

2 **Main Manuscript for**

3 ***Synechococcus* nitrogen gene loss in iron-limited ocean regions**

4

5 Garrett Sharpe¹, Liang Zhao², Meredith G. Meyer², Weida Gong², Shannon M. Burns³, Allesandro
6 Tagliabue⁴, Kristen N. Buck³, Alyson E. Santoro⁵, Jason R. Graff⁶, Adrian Marchetti², Scott
7 Gifford^{2*}

8 ¹ Environment Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel
9 Hill, North Carolina USA

10 ² Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel
11 Hill, North Carolina USA

12 ³ College of Marine Science, University of South Florida, St. Petersburg, FL USA.

13 ⁴ School of Environmental Sciences, University of Liverpool, Liverpool UK

14 ⁵ Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara,
15 California USA

16 ⁶ Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon USA

17 *Corresponding author: Scott Gifford (sgifford@email.unc.edu)

18

19 **AUTHOR CONTRIBUTIONS:** G.S., L.Z., A.M., and S.G. designed research; G.S., L.Z., M.M.,
20 W.G., S.B., A.S., J.G., A.M., and S.G. performed research; G.S., L.Z., M.M., W.G., A.T., S.B.,
21 K.B., A.S., J.G., A.M., S.G. analyzed data; and G.S., L.Z., M.M., A.T., K.B., A.S., J.G., A.M., and
22 S.G. wrote the manuscript

23

24 **Competing Interest Statement:** The authors declare they have no conflict of interest.

25 **Classification:** Biological Sciences: 1) Ecology 2) Microbiology

26 **Keywords:** *Synechococcus*, iron, metagenomics, nutrient limitation, nitrogen, marine

27 **This PDF file includes:**

28 Main Text

29 Figures 1 to 5

30 Tables 1

31

32

33 **Abstract**

34 *Synechococcus* are the most abundant cyanobacteria in high latitude regions and are responsible
35 for an estimated 17% of annual marine primary productivity. Despite their biogeochemical
36 importance, *Synechococcus* populations have been unevenly sampled across the ocean, with most
37 studies focused on low-latitude strains. In particular, the near absence of *Synechococcus* genomes
38 from high-latitude, High Nutrient Low Chlorophyll (HNLC) regions leaves a gap in our knowledge
39 of picocyanobacterial adaptation to iron limitation and their influence on carbon, nitrogen, and iron
40 cycles. We examined *Synechococcus* populations from the subarctic North Pacific, a well-
41 characterized HNLC region, with quantitative metagenomics. Assembly with short and long reads
42 produced two near complete *Synechococcus* metagenome-assembled genomes (MAGs).
43 Quantitative metagenome-derived abundances of these populations matched well with flow
44 cytometry counts, and the *Synechococcus* MAGs were estimated to comprise >99% of the
45 *Synechococcus* at Station P. Whereas the Station P *Synechococcus* MAGs contained multiple
46 genes for adaptation to iron limitation, both genomes lacked genes for uptake and assimilation of
47 nitrate and nitrite, suggesting a dependence on ammonium, urea, and other forms of recycled
48 nitrogen leading to reduced iron requirements. A global analysis of *Synechococcus* nitrate
49 reductase abundance in the TARA Oceans dataset found nitrate assimilation genes are also lower
50 in other HNLC regions. We propose nitrate and nitrite assimilation gene loss in *Synechococcus*
51 represents an adaptation to severe iron limitation in high-latitude regions where ammonium
52 availability is higher. Our findings have implications for models that quantify the contribution of
53 cyanobacteria to primary production and subsequent carbon export.

54

55 **Significance**

56 The cyanobacterium *Synechococcus* is a major contributor to ocean primary production and
57 biogeochemistry. Here, we used quantitative metagenomics to assemble and enumerate two
58 *Synechococcus* genomes from an iron-limited, High Nutrient Low Chlorophyll region. We show
59 these genomes represent the majority of *Synechococcus* cells at the site and are the first known
60 *Synechococcus* unable to assimilate either nitrate or nitrite. This gene loss is likely due to the high
61 iron quota of these proteins and predominant availability of recycled forms of nitrogen.
62 *Synechococcus*' loss of nitrate assimilation affects their role in elemental cycles (e.g., carbon,
63 nitrogen, and iron), limits their potential for carbon export, and enhances our understanding of
64 *Synechococcus* evolution in response to nutrient limitation and competition.

65

66

67 **Introduction**

68 *Prochlorococcus* and *Synechococcus* are critical components of marine biogeochemical cycles,
69 generating ~25% of the ocean's annual net primary production and contributing significantly to
70 carbon export (1-2). *Prochlorococcus* is largely restricted to equatorial and subtropical latitudes,
71 while *Synechococcus* dominates cooler waters in regions of equatorial upwelling and high latitudes
72 (3). Both groups exhibit high levels of strain diversification due to niche specialization arising from
73 variations in environmental conditions (light, temperature, nitrogen, phosphorus, etc.) including iron
74 availability (4-6).

75 Iron is an essential micronutrient as it is a required cofactor in photosynthetic and respiratory
76 electron transport chains (7, 8). Photosystems I and II require 12 and 3 iron atoms per photosystem,
77 respectively, and the light-harvesting phycobilisome proteins are synthesized by iron-containing
78 enzymes (8). Iron is also required in other key metabolic functions, including nitrate and nitrite
79 assimilation, with nitrate and nitrite reductases requiring 4 and 5 iron atoms per enzyme,
80 respectively (9-11). In High Nutrient Low Chlorophyll (HNLC) regions these cellular iron demands
81 in combination with low iron bioavailability lead to iron limitation of primary production. Three major
82 ocean regions have been identified as HNLC zones: the Equatorial Pacific, the Southern Ocean,
83 and the subarctic North Pacific; together they represent roughly 30% of the world's oceans (12).
84 These regions are characterized by low phytoplankton biomass and consistently high
85 concentrations of macronutrients in the mixed layer resulting from incomplete utilization due to
86 severe iron limitation (13, 14). Nitrate concentrations for example are in the tens of micromolar
87 range (14).

88 *Synechococcus* and *Prochlorococcus* strains have evolved diverse adaptations to iron limitation.
89 In non-HNLC regions, *Prochlorococcus* are enriched in iron-storing ferritin genes and iron uptake
90 regulators that enables growth at approximately ten-fold lower iron concentrations and a more rapid
91 response to iron-stress relief (15). In *Synechococcus*, coastal strains possess multiple iron storage,
92 stress regulation, and response genes that are intricately regulated under the dynamic iron
93 conditions of the coastal environment (16). By contrast, pelagic *Synechococcus* strains that grow
94 in the primarily N-limited oligotrophic gyres lack many of these iron-response genes and exhibit a
95 more limited iron regulatory response.

96 Cyanobacteria, however, are relatively under-sampled in high-latitude HNLC regions, resulting in
97 a major gap in understanding nutrient acquisition and adaptation strategies in these large,
98 biogeochemically important regions. In tropical and subtropical HNLC regions, *Prochlorococcus*
99 and *Synechococcus* have adapted to iron-limiting conditions by substituting iron requiring genes
100 such as Fe-S containing proteins with non-iron containing functional homologues (17, 18, 19).
101 Several *Synechococcus* strains from these regions have high ferritin gene copy numbers for
102 enhanced iron storage (18, 19). Although marker gene analysis has shown that members of the
103 CRD1 clade, a phylogenetically distinct lineage of *Synechococcus* found in the equatorial Pacific,
104 are also present in high-latitude HNLC waters, these regions are not well represented in current
105 bacterial metagenomic datasets, and all currently sequenced isolates, metagenome-assembled
106 genomes (MAGs), and single cell assembled genomes (SAGs) from these clades are derived from
107 low-latitude HNLC zones (19).

108 The absence of high-latitude HNLC *Synechococcus* genomes leaves a substantial gap in our
109 current knowledge of picocyanobacterial iron adaptation strategies and their importance to
110 biogeochemical cycling. Here, we used quantitative metagenomics and genome assembly to
111 enumerate and characterize cyanobacteria populations at Station P (Ocean Station PAPA) to
112 identify the strategies *Synechococcus* have evolved to succeed in iron-limited HNLC zones and
113 their impact on biogeochemical cycling and carbon export.

115 **Results**

116 Station P is a low productivity system with high nitrate (7-15 μ M) and low iron (< 100 pM)
117 concentrations characteristic of HNLC regions (13, 20, 21). Phytoplankton blooms are rare, and
118 primary production is sustained primarily by intrusion of nutrients from the shallow seasonal
119 pycnocline (22). Fitting with previous observations, phytoplankton at Station P during our sampling
120 consisted primarily of small cells (<5 μ m), including *Synechococcus*, small pennate diatoms, and
121 autotrophic flagellates, with low abundance of large (>5 μ m) flagellates and diatoms (Fig. 1).
122 Correspondingly, the small size fraction had the highest chlorophyll concentrations, carbon, nitrate,
123 and ammonium uptake rates, and represented 68% of total primary production (Fig. 1). The f-ratios
124 (fraction of total primary production fueled by nitrate: here nitrate uptake / [nitrate + ammonium
125 uptake]) were low for both size fractions, though the small cells had f-ratios half that of the large
126 cells (Fig. 1). Together, the relatively low primary production and f-ratios observed at Station P
127 indicate a system driven by regenerated production, particularly by small phytoplankton cells (23-
128 25).

