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ABSTRACT – To interpret the sensory environment, the brain combines ambiguous sensory measurements
with context-specific prior experience. But environmental contexts can change abruptly and unpredictably, re-
sulting in uncertainty about the current context. Here we address two questions: how should context-specific
prior knowledge optimally guide the interpretation of sensory stimuli in changing environments, and do human
decision-making strategies resemble this optimum? We probe these questions with a task in which subjects
report the orientation of ambiguous visual stimuli that were drawn from three dynamically switching distribu-
tions, representing different environmental contexts. We derive predictions for an ideal Bayesian observer that
leverages the statistical structure of the task to maximize decision accuracy and show that its decisions are
biased by task context. The magnitude of this decision bias is not a fixed property of the sensory measurement
but depends on the observer’s belief about the current context. The model therefore predicts that decision
bias will grow with the reliability of the context cue, the stability of the environment, and with the number of
trials since the last context switch. Analysis of human choice data validates all three predictions, providing
evidence that the brain continuously updates probabilistic representations of the environment to best interpret
an uncertain, ever-changing world.

SIGNIFICANCE – The brain relies on prior knowledge to make perceptual inferences when sensory information is ambiguous.
However, when the environmental context changes, the appropriate prior knowledge often changes with it. Here, we develop a
Bayesian observer model to investigate how to make optimal perceptual inferences when sensory information and environmental
context are both uncertain. The behavioral signature of this strategy is a context-appropriate decision bias whose strength grows
with the reliability of the context cue, the stability of the environment, and with the number of decisions since the most recent change
in context. We identified exactly this pattern in the behavior of human subjects performing a dynamic orientation discrimination
task. Together, our results suggest that the brain continuously updates probabilistic representations of the environment to make
perceptual decisions in the face of uncertainty over both sensory and contextual information.

To accomplish goals, humans and other animals must infer
properties of the environment in the face of uncertainty and
change1,2. Prior knowledge is often leveraged to guide percep-
tual decisions based upon ambiguous sensory measurements3–6.
However, knowledge that is relevant in one context may lead
to worse outcomes if applied in another7–9. A complex chal-
lenge arises when perceptual uncertainty is compounded by ad-
ditional uncertainty about whether a change in context has oc-
curred10,11. As an example, imagine you are moving through a
field, foraging for ripe bananas. Some bananas are clearly green
or yellow and easy to judge, but many are ambiguous (Fig. 1a).
Prior knowledge about the probability of encountering a ripe ba-
nana helps to make more accurate decisions. Bananas grown in
sunny groves are more likely to be ripe, whereas those grown in
shady groves are less likely to be ripe. As you move through the
field with the sun overhead, it will be easy to identify the sunny
and shady groves and use the appropriate prior knowledge. But
clouds form, and the difference between sunny and shady groves
becomes less clear. How can context-specific knowledge remain

useful in the face of uncertainty over both perception and con-
text?

Bayesian inference offers a normative framework that spec-
ifies how knowledge can be optimally leveraged when making
decisions under uncertainty12. In the above example, knowledge
about the ambiguity of perception is used to compute the like-
lihood of the perceived color given a banana’s true color (Fig.
1b), while knowledge about probable banana colors in shady
and sunny groves is summarized as a context-specific prior be-
lief (Fig. 1c). The normalized product of the prior and likeli-
hood yields a posterior belief (Fig. 1d, left), which is used by
a Bayesian decision-maker to decide whether or not to pick the
banana (Fig. 1e, left). The impact of the prior on the decision
depends on the relative strengths of the prior and the likelihood.
When a sensory measurement is highly ambiguous (e.g., when
assessing colors at dusk), the likelihood function is broad, and
the same prior will have a larger impact on the posterior (Fig.
1d,e, middle panel). On the other hand, when the environmen-
tal context only weakly specifies the distribution of colors (e.g.,
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in groves with mottled light), the prior is broad and will have a
comparatively small impact (Fig. 1d,e, right panel).

Here, we develop a Bayesian ideal observer model to extend
these normative predictions to a dynamic environment. Key to
our predictions is the observer’s construction of a continually
evolving posterior belief about the current context that informs
the prior over stimuli (Fig. 1f). We find that this Bayesian strat-
egy has three distinct signatures: First, when the context cue is
more reliable, the observer is less uncertain about the identity
of the current context, and will exhibit greater overall context-
appropriate bias (hereafter, positive "aligned bias"). Second,
when the environment is more stable (i.e., context switches hap-
pen less frequently), the observer will be overall less uncertain
about the context, resulting in greater levels of aligned bias.
Third, as an observer makes more decisions within the same con-
text, they become less uncertain about the identity of the current
context, and their aligned bias will grow (Fig. 1g).

We then asked whether human observers similarly leverage
multiple forms of knowledge when making decisions in a dy-
namic environment. Subjects were shown a brief presentation
of a drifting grating and asked to judge its orientation. Stimuli
were drawn from one of three dynamically switching distribu-
tions, each representing a specific environmental context. At
the beginning of each trial, an ambiguous cue (the color of the
fixation mark) indicated the current context. Subjects were not
told what this cue signified but had experienced the associated
stimulus distributions in a prior training session. Analysis of the
human choice behavior revealed a dynamically evolving influ-
ence of context that resembled the predictions of our Bayesian
ideal observer. These results suggest that the brain continuously
updates probabilistic hierarchical representations to combat the
challenges posed by uncertain and unstable environments.

