

1

2 **Modulation of I-wave generating pathways with repetitive**
3 **paired-pulse transcranial magnetic stimulation: A TMS-EEG**
4 **study**

5 Running title: Cortical modulation after iTMS

6

7 **Ryoki Sasaki, PhD, Brodie J. Hand, PhD, John G. Semmler, PhD* & George M. Opie,**
8 **PhD ***

9 *JGS and GMO share senior authorship.

10

11 Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide,
12 Australia

13

14 Correspondence:
15 George M. Opie
16 Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, SA
17 5005, Australia.
18 Email: george.opie@adelaide.edu.au

19

20 **Source of financial support**

21 RS is supported by Overseas Research Fellowship from the Japan Society for the Promotion
22 of Science [grant number: 202060103]. GMO is supported by a National Health and Medical
23 Research Council early career fellowship (APP1139723). Support was also provided by an
24 Australian Research Council Discovery Projects Grant (grant number DP200101009).

25

26 **Conflicts of interest statement**

27 None.

28

29 **Authorship statements**

30 Conceptualization: JGS; Data curation: RS; Formal analysis: RS; Funding acquisition: RS;
31 Investigation: RS; Methodology: RS, GMO, BJH and JGS; Project administration: GMO and
32 JGS; Supervision: GMO and JGS; Roles/Writing - original draft: RS and GMO; Writing -
33 review & editing: JGS.

34 **Abstract**

35 **Objectives:** Repetitive paired-pulse transcranial magnetic stimulation (iTMS) at indirect (I)
36 wave intervals increases motor-evoked potentials (MEPs) produced by TMS to primary
37 motor cortex (M1). However, the effects of iTMS at early and late intervals on the plasticity
38 of specific I-wave circuits remains unclear. The current study therefore aimed to assess how
39 the timing of iTMS influences intracortical excitability within early and late I-wave circuits.
40 To investigate the cortical effects of iTMS more directly, changes due to the intervention
41 were also assessed using combined TMS-electroencephalography (EEG).

42 **Material and Methods:** Eighteen young adults (24.6 ± 4.2 years) participated in four
43 sessions in which iTMS targeting early (1.5 ms interval; iTMS_{1.5}) or late (4.0 ms interval;
44 iTMS_{4.0}) I-waves was applied over M1. Neuroplasticity was assessed using both
45 posterior-to-anterior (PA) and anterior-to-posterior (AP) stimulus directions to record MEPs
46 and TEPs before and after iTMS. SICF at inter-stimulus intervals of 1.5 and 4.0 ms was also
47 used to index I-wave activity.

48 **Results:** MEP amplitude was increased after iTMS ($P < 0.01$) and this was greater for PA
49 responses ($P < 0.01$), but not different between iTMS intervals ($P = 0.9$). Irrespective of
50 iTMS interval and coil current, SICF was facilitated after the intervention ($P < 0.01$). While
51 the N45 produced by AP stimulation was reduced by iTMS_{1.5} ($P = 0.04$), no other changes in
52 TEP amplitude were observed.

53 **Conclusion:** The timing of iTMS failed to influence which I-wave circuits were potentiated
54 by the intervention. In contrast, reductions in the N45 suggest that the neuroplastic effects of
55 iTMS may include disinhibition of intracortical inhibitory processes.

56 **Keywords:** I-wave periodicity repetitive transcranial magnetic stimulation, Primary motor
57 cortex, Motor-evoked potential, TMS-evoked potential, TMS-EEG.

58 **Introduction**

59 Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that is
60 able to induce and measure neuroplastic changes in primary motor cortex (M1), providing
61 important evidence for the flexibility of M1 neurons. Neuroplasticity involves alterations to
62 glutamatergic and gamma-aminobutyric acid (GABA) neurotransmission (for review, see 1)
63 and greatly facilitates physiological and functional recovery following brain injury, for
64 example after stroke (for review, see 2) or traumatic brain injury (for review, see 3). Utilising
65 TMS to modulate neuroplasticity after injury therefore has the potential to provide
66 therapeutic benefits within neurorehabilitation.

67 When TMS is applied to M1, it produces a complex volley of waves within corticospinal
68 neurons that summate at the spinal cord to produce a motor-evoked potential (MEP) (for
69 review, see 4). The earliest component of this descending volley is the D-wave, which is
70 thought to reflect direct activation of the corticospinal axon. This is followed by a series of
71 I-waves that occur with a periodicity of ~1.5 ms: these are referred to as early (I1) and late
72 (I2 and I3) based on their recruitment order, and are thought to reflect input onto the
73 corticospinal neuron from local interneuronal networks (5). While these waves can only be
74 directly visualized using invasive recordings from the epidural space, it is possible to assess
75 their activity using paired-pulse TMS. For example, when two stimuli are applied over M1
76 with an interstimulus interval (ISI) corresponding to the I-wave periodicity, the associated

77 MEP is facilitated relative to the response generated by a single stimulus applied in isolation.

78 This is referred to as short-interval intracortical facilitation (SICF) and is thought to index

79 excitability of the I-wave circuits (for review, see 4).

80 While discrete application of paired-stimuli can index I-wave excitability, applying the same

81 stimulus pairs repeatedly over a 15-minute period instead produces a robust increase in MEPs

82 and SICF. This is referred to as I-wave periodicity repetitive TMS (iTMS) and is thought to

83 induce long-term potentiation (LTP)-like changes in M1 (6-8). Interestingly, previous work

84 has suggested that modifying the ISI used during iTMS can determine which I-wave circuits

85 are influenced by the intervention (7). For example, short ISIs of 1.5 ms would influence the

86 I1 wave circuitry, whereas longer ISIs of 4-5 ms would influence the I3 wave circuitry. As the

87 early and late I-wave circuits have unique physiological and functional relevance (9, 10), an

88 ability to target them selectively has important implications for the clinical application of

89 brain stimulation interventions. However, the effects of iTMS timing on the activity of

90 specific I-wave circuits has not been previously assessed.

91 The aim of the current research was therefore to investigate how iTMS applied with short and

92 longer ISIs influences the excitability of early and late I-wave circuits. This was achieved by:

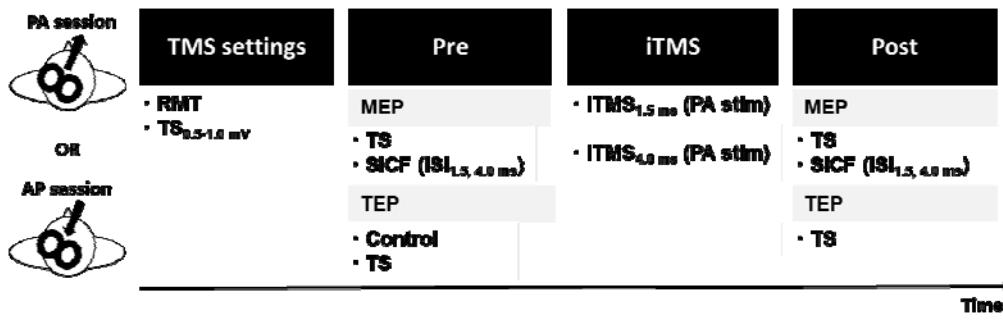
93 (1) applying iTMS with ISIs of 1.5 ms (iTMS_{1.5}, corresponding to the I1 wave) and 4 ms

94 (iTMS_{4.0}, corresponding to the I2-3 wave) in separate sessions and (2) measuring changes in

95 MEPs and SICF using both posterior-to-anterior (PA) and anterior-to-posterior (AP) current
96 directions, which are thought to recruit from different interneuronal populations (for review,
97 see 11). As a secondary aim, we also sought to investigate the cortical response to iTMS more
98 directly. This was achieved by using electroencephalography (EEG) to record the
99 TMS-evoked EEG potential (TEP)(for review, see 12).

100 **Methods**

101 *Participants*


102 Eighteen healthy, young adults (7 men and 11 women; mean age \pm SD = 24.6 \pm 4.2 years; age
103 range = 19-35 years) were recruited from the University and wider community to participate
104 in this study. All participants were right-handed, free of neurological and psychiatric
105 disorders, and were not taking any drugs that influence the central nervous system.