129 The *Synechococcus*-dominated deep chlorophyll maximum (DCM) was located at 50-70 m, below
130 the mixed layer but well above the ferricline, which was around 200 m. Additionally, iron inputs from
131 dust deposition and mesoscale eddy events are infrequent at Station P compared to the adjacent
132 subtropical North Pacific Gyre, and surface dissolved iron concentrations were low (0.04 ± 0.03 nM
133 during cruise; seasonally ~0.05 nM spring and summer, ~0.1 nM winter, 25-29). Ammonium and
134 nitrate concentrations were relatively high at all sampled depths, suggesting neither oxidized nor
135 reduced forms of nitrogen are limiting (Fig. 1 and S1).

136 We used quantitative metagenomics to enumerate *Synechococcus* abundance at Station P.
137 Genome equivalents were enumerated by identifying single copy recombinase A (*recA*) genes in a
138 metagenome sample, and then converted to volumetric abundances via recovery ratios derived
139 from internal standards added prior to extraction (30-37). A comparison between our quantitative
140 metagenome-derived *Synechococcus* abundances and simultaneously collected flow cytometry
141 *Synechococcus* cell concentrations show strong agreement (Fig. 2A), further supporting the use of
142 internal standard quantitative metagenomics for determining absolute abundances of bacterial
143 groups *in situ*. *Synechococcus* were the most abundant cyanobacteria at all depths (Fig. 2B), with
144 peak densities of 5×10^7 cells L⁻¹ at 50-75 m (Fig. 2B). Taxonomic classification of the *recA* genes
145 revealed the *Synechococcus* community was dominated by two populations, Clade I and IV, both
146 previously found to be abundant at other high-latitude sites (18, 38, 39). These two clades
147 represented >99% of the Station P *Synechococcus* population at all depths, with Clade IV most
148 prevalent at 50 m and Clade I at 70 m.

149 Assembly of short and long reads produced two high quality *Synechococcus* genomes (Syn-SP1
150 and Syn-SP2) representing the two dominant clades (Table 1). Syn-SP1 is most closely related to
151 a Single cell Amplified Genome (SAG; *Synechococcus* C sp003208835) collected from 65 m in the
152 subtropical North Pacific and isolates CC9902 and BL107 from *Synechococcus* Clade IV (40). The
153 second *Synechococcus* MAG (Syn-SP2) is phylogenetically distant from Syn-SP1 (77.3% ANI) and
154 a member of Clade I and is closely related to SAG *Synechococcus*_C sp002500205 and isolates
155 CC9311 and WH8020. Syn-SP1's genome is similar in size to other known Clade IV members,
156 while Syn-SP2's genome is smaller than other Clade I members (41). These MAGs are the first
157 genomes from *Synechococcus* clades to dominate these high-latitude regions (18, 39).

158 **Absolute quantification of MAG populations.** We estimated the volumetric abundances
159 (genomes L⁻¹) of the *Synechococcus* MAG populations by deriving a coverage-based recovery ratio
160 from the internal standard genome reads. Surface concentrations of the MAG populations were 3
161 to 6×10^6 genomes L⁻¹, and 2 to 4×10^7 genomes L⁻¹ at the DCM (50-70 m) (Fig. 2B). Summed,
162 the two MAGs accounted for nearly all *Synechococcus* genome abundances, as determined by
163 either metagenome-derived *recA* counts (MAGs were 96% of total *Synechococcus* *recA*) or flow

164 cytometry (97% of *Synechococcus* flow cytometry counts). The Syn-SP1 MAG accounted for an
165 average of 93% of the clade IV population, and the Syn-SP2 MAG accounted for an average of
166 106% of the clade I population. We further validated the dominance of the SP1 And SP2
167 populations by mapping the metagenome reads to the MAGs and found 95% of unassembled
168 *Synechococcus* metagenome reads mapped to the two MAGs. The MAGs thus represent the
169 dominant *Synechococcus* populations and their genomic composition at Station P during our
170 sampling.

171 **Adaptations of *Synechococcus* MAGs.** The Station P *Synechococcus* genomes encode several
172 strategies to cope with low iron availability, strategies that are well distributed across
173 *Synechococcus* clades (Fig. 3A and Fig. S2). For iron transport, both genomes possess NRAMP
174 Fe/Mn and *idiABC* iron transporters. In addition, Syn-S1 and Syn-D1 contain an operon for
175 importing iron-chelated siderophores. These siderophore transport genes have previously been
176 identified in a few Clade III, IV, CRD2, and UC-B members (19). It is unclear whether these
177 populations synthesize their own siderophores or can obtain siderophores released by other
178 community members (42). Both Station P genomes possess a single copy of the ferritin gene for
179 iron storage and Fur iron regulatory system. Equatorial HNLC-associated *Synechococcus* clade
180 CRD1 possess multiple ferritin genes, potentially as an adaptation to low iron availability (19). The
181 Station P genomes encode a suite of alternative, low iron-containing proteins for core
182 photosynthesis and electron transport chain functions, in addition to their high-iron dependent
183 counterparts. This includes flavodoxin as a ferredoxin substitute and plastocyanin as a cytochrome
184 c6 substitute, and the presence of only superoxide dismutases that use copper and zinc or nickel
185 cofactors instead of iron (43-45). Overall, the Station P genomes encode multiple strategies for
186 obtaining and conserving iron, but these strategies are not unique to them, rather they are broadly
187 distributed in *Synechococcus* genomes obtained from both low and high iron environments.

188 The Station P *Synechococcus* genomes were unique in their nitrogen assimilation pathway. Within
189 a nitrogen gene cluster highly conserved among cyanobacteria, both genomes are missing genes
190 for nitrate reductase, nitrite reductase, nitrate and nitrite transporters, cyanate hydratase, and the
191 nitrate reductase cofactor molybdopterin biosynthesis genes (Fig. 3B). By contrast, the genomes
192 both contain two distinct ammonium transporters, all urease subunits, and a urea ABC transporter.
193 For the two ammonium transporters found in both Syn-SP1 and Syn-SP2, one is closely related to
194 other *Synechococcus* ammonium transporters, and the other is closely related to euryarchaeal and
195 Thermotogae ammonium transporters (Fig S3).

196 Support for the absence of nitrate and nitrite utilization genes from Station P *Synechococcus*
197 populations is provided by (1) the high quality and completeness of the MAGs from multiple
198 independent assemblies, (2) the missing nitrogen genes' location in the interior of a contig flanked
199 by nitrogen genes with homology to taxonomically related genomes, and (3) individual long
200 Nanopore reads lacking these genes (Fig. S4). To further increase confidence that nitrate and nitrite
201 assimilation genes are absent in Station P *Synechococcus* populations, we determined
202 *Synechococcus* nitrogen gene copy numbers in the unassembled metagenomes. If the majority of
203 Station P *Synechococcus* genomes possess nitrate reductase (*narB*), then *narB* copies per
204 genome should be approximately one (Fig. 4). Instead, we found *Synechococcus* *narB* copy
205 numbers much less than one (range 0.04 to 0.26), supporting their depletion in Station P
206 *Synechococcus* populations. Nitrite reductase (*nirA*) gene ratios were higher (range 0.42 to 1.35),
207 though this may be due to misannotation given *nirA*'s high sequence similarity to sulfite reductase.
208 Copy numbers for the nitrate transporter *narT* and the nitrite/formate transporter *focA* were also
209 much lower than one, supporting depletion in the Station P *Synechococcus* populations. *focA* gene
210 abundance was approximately 25% for the *Synechococcus* community, so it is possible that a
211 *Synechococcus* variant with nitrite reductase represents a fraction of the station P population. By
212 contrast, *Synechococcus* ammonium transporter (*amt*) genome copy numbers were between two

213 and three across all Station P samples (range 0.91 to 2.77), consistent with the two *amt* copies in
214 our *Synechococcus* genomes.

215 The Station P genomes are the first known *Synechococcus* to lack both nitrate and nitrite uptake
216 and utilization genes. Two previously sequenced *Synechococcus* genomes do not encode the
217 ability to use nitrate but are capable of nitrite assimilation: MIT S9508 isolated from an HNLC zone
218 in the Equatorial Pacific, and RS9917 isolated from the Red Sea (46-48). Both isolates were
219 obtained using media with ammonium as the nitrogen source. The loss of both nitrate and nitrite
220 assimilation therefore may be specific to high latitude HNLC *Synechococcus*, though more
221 metagenome sequencing and cultivation on non-traditional *Synechococcus* media (with ammonium
222 used as N source instead of traditionally used nitrate) is needed (49).

