

1 A dual role for the RNA helicase DHX34 in NMD 2 and pre-mRNA splicing and its function in 3 hematopoietic differentiation

4

5 NELE HUG,¹ STUART AITKEN,¹ DASA LONGMAN,¹ MICHAELA RAAB,¹ HANNAH ARMES,²
6 ABIGAIL R. MANN,¹ ANA RIO-MACHIN,² JUDE FITZGIBBON,² KEVIN ROUAULT-PIERRE,³ and
7 JAVIER F. CÁCERES¹

8

9

10 ¹MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe
11 Road South, Edinburgh EH4 2XU, UK

12

13 ²Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University
14 of London, London, United Kingdom

15

16 ³Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London,
17 London, United Kingdom

18

19

20

21

22

23 Corresponding author: javier.caceres@ed.ac.uk

24

25

26

27

28 Running title: DHX34 role in pre-mRNA splicing and its impact in AML/MDS

29 **ABSTRACT**

30 **The DExD/H-box RNA helicase DHX34 is a Nonsense-mediated decay (NMD) factor that**
31 **together with core NMD factors co-regulates NMD targets in nematodes and in vertebrates.**
32 **Here, we show that DHX34 is also associated with the human spliceosomal catalytic C**
33 **complex. Mapping of DHX34 endogenous binding sites using Cross-Linking**
34 **Immunoprecipitation (CLIP) revealed that DHX34 is preferentially associated with pre-**
35 **mRNAs and locates at exon-intron boundaries. Accordingly, we observed that DHX34**
36 **regulates a large number of alternative splicing (AS) events in mammalian cells in culture,**
37 **establishing a dual role for DHX34 in both NMD and pre-mRNA splicing. We previously**
38 **showed that germline DHX34 mutations associated to familial Myelodysplasia (MDS)/Acute**
39 **Myeloid Leukemia (AML) predisposition abrogate its activity in NMD. Interestingly, we**
40 **observe now that DHX34 regulates the splicing of pre-mRNAs that have been linked to**
41 **AML/MDS predisposition. This is consistent with silencing experiments in hematopoietic**
42 **stem/progenitor cells (HSPCs) showing that loss of DHX34 results in differentiation blockade**
43 **of both erythroid and myeloid lineages, which is a hallmark of AML development.**
44 **Altogether, these data unveil new cellular functions of DHX34 and suggests that alterations**
45 **in the levels and/or activity of DHX34 could contribute to human disease.**

46

47

48 **Keywords: DHX34; RNA helicase; NMD; pre-mRNA splicing, RNA targets; seCLIP; AML**

49

50

51

52

53 INTRODUCTION

54 Nonsense-mediated decay (NMD) is an RNA quality control mechanism that targets mutated
55 mRNAs harboring premature termination codons (PTCs) for degradation, but importantly also has
56 a role in the regulation of cellular transcripts, in particular those associated with the stress response
57 (Kurosaki et al. 2018; Karousis and Mühlemann 2019; Goetz and Wilkinson 2017). We previously
58 identified *smgl-2* (*smg lethal-2*), an ortholog of human *DHX34* (DExH-box helicase 34), as a factor
59 promoting NMD in *C. elegans* (Longman et al. 2007). We went on to show that this RNA helicase
60 acts in the NMD pathway not only in nematodes, but also in zebrafish and in human cells and co-
61 regulates NMD substrates with core NMD factors, such as UPF1 (Anastasaki et al. 2011; Longman
62 et al. 2013). Mechanistically, DHX34 is recruited to the initial NMD surveillance complex via its
63 interaction with hypo-phosphorylated UPF1. Subsequently, it promotes UPF1 phosphorylation,
64 enhanced recruitment of UPF2 and dissociation of the ribosome release factor eRF3 from UPF1,
65 which are all hallmarks of a transition to an NMD decay-inducing complex (Hug and Cáceres
66 2014).

67 Human DHX34 belongs to the DExH/D family of RNA helicases and harbors a helicase core
68 formed by two (RecA)-like domains, a winged-helix domain (WH) and a helical bundle domain,
69 known as the Ratchet domain (Sloan and Bohnsack 2018; Hug and Cáceres 2014). In addition, as
70 with most DEAH box proteins, DHX34 also harbors a C-terminal OB
71 (oligonucleotide/oligosaccharide binding fold) domain that can act to regulate conformational
72 changes in the DEAH box helicases (Abdelhaleem et al. 2003; Ozgur et al. 2015; Hug and Cáceres
73 2014). A large majority of DExH/D proteins are RNA helicases that unwind RNA duplexes in an
74 NTP-dependent manner and are involved in multiple aspects of RNA processing, including pre-
75 mRNA splicing, ribosome biogenesis and mRNA translation (Jankowsky and Jankowsky 2000;

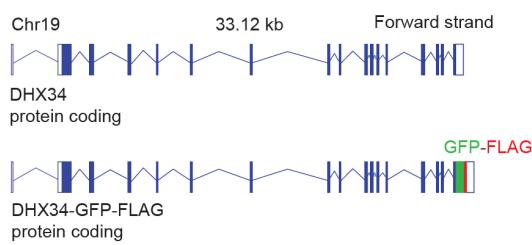
76 Jankowsky and Bowers 2006). Furthermore, besides their role in RNA unwinding, they have been
77 shown to remodel ribonucleoprotein complexes (RNPs) by removing proteins from RNA (Schwer
78 2001; Fairman et al. 2004; Jankowsky et al. 2001).

79 A common function for RNA helicases is in the process of pre-mRNA splicing, where eight
80 conserved DExD/H RNA helicases have been shown to play essential roles in directing
81 conformational rearrangements in the spliceosome. These include DDX46/Prp5, DDX39B/Sub2
82 and DDX23/Prp28 that belong to the DEAD-box family; DHX8/Prp22, DHX15/Prp43,
83 DHX16/Prp2 and DHX38/Prp16 that belong to the DEAH-box family and SNRNP200/Brr2 that
84 is part of the Ski-2 like family (Cordin and Beggs 2013; Bourgeois et al. 2016; De Bortoli et al.
85 2021). The function of these RNA helicases in constitutive splicing is diverse since they affect
86 different steps of the spliceosomal cycle. The human spliceosome comprises five additional RNA
87 helicases, which include SF3b125, DDX35, DDX41, eIF4AIII/DDX48 (a component of the Exon
88 junction complex or EJC) and Aquarius (also known as intron-binding protein 160 or IBP60)(De
89 et al. 2015). A role for several RNA helicases, such as DDX5 and DDX17, in alternative splicing
90 has also been established (Hönig et al. 2002; Guil et al. 2003; Dardenne et al. 2014; Lee et al.
91 2018). The EJC fulfils a broader role in splicing regulation since it inhibits the use of cryptic splice
92 sites, thus preventing the loss of exonic sequences (Boehm et al. 2018). Moreover,
93 eIF4AIII/DDX48 affects the regulation of a large number of alternative exons (Michelle et al.
94 2012; Wang et al. 2014).

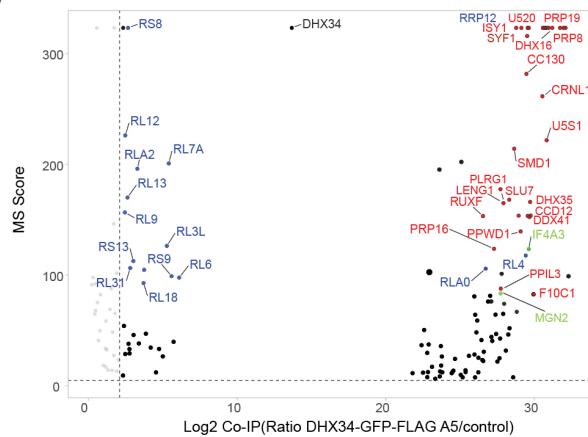
95 The fact that *smgl-2/DHX34* is essential for viability in nematodes, an organism where mutations
96 in genes encoding core NMD factors are tolerated strongly suggested that SMGL-2/DHX34 fulfils
97 at least one additional cellular function (Hug et al. 2016; Longman et al. 2007). Here, we show
98 that DHX34, in addition to its established role in NMD, associates with the late spliceosome and

99 impacts splicing regulation in mammalian cells in culture. We previously identified heterozygous
100 germline variants in DHX34 in four families affected of inherited acute myeloid leukaemia (AML)
101 and myelodysplastic syndrome (MDS) and showed that all these variants abrogated DHX34 NMD
102 activity (Rio-Machin et al. 2020). Although *DXH34* is not mutated in sporadic AML, it is subject
103 to alternative splicing in one third of sporadic cases, resulting in a premature stop codon that
104 phenocopies germline mutations observed in familial patients with a broad impact on the AML
105 transcriptome (Rivera et al. 2021). Due to the prevalence of mutations in spliceosomal proteins,
106 such as DDX41, SF3B1, U2AF1 or SRSF2 in AML/MDS patients, it is tempting to speculate that
107 DHX34 mutations and/or alternative splicing changes found in these patients could compromise
108 not only its function in NMD, but also affect splicing events mediated by DHX34. Indeed, we
109 show that DHX34 regulates AS of pre-mRNAs that have been linked to AML/MDS. Moreover,
110 *DHX34* knock-down in hematopoietic stem/progenitor cells (HSPCs) demonstrated a disruption
111 in erythroid and myeloid differentiation, potentially contributing to MDS/AML development.

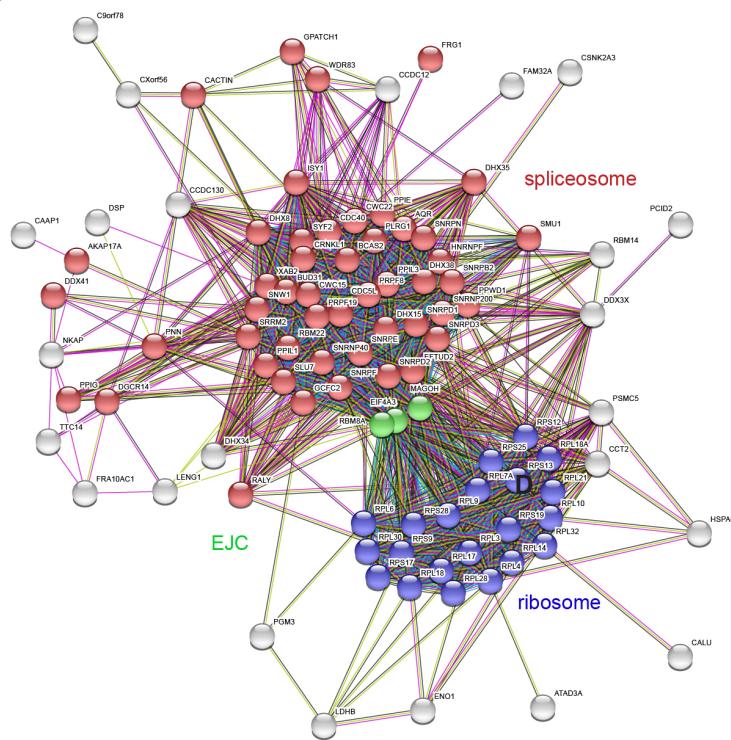
112 In summary, we have unveiled a novel role for the RNA helicase DHX34 in alternative
113 splicing regulation and showed that DHX34 is required for hematopoietic differentiation. These
114 data highlight diverse cellular functions of DHX34 and suggest that alteration of its different
115 RNA processing activities can contribute to human disease. These data highlight diverse
116 cellular functions of DHX34 and suggest that alteration of its different RNA processing
117 activities can contribute to human disease.

