

1 **Drosophila Rif1 is critical for repair following P-element excision**
2 **and influences pathway choice at double-strand breaks**

3 Justin R. Blanch^{*1\$}, Manan Krishnamurthy^{*1,2}, Jacob T. Zuckerman¹, Mitch McVey^{1\$}

4 Affiliations:

5 ¹ Department of Biology, Tufts University, Medford, MA 02155, USA.

6 ² Laboratory of Receptor Biology and Gene Expression, National Cancer Institute,
7 National Institutes of Health, Bethesda, MD 20892, USA.

8 *these authors contributed equally to this work

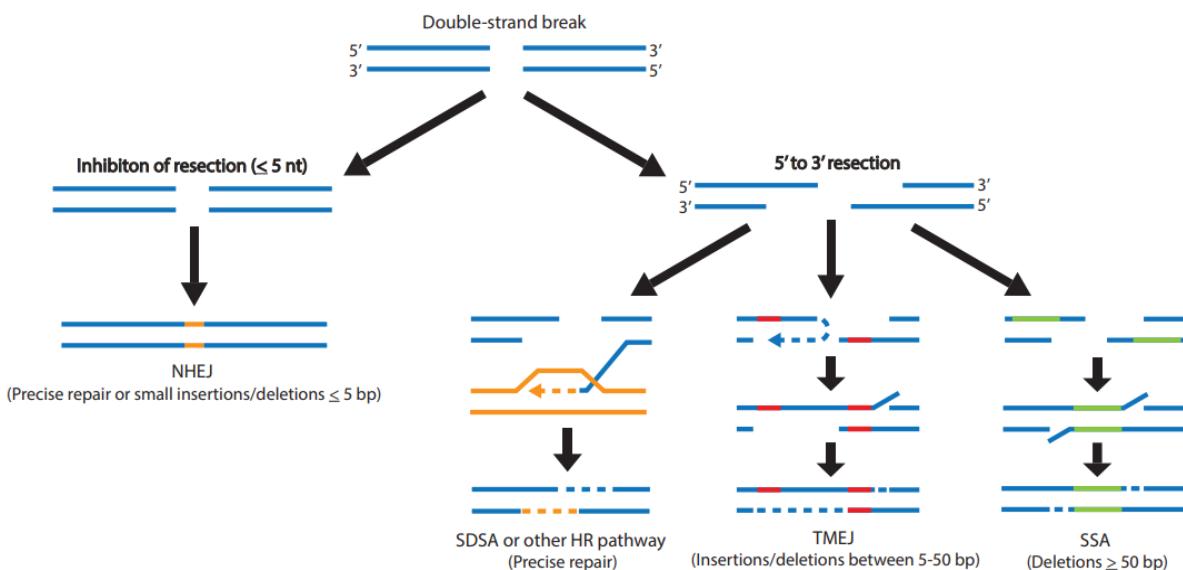
9 ^{\$}Corresponding authors: mitch.mcvey@tufts.edu, justin.blanch@tufts.edu

10 Running head: Drosophila Rif1 engages in break repair and pathway choice

11 Keywords:

12 DNA damage, resection, transposon, homologous recombination, single-strand
13 annealing

14 **Abstract**


15 Rif1 plays important roles in the repair of DNA double-strand breaks in multiple
16 organisms. In mammals, RIF1 promotes non-homologous end joining and suppresses
17 homologous recombination by interacting with 53BP1 to inhibit resection. In
18 *Saccharomyces cerevisiae*, Rif1 directly binds DNA to inhibit resection and promote non-
19 homologous end-joining. Yeast Rif1 can also facilitate long-range resection and promote
20 single-strand annealing. Since it is not clear if Rif1 regulates resection-mediated
21 pathway choice in other eukaryotes, we explored the role of Rif1 in double-strand break
22 repair in *Drosophila melanogaster*. We found that *rif1* mutants are not sensitive to
23 ionizing radiation or hydroxyurea, demonstrating that it is not essential for the
24 resolution of DNA damage in Drosophila. However, we show that *rif1* null mutants are
25 largely unable to repair a specific type of double-strand break that is induced upon the
26 excision of a P-element transposon. Furthermore, assessment of repair pathway choice
27 at I-SceI-induced breaks revealed Rif1 suppresses homologous recombination and
28 promotes single-strand annealing. Collectively, our findings illustrate Drosophila Rif1
29 shares functions with both its yeast and mammalian counterparts and serves a unique
30 role in repairing P-element-induced double-strand breaks.

31 **Introduction**

32 When disruptive DNA double-strand breaks (DSBs) arise in the genome, the
33 selection of a repair pathway greatly influences the genomic outcome. Accurate repair
34 requires specific suites of cellular machinery within distinct phases of the cell cycle,
35 while inaccurate or unsuccessful repair can lead to mutations or cell death. Since
36 multiple pathways can resolve the same DSB and each type varies in accuracy, the
37 selection and timing of repair pathways are highly regulated processes.

38 Repair pathway choice greatly depends on the extent of 5' to 3' DNA resection at
39 the DSB. Extensive resection normally initiates homologous recombination (HR), which
40 involves strand invasion into a homologous template, DNA synthesis, and ligation to
41 complete repair (Jasin and Rothstein 2013; Fugger and West 2016) (Figure 1). HR serves

42 as an accurate method to resolve a break because a sister chromatid is often used as the
43 template for repair. Conversely, inhibition of resection results in religation of DSB ends
44 by non-homologous end-joining (NHEJ), which can also be error-free or causes small
45 insertions or deletions (Weterings and Chen 2008; Wyatt *et al.* 2016; Bhargava *et al.*
46 2018; Cejka and Symington 2021). Together, HR and NHEJ account for the majority of
47 repair in the cell cycle: NHEJ is favored during G1, while HR is favored during S and G2
48 (Ceccaldi *et al.* 2016; Arnoult *et al.* 2017; Chang *et al.* 2017; Zhao *et al.* 2017). Despite
49 these preferences, NHEJ and HR genes are often co-expressed in G1/S (Mjelle *et al.*
50 2015). Therefore, exploring proteins that control resection-mediated choice is critical for
51 understanding the regulation of both pathways.

52 **Figure 1.** Double-strand break repair pathways. Non-homologous end-joining (NHEJ) occurs prior to
53 resection of the break, while homologous recombination (HR) is stimulated by resection. Synthesis-
54 dependent strand annealing (SDSA) promotes accurate repair using a sister chromatid or other
55 homologous repair template. Theta-mediated end joining (TMEJ) is a form of alternative end-joining that
56 involves the annealing of short microhomologies and creates small insertions and deletions near the
57 break site. Single-strand annealing (SSA) involves extensive resection, annealing of large homologous
58 sequences, and creates large deletions.

59 Less prevalent, but more error-prone pathways are also used to repair DSBs.
60 These pathways are often upregulated in cancers and are also governed by resection at
61 the DSB (Blasiak 2021; Ramsden *et al.* 2022). Error-prone theta-mediated end-joining

62 (TMEJ) involves limited resection, annealing of microhomologies, and the generation of
63 small deletions or insertions that are typically larger than mutations found in NHEJ
64 (Figure 1) (Khodaverdian *et al.* 2017; Schimmel *et al.* 2019; Carvajal-Garcia *et al.* 2020;
65 Hanscom and Mcvey 2020; Ramsden *et al.* 2022). Another error-prone pathway, single-
66 strand annealing (SSA), involves extensive resection, annealing of longer homologous
67 regions than TMEJ, and can result in very large deletions \geq 50 base pairs (bp) (Bhargava
68 *et al.* 2016; Kelso *et al.* 2019). Repair by TMEJ or SSA is often responsible for mutations
69 in precancerous cells deficient in NHEJ or HR resection machinery (Ahrabi *et al.* 2016;
70 Bakr *et al.* 2016). This elevated potential for mutagenicity and malignant transformation
71 underscores the importance of proper regulation of NHEJ and HR resection machinery.

72 In mammals, resection is largely controlled by the interaction between 53BP1
73 and RIF1 at the break-site (Chapman *et al.* 2013; Di Virgilio *et al.* 2013; Escribano-Díaz *et*
74 *al.* 2013; Zimmermann *et al.* 2013). RIF1 complexes with 53BP1 in G1 to prevent end-
75 resection by the BRCA1-CtIP complex and promotes repair by NHEJ (Chapman *et al.*
76 2013; Escribano-Díaz *et al.* 2013; Bakr *et al.* 2016; Setiaputra *et al.* 2022). The efficacy of
77 RIF1-53BP1 in inhibiting resection depends on two downstream effectors, PP1 and
78 shieldin. PP1 forms a complex with RIF1 to prevent MRN resection machinery from
79 creating single-stranded DNA (ssDNA) (Isobe *et al.* 2021), and shieldin prevents the
80 formation of RPA nucleofilaments (Gupta *et al.* 2018; Setiaputra and Durocher 2019). By
81 means of these various functional modes, RIF1-53BP1 represses resection and governs
82 DSB repair pathway choice between HR and NHEJ in mammals.

83 Several domains within mammalian RIF1 contribute to its functions in DSB repair
84 and are relatively well-conserved across eukaryotes (Sreesankar *et al.* 2012; Fontana *et*
85 *al.* 2018). A HEAT repeat domain within the N-terminus of mammalian RIF1 promotes
86 localization of RIF1 to DSBs (Escribano-Díaz *et al.* 2013). A DNA binding domain within
87 the C-terminus helps recruit RIF1 to stalled replication forks and interacts with BLM
88 helicase (Xu *et al.* 2010). BLM normally resolves Holliday Junctions in HR and secondary
89 DNA structures at stalled replication forks (Kaur *et al.* 2021). Depletion of RIF1 disrupts
90 BLM localization to DSBs in mammals, suggesting RIF1 has additional roles in signaling

91 for several types of repair at breaks (Feng *et al.* 2013). Further, a SILK-RVxF motif within
92 the C-terminus interacts with PP1 in Drosophila and the PP1-binding motif inhibits end-
93 resection in mammals (Sreesankar *et al.* 2015; Isobe *et al.* 2021). The PP1-binding motif
94 may be critical for mammalian RIF1 to inhibit resection in NHEJ.