RESULTS
Twelve human subjects performed a two-alternative forced
choice (2AFC) orientation discrimination task in which they
judged on every trial whether a visual stimulus presented in the
near periphery was rotated clockwise or counterclockwise rela-
tive to vertical (Methods). Stimuli consisted of drifting gratings
with variable orientation and contrast (Fig. 2a, top). Observers
performed the task under three contexts characterized by dif-
ferent distributions of stimulus orientation (Fig. 2a, bottom).
Context switches occurred pseudo-randomly. During the initial
training phase, context switches were relatively rare, but they
occurred frequently in the subsequent test phase (Methods). To
quantify this aspect of the task, we computed for each trial the
number of trials since the most recent context switch. This met-
ric was approximately exponentially distributed across trials and
had a mean value of 15.9 trials during the training phase and
2.35 trials during the test phase (Fig. 2b).

This task is difficult for several different reasons. First, stimu-
lus strength (i.e., rotation magnitude) is weak in light of percep-
tual acuity for orientation13,14. Second, at low contrast, percep-
tual sensitivity is further reduced, and uncertainty about stim-
ulus orientation is elevated15,16. And third, while there are
context-specific regularities that can be leveraged to improve

performance (i.e., two out of three contexts are associated with
a skewed distribution of orientations), the environment is con-
stantly in flux, leaving observers potentially uncertain about the
underlying context on any given trial. As outlined above, a
Bayesian decision-maker faced with these challenges maximizes
performance by exploiting its knowledge of the statistical struc-
ture of the task. In the following section, we use this general
concept to formulate a set of specific predictions for our task.

Bayesian ideal observer model for dynamic orienta-
tion discrimination
To identify signatures of the optimal decision-making strategy
for this task, we investigated the choice behavior of a Bayesian
ideal observer model. Like our human subjects, the ideal ob-
server was presented with a sequence of oriented stimuli and
tasked to decide on every trial whether a given stimulus was ro-
tated clockwise or counter-clockwise. It does so on the basis
of both a noisy measurement of the stimulus orientation and an
ambiguous context cue (Fig. 2c, top). Specifically, the ideal
observer computes the likelihood of the sensory measurement
given the stimulus’ true orientation and combines this with its
prior belief about stimulus orientation to obtain a posterior be-
lief about orientation (Fig. 2c, middle), which in turn informs
the decision (Fig. 2c, bottom).

The ideal observer assumes that the environment switches be-
tween three discrete contexts at a fixed rate, and it knows the
underlying distribution of stimuli in each context. Thus, if there
were no uncertainty about the current context, the ideal observer
would use the appropriate context-specific stimulus distribution
to help disambiguate incoming stimuli. However, the ideal ob-
server also assumes that the context cue itself is ambiguous. As a
result, it must use the incoming context cue, together with previ-
ously decoded stimuli, to continually update its posterior belief
about context (Methods, Fig. 2c, middle). The ideal observer
then uses this posterior belief over contexts to update its prior
belief about stimulus orientation for the current trial.

The inference strategy manifests in patterns of decisions that
cannot be deduced from any individual choice, but rather be-
come evident in the relationship between choice and task vari-
ables. To expose this relationship, we simulated a large number
of trials in our task. Plotting average choice behavior as a func-
tion of stimulus orientation, split out by underlying task-context,
reveals that the ideal observer’s decisions depend both on sen-
sory stimulus measurements and context-specific prior knowl-
edge (Fig. 2d). The influence of context on the decision depends
on the relative strength of the prior and likelihood. For exam-
ple, in low contrast settings, the sensory orientation measure-
ment is more uncertain (i.e., the likelihood is broader), and the
association between stimulus orientation and behavioral choice
is weaker, as evidenced by the shallower slope of the lines. The
ideal observer naturally compensates for this loss of information
by relying more heavily on context-specific knowledge. This re-
sults in a stronger aligned bias, as evidenced by the increased
horizontal separation between the lines (Fig. 2d). We quantify
the influence of context on the decision by computing the av-
erage change in the point of subjective equality (defined as the
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orientation that elicits 50% clockwise choices) from the uniform
context.

When the context changes over time, the prior over stimuli
will naturally weaken and strengthen as a function of the ideal
observer’s evolving belief about context. Following a context
switch, incoming stimuli and context cues are in conflict with the
ideal observer’s belief about context, which leads to an increase
in uncertainty about context and a weakening of the context pos-
terior. This, in turn, leads to a weakening of the stimulus prior,
which will evolve from a single context-specific distribution to
a mixture distribution (see example in Fig. 2c, middle). In this
way, our Bayesian ideal observer will at times use a prior that
does not correspond to any individual context. Weakening of
the prior due to uncertainty about context is evident in the evo-
lution of the ideal observer’s aligned bias as it completes more
trials within a context. Fig. 2e shows the temporal evolution
of aligned bias in low contrast settings for different assumptions
adopted by the ideal observer about the exact statistical struc-
ture of the task. Consider the overall trend. Just after a context
switch (i.e., a low stability level), the ideal observer has high un-
certainty about the current context, and the context-induced bias
is minimal. As the ideal observer performs more trials within a
context, it continually updates its belief and reduces its uncer-
tainty about the current context, and the aligned bias grows.

The particular pattern of aligned bias depends on the ideal ob-
server’s underlying assumptions about the stability of the en-
vironment and the reliability of the context cue. Aligned bias
evolves dynamically whenever the ideal observer assumes the
environment to be somewhat stable (i.e., the assumed probability
of a context switch is less than 0.5; Fig. 2e, top) and the context
cue to be ambiguous (Fig. 2e, bottom). The higher the assumed
stability of the environment and the lower the assumed reliability
of the context cue, the longer it takes for the aligned bias to fully
saturate (Fig. 2e). The level at which the aligned bias saturates
is higher when context changes are assumed to be less probable
and the cue more reliable (Fig. 2e). The temporal evolution of
the aligned bias also depends on the number of trials since the
previous context switch. The more stable the environment is, the
stronger the ideal observer’s belief is about the previous context,
and thus the more evidence (time) that is required to update that
belief and the longer it takes for the context to maximally exert
its influence on choice (Fig. SS1a). However, as can be appre-
ciated from the subtle horizontal shift in color across the rows
of the bias-matrices in Fig. SS1b, this effect is generally weak
compared to the overall influence of context stability. Finally,
note that even in the most extreme cases, the aligned bias does
not go negative. In principle, this could happen. However, under
the specific conditions we studied, it does not.