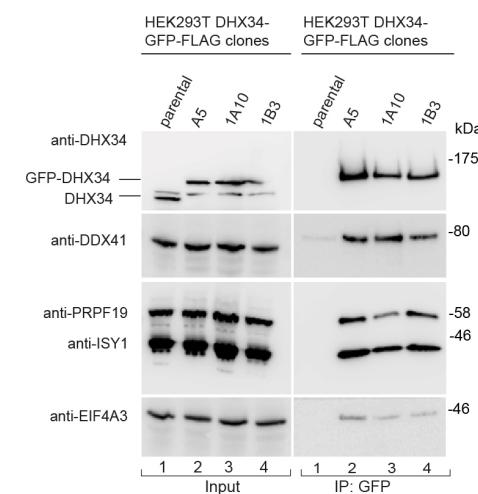

118

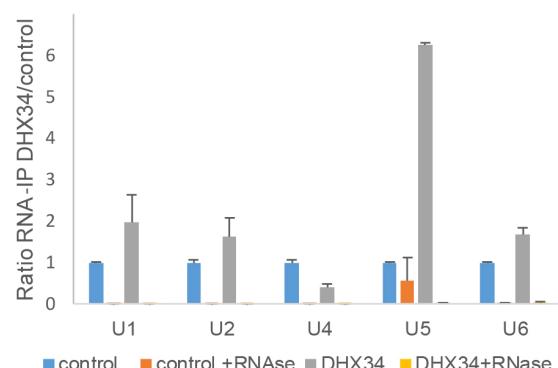
119 **RESULTS**


120 **DHX34 interacts with complexes involved in mRNA processing**

121 We previously showed that DHX34 binds directly to RNA and interacts with core NMD factors,
122 including UPF1 and the Serine/Threonine-protein kinase SMG1, and also with proteins involved
123 in other aspects of RNA degradation (Hug and Cáceres 2014; Melero et al. 2016). To investigate
124 whether DHX34 is implicated in other steps of RNA biogenesis that extend beyond NMD and/or
125 mRNA degradation, we sought to identify DHX34-interacting proteins. For this, we performed
126 immunoprecipitation (IP) and mass spectrometry (MS) of anti-GFP DHX34 from a HEK293T cell
127 line, where the endogenous locus had been tagged with a FLAG and GFP-tag using CRISPR/Cas9
128 genome editing (Fig. 1A). IP-MS profiles from three independent CRISPR clones, termed A5, A10
129 and 1B3, all displayed a significant enrichment for proteins involved in mRNA splicing, mRNA
130 translation and Exon junction complex (EJC) components (Fig. 1B, C; Supplemental Table 1).
131 Interacting proteins included the spliceosomal proteins PRPF19, ISY1, DDX41, the EJC
132 components eIF4A3, MAGOH and ribosomal proteins RLA0 and RL4 (Fig. 1B-D). Importantly,
133 all three independent clones exhibited a strong correlation of their interacting partners
134 (Supplemental Fig. S1A). We also detected most of the DExD/H RNA helicases that components
135 of the spliceosome in the DHX34 interactome, including DHX8/Prp22, DHX15/Prp43,
136 DHX38/Prp16, and DDX41 (Fig. 1B-D; Supplemental Table 1). In agreement with our previous
137 results, we confirmed the interaction of DHX34 with the NMD factor SMG1 and the no-go decay
138 (NGD) factor Pelota (Harigaya and Parker 2010), as well as with ribosomal protein S6
139 (Supplemental Fig. S1B). Importantly, none of the DHX34-tagged clones significantly affected
140 cell growth (Supplemental Fig. 1C).


A


B

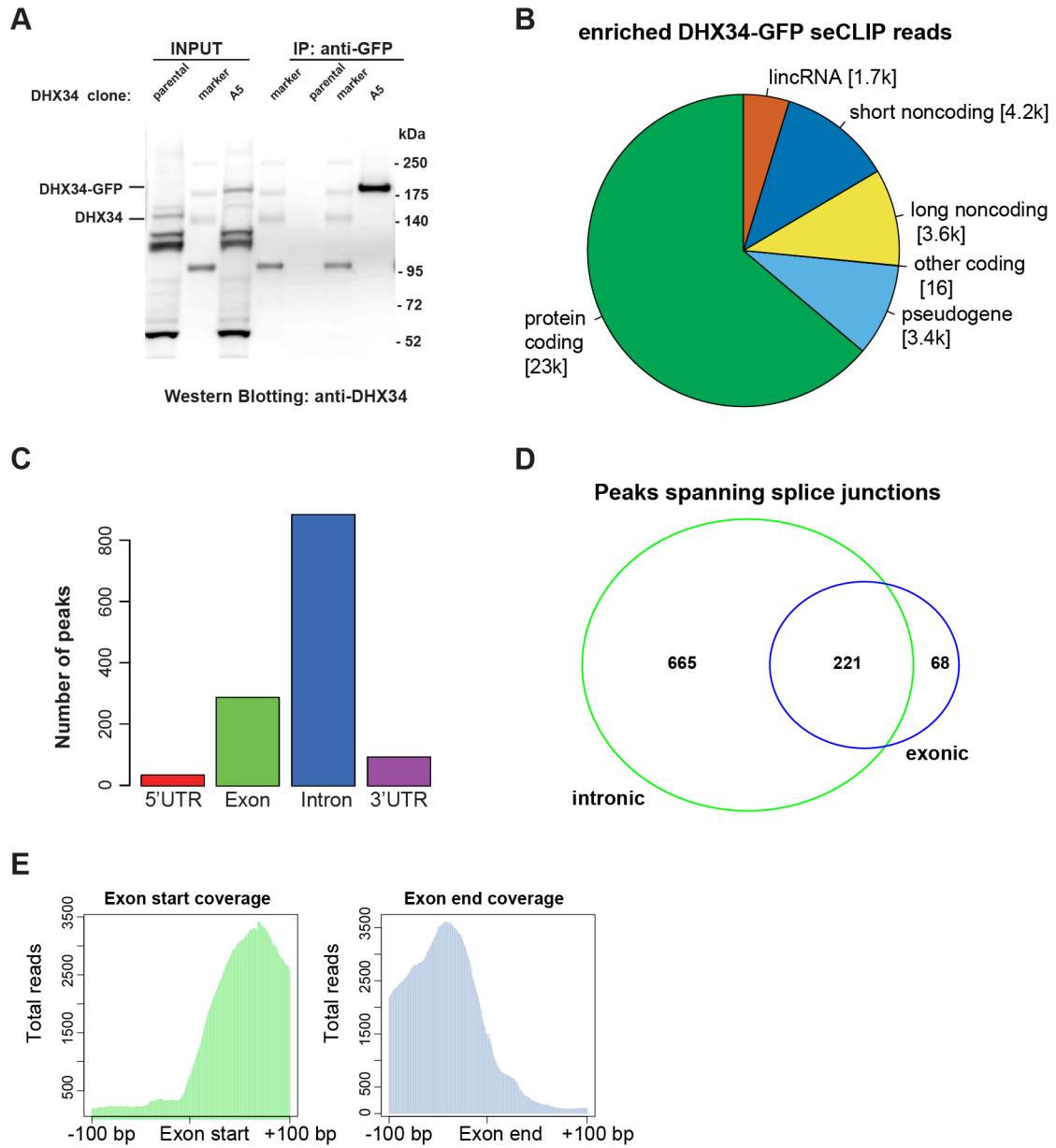

C

D

E

142 **FIGURE 1.** DHX34 interacts with mRNA processing complexes. (A) Cartoon depicting the
143 CRISPR-mediated tagging of the endogenous DHX34 locus in HEK293T cells to generate C-
144 terminal tagged DHX34-GFP-FLAG cell lines. (B) Volcano plot of 125 common interacting
145 proteins identified by mass spectrometry (Log2 ratio >2) for DHX34-GFP-FLAG A5, 1A10 and
146 1B3 CRISPR clones. Protein names are indicated for the top 50 enriched ribosomal (blue),
147 spliceosomal (red) and EJC proteins (green). Due to space constraints, not all protein names are
148 indicated in the plot. All identified proteins are listed in Supplemental Table 1. (C) String network
149 of interacting proteins identified by mass spectrometry of anti-GFP Immunopurifications from
150 three independent CRISPR DHX34-GFP-FLAG clones. DHX34 interacts with protein complexes
151 involved in mRNA biogenesis: spliceosome (red), EJC (green) and ribosome (blue). (D)
152 Validation of mass spectrometry experiments with anti-GFP Immunoprecipitations (IPs) of three
153 different CRISPR clones used for mass spectrometry. Inputs and anti-GFP IPs were separated by
154 SDS-PAGE and probed with the indicated antibodies in Western blot assays. (E) U5 snRNA co-
155 purifies with DHX34 whereas two other snRNAs present in the spliceosomal complex C, U2 and
156 U6, are not enriched in the IP. RNA-protein complexes were immunopurified using anti-FLAG
157 beads from GFP-FLAG A5 clone, following an elution step, RNA was reverse- transcribed and
158 PCR amplified with specific primers for spliceosomal snRNAs.

159
160 The strongest enrichment of DHX34 interacting proteins was seen for proteins involved in the late
161 spliceosomal reaction (complex C) (Fig. 1B-D; Supplemental Fig. S1D, E). Overall, 42 out of 49
162 annotated spliceosomal complex C proteins co-purified with DHX34 in the interactome,
163 consistent with the finding that DHX34 was found to be dynamically associated with the
164 spliceosomal complex C (Schmidt et al. 2014). As we previously showed that DHX34 is an RNA-
165 binding protein (Hug and Cáceres 2014), we tested whether DHX34 interacts with spliceosomal
166 small nuclear RNAs (snRNAs) by performing RNA Immunoprecipitation followed by RT-qPCR
167 using the DHX34-GFP-FLAG clone A5 (Fig. 1E). Out of the five snRNAs tested, we only detected
168 a strong enrichment of U5 snRNA in the RNA-Co-IPs, which disappeared upon RNase treatment
169 (Fig. 1E). This is compatible with the observation that DHX34 interacts with the late spliceosome


170 required for the second catalytic step where only U2, U5 and U6 snRNA are present in complex
171 C and with the association of DHX34 with protein factors that are part of the U5 snRNP, such as
172 PRPF8, SNRPD1/2 and 3, SNRNP200, SNRNP40, SNRNPE and SNRNPN (Fig. 1B, C). These
173 findings indicate that DHX34 may influence various aspects of mRNA biogenesis and strongly
174 suggest a role for DHX34 in pre-mRNA splicing.

175

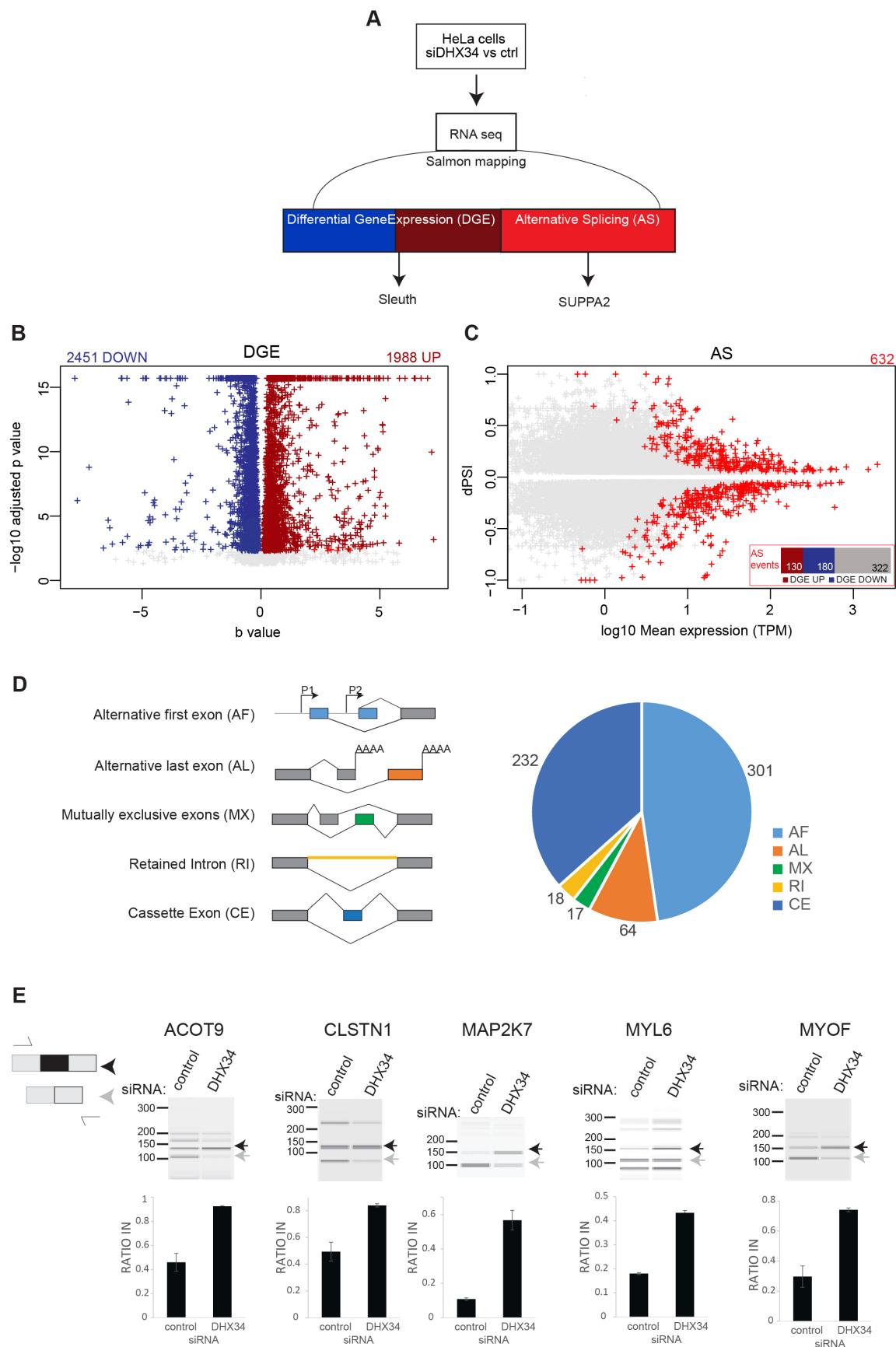
176 **Genome-wide mapping of DHX34 binding sites using seCLIP**