106 Contraindications to TMS were assessed using the TMS adult safety screen (13). A nominal
107 payment of \$15 per hour was offered to compensate for time and cost of participation.

108 Written informed consent was provided prior to inclusion and this study was conducted in
109 accordance with the *Declaration of Helsinki*. All experimental procedures were approved by
110 the University of Adelaide Human Research Ethics Committee (approval number:
111 H-026-2008).

112 *Experimental Arrangement*

113 Each participant visited our laboratory for four experimental sessions that were
114 approximately 2.5 hours long, held at the same time of day and separated by at least one
115 week. Each session involved recording MEPs and TEPs before and after application of iTMS
116 at either early or late intervals. While iTMS was always applied using a PA current, pre- and
117 post-iTMS measures were recorded with PA and AP current in separate sessions (Figure 1).
118 The order of the sessions was randomized within a participant. For the duration of each
119 session, participants sat in a comfortable chair with their right hand pronated on a table and
120 were instructed to keep their eyes open and remain relaxed. Surface electromyography
121 (EMG) was recorded from the right first dorsal interosseous (FDI) muscle via disposable
122 Ag/AgCl electrodes in a belly–tendon montage, with an additional Ag/AgCl electrode placed
123 over the right ulnar styloid as an earth. EMG data were sampled at 2 kHz using a CED1401
124 interface (Cambridge Electronic Design, Cambridge, UK), amplified (1000 \times) and band-pass
125 filtered (20–1000 Hz) by a CED1902 signal conditioner (Cambridge Electronic Design,
126 Cambridge, UK). Line noise was removed using a Humbug mains eliminator (Quest
127 Scientific, North Vancouver, Canada) and recordings were stored on a computer for off-line
128 analysis.

129

130 **Figure 1. Experimental protocol.** Four experimental sessions were performed involving
131 iTMS sessions (iTMS_{1.5} and iTMS_{4.0}) with a PA orientation and cortical assessments (both
132 MEPs and TEPs) with PA and AP orientations separated by at least one week. Abbreviations;
133 AP, anterior-posterior; ISI, inter-stimulus interval; iTMS, I-wave periodicity repetitive
134 transcranial magnetic stimulation; MEP, motor-evoked potential; PA, posterior-anterior; SICF,
135 short-interval intracortical facilitation; TEP, transcranial magnetic stimulation-evoked
136 potential; TMS, transcranial magnetic stimulation; TS, test stimulus.

137 **TMS**

138 Monophasic TMS pulses were delivered to the hand area of the left M1 using a
139 figure-of-eight branding iron coil connected to two Magstim 200² stimulators via a Bistim
140 unit (Magstim, Dyfed, UK). The coil was held tangentially to the scalp at an angle of
141 approximately 45° to the sagittal plane, at the location producing the largest stable response
142 in the resting right FDI muscle. This position was co-registered to the MNI-ICBM152 brain
143 template (14) using a Brainsight neuronavigation system (Rogue Research Inc, Montreal,
144 Canada). Stimulation was applied at a rate of 0.2 Hz with a 10% jitter between trials. Resting
145 motor threshold (RMT) was defined as the minimum intensity needed to evoke MEPs \geq 50
146 μ V in 5 of 10 consecutive trials during relaxation of the right FDI muscle (15). Stimulus
147 intensity is expressed as a percentage of maximum stimulator output (MSO).

148 *SICF*: SICF involved a subthreshold conditioning stimulus set at 90% RMT following a
149 suprathreshold test stimulus (TS) at ISIs of 1.5 (SICF_{1.5}) and 4.0 ms (SICF_{4.0}), corresponding
150 to the first and third SICF peaks (6, 16). The TS was set at the intensity required to produce
151 an MEP of ~ 0.5-1 mV when averaged over 20 trials. SICF at each time point was assessed
152 using a single block of 60 trials (20 each of SICF_{1.5}, SICF_{4.0}, and TS), the order of which was
153 pseudorandomised.

154 *iTMS*: iTMS involved 180 pairs of stimuli applied in a PA orientation every 5 s, resulting in a
155 total intervention time of 15 minutes (6, 8). The intensity was the same for both stimuli, and
156 was adjusted so that paired stimulation produced a response amplitude of ~1mV (assessed
157 over 20 trials before the intervention). The ISIs targeting the first and third SICF peak (i.e.,
158 1.5 and 4.0 ms) were applied in separate sessions (iTMS_{1.5} and iTMS_{4.0}). In order to mitigate
159 the effects of coil heating during the intervention, ice packs were used to cool the coil prior to
160 and during iTMS application. This ensured that the same coil could be used for all TMS
161 measures.

162 *EEG*
163 EEG data was recorded using a WaveGuard EEG cap (ANT Neuro, Hengelo, The
164 Netherlands), with 62 sintered Ag/AgCl electrodes in standard 10-10 positions, connected to
165 an eego mylab amplifier (ANT Neuro, Hengelo, The Netherlands). CPz electrode was used as

166 the reference for all recordings. Signals were filtered online (DC–0.26 × sampling frequency),
167 digitized at 8 kHz, and stored on a computer for offline analysis. The impedance of all
168 electrodes was constantly kept <10 kΩ through the experiment.

169 TEPs were recorded in a single block of stimulation that involved 100 pulses set at an
170 intensity of 100% RMT, and this was always applied after measurement of MEPs. In an
171 attempt to quantify the somatosensory- and auditory-evoked potentials that can confound the
172 direct brain response, a block of shoulder stimulation was also recorded before iTMS (17, 18).
173 This involved application of 100 TMS pulses set at 100% RMT, but with the coil held over
174 the acromial process of the right shoulder. Although this approach cannot fully replicate the
175 specific somatosensory input produced by TMS over the scalp, previous work has shown that
176 the EEG response to shoulder stimulation accounts for much of the late TEP signal that is
177 thought to be contaminated by somatosensory and auditory inputs (18), suggesting that this is
178 an adequate control condition despite the different stimulation topography. In additional
179 support of this approach, one recent study suggests that auditory input – which would have
180 been comparable between scalp and shoulder stimulation in the current study – is the greatest
181 source of sensory contamination to the TEP (19). During both scalp and shoulder stimulation,
182 participants listened to white noise played through ear plugs to reduce the influence of
183 auditory-evoked potentials. The volume of auditory masking was individually adjusted to
184 minimize audition of the TMS click (18, 19).

185 *Data analysis*

186 *MEP data:* MEP data were inspected visually and trials with muscle activity $> 20 \mu\text{V}$
187 peak-to-peak amplitude in the 100 ms prior to TMS were rejected. MEP amplitude recorded
188 in each trial was then quantified peak-to-peak and expressed in millivolts (mV). For SICF, the
189 magnitude of facilitation recorded with each ISI was quantified as a percentage of the TS
190 MEP amplitude recorded at baseline (8, 20). MEP amplitudes recorded during iTMS were
191 averaged over 10 consecutive stimuli, resulting in a total of 18 blocks. All responses during
192 iTMS were expressed relative to the mean response amplitude from the first block.

193 *EEG data:* All preprocessing and subsequent analysis was performed according to previously
194 reported procedures (21, 22) using custom scripts on the MATLAB platform (R2019b,
195 Mathworks, USA), in addition to EEGLAB (v2020.0) (23), TESA (v1.1.1.) (for review, see
196 22) and Fieldtrip (v20200607) (24) toolboxes. Data were epoched from -2000 ms to 2500 ms
197 around the TMS trigger, baseline corrected from -500 ms to -5 ms and merged into a single
198 file including both M1 (pre and post) and shoulder stimulation. Channels demonstrating
199 persistent, large amplitude muscle activity or noise were manually removed, and then data
200 segments associated with the large amplitude TMS artifacts were removed by cutting the data
201 from -2 to 10 ms, and replacing it using cubic interpolation. The data was subsequently
202 downsampled from 8 kHz to 500 Hz and epochs demonstrating bursts of muscle activity or
203 electrode noise were semi-automatically removed. Interpolated data from -2 to 10 ms was

204 then replaced with constant amplitude data (i.e., 0 s) and the conditions were split into two
205 separate files (M1 and shoulder stimulation). An initial independent component analysis
206 (ICA) was run on each condition using the FastICA algorithm (25), and 1-2 independent
207 components (IC's) representing the tail of the TMS-evoked muscle artifact were removed (for
208 review, see 22). Constant amplitude data from -2 to 10 ms were then replaced with cubic
209 interpolation prior to the application of band-pass (1-100 Hz) and notch (48-52 Hz) filtering
210 (zero-phase Butterworth filter implemented). In order to remove any additional decay
211 artifacts still present after the first round of ICA, the source-estimate-utilizing
212 noise-discarding (SOUND) algorithm was then applied; this approach estimates and removes
213 artefactual components within source space, and also allows missing electrodes to be
214 estimated and replaced (26). Following SOUND, data around the TMS pulse were again
215 replaced with constant amplitude data prior to application of a second round of ICA, and IC's
216 associated with blinks, eye movements, electrode noise, and muscle activity were
217 automatically identified using the TESA compselect function (default settings), and visually
218 inspected prior to removal (for review, see 22). Data around the TMS pulse were then
219 replaced with cubic interpolation, and all channels were re-referenced to average prior to a
220 final baseline corrected (-500 ms to -5 ms).