In summary, a Bayesian ideal observer uses a hierarchical in-
ference strategy to perform our task. This yields orientation
judgments that are biased by task context. The magnitude of
this effect not only depends on stimulus contrast, but also on the
observer’s belief about the reliability of the context cue, the sta-
bility of the environment, and on the number of trials since the
most recent context switch.

Effect of cue reliability, context volatility, and sensory
uncertainty on human choice behavior

What knowledge do humans leverage when making perceptual
decisions in dynamic environments? Leveraging knowledge
about context-specific priors and perceptual ambiguity biases
uncertain perceptual decisions3–9. As we have shown, addition-
ally leveraging knowledge about the hierarchical structure of our
task and the stability of the environment should minimize the
magnitude of this bias right after a context switch. Moreover,
this effect should also depend on the reliability of the context
cue and sensory uncertainty. To test these predictions, we ma-
nipulated critical task statistics and conducted several targeted
analyses of the human choice behavior. To study the effect of
the reliability of the context cue, we assigned each subject to
one of two conditions. In the veridical cue condition, the con-
text cue correctly indicated the underlying context on every sin-
gle trial. In the ambiguous cue condition, the cue was valid on
80% of the trials. Subjects were not told what the cue signified,
but experienced the associated stimulus distributions during the
initial training phase (Fig. 3a). To study the effect of the stability
of the environment, context switches were relatively rare during
the training phase, but occurred frequently in the subsequent test
phase (Fig. 4a, top).

We first asked whether choices were biased by task context in
a manner that depends on the reliability of the context cue and
the stability of the environment. Consider an example human
observer who judges the same stimuli differently under differ-
ent contexts during the test phase (Fig. 3b, bottom panel). To
quantify this effect, we described the data with a Signal Detec-
tion Theory (SDT) based process-model of decision-making that
specifies how the probability of a "clockwise" choice depends
on the task variables (orientation, contrast, and context; lines in
Fig. 3b, bottom panel). We then used this model to measure
the observers’ uncertainty about stimulus orientation (defined as
the cross-trial variability in the orientation estimate, Fig. 3b, top
panel) and the magnitude of their aligned bias. Dividing this
latter statistic by the former provides a normalized estimate of
aligned bias. For each subject, we independently estimated their
aligned bias at the end of the training phase and during the test
phase. We only included trials of the same contrast level in this
analysis (see Methods). As can be seen in Figure 3c, the sud-
den decrease in the stability of the environment led to decreased
aligned bias for every single subject (median decrease in normal-
ized bias = 0.435, P < 0.001, one-sided Wilcoxon signed-rank
test, n = 11). This effect was significant within each condition
(veridical cue condition: median decrease = 1.01, P = 0.031, n
= 5; ambiguous cue condition: median decrease = 0.283, P =
0.016, n = 6). Recall that the context cue was less reliable in
the ambiguous cue condition than in the veridical cue condition.
As predicted, this resulted in lower levels of aligned bias (Fig.
3c). This was true both at the end of the training phase (me-
dian bias = 1.084 for the veridical cue condition and 0.259 for
the ambiguous cue condition, P = 0.015, one-sided Wilcoxon
rank-sum test), and during the test phase (median bias = 0.31 for
the veridical cue condition and –0.035 for the ambiguous cue
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condition, P = 0.015). We conclude that aligned bias increases
as the context cue becomes more reliable, but decreases as the
environment becomes less stable.

A hallmark of Bayesian inference is the stronger reliance
on context-specific knowledge when sensory measurements are
more uncertain. To test whether human choices exhibit a similar
pattern, we next asked whether choices were biased by task con-
text in a contrast-dependent manner. During the test phase, high
and low contrast stimuli were pseudo-randomly intermixed (see
Methods). For each subject, we independently estimated their
uncertainty about stimulus orientation and the magnitude of their
aligned bias for high and low contrast stimuli. As can be seen in
Figure 4a, lowering stimulus contrast increased orientation un-
certainty for all subjects but one (median increase in uncertainty
= 0.303 deg, P < 0.001, one-sided Wilcoxon signed-rank test, n
= 12). This effect was significant within each condition (veridi-
cal cue condition: median increase = 0.403 deg, P = 0.016, n =
6; ambiguous cue condition: median increase = 0.147 deg, P =
0.031, n = 6). In the veridical cue condition, lowering stimulus
contrast also resulted in a larger aligned bias, though note that
one subject (JI) did not exhibit context-dependent choice behav-
ior at either high or low contrast (median increase = 0.248 deg,
P = 0.031, n = 6; Fig. 4b, left panel). In the ambiguous cue
condition, there was no consistent aligned bias during the test
phase of the experiment (high contrast: median bias = –0.032
deg, P = 0.989, n = 6; low contrast: median bias = –0.019 deg,
P = 0.784, n = 6), nor a consistent change in the magnitude of
the bias (median increase = 0.018 deg, P = 0.156, n = 6; Fig.
4b, right panel). Thus, when present, aligned bias increases with
stimulus uncertainty.

So far, we have shown that orientation judgments are biased
by task context. The magnitude of this effect depends on stim-
ulus contrast and the reliability of the context cue. This sug-
gests that subjects in our task typically incorporate knowledge
about perceptual ambiguity and context-specific priors into their
decision-making process. The magnitude of the aligned bias also
depends on the stability of the environment. This suggests that
observers additionally exploit knowledge about the hierarchical
structure of the task and the stability of the environment. All
these effects support the hypothesis that subjects continuously
update a probabilistic model of the environment to interpret am-
biguous sensory stimuli. To further test this hypothesis, we now
turn to the question of whether aligned bias changes with the
number of trials since the most recent context switch (i.e., time
spent in the current context).