177 We have previously established that DHX34 is an RNA-binding protein using an mRNA capture
178 assay (Hug and Cáceres 2014). In order to uncover the roles of DHX34 in pre-mRNA splicing
179 and/or other aspects of RNA processing, we decided to focus on the identification of DHX34 RNA
180 binding sites in the genome of the same cell line where the interactome was performed, HEK293T.
181 DHX34 binding sites were identified using the seCLIP protocol (single-end enhanced crosslinking
182 and immunoprecipitation) in the DHX34-GFP-FLAG A5 clone described above, using anti-GFP
183 beads for the IP (Blue et al. 2022), with the parental cell line serving as a negative control. Purified
184 RNA-DHX34 protein complexes were separated by SDS-PAGE (Fig. 2A) and cross-linked RNA
185 fragments were shown to map predominantly to protein coding transcripts (Fig. 2B). Most non-
186 protein coding transcripts identified with the seCLIP protocol were long non-coding RNAs
187 (lincRNAs) and antisense RNAs (Supplemental Fig. S2A). Spliceosomal snRNAs were not
188 detected and this most likely reflects the stringency of the RNase treatment during the seCLIP
189 protocol. Using MEME (Bailey et al. 2009), we were unable to identify specific RNA-binding
190 motifs (Supplemental Fig. S2D). This is in agreement with the poor sequence-specificity described
191 for DExH/D RNA helicases that interact via their RecA domains with the sugar-phosphate

192 backbone of RNAs (reviewed by (Bourgeois et al. 2016)). GO term analysis revealed DHX34
193 preferential binding to RNAs encoding splicing components (Supplemental Fig. S2E).

194
195 **FIGURE 2.** DHX34 binds in the proximity of exon-intron boundaries. (A) Western blot showing
196 the samples used for the generation of the CLIP sequencing library. In each case, the band
197 migrating at the size that corresponds to DHX34-GFP-FLAG was gel extracted and the RNA
198 fragments were eluted. RNA sequencing libraries were constructed following the seCLIP protocol.
199 (B) Pie chart showing the distribution of DHX34 CLIP reads among different transcript species.

200 (C) Metagene analysis of DHX34 RNA binding. DHX34 binding peaks map mostly to introns and
201 exons. Only few peaks were found in 5'UTR and 3'UTR. (D) Intronic and exonic peaks overlap
202 suggesting that DHX34 binding spans splice junctions. (E) Pile up of DHX34 bound RNA reads
203 at the exon-intron boundary.


204

205 We performed metagene analysis and found that DHX34 binding peaks mapped largely to exon
206 and introns (Fig. 2C). For genes encoding at least three exons, DHX34 binding sites were mainly
207 located in the mid-exons or introns, as expected. However, we observed higher-than expected
208 DHX34 binding to first or last exon and first intron (Supplemental Fig. S2C). Crucially, a large
209 number of peaks spanned splice junctions (Fig. 2D, E) strongly suggesting that DHX34 binds to
210 pre-mRNA prior to co-transcriptional mRNA processing.

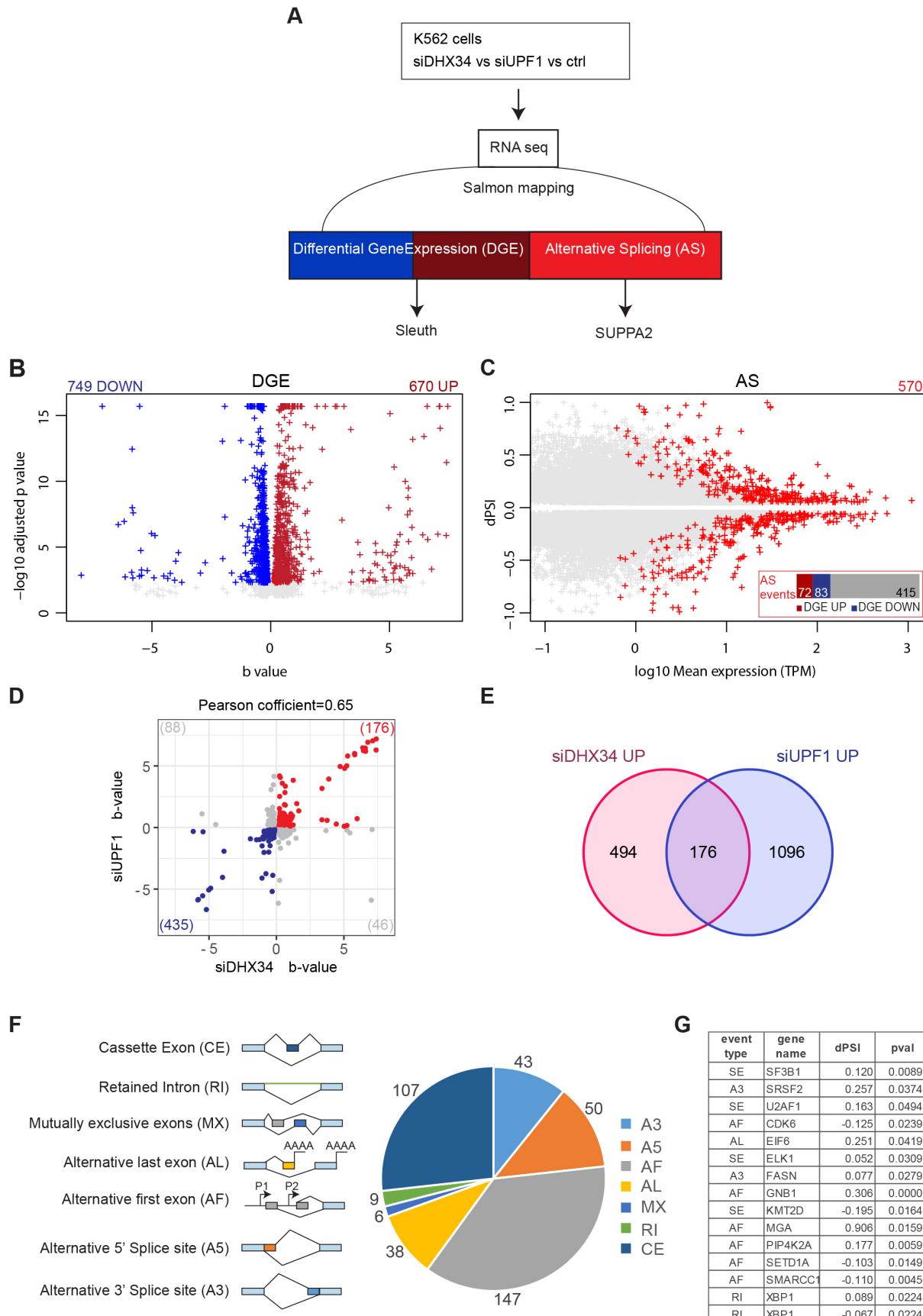
211

212 **Cellular pathways regulated by DHX34**

213 To assess the global effects of DHX34 on the transcriptome of cells in culture, we performed RNA
214 sequencing (RNA-seq) of HeLa cells that were depleted of DHX34 (Fig. 3A; Supplemental Fig.
215 S3A). To extend our previous findings of DHX34 role in NMD (Hug and Cáceres 2014), we
216 compared the upregulated transcripts upon DHX34 knock-down with those that were also
217 upregulated upon depletion of the core NMD factor UPF1. We found that depletion of DHX34
218 affected the expression of 4,439 genes with 1,988 genes significantly overexpressed. Of these
219 upregulated transcripts, 21% overlapped with previously identified UPF1 targets that were
220 upregulated upon UPF1 knockdown (Longman et al. 2020)(Supplemental Fig. S3B). These
221 upregulated targets that are co-regulated by DHX34 and UPF1 most likely represent bona fide
222 NMD targets in HeLa cells (Fig. 3B; Supplemental Fig. S3B; Supplemental Table 2). Interestingly
223 we noted that DHX34 depleted cells not only showed deregulation of cellular transcript levels, but
224 also displayed changes in alternative splicing.

226 **FIGURE 3.** DHX34 regulates NMD and pre-mRNA splicing. (A) Outline of the experimental
227 design for the analysis of changes in Gene expression and Alternative splicing upon DHX34
228 knock-down. RNA-seq was performed from HeLa cells depleted of DHX34 (siDHX34) or
229 transfected with non-targeting siRNA pools (ctrl). Sequencing reads were mapped using Salmon
230 and differential gene expression (DGE) was performed with Sleuth. Splicing changes were
231 detected with SUPPA2. (B) Volcano plot of DGE changes upon DHX34 depletion are indicated
232 by altered b-value and -log10 adjusted pvalue. (C) Splicing changes upon DHX34 depletion.
233 Significant splice changes detected with SUPPA2 algorithm are depicted in red ($\Delta\text{PSI} > 0.05$,
234 $p \leq 0.05$). Bar plot indicates pre-mRNAs that show AS changes as well as changes in gene
235 expression: upregulated expression (DGE UP, dark red), downregulated (DGE DOWN, blue), not
236 changed (grey). (D) Pie chart showing different types of alternative splicing events detected with
237 SUPPA2. (E) Validation of cassette exon splice changes for ACOT9, CLSTN1, MAP2K7, MYL6
238 and MYOF transcripts by RT-PCR in HeLa cells depleted for DHX34 or treated with non-targeting
239 siRNA (control). Dark grey arrow indicates transcript variant with included exon, light grey with
240 excluded exon. Means from four individual data point obtained by RT-PCR using Bioanalyzer are
241 plotted with standard deviations as error bars.

242
243 We measured “percentage spliced in” deltaPSI values using the SUPPA2 algorithm (Trincado et
244 al. 2018), and detected 632 altered splicing events (Fig. 3C). Predominant changes were found in
245 cassette exons (CE) (232 events) and alternative first exons (AF) (301 events) (Fig. 3D;
246 Supplemental Table 2), with adj pvalue < 0.05 and $|\Delta\text{PSI}| > 0.05$. To a much lesser extent, we
247 also detected retained introns (RI), mutually exclusive exons (MX) and alternative last exons (AL)
248 (Fig. 3D). We used RT-PCR analysis to validate AS regulation by DHX34 (CE) of 5 selected
249 transcripts that displayed significant changes in the RNA-seq datasets. In all cases, DHX34 seems
250 to promote skipping of the CE, since its knock-down leads to inclusion of alternative cassette exons
251 in all tested pre-mRNAs (Fig. 3E). These results strongly suggest that DHX34 has dual role in
252 HeLa cells, affecting both NMD and alternative splicing.