95 In contrast to its function in mammals, Rif1 can both inhibit and activate
96 resection in budding yeast. One study reported that Rif1 inhibits resection 0.7-4.2
97 kilobases (kb) away from the break to promote NHEJ in budding yeast (Mattarocci *et al.*
98 2017). A hook domain within the N-terminus of Rif1 is critical for this inhibition
99 (Mattarocci *et al.* 2017). A separate study reported the loss of budding yeast Rif1
100 exacerbates DSB resection in *exo1* and *sae2* mutants and reduces levels of resection
101 greater than 2 kb (Martina *et al.* 2014). Further, Rif1 promotes SSA 25 kb away from the
102 break and counteracts the binding of the Rad9 resection inhibitor (Martina *et al.* 2014).

103 One major difference between the budding yeast and mammalian Rif1 pathways
104 is the emergence of the RIF1-53BP1 interaction in mammals. Yeast do not have a
105 structural homolog of 53BP1 and rather than complexing with another protein, Rif1
106 directly binds to chromatin around DSB ends (Martina *et al.* 2014). It is unclear if the
107 RIF1-53BP1 interaction is responsible for the difference between mammalian and yeast
108 Rif1-dependent control of resection, and further experiments are necessary to
109 investigate the role of Rif1-mediated resection in other eukaryotes.

110 Given the varied and somewhat contrasting roles of Rif1 in the regulation of
111 resection in mammals and yeast, we wanted to explore the function of Rif1 in
112 Drosophila. Drosophila Rif1 domains are not entirely conserved with either mammalian
113 or yeast Rif1 domains (Sreesankar *et al.* 2012; Mattarocci *et al.* 2016) and a 53BP1
114 ortholog has not been identified in Drosophila. Recent studies show the absence of
115 Drosophila Rif1 does not affect viability, but it does lead to modest or substantial
116 reductions in egg hatching frequencies (Munden *et al.* 2018; Seller and O'Farrell 2018).
117 Although Drosophila *Rif1* is expressed throughout embryonic development, constitutive
118 overexpression of *Rif1* causes pupal lethality and abnormal condensation of chromatin
119 (Sreesankar *et al.* 2015). Additionally, Drosophila Rif1 has several important functions in

120 DNA replication. Rif1 extends S-phase during embryonic development (Seller and
121 O'Farrell 2018) and localizes to replication forks to regulate fork progression, copy
122 number, and replication timing (Munden *et al.* 2018; Armstrong *et al.* 2020; Kolesnikova
123 *et al.* 2020). Interestingly, Drosophila Rif1 does not colocalize with γ -H2AvD foci upon
124 inhibition of the cell cycle or induction of DNA damage in cells (Sreesankar *et al.* 2012),
125 which suggests Rif1 may not be directly recruited to DSBs in Drosophila. However,
126 whether Drosophila Rif1 has a role in repairing DNA damage or repair pathway choice
127 has not been reported at the organismal level.

128 To test the importance of Rif1 in DNA repair in Drosophila, we conducted
129 mutagen sensitivity assays, monitored egg development and hatching, and performed
130 site-specific double-strand break repair assays. We find that Rif1 is not required to
131 repair exogenously-induced damage or breaks that arise in follicle cells prior to egg
132 hatching. In contrast, it is critical for the repair of P-element-induced DSBs. Additionally,
133 Rif1 suppresses HR and promotes SSA at I-SceI-induced breaks. Overall, our data suggest
134 that Drosophila Rif1 participates in mechanisms that govern repair pathway choice,
135 similar to its roles in other organisms.

136 **Materials and Methods**

137 **Mutant fly stocks**

138 Flies were kept at 25°C and given a standard cornmeal diet. The *rif1*^{null} stocks
139 (*rif1*¹ and *rif1*²) used in this study were gifts from Jared Nordman and were generated by
140 CRISPR-induced mutagenesis (Munden *et al.* 2018). *rif1*¹ contains a 3,864 bp deletion
141 and *rif1*² contains a 2,053 bp deletion; both mutations are in the *Rif1* coding sequence
142 and eliminate protein translation.

143 The *rif1*¹⁻⁷ *null* mutant was recovered from an imprecise excision of the
144 *P{EP}Rif1*^{G18022} element (Bloomington stock #27427) which produced a large indel and
145 premature stop codons in the *Rif1* coding sequence. A Δ 2-3 transposase source on the
146 second chromosome was used to generate the excision (*CyO, H{w+, Δ2-3}*, from
147 Bloomington stock #2078). The indel was validated by PCR and sequencing (*Rif1* -402

148 forward, 5' ATCCAATTGAGTCCGCCAG 3'; *Rif1* 1958 reverse, 5' GGTTGCGGAGGGTGTTC
149 AAAC 3').

150 Mutagen sensitivity assays

151 In hydroxyurea assays, five virgin females homozygous for one *rif1*^{null} allele
152 (*rif1*¹/*rif1*¹ or *rif1*²/*rif1*²) were crossed with three males heterozygous for the same
153 *rif1*^{null} allele (*rif1*¹/*CyO* or *rif1*²/*CyO*) in each vial for three days at 25°C. On the third day,
154 the flies were transferred into a second vial and allowed to lay eggs for three more days,
155 before being removed from the vial. Four days after each set of crosses was started, the
156 first set was treated with hydroxyurea and the second set was treated with water.
157 Between the 10th and 18th days, eclosed flies in each vial were scored as homozygous or
158 heterozygous. Relative survival was calculated by dividing the ratio of homozygotes that
159 eclosed in vials treated with hydroxyurea by the ratio of homozygotes that eclosed in
160 respective vials treated with water and converting to a percentage
161 ((%homozygous^{treated}/%homoygous^{water})x100)). Mean relative survival for each *rif1*^{null}
162 mutant was determined based on the results from 5-10 vials per dose. Vials containing
163 fewer than five flies or two standard deviations below the mean were excluded from the
164 analysis.

165 In ionizing radiation assays, 20-60 virgin female homozygotes (*rif1*^{null}/*rif1*^{null})
166 were crossed with 10-30 males heterozygous for the same *rif1*^{null} allele (*rif1*^{null}/*CyO*) in a
167 cage at 25°C. Mated females laid eggs on individual grape juice agar plates and a fresh
168 plate was provided every 24 hours. Once hatched larvae reached the third instar stage,
169 they were exposed to Ce-137 radiation in a Gammator 1000 irradiator. Irradiated larvae
170 were transferred to new bottles that contained standard cornmeal food and were
171 allowed to develop into pupae. Eclosed flies were scored as homozygous or
172 heterozygous and relative survival was calculated by comparing to the mean ratio of
173 homozygotes from two untreated plates (using the same formula above). Flies from
174 three separate plates were counted for each dose of IR and mutant.

175 Hatching assays

176 20-30 virgin female homozygotes (*rif1^{null}*/*rif1^{null}*) were crossed with 10-15 male
177 homozygotes of the same genotype in a vial for 24 hours at 25°C. Crosses were
178 transferred to cages at 25°C and allowed to lay eggs for 24 hours on a grape juice agar
179 plate. Unhatched and hatched eggs were counted on each plate 48 hours after the plate
180 was removed from the cross. Assays were repeated in triplicate for each mutant and a
181 Kruskal-Wallis ANOVA was used to determine significance (all statistical tests were done
182 in GraphPad Prism 9).

183 *P{w^a}* repair assay

184 *P{w^a}*, which contains a *white* gene with an inserted copia retrotransposon, was
185 inserted into the essential *scalloped* gene on the X chromosome (Adams *et al.* 2003).
186 Excision of the *P{w^a}* element leaves a 14 kb DSB gap that is used to track repair
187 outcomes in *Drosophila*. A series of crosses was performed to obtain male flies which
188 carried the *P{w^a}* allele ($X^{P\{w^a\}}/Y$), were homozygous for the *rif1²* allele, and carried a
189 source of a Δ 2-3 transposase on the third chromosome (*P{Δ2-3}99B*, from Bloomington
190 stock #2535). Individual male flies were crossed with four to seven virgin females
191 homozygous for the *P{w^a}* allele ($X^{P\{w^a\}}/X^{P\{w^a\}}$). Repair events were scored in female
192 progeny that carried an intact *P{w^a}* allele ($X^{P\{w^a\}*}/X^{P\{w^a\}}$) and did not inherit the
193 transposase.

194 If SDSA occurs at the break, followed by annealing of long terminal repeats,
195 female progeny will inherit a P-element without the copia retrotransposon and will
196 express a dominant *white⁺* allele coding for red eyes. If end-joining occurs, the
197 transposon is lost and female progeny will inherit a paternal *white⁻* allele; the
198 haploinsufficiency of the maternal *P{w^a}* element results in yellow eyes. Progeny with
199 apricot eyes were also counted, but this outcome did not distinguish between events in
200 which the *P{w^a}* was not excised or precise intersister HR. Welch's t-tests were used for
201 statistical comparisons.

202 *P{EGFP}* repair assay

203 A plasmid that contains *EGFP* and a Cas9 nickase gene (not relevant to this study)
204 was inserted into the *P{CaryP}attP18* element within 6C12 on the *X* chromosome (*y*¹,
205 *w*^{67c23}, *P{pBID-3xP3-EGFP-vasa-HACas9^{D10A}-attB}*, gift from Avital Rodal). Initially, crosses
206 were performed at 25°C to obtain *white*⁻ males which carried the *P{EGFP}* element
207 (*X^{P{EGFP}}/Y*), were homozygous for the *rif1*² allele, and carried the previously mentioned
208 *P{Δ2-3}99B* transposase to excise the *P{EGFP}* element and create a 19 kb gap in the *X*
209 chromosome. Due to low survival of males at 25°C, the crosses were repeated at 18°C.
210 Single males were then crossed with four to seven *w*¹¹¹⁸ virgin females at 18°C and
211 germline repair events were scored in the female progeny.