Effect of trials since a context switch on human choice
behavior
Does the influence of context on the decision change over time
following a context switch? This is a difficult question to ad-
dress for two reasons. First, we have a limited amount of choice
data (mean = 4,120 completed trials during the test phase per
observer), distributed unevenly across waiting times (Fig. 2b).
Estimating aligned bias separately for each "level" of trial count
post-context switch, as we did for the ideal observer, would yield
unreliable estimates for our human observers. In other words,

the frequency of context switches in our experiment creates an
abundance of trials that occur right after a context switch and
many fewer trials that are, for example, the tenth trial within a
single context. Second, in perceptual decision-making tasks, ob-
servers commonly exhibit sequential choice dependencies that
here could be mistaken for Bayesian-like dynamic inference.
Specifically, observers’ responses are often correlated with their
previous response17 and, sometimes, with the previous stimu-
lus18. These correlations are usually positive, but can be nega-
tive as well. Although such dependencies may improve overall
decision accuracy in temporally continuous environments, they
are distinct from dynamic Bayesian inference, which relies on
the continual updating of one’s belief about context.

To overcome these challenges, we developed a descriptive
modeling approach to characterize the evolution of context-
specific aligned biases following a context switch. Our method-
ology is related to approaches developed by Roy et al. (2021)19

to characterize the temporal evolution of decision-making strate-
gies in static environments. Specifically, we use a dynamic
Bernoulli generalized linear model (GLM) defined by a set of
weights that specify the trial-by-trial influence of different task
variables on the observer’s decision. These variables capture
stimulus and context manipulations, as well as recent response
and stimulus history (Fig. 5a). Our approach is novel in its use of
a dynamic "bias function", f(S), that describes the temporally-
evolving influence of context on choice and is given by:

f(S) =
1

1 + eγSC
(1)

where S is the number of trials since the last context switch (for
the current trial), γ controls the shape of the bias function, and
C is a categorical variable that takes a value of –1, 0, or 1 for
the negatively skewed, uniform, or positively skewed context.
We chose this functional form because it can capture a variety
of monotonically evolving relationships. For each observer, we
jointly estimate the weights and the shape parameter γ by maxi-
mizing the likelihood of the data under the model. Because f(S)
varies nonlinearly with S, we use a two-step grid-search proce-
dure to find this maximum (Methods).

To validate our method, we used the dynamic GLM to gener-
ate synthetic data sets for three model observers. These model
observers had identical weights for the task variables, but dif-
fered in their reliance on past history and in the evolution of their
aligned bias with the number of trials following a context switch.
Each model observer was presented with the exact sequence of
trials presented to one of our human observers. We then applied
our analysis procedure to these synthetic data, and we found that
it provided a robust and unbiased estimate of the influence of re-
sponse and stimulus history (Fig. 5b, left panel), as well as of the
dynamic influence of the number of trials since the last context
switch. This latter point can be best appreciated by consider-
ing recovery of the evolution of the bias function (Fig. 5b, right
panel). We obtain this relation by setting the model’s history
terms to zero, such that:
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bias(S) =
−wC + wS(0.5− 1/(1 + eγS))

wθ + weDe
(2)

where wC is the weight on context, wS the weight on the bias
function, wθ the weight specifying the effect of stimulus orien-
tation at low contrast, we the weight specifying the additional
effect of orientation at high contrast, and De a dummy variable
that takes a value of 0 for low contrast stimuli and 1 for high con-
trast stimuli. As can be seen in Fig. 5b, the fitted GLM closely
approximates the ground truth effects of dynamic bias. This is
true for a simulated aligned bias that rapidly rises, is indepen-
dent of, or slowly decreases with the number of trials since the
last context switch.

Having validated our method, we described each human ob-
server’s choice behavior with the dynamic GLM and used a
bootstrap-based procedure to obtain confidence intervals for the
model predictions (Methods). The dynamic GLM has only one
more free parameter than the static SDT-model, but described
the data much better (Fig. S2, see Supplementary Table S1 for
AIC comparison). This improvement was in part due to the in-
clusion of history terms. In particular, we found that observers’
responses were systematically correlated with their previous re-
sponse (Fig. 5c, top), but not with the previous stimulus (Fig.
5c, bottom). In addition, the use of a dynamic bias function
helped to capture the changing influence of context on the per-
ceptual decision following a context switch. A cross-validation
analysis revealed that this model component was necessary for
some, but not all, subjects (see Supplementary Table S4). In
spite of this heterogeneity, we robustly observe that the influ-
ence of context on the perceptual decision grows with time spent
in the current context. To quantify this effect, we calculated
the model-predicted bias for trials that occurred ten trials after
a context switch (Eq. 2) and compared this value to the model’s
prediction for trials that immediately followed a context switch.
As can be seen in Figure 5d, spending ten consecutive trials in
the same context increased aligned bias for most subjects (me-
dian increase in aligned bias at high contrast = 0.107 deg, P =
0.005, one-sided Wilcoxon signed-rank test, n = 12; low contrast
= 0.155 deg, P = 0.017, n = 12). This effect reached statistical
significance within the veridical cue condition (high contrast =
0.147 deg, P = 0.016, n = 6; low contrast = 0.188 deg, P = 0.016,
n = 6), but not within the ambiguous cue condition (high con-
trast = 0.094 deg, P = 0.281, n = 6; low contrast = 0.154 deg, P
= 0.078, n = 6), perhaps due to the substantially weaker aligned
bias within this condition. The estimated cross-trial evolution
of the aligned bias is plotted for each subject in Figure 5e. In-
spection of these curves reveals that for some subjects, aligned
bias increased gradually over the course of multiple trials (CZ,
SS, BC) while for others, the bias abruptly saturated (AC, CW,
DQ), or barely changed at all (JI, FL, LC). Within the veridical
cue condition, this inter-observer variability could be explained
by our Bayesian ideal observer with a miscalibrated assumption
of the stability of the environment or the reliability of the con-
text cue. Note that in the ambiguous cue condition, several ob-
servers exhibit negative aligned bias either immediately after a

context switch, or after multiple trials within a context. While
this effect is not predicted by the Bayesian ideal observer, we
suspect it was induced by the low environmental stability of the
test phase as all ambiguous cue condition observers had positive
aligned bias during the highly stable training phase (Fig. 3c).
These results therefore suggest that our subjects’ decisions were
not only guided by knowledge about perceptual ambiguity and
context-specific priors, but also by knowledge about the hierar-
chical nature of the task and the stability of the environment.