223 The absence of nitrate and nitrite assimilation and the enrichment of ammonium transporters
224 suggests the dominant *Synechococcus* populations at Station P cannot utilize nitrate or nitrite as a
225 nitrogen source and instead rely on ammonium- or other reduced forms of recycled nitrogen for
226 growth. Despite high concentrations of nitrate in this region, the benefit to losing nitrate and nitrite
227 assimilation is a decreased cellular iron and energy demand. Reduction of exogenous nitrate and
228 nitrite to ammonium requires a large quantity of iron, with nitrate reductase containing four iron
229 atoms per enzyme and nitrite reductase containing five iron atoms (11, 50). In many areas of the
230 ocean, iron stress is coupled with nitrogen stress leading cyanobacteria to maintain assimilation
231 capabilities for all sources of N, including nitrate and nitrite, and their associated high iron cost (51).
232 However, in HNLC regions such as Station P, abundant N sources, particularly ammonium and
233 urea, may drive the system more heavily towards iron limitation, resulting in evolutionary pressure
234 to prioritize iron conservation over nitrate utilization via loss of the nitrate/nitrite assimilation
235 pathway (29).

236 **Global patterns in nitrate and nitrite assimilation loss.** To examine whether *Synechococcus*
237 nitrate and nitrite assimilation loss is widespread in the global ocean, we extended the nitrogen
238 gene copy number analysis to the TARA Oceans metagenomes. TARA Oceans contigs from the
239 0.2 to 1.6 μ m size fraction were annotated via a BLASTX search to identify contigs containing
240 *Synechococcus* nitrate reductase (*narB*), nitrite reductase (*nirR*), ammonium transporter (*amt*), and
241 recombinase A (*recA*) genes. These contigs were paired with their corresponding TARA-generated
242 gene coverage data to calculate nitrogen assimilation and utilization gene copy numbers per
243 genome equivalents. The ratios at each station were then compared to surface nitrate and
244 dissolved iron concentrations (N:Fe ratios) predicted by the PISCES global ocean biogeochemical
245 model (52, 53). Station P *Synechococcus* *narB* genome copies were depleted compared to most
246 TARA stations (Fig. 5A). Nitrite reductase (*nirR*) genome copy numbers were not significantly
247 different between TARA stations, though Station P samples from the DCM or lower had *nirR* copy
248 numbers below most TARA sites. By contrast, *Synechococcus* ammonium transporters (*amtT*)
249 were typically found at greater than one copy per genome at both Station P and TARA stations,
250 though there was a clear enrichment at Station P (Fig 5A). Based on the TARA metagenome and
251 PISCES nutrient data, nitrate reductase (*narB*) copy numbers are low in the HNLC regions of the
252 southeastern and equatorial Pacific that have high nitrate and low chlorophyll a concentrations (Fig.
253 5B and 5C). The lowest *narB* copy numbers correspond with Station P and the TARA Stations with
254 the highest N:Fe ratios, all of which are within or adjacent to HNLC regions, supporting nitrate
255 assimilation gene loss is linked to iron limitation (Fig 5C).

256 **Discussion**

257 Our findings show the dominant *Synechococcus* at Station P are incapable of assimilating either
258 nitrate or nitrite and instead rely on reduced nitrogen sources such as ammonium and urea. The
259 loss of genes for both nitrate and nitrite assimilation reduce the cellular iron demand required by
260 their respective reductases, imparting a fitness advantage in this low-iron HNLC region. The f-ratios
261 were low at Station P, particularly in small cells below the mixed layer where *Synechococcus* is

262 most abundant, which can be attributed to the lack of *Synechococcus* nitrate and nitrite uptake
263 capabilities. In other regions, *Synechococcus* populations have lost nitrate assimilation while
264 retaining nitrite assimilation. The TARA Oceans nitrogen gene analysis indicates *Synechococcus*
265 nitrate reductases are also depleted within the equatorial and sub-tropical Southern Pacific HNLC
266 regions. The results suggest having both nitrate and nitrite assimilation capabilities or nitrite
267 assimilation alone is not a core trait of marine *Synechococcus*.

268 The disparate loss of nitrogen assimilation genes across the *Synechococcus* phylogeny suggests
269 multiple factors might be influencing their retention. If iron limitation exerts a significant selective
270 pressure for nitrogen gene loss, why have high latitude HNLC *Synechococcus* lost both nitrate and
271 nitrite assimilation while equatorial HNLC *Synechococcus* strains only abandon a portion of the
272 pathway? This may be due to dueling pressures between iron stress and competition for reduced
273 nitrogen species. Complete loss of nitrate and nitrite assimilation may only be possible at high
274 latitudes where there is reduced competition for ammonium from other cyanobacteria.
275 *Prochlorococcus* is a major competitor for reduced nitrogen species, often relying solely on
276 ammonium as their nitrogen source. They are dominant in many low to mid latitude regions but
277 absent at high latitudes (3, 6, 11, 54), including Station P where they are undetectable by pigment
278 analysis, flow cytometry, and metagenomics. In low latitude HNLC regions, competition with
279 *Prochlorococcus* and heterotrophic bacteria may result in *Synechococcus* at least maintaining nitrite
280 uptake. In high latitude HNLC regions, competition for ammonium is lower due to the absence of
281 *Prochlorococcus*. Further, overall community competition for ammonium is likely low at Station P
282 given the relatively high standing stocks of ammonium at the DCM; Station P's peak ammonium
283 concentration was greater than threefold higher than those measured in equatorial HNLC sites (Fig.
284 S5).

285 The model for *Prochlorococcus* nitrogen gene gain and loss appears to be a close counterpart to
286 *Synechococcus*, where nitrogen gene retention is selected for by nitrogen competition but selected
287 against in iron- or light-limiting environments (11, 55). Low-light *Prochlorococcus* typically possess
288 only nitrite assimilation genes and are abundant at the subsurface nitrite maximum at the base of
289 the euphotic zone (54). Competition for ammonium near the nitrite maximum is intense due to the
290 presence of ammonia-oxidizing archaea, driving low-light *Prochlorococcus* to acquire nitrite
291 generated by ammonia oxidizers (56-58). Additionally, most low-light *Prochlorococcus* are
292 restricted to the base of the euphotic zone, where the energy required to reduce nitrate may drive
293 selection against maintaining nitrate assimilation (11, 54). High-light *Prochlorococcus* suffer less
294 light limitation and many strains possess both nitrate and nitrite assimilation pathways (6, 11, 59).
295 Critically, high-light *Prochlorococcus* clades adapted to low-iron conditions in the Equatorial Pacific
296 HNLC zone do not contain nitrate and nitrite utilization genes, reducing their iron requirements (11,
297 17, 60).

298 The inability to assimilate nitrate and nitrite by *Synechococcus* populations suggests a re-
299 evaluation of their role in HNLC nutrient cycles and carbon export. In these regions, iron availability
300 limits primary production and the degree to which nitrate can be utilized due to the iron requirements
301 for nitrate reduction and assimilation. New iron delivered to this region via lateral advection,
302 entrainment from subsurface waters, or from atmospheric inputs leads to pulses of nitrate-based
303 new production typically dominated by large phytoplankton (i.e., diatoms) that exceed surface
304 remineralization and can be exported (61). However, according to our findings, any new inputs of
305 iron would not stimulate nitrate utilization and subsequent growth in the dominant *Synechococcus*
306 population at Station P, prohibiting them from significantly contributing to organic carbon export
307 fluxes. Instead, Station P *Synechococcus* are confined to a tight recycling loop where they are
308 dependent on other primary producers to assimilate nitrate, which then directly or indirectly
309 regulates the subsequent availability of recycled forms of nitrogen such as ammonium or urea. The
310 direct inability of *Synechococcus* to bloom when pulses of iron are added to the system means their
311 fixed carbon is continuously cycled in the surface ocean when grazed upon or remineralized by
312 bacterioplankton, leaving little carbon to be exported to depth. Thus, whereas small cyanobacteria

313 such as *Prochlorococcus* and *Synechococcus* can be major contributors to ocean carbon export,
314 in the North Pacific and possibly other HNLC regions, this does not appear to be the case (1, 6, 62,
315 63).

316
317 While our analysis suggests the dominant *Synechococcus* populations at Station P do not contain
318 nitrate and nitrite assimilation pathways, we did detect the presence of these genes at relatively
319 low levels (< 10% of genome equivalents) in the unassembled metagenome. This suggests there
320 may be a small population of nitrate utilizing *Synechococcus* maintained in the community. At
321 different times of the year these populations may increase in abundance, potentially when iron is
322 pulsed into the system altering nitrogen cycles and carbon export potential. This emphasizes the
323 need for further genomic and biogeochemical investigations to model the role of cyanobacteria
324 more accurately in the Fe, N, and C cycles of HNLC zones. Further, if nitrogen assimilation
325 adaptation driven by iron limitation is prevalent within other HNLC *Synechococcus* populations, as
326 our TARA Oceans analysis suggests, it has significant impacts on nutrient cycling and associated
327 carbon export by the cyanobacterial community in a sizable fraction of the global ocean. Overall,
328 our results further support how iron availability affects primary productivity directly through limitation
329 but also has fundamentally shaped phytoplankton functional capabilities leading to cascading
330 effects on marine biogeochemical cycles and food webs.