212 No excision or full HR using the sister chromatid results in an intact GFP allele
213 and the female progeny have fluorescent-green eyes. End-joining or SSA does not
214 restore the GFP allele and female progeny have white eyes. GFP+ and white-eyed flies
215 were scored for each genotype and statistical comparisons were made with Welch's t-
216 tests.

217 *DR-white.mu* repair assay

218 The DR-*white.mu* reporter distinguishes between pathways utilized to repair I-
219 *Scel*-induced breaks in *Drosophila* and was described previously (Do *et al.* 2014). A
220 stepwise cross scheme was used to create males homozygous for the *rif1*¹⁻⁷ allele,
221 carrying one copy of the DR-*white.mu* reporter, and one copy of an I-*Scel* endonuclease
222 expression construct driven by a ubiquitin promoter (*P{Ubiq::I-Scel}*, *mw*⁺), gift from
223 William Engels). Individual males were crossed with three *yw* females to recover repair
224 events in the next generation.

225 Male and female progeny from each cross were categorized into three different
226 types of repair events based on their eye and body colors: a *y+w+* phenotype indicated
227 repair by intrachromosomal HR, a *y+w-* phenotype indicated either no cut occurred,
228 end-joining repair, or intersister HR, and a *y-w-* phenotype indicated repair by SSA. A
229 cross was excluded from an analysis if the total progeny were fewer than two standard
230 deviations below the mean for total progeny among all crosses for a particular

231 genotype. The percentage of progeny in each repair category was plotted for each cross
232 and statistical comparisons were made with Welch's t-tests.

233 **Sequencing DR-white.mu repair junctions**

234 For analysis of repair junctions from the DR-white.mu assay, a single male was
235 taken from the progeny of each cross. To extract genomic DNA, each fly was squished in
236 50 µL of squishing buffer (10 mM Tris-Cl pH 8.2, 1 mM EDTA, 25 mM NaCl, 200 µg/mL of
237 Proteinase K) and incubated at 37°C for 30 minutes, then 95°C for 2 minutes (Gloor *et al.*
238 1993). The repair junction was amplified using previously validated *Sce.white* primers
239 (DR-white 1.3 forward, 5' GTTTGGGTGGTAAGCAGG 3'; DR-white 1a reverse, 5'
240 AGACCCACGTAGTCCAGC 3') (Do *et al.* 2014). PCR products were isolated by gel
241 extraction (Macherey-Nagel) and sequenced with a primer located upstream of the I-
242 *Scel* cut site (DR-white2, 5' ATGCAGGCCAGGTGCGCCTATG 3') (Eton Bioscience).

243 **Results**

244 **Drosophila tolerate replication stress and DNA damage without Rif1**

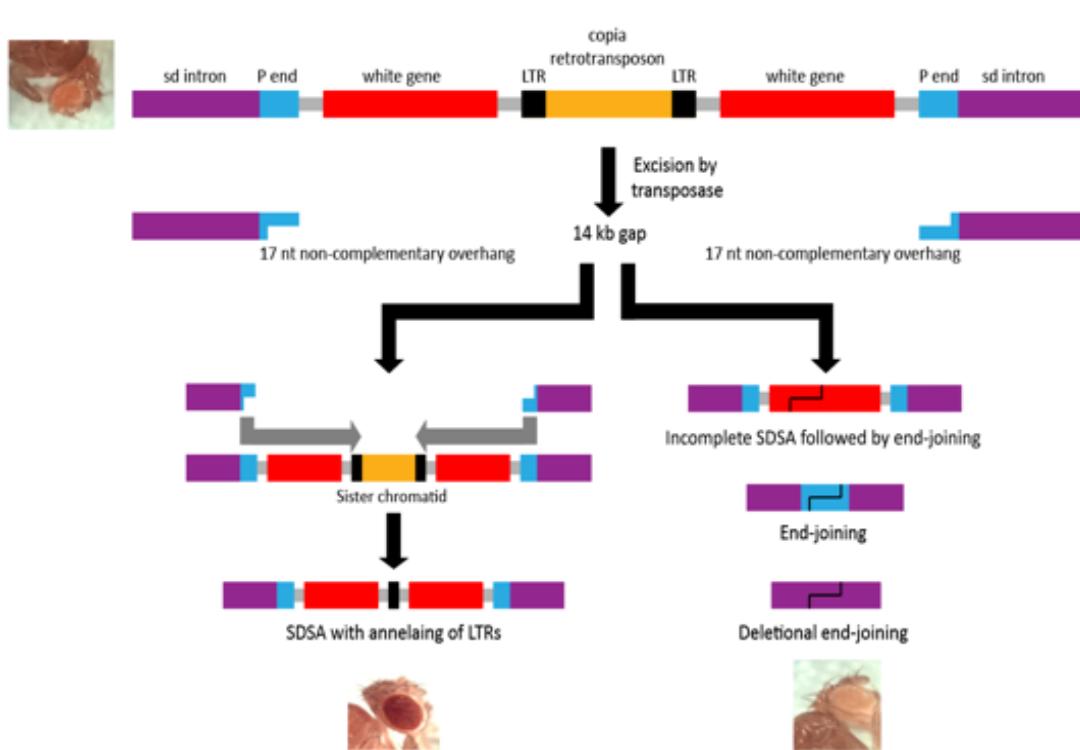
245 In mammals, RIF1 helps prevent DNA damage by regulating stalled replication
246 forks. Depletion of RIF1 in human cells causes sensitivity to stalled replication
247 intermediates induced by hydroxyurea (Garzón *et al.* 2019) and mouse RIF1 is recruited
248 to stalled forks to prevent fork degradation (Mukherjee *et al.* 2019).

249 Since Drosophila Rif1 also localizes to replication forks (Munden *et al.* 2018), we
250 tested if Drosophila Rif1 is required to tolerate replication stress induced by
251 hydroxyurea (HU). HU stalls replication by depleting free nucleotide (nt) pools in cells
252 and consequent collapsed replication forks are often converted to DSBs (Krakoff *et al.*
253 1968; Petermann *et al.* 2010). Interestingly, we found *rif1* mutants were not sensitive to
254 high concentrations of HU (Figure 2A). Overall, these data show Drosophila Rif1
255 functions differently than mammalian RIF1 and is not required to survive treatment with
256 HU.

257 **Figure 2.** Drosophila Rif1 is not required to resolve replication stress or DNA damage. A) Survival to
258 adulthood of *rif1* mutants treated with hydroxyurea. Relative survival was calculated by dividing the ratio
259 of homozygous flies that eclosed after treatment by the ratio of homozygous flies that eclosed without
260 treatment. Shown are the mean survival and standard deviation for 5-10 replicate crosses per dose. B)
261 Survival to adulthood of *rif1* mutants treated with ionizing radiation relative to untreated larvae. Shown
262 are the mean survival and standard deviation for 3 replicate crosses per dose. C) Percent of *rif1* null
263 homozygous eggs that hatched 48 hours after egg laying. Shown are the mean and standard deviation for
264 3 replicate counts for each genotype. Hatching percentages were compared via Kruskal-Wallis ANOVA,
265 **p=0.001 to 0.01, ns=not significant.

266 Multiple lines of evidence also show vertebrate RIF1 localizes to breaks in DNA
267 and is important for cellular survival after exposure to ionizing radiation (IR) (Silverman
268 *et al.* 2004; Chapman *et al.* 2013; Escribano-Díaz *et al.* 2013; Feng *et al.* 2013). RIF1
269 supports survival by promoting NHEJ at DSBs (Chapman *et al.* 2013; Escribano-Díaz *et al.*
270 2013) and suppresses γ-H2AX foci from accumulating in cells (Buonomo *et al.* 2009;
271 Chapman *et al.* 2013; Bakr *et al.* 2016; Eke *et al.* 2020). To determine if Rif1 is required
272 to resolve DSBs in Drosophila, we treated *rif1*¹ and *rif1*² mutant larvae with increasing

273 doses of ionizing radiation (IR). Surprisingly, neither mutant showed increased sensitivity
274 to IR (Figure 2B).


275 Although Rif1 is not required for tolerance of exogenous damage, we wondered
276 whether it may play a role in the repair of endogenously-derived DSBs that occur in
277 follicle cells of the developing egg. Within the follicular epithelium, four loci called
278 *Drosophila amplicons in follicle cells* (DAFCs) undergo repeated amplification (re-
279 replication) (Mahowald *et al.* 1979; Claycomb and Orr-Weaver 2005). Re-replication of
280 these regions allows for increased protein production and formation of the eggshell
281 (Spradling and Mahowald 1980), but this rapid replicative process causes numerous
282 DSBs, which are repaired by a variety of processes (Davidson *et al.* 2006; Alexander *et al.*
283 2015). Previous work in the lab has shown that TMEJ-deficient flies lacking POLQ have
284 thin eggshells and severe hatching defects (Alexander *et al.* 2016). Interestingly, it was
285 shown that *rif1*-mutant eggs exhibit modest and substantial egg hatching defects
286 (Munden *et al.* 2018; Seller and O'Farrell 2018). Since these observed defects may
287 suggest Rif1 has a partial role in repairing breaks that arise during re-replication, we
288 further explored this phenotype by measuring the hatching rates of *rif1* mutants
289 ourselves. *rif1*¹ mutant eggs exhibited significantly lower hatching frequencies than wild
290 type, but the overall decrease in hatching was minor and *rif1*² mutants did not exhibit a
291 significant decrease (Figure 2C). A separate *rif1* *null* mutant also did not exhibit
292 significant hatching defects and this suggests the decreased hatching observed in *rif1*¹
293 was independent of Rif1 function (Figure S1B). Additionally, *rif1*-mutant eggshells had
294 normal hexagonal patterning (Turner and Mahowald 1976), without the patchiness
295 observed in *polq* mutants (Alexander *et al.* 2016). Overall, our results suggest Rif1 is not
296 required for the development of the eggshell or to repair DSBs that arise during re-
297 replication in follicle cells.