DISCUSSION
Perception is inherently uncertain, and natural environments are
constantly in flux. Both factors are considered major forces that
shape computation and representation in sensory systems16,20–24.
This raises the question of how uncertainty and instability jointly
impact sensory-guided decisions11,25. Our analysis reveals that
in a simple perceptual decision-making task, human subjects
rely more strongly on context-specific knowledge when their
belief about the current context is more certain, which occurs
in more stable environments and after spending more time in
the same context. This strategy can be understood as a rational
adaptation to the challenges presented by a dynamic world. Mo-
ments of transition often yield uncertainty about the underlying
context. Does the first clap of thunder really announce the ar-
rival of rain? Does the first flower truly signify that Spring has
begun? The answer to these questions will impact subsequent
decisions, but because the available cues are ambiguous, it is not
possible to answer them correctly all of the time. The most accu-
rate strategy is to build probabilistic hierarchical representations
to guide the interpretation of incoming stimuli. Note that we do
not explicitly model how observers learn these representations,
though understanding which computations humans use to infer
statistical properties of dynamic environments is an active area
of research26–28. Under this strategy, uncertainty about the cur-
rent context weakens strong context-specific priors over stimuli.
When newly incoming evidence (the sound of rain drops or the
sight of melting snow) further clarifies the context, these priors
–and their impact on perceptual decisions– grow stronger again.

Our study complements recent work on uncertain perceptual
decisions in dynamic environments. One set of studies asked
how negative feedback influences decision-making strategies
when stimulus-response contingency rules undergo covert and
unpredictable changes, and found that both humans and mon-
keys take expected choice accuracy into account to disambiguate
the source of failure29,30. Another set of studies investigated
temporal integration of dynamic stimuli in environments that
change on different timescales. Human observers adapt their
decision-making strategies to fluctuations that occur suddenly
within a single trial31, between trials in a sequence32, or gradu-
ally across long blocks of trials33. They do so in various man-
ners, which include adjusting the rate at which they discount
previous beliefs31, biasing initial beliefs29, and adopting time-
varying decision criteria34. To a first approximation, these var-
ious modifications can all be understood as attempts to imple-
ment the optimal Bayesian decision-making policy25.

We found that uncertain perceptual decisions in changing en-

5

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493109doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493109
http://creativecommons.org/licenses/by-nd/4.0/


vironments are biased by context-specific knowledge in a man-
ner that qualitatively resembles the ideal Bayesian strategy, but
quantitatively deviates from this optimum. Specifically, we re-
ported that decision bias is larger when context cues are more re-
liable (Fig. 3c, veridical vs. ambiguous cue condition), when the
environment is more stable (Fig. 3c, late vs test), when the sen-
sory measurement is less certain (Fig. 4b), and after more time
has been spent in the current context (Fig. 5d). These effects
are all predicted under a hierarchical Bayesian inference strategy
(Fig. 2d-e). However, our analysis also reveals several quanti-
tative deviations from the optimal strategy. Most notably, when
the context cue is 100% reliable, there is no uncertainty about
the current context under a well-calibrated generative model of
the task, and hence decision bias should depend on neither the
stability of the environment nor the number of trials since the
most recent context switch. This is not what we observed in the
veridical cue condition. Moreover, when the context cue is 80%
reliable, a well-calibrated model would result in some decision
bias, even in highly unstable environments. This is not what we
observed during the test phase of the ambiguous cue condition.
To a first approximation, subjects in both conditions behaved as
if they used a Bayesian inference strategy, but relied on a mis-
calibrated generative model of the task in which the reliability
of the context cue was systematically underestimated.

The perceptual inference problems faced by humans and other
animals are complex, and so are the strategies they use to make
behavioral choices. Normative models are a critical tool to un-
cover the principles that shape these strategies. In our task, the
ideal Bayesian strategy yields a dynamically evolving prior over
stimuli. This prediction is difficult to test: the normative model
is too complex to directly fit to choice data, but a pure data-
based trial-averaging approach is not efficient enough to reliably
characterize the temporal evolution of aligned bias from realistic
amounts of data. Instead, we opted to test the normative predic-
tion by looking at our data through the lens of different mod-
eling approaches. We used a tried-and-tested process model of
decision-making to verify the presence of uncertainty-dependent
aligned biases and a flexible descriptive model to characterize
the dynamic evolution of these biases. The interpretation of our
data critically relies on the combined insights offered by each
of these approaches. As such, our study provides an example
of how different computational tools can be used in conjunction
to gain insight into the mechanisms underlying complex choice
behavior at the single trial level.

METHODS
Behavioral task. Twelve human subjects (5 male, 7 female;
ages 18-30) with normal or corrected-to-normal vision par-
ticipated in the experiment. The experimental protocol was
approved by the local ethics committee (Institutional Review
Board of The University of Texas at Austin) and all participants
gave informed consent. Subjects were not aware of the purpose
of the study. Owing to sample size, no gender-specific analyses
were performed.