221 *Statistical analysis*

222 All analysis was performed using PASW statistics software version 28 (SPSS; IBM, Armonk,

223 NY, USA) or Fieldtrip toolbox (EEG data only). Unless otherwise stated, data are displayed
224 as mean \pm SEM. Normality was assessed using Kolmogorov-Smirnov tests. Significance was
225 set at $P < 0.05$.

226 *MEP data:* Two-factor linear mixed model analysis with repeated measures (LMM_{RM}) was
227 used to compare baseline RMT, TS intensity, iTMS intensity, and TS MEP amplitudes
228 between iTMS sessions (iTMS_{1.5} and iTMS_{4.0}) and coil orientations (PA and AP).
229 Three-factor LMM_{RM} was also used to compare baseline SICF between iTMS sessions, coil
230 orientations and ISIs (SICF_{1.5} and SICF_{4.0}). Two-factor LMM_{RM} was used to compare
231 normalized MEP amplitudes during iTMS between iTMS sessions and blocks (B2-B18). For
232 TS MEP amplitudes before and after iTMS, three-factor LMM_{RM} was used to compare values
233 between iTMS sessions, coil orientations and time points (pre and post). Furthermore,
234 four-factor LMM_{RM} was used to compare SICF between iTMS sessions, coil orientations,
235 time points and ISIs. For all models, participant was included as a random effect, an AR(1)
236 covariance structure was used, and restricted maximum likelihood estimation was applied.
237 Each model also included single trial MEP data. Significant main effects and interactions
238 were further investigated using custom contrasts with Bonferroni correction, implemented
239 using the ‘Compare’ subcommand in SPSS.

240 *TEP data:* In an attempt to identify the elements of the EEG signal that were likely to be

241 more contaminated by sensory inputs, the TEP produced by M1 stimulation was compared to
242 the response generated by shoulder stimulation in both spatial (i.e., between electrodes at
243 each time point) and temporal (i.e., across time points within each electrode) domains using
244 the Spearman correlation coefficient (17, 18). Spatial analyses were conducted from -50 to
245 350 ms, whereas temporal analyses were averaged over early (15-60 ms) middle (60-180 ms)
246 and late (180-280 ms) time periods (17). For both measures, correlation coefficients were
247 converted to Z-values using Fisher's transform prior to group analysis (17, 19). Statistical
248 significance was subsequently determined using a one-sample permutation test (derived from
249 10,000 permutations) assessing the hypothesis that each Z-score was greater than zero (i.e.,
250 positive correlation), with the t_{\max} method used to control the family-wise error rate for
251 multiple comparisons (27). The Z-values were transformed back into their original form for
252 display (27). For data within each session, TEPs were compared between pre- and post-iTMS
253 time points using cluster-based permutation analysis. Clusters were defined as two or more
254 neighboring electrodes and 10,000 iterations were applied. A cluster was deemed significant
255 if the cluster statistic exceeded $P < 0.05$ when compared with the permutation distribution. As
256 correlation analysis demonstrated that TEPs were highly related to the response to shoulder
257 stimulation from ~60 ms post-TMS (see Fig 6), comparisons between conditions were limited
258 to the early TEP components. This included N15 (10-15 ms), P30 (20-30 ms) and N45 (40-50
259 ms).

260 **Results**

261 All 18 participants completed the sessions involving PA stimulation, but 3 participants had
262 high stimulation thresholds that precluded collection of data with an AP orientation.
263 Consequently, all measures for AP stimulation included data from 15 participants. No adverse
264 events were reported. Baseline stimulus characteristics are compared between sessions and
265 current directions in Table 1. Comparisons of RMT and TS intensity between coil orientations
266 showed that stimulus intensities were all higher during AP stimulation (RMT: $F_{(1,26.17)} =$
267 $82.98, P < 0.01$; TS: $F_{(1,19.14)} = 103.76, P < 0.01$), but this was not different between iTMS
268 sessions (RMT: $F_{(1,46.1)} = 0.95, P = 0.34$; TS: $F_{(1,45.83)} = 1.65, P = 0.21$) and there was no
269 interaction between factors (RMT: $F_{(1,40.44)} = 2.12, P = 0.15$; TS: $F_{(1,38.30)} = 0.39, P = 0.54$).
270 Baseline TS MEP amplitudes showed no differences between iTMS sessions ($F_{(1,432.52)} =$
271 $0.001, P = 0.98$) or coil orientations ($F_{(1,441.17)} = 1.41, P = 0.24$), and no interaction between
272 factors ($F_{(1,480.74)} = 0.29, P = 0.59$). Comparisons of iTMS intensity showed higher intensities
273 during the iTMS_{4.0} sessions ($F_{(1,18.656)} = 5.35, P = 0.03$) and during the PA sessions ($F_{(1,22.100)}$
274 $= 22.77, P < 0.01$), but no interaction between factors ($F_{(1,42.173)} = 0.59, P = 0.45$).
275 Comparisons of baseline SICF between ISIs showed that SICF_{1.5} resulted in greater
276 facilitation than SICF_{4.0} ($F_{(1,570.74)} = 260.36, P < 0.01$). However, this was not different
277 between iTMS sessions ($F_{(1,540.95)} = 1.48, P = 0.22$) or coil orientations ($F_{(1,543.02)} = 0.77, P =$
278 0.38), and there was no interaction between factors (all $P > 0.18$).

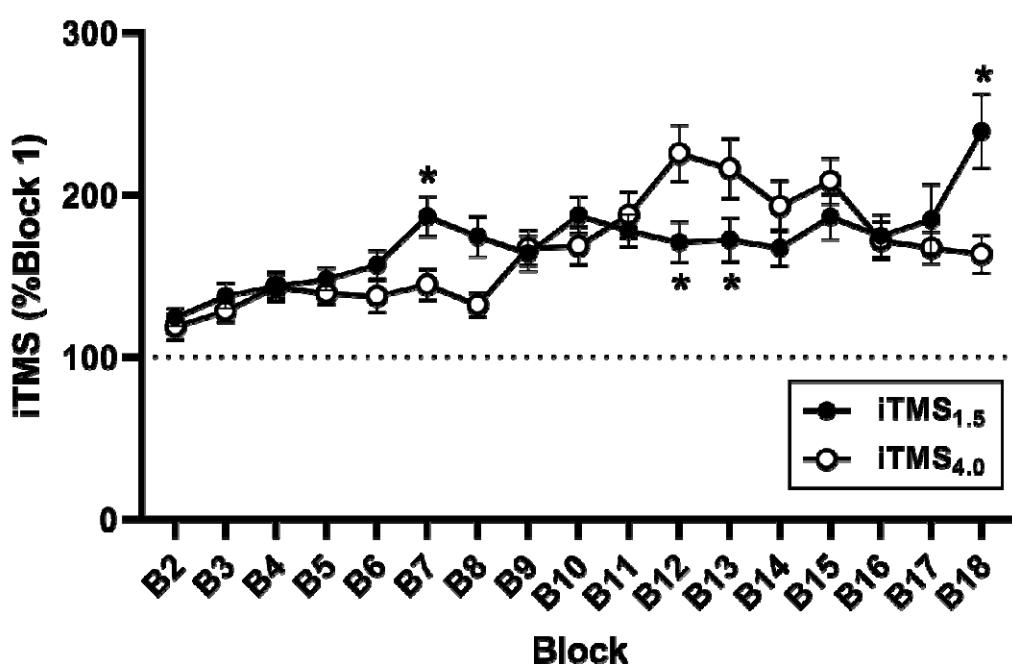
279 *Corticospinal excitability during iTMS.*

280 Figure 2 shows changes in MEP amplitude expressed as percentages relative to the first iTMS

281 block. No difference was found between iTMS sessions ($F_{(1,2116.46)} = 0.41$, $P = 0.52$).