298 **Rif1 has a critical role in the repair of P-element-induced DSBs**

299 Since Rif1 regulates DSB repair pathway choice in yeast and mammals by regulating
300 resection, we wondered whether Rif1 may contribute to repair pathway choice in
301 *Drosophila*. To test this, we used a site-specific gap repair assay called *P{w^a}* that

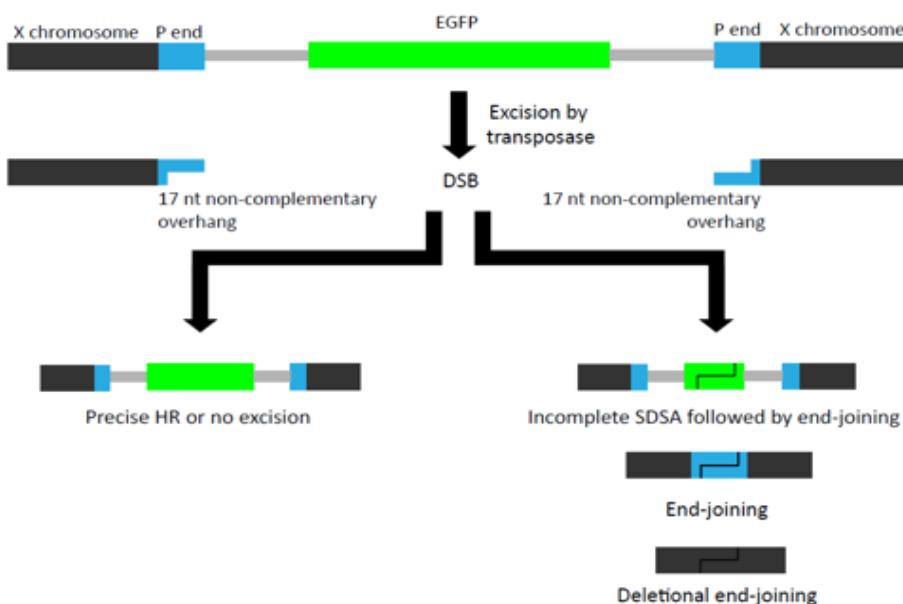
302 distinguishes between different models of repair at P-element-induced breaks (Adams
303 *et al.* 2003). In this assay, a transposase catalyzes excision of the $P\{w^a\}$ element from the
304 X chromosome and leaves a two-ended DSB with 17 nt-overhangs in the pre-meiotic
305 germline of a parental male (Figure 3A). Break repair by HR can be distinguished from
306 end-joining based on the eye color of female progeny.

A

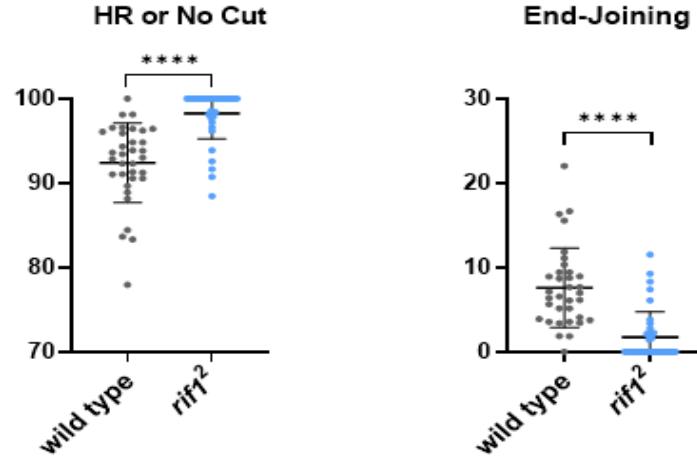
B

307 **Figure 3.** *Rif1* is required for the repair of P-element-induced DSBs. A) Diagram outlining the $P\{w^a\}$ assay
308 from Adams *et al.* 2003. The $P\{w^a\}$ construct contains the *white* gene disrupted by a *copia*
309 retrotransposon that is flanked by two long terminal repeats (LTR). It is inserted within an intron of the

310 *scalloped* (sd) gene on the X chromosome. A P-element transposase excises the $P\{w^a\}$ element to yield a
311 14 kb gap and two 17 nt non-complementary 3' overhangs in the male pre-meiotic germline. Following a
312 cross to homozygous $P\{w^a\}$ females, repair events from the male germline are recovered in female
313 progeny *in trans* to an intact copy of $P\{w^a\}$. Repair by SDSA and annealing at the LTRs produces an
314 uninterrupted *white* gene and yields red-eyed progeny, while repair by end joining or interrupted SDSA
315 followed by end joining yields yellow-eyed progeny. No excision or error-free repair yields apricot-eyed
316 progeny (not shown). B) Homozygous *rif1*² mutant males possessing both $P\{w^a\}$ and the transposase were
317 crossed with homozygous $P\{w^a\}$ females and eye color of the female progeny was scored. Each data point
318 represents the eye color percentage for progeny from one cross (wild type=36 total crosses, *rif1*²=32 total
319 crosses). Error bars signify standard deviation in both graphs. ***p=0.0001 to 0.001, ****p<0.0001
320 (Welch's t-test).


321 The $P\{w^a\}$ assay was conducted in both wild-type and *rif1*-mutant backgrounds,
322 followed by comparative analysis of the repair pathways utilized in each system (Figure
323 3B). Strikingly, in the absence of Rif1, repair by HR or end-joining rarely occurred.
324 Further, red patches in the eyes of wild-type parental males indicated somatic repair by
325 SDSA, whereas *rif1*-mutant males rarely exhibited the same mosaicism (Figure S2).
326 Collectively, this suggests that Rif1 is important for the repair of P-element-induced
327 DSBs in the pre-meiotic germline and in the soma.

328 To validate the repair defects observed in the $P\{w^a\}$ assay, we designed and
329 conducted another transposase-induced DSB assay using a P-element transposon
330 marked by GFP ($P\{EGFP\}$) on the X chromosome. Here, a transposon is also excised in
331 the male pre-meiotic germline and the repair mechanism is determined by the eye color
332 of female progeny, following a cross with white-eyed females. End-joining is quantified
333 by the recovery of GFP– female progeny, while HR and no-cutting events cannot be
334 differentiated as they are both represented by GFP+ female progeny (Figure 4A).

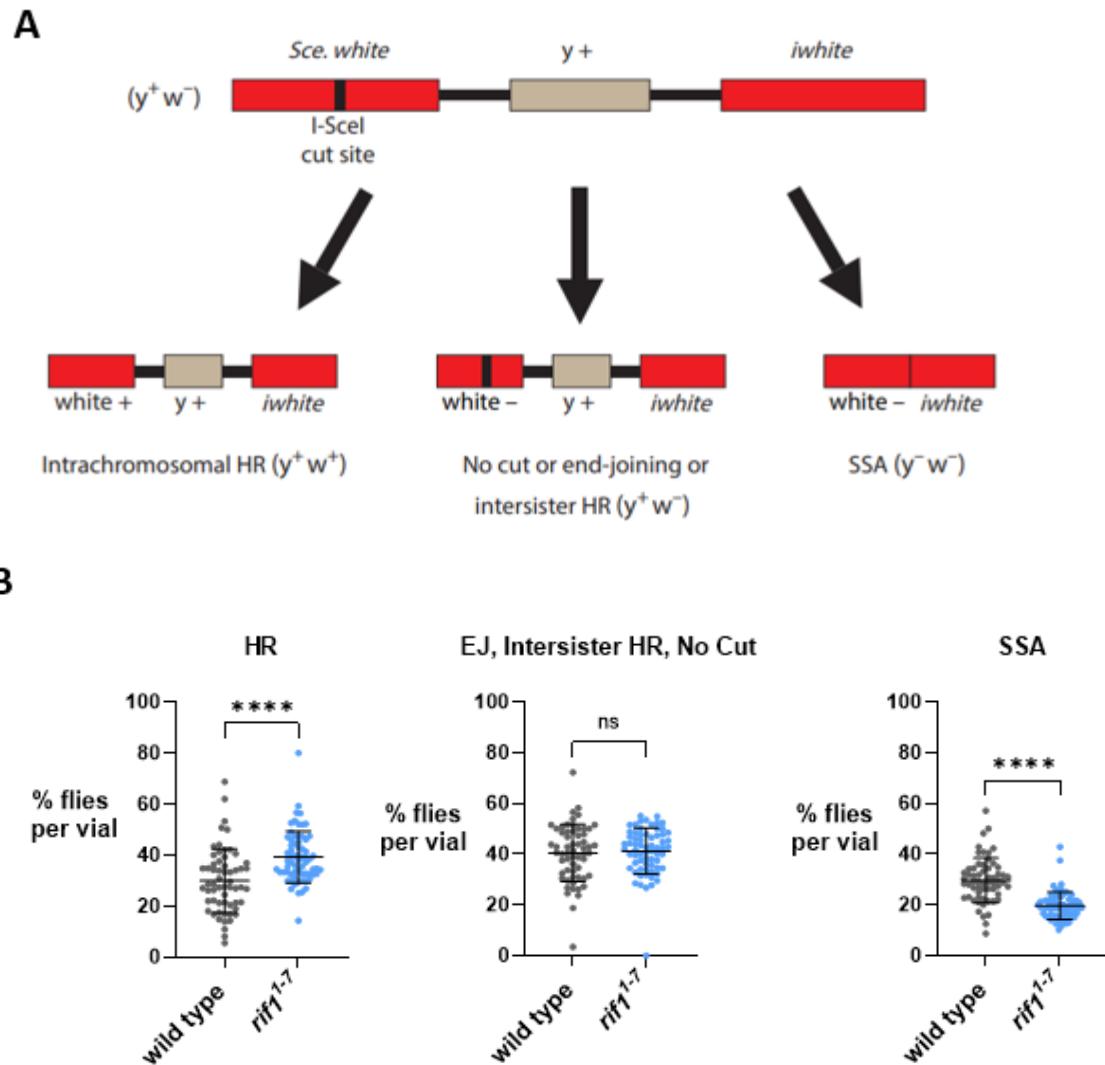

335 We initially conducted this assay at 25°C, but despite extensive screening only
336 five *rif1*-mutant males possessing both the transposon and transposase survived, and
337 only two of those flies were fertile. We surmised that the $P\{EGFP\}$ transposon might
338 excise more frequently than $P\{w^a\}$, leading to sterility and lethality in the absence of
339 repair in *rif1* mutants. We therefore repeated the assay at 18°C to reduce transposase
340 activity. Interestingly, we still observed a significant decrease in the frequency of end-