331

332 **Materials and Methods**

333 Samples were collected at Station P in the North Pacific in August and September 2018 as part of
334 the NASA Export Processes in the Ocean from RemoTe Sensing (EXPORTS) expedition (24). Flow
335 cytometric enumeration of *Synechococcus* was performed on a Becton Dickinson Influx Cell Sorter
336 (BD-ICS) flow cytometer while at sea following previously published protocols (64). For uptake
337 incubations, seawater was collected with a trace metal clean rosette, aliquoted into acid washed
338 bottles, and inoculated with $\text{NaH}^{13}\text{CO}_3$ isotope and $\text{Na}^{15}\text{NO}_3^-$ isotope at 10% of ambient DIC and
339 NO_3^- concentrations and incubated for 24 hours. Samples were gravity filtered through pre-
340 combusted GF/F filters, dried and stored until onshore analysis at the UC Davis Stable Isotope
341 Facility (23). Ambient nutrient concentrations were collected as described in Siegel et al. (2021; ref
342 24).

343 For the metagenomes, seawater was prefiltered through a 5 μm membrane filter and cells collected
344 on 0.2 μm membrane filter. DNA for short read sequencing was extracted from the filters using a
345 DNeasy Powerwater kit. Internal genomic standards were added immediately before starting the
346 extraction. Metagenomes were sequenced with HiSeq 4000 as 2 x 150 bp reads. Metagenome
347 reads were annotated with a DIAMOND search against the NCBI Refseq protein database.
348 Metagenome assembled genomes (MAGS) were assembled with metaspades and then mapped
349 for read coverage with Bowtie2. Contigs were each binned by MetaBAT, MaxBin, and CONCOCT,
350 and then consolidated using DAS Tool and CheckM. *Synechococcus* MAG quality was increased
351 by performing several additional assemblies including Oxford nanopore long reads and manual
352 curation. DNA for long read sequencing was obtained by phenol chloroform extraction.

353 *Synechococcus* volumetric abundances were derived from internal standard normalized
354 metagenomes by recA recovery and internal standard genome recovery. Metagenome recA genes
355 were identified by a DIAMOND homology search against a custom RecA protein database, and the
356 resulting recA read counts were converted to volumetric abundances using the internal standards
357 recovery ratio and volume of seawater filtered. To calculate MAG population abundances, a
358 coverage-based ratio was calculated for each of the three internal standard genomes by mapping
359 metagenome reads to the internal standard reference genomes. The mean depth of coverage was
360 calculated by dividing the total number of bases mapped by the size of the genomes. This mean
361 depth of coverage represents the number of internal standard genomes recovered through
362 sequencing and was divided by the number of genome molecules added to the sample to determine
363 the recovery ratio. The *Synechococcus* MAG volumetric abundances was then determined by
364 mapping metagenome reads onto the *Synechococcus* MAG, calculating the mean depth of
365 coverage, and then dividing by the coverage-based recovery ratio and volume of seawater filtered.
366 Detailed descriptions of sample collection, processing, and analysis can be found in the
367 supplemental methods.

368

369 **Acknowledgements**

370 We are grateful to the NASA EXPORTS project leaders David Siegel (UCSB) and Ivona Cetinić
371 (NASA), chief scientist Deborah Steinberg (VIMS), the captain and crew of the *R/V Roger Revelle*,
372 and all the members of the EXPORTS team. We thank Matt Kellom for Amt alignments and analysis.
373 This research was supported by NASA grant 80NSSC17K0552 to S.G., A.M, and Nicolas Cassar,
374 NASA award 80NSSC18K1431 to A.S., NASA award 80NSSC17K0568 to Michael J. Behrenfeld
375 (Co-I J.R. Graff), and NSF award OCE-1756433 to K.N.B.

376

377

378 **References (listed in order of citation)**

- 379 1. T. L. Richardson, G. A. Jackson, Small phytoplankton and carbon export from the surface
380 ocean. *Science* **315**, 838–840 (2007).
- 381 2. P. Flombaum, *et al.*, Present and future global distributions of the marine Cyanobacteria
382 Prochlorococcus and Synechococcus. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 9824–9829
383 (2013).
- 384 3. Z. I. Johnson, *et al.*, Niche partitioning among Prochlorococcus ecotypes along ocean-
385 scale environmental gradients. *Science* **311**, 1737–1740 (2006).
- 386 4. J. A. Sohm, D. G. Capone, Phosphorus dynamics of the tropical and subtropical north
387 Atlantic: *Trichodesmium* spp. versus bulk plankton. *Mar. Ecol. Prog. Ser.* **317**, 21–28
388 (2006).
- 389 5. N. A. Ahlgren, G. Rocap, Diversity and Distribution of Marine Synechococcus: Multiple
390 Gene Phylogenies for Consensus Classification and Development of qPCR Assays for
391 Sensitive Measurement of Clades in the Ocean. *Front. Microbiol.* **3**, 213 (2012).
- 392 6. A. C. Martiny, S. Kathuria, P. M. Berube, Widespread metabolic potential for nitrite and
393 nitrate assimilation among Prochlorococcus ecotypes. *Proc. Natl. Acad. Sci. U. S. A.* **106**,
394 10787–10792 (2009).
- 395 7. J. A. Raven, M. C. W. Evans, R. E. Korb, The role of trace metals in photosynthetic
396 electron transport in O₂-evolving organisms. *Photosynth. Res.* **60**, 111–150 (1999).
- 397 8. J. Morrissey, C. Bowler, Iron utilization in marine cyanobacteria and eukaryotic algae.
398 *Front. Microbiol.* **3**, 43 (2012).
- 399 9. J. A. Raven, The iron and molybdenum use efficiencies of plant growth with different
400 energy, carbon and nitrogen sources. *New Phytol.* **109**, 279–287 (1988).
- 401 10. F. M. M. Morel, N. M. Price, The biogeochemical cycles of trace metals in the oceans.
402 *Science* **300**, 944–947 (2003).
- 403 11. P. M. Berube, A. Rasmussen, R. Braakman, R. Stepanauskas, S. W. Chisholm,
404 Emergence of trait variability through the lens of nitrogen assimilation in Prochlorococcus.
405 *Elife* **8** (2019).
- 406 12. P. W. Boyd, M. J. Ellwood, The biogeochemical cycle of iron in the ocean. *Nat. Geosci.* **3**,
407 675–682 (2010).
- 408 13. J. H. Martin, R. M. Gordon, S. Fitzwater, W. W. Broenkow, Vertex: phytoplankton/iron
409 studies in the Gulf of Alaska. *Deep Sea Res. A* **36**, 649–680 (1989).
- 410 14. J. K. Moore, S. C. Doney, D. M. Glover, I. Y. Fung, Iron cycling and nutrient-limitation
411 patterns in surface waters of the World Ocean. *Deep Sea Res. Part 2 Top. Stud.*
412 *Oceanogr.* **49**, 463–507 (2001).
- 413 15. A. W. Thompson, K. Huang, M. A. Saito, S. W. Chisholm, Transcriptome response of
414 high- and low-light-adapted Prochlorococcus strains to changing iron availability. *ISME J.*
415 **5**, 1580–1594 (2011).
- 416 16. K. R. M. Mackey, *et al.*, Divergent responses of Atlantic coastal and oceanic
417 Synechococcus to iron limitation. *Proc. Natl. Acad. Sci. U. S. A.* **112**, 9944–9949 (2015).
- 418 17. D. B. Rusch, A. C. Martiny, C. L. Dupont, A. L. Halpern, J. C. Venter, Characterization of
419 Prochlorococcus clades from iron-depleted oceanic regions. *Proc. Natl. Acad. Sci. U. S.*
420 **A** **107**, 16184–16189 (2010).
- 421 18. J. A. Sohm, *et al.*, Co-occurring Synechococcus ecotypes occupy four major oceanic
422 regimes defined by temperature, macronutrients and iron. *ISME J.* **10**, 333–345 (2016).
- 423 19. N. A. Ahlgren, B. S. Belisle, M. D. Lee, Genomic mosaicism underlies the adaptation of
424 marine Synechococcus ecotypes to distinct oceanic iron niches. *Environ. Microbiol.* **22**,
425 1801–1815 (2020).

426 20. F. A. Whitney, Nutrient variability in the mixed layer of the subarctic Pacific Ocean, 1987–
427 2010. *J. Oceanogr.* **67**, 481–492 (2011).

428 21. J. Nishioka, H. Obata, Dissolved iron distribution in the western and central subarctic
429 Pacific: HNLC water formation and biogeochemical processes. *Limnol. Oceanogr.* **62**,
430 2004–2022 (2017).