Subjects were seated in a dimly lit room in front of a gamma-
corrected CRT monitor (Hewlett Packard, A7217A). A head

and chin rest ensured that the distance between the partici-
pants’ eyes and the monitor’s screen was 57 cm. Eye posi-
tion was recorded with a high-speed, high-precision eye track-
ing system (EyeLink 1000). We presented visual stimuli at
a spatial resolution of 1280 X 1024 pixels and a refresh rate
of 75 Hz. Stimuli were presented using PLDAPS software
(https://github.com/huklab/PLDAPS) on an Apple Macintosh
computer.

Subjects performed an orientation discrimination task in
blocks of 48 trials. Each trial began when participants fixated a
small square (0.5◦diameter) at the center of the screen. After 500
ms, two choice targets appeared, one on each side of the fixation
point (on the horizontal meridian, at 4.5 degrees eccentricity).
The choice targets were white lines (2◦long, 0.3◦wide), rotated
–22.5◦(choice target on the left) and 22.5◦(choice target on the
right) from vertical. After 500 ms, a circularly vignetted drifting
grating appeared. The stimulus was positioned in the lower left
visual quadrant (centered at an eccentricity of 3.2◦), measured
1.25◦in diameter, had a spatial frequency of 2.5 cycles/deg, and
a temporal frequency of 3 cycles/s. Subjects judged the orienta-
tion of the stimulus relative to vertical. The stimulus remained
on for 500 ms. The stimulus then disappeared along with the
fixation mark and subjects reported their decision with a sac-
cadic eye movement to the choice target whose orientation was
closest to the estimated stimulus orientation. Auditory feedback
about the accuracy of the response was given at the end of each
trial. We varied stimulus orientation over a small range (a few
degrees) that was centered on vertical and tailored to each ob-
server’s orientation sensitivity. Vertically oriented stimuli re-
ceived random feedback. Stimuli were presented at either high
or low contrast (Michelson contrast of 100% and 10%). For nine
out of twelve observers, high and low contrast stimuli were ran-
domly interleaved. For the three remaining observers, high and
low contrast stimuli were grouped in blocks of eight trials.

Subjects performed the task under three contexts, character-
ized by a uniform, negatively skewed, and positively skewed
distribution of stimulus orientation (shown in Fig. 2a). The cor-
responding baseline probability of a "clockwise" choice being
correct was 50%, 70%, and 30%. Context switches occurred
pseudo-randomly, with a hazard rate of 6.3% during the training
phase, and of 42.5% during the test phase. The color of the fix-
ation mark (red, green, or blue) also varied across trials. In the
veridical cue condition, this color indicated the underlying con-
text on 100% of trials, in the ambiguous cue condition, this was
the case on 80% of the trials. Subjects were not told what the
color of the fixation mark signified. Trials in which the subject
did not maintain fixation within 1.5◦of the fixation mark were
aborted. Participants performed the task across three to eight
sessions and successfully completed between 2,420 and 5,388
trials during the test phase of the experiment.

Before performing the main task, subjects participated in one
or more training sessions. Compared to the main task, the
range of orientations was larger and context switches occurred
much less frequently in these training sessions. We consid-
ered subjects ready for the main task once their stimulus judge-
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ments were consistent (stable, lawfully shaped psychometric
functions), reliable (few lapses on easy catch trials), and appro-
priately biased by context in the most difficult conditions. This
typically required more than 2,000 training trials (see Fig. 3a).

Bayesian ideal observer model. We derived predictions for a
Bayesian ideal observer who leverages its knowledge of the sta-
tistical structure of the task to maximize decision accuracy. The
ideal observer assumes that on each trial t, the stimulus orien-
tation θt and the context cue xt depend on the true underlying
context Ct, and that each context is associated with a specific
stimulus distribution p(θt|Ct) that is matched to one of the dis-
tributions used in the behavioral task (Fig. 2a). It further as-
sumes that context switches occur with a probability h (i.e., the
hazard rate), inducing the following transition probability over
the context variable Ct:

p(Ct|Ct−1) =

{
1− h Ct = Ct−1

h/(N − 1) Ct 6= Ct−1

(3)

where N = 3 is the number of possible contexts.
On each trial, the ideal observer obtains a noisy orientation

measurement yt via the encoding distribution p(yt|θt, σ2) =
N (θt, σ

2), where σ2 is the variance of sensory noise. It also
obtains a noiseless context cue measurement xt. The ideal ob-
server then uses these measurements to update its beliefs about
task context and stimulus orientation and make a decision.

We consider two ways in which the ideal observer’s genera-
tive model of the task can be miscalibrated: either the assumed
hazard rate or the assumed reliability of the context cue (or both)
may differ from the actual values used in the behavioral experi-
ment (Fig. 2e). In particular, the ideal observer assumes that the
context cue is perturbed by external noise via the cue-generating
distribution p(xt|CVt , κ) = von Mises(Ct, κ), where CVt is the
angular label of the context Ct, and κ is the concentration pa-
rameter that controls the assumed reliability of the context cue.
This formulation captures the situation whereby the first context
could be mistaken for the third one and vice-versa.

To make a decision, the ideal observer estimates the probabil-
ity p(θt > 0|yt, xt) that the stimulus is oriented clockwise. This
estimate is based on the following sequence of steps (note that
for notational simplicity, we denote only the most recent stimu-
lus θt and cue xt, instead of their respective histories θτ≤t and
xt≤t):

1. Update the posterior over contexts with the measured con-
text cue; i.e., compute p(Ct|xt) ∝ p(xt|Ct)p(Ct|xt−1)

2. Compute the prior over stimuli by marginalising over
the posterior over contexts; i.e., compute p(θt|xt) =∑
Ct
p(θt|Ct)p(Ct|xt)

3. Use the resulting prior to compute the posterior over stim-
ulus orientations θt given the noisy representation yt; i.e.,
compute p(θt|yt, xt)

4. Use the resulting posterior to compute the probability that
the stimulus is oriented clockwise; i.e., compute p(θt >
0|yt, xt) =

∑
θt>0 p(θt|yt, xt)

5. If p(θt > 0|yt, xt) > 0.5, respond that the orientation
is clockwise; if p < 0.5, respond counter-clockwise; if
p = 0.5, respond randomly.