282 However, values varied over blocks ($F_{(16,3207.57)} = 4.87$, $P < 0.01$), with post-hoc comparisons

283 showing increased amplitudes during blocks 10-15, 17, and 18 relative to block 2 (all $P <$


284 0.03). Furthermore, there was an interaction between factors ($F_{(16,3204.25)} = 1.90$, $P = 0.02$),

285 with post-hoc comparisons showing differences between iTMS_{1.5} and iTMS_{4.0} at B7, B12,

286 B13, and B18 (all $P < 0.05$). Post-hoc comparisons also showed increased amplitudes during

287 block 18 relative to block 2 in iTMS_{1.5} ($P < 0.01$) and during blocks 12-15 relative to block 2

288 in iTMS_{4.0} (all $P < 0.02$).

289

290 **Figure 2. Corticospinal excitability changes during iTMS.** iTMS_{1.5} (black circles) and
291 iTMS_{4.0} (white circles) are averaged over 10 consecutive MEP trials, and then the block 2-18

292 were normalized by the first block. * $P < 0.05$ compared to iTMS_{4.0}. Abbreviations; B, block;
293 iTMS, repetitive paired-pulse TMS at I-wave intervals.

294 *Changes in corticospinal and intracortical excitability after iTMS.*

295 TS MEP amplitudes before and after iTMS are shown in Figure 3A and B. MEP amplitudes

296 were not different between iTMS sessions ($F_{(1,635..68)} = 0.02$, $P = 0.89$). However, responses

297 were larger with PA stimulation ($F_{(1,627.7)} = 13.81$, $P < 0.01$) and at the post-iTMS time point

298 ($F_{(1,649.23)} = 46.86$, $P < 0.01$), and there was an interaction between coil orientation and time

299 point ($F_{(1,642.07)} = 4.16$, $P = 0.04$). Post-hoc analysis showed that, although MEPs were

300 increased after iTMS for both coil orientations ($P < 0.01$), post-iTMS responses were larger

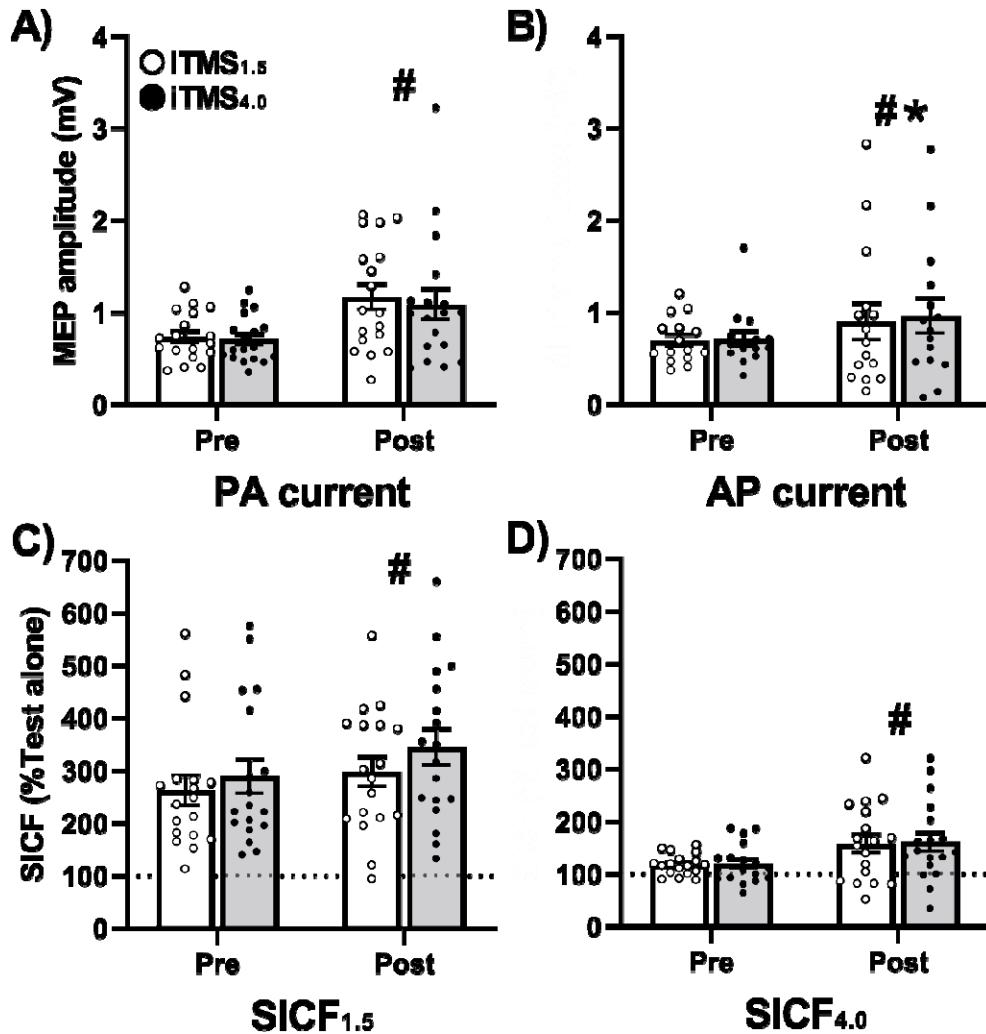
301 for PA than AP stimulation ($P < 0.01$). No other interactions between factors were found (all

302 $P > 0.44$).

303 SICF before and after iTMS is shown in Figure 3C and D. While SICF was not different

304 between coil orientations ($F_{(1,991.59)} = 3.63$, $P = 0.06$), it was increased after iTMS ($F_{(1,1017.89)}$

305 $= 27.3$, $P < 0.01$), and varied between iTMS sessions ($F_{(1,989.45)} = 7.5$, $P < 0.01$) and ISIs


306 ($F_{(1,1090.98)} = 449.61$, $P < 0.01$). Furthermore, there was an interaction between iTMS session