341 joining in *rif1* mutants relative to wild type (Figure 4B). An increase in fluorescent-green
342 eyes was also observed in progeny derived from the *rif1*-mutant background, but since
343 this phenotype does not distinguish between no cut or HR, we cannot conclude there
344 was an increase in HR in the *rif1* mutants. Like the mosaicism detected in the *P{w^a}*
345 assay, non-GFP⁺ patches were detected in the eyes of wild-type parental male flies, but
346 these patches were hardly detectable in the *rif1*-mutant male flies. Together, these
347 results provide strong evidence that Rif1 is needed for the repair of P-element-induced
348 breaks in both the germline and the soma.

A

B

349 **Figure 4.** *Rif1* is important for repair of P-element-induced DSBs at an additional genomic locus on the *X*
350 chromosome. A) Diagram outlining the *P{EGFP}* assay. Excision of the *P{EGFP}* element by a transposase


351 creates a 19 kb gap with two 17 nt non-complementary 3' overhangs in the X chromosome. Individual
352 male flies hemizygous for *P{EGFP}* and heterozygous for the transposase were crossed with homozygous
353 *w¹¹¹⁸* females and female progeny eye color was scored. No cut or precise HR yields a full *EGFP* allele and
354 the progeny have fluorescent green eyes. End-joining does not restore the *EGFP* allele and the progeny
355 have white eyes. B) Percent of progeny with no cut or HR repair events (GFP⁺ eyes) and end-joining repair
356 events (white eyes). Each data point represents the eye color percentage for progeny from one cross (wild
357 type=34 total crosses, *rif1*²=37 total crosses). Eye color percentages for *rif1* mutants were compared to
358 wildtype via Welch's t-test, ***p<0.0001. Error bars signify standard deviation in both graphs.

359 **Rif1 is involved in repair pathway choice at I-SceI-induced breaks**

360 We observed Drosophila Rif1 has a critical role in the repair of P-element-
361 induced DSBs, but it is not required to repair IR-induced breaks or breaks that occur in
362 the follicular epithelium of eggs. Therefore, we wondered whether Rif1 functions
363 exclusively at P-element excision sites or if it may also be involved in repair pathway
364 choice at breaks with other types of end structures.

365 To test this, we induced DSBs using the I-SceI endonuclease, which creates short
366 4-nt overhangs instead of long 17-nt overhangs produced by P-element excision. We
367 used a previously developed reporter construct called DR-*white.mu* (Do *et al.* 2014). The
368 reporter contains an I-SceI recognition sequence and two nonfunctional white genes
369 (*Sce.white* and *iwhite*) that flank a yellow transgene (*y⁺*) (Figure 5A). Following cleavage
370 by I-SceI, germline repair events are scored in the next generation based on the eye and
371 body colors of the progeny. Repair by intrachromosomal HR restores the missing section
372 of the nonfunctional *Sce.white* gene at the cut site and results in a *y+w+* phenotype in
373 the progeny. End-joining, intersister HR, or the failure of I-SceI to cut does not restore
374 *Sce.white* to a functional white gene and produces a *y+w-* phenotype. SSA or deletional
375 EJ mechanisms, which require extensive resection, lead to the annealing of *Sce.white*
376 and *iwhite* sequences, loss of the yellow transgene, and a *y-w-* phenotype. Because it

377 was previously shown that the majority of *y-w-* flies contain repair products produced
378 by SSA and not end-joining, we refer to this group as SSA. (Do *et al.* 2014).

379 **Figure 5.** Compensatory shifts in the frequency of HR and SSA in *rif1* mutants. A) Diagram outlining the
 380 DR-white assay (Do *et al.* 2014). The DR-white.mu construct contains a white gene disrupted by an I-SceI
 381 recognition sequence (*Sce.white*), a yellow transgene (*y+*), and an additional white gene disrupted by 5'
 382 and 3' truncations (*iwhite*). In addition to the DR-white.mu sequence, male flies carry a ubiquitously
 383 expressed I-SceI construct and are homozygous for either wild-type or mutant (*rif1*¹⁻⁷) *Rif1* alleles. Single
 384 males are crossed to *yw* females and germline repair events are recovered in the progeny. B) Progeny
 385 from wild-type or *rif1*¹⁻⁷ single-male crosses were scored for specific repair phenotypes. Each data point
 386 represents the occurrence of a repair event in one population of progeny (from one cross; wild type=60
 387 total crosses, *rif1*¹⁻⁷=67 total crosses). ***p<0.0001, ns=not significant (Welch's t-test). Error bars signify
 388 standard deviation.

389 For this assay, we used the *rif1*¹⁻⁷ allele, which we recovered from a P-element
390 excision that shifted *Rif1* out-of-frame and removed portions of the 5' UTR and coding
391 region of the gene (Figure S1A). The *rif1*¹⁻⁷ stock behaves similarly to other *rif1* null
392 stocks since the hatching rate is not significantly different from the rates of *rif1*¹ and
393 *rif1*²-mutant eggs (Figure S1B). After a series of crosses, we obtained healthy *rif1*¹⁻⁷ male
394 flies expressing the I-SceI endonuclease. This contrasts with the lethality we observed in
395 transposase-expressing *rif1*-mutant males in the *P{EGFP}* assay. Upon collecting repair
396 phenotypes in the progeny, we observed significantly more HR occurred in *rif1*¹⁻⁷
397 mutants than wild type (Figure 5B). In contrast, SSA occurred less often in *rif1*¹⁻⁷
398 mutants. We did not observe a significant difference between the number of y+w-
399 progeny found in *rif1*¹⁻⁷ and wild-type crosses. However, the y+w- phenotype fails to
400 distinguish between the occurrence of end-joining, intersister HR, or no cut.
401 Accordingly, we took one y+w- fly from each cross and sequenced individual repair
402 junctions. Most sequences exhibited cutting by I-SceI and interestingly, both wild-type
403 and *rif1*¹⁻⁷-repair junctions contained small 1-10 bp deletions or insertions (Table 1).
404 Thus, with or without Rif1, error-prone end-joining mechanisms often mediate repair of
405 I-SceI-induced breaks. Taken together, our results suggest Rif1 plays a significant role in
406 the choice between repair pathways at I-SceI-induced breaks, by suppressing HR or
407 facilitating deletional repair by SSA.

408 **Table 1: Sequences of wild-type and *rif1*-mutant DR-white.*mu* repair junctions**

Genotype (cross isolate #)	Sequence 5' of break	Sequence 3' of Break	Type of mutation
Reference sequence	TGTTTGAGCTGTAGGGATAA	CAGGGTAATAGCTCTTGAC	
Wild type (1)	TGTTTGAGCTGTAGGGATA <u>A</u>	CAGGGTAATAGCTCTTGAC	1 bp deletion
Wild type (2)	TGTTTGAGCTGTAGGG <u>A</u> AA	CAGGGTAATAGCTCTTGAC	1 bp deletion
Wild type (3)	TGTTTGAGCTGTAGGG <u>ATAA</u>	CAGGGTAATAGCTCTTGAC	4 bp deletion
Wild type (4)	TGTTTGAGCTGT <u>GGGA</u> TA	CAGGGTAATAGCTCTTGAC	4 bp deletion, SNV (A>T)
Wild type (5)	TGTTTGAGCTGT <u>GGGATAA</u>	CAGGGTAATAGCTCTTGAC	6 bp deletion
Wild type (6)	TGTTTGAGCTGTAGGGATAA	CAGGGTAA TAGCTCTTGAC	8 bp deletion
Wild type (7)	TGTTTGAGCTGTAGGG <u>ATAA</u>	CAGGG TAATAGCTCTTGAC	9 bp deletion
Wild type (8)	TGTTTGAGCTGTAGGG <u>ATAA</u>	CAGGG TAATAGCTCTTGAC	9 bp deletion
Wild type (9)	TGTTTGAGCTGTAGGGATA <u>A</u>	N/A (deleted)	175 bp deletion
<i>rif1</i> (1)	TGTTTGAGCTGTAGGGATAA	CAGGGTAATAGCTCTTGAC	None
<i>rif1</i> (2)	TGTTTGAGCTGTAGGGATA <u>A</u>	CAGGGTAATAGCTCTTGAC	1 bp deletion
<i>rif1</i> (3)	TGTTTGAGCTGTAGGGATAA	CAGGG TAATAGCTCTTGAC	1 bp deletion
<i>rif1</i> (4)	TGTTTGAGCTGTAGG <u>G</u> ATAA	CAGGGTAATAGCTCTTGAC	1 bp deletion
<i>rif1</i> (5)	TGTTTGAGCTGTAGG <u>G</u> ATAA	CAGGGTAATAGCTCTTGAC	1 bp deletion
<i>rif1</i> (6)	TGTTTGAGCTGTAGGG <u>ATAA</u>	CAGGGTAATAGCTCTTGAC	4 bp deletion
<i>rif1</i> (7)	TGTTTGAGCT <u>GTAGGG</u> TA	CAGGGTAATAGCTCTTGAC	6 bp deletion, SNV (A>T)
<i>rif1</i> (8)	TGTTTGAGCTGTAGGG <u>ATAA</u>	CAGGG TAATAGCTCTTGAC	9 bp deletion
<i>rif1</i> (9)	TGTTTGAGCTGTAGGG <u>ATAA</u>	CAGGG TAATAGCTCTTGAC	9 bp deletion
<i>rif1</i> (10)	TGTTTGAGCTGTAGGG <u>ATAA</u>	CAGGG TAATAGCTCTTGAC	9 bp deletion
<i>rif1</i> (11)	TGTTTGAGCTGTAGGGATA <u>A</u>	CAGGGTAATA GCTCTTGAC	11 bp deletion
<i>rif1</i> (12)	TGTTTGAGCTGTAGGGATA <u>TA</u>	CAGGGTAATAGCTCTTGAC	2 bp insertion