253

254 **Role of DHX34 in leukemia**

255 We previously identified heterozygous mutations in *DHX34* in four families affected with
256 inherited acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) and showed that
257 these mutations abrogated the NMD function of DHX34 using an NMD reporter (Rio-Machin et
258 al. 2020). Interestingly, the *DHX34* pre-mRNA is subject to widespread alternative splicing in
259 sporadic AML, which results in the inclusion of a poison exon harbouring a PTC, leading to a
260 decrease in DHX34 mRNA levels due to alternative splicing coupled to NMD (AS-NMD)(Rivera
261 et al. 2021). These findings strongly suggest that an altered activity of DHX34, by either mutation
262 or AS-NMD, has a direct role in AML development. As a first attempt to investigate the functional
263 role of DHX34 in blood disorders, we focused on the described role of DHX34 in NMD (Hug and
264 Cáceres 2014) and in pre-mRNA splicing (this study) in a more relevant cellular system. For this,
265 we performed RNA sequencing (RNA-seq) of the immortalized K562 myeloid leukaemia cell line
266 following depletion of *DHX34*, which was verified by qRT-PCR (Supplemental Fig. S4A, B) and
267 changes in gene expression (DGE) and in alternative splicing were assessed (Fig. 4A-C;
268 Supplemental Fig. S4C, D).

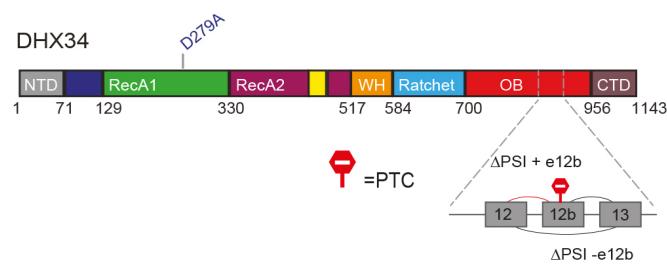
269 First, we focused on the role of DHX34 in NMD and compared the effects of depleting the core
270 NMD factor UPF1 with DHX34 depletion. We had previously used microarray profiling to show
271 that DHX34 and UPF1 co-regulate a significant group of mRNA transcripts in nematodes,
272 zebrafish and HeLa cells (Longman et al. 2013; Hug and Cáceres 2014).

273

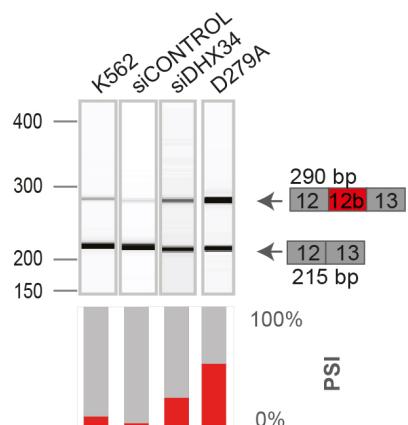
275 **FIGURE 4.** DHX34 is an NMD factor and regulates pre-mRNA splicing in K562 cells. *(A)* Outline
276 of experimental design for RNA sequencing and analysis. RNA seq was performed for DHX34
277 knockdown (siDHX34), UPF1 knockdown (siUPF1) and compared to a non-targeting siRNA
278 (ctrl). Sequencing reads were mapped using Salmon and differential gene expression (DGE) was
279 performed with Sleuth. Splicing changes were detected with SUPPA2. *(B)* Volcano plot of DGE
280 changes upon DHX34 depletion are indicated by altered b-value and -log10 adjusted pvalue. *(C)*
281 Splicing changes upon DHX34 depletion. Significant splice changes detected with SUPPA2
282 algorithm are depicted in red ($d\text{PSI} > 0.05$, $p \leq 0.05$). Bar plot indicates pre-mRNAs that show AS
283 changes as well as changes in gene expression: upregulated expression (DGE UP, dark red),
284 downregulated (DGE DOWN, blue), not changed (grey). *(D)* Scatter plot of the correlation
285 between expression changes in DHX34 and UPF1 depletion. Each dot represents a common
286 differentially expressed gene. Genes significantly upregulated in both DHX34 and UPF1 are
287 labeled in red, genes which are downregulated in blue. *(E)* Venn diagram showing the number of
288 common transcripts up-regulated (UP) in DHX34 and UPF1 knockdown cells. *(F)* Pie chart
289 showing different splicing events upon DHX34 knockdown detected with SUPPA2. *(G)* Table
290 listing AS events in genes linked to AML.

291
292 Importantly, we validated these previous observations in K562 cells, with 26% of RNAs
293 upregulated upon DHX34 depletion (176/670), being also upregulated upon knock-down of UPF1
294 (Fig. 4D, E; Supplemental Table 3), displaying a robust co-regulation (Pearson's correlation
295 $r=0.65$, $p<0.0001$) (Fig. 4D). These results clearly show that DHX34 is a general regulator of NMD
296 in K562 cells and provide a list of potential NMD targets for this RNA helicase.

297 Interestingly, as observed with HeLa cells, DHX34-depleted K562 cells also displayed changes
298 in alternative splicing (Fig. 4C, F). We measured “percentage spliced in” deltaPSI values using
299 the SUPPA2 algorithm (Trincado et al. 2018), and detected 570 splicing changes (Fig. 4C, F;
300 Supplemental Table 3). The most predominant changes were in alternative first exons (AF) (147
301 events) and in cassette exons (CE) (107 events) (Fig. 4F) with adj pvalue <0.05 and
302 $|\Delta\text{PSI}| > 0.05$. Importantly, depletion of DHX34 led to differential splicing of several pre-


303 mRNAs in genes that are frequently mutated in MDS/AML, including SF3B1, SRSF2 and
304 U2AF1 Fig. 4G).

305


306 DHX34 regulates its own pre-mRNA splicing

307 It was recently shown that DHX34 is subject to widespread alternative splicing in sporadic AML,
308 resulting in the inclusion of alternative exon 12b that harbors a PTC, leading to Alternative splicing
309 coupled to NMD (AS-NMD) (Rivera et al. 2021)(Fig. 5A). Since we unveiled a dual role for
310 DHX34 in NMD and AS regulation, we decided to explore whether DHX34 exerts a regulation of
311 of its own pre-mRNA splicing.

A

B

312

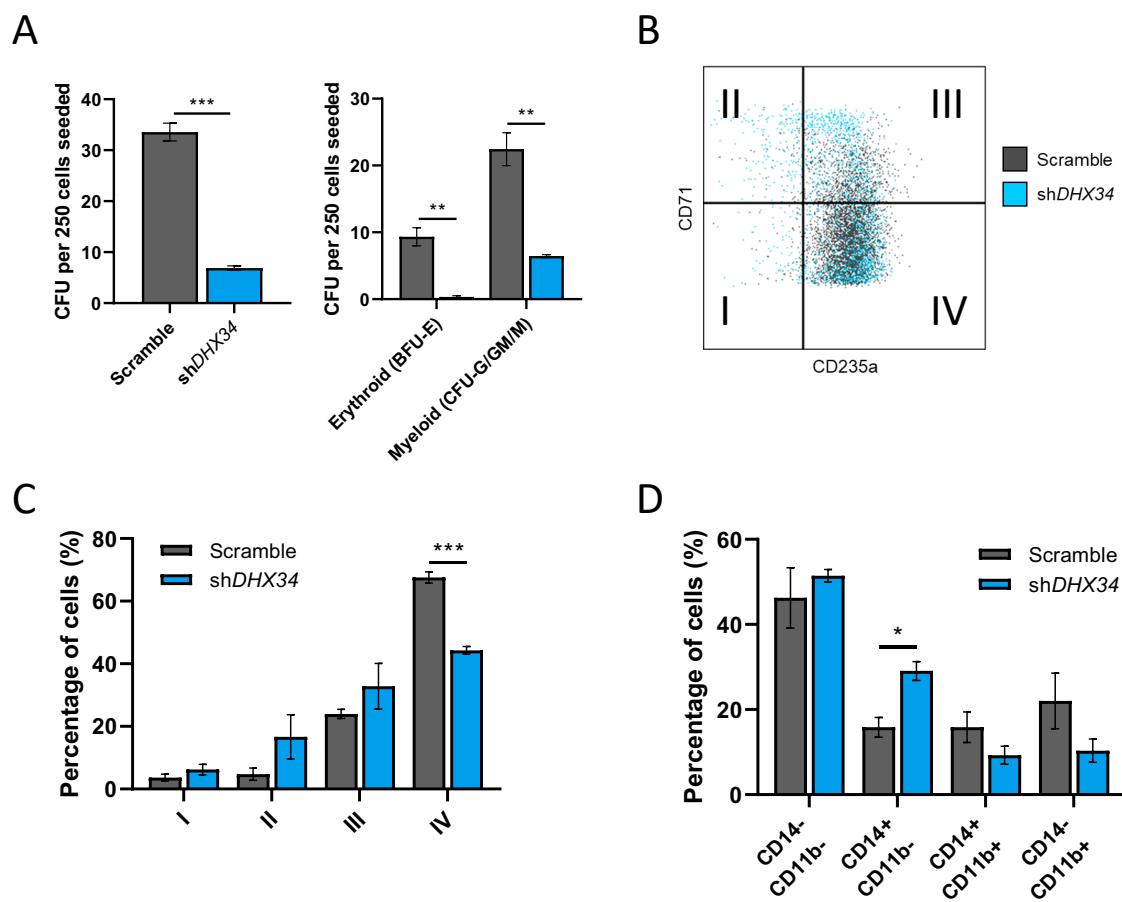
313

314 **FIGURE 5.** DHX34 regulates pre-mRNA splicing of its own pre-mRNA in K562 cells. (A)
315 Schematic of DHX34 protein domain structure, including the D279A catalytic mutation. Part of
316 the *DHX34* pre-mRNA exon-intron structure, including the alternative exon 12b harboring a PTC,
317 is depicted. (B) RT-PCR analysis of splicing patterns of DHX34 exon 12b in knockdown and

318 mutant conditions. RT-PCR products were resolved using Bioanalyzer (top panel) and relative
319 splicing changes (PSI) were quantified.

320

321 RT-PCR analysis of endogenous pre-mRNA in K562 cells upon siRNA-mediated knock-down of
322 DHX34 revealed an increase in the isoform containing E12b (Fig. 5B; Supplemental Fig. S5).
323 Interestingly, this result was confirmed in an engineered K562 catalytic mutant cell line, where a
324 mutation was introduced in an aspartate (D) residue in the Walker B motif (p.D279A in Motif II)
325 that is required for ATP hydrolysis (Hanson and Whiteheart 2005; Hug and Cáceres 2014). In
326 addition, RNA-seq analysis of K562 cells upon depletion of *DHX34* or harboring the p.D279A
327 catalytic mutation confirmed these findings (Supplemental Fig. S5). Altogether, these results
328 unveil a role for DHX34 in the regulation of its own expression and suggest the existence of an
329 elaborate feed-back mechanism by which DHX34 could prevent the expression of the isoform
330 containing exon 12b via NMD and/or alternative splicing, maintaining appropriate levels of
331 DHX34 protein.


332

333 **A role for DHX34 in hematopoiesis**

334 Finally, to gain further insight into the role of DHX34 in hematopoiesis, we used a lentiviral
335 approach to generate a knock-down of *DHX34* in hematopoietic stem/progenitor cells (HSPCs)
336 isolated from human umbilical cord blood (Supplemental Fig. S6). A significant knock-down was
337 observed in transduced CD34⁺ cells (Supplemental Fig. S6B). Cells were sorted by flow cytometer
338 (Dapi⁻CD34⁺GFP⁺) and placed in expansion medium where they showed a lower proliferation rate
339 at day 7 (Supplemental Fig. S6C). Next, sorted cells were grown in semi-solid medium to assess
340 the capacity of progenitors to proliferate and differentiate into the different myeloid and erythroid
341 lineages/colonies. Interestingly, *DHX34* knock-down cells demonstrated an impaired capacity to
342 generate colonies in both erythroid lineage (Burst Forming Units: BFU-E) and myeloid lineage

343 (Colony Forming Units granulocytic-granulo/monocytic-monocytic: CFU-G/GM/M) (Fig. 6A),
344 while no significant apoptosis was detected (Supplemental Fig. S6D).