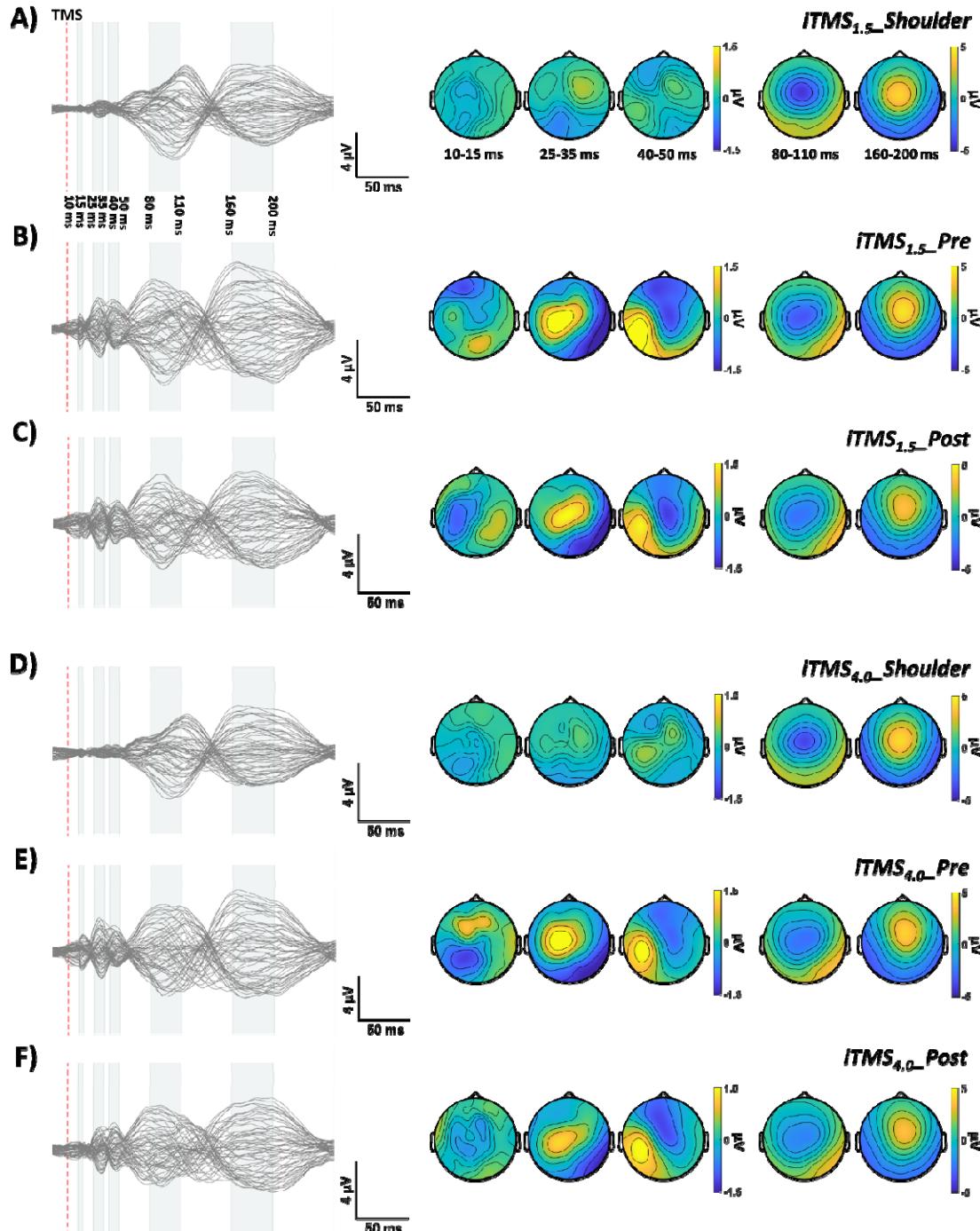
307 and ISI ($F_{(1,1072.22)} = 4.97$, $P = 0.03$). Post-hoc analysis showed that SICF_{1.5} was larger than

308 SICF_{4.0} within each iTMS session ($P < 0.01$), whereas SICF_{1.5} during the iTMS_{4.0} session was

309 greater than during the iTMS_{1.5} session ($P < 0.01$). No other interactions between factors

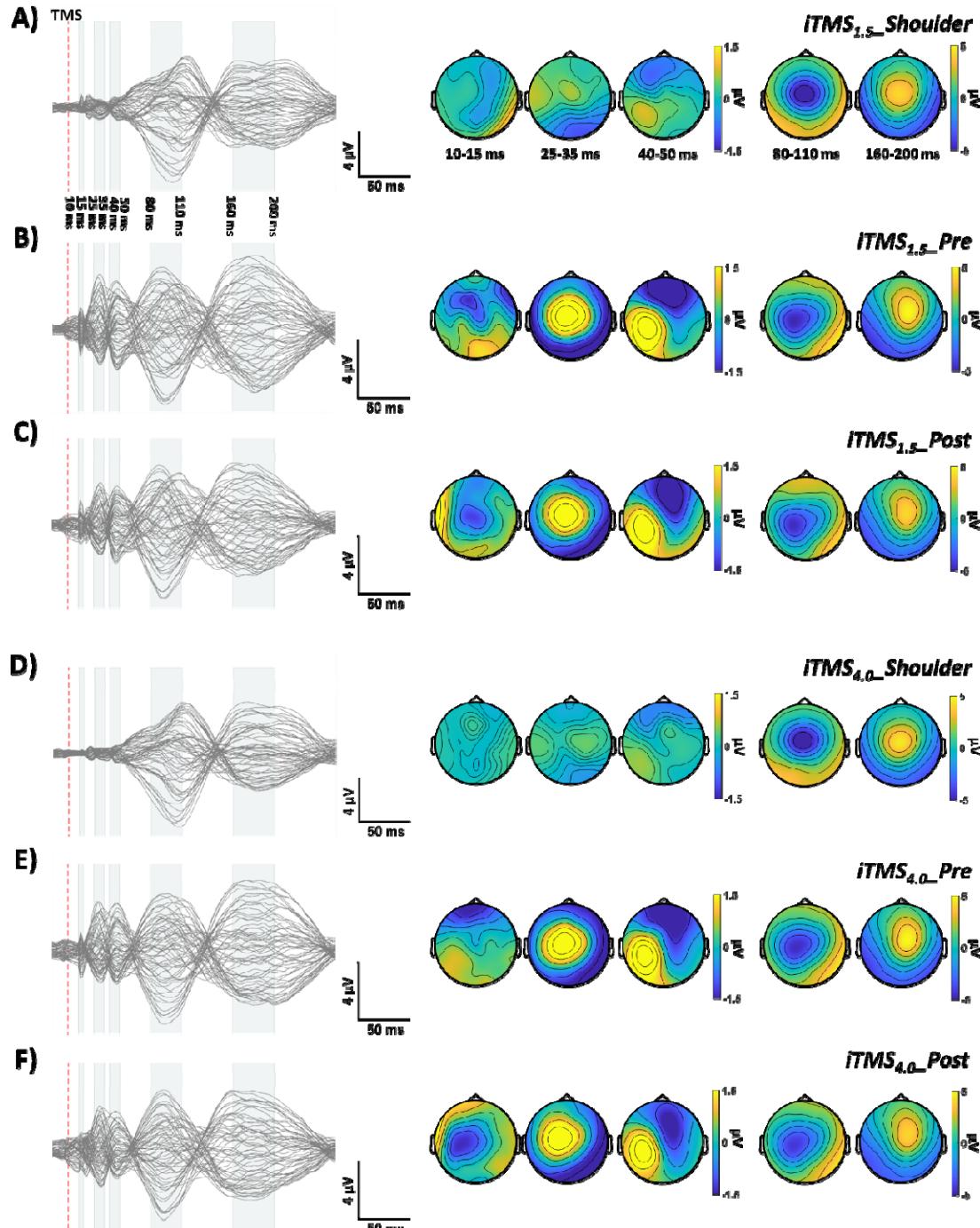
310 were found (all $P > 0.13$).

