence (Pomaznoy et al., 2018). Finally, the
NCBI gene database (https://www.ncbi.nlm.nih.gov/gene/), the human gene database
GeneCards (https://www.genecards.org) and literature were used to provide gene-

associated annotation information. Only default parameters were used.

4.4 Drug repurposing

L1000CDS?, a webtool that processes expression- perturbation data from the L1000
resource with a method that prioritizes small-molecule signatures that either mimic or
reverse an input gene expression signatures, was used for compound identification (Duan
et al., 2016). When submitting “input” (up- and downregulated genes obtained from the
differential expression analysis) to L1000CDS? 50 predictions (of small
molecules/chemicals, characterized as perturbators of gene expression in cell lines)
ranked by their overlap with the “input” signature were considered as output. Each
prediction (corresponding to a perturbation) comes with seven items of information,
provided in a table. This includes the rank (which is based on the overlap), the overlap (a
value based on the intersection length between the input DEGs and the signature DEGs
divided by the effective input, i.e. the intersection-length between input genes and L1000
genes); the venn (a schematic representation of the (mimicked or reversed) overlap of
the input signature and L1000 signature), the perturbation and its associated the cell line,
dose, and time, the list of overlapping genes, the predicted target genes of the
perturbation, and the signature of the target/hit (Duan et al., 2016). Upregulated and
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downregulated genes were used as input separately, ordered by descending log2 fold
changes. For the accession PRINA559155, mimic mode (i.e. mimicking the effect of the
drug by reproducing the gene expression changes associated with dasatinib-sensitivity),
was chosen, and for datasets GSE9633 and GSE39073 reverse mode (i.e. reversing the
disease phenotype that is susceptible to dasatinib) was chosen. The resulting lists of
compounds were then manually curated, looking up each compound in the PubChem
database, and PubMed, to identify natural plant metabolites.

The tabulated L1000CDS?results are available online via permanent URLSs:

AML-cell line (GSE39073, reverse):
https://maayanlab.cloud/L1000CDS2/#/result/628b901ab94e3c005691571e

PC-cell line (GSE9633, reverse):
https://maayanlab.cloud/L1000CDS2/#/result/619bb34fd99ec600506d5e20

BC-cell line (PRJIJNA559155, mimic):
https://maayanlab.cloud/L1000CDS2/#/result/619f82f7d99ec600506d6086
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Tables

Table 1: List of datasets used in this study. AML: Acute myeloid leukemia

Accession Platform Experiment Reference
GSE39073 Affymetrix post-dasatinib exposure of Herrmann et al.,

Human Gene AML cell line Kasumi-1 vs. 2014

untreated AML cell line
1.0 ST Arra
Y Kasumi-1

GSE9633 Affymetrix dasatinib-sensitive vs. Wang et al.,

Human Genome  dasatinib-resistant prostatic 2007

U133A 2.0 Array  cancer cell lines
PRINASSY llumina — HiSeq dasatinib-treated breast Bellat et al., 2020
155 4000

cancer cell line MDA- MB-
468 vs. untreated MDA-MB-
468 cells
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Table 2: The known senolytic compounds Dasatinib (D), Quercetin (Q), the

combination of both (D+Q), and Piperlongumine, and the targeted senescent cell types

Compound Targeted senescent cell types Reference
Piperlongumine human WI fibroblasts (Y. Wang et al., 2016)
Dasatinib (D) human and mouse (Y. Zhu et al., 2015b)
preadipocytes
HUVECs
Quercetin (Q) HUVECs (Y. Zhu et al., 2015b)

human and mouse
preadipocytes

D+Q same cells as by D or Q (Gasek et al., 2021;
Lehmann et al., 2017;

primary mouse embryonic H. Wang et al., 2020;

fibroblasts Zhou et al., 2021; Y.

bone marrow-derived Zhu, et al., 2015b)

mesenchymal stem cell
alveolar epithelial type Il cells

reduction in senescent cells in
skin ulcer samples
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Table 3: Selected natural compounds mimicking the treatment with dasatinib. These
compounds were identified using the L1000CDS?tool. The rank is based on the overlap;
the overlap is the score, based on the intersection length between the input DEGs and

the signature DEGs divided by the effective input, i.e. the intersection-length between
input genes and L1000 genes

dataset GSE39073 — Kasumi-1 cells, reverse

Rank  Score Compound Class of Compound Source
1 0.0634 piperlongumine amide alkaloid Piper longum
20 0.0387 parthenolide sesquiterpene lactone Tanacetum parthenium
40 0.0352 curcumin diarylheptanoid Curcuma longa

dataset GSE9633 — prostatic cancer cell lines, reverse

Rank  Score Compound Class of Compound Source
27 0.071 piperlongumine amide alkaloid Piper longum
39 0.0656 parthenolide sesquiterpene lactone Tanacetum parthenium

dataset PRINA559155 — breast cancer cells, mimic

Rank  Score Compound Class of Compound Source
7 0.0435 phloretin dihydrochalcones e.g. apples
32 0.0348 parthenolide sesquiterpene lactone Tanacetum parthenium
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Figure 1. Graphical abstract showing the workflow to find natural candidate compounds
with similar senolytic activity as dasatinib from expression data.
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