6. Compute the prior over contexts for the next time step;
i.e., compute p(Ct+1|xt) =

∑
Ct
p(Ct|xt)p(Ct+1|Ct)

We used the following parameter values in the simulations:
orientation = [-7.5, -5, -2.5, 0, 2.5, 5, 7.5], σ2 = 2 for high con-
trast stimuli and 5 for low contrast stimuli, h = 10, 20, and 50 %,
κ = 0.4, 0.2, and 0.025 for Fig. 2e, and 0.45, 0.4, and 0.35 for
Fig. S1. Every simulated experiment consisted of 57,600,000
trials.

Signal Detection Theory model. We measured observers’
uncertainty about stimulus orientation and their estimation bias
by fitting the relation between the task variables (orienta-
tion, contrast, and context) and probability of a "clockwise"
choice with a Signal Detection Theory based process-model of
decision-making35. Under this model, each trial gives rise to
an orientation estimate which is compared with a fixed criterion
to obtain a decision (Fig. 3b). We assume that these estimates
follow a Gaussian distribution, the mean of which is determined
by the true stimulus orientation plus a context-specific constant
(yielding two free parameters: one for the uniform context, and
one for the non-uniform contexts). The spread of the Gaussian
is determined by the contrast of the stimulus (resulting in two
free parameters). Finally, we assumed that on some trials, ob-
servers "lapse" and simply guess without considering the task
variables36 (two free parameters, one per contrast). We chose
this model based on a model comparison analysis in which we
evaluated four versions of the model on the data collected dur-
ing the test phase of the experiment (a 10,000-fold leave-one-
out cross-validation analysis performed separately on high and
low contrast choice data). Model versions differed in the num-
ber of free parameters used to describe the context-specific shift
and spread of the orientation estimates (see Supplementary Ta-
ble 2 and 3). Model parameters were optimized by maximizing
the likelihood over the observed data, assuming responses arise
from a Bernoulli process. We obtained confidence intervals on
the uncertainty and bias estimates by performing a 1000-fold
non-parametric bootstrap.

Dynamic Bernoulli generalized linear model. We charac-
terized the temporal evolution of our subjects’ decision-making
strategy by fitting a descriptive model that specifies the trial-by-
trial influence of a set of independently manipulated task vari-
ables (orientation, contrast, and context) as well as two history
terms (previous response, previous orientation) and the nonlin-
early transformed trials since context switch on the choice be-
havior. These predictors were linearly combined and then passed
through a logit link function. Model parameters were optimized
by maximizing the likelihood over the observed data, assuming
responses arise from a Bernoulli process. We used a two-step
"grid-search" procedure to find this maximum, whereby we first
optimize all model parameters for a given value of γ, repeat this
search-process for a manually specified range of γ values, and
then select the solution with the best goodness-of-fit value. For
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each subject, the dynamic GLM better captured the data than
the Signal Detection Theory model (Akaike Information Crite-
rion comparison, see Supplementary Table 1 and Supplementary
Fig. 1). To assess the necessity of the dynamic bias function,
we conducted a cross-validation analysis in which trials that oc-
curred between 1 and 4 trials after a context switch comprised
the training set and trials that were the 5th or later after a con-
text switch made up the test set. The full dynamic GLM out-
performed a reduced "static" version that lacked the dynamic
bias function in four of six veridical cue condition observers and
three of six ambiguous cue condition observers (see Supplemen-
tary Table 4).
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Figure 4 Human orientation judgments are biased by task-context in a contrast-dependent manner. (a) Orientation uncertainty for
low (ordinate) and high (abscissa) stimulus contrasts for the veridical cue condition (left) and the ambiguous cue condition (right)
subjects. (b) Aligned bias for low (ordinate) and high (abscissa) stimulus contrasts for the veridical cue condition (left) and the
ambiguous cue condition (right) subjects. Error bars reflect the 68 percent confidence interval, derived from a 1,000-fold bootstrap
analysis (Methods).
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Figure 5 GLM-based analysis of cross-trial dynamics in human orientation judgment strategies. (a) Dynamic GLM. The probability
of a clockwise choice is predicted by the logistic transformation of six linearly combined regressors. (b) Recovery analysis. Left:
Estimated history terms plotted as a function of their ground truth value for three model observers. Symbols indicate the mean value;
error bars, where visible, illustrate the 68 percent confidence interval. Right: Evolution of aligned bias for high contrast stimuli as
a function of the number of trials since the most recent context switch for three model observers. The colored line indicates the
ground truth relationship, the dotted black line shows the mean estimate, and the shaded region illustrates the 68 percent confidence
interval. (c) Estimated history terms for veridical cue condition (left) and ambiguous cue condition (right) subjects. (d) Model-predicted
bias after ten same-context trials plotted against bias immediately following a context switch for the veridical cue condition (left) and
the ambiguous cue condition (right) subjects. Error bars illustrate the 68 percent confidence interval. (e) Evolution of aligned bias
for low and high contrast stimuli as a function of trials since a context switch for all subjects. The shaded region illustrates the 68
percent confidence interval. *Dynamic GLM outperforms static GLM in cross-validation analysis (see Supplementary Table S4). All
confidence intervals were computed from 1,000 simulated data sets.
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Figure S1 Determinants of the Bayesian ideal observer’s aligned bias. (a) Low-contrast aligned bias (color) as a function of trials
since the most recent context switch (columns) and the number of same context trials prior to the most recent context-switch (rows)
for an assumed hazard rate of 10% and a low level of context cue reliability. (b) The pattern of aligned bias across a range of assumed
levels of hazard rate and context cue reliability.