345 In light of these phenotypes, we investigated the impact of the loss of expression of *DHX34*
346 during erythropoiesis and granulo-monocytic differentiation. Dapi⁻CD34⁺GFP⁺ were cultured
347 under erythroid conditions and immunophenotyped at day 14 with CD71 (transferrin receptor) a
348 marker of early erythroid differentiation and CD235a (Glycophorin A) a marker of mature
349 erythroid cells.

350
351 **FIGURE 6.** Loss of DHX34 impairs HSPC differentiation. (A) Cells were sorted by FACS (Dapi⁻
352 CD34⁺GFP⁺) and placed in methylcellulose prior to being scored at day 14. Left panel represents
353 total colonies scored and right panel colonies scored in erythroid (BFU-E) and myeloid (CFU-

354 G/GM/M) lineages (n=3). (B) FACS plot representing cells at day 14 in erythroid conditions, blue
355 represents cells KD for *DHX34*, and grey represents control cells (scramble). (C) Bar chart
356 quantifying the percentage of erythroid differentiated cells in the different quadrants (I, II, III &
357 IV displayed on panel (B)). Cells were sorted by flow cytometer (Dapi⁻CD34⁺GFP⁺), cultured in
358 erythroid differentiation conditions and immunophenotyped by FACS at day 14 based on CD71
359 and CD235a expression (n=3). (D) Bar charts representing the percentage of granulo-monocytic
360 cells after Dapi⁻CD34⁺GFP⁺ cells were sorted by flow cytometer and cultured in granulo-
361 monocytic conditions for two weeks. At day 14 cells were immunophenotyped by FACS based on
362 CD11b and CD14 expression (n=3). *=p<0.05; **=p<0.01; ***=p<0.005

363

364 Strikingly the knock-down cells demonstrated a significant blockage in erythroid terminal
365 differentiation (Fig. 6B, C). When cells were placed in granulo/monocytic conditions, *DHX34*
366 depleted cells showed an increase in CD14 expression (Fig. 6D), which is usually expressed by
367 blast AML cells.

368 These findings reveal that DHX34 downregulation leads to ineffective erythropoiesis, which is
369 a hallmark of AML and increased expression of CD14, which is often seen at the surface of AML
370 blasts.

371

372

373 **DISCUSSION**

374 DExH/D RNA helicases are involved in almost every aspect of RNA processing from RNA
375 synthesis in the nucleus until mRNA translation and degradation in the cytoplasm. It is also
376 common that individual helicases could be involved in more than one aspect of RNA processing,
377 such as DHX9, which has been linked to alternative splicing, RNA export and miRNA biogenesis
378 and function (reviewed by (Bourgeois et al. 2016)). We previously established a mechanistic role
379 for DHX34 in the NMD pathway by showing that this RNA helicase promotes the transition from
380 the initial NMD complex that surveys the presence of a PTC (SURF complex) to a Decay-inducing
381 complex (DECID) where the actual RNA degradation occurs (Melero et al. 2016; Longman et al.
382 2013; Hug and Cáceres 2014). In this study, we identified an additional role for DHX34 in splicing
383 regulation. We confirm DHX34 as a component of the catalytic spliceosomal complex C and show
384 that DHX34 predominantly binds to pre-RNA in the vicinity of intron-exon junctions and has a
385 role in the regulation of alternative splicing (Figs. 2-4). Interestingly, DHX34 was identified as a
386 candidate neurodevelopmental gene; raising the possibility that this could be linked to its function
387 in NMD, pre-mRNA splicing or another yet to be identified cellular function (Paine et al. 2019).
388 The NMD and AS functions of DHX34 could operate independently; however, we show here that
389 a subset of pre-RNAs that undergo AS changes upon DHX34 knock-down are also upregulated,
390 and in K562 cells show co-regulation by UPF1 (Figs. 3 and 4).

391 The spliceosome undergoes extensive conformational and compositional rearrangements that
392 are catalyzed by eight RNA helicases of the DExD/H family (De Bortoli et al. 2021). The activity
393 of DEAH RNA helicases, such as DHX34, is often regulated through G-patch proteins, which
394 function as adaptors that recruit them to functional sites and enhance their activity (Studer et al.
395 2020). The G-patch domain is an intrinsically unstructured region containing a set of conserved
396 glycines that interact with an auxiliary OB-fold (oligonucleotide/oligosaccharide-binding fold) of

397 their cognate DEAH box helicase and mediate protein-protein and RNA-protein interactions
398 (Bohnsack et al. 2021; Robert-paganin et al. 2015; Studer et al. 2020). The interactome of DHX34
399 in HEK293T cells revealed the presence of one such protein, GPATCH1 (Fig. 1A). A recent study
400 revealed that GPATCH1 copurifies with DHX35 and with components of catalytically active
401 spliceosomes, strongly suggesting that the GPATCH1/DHX35 pair functions together to promote
402 splicing fidelity (Sales-Lee et al. 2021). Whether GPATCH1 also acts together with DHX34 in
403 pre-mRNA splicing; or and/or whether DHX34 is regulated by a different GPATCH protein,
404 remains to be determined.

405 Previously, we also showed that DHX34 interacts with of RUVBL1-RUVBL2 AAA-ATPases
406 and regulates their activity by stabilizing a conformation that does allow nucleotide binding and
407 thereby down-regulates ATP hydrolysis of the complex (López-Perrote et al. 2020). Interestingly,
408 RUVBL1 and RUVBL2 are essential constituents of several additional large complexes, with
409 functions in chromatin remodeling. They are also part of the R2TP complex, a HSP90 co-
410 chaperone involved in the assembly and maturation of large complexes that include RNA
411 polymerase II, the Phosphatidylinositol 3-kinase-related kinase (PIKK) family members and the
412 spliceosome (Dauden et al. 2021). The HSP90/R2TP complex, together with the ZNHIT2
413 cofactor, has a role in binding unassembled U5 proteins, including PRPF8, EFTUD2 and
414 SNRNP200 in the cytoplasm and promotes the formation of the U5 snRNP particle (Malinová et
415 al. 2017). Thus, it would seem plausible that DHX34 may have a role via the R2TP complex in
416 regulating U5 snRNP. Indeed, we have previously shown that DHX34 does interact with PRPF8
417 (Hug and Cáceres 2014) and binds to U5 snRNA (Fig. 1D) . Future work will determine whether
418 DHX34 regulation of RUVBL1/2 has an impact on the R2TP complex and on U5 snRNP function.

419 A role for DHX34 in inherited acute myeloid leukaemia (AML) and myelodysplastic syndrome
420 (MDS) was initially suggested by the presence of heterozygous mutations in *DHX34* in four
421 families affected with this blood disorder, which affected its role in NMD (Rio-Machin et al. 2020),
422 It was recently shown that another way of inactivating DHX34, beyond mutations, is by changes
423 in alternative splicing coupled to NMD (AS-NMD) (Rivera et al. 2021). We show here that
424 DHX34 downregulation leads to ineffective erythropoiesis, which is a hallmark of AML (Fig. 6).
425 The discovery that DHX34 is involved in the regulation of pre-mRNA splicing is suggestive in
426 regards to its function in AML/MDS, since recurrent mutations found in myeloid malignancies
427 including genes encoding splicing factors, LUC7L2, RBM39, SF3B1, SRSF2, and
428 U2AF1(Rahman et al. 2020; Zhang et al. 2015; Lee et al. 2016; Inoue et al. 2016; Wang et al.
429 2019; Daniels et al. 2021). This could be a common theme in blood disorders since deregulation
430 of splicing factors was also found in pediatric B-cell acute lymphoblastic leukemias (B-ALL)
431 (Black et al. 2018). In the case of DHX34, we observed predominantly effects on the regulation
432 of cassette exons (CE), as well as the selection of first exons (AF), likely to impact on the choice
433 of promoters (Figs. 3D, 4F). Mutations in another RNA helicase, the DEAD-box protein DDX41,
434 have been identified in familial and acquired cases of myelodysplasia and acute myeloid leukemia,
435 and these mutations in *DDX41* also give rise to defects in pre-mRNA splicing (Polprasert et al.
436 2015). Alterations in DHX15, another DExD/H-box RNA helicase that is part of the spliceosome
437 and also functions in the ribosome biogenesis were also identified in an AML cohort (Faber et al.
438 2016). The recent finding that DHX34 is subject to alternative splicing in sporadic AML leading
439 to the inclusion of a poison exon that results in AS-NMD highlighted the fact that DHX34 can be
440 inactivated in familial AML not only via mutation but also through alternative splicing regulation
441 (Rivera et al. 2021). Interestingly, we show that DHX34 regulates the abundance of its own pre-

Hug et al.

442 mRNA, via a mechanism involving AS-NMD that consequently reduces levels of DHX34 protein,
443 this highlighting its role in maintaining cellular homeostasis (Fig. 6)

444 In summary, we have uncovered a dual role for the DExH/D-box RNA helicase, DHX34, in
445 NMD and in the regulation of pre-mRNA splicing. Importantly, we show that DHX34 is required
446 for the proper differentiation of HSCs to the erythroid lineage and myeloid lineage, which can
447 possibly be explained by its role in NMD and/or in AS regulation.

448 **MATERIALS AND METHODS**

449 **Cell Culture and transfections**

450 HeLa and HEK293T cells were maintained in DMEM media with high glucose, GlutaMAX™
451 Supplement, pyruvate (Gibco Life technologies; 10569010) supplemented with 10% FCS, 1%
452 penicillin/streptomycin at 37°C in the presence of 5% CO₂. DHX34-FLAG-GFP clones were
453 maintained in the same media. Cells were grown without antibiotic prior to transfections, which
454 were carried out in Opti-MEM reduced serum medium (Gibco, 31985047). K562 cells were
455 maintained in RPMI (GIBCO) media supplemented with 5mM Glutamin, 10% FCS and 1%
456 penicillin/streptomycin at 37°C in the presence of 5% CO₂. Transfections of siRNA oligos were
457 done using DharmaFECT 1 (Dharmacon, T-2001-03) following manufacturer's protocol
458 (Supplemental Table 4). For total RNA-sequencing cells were plated in 6-well plates and
459 transfected with 50 pmol of indicated siRNAs. Cells were expanded into 10 cm plates the following
460 day and were transfected with 150 pmol of the same siRNAs on day 3 and were harvested for
461 analysis 4 days after the first depletion.

462

463 **Design and screening of CRISPR cell lines**

464 guideRNAs (gRNAs) were designed using sgRNA Designer CRISPRko (Broad institute,
465 <https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design>) and CHOPCHOP
466 <https://chopchop.cbu.uib.no/Cas-Designer>. Guides were cloned into pSpCas9(BB)-2A-Puro
467 (px459) V2.0 (Ran et al., 2013). For GFP-FLAG tagging the repair template containing synthetic
468 homology arms, 3XFLAG-tag and eGFP (amplified from phrN1GFP) was cloned into the
469 pCDNA3.1(+) backbone using Gibson assembly. For introduction of point mutations into DHX34
470 by HR ssDNA oligos were used with mutated PAM sites. The gRNA/Cas9 plasmid and linearized

471 repair template were transfected and selected with 1 μ g/ml puromycin for 48 hours. 5 days post-
472 transfection surviving cells were cloned into 96 well plates and expanded. Colonies were PCR
473 screened and correct targeting verified by Sanger sequencing. For base editing gRNAs were cloned
474 into pSPgRNA and transfected together with AncBE4max-P2A-GFP (Koblan et al. 2018)(ratio
475 1:3). Five days post-transfection GFP-positive cells were sorted by FACS into 96 well plates.
476 Target regions were PCR amplified and base editing verified by Sanger sequencing. Sequences for
477 templates and sgRNAs are listed in Supplemental Table 4.