431 22. P. Boyd, P. J. Harrison, Phytoplankton dynamics in the NE subarctic Pacific. *Deep Sea*
432 *Res. Part 2 Top. Stud. Oceanogr.* **46**, 2405–2432 (1999).

433 23. M. G. Meyer, W. Gong, S. Kafriissen, O. Torano, D. Varela, A. E. Santoro, N. Cassar, S.
434 M. Gifford, A. K. Niebergall, G. C. Sharpe, A. Marchetti, in revision, Phytoplankton size-
435 class contributions to new and regenerated production during the EXPORTS Northeast
436 Pacific Ocean field deployment. *Elem Sci Anth* (2022).

437 24. D. A. Siegel, *et al.*, An operational overview of the EXport Processes in the Ocean from
438 RemoTe Sensing (EXPORTS) Northeast Pacific field deployment. *Elem Sci Anth* **9**,
439 00107 (2021).

440 25. H. McNair, M. Meyer, S. Lerch, A. E. Maas, B. Stephens, J. Fox, K. N. Buck, S. M. Burns,
441 I. Cetinic, M. Cohn, C. Durkin, S. Gifford, W. Gong, J. R. Graff, B. Jenkins, E. L. Jones, A.
442 E. Santoro, C. H. Shea, K. Stamieszkin, D. K. Steinberg, A. Marchetti, C. A. Carlson, S.
443 Menden-Deuer, M. A. Brzezinski, D. A. Siegel, T. Rynearson, submitted, A quantitative
444 analysis of food web dynamics in the Subarctic Pacific reveals a regenerative system
445 with low export potential. *Elementa: Science of the Anthropocene* (2022).

446 26. R. C. Hamme, *et al.*, Volcanic ash fuels anomalous plankton bloom in subarctic northeast
447 Pacific. *Geophys. Res. Lett.* **37** (2010).

448 27. P. Xiu, A. P. Palacz, F. Chai, E. G. Roy, M. L. Wells, Iron flux induced by Haida eddies in
449 the Gulf of Alaska. *Geophys. Res. Lett.* **38** (2011).

450 28. J. N. Fitzsimmons, *et al.*, Daily to decadadal variability of size-fractionated iron and iron-
451 binding ligands at the Hawaii Ocean Time-series Station ALOHA. *Geochim. Cosmochim.
452 Acta* **171**, 303–324 (2015).

453 29. P. J. Harrison, Station Papa Time Series: Insights into Ecosystem Dynamics. *J.
454 Oceanogr.* **58**, 259–264 (2002).

455 30. S. M. Gifford, S. Sharma, J. M. Rinta-Kanto, M. A. Moran, Quantitative analysis of a
456 deeply sequenced marine microbial metatranscriptome. *ISME J.* **5**, 461–472 (2011).

457 31. S. M. Gifford, J. W. Becker, O. A. Sosa, D. J. Repeta, E. F. DeLong, Quantitative
458 Transcriptomics Reveals the Growth- and Nutrient-Dependent Response of a
459 Streamlined Marine Methylotroph to Methanol and Naturally Occurring Dissolved Organic
460 Matter. *MBio* **7** (2016).

461 32. S. M. Gifford, *et al.*, Microbial Niche Diversification in the Galápagos Archipelago and Its
462 Response to El Niño. *Front. Microbiol.* **11**, 575194 (2020).

463 33. B. M. Satinsky, S. M. Gifford, B. C. Crump, M. A. Moran, Use of internal standards for
464 quantitative metatranscriptome and metagenome analysis. *Methods Enzymol.* **531**, 237–
465 250 (2013).

466 34. B. M. Satinsky, *et al.*, Microspatial gene expression patterns in the Amazon River Plume.
467 *Proc. Natl. Acad. Sci. U. S. A.* **111**, 11085–11090 (2014).

468 35. B. M. Satinsky, *et al.*, Expression patterns of elemental cycling genes in the Amazon
469 River Plume. *ISME J.* **11**, 1852–1864 (2017).

470 36. Y. Lin, S. Gifford, H. Ducklow, O. Schofield, N. Cassar, Towards Quantitative Microbiome
471 Community Profiling Using Internal Standards. *Appl. Environ. Microbiol.* **85** (2019).

472 37. E. Crossette, *et al.*, Metagenomic Quantification of Genes with Internal Standards. *MBio*
473 **12** (2021).

474 38. K. Zwirglmaier, *et al.*, Global phylogeography of marine *Synechococcus* and
475 *Prochlorococcus* reveals a distinct partitioning of lineages among oceanic biomes.
476 *Environ. Microbiol.* **10**, 147–161 (2008).

477 39. M. L. Paulsen, *et al.*, *Synechococcus* in the Atlantic Gateway to the Arctic Ocean.
478 *Frontiers in Marine Science* **3** (2016).

479 40. P. M. Berube, *et al.*, Single cell genomes of *Prochlorococcus*, *Synechococcus*, and
480 sympatric microbes from diverse marine environments. *Sci Data* **5**, 180154 (2018).

481 41. M. D. Lee, *et al.*, Marine *Synechococcus* isolates representing globally abundant
482 genomic lineages demonstrate a unique evolutionary path of genome reduction without a
483 decrease in GC content. *Environ. Microbiol.* **21**, 1677–1686 (2019).

484 42. J. J. Morris, R. E. Lenski, E. R. Zinser, The Black Queen Hypothesis: evolution of
485 dependencies through adaptive gene loss. *MBio* **3** (2012).

486 43. D. L. Erdner, N. M. Price, G. J. Doucette, M. L. Peleato, D. M. Anderson,
487 Characterization of ferredoxin and flavodoxin as markers of iron limitation in marine
488 phytoplankton. *Mar. Ecol. Prog. Ser.* **184**, 43–53 (1999).

489 44. C. Frazão, *et al.*, Ab initio determination of the crystal structure of cytochrome c6 and
490 comparison with plastocyanin. *Structure* **3**, 1159–1169 (1995).

491 45. Y. Sheng, *et al.*, Superoxide dismutases and superoxide reductases. *Chem. Rev.* **114**,
492 3854–3918 (2014).

493 46. L. R. Moore, A. F. Post, G. Rocap, S. W. Chisholm, Utilization of different nitrogen
494 sources by the marine cyanobacteria *Prochlorococcus* and *Synechococcus*. *Limnol.*
495 *Oceanogr.* **47**, 989–996 (2002).

496 47. B. S. Belisle, *et al.*, Genome Sequences of *Synechococcus* sp. Strain MIT S9220 and
497 Cocultured Cyanophage SynMITS9220M01. *Microbiol Resour Announc* **9** (2020).

498 48. N. J. Fuller, *et al.*, Clade-specific 16S ribosomal DNA oligonucleotides reveal the
499 predominance of a single marine *Synechococcus* clade throughout a stratified water
500 column in the Red Sea. *Appl. Environ. Microbiol.* **69**, 2430–2443 (2003).

501 49. J. B. Waterbury, The cyanobacteria—isolation, purification and identification. *The*
502 *prokaryotes* **4**, 1053–1073 (2006).

503 50. M. M. Dose, M. Hirasawa, S. Kleis-SanFrancisco, E. L. Lew, D. B. Knaff, The ferredoxin-
504 binding site of ferredoxin: Nitrite oxidoreductase. Differential chemical modification of the
505 free enzyme and its complex with ferredoxin. *Plant Physiol.* **114**, 1047–1053 (1997).

506 51. M. A. Saito, *et al.*, Multiple nutrient stresses at intersecting Pacific Ocean biomes
507 detected by protein biomarkers. *Science* **345**, 1173–1177 (2014).

508 52. C. Richon, A. Tagliabue, Biogeochemical feedbacks associated with the response of
509 micronutrient recycling by zooplankton to climate change. *Glob. Chang. Biol.* **27**, 4758–
510 4770 (2021).

511 53. Y. Shaked, B. S. Twining, A. Tagliabue, M. T. Maldonado, Probing the bioavailability of
512 dissolved iron to marine eukaryotic phytoplankton using *in situ* single cell iron quotas.
513 *Global Biogeochem. Cycles* **35** (2021).

514 54. P. M. Berube, *et al.*, Physiology and evolution of nitrate acquisition in *Prochlorococcus*.
515 *ISME J.* **9**, 1195–1207 (2015).

516 55. L. J. Ustick, *et al.*, Metagenomic analysis reveals global-scale patterns of ocean nutrient
517 limitation. *Science* **372**, 287–291 (2021).

518 56. P. M. Berube, A. Coe, S. E. Roggensack, S. W. Chisholm, Temporal dynamics of P
519 *rochlorococcus* cells with the potential for nitrate assimilation in the subtropical Atlantic
520 and Pacific oceans. *Limnol. Oceanogr.* **61**, 482–495 (2016).