409 Deletions are underlined and bold.

410 Insertions or single nucleotide variants (SNV) are red and bold.

411 **Discussion**

412 DSB repair pathway choice begins with the decision to initiate 5' to 3' resection.
413 Studies have identified Rif1 as a determinant of DSB repair pathway choice in yeast and
414 mammals via the regulation of resection. Interestingly, in mammals, RIF1 promotes
415 NHEJ by suppressing resection required for HR, while in yeast, Rif1 can both promote
416 NHEJ and facilitate long-range resection to promote SSA. Given these diverse functions
417 of Rif1, we explored the roles of Drosophila Rif1 in repair pathway choice to provide
418 new insights for how Rif1 regulates repair across eukaryotes. Our findings show that
419 although Drosophila Rif1 is not required to repair all DSBs, Rif1 is critical for repair at P-
420 element-induced DSB ends. Additionally, Rif1 suppresses HR at *I-SceI*-induced breaks but
421 promotes SSA. Collectively, these results suggest that like mammalian RIF1, Drosophila
422 Rif1 partially suppresses HR and like yeast Rif1, Drosophila Rif1 promotes SSA at
423 extensively resected DSB ends. Unique to this study, our genetic data also suggest an
424 essential role for Rif1 in the repair of P-element-induced DSBs.

425 **Rif1 is not required to resolve replication stress or DNA damage for Drosophila survival**

426 Surprisingly, the absence of Rif1 did not affect the overall survival of Drosophila
427 upon exposure to hydroxyurea or ionizing radiation. These findings differ from several
428 reports in which vertebrate Rif1 promotes survival by resolving replication stress and
429 DNA breaks induced by IR (Silverman *et al.* 2004; Buonomo *et al.* 2009; Chapman *et al.*
430 2013; Escribano-Díaz *et al.* 2013; Garzón *et al.* 2019; Mukherjee *et al.* 2019). In contrast,
431 these results are consistent with findings in yeast, where the absence of Rif1 does not
432 cause sensitivity to radiomimetic-induced damage or MMS (Martina *et al.* 2014).

433 Previously, it was shown Drosophila *rad51* (*spn-A*) mutants are sensitive to IR,
434 but *lig4* mutants are not sensitive (Mcvey *et al.* 2004). This suggests HR, and not classical
435 NHEJ, is the predominant method for repair at IR-induced breaks in Drosophila. On the
436 other hand, NHEJ is the preferred method for repair of IR-induced breaks in mammals
437 (Ackerson *et al.* 2021). This difference between Drosophila and mammalian repair
438 preferences may partially explain the lack of sensitivity we observed in *rif1* mutants to
439 DNA damaging agents.

440 Further, Rif1 was not required for egg hatching and *rif1*-mutant females
441 produced eggs with normal eggshells, which suggests it is not essential to repair damage
442 that arises during re-replication in follicle cells. Re-replication occurs at loci important
443 for eggshell assembly, stalls fork progression, and produces DNA damage (Alexander *et*
444 *al.* 2015). Lig4 helps facilitate fork progression during re-replication, but is only required
445 for preventing eggshell defects and promoting egg hatching when TMEJ is disrupted
446 (Alexander *et al.* 2015; Alexander *et al.* 2016). Two other studies reported 55% and 88%
447 hatching rates for Drosophila *rif1* mutants (Munden *et al.* 2018; Seller and O'Farrell
448 2018). We observed 66%, 76%, and 85% hatching rates for *rif1*¹, *rif1*², and *rif1*¹⁻⁷
449 mutants, respectively (Figures 2C, S1B). Since only one rate significantly differed from
450 wild type, we attribute these slight differences to natural genomic variation among the
451 stocks. Thus, in addition to Lig4 being dispensable for repair during re-replication, Rif1 is
452 not required to repair damage in follicle cells.

453 Rif1 is critical for repair of P-element-induced breaks

454 Given Rif1 helps both yeast and mammals survive DNA damage, our initial
455 findings that Rif1 is not required for survival after DNA damage in Drosophila was
456 surprising. However, because Rif1 has also been shown to impact repair pathway choice
457 in other organisms, we conducted site-specific repair assays to examine this possibility.

458 Strikingly, in the *P{w^a}* assay, we observed both HR and end-joining at P-element-
459 induced breaks are dependent on Rif1. To validate this finding, we excised a different P-
460 element (*P{EGFP}*) on the X chromosome and initially observed male infertility. We
461 anticipated the infertility may be due to more excision of *P{EGFP}* relative to *P{w^a}* at
462 25°C, causing an overabundance of DSBs due to failed repair within *rif1*-mutant tissues.
463 Upon lowering the temperature to 18°C, we recovered fertile males and validated the
464 large decrease in end-joining observed in the *P{w^a}* assay. These results suggest that a
465 defect in P-element excision was likely not responsible for the decrease in repair.
466 Instead, the most likely interpretation is that repair is severely impaired at P-element-
467 induced breaks in *rif1* mutants.

468 Site-specific P-element repair assays are a unique assay system to study pathway
469 choice because they produce 17-nt non-complementary overhangs at DSBs. These
470 overhangs mimic short tracts of resected DNA at natural DSBs caused by exogenous or
471 endogenous sources of damage. Since *rif1* mutants did not exhibit severe repair
472 deficiencies in the other assays we conducted, our results suggest that Rif1 is needed to
473 repair breaks with overhangs that are poor substrates for end-joining.

474 Recently, it was shown that specific residues within the N-terminus of yeast Rif1
475 interact with DNA and the N-terminus preferentially binds DNA substrates with 30-nt
476 overhangs (Mattarocci *et al.* 2017). This interaction stabilizes the DNA and is also
477 important for the ability of Rif1 to inhibit resection and promote NHEJ. In agreement
478 with this model, the inability of Drosophila *rif1* mutants to repair transposase-induced
479 breaks also suggests Drosophila Rif1 stabilizes ssDNA for repair.

480 Drosophila Rif1 may protect long overhangs through several different
481 mechanisms. First, Rif1 may prevent machinery involved in long-range resection from
482 binding to short-resected tracts. In yeast, Rif1 prevents binding of two primary players in
483 resection, Mre11 and Dna2, to HO-induced breaks (Martina *et al.* 2014). Mammalian
484 Rif1 prevents RAD51, BRCA1, and CtIP from accumulating at damage (Feng *et al.* 2013;
485 Isobe *et al.* 2021). In our assays, the 17-nt overhangs at P-element-induced breaks are
486 ideal substrates to initiate and increase the efficiency of long-range resection
487 mechanisms (Cejka 2015). Overactivation of long-range resection commonly leads to
488 extensive genomic instability (Tomimatsu *et al.* 2017) and may be responsible for the
489 abrogated repair we observe in Drosophila *rif1* mutants that experience transposase-
490 induced damage. Second, Rif1 may bind the overhangs to stabilize them for repair by
491 preventing degradation. The N-terminus of yeast Rif1 forms dimers and wraps around
492 DNA (Mattarocci *et al.* 2017). This interaction prevents the destabilization of short
493 overhangs at an HO-induced cut. Interestingly, this N-terminal region can be identified
494 in the Drosophila Rif1 protein (Figure S3). In addition, mammalian Rif1 protects stalled
495 replication forks from degradation by DNA2-WRN (Garzón *et al.* 2019). Drosophila Rif1

496 may work in a similar fashion to both Rif1 orthologs and be especially important to
497 protect long P-element-induced overhangs from degradation.

498 Rif1 has subtle repair functions at I-SceI-induced breaks, but is important for SSA
499 following extensive resection

500 The P-element excision assays showed a reliance on Rif1 for repair of breaks with
501 17-nt overhangs. However, at I-SceI-induced breaks in the DR-white.*mu* assay, we
502 observed a significant increase in intrachromosomal HR and a decrease in SSA in *rif1*
503 mutants. The increase in HR in this assay contrasts with the HR defect we observed in
504 the *P{w^a}* assay. We posit this difference may be explained by several mechanisms. First,
505 the 4-nt overhangs in the DR-white.*mu* assay and the 17-nt overhangs in the *P{w^a}* assay
506 may activate different initial mechanisms for repair. In yeast, Rif1 was shown to inhibit
507 checkpoint activation at ssDNA and *rif1* mutants arrest in G2/M upon the accumulation
508 of ssDNA (Xue *et al.* 2011). Since frequent P-element excision also generates ssDNA in
509 the pre-meiotic germline or soma, persistent checkpoint activation may explain why
510 repair failed in *rif1* mutants in the P-element assays. On the other hand, at I-SceI-
511 induced breaks Rif1 may function more like mammalian Rif1 and partially suppress HR
512 (Isobe *et al.* 2021). Second, the increase in HR may be an artifact of the different repair
513 templates used in the two assays. The DR-white.*mu* assay detects HR using an
514 intrachromosomal template, while the *P{w^a}* assay detects SDSA using an
515 interchromosomal template. Evidence using a modified DR-white construct indicates
516 intrachromosomal templates are highly preferred for HR over interchromosomal
517 templates in the pre-meiotic germline (Fernandez *et al.* 2019). Thus, it is possible the
518 intrachromosomal repair template allows for more HR in *rif1* mutants in the DR-
519 white.*mu* assay that cannot be seen in the *P{w^a}* assay.