311

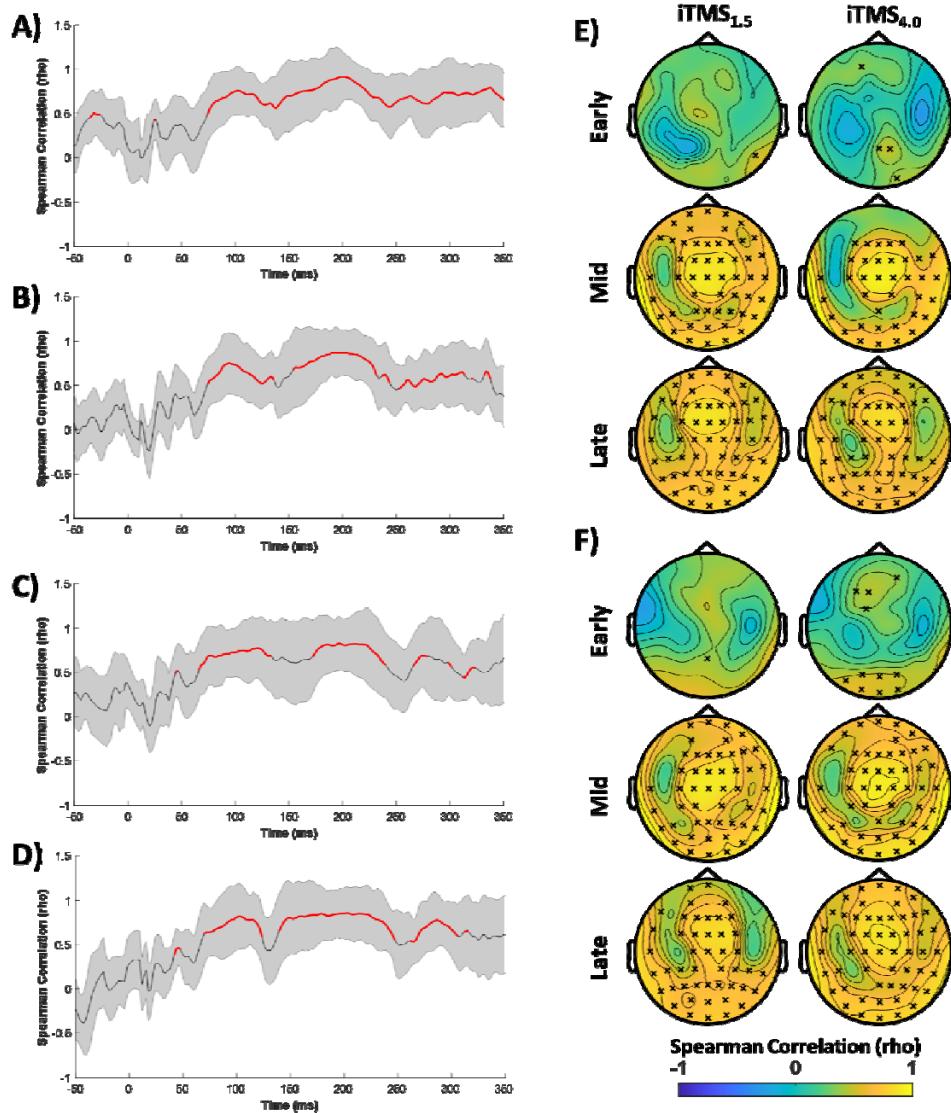

312 **Figure 3. Corticospinal and intracortical excitability changes after iTMS.** Top panels (A,
313 B) represent TS MEPs with PA (A) and AP orientations (B) before and after iTMS_{1.5} and
314 iTMS_{4.0}. Bottom panels (C, D) represent SICF, which was normalized to baseline TS MEP
315 amplitudes, with inter-stimulus intervals of 1.5 (C) and 4.0 ms (D) averaged over PA and AP
316 orientations before and after iTMS_{1.5} and iTMS_{4.0}. Each panel contains individual and mean
317 values. #P < 0.05 compared between pre and post; *P < 0.05 compared to PA responses at the
318 same time point. Abbreviations; AP, anterior-posterior; iTMS, repetitive paired-pulse TMS at
319 I-wave intervals; MEP, motor-evoked potential; PA, posterior-anterior; SICF, short-interval
320 facilitation; stim, stimulation.

321 *TEPs preprocessing and correlation analysis*

322 The average number of channels, epochs and IC's removed during each step of the


323 preprocessing pipeline are shown in Table 2. Figures 4 and 5 show grand-average TEP
324 waveforms elicited by M1 and shoulder stimulation, whereas Figure 6 shows correlation
325 coefficients resulting from comparisons between M1 and shoulder stimulation in both spatial
326 (Figure 6A, B, C, D) and temporal (Figure 6E, F) domains. For both current directions,
327 spatial correlations identified significant relationships between these conditions that began at
328 ~60 ms post TMS. In support of this, results of the temporal correlations suggested that the
329 two signals were largely unrelated within the Early period, but became highly correlated
330 across the scalp in Mid and Late periods. These results suggest that, although the early TEP
331 response was likely to be less contaminated by sensory inputs, signal within the Mid and Late
332 periods were likely to be heavily contaminated. Consequently, all statistical analyses of TEP
333 amplitude were limited to the early period (Figure 7).

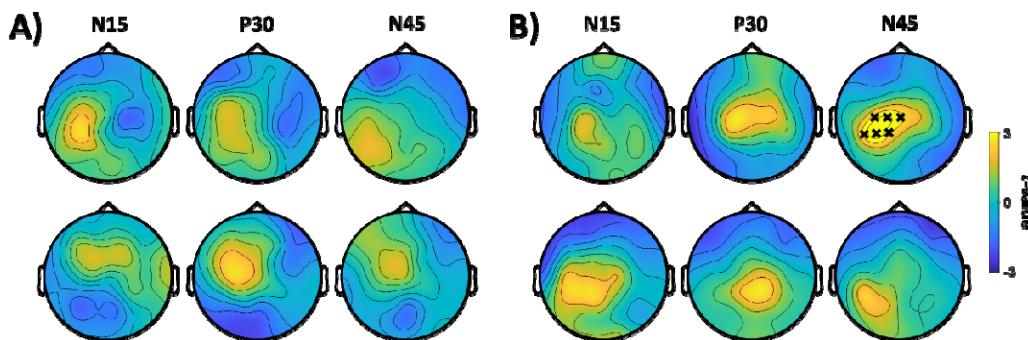
334


335

336 **Figure 4. Grand average TEP waveforms and topographies with PA stimulation.** (A, B,
337 C) Shoulder (A) and M1 stimulation before and after iTMS_{1.5} (B, C). (D, E, F) Shoulder (D)
338 and M1 stimulation before and after iTMS_{4.0} (E, F). Baseline TEP waveforms show several
339 typical TEP components, named as N15, P30, P45, N100, and P180. Abbreviation; TMS,
340 transcranial magnetic stimulation; iTMS, repetitive paired-pulse TMS at I-wave intervals.

341

342 **Figure 5. Grand average TEP waveforms and topographies with AP stimulation.** (A, B,
343 C) Shoulder (A) and M1 stimulation before and after iTMS_{1.5} (B, C). (D, E, F) Shoulder (D)
344 and M1 stimulation before and after iTMS_{4.0} (E, F). Baseline TEP waveforms show several
345 typical TEP components, named as N15, P30, P45, N100, and P180. Abbreviation; TMS,
346 transcranial magnetic stimulation; iTMS, repetitive paired-pulse TMS at I-wave intervals.


347

348 **Figure 6. TEPs and sensory correlations.** (A, B, C, D) Spatial correlations between EEG
349 response to M1 and shoulder stimulation with PA current in iTMS_{1.5} (A) and iTMS_{4.0} (B)
350 sessions and that with AP current in iTMS_{1.5} (C) and iTMS_{4.0} (D) sessions across all EEG
351 electrodes. Red line segments indicate time periods that are significantly related between
352 stimulation conditions. (E, F) Temporal correlations between EEG response to M1 and
353 shoulder stimulation with PA (E) and AP (F) during Early (15-60 ms), Mid (60-180 ms) and
354 Late (180-280 ms) time periods. Black crosses show that electrodes were significantly related
355 between conditions. Abbreviation; iTMS, repetitive paired-pulse TMS at I-wave intervals.

356 *Changes in cortical excitability after iTMS*

357 For PA sessions, there were no differences between pre- and post-iTMS TEP amplitude (all P

358 > 0.06). In contrast, cluster-based comparisons of the N45 generated by AP stimulation
359 identified a positive cluster ($P = 0.039$), which was associated with a decrease in amplitude
360 after iTMS_{1.5}. However, no differences were found for N15 and P30 (all $P = 1$). Furthermore,
361 there was no change in any of the investigated components after iTMS_{4.0} (all $P = 1$).

362
363 **Figure 7. Comparison of TEPs between pre and post using cluster analysis.** (A, B)
364 Cluster-based permutation t test comparing the TEPs amplitudes with PA (A) and AP
365 stimulation (B) before and after iTMS_{1.5} (top row) and iTMS_{4.0} (bottom row). Black crosses
366 show a significant cluster between pre- and post-iTMS TEP amplitude.

367 Discussion

368 The aim of this study was twofold: (1) to contrast the effects of iTMS applied with short and
369 longer ISIs on the activity of early and late I-wave circuits and (2) to investigate the cortical
370 response to iTMS. To achieve this, MEPs and TEPs were recorded using PA and AP current
371 before and after iTMS_{1.5} and iTMS_{4.0}. This approach produced facilitation of corticospinal
372 (MEPs) and intracortical (SICF) excitability that was comparable between iTMS intervals. In
373 contrast, changes in the TEP were only apparent after iTMS_{1.5}, and were limited to the N45
374 produced by AP stimulation. While supporting the cortical effects of iTMS, these results also

375 suggest that we were unable to specifically target different I-wave circuits by modifying the
376 temporal profile of iTMS.