521 57. M. W. Lomas, F. Lipschultz, Forming the primary nitrite maximum: Nitrifiers or
522 phytoplankton? *Limnol. Oceanogr.* **51**, 2453–2467 (2006).

523 58. W. Martens-Habbena, *et al.*, The production of nitric oxide by marine ammonia-oxidizing
524 archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger.
525 *Environ. Microbiol.* **17**, 2261–2274 (2015).

526 59. R. R. Malmstrom, *et al.*, Temporal dynamics of Prochlorococcus ecotypes in the Atlantic
527 and Pacific oceans. *ISME J.* **4**, 1252–1264 (2010).

528 60. R. R. Malmstrom, *et al.*, Ecology of uncultured Prochlorococcus clades revealed through
529 single-cell genomics and biogeographic analysis. *ISME J.* **7**, 184–198 (2013).

530 61. R. T. Pollard, *et al.*, Southern Ocean deep-water carbon export enhanced by natural iron
531 fertilization. *Nature* **457**, 577–580 (2009).

532 62. J. R. Casey, M. W. Lomas, J. Mandecki, D. E. Walker, Prochlorococcus contributes to
533 new production in the Sargasso Sea deep chlorophyll maximum. *Geophys. Res. Lett.* **34**
534 (2007).

535 63. L. Guidi, *et al.*, Plankton networks driving carbon export in the oligotrophic ocean. *Nature*
536 **532**, 465–470 (2016).

537 64. J. R. Graff, M. J. Behrenfeld, Photoacclimation Responses in Subarctic Atlantic
538 Phytoplankton Following a Natural Mixing-Restratification Event. *Frontiers in Marine*
539 *Science* **5** (2018).

540 **Figures and Tables**

541 **Figure 1.** Depth distributions of biological, nutrient, and uptake rates at Station P, September 7th
542 2018. *Chl a*: Chlorophyll a, ^{13}C uptake: radiolabeled carbon uptake rates, $^{15}\text{NO}_3^-$ uptake: nitrate
543 uptake rates, NH_4^+ uptake: ammonium uptake rates. f-ratios calculated from the upper 100m of
544 the water column for the $> 5 \mu\text{m}$ (red) and $< 5 \mu\text{m}$ (blue) phytoplankton fraction. Nitrate (NO_3^-) and
545 ammonium (NH_4^+) concentrations. Average mixed layer depth (MLD) for the cruise (29 m +/- 4.5
546 m) is indicated in *Chl-a* graph.

547 **Figure 2.** Metagenome-derived volumetric abundances of total *Synechococcus* cells and
548 *Synechococcus* MAG populations at Station P. A. Comparison of flow cytometry versus
549 metagenome derived *Synechococcus* abundances. The red line is the linear regression model,
550 and the black dashed line is the 1:1 line. B. Metagenome-derived depth distributions of total
551 *Synechococcus* cells, the subset of *Synechococcus* Clade I and IV populations, and the
552 abundances of cells represented by the three different MAGs. *recA* abundances (solid line) and
553 MAG abundances (dashed line) are separated into total (black), Clade I (blue), Clade IV (red), and
554 Other Clades (green).

555 **Figure 3:** A. Phylogenomic distribution of nitrogen acquisition (blue) and selected iron requiring
556 genes (red) across *Synechococcus* clades. Phylogenetic relatedness was determined by multiple
557 sequence alignment of each genome's concatenated 120 bacterial marker genes in GTDB-TK.
558 Station P *Synechococcus* MAGs are bolded and highlighted in gray. Numbers in a column
559 represent gene copies in a genome, with m standing for multiple copies of the ferredoxin gene, and
560 ^ standing for partial presence of the gene pathway. Only genomes with an estimated completeness
561 of >90% are included here (for a complete set of genomes see Supplemental Figure 3). B.
562 Distribution of nitrogen assimilation genes across select *Synechococcus* genomes. Station Papa
563 MAGs are labeled in blue. Light gray indicates homologous genes that are present in different order
564 within gene region. Red vertical lines indicate contig breaks.

565 **Figure 4.** Depth distribution of nitrogen assimilation gene prevalence in Station P unassembled
566 metagenomes. Nitrogen gene copy numbers per genome were calculated as the ratio of
567 *Synechococcus* nitrogen gene read abundance to *Synechococcus* *recA* read abundance, and then
568 log2 normalized. The solid vertical line is the 1:1 ratio representing a single copy of the gene per
569 *recA* (*Synechococcus* genome equivalent), with dotted lines representing other genome copy
570 numbers. *Seven samples are not included due to no nitrate transporter reads found in those
571 samples.

572 **Figure 5.** Global prevalence of *Synechococcus* select nitrogen metabolism genes in relation to iron
573 and nitrogen standing stocks. A. *Synechococcus* gene copy numbers for nitrate reductase, nitrite
574 reductase, and ammonium transporters for all TARA Stations and all EXPORTS Station P samples.
575 B. Global patterns of nitrate (background map), dissolved iron concentrations (outer circle of each
576 datapoint), and *Synechococcus* nitrate reductase genome copy numbers (inner circle of each
577 datapoint) for TARA stations and Station P (large circle). *Synechococcus* nitrogen copy numbers
578 were calculated using gene length normalized ratios derived from the TARA dataset. Annual nitrate
579 concentrations were derived from the WOA2018 global dataset. Dissolved iron concentrations
580 determined from the PISCES biogeochemical model and BYONIC 3R biogeochemistry dataset. C.
581 Nitrate to Iron ratio versus *Synechococcus* nitrate reductase gene copy number of the TARA
582 stations and EXPORTS Station P. Select stations within the Equatorial Pacific HNLC zone and the
583 Eastern Tropical Southern Pacific are labeled with their TARA ID.

584

585 **Table 1.** Genome characteristics of the *Synechococcus* Station P (Syn SP) MAGs. Clade: clade
586 of *Synechococcus* MAG binned to within GTDB

MAG	Source Samples	Clade	Assembled Genome Size (Mbp)	Completeness (%)	Contamination (%)	#Contigs	GC%
Syn_SP1	0-95m	IV	1.99	95.29	0.27	116	54.87
Syn_SP2	0-95m	I	2.21	97.92	1.64	81	53.4