520 Consistent with findings in yeast, we observed a significant decrease in SSA in
521 *rif1* mutants (Martina *et al.* 2014). This suggests Rif1 is either important to perform
522 long-range resection in flies that is necessary for SSA, or it participates in the annealing
523 of direct repeats during SSA. The former was proposed in yeast, but it is unclear if Rif1 is
524 an accessory unit for nucleolytic degradation of DNA or if it protects ssDNA after

525 resection (Martina *et al.* 2014). If it protects ssDNA, it may also assist in the annealing of
526 distal strands for SSA. Currently, we are unable to distinguish between these two
527 possibilities.

528 In summary, we have uncovered two separate functions for *Drosophila* Rif1 in
529 this study: a critical role in processing P-element-induced breaks for repair and an
530 additional role in repair pathway choice at I-SceI-induced breaks. We suspect Rif1 may
531 be required for repair of P-element-induced breaks by protecting ssDNA overhangs that
532 are poor substrates for end-joining. This is also the first study to show Rif1 can promote
533 SSA at extensively resected ends in a eukaryote other than yeast and demonstrates Rif1
534 is not unifunctional at DSB ends. Taken together, our work exhibits *Drosophila* Rif1 has
535 some unique repair functions relative to other Rif1 orthologs, but also has similar
536 functional tendencies in determining repair pathway choice. Additional mechanistic
537 investigation into the alternative functions we identified in this study will yield new
538 insights into the involvement of Rif1 in DSB repair across eukaryotes.

539 **Limitations of the study**

540 Our work supports one or more roles for *Drosophila* Rif1 in DSB repair. However,
541 our understanding of the mechanisms by which it performs these roles is limited for a
542 few reasons. First, sensitivity assays rely on the failure to repair breaks leading to
543 organismal lethality and as such they are unable to reveal minor roles in repair. If Rif1 is
544 only required to repair a small subset of the heterogeneous breaks induced by IR, a DSB
545 repair role could be missed. Second, because the site-specific repair assays are not
546 always able to assign a specific repair mechanism to each phenotypic outcome, we are
547 somewhat limited in the conclusions that we can make. Third, although our site-specific
548 repair assays are valuable to elucidate *in vivo* differences in repair pathway choice in the
549 presence and absence of Rif1, they do not identify the mechanism by which these
550 differences occur. Understanding the role of Rif1 function at DSBs will require the use of
551 sophisticated biochemical and genomic techniques which can be used to further
552 establish a mechanism.

553 **Data Availability**

554 Drosophila stocks and mutant gene maps are available upon request. The data required
555 to confirm the conclusions of this study are fully provided within the figures and tables
556 of the article.

557 **Author Contributions**

558 JRB conceived this study and created the *rif1*¹⁻⁷ mutant. JRB, MK, and MM contributed
559 to experimental design. JRB and MK conducted the sensitivity assays. MK conducted the
560 hatching and transposon assays. JTZ, MK, and MM conducted the DR-*white.mu* assay.
561 JRB and JTZ prepared the DR-*white.mu* repair samples for sequencing. JRB made the
562 figures and conducted the statistical analyses. JRB, MK, and MM wrote the manuscript.

563 **Acknowledgments**

564 We thank Jan LaRocque, Avital Rodal, William Engels, and Jared Nordman for generous
565 donations of fly stocks. We also thank Jared Nordman for helpful comments on the
566 manuscript and Sara Martin, Tyler Maclay, and other members of the McVey lab for
567 valuable discussions and contributions to the project. This work was funded by grant
568 MCB1716039 from the National Science Foundation and grant R01GM125827 from the
569 National Institutes of Health.

570 **References**

- 571 Ackerson, S. M., C. Romney, P. L. Schuck and J. A. Stewart, 2021 To Join or Not to Join: Decision
572 Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End
573 Protection. *Frontiers in Cell and Developmental Biology* 9.
- 574 Adams, M. D., M. McVey and J. J. Sekelsky, 2003 *Drosophila BLM* in double-strand break repair
575 by synthesis-dependent strand annealing. *Science* 299: 265-267.
- 576 Ahrabi, S., S. Sarkar, S. X. Pfister, G. Pirovano, G. S. Higgins *et al.*, 2016 A role for human
577 homologous recombination factors in suppressing microhomology-mediated end
578 joining. *Nucleic Acids Res* 44: 5743-5757.
- 579 Alexander, J. L., M. I. Barrasa and T. L. Orr-Weaver, 2015 Replication fork progression during re-
580 replication requires the DNA damage checkpoint and double-strand break repair. *Curr
581 Biol* 25: 1654-1660.
- 582 Alexander, J. L., K. Beagan, T. L. Orr-Weaver and M. McVey, 2016 Multiple mechanisms
583 contribute to double-strand break repair at rereplication forks in *Drosophila* follicle cells.
584 *Proc Natl Acad Sci U S A* 113: 13809-13814.
- 585 Armstrong, R. L., S. Das, C. A. Hill, R. J. Duronio and J. T. Nordman, 2020 *Rif1* Functions in a
586 Tissue-Specific Manner To Control Replication Timing Through Its PP1-Binding Motif.
587 *Genetics* 215: 75-87.
- 588 Arnoult, N., A. Correia, J. Ma, A. Merlo, S. Garcia-Gomez *et al.*, 2017 Regulation of DNA repair
589 pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. *Nature* 549: 548-552.
- 590 Bakr, A., S. Köcher, J. Volquardsen, C. Petersen, K. Borgmann *et al.*, 2016 Impaired 53BP1/RIF1
591 DSB mediated end-protection stimulates CtIP-dependent end resection and switches the
592 repair to PARP1-dependent end joining in G1. *Oncotarget* 7: 57679-57693.
- 593 Bhargava, R., D. O. Onyango and J. M. Stark, 2016 Regulation of Single-Strand Annealing and its
594 Role in Genome Maintenance. *Trends Genet* 32: 566-575.
- 595 Bhargava, R., M. Sandhu, S. Muk, G. Lee, N. Vaidehi *et al.*, 2018 C-NHEJ without indels is robust
596 and requires synergistic function of distinct XLF domains. *Nature Communications* 9:
597 2484.
- 598 Blasiak, J., 2021 Single-strand annealing in cancer. *International Journal of Molecular Sciences*
599 22: 2167.

- 600 Buonomo, S. B. C., Y. Wu, D. Ferguson and T. de Lange, 2009 Mammalian Rif1 contributes to
601 replication stress survival and homology-directed repair. *Journal of Cell Biology* 187:
602 385-398.
- 603 Carvajal-Garcia, J., J. E. Cho, P. Carvajal-Garcia, W. Feng, R. D. Wood *et al.*, 2020 Mechanistic
604 basis for microhomology identification and genome scarring by polymerase theta. *Proc
605 Natl Acad Sci U S A* 117: 8476-8485.
- 606 Ceccaldi, R., P. Sarangi and A. D. D'Andrea, 2016 The Fanconi anaemia pathway: new players and
607 new functions. *Nat Rev Mol Cell Biol* 17: 337-349.
- 608 Cejka, P., 2015 DNA End Resection: Nucleases Team Up with the Right Partners to Initiate
609 Homologous Recombination. *J Biol Chem* 290: 22931-22938.
- 610 Cejka, P., and L. S. Symington, 2021 DNA End Resection: Mechanism and Control. *Annu Rev
611 Genet* 55: 285-307.
- 612 Chang, H. H. Y., N. R. Pannunzio, N. Adachi and M. R. Lieber, 2017 Non-homologous DNA end
613 joining and alternative pathways to double-strand break repair. *Nat Rev Mol Cell Biol* 18:
614 495-506.
- 615 Chapman, J. R., P. Barral, J. B. Vannier, V. Borel, M. Steger *et al.*, 2013 RIF1 is essential for
616 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand
617 break resection. *Mol Cell* 49: 858-871.
- 618 Claycomb, J. M., and T. L. Orr-Weaver, 2005 Developmental gene amplification: insights into
619 DNA replication and gene expression. *Trends in Genetics* 21: 149-162.
- 620 Davidson, I. F., A. Li and J. J. Blow, 2006 Deregulated replication licensing causes DNA
621 fragmentation consistent with head-to-tail fork collision. *Mol Cell* 24: 433-443.
- 622 Di Virgilio, M., E. Callen, A. Yamane, W. Zhang, M. Jankovic *et al.*, 2013 Rif1 prevents resection of
623 DNA breaks and promotes immunoglobulin class switching. *Science* 339: 711-715.
- 624 Do, A. T., J. T. Brooks, M. K. Le Neveu and J. R. LaRocque, 2014 Double-strand break repair
625 assays determine pathway choice and structure of gene conversion events in *Drosophila*
626 *melanogaster*. *G3 (Bethesda)* 4: 425-432.
- 627 Eke, I., D. Zong, M. J. Aryankalayil, V. Sandfort, M. A. Bylicky *et al.*, 2020 53BP1/RIF1 signaling
628 promotes cell survival after multifractionated radiotherapy. *Nucleic Acids Res* 48: 1314-
629 1326.