478

479 **Mass Spectrometry**

480 Cells were harvested and lysed as in immunoprecipitation protocol (see below). α -GFP antibody-
481 coupled magnetic beads (Chromotek) were equilibrated with IP buffer. Lysates were resuspended
482 in 500 μ l IP buffer for capture of DHX34-FLAG-GFP bound proteins and subsequent mass
483 spectrometry analysis. Immunoprecipitation were performed on Kingfisher Duo robot (Thermo)
484 and subjected to in solution digestion according to standard protocols. for 4 h. Fractionated
485 peptides were separated and analyzed using a Dionex RSLC Nano system coupled to a Thermo Q-
486 Exactive Plus instrument. (Thermo Fisher Scientific). Raw MS data were analyzed using
487 MaxQuant (v 1.5.6.5) (Max Planck Institute of Biochemistry) in conjunction with UniProt human
488 reference proteome release 2016_11 (uniprot.com), with match between runs (MS/MS not
489 required), LFQ with 1 peptide required, and statistical analyses performed in R (RStudio 1.1.453
490 / R x64 3.4.4) (rstudio.com) using Wasim Aftab's LIMMA Pipeline Proteomics
491 (github.com/wasimaftab/LIMMA-pipeline-proteomics) implementing a Bayes-moderated
492 method. Interactome analysis including gene ontology was carried out by inputting protein list into

493 STRING (string-db.org/) and Gene Ontology enRICHment anaLysis and visuaLizAtion (GORilla)
494 (<http://cbl-gorilla.cs.technion.ac.il/>) (Eden et al. 2009).

495

496 **Immunoprecipitation and Western Blotting**

497 Cells were washed and harvested in ice-cold PBS before pellets were lysed with
498 immunoprecipitation (IP) buffer (20 mM Tris-HCl pH 8, 150 mM NaCl, 1mM EDTA, 1% NP-40,
499 0.2% Deoxycholate, Complete Protease Inhibitor (Roche), Phospho STOP (Roche), 1 mM DTT)
500 for 20 min on ice. Cell lysates were treated with 80 μ g/ml RNase A per 1 ml of extract. Anti-GFP
501 MA (Chromotek) magnetic beads were washed, bound proteins were eluted with NuPAGE LDS
502 sample buffer supplemented with reducing agent (Thermofisher). Proteins were resolved by SDS-
503 PAGE on NuPAGE 3-8% Tris-Acetate precast gels (Thermofisher) and protein transfer was
504 achieved using the iBlotTM 2 Gel Horizontal Transfer Device (Thermofisher). Nitrocellulose
505 membranes were blocked in 5% BSA in PBS/Tween 20 (0.1%) and probed with the appropriate
506 primary antibody diluted in blocking solution 1:1000. HRP-conjugated secondary antibodies
507 (BioRad) were used at 1:10,000 and blots developed with ChemiGlow detection reagent
508 (ProteinSimple) and visualized using ImageQuant LAS 4000 chemiluminescent camera (GE
509 Healthcare). For RNA-Immunoprecipitations FLAG-Immunoprecipitation from DHX34-GFP-
510 FLAG A5 cells were performed with in NET2 buffer (50 mM Tris-HCl pH7.5, 150mM NaCl,
511 0.05% Triton-X-100) using M2 agarose. Half of the samples were treated with 80 μ g/ml RNase
512 A as a negative control. IPs were washed 8X with NET2 and bound proteins eluted with 3XFLAG
513 peptides and extracted with Trizol (Thermofisher). Eluted RNA was reverse transcribed and
514 amplified with spliceosomal RNA specific primers (Supplemental Table 4)

515

516 **Antibodies**

517 Anti-DDX41 (15076, Cell Signaling), Anti-PRP19 (ab27692, Abcam), Anti-ISY1 (HPA016995,
518 Atlas Antibodies), Anti-SMG1 (ab30916, Abcam), Anti-UPF1 (# A300-036A, Bethyl), Anti-
519 Pelota (bs-7821R, BioSS) Anti-RP6 (2217, Cell Signaling), Anti-GFP (ab290, Abcam), Anti-
520 Tubulin (# 4026, Sigma-Aldrich), Anti- DHX34 is a peptide-specific antibody raised against
521 human DHX34 obtained from Eurogentec (Hug and Cáceres 2014). For Immunopurifications
522 GFP-Trap-MA beads (Chromotek) and Anti-FLAG affinity gel (A2220, Sigma) were used.

523

524 **seCLIP protocol**

525 seCLIP experiments were performed following a published protocol (Blue et al. 2022), with minor
526 modifications. The immunoprecipitation (IP) step was carried out using an anti-GFP beads
527 (Chromotek). Five independent experiments for DHX34 were performed using DHX34-GFP-
528 FLAG A5 clone with parental HEK293T serving as negative control. The five DHX34 seCLIP
529 libraries and negative controls with different barcodes were pooled together and sequenced on a
530 single lane by single end sequencing 50nt together with on an Illumina *HiSeq* 2000 system
531 (Wellcome Trust Clinical Research facility at the University of Edinburgh (WTCRF)). Equivalent
532 Input the control libraries were sequenced on a different lane. The seClip bioinformatics protocol
533 was followed with adaptations to account for the adaptors and sequencing technology used here
534 (Blue et al. 2022). Briefly, fastq files were merged then 3' adaptors (starting with InvRand3Tr3)
535 were trimmed using cutadapt (Martin, 2011), then the 5' adaptors trimmed from reads lacking the
536 3' adaptor (starting with InvAR17) and Illumina adaptors trimmed from the remaining reads. UMIs
537 were identified in all three sets of reads using umi_tools (Smith et al. 2017). Read sequences were
538 reverse-complemented prior to, and following, trimming and UMI processing using seqkit (Shen

539 et al. 2016) to account for the forwards-reverse orientation of the reads. Reads were aligned to the
540 human genome (GRCh38 93) using bowtie2 (Langmead and Salzberg 2012), sorted and indexed
541 using samtools (Li et al. 2009), deduplicated using umi_tools and again sorted and indexed. The
542 three sets were merged, and uniquely mapping reads retained, reads mapping to transposable
543 elements were removed. The mapping rate was determined at all steps of processing. The final
544 number of mapped reads for DHX34 GFP replicates ranged from 106k to 537k (0.4% to 9.3% of
545 total reads over the replicates) totalling 6,926k reads. Of DHX34 GFP reads, 75% had either the
546 3' or 5' adaptor, 26.5% of all DHX34 GFP reads were retained after the removal of duplicates,
547 reducing to 4.7% after the removal of multiply-mapping reads and those mapping to repeats
548 (seCLIP_mapping.xlsx). To obtain an overview of the mapping of DHX34, the distribution of GFP
549 IP reads across biotypes was assessed. Total normalized reads mapping to gene bodies per biotype
550 is shown in pie_chart_biotypes_GFP_IP.pdf for all GFP IP reads, and when summing reads over
551 those genes where GFP IP is 1.5 times enriched over negative GFP IP, enriched over the input and
552 over both. With and without filtering for enrichment, DHX34 predominantly maps to protein-
553 coding genes. In these charts, the specific short non-coding biotypes (snoRNA, snRNA etc) are
554 aggregated under short noncoding, and similarly for pseudogenes and long noncoding other than
555 lincRNA which is shown. Peaks were called in DHX34 GFP samples using macs2 (Zhang et al.
556 2008), with the merged negative GFP inputs as control (options: --broad-cutoff 0.1 -g hs --
557 nomodel --extsize 100) for each replicate individually and for merged DHX34 GFP replicates.
558 Peaks with -log10 p value of at least 10 were retained, and a bed file of the union of peaks from
559 all replicates was created. To review the absolute raw read count support for the peaks, the number
560 of reads mapping to these peaks, and to the surrounding region (+/- the peak width) was quantified
561 using htseq-count (Anders et al. 2015). The peak count to region count ratio was used to filter out

562 regions of non-specific mapping. 1084 peaks with at least 5 reads in the merged data, and where
563 the ratio of peak count to region count was greater than or equal to the mean (0.89) were selected
564 for further consideration. (seClip_peak_to_region_depth.pdf). Peaks were reviewed manually
565 from snapshots created from the IGV browser. Of the peaks selected, 957 (88%) had 5 or more
566 reads in one or more individual replicates in addition to the calling of the peak in the merged data.
567 238 (22%) had this support in two or more replicates. The correlation of raw counts for the selected
568 peaks across replicates was fair (seClip_replicate_correlation.pdf Supplemental Fig. S2B), with
569 the exception of GFP_IP1. Peaks in GFP_IP1 though strongly indicated, were less well replicated.
570 The selected peaks were supported by 5-11 raw reads across replicates (1st-3rd quartile) raw counts
571 (truncated at 11 to suppress outlying counts) are shown in the heatmap
572 seClip_replicate_heatmap_0_11.pdf.SFig 3D Peak widths were 102-108 bases (1st-3rd quartile).

573

574 **Gene expression profiling: RNA extraction, library preparation and RNA-sequencing**

575 Total RNA was isolated from depleted cells and CRISPR clones using RNAeasy kit (Qiagen) and
576 treated with TURBO DNA-freeTM DNase I kit (Invitrogen Ambion; AM1907). Libraries were
577 prepared by BGI (Hela cells RNA samples) or Novogene (K562 siRNA treated and CRISPR edited
578 clonal RNA samples).

579

580 **RNA-sequencing analysis**

581 Transcript abundances were quantified using salmon (Patro et al. 2017) from a transcriptome index
582 compiled from coding and non-coding cDNA sequences defined in Ensembl GRCh38 93 (salmon
583 version 1.5.2; using the flags --gcBias --numBootstraps 100). Differential expression was called
584 with the sleuth R package (Pimentel et al. 2017) (significance taken as q<=0.005). Additional

585 analyses to assess the consistency of the direction of expression change were performed using the
586 Wald test in sleuth (significance taken as $q \leq 0.005$). Each condition (3 biological replicates per
587 clone) was compared to wild type K562 (or SCR in the case of DHX34 and UPF1). PCA plots
588 were generated for each comparison, and for all K562 and both CRISPR datasets combined. Genes
589 consistently upregulated or consistently downregulated (significant at the gene level and all
590 significant transcript level changes in the same direction) were taken forward for further analysis.
591 Annotated splicing event occurrence (including alternative 3' and 5' splice site usage, exon
592 skipping and alternative first/last exon usage) was assessed by Suppa2 version 2.3 (Trincado et al.
593 2018). Splicing analysis used the same transcript models and gene annotation as for differential
594 expression calling. R scripts were written to filter, format and integrate the results. The default
595 level of statistical significance of $q \leq 0.05$ was used in SUPPA2 analyses. A dPSI of ≥ 0.05 and
596 isoform expression of ≥ 0.5 TPM were required in addition in SUPPA2 calls. LSVs were
597 considered significant with $dPSI \geq 0.1$ and $probability \geq 0.9$. Gene ontology (GO) term
598 enrichment was performed using the R package clusterProfiler (Yu et al. 2012).
599

600 Quantitative RT-PCR

601 For HeLa and K562 cells total RNA was isolated using RNeasy Mini kit (Qiagen (Cat 74106)) and
602 reverse transcribed with Transcriptor Universal cDNA Master (Roche). qRT-PCRs were run with
603 standard settings on the Lightcyler 480 (Roche). Primers were designed using Roche Real-Time
604 Ready Configurator combined with Roche Universal Probe Library (See Supplemental Table 4).
605 Gene expression data was analysed by the delta Ct method normalised to the housekeeping gene
606 POL2RJ, ACTB and MRIP. RT-PCR to validate splicing changes was performed using GoTaq
607 (Promega) and quantified with Bioanalyzer RNA 6000 Nano assay (Agilent).