587

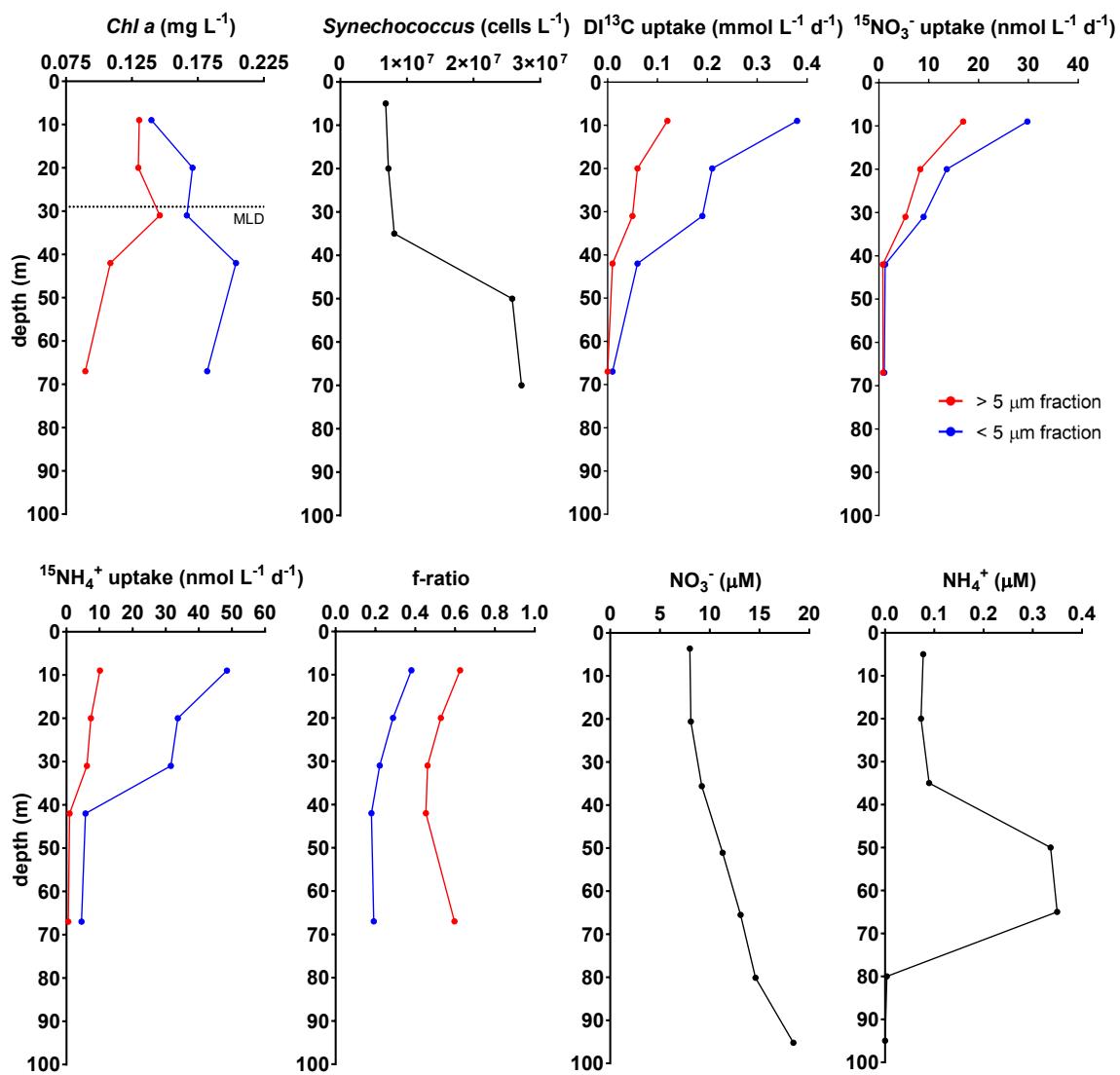


Figure 1. Depth distributions of biological, nutrient, and uptake rates at Station P, September 2018. Chlorophyll a, *Synechococcus* cell concentrations, radiolabeled carbon uptake rates, nitrate uptake rates, ammonia uptake rates. f-ratios calculated from the upper 100 m of the water column for the $> 5 \mu\text{m}$ (red) and $< 5 \mu\text{m}$ (blue) phytoplankton fraction. Non-size-fractionated ammonium (NH_4^+) and nitrate (NO_3^-) concentrations. Average mixed layer depth (MLD) for the cruise ($29 \text{ m} \pm 4.5 \text{ m}$) is indicated in *chl-a* graph.

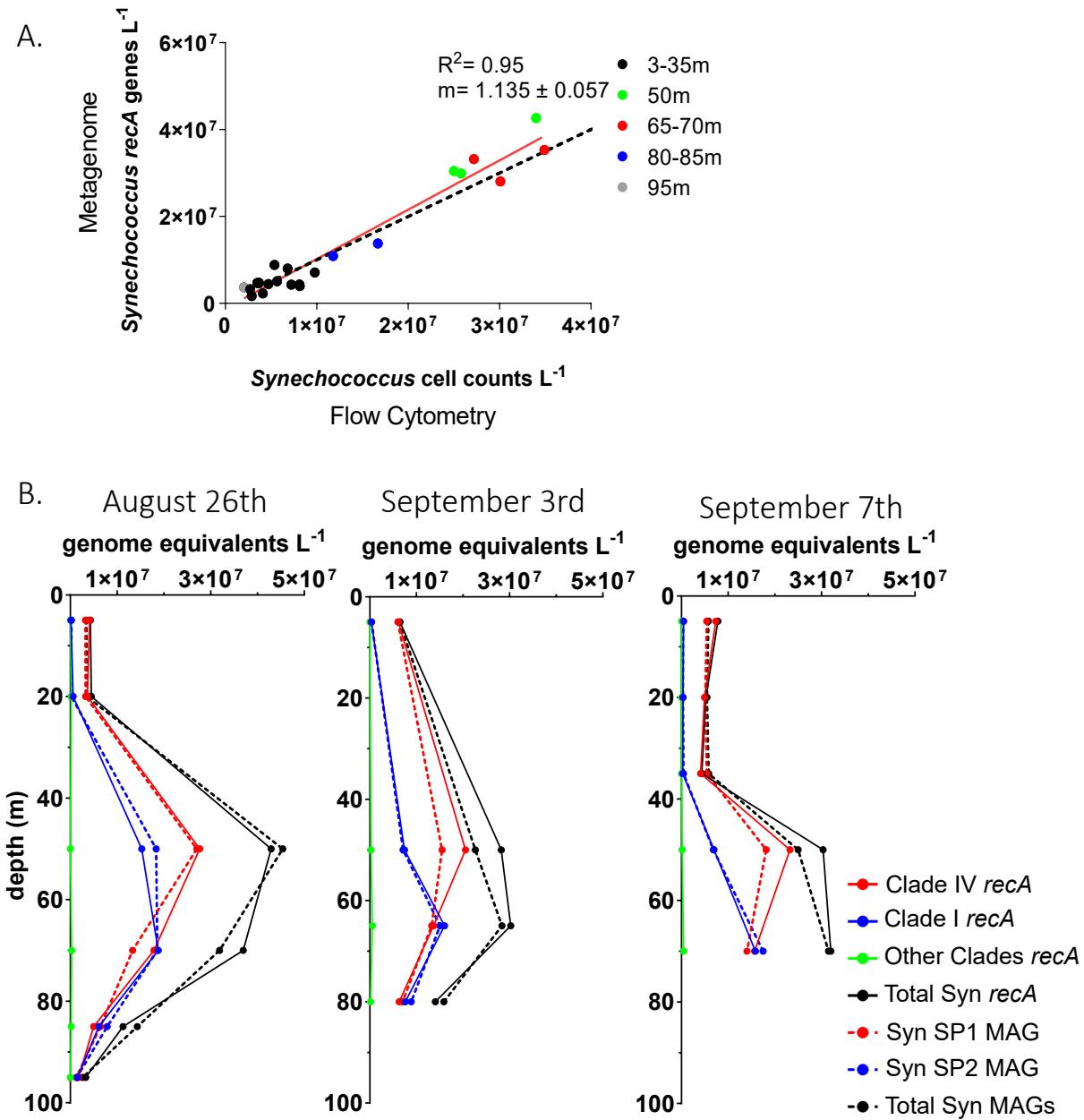


Figure 2. Metagenome-derived volumetric abundances of total *Synechococcus* cells and *Synechococcus* MAG populations at Station P. (A) Comparison of flow cytometry versus metagenome derived *Synechococcus* abundances. The red line is the linear regression model, and the black dashed line is the 1:1 line. (B) Metagenome-derived depth distributions of total *Synechococcus* cells, the subset of *Synechococcus* Clade I and IV populations, and the abundances of cells represented by the three different MAGs. *recA* abundances (solid line) and MAG abundances (dashed line) are separated into total (black), Clade I (blue), Clade IV (red), and Other Clades (green).