- 630 Escribano-Díaz, C., A. Orthwein, A. Fradet-Turcotte, M. Xing, J. T. Young *et al.*, 2013 A cell cycle-
631 dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA
632 repair pathway choice. *Mol Cell* 49: 872-883.
- 633 Feng, L., K. W. Fong, J. Wang, W. Wang and J. Chen, 2013 RIF1 counteracts BRCA1-mediated end
634 resection during DNA repair. *J Biol Chem* 288: 11135-11143.
- 635 Fernandez, J., H. Bloomer, N. Kellam and J. R. LaRocque, 2019 Chromosome Preference During
636 Homologous Recombination Repair of DNA Double-Strand Breaks in *Drosophila*
637 *melanogaster*. *G3 (Bethesda)* 9: 3773-3780.
- 638 Fontana, G. A., J. K. Reinert, N. H. Thomä and U. Rass, 2018 Shepherding DNA ends: Rif1 protects
639 telomeres and chromosome breaks. *Microb Cell* 5: 327-343.
- 640 Fugger, K., and S. C. West, 2016 Keeping homologous recombination in check. *Cell Research* 26:
641 397-398.
- 642 Garzón, J., S. Ursich, M. Lopes, S. I. Hiraga and A. D. Donaldson, 2019 Human RIF1-Protein
643 Phosphatase 1 Prevents Degradation and Breakage of Nascent DNA on Replication
644 Stalling. *Cell Rep* 27: 2558-2566.e2554.
- 645 Gloor, G. B., C. R. Preston, D. M. Johnson-Schlitz, N. A. Nassif, R. W. Phillis *et al.*, 1993 Type I
646 repressors of P element mobility. *Genetics* 135: 81-95.
- 647 Gupta, R., K. Somyajit, T. Narita, E. Maskey, A. Stanlie *et al.*, 2018 DNA Repair Network Analysis
648 Reveals Shieldin as a Key Regulator of NHEJ and PARP Inhibitor Sensitivity. *Cell* 173: 972-
649 988.e923.
- 650 Hanscom, T., and M. McVey, 2020 Regulation of Error-Prone DNA Double-Strand Break Repair
651 and Its Impact on Genome Evolution. *Cells* 9.
- 652 Isobe, S. Y., S. I. Hiraga, K. Nagao, H. Sasanuma, A. D. Donaldson *et al.*, 2021 Protein
653 phosphatase 1 acts as a RIF1 effector to suppress DSB resection prior to Shieldin action.
654 *Cell Rep* 36: 109383.
- 655 Jasin, M., and R. Rothstein, 2013 Repair of strand breaks by homologous recombination. *Cold
656 Spring Harb Perspect Biol* 5: a012740.
- 657 Kaur, E., R. Agrawal and S. Sengupta, 2021 Functions of BLM Helicase in Cells: Is It Acting Like a
658 Double-Edged Sword? *Front Genet* 12: 634789.
- 659 Kelso, A. A., F. W. Lopezcolorado, R. Bhargava and J. M. Stark, 2019 Distinct roles of RAD52 and
660 POLQ in chromosomal break repair and replication stress response. *PLOS Genetics* 15:
661 e1008319.

- 662 Khodaverdian, V. Y., T. Hanscom, A. M. Yu, T. L. Yu, V. Mak *et al.*, 2017 Secondary structure
663 forming sequences drive SD-MMEJ repair of DNA double-strand breaks. *Nucleic Acids*
664 *Res* 45: 12848-12861.
- 665 Kolesnikova, T. D., A. V. Kolodyazhnaya, G. V. Pokholkova, V. Schubert, V. V. Dovgan *et al.*, 2020
666 Effects of Mutations in the *Drosophila melanogaster* Rif1 Gene on the Replication and
667 Underreplication of Pericentromeric Heterochromatin in Salivary Gland Polytene
668 Chromosomes. *Cells* 9.
- 669 Krakoff, I. H., N. C. Brown and P. Reichard, 1968 Inhibition of ribonucleoside diphosphate
670 reductase by hydroxyurea. *Cancer research* 28: 1559-1565.
- 671 Mahowald, A. P., J. H. Caulton, M. K. Edwards and A. D. Floyd, 1979 Loss of centrioles and
672 polyploidization in follicle cells of *Drosophila melanogaster*. *Exp Cell Res* 118: 404-410.
- 673 Martina, M., D. Bonetti, M. Villa, G. Lucchini and M. P. Longhese, 2014 *Saccharomyces cerevisiae*
674 Rif1 cooperates with MRX-Sae2 in promoting DNA-end resection. *EMBO reports* 15: 695-
675 704.
- 676 Mattarocci, S., L. Hafner, A. Lezaja, M. Shyian and D. Shore, 2016 Rif1: A Conserved Regulator of
677 DNA Replication and Repair Hijacked by Telomeres in Yeasts. *Frontiers in Genetics* 7.
- 678 Mattarocci, S., J. K. Reinert, R. D. Bunker, G. A. Fontana, T. Shi *et al.*, 2017 Rif1 maintains
679 telomeres and mediates DNA repair by encasing DNA ends. *Nat Struct Mol Biol* 24: 588-
680 595.
- 681 McVey, M., D. Radut and J. J. Sekelsky, 2004 End-Joining Repair of Double-Strand Breaks in
682 *Drosophila melanogaster* Is Largely DNA Ligase IV Independent. *Genetics* 168: 2067-
683 2076.
- 684 Mjelle, R., S. A. Hegre, P. A. Aas, G. Slupphaug, F. Drablos *et al.*, 2015 Cell cycle regulation of
685 human DNA repair and chromatin remodeling genes. *DNA Repair (Amst)* 30: 53-67.
- 686 Mukherjee, C., V. Tripathi, E. M. Manolika, A. M. Heijink, G. Ricci *et al.*, 2019 RIF1 promotes
687 replication fork protection and efficient restart to maintain genome stability. *Nature*
688 *Communications* 10: 3287.
- 689 Munden, A., Z. Rong, A. Sun, R. Gangula, S. Mallal *et al.*, 2018 Rif1 inhibits replication fork
690 progression and controls DNA copy number in *Drosophila*. *eLife* 7: e39140.
- 691 Petermann, E., M. L. Orta, N. Issaeva, N. Schultz and T. Helleday, 2010 Hydroxyurea-stalled
692 replication forks become progressively inactivated and require two different RAD51-
693 mediated pathways for restart and repair. *Mol Cell* 37: 492-502.

- 694 Ramsden, D. A., J. Carvajal-Garcia and G. P. Gupta, 2022 Mechanism, cellular functions and
695 cancer roles of polymerase-theta-mediated DNA end joining. *Nature Reviews Molecular
696 Cell Biology* 23: 125-140.
- 697 Schimmel, J., R. van Schendel, J. T. den Dunnen and M. Tijsterman, 2019 Templated Insertions: A
698 Smoking Gun for Polymerase Theta-Mediated End Joining. *Trends Genet* 35: 632-644.
- 699 Seller, C. A., and P. H. O'Farrell, 2018 Rif1 prolongs the embryonic S phase at the Drosophila
700 mid-blastula transition. *PLOS Biology* 16: e2005687.
- 701 Setiaputra, D., and D. Durocher, 2019 Shieldin - the protector of DNA ends. *EMBO Rep* 20.
- 702 Setiaputra, D., C. Escribano-Díaz, J. K. Reinert, P. Sadana, D. Zong *et al.*, 2022 RIF1 acts in DNA
703 repair through phosphopeptide recognition of 53BP1. *Mol Cell* 82: 1359-1371.e1359.
- 704 Silverman, J., H. Takai, S. B. Buonomo, F. Eisenhaber and T. de Lange, 2004 Human Rif1, ortholog
705 of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-
706 phase checkpoint. *Genes Dev* 18: 2108-2119.
- 707 Spradling, A. C., and A. P. Mahowald, 1980 Amplification of genes for chorion proteins during
708 oogenesis in *Drosophila melanogaster*. *Proc Natl Acad Sci U S A* 77: 1096-1100.
- 709 Sreesankar, E., V. Bharathi, R. K. Mishra and K. Mishra, 2015 *Drosophila* Rif1 is an essential gene
710 and controls late developmental events by direct interaction with PP1-87B. *Scientific
711 Reports* 5: 10679.
- 712 Sreesankar, E., R. Senthilkumar, V. Bharathi, R. K. Mishra and K. Mishra, 2012 Functional
713 diversification of yeast telomere associated protein, Rif1, in higher eukaryotes. *BMC
714 Genomics* 13: 255.
- 715 Tomimatsu, N., B. Mukherjee, J. L. Harris, F. L. Boffo, M. C. Hardebeck *et al.*, 2017 DNA-damage-
716 induced degradation of EXO1 exonuclease limits DNA end resection to ensure accurate
717 DNA repair. *Journal of Biological Chemistry* 292: 10779-10790.
- 718 Turner, F. R., and A. P. Mahowald, 1976 Scanning electron microscopy of *Drosophila*
719 embryogenesis: 1. The structure of the egg envelopes and the formation of the cellular
720 blastoderm. *Developmental Biology* 50: 95-108.
- 721 Weterings, E., and D. J. Chen, 2008 The endless tale of non-homologous end-joining. *Cell Res* 18:
722 114-124.
- 723 Wyatt, D. W., W. Feng, M. P. Conlin, M. J. Yousefzadeh, S. A. Roberts *et al.*, 2016 Essential Roles
724 for Polymerase θ-Mediated End Joining in the Repair of Chromosome Breaks. *Mol Cell*
725 63: 662-673.

- 726 Xu, D., P. Muniandy, E. Leo, J. Yin, S. Thangavel *et al.*, 2010 Rif1 provides a new DNA-binding
727 interface for the Bloom syndrome complex to maintain normal replication. *Embo j* 29:
728 3140-3155.
- 729 Xue, Y., M. D. Rushton and L. Maringele, 2011 A novel checkpoint and RPA inhibitory pathway
730 regulated by Rif1. *PLoS Genet* 7: e1002417.
- 731 Zhao, X., C. Wei, J. Li, P. Xing, J. Li *et al.*, 2017 Cell cycle-dependent control of homologous
732 recombination. *Acta Biochim Biophys Sin (Shanghai)* 49: 655-668.
- 733 Zimmermann, M., F. Lottersberger, S. B. Buonomo, A. Sfeir and T. de Lange, 2013 53BP1
734 regulates DSB repair using Rif1 to control 5' end resection. *Science* 339: 700-704.
- 735