608

609 **CD34⁺ isolation from umbilical cord blood cells (UCB)**

610 Cord blood samples were purchased from Anthony Nolan. Mononuclear cells (MNCs) were
611 isolated from cord blood cells by centrifugation using Ficoll-PaqueTM PLUS (GE Healthcare Life
612 Sciences, Buckinghamshire, UK). CD34⁺ cell enrichment was performed using EasySep™ Human
613 CD34 Positive Selection Kit II (StemCell Technologies, Cat 17856) according to the
614 manufacturer's instructions.

615

616 **Lentivirus production in HEK 293T**

617 Two lentiviral vectors, shRNA_DHX34#1 (GGAGCACGGATTGTGAATAAA),
618 shRNA_DHX34#2 (GCCGACCAGGACAAGGTATT) targeting human *DHX34* gene, and one
619 control Scramble sequence (shRNA_Control) (CCTAAGGTTAACGTCGCCCTCG), were
620 purchased from Vectorbuilder. All vectors were expressing GFP sequence as reporter gene. Viral
621 particles for all the shRNAs were produced by transient CaCl₂ transfection of HEK293T cells and
622 harvested by ultracentrifugation.

623

624 **CD34⁺ UCB cells transduction**

625 Umbilical cord blood (UCB) CD34⁺ HSPCs were stimulated using StemSpan medium (Stem cell
626 Technologies, Cat 09655) supplemented with cytokines (150 ng/ml SCF, PeproTech, Cat 300-07;
627 150 ng/ml Flt-3, PeproTech, Cat 300-19; 10 ng/ml IL-6, PeproTech, Cat 200-06; 25 ng/ml G-CSF,
628 PeproTech Cat 300-23; 20 ng/ml TPO, PeproTech Cat AF-300-18) and 1% HEPES (Sigma-
629 Aldrich, Cat H0887-100mL) for 4-6 hours. Virus particles were then added to the stimulated cells
630 (Multiplicity of infection, MOI=30) and cells were incubated (37°C) overnight. Cells were washed

631 and resuspended in expansion medium i.e (Stem cell Technologies, Cat 09655) with cytokines
632 (150 ng/ml SCF, PeproTech, Cat 300-07; 150 ng/ml Flt-3, 20 ng/ml TPO, PeproTech Cat AF-300-
633 18) and 1% HEPES (Sigma-Aldrich, Cat H0887-100mL). Cells were expanded for 4 days.
634 Following on, cells were stained with antibody specific for human antigen CD34, DAPI (4,6,
635 diamidino-2-phenylindole, Sigma-Aldrich, Cat D9542) staining was used to exclude dead cells
636 and debris from the analysis. CD34⁺GFP⁺ cells were FACS sorted and then used in the different
637 assays.

638

639 **RT-qPCR in HSPCs**

640 RNA was extracted using RNeasy Mini Kit from Qiagen (Cat 74106) and retro-transcribed with
641 High-Capacity cDNA Reverse Transcription Kit (ThermoFisher, Cat 4368814). qPCR was
642 performed with Taqman probe for DHX34 (Hs00991248_m1, cat # 4351372, ThermoFisher)
643 using B2M as endogenous control (Hs00984230_m1, cat#4331182, ThermoFisher).

644

645 **Colony forming assay**

646 Two hundred and fifty patient CD34⁺ HSPCs were seeded in 0.5 mL methocult H4434 (StemCell
647 Technologies, Cat 04434) supplemented with 1% penicillin/streptomycin (Sigma-Aldrich, Cat
648 P4333) in a 24-well plate. Colonies were grown under hypoxic conditions (37°C and 3% O₂).
649 Following 14 days of culture, colonies were scored.

650

651 **Erythroid differentiation**

652 Transduced and FACS sorted CD34⁺ HSPCs were cultured in erythroid differentiation medium
653 (SCF 25ng/mL, PeproTech, Cat 300-07; EPO 3U/mL, PeproTech, Cat 100-64; IGF1 50ng/mL,

654 PeproTech, Cat 100-11) for 14 days. Cells were stained with antibodies specific for human
655 antigens (CD71 PE RRID:AB_2201481; CD235a APC/Cyanine7, RRID:AB_2650977) and DAPI.
656 Cells were immunophenotyped by using Fortessa flow cytometer (BD Biosciences, Oxford, UK)
657 at day 4, 7, 10 and 14.

658

659 **Granulocytic differentiation**

660 CD34⁺GFP⁺ HSPCs from UCB were cultured in granulocytic differentiation medium (SCF
661 25ng/mL, PeproTech, Cat 300-07; GM-CSF 10ng/mL, PeproTech, Cat 300-03) for 14 days. Cells
662 were stained with antibodies specific for human antigens (CD11b APC RRID:AB_10561676;
663 CD14 PE-Cy7, RRID:AB_1582277; CD45 APC eFluor780, RRID:AB_1944368) and DAPI.
664 Cells were immunophenotyped by using Fortessa flow cytometer (BD Biosciences, Oxford, UK)
665 at day 14.

666

667 **Cell cycle and Apoptosis**

668 Cell were fixed/permeabilized with BD Cytofix/Cytoperm™ Kit (Cat 554714) and stained with
669 DAPI (4,6, diamidino-2-phenylindole, Sigma-Aldrich, Cat D9542). DAPI (1 in 100 dilution) was
670 used to assess cell cycle upon expansion conditions at day 14. Alexa Fluor® 647 Annexin V
671 (Biolegend, Cat 640912) was used with Annexin V Binding Buffer (BD Bioscience, Cat 556454)
672 to measure apoptosis at day 3 and 14 in expansion medium. Cells were analysed on Fortessa flow
673 cytometer (BD Biosciences, Oxford, UK).

674

675 **Cell expansion**

676 Cells were cultured in expansion media and cell number was measured at day 7 and 14 using a
677 Countess 3 Automated Cell Counter.

678

679 **Statistical analysis**

680 Prism Version 8 software (GraphPad) was used for statistical analysis in Figures 1, 3 and 6. Data
681 are displayed as the mean \pm s.e.m. Statistical analysis was performed using unpaired two-tailed t-
682 test for comparison of two groups. RStudio was used for the statistical analysis in Figures 1, 2, 3
683 and 4 and Supplemental Fig. 1, 2, 3, 4 and 6. For information about the number of replicates, see
684 the corresponding figure legend. For information about how data was analyzed and/or quantified,
685 see the relevant section in Materials and methods.

686

687 **DATA DEPOSITION**

688 All RNA-Seq data has been deposited in the Gene Expression Omnibus (GEO) database and an
689 accession number will be available shortly.

690

691 **COMPETING INTERESTS STATEMENT**

692 The authors have declared that no competing interests exist.

693

694 **ACKNOWLEDGMENTS**

695 We are grateful to Laura Monaghan (MRC HGU) for discussions and critical reading of the
696 manuscript. We thank Sandra Keiper and Reinhard Luhrmann for discussions about RNA helicases
697 and the spliceosome. M.R. was supported by funds from the Erasmus program. This work was
698 supported by Core funding to the MRC Human Genetics Unit from the Medical Research Council

699 (J.F.C) and by Blood Cancer UK (14032) and Cancer Research UK (C15966/A24375) (J.F.; H.A.;
700 A.R.-M.) and by Kay Kendall Leukemia Fund (KKLF1149; K.R.-P.).

701 *Author contributions:* N.H. and J.F.C. conceived and designed the project. N.H performed the
702 majority of experimental work, including CLIP experiments, DGE and AS analysis. M.R.
703 contributed to the generation of tagged cell lines, interactome and CLIP experiments. A.R.M.
704 performed the analysis of DHX34 pre-mRNA splicing. S.A. carried out the bioinformatic analysis.
705 D.L performed data curation and analysis and participated in the draft of the manuscript and
706 discussions. H.A, A.R.M., K.R.-P. and J.F. carried out the biological experiments assessing the
707 role of DHX34 in differentiation of erythroid and myeloid lineages. The manuscript was co-written
708 by all authors.

709

710 AUTHOR ORCIDs

711 Nele Hug 0000-0002-7525-6583

712 Stuart Aitken 0000-0003-4867-4568

713 Dasa Longman 0000-0001-5373-0777

714 Michaela Raab 0000-0003-0071-9894

715 Hannah Armes 0000-0002-7649-6511

716 Abigail R Mann 0000-0002-2510-7299

717 Ana Rio-Machin 0000-0001-6733-9752

718 Jude Fitzgibbon 0000-0002-9069-1866

719 Kevin Rouault-Pierre 0000-0001-7671-7364

720 Javier F. Caceres 0000-0001-8025-6169

721 **SUPPLEMENTAL MATERIAL**

722 Supplemental material is available for this article.

723

724 **REFERENCES**

725 Abdelhaleem M, Maltais L, Wain H. 2003. The human DDX and DHX gene families of putative
726 RNA helicases. *Genomics* **81**: 618–22.

727 Anastasaki C, Longman D, Capper A, Patton EE, Cáceres JF. 2011. Dhx34 and Nbas function in
728 the NMD pathway and are required for embryonic development in zebrafish. *Nucleic Acids Res*
729 **39**: 3686–94.

730 Anders S, Pyl PT, Huber W. 2015. HTSeq-A Python framework to work with high-throughput
731 sequencing data. *Bioinformatics* **31**: 166–169.

732 Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009.
733 MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Res* **37**: W202-8.

734 Black KL, Naqvi AS, Asnani M, Hayer KE, Yang SY, Gillespie E, Bagashev A, Pillai V, Tasian
735 SK, Gazzara MR, et al. 2018. Aberrant splicing in B-cell acute lymphoblastic leukemia. *Nucleic
736 Acids Res* **46**: 11357–11369.

737 Blue SM, Yee BA, Pratt GA, Mueller JR, Park SS, Shishkin AA, Starner AC, Van Nostrand EL,
738 Yeo GW. 2022. Transcriptome-wide identification of RNA-binding protein binding sites using
739 seCLIP-seq. *Nat Protoc* **17**: 1223-1265.

740 Boehm V, Britto-Borges T, Steckelberg A-L, Singh KK, Gerbracht J V, Gueney E, Blazquez L,
741 Altmüller J, Dieterich C, Gehring NH. 2018. Exon Junction Complexes Suppress Spurious
742 Splice Sites to Safeguard Transcriptome Integrity. *Mol Cell* **72**: 482-495.e7.

743 Bohnsack KE, Ficner R, Bohnsack MT, Jonas S. 2021. Regulation of DEAH-box RNA helicases
744 by G-patch proteins. *Biol Chem* **402**: 561–579.

745 Bourgeois CF, Mortreux F, Auboeuf D. 2016. The multiple functions of RNA helicases as drivers
746 and regulators of gene expression. *Nat Rev Mol Cell Biol* **17**: 426–38.

747 Cordin O, Beggs JD. 2013. RNA helicases in splicing. *RNA Biol* **10**: 83–95.

748 Daniels NJ, Hershberger CE, Gu X, Schueger C, DiPasquale WM, Brick J, Saunthararajah Y,
749 Maciejewski JP, Padgett RA. 2021. Functional analyses of human LUC7-like proteins involved
750 in splicing regulation and myeloid neoplasms. *Cell Rep* **35**: 108989.

751 Dardenne E, Polay Espinoza M, Fattet L, Germann S, Lambert M-P, Neil H, Zonta E, Mortada H,
752 Gratadou L, Deygas M, et al. 2014. RNA helicases DDX5 and DDX17 dynamically orchestrate
753 transcription, miRNA, and splicing programs in cell differentiation. *Cell Rep* **7**: 1900–13.

754 Dauden MI, López-Perrote A, Llorca O. 2021. RUVBL1–RUVBL2 AAA-ATPase: a versatile
755 scaffold for multiple complexes and functions. *Curr Opin Struct Biol* **67**: 78–85.

756

757 De Bortoli F, Espinosa S, Zhao R. 2021. DEAH-Box RNA Helicases in Pre-mRNA Splicing.
758 *Trends Biochem Sci* **46**: 225–238.

759 De I, Bessonov S, Hofele R, dos Santos K, Will CL, Urlaub H, Lührmann R, Pena V. 2015. The
760 RNA helicase Aquarius exhibits structural adaptations mediating its recruitment to
761 spliceosomes. *Nat Struct Mol Biol* **22**: 138–44.