377 *Modifying iTMS ISI did not manipulate specific I-wave circuits.*

378 While previous work has investigated the effects of iTMS applied with short (20, 28) and
379 longer (7, 8) ISIs, the current study is the first to compare these directly. In keeping with the
380 existing literature, we found that iTMS with both intervals produced facilitation of MEPs and
381 SICF, indicating a neuroplastic increase in M1 excitability. However, given that previous
382 work has suggested that modifying ISI determines which I-waves are influenced by iTMS
383 (7), we expected that the effects of iTMS would vary between ISIs. In particular, SICF is
384 thought to provide a more specific index of excitability within different I-wave circuits (16),
385 and we therefore expected its modulation by iTMS to be ISI-dependent (e.g., iTMS_{1.5}
386 increases SICF_{1.5} but not SICF_{4.0}, and vice versa). In contrast, changes to both MEPs and
387 SICF were not different between iTMS ISIs. Consequently, our findings do not support the
388 idea that modifying iTMS ISI allows specific targeting of different I-wave circuits.

389 While we were unable to demonstrate the expected specificity, it is important to note that
390 stimulus intensities within the current study differed between SICF and iTMS. In contrast,
391 previous work reporting differential effects of iTMS on specific I-waves used the same
392 stimulus intensity for both. An alternative explanation for our results could therefore be that

393 the neuronal populations targeted by our intervention may have differed to the population
394 recruited by SICF, and this may have resulted in an apparent loss of specificity in how SICF
395 was influenced by iTMS. In particular, di-synaptic disinhibition of an inhibitory circuit
396 (likely involving gamma-aminobutyric acid type A; GABA_A) has been shown to influence
397 I-wave excitability assessed with SICF at short and longer latencies (29). Furthermore, the
398 perithreshold intensity we applied during iTMS would be expected to recruit relatively
399 greater proportions of low threshold inhibitory circuits than the higher stimulus intensity used
400 by Long and colleagues (7). Consequently, while the neuroplastic effects reported by Long
401 and colleagues were likely more focused on the excitatory interneuronal circuits responsible
402 for I-wave generation, it is possible that the effects of our intervention involved activation of
403 both the low threshold disinhibitory circuit, and higher threshold excitatory circuits. Within
404 this construct, activation of the disinhibitory circuit may have produced a generalised
405 facilitation that obscured any temporally-specific effects of iTMS. While speculative, this
406 possibility nonetheless demonstrates the importance of future work investigating the
407 influence of stimulus intensity on the effects of iTMS.

408 In an attempt to more broadly characterise interneuronal circuits that might be differentially
409 influenced by iTMS, excitability measures were recorded using both PA and AP currents.
410 This approach found that single-pulse MEPs recruited with PA current were more potentiated
411 than those recruited with AP current. One explanation for this response could be that the

412 intervention was applied with a PA current, and elements activated by PA stimulation were
413 therefore modulated to a greater extent. Given this, it remains possible that iTMS applied
414 with an AP current may be more selective for modifying AP circuits. As this has not been
415 attempted previously, it will be important to assess in future work. Nonetheless, the response
416 within each current direction did not vary between iTMS intervals, further suggesting that
417 modification to ISI did not influence specific I-wave circuits. A caveat to this interpretation is
418 that stimulus conditions in the current study (i.e., 0.5-1 mV response in resting muscle) were
419 unlikely to have produced isolated recruitment of early (PA current) or late (AP current)
420 I-waves (for review, see 11). Consequently, our measures may not have been sensitive enough
421 to identify subtle effects within different intracortical elements. Future work implementing
422 more sensitive indices of I-wave recruitment (i.e., low intensity stimulation in active muscle)
423 following iTMS will therefore be an interesting topic of investigation.

424 *TEP measures of cortical excitability are modulated by iTMS.*
425 Correlation analyses comparing TEP amplitude with the peripherally-evoked potential
426 generated by shoulder stimulation suggested that responses were highly correlated from
427 approximately 60 ms. This is consistent with a growing literature (17, 18), and has been
428 suggested to indicate that the later TEP peaks are likely more contaminated by
429 sensory-evoked potentials (17-19). To avoid the confounding influence of this contamination,
430 we therefore decided to limit TEP analysis to the early components that are thought to be

431 more reflective of cortical excitability, including N15, P30 and N45. The results of this
432 approach suggested that the amplitude of N45 was reduced by iTMS (Fig 7). Studies using
433 pharmacological intervention have suggested that N45 reflects activity of intracortical
434 inhibitory circuits involving GABA_A (30-32). In support of discussion within the previous
435 section, our TEP results therefore suggest that application of iTMS produced disinhibition of
436 GABA_Aergic inhibitory circuits.

437 As suggested above, the lower stimulus intensities we applied during iTMS may have
438 resulted in effects on disinhibitory circuits that may not be as apparent following
439 interventions applied with higher stimulus intensities. Consequently, it remains possible that
440 utilising higher stimulus intensities during iTMS may reveal a different TEP response,
441 possibly more focused on indices of motor cortical excitation like the P30 (for review, see 12).

442 Despite this, it is interesting that changes in the N45 were only apparent in responses
443 generated with AP stimulation following iTMS_{1.5}. While the reason for this remains to be
444 determined, it seems likely that it also reflects sensitivity to GABAergic circuits. For example,
445 previous work using MEPs to assess short-interval intracortical inhibition (SICI) has shown
446 that AP responses are more sensitive to activity of GABAergic inhibitory circuits, possibly
447 due to preferential activation of late I-waves (17, 33, 34). Furthermore, the AP session of the
448 iTMS_{1.5} intervention applied the lowest intensity stimulation (see '*iTMS intensity*' in Table 1),
449 suggesting that its activation of low threshold inhibitory circuits would have been relatively

450 higher than the other sessions. Although speculative, this could suggest that manipulating
451 stimulus intensity may be one way in which the effects of iTMS could be targeted to different
452 intracortical circuits.

453 In conclusion, the application of iTMS with short and longer ISIs increased corticospinal and
454 intracortical excitability, irrespective of iTMS interval. While these findings suggest that
455 modifying the timing of iTMS has limited effects on which circuits are targeted by the
456 intervention, clarification of how stimulus intensity influences contributions from
457 intracortical inhibitory circuits is required. In support of this, iTMS also produced specific
458 reductions in the N45 produced by AP stimulation, suggesting that disinhibition of
459 GABA_Aergic circuits contributes to the neuroplastic effects of this paradigm.

460

461 **References**

- 462 1. Kida, Mitsushima. Mechanisms of motor learning mediated by synaptic plasticity in
463 rat primary motor cortex. *Neurosci Res.* Mar 2018;128:14-18.
- 464 2. Nudo. Neural bases of recovery after brain injury. *J Commun Disord.* Sep-Oct
465 2011;44(5):515-520.
- 466 3. Clayton, et al. Brain stimulation: Neuromodulation as a potential treatment for motor
467 recovery following traumatic brain injury. *Brain Res.* Jun 1 2016;1640(Pt A):130-138.
- 468 4. Ziemann. I-waves in motor cortex revisited. *Exp Brain Res.* Mar 17 2020;1601-1610.
- 469 5. Di Lazzaro, et al. I-wave origin and modulation. *Brain Stimul.* Oct
470 2012;5(4):512-525.
- 471 6. Opie, et al. Age-related changes in late I-waves influence motor cortex plasticity
472 induction in older adults. *J Physiol.* Jul 2018;596(13):2597-2609.
- 473 7. Long, et al. A novel cortical target to enhance hand motor output in humans with

474 spinal cord injury. *Brain*. Jun 1 2017;140(6):1619-1632.

475 **8.** Opie, et al. Modulation of motor cortex plasticity by repetitive paired-pulse TMS at
476 late I-wave intervals is influenced by intracortical excitability. *Brain Sci.* Jan 18
477 2021;11(1).

478 **9.** Hamada, et al. The role of interneuron networks in driving human motor cortical
479 plasticity. *Cereb Cortex*. Jul 2013;23(7):1593-1605.