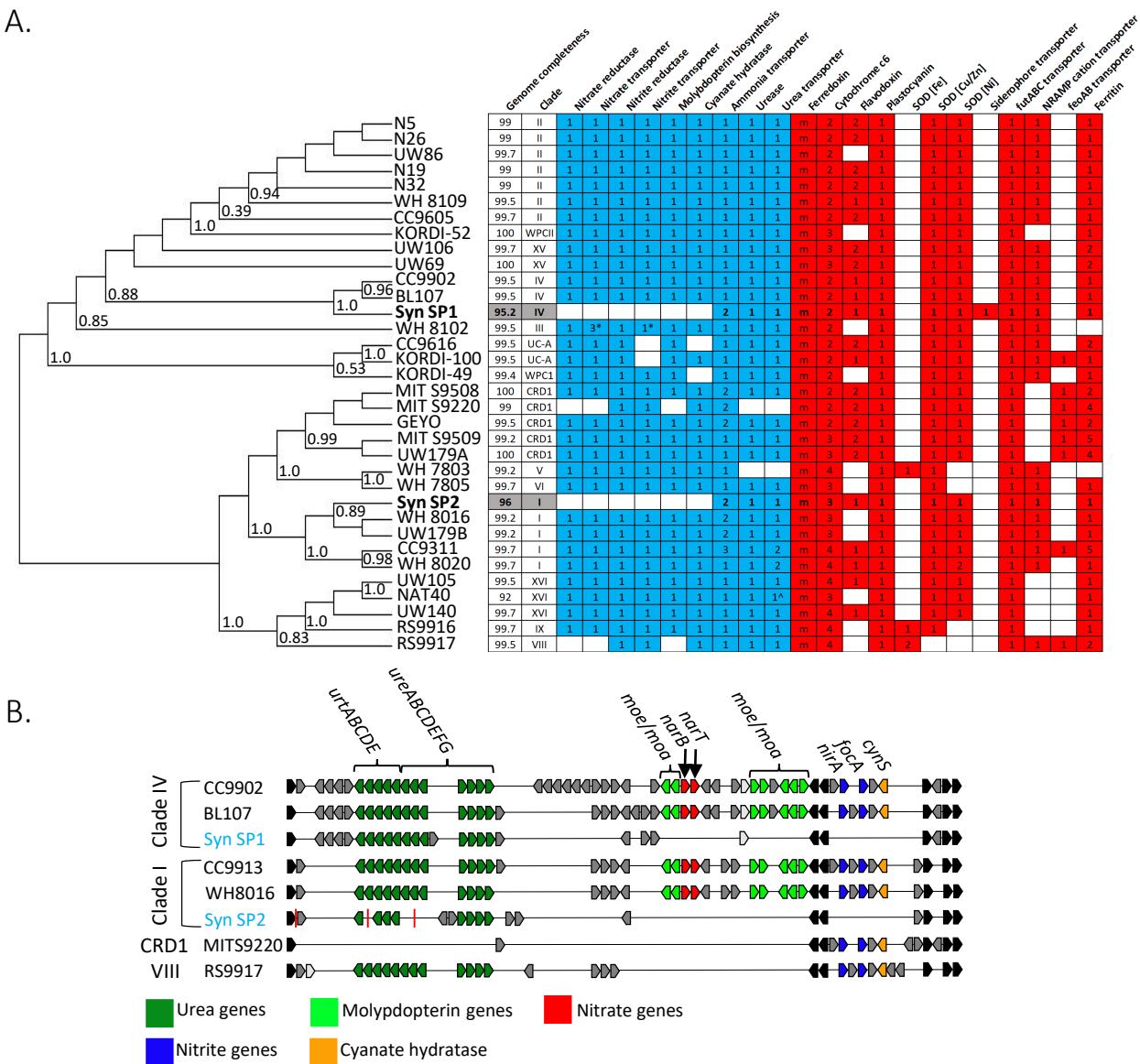


Figure 3: (A) Phylogenomic distribution of nitrogen (blue) and iron (red) associated genes across the *Synechococcus* clade. Only genomes with completeness >90% are included here (for an expanded set of genomes, including partial genomes, see Fig. S3). Phylogenetic relatedness was determined by marker gene comparison using GTDB-Tk. Station P *Synechococcus* MAGs are bolded and highlighted in gray. Numbers in a column represent gene copies in a genome, with 'm' standing for multiple copies of the ferredoxin gene, and '^' standing for partial presence of the gene pathway. (B) Distribution of nitrogen assimilation genes across select *Synechococcus* genomes. Station Papa MAGs are labeled in blue. Light gray indicates homologous genes that are present in different order within gene region. Red vertical lines indicate contig breaks.

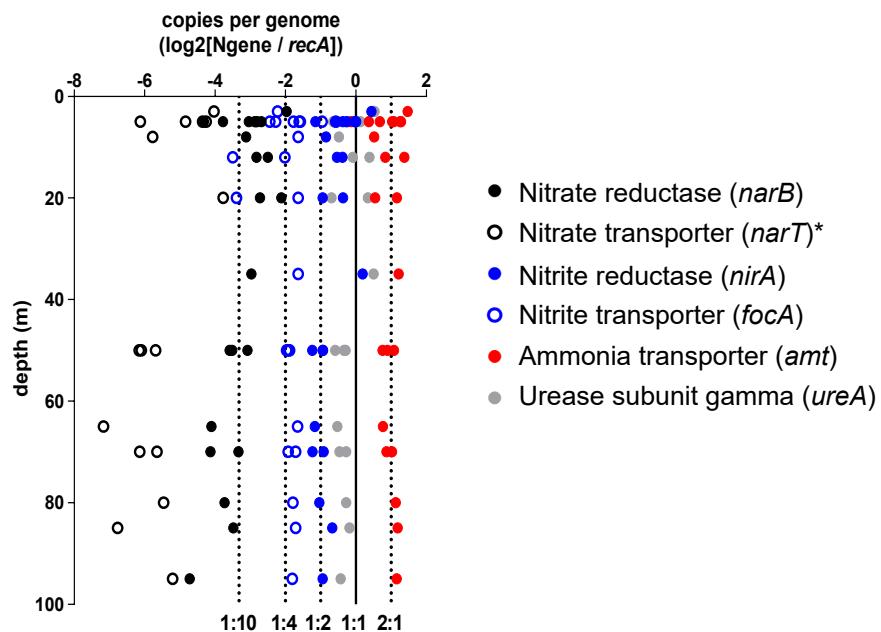


Figure 4. Depth distribution of nitrogen assimilation gene prevalence in Station P unassembled metagenomes. Nitrogen gene copy numbers per genome were calculated as the ratio of *Synechococcus* nitrogen gene read abundance to *Synechococcus* *recA* read abundance, and then log2 normalized. The solid vertical line is the 1:1 ratio representing a single copy of the gene per *recA* (*Synechococcus* genome equivalent), with dotted lines representing other genome copy numbers. *Seven samples are not included due to no nitrate transporter reads found in those samples.

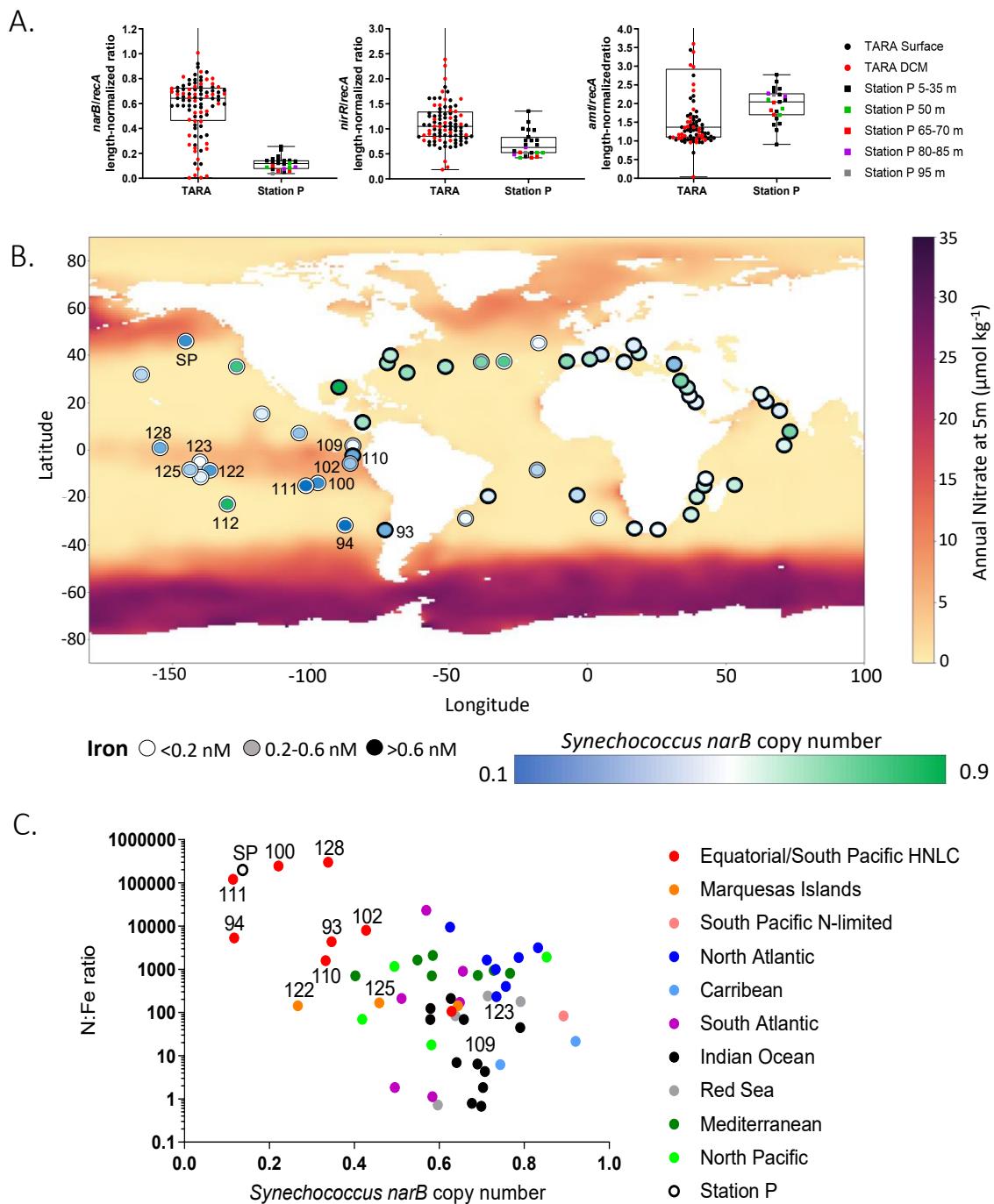


Figure 5. (A) Gene copy numbers for nitrate reductase, nitrite reductase, and ammonia transporters at TARA Ocean and Station P sites. (B) Global patterns of nitrate (background map) and dissolved iron concentrations (outer circle of each datapoint), and *Synechococcus* nitrate reductase genome copy numbers (inner circle of each datapoint) for TARA stations and Station P (large circle). *Synechococcus* nitrogen copy numbers were calculated using gene length normalized ratios derived from the publicly available TARA dataset. Annual nitrate concentrations were derived from the WOA2018 global dataset. Dissolved iron concentrations determined from the PISCES biogeochemical model and BYONIC 3R biogeochemistry dataset. (C) Nutrient ratios versus *Synechococcus* nitrate reductase gene copy number of the TARA stations and EXPORTS Station P. Select stations within the equatorial Pacific HNLC zone and the Eastern Tropical Southern Pacific are labeled with their TARA ID.