762 Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. 2009. GOrilla: A tool for discovery and
763 visualization of enriched GO terms in ranked gene lists. *BMC Bioinformatics* **10**: 48.

764 Faber ZJ, Chen X, Gedman AL, Boggs K, Cheng J, Ma J, Radtke I, Chao J-RR, Walsh MP, Song
765 G, et al. 2016. The genomic landscape of core-binding factor acute myeloid leukemias. *Nat
766 Genet* **48**: 1551–1556.

767 Fairman ME, Maroney PA, Wang W, Bowers HA, Gollnick P, Nilsen TW, Jankowsky E. 2004.
768 Protein displacement by DExH/D “RNA helicases” without duplex unwinding. *Science* **304**:
769 730–4.

770 Goetz AE, Wilkinson M. 2017. Stress and the nonsense-mediated RNA decay pathway. *Cell Mol
771 Life Sci* **74**: 3509–3531.

772 Guil S, Gattoni R, Carrascal M, Abián J, Stévenin J, Bach-Elias M. 2003. Roles of hnRNP A1, SR
773 proteins, and p68 helicase in c-H-ras alternative splicing regulation. *Mol Cell Biol* **23**: 2927–41.

774 Hanson PI, Whiteheart SW. 2005. AAA+ proteins: have engine, will work. *Nat Rev Mol Cell Biol*
775 **6**: 519–29.

776 Harigaya Y, Parker R. 2010. No-go decay: a quality control mechanism for RNA in translation.
777 *Wiley Interdiscip Rev RNA* **1**: 132–41.

778 Hönig A, Auboeuf D, Parker MM, O’Malley BW, Berget SM. 2002. Regulation of alternative
779 splicing by the ATP-dependent DEAD-box RNA helicase p72. *Mol Cell Biol* **22**: 5698–707.

780 Hug N, Cáceres JF. 2014. The RNA Helicase DHX34 Activates NMD by promoting a transition
781 from the surveillance to the decay-inducing complex. *Cell Rep* **8**: 1845–1856.

782 Hug N, Longman D, Cáceres JF. 2016. Mechanism and regulation of the nonsense-mediated decay
783 pathway. *Nucleic Acids Res* **44**: 1483–1495.

784 Inoue D, Bradley RK, Abdel-Wahab O. 2016. Spliceosomal gene mutations in myelodysplasia:
785 molecular links to clonal abnormalities of hematopoiesis. *Genes Dev* **30**: 989–1001.

786 Jankowsky E, Bowers H. 2006. Remodeling of ribonucleoprotein complexes with DExH/D RNA
787 helicases. *Nucleic Acids Res* **34**: 4181–8.

788 Jankowsky E, Gross CH, Shuman S, Pyle AM. 2001. Active disruption of an RNA-protein
789 interaction by a DExH/D RNA helicase. *Cell* **97**: 121–5.

790 Jankowsky E, Jankowsky A. 2000. The DExH/D protein family database. *Nucleic Acids Res* **28**:
791 333–4.

792 Karousis ED, Mühlemann O. 2019. Nonsense-Mediated mRNA Decay Begins Where Translation
793 Ends. *Cold Spring Harb Perspect Biol* **11**: a032862.

794

795

796 Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, Newby GA, Maianti JP, Raguram A, Liu DR.
797 2018. Improving cytidine and adenine base editors by expression optimization and ancestral
798 reconstruction. *Nat Biotechnol* **36**: 843–848.

799 Kuroski T, Miyoshi K, Myers JR, Maquat LE. 2018. NMD-degradome sequencing reveals
800 ribosome-bound intermediates with 3'-end non-templated nucleotides. *Nat Struct Mol Biol* **25**:
801 940–950.

802 Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**: 357–
803 9.

804 Lee SC-W, Dvinge H, Kim E, Cho H, Micol J-B, Chung YR, Durham BH, Yoshimi A, Kim YJ,
805 Thomas M, et al. 2016. Modulation of splicing catalysis for therapeutic targeting of leukemia
806 with mutations in genes encoding spliceosomal proteins. *Nat Med* **22**: 672–8.

807 Lee YJ, Wang Q, Rio DC. 2018. Coordinate regulation of alternative pre-mRNA splicing events
808 by the human RNA chaperone proteins hnRNPA1 and DDX5. *Genes Dev* **32**: 1060–1074.

809 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R.
810 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**: 2078–2079.

811 Longman D, Hug N, Keith M, Anastasaki C, Patton EE, Grimes G, Cáceres JF. 2013. DHX34 and
812 NBAS form part of an autoregulatory NMD circuit that regulates endogenous RNA targets in
813 human cells, zebrafish and *Caenorhabditis elegans*. *Nucleic Acids Res* **41**: 8319–31.

814 Longman D, Jackson-Jones KA, Maslon MM, Murphy LC, Young RS, Stoddart JJ, Hug N, Taylor
815 MS, Papadopoulos DK, Cáceres JF. 2020. Identification of a localized nonsense-mediated decay
816 pathway at the endoplasmic reticulum. *Genes Dev* **34**: 1075–1088.

817 Longman D, Plasterk RHA, Johnstone IL, Cáceres JF. 2007. Mechanistic insights and
818 identification of two novel factors in the *C. elegans* NMD pathway. *Genes Dev* **21**: 1075–85.

819 López-Perrote A, Hug N, González-Corras A, Rodríguez CF, Serna M, García-Martín C,
820 Boskovic J, Fernandez-Leiro R, Cáceres JF, Llorca O. 2020. Regulation of RUVBL1-RUVBL2
821 AAA-ATPases by the nonsense-mediated mRNA decay factor DHX34, as evidenced by Cryo-
822 EM. *Elife* **9**: e63042.

823 Malinová A, Cvačková Z, Matějů D, Hořejší Z, Abéza C, Vandermoere F, Bertrand E, Staněk D,
824 Verheggen C. 2017. Assembly of the U5 snRNP component PRPF8 is controlled by the
825 HSP90/R2TP chaperones. *J Cell Biol* **216**: 1579–1596.

826 Martin, M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads.
827 *EMBnet journal* **17** (1):10-12.

828 Melero R, Hug N, Lopez-Perrote A, Yamashita A, Cáceres JF, Llorca O, López-Perrote A,
829 Yamashita A, Cáceres JF, Llorca O. 2016. The RNA helicase DHX34 functions as a scaffold
830 for SMG1-mediated UPF1 phosphorylation. *Nat Commun* **7**: 10585.

831 Michelle L, Cloutier A, Toutant J, Shkreta L, Thibault P, Durand M, Garneau D, Gendron D,
832 Lapointe E, Couture S, et al. 2012. Proteins associated with the exon junction complex also
833 control the alternative splicing of apoptotic regulators. *Mol Cell Biol* **32**: 954–67.

834 Ozgur S, Buchwald G, Falk S, Chakrabarti S, Prabu JR, Conti E. 2015. The conformational
835 plasticity of eukaryotic RNA-dependent ATPases. *FEBS J* **282**: 850–63.

836 Paine I, Posey JE, Grochowski CM, Jhangiani SN, Rosenheck S, Kleyner R, Marmorale T, Yoon
837 M, Wang K, Robison R, et al. 2019. Paralog Studies Augment Gene Discovery: DDX and DHX
838 Genes. *Am J Hum Genet* **105**: 302–316.

839 Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and bias-
840 aware quantification of transcript expression. *Nat Methods* **14**: 417–419.

841 Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. 2017. Differential analysis of RNA-seq
842 incorporating quantification uncertainty. *Nat Methods* **14**: 687–690.

843 Polprasert C, Schulze I, Sekeres MA, Makishima H, Przychodzen B, Hosono N, Singh J, Padgett
844 RA, Gu X, Phillips JG, et al. 2015. Inherited and Somatic Defects in DDX41 in Myeloid
845 Neoplasms. *Cancer Cell* **27**: 658–70.

846 Rahman MA, Lin KT, Bradley RK, Abdel-Wahab O, Krainer AR. 2020. Recurrent SRSF2
847 mutations in MDS affect both splicing and NMD. *Genes Dev* **34**: 413–427.

848 Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the
849 CRISPR-Cas9 system. *Nat Protoc* **8**: 2281–2308.

850 Rio-Machin A, Vulliamy T, Hug N, Walne A, Tawana K, Cardoso S, Ellison A, Pontikos N, Wang
851 J, Tummala H, et al. 2020. The complex genetic landscape of familial MDS and AML reveals
852 pathogenic germline variants. *Nat Commun* **11**: 1044.

853 Rivera OD, Mallory MJ, Quesnel-Vallières M, Chatrikhi R, Schultz DC, Carroll M, Barash Y,
854 Cherry S, Lynch KW. 2021. Alternative splicing redefines landscape of commonly mutated
855 genes in acute myeloid leukemia. *Proc Natl Acad Sci* **118**: e2014967118.

856 Robert-paganin J, Réty S, Leulliot N. 2015. Regulation of DEAH/RHA helicases by G-patch
857 proteins. *Biomed Res Int* **2015**: 931857.

858 Sales-Lee J, Perry DS, Bowser BA, Diedrich JK, Rao B, Beusch I, Yates JR, Roy SW, Madhani
859 HD. 2021. Coupling of spliceosome complexity to intron diversity. *Curr Biol* S0960-
860 9822(21)01244–6.

861 Schmidt C, Grønborg M, Deckert J, Bessonov S, Conrad T, Lührmann R, Urlaub H, Grønborg M,
862 Deckert J, Bessonov S, et al. 2014. Mass spectrometry-based relative quantification of proteins
863 in precatalytic and catalytically active spliceosomes by metabolic labeling (SILAC), chemical
864 labeling (iTRAQ), and label-free spectral count. *RNA* **20**: 406–420.

865 Schwer B. 2001. A new twist on RNA helicases: DExH/D box proteins as RNPases. *Nat Struct
866 Biol* **8**: 113–6.

867 Shen W, Le S, Li Y, Hu F. 2016. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file
868 manipulation. *PLoS One* **11**: e0163962.

869 Sloan KE, Bohnsack MT. 2018. Unravelling the Mechanisms of RNA Helicase Regulation. *Trends
870 Biochem Sci* **43**: 237–250.

871 Smith T, Heger A, Sudbery I. 2017. UMI-tools: Modeling sequencing errors in Unique Molecular
872 Identifiers to improve quantification accuracy. *Genome Res* **27**: 491–499.

873 Studer MK, Ivanović L, Weber ME, Marti S, Jonas S. 2020. Structural basis for DEAH-helicase
874 activation by G-patch proteins. *Proc Natl Acad Sci U S A* **117**: 7159–7170.

875

876 Trincado JL, Entizne JC, Hysenaj G, Singh B, Skalic M, Elliott DJ, Eyras E. 2018. SUPPA2: fast,
877 accurate, and uncertainty-aware differential splicing analysis across multiple conditions.
878 *Genome Biol* **19**: 40.

879 Wang E, Lu SX, Pastore A, Chen X, Imig J, Chun-Wei Lee S, Hockemeyer K, Ghebrechristos YE,
880 Yoshimi A, Inoue D, et al. 2019. Targeting an RNA-Binding Protein Network in Acute Myeloid
881 Leukemia. *Cancer Cell* **35**: 369-384.e7.

882 Wang Z, Murigneux V, Le Hir H. 2014. Transcriptome-wide modulation of splicing by the Exon
883 Junction Complex. *Genome Biol* **15**: 551.

884 Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological
885 themes among gene clusters. *OMICS* **16**: 284–287.

886 Zhang J, Lieu YK, Ali AM, Penson A, Reggio KS, Rabadan R, Raza A, Mukherjee S, Manley JL.
887 2015. Disease-associated mutation in *SRSF2* misregulates splicing by altering RNA-binding
888 affinities. *Proc Natl Acad Sci* **112**: E4726–E4734.

889 Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM,
890 Brown M, Li W, et al. 2008. Model-based analysis of ChIP-Seq (MACS). *Genome Biol* **9**: R137.

891

892

893