480 **10.** Hamada, et al. Two distinct interneuron circuits in human motor cortex are linked to
481 different subsets of physiological and behavioral plasticity. *J Neurosci.* Sep 17
482 2014;34(38):12837-12849.

483 **11.** Opie, Semmler. Preferential activation of unique motor cortical networks with
484 transcranial magnetic stimulation: a review of the physiological, functional, and
485 clinical evidence. *Neuromodulation*. Dec 9 2020:1-16.

486 **12.** Tremblay, et al. Clinical utility and prospective of TMS-EEG. *Clin Neurophysiol.*
487 May 2019;130(5):802-844.

488 **13.** Rossi, et al. Safety, ethical considerations, and application guidelines for the use of
489 transcranial magnetic stimulation in clinical practice and research. *Clin Neurophysiol.*
490 Dec 2009;120(12):2008-2039.

491 **14.** Fonov, et al. Unbiased average age-appropriate atlases for pediatric studies.
492 *Neuroimage*. Jan 1 2011;54(1):313-327.

493 **15.** Rossini, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal
494 cord, roots and peripheral nerves: Basic principles and procedures for routine clinical
495 and research application. An updated report from an I.F.C.N. Committee. *Clin
496 Neurophysiol.* Jun 2015;126(6):1071-1107.

497 **16.** Delvendahl, et al. Influence of waveform and current direction on short-interval
498 intracortical facilitation: a paired-pulse TMS study. *Brain Stimul.* Jan-Feb
499 2014;7(1):49-58.

500 **17.** Sasaki, et al. Threshold tracked short-interval intracortical inhibition more Closely
501 predicts the cortical response to transcranial magnetic stimulation. *Neuromodulation*.
502 Dec 18 2021.

503 **18.** Biabani, et al. Characterizing and minimizing the contribution of sensory inputs to
504 TMS-evoked potentials. *Brain Stimul.* Jul 17 2019;12:1537-1552.

505 **19.** Rocchi, et al. Disentangling EEG responses to TMS due to cortical and peripheral
506 activations. *Brain Stimul.* Oct 28 2020;14(1):4-18.

507 **20.** Cash, et al. Neuromodulation by paired-pulse TMS at an I-wave interval facilitates
508 multiple I-waves. *Exp Brain Res.* Feb 2009;193(1):1-7.

509 **21.** Mutanen, et al. Source-based artifact-rejection techniques available in TESA, an
510 open-source TMS-EEG toolbox. *Brain Stimul.* Jul 10 2020;13:1349-1351.

511 **22.** Rogasch, et al. Analysing concurrent transcranial magnetic stimulation and

512 electroencephalographic data: A review and introduction to the open-source TESA
513 software. *Neuroimage*. Feb 15 2017;147:934-951.

514 23. Delorme, Makeig. EEGLAB: an open source toolbox for analysis of single-trial EEG
515 dynamics including independent component analysis. *J Neurosci Methods*. Mar 15
516 2004;134(1):9-21.

517 24. Oostenveld, et al. FieldTrip: Open source software for advanced analysis of MEG,
518 EEG, and invasive electrophysiological data. *Comput Intell Neurosci*. 2011;2011:1-9.

519 25. Hyvärinen, Oja. Independent component analysis: algorithms and applications.
520 *Neural Netw*. May-Jun 2000;13(4-5):411-430.

521 26. Mutanen, et al. Automatic and robust noise suppression in EEG and MEG: The
522 SOUND algorithm. *Neuroimage*. Feb 1 2018;166:135-151.

523 27. Fernandez, et al. Assessing cerebellar-cortical connectivity using concurrent
524 TMS-EEG: a feasibility study. *J Neurophysiol*. May 1 2021;125(5):1768-1787.

525 28. Murray, et al. Interventional repetitive I-wave transcranial magnetic stimulation
526 (TMS): the dimension of stimulation duration. *Brain Stimul*. Oct 2011;4(4):261-265.

527 29. Wagle-Shukla, et al. Effects of short interval intracortical inhibition and intracortical
528 facilitation on short interval intracortical facilitation in human primary motor cortex. *J
529 Physiol*. Dec 1 2009;587(Pt 23):5665-5678.

530 30. Premoli, et al. TMS-EEG signatures of GABAergic neurotransmission in the human
531 cortex. *J Neurosci*. Apr 16 2014;34(16):5603-5612.

532 31. Darmani, et al. Effects of the selective alpha5-GABAAR antagonist S44819 on
533 excitability in the human brain: A TMS-EMG and TMS-EEG phase I study. *J
534 Neurosci*. Dec 7 2016;36(49):12312-12320.

535 32. Rogasch, et al. The effects of NMDA receptor blockade on TMS-evoked EEG
536 potentials from prefrontal and parietal cortex. *Sci Rep*. Feb 21 2020;10(1):3168.

537 33. Cirillo, et al. Conventional or threshold-hunting TMS? A tale of two SICIs. *Brain
538 Stimul*. Nov - Dec 2018;11(6):1296-1305.

539 34. Cirillo, Byblow. Threshold tracking primary motor cortex inhibition: The influence of
540 current direction. *Eur J Neurosci*. Oct 2016;44(8):2614-2621.

541

542 **Tables and Table legends**

543 **Table 1. TMS intensities and MEP amplitudes at baseline.**

	iTMS _{1.5}		iTMS _{4.0}	
	PA	AP	PA	AP
RMT (%MSO)	56.6 ± 1.3	69.1 ± 1.7*	57.1 ± 1.4	67.1 ± 1.8*
MEP _{0.5-1mV} intensity (%MSO)	67.0 ± 1.7	81.0 ± 1.7*	66.5 ± 1.8	79.4 ± 2.0*
iTMS intensity (%MSO)	57.2 ± 1.3	55.8 ± 1.3*	62.1 ± 1.2 [†]	59.3 ± 1.3* [†]
MEP _{0.5-1mV} amplitude (mV)	0.74 ± 0.04	0.69 ± 0.04	0.71 ± 0.04	0.71 ± 0.04
SICF _{1.5} (%Test)	254.9 ± 11.0	281.9 ± 14.6	304.7 ± 16.5	286.3 ± 13.0
SICF _{4.0} (%Test)	124.1 ± 6.1 [#]	109.9 ± 6.9 [#]	117.0 ± 6.4 [#]	116.7 ± 6.8 [#]

544 * $P < 0.05$ compared to PA stimulation. [†] $P < 0.05$ compared to iTMS_{1.5}. [#] $P < 0.05$ compared
545 to SICF_{1.5}. Abbreviations; AP, anterior-posterior; iTMS, I-wave periodicity repetitive
546 transcranial magnetic stimulation; MEP, motor-evoked potential; MSO, maximum stimulator
547 output; PA, posterior-anterior; RMT, resting motor threshold; SICF, short-interval
548 intracortical facilitation.

549 **Table 2. Number of channels, epochs, and independent components removed during**
550 **cleaning of TEPs.**

	iTMS _{1.5}		iTMS _{4.0}	
	PA	AP	PA	AP
Channels	0.3 ± 0.2	0.4 ± 0.2	0.5 ± 0.2	0.3 ± 0.2
Epochs (TS_pre)	2.9 ± 0.9	5.6 ± 2.0	3.2 ± 0.7	5.5 ± 1.5
Epochs (TS_post)	4.4 ± 1.2	4.4 ± 1.0	4.6 ± 0.9	5.1 ± 1.6
Epochs (Control)	2.6 ± 0.7	2.3 ± 0.5	3.7 ± 0.9	4.0 ± 1.6
ICA1 (TS)	2.3 ± 0.3	2.5 ± 0.5	2.2 ± 0.3	2.0 ± 0.2
ICA1 (Control)	0 ± 0	0 ± 0	0 ± 0	0 ± 0
ICA2 (TS)	5.4 ± 0.6	6.1 ± 0.6	6.9 ± 0.6	5.5 ± 0.7
ICA2 (Control)	3.7 ± 0.4	3.1 ± 0.3	3.7 ± 0.4	3.1 ± 0.3

551 Abbreviations; AP, anterior-posterior; iTMS, repetitive paired-pulse TMS at I-wave intervals;
552 IC, independent component analysis; PA, posterior-anterior; TS, test stimulus.

553