Comparison of Signal Detection Theory model and Dynamic GLM
We analyzed the choice data collected during the test phase of the experiment with two different models: a Signal Detection Theory
based model (analyses in Fig. 3 and 4), and a dynamic GLM (analysis in Fig. 5). For each subject, the latter model provides a better
description of the data. This is evident from the models’ AIC values, shown in Table S1 (the lower this value, the higher the quality
of the model fit), and from a complementary analysis which compares each model’s normalized log-likelihood, split out for high
and low contrast trials (Fig. S2).
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Figure S2 Comparison of goodness-of-fit of Dynamic GLM and Signal Detection Theory model. Low contrast data are shown as
open symbols and high contrast data as filled symbols.
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SDT vs GLM AIC values

Subject SDT Dynamic
GLM

AC 5361.3 5238.7

CW 2804.1 2769.9

CZ 4932.9 4425.1

DQ 5179.0 4930.7

JI 3178.4 2995.8

SS 4059.8 3885.9

MC 4073.4 3894.6

BC 2035.9 1907.7

BK 3991.0 3608.8

FL 3479.9 2977.2

LC 3477.4 3308.6

NK 2414.1 2160.5

Table S1 AIC estimates for choice data collected during the test phase of the experiment under the Signal Detection Theory model
and the Dynamic GLM.

16

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493109doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493109
http://creativecommons.org/licenses/by-nd/4.0/


Comparison of four Signal Detection Theory model variants
We considered four variants of the Signal Detection Theory model. These variants differed in the number of free parameters used
to describe the context-specific shift and spread of the orientation estimates. Model 1 was the most economically parameterized
variant by imposing a symmetric context-specific bias for the non-uniform contexts (resulting in two free "shift" parameters) and
a single context-independent level of estimation uncertainty (resulting in one free "spread" parameter). Model 2 differed from this
variant by allowing for a context-specific level of estimation uncertainty (yielding three free "spread" parameters), while Model 3
instead allowed for asymmetric context-specific bias (yielding three free "shift" parameters). Finally, Model 4 was the least restric-
tive variant by allowing asymmetric context-specific bias (three free "shift" parameters) and a context-specific level of estimation
uncertainty (three free "spread" parameters). To evaluate each model’s performance, we trained the models on all trials except for
three pseudo-randomly chosen hold-out orientations (one per context). We then computed the quality of the models’ prediction for
this hold-out set. We repeated this procedure 10,000 times. As can be seen in the bottom row of Table S2 and S3, Model 1 tended
to perform best.

High Contrast Data

Subject Model 1 Model 2 Model 3 Model 4

AC –8.824 –9.016 –8.752 –8.693

CW –7.821 –8.353 –7.973 –8.515

CZ –10.335 –10.995 –10.613 –11.355

DQ –10.106 –10.622 –10.234 –10.426

JI –5.378 –5.738 –5.413 –6.032

SS –9.987 –10.331 –10.190 –10.457

MC –8.078 –8.984 –8.219 –10.438

BC –6.506 –6.146 –7.197 –6.658

BK –8.786 –10.781 –8.335 –8.574

FL –6.626 –13.649 –6.290 –10.015

LC –5.532 –6.118 –5.473 –6.018

NK –5.992 –5.659 –6.237 –5.872

mean –7.831 –8.866 –7.910 –8.588

Table S2 Average log likelihood for hold-out data predicted under four different variants of the Signal Detection Theory model (only
high contrast trials included).
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Low Contrast Data

Subject Model 1 Model 2 Model 3 Model 4

AC –9.800 –10.508 –9.743 –10.566

CW –7.669 –7.974 –7.825 –8.205

CZ –6.975 –7.907 –6.775 –6.969

DQ –5.955 –6.263 –6.195 –6.543

JI –7.421 –7.471 –7.594 –7.411

SS –7.848 –10.646 –8.301 –10.856

MC –9.792 –9.642 –10.110 –9.912

BC –7.434 –8.315 –7.582 –8.401

BK –7.924 –8.502 –8.102 –8.784

FL –7.560 –7.798 –7.275 –7.334

LC –7.865 –8.226 –7.870 –8.258

NK –7.171 –7.288 –7.066 –7.396

mean –7.784 –8.378 –7.869 –8.386

Table S3 Average log likelihood for hold-out data predicted under four different variants of the Signal Detection Theory model (only
low contrast trials included).
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Comparison of Dynamic and Static GLM
We analyzed the choice data collected during the test phase of the experiment with a GLM that included a dynamic bias function
(analysis in Fig. 5). To assess the necessity of this model component, we conducted a cross-validation analysis in which we
compared performance of this model with a variant that lacked this specific component (the "Static" GLM). These variants critically
differ in the predictions they make for trials that occur after many trials within the same context. For this reason, we opted to use
all trials that occurred between 1 and 4 trials after a context switch as training data and all trials that occurred 5 or more trials after
a switch as hold-out test set. As can be seen in Table S4, the dynamic GLM outperformed the static version in four of six veridical
cue condition subjects and three of six ambiguous cue condition subjects.

GLM cross validation

Subject Dynamic
GLM

Static
GLM

Percent
data
held out

AC –364.822 –365.256 14.2

CW –156.485 –156.484 11.5

CZ –333.831 –336.113 14.5

DQ –258.735 –260.425 12.0

JI –201.178 –201.000 13.0

SS –226.296 –228.544 11.6

MC –254.774 –255.147 12.6

BC –126.975 –127.600 13.0

BK –244.683 –245.215 14.6

FL –138.937 –138.246 11.1

LC –259.729 –259.425 14.5

NK –132.768 –132.306 12.3

Table S4 Each cell of the table reports the total log-likelihood of the held out data for each subject. The rightmost column indicates
the proportion of each subject’s total data the held-out fraction made up.
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