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Abstract

Background

Most studies on stroke have been designed to examine one deficit in isolation, yet survivors
often have multiple deficits in different domains. While the mechanisms underlying multiple-
domain deficits remain poorly understood, network-theoretical methods may open new

avenues of understanding.

M ethods

50 subacute stroke patients (7+3days post-stroke) underwent diffusion-weighted magnetic
resonance imaging and a battery of clinical tests of motor and cognitive functions. We
defined indices of impairment in strength, dexterity, and attention. We also computed
imaging-based probabilistic tractography and whole brain connectomes. Overlaying
individual lesion masks onto the tractograms enabled us to split the connectomes into their

affected and unaffected parts and associate them to impairment.

Results

To efficiently integrate inputs from different sources, brain networks rely on a “rich-club” of
a few hub nodes. Lesions harm efficiency, particularly when they target the rich-club. We
computed efficiency of the unaffected connectome, and found it was more strongly correlated
to impairment in strength, dexterity and attention than efficiency of the total connectome. The
magnitude of the correlation between efficiency and impairment followed the order attention
> dexterity =~ strength. Network weights associated with the rich-club were more strongly

correlated to efficiency than non-rich-club weights.

Conclusions
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Attentional impairment is more sensitive to disruption of coordinated network activity
between brain regions than motor impairment, which is sensitive to disruption of localized
network activity. Providing more accurate reflections of actually functioning parts of the
network enables the incorporation of information about the impact of brain lesions on

connectomics contributing to a better understanding of underlying stroke mechanisms.

Keywords: stroke; motor; attention; structural; connectivity
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Non-standard Abbreviationsand Acronyms:
DWI = Diffusion-Weighted Imaging

WM = White Matter

GE = Global Efficiency

NIBS = Non-Invasive Brain Stimulation

NMF = Nonnegative Matrix Factorization

RC =Rich-Club

TAP = Test of Attentional Performance

CTT = Color Trail Test

VAF = Variance Accounted For
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Introduction

It has long been acknowledged that different brain regions are linked together in complex
patterns, making networks a natural mathematical model for the brain, with regions of the
brain serving as nodes and edges being weighted according to structural characteristics.*™
Furthermore, neuroimaging evidence in humans suggests that stroke is a network disease,
indicating that using network theory as the basis of a model for stroke®’ might significantly

enhance the understanding of stroke, its deficits and the recovery therefrom.

It is useful to think of networks on a spectrum between regularity and randomness.
Connectivity in regular networks tends to feature well-defined local communities, while in
random networks it tends to feature one global community with costly long-distance
connections;® brain networks occupy the zone on the spectrum in which the tradeoff between
global integration and local segregation is optimal." They optimize the tradeoff with an
architecture featuring a small set of hub nodes called a “rich-club” (RC).*® These hubs are
“rich” because they are strongly connected to nearby nodes, and form a “club” because they
are strongly connected to each other. The RC can be thought of as a backbone for global
connectivity, and therefore “attacks” (e.g., stroke lesions) against it will have a greater impact

on global connectivity than random attacks of similar magnitude.’

When brain networks are “attacked” by a stroke, the effect on global integration can be
considerable, particularly when the attack focuses on the RC.™° Likewise, the effect on
behavioral function can be significant, particularly on cognitive functions, such as attention,
that rely heavily on global integration as opposed to those functions whose neurological

substrate is more localized, such as sensorimotor functions.**

Structural connectomics relies on models of white matter (WM) tractography computed from

diffusion-weighted imaging (DWI). In areas with high axon density, water molecule diffusion
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has a strong preference for the direction of the axons, i.e., high anisotropy. By chaining
together high-anisotropy voxels in the relevant directions, one can extract a model for WM
tracts. Typically, stroke-lesioned brain tissue undergoes significant changes including
liquefactive necrosis, reducing the anisotropy with consequences on the modelled WM tracts.
Nonetheless, many paths pass through lesioned tissue, even though they might not correspond

to a functioning axon bundle.

We set out to answer two questions. First, is the understanding of connectomics significantly
enhanced by the lesion structure information derived from DWI? To answer this question, we
defined the structural connectome with and without explicit lesion information, respectively,

and compared the data to behavioral metrics.

Second, how strongly are network-theoretic notions of global connectivity or RC integrity
associated with stroke-induced impairment in different behavioral domans? We
hypothesized that global connectivity and RC integrity will be associated with these
behavioral functions, but that this association will be stronger in the “less-localized’
attentional domain than in the “more-localized” motor domain. To test this hypothesis, we
defined indices of impairment in motor and attentional functioning, and correlated them with

a mathematically-defined notion of global efficiency (GE).
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M ethods

Patients

We recruited eighty-five stroke patients admitted between 2018 and 2021 to the stroke unit of
the Hospital of Valais in Sion, Switzerland, of which N = 50 completed both imaging
sessions and behavioral tests and were therefore included in the study (Fig 1B). The inclusion
criteriaincluded being older than eighteen years, presence of a motor deficit, and absence of
contraindications for MRI or noninvasive brain stimulation (NIBS). Exclusion criteria
included requests not to be informed in case of incidental findings, inability to provide
informed consent, severe neuropsychiatric or medical disease, history of seizures, pregnancy,
regular use of narcotic drugs, presence of implanted devices incompatible with MRI or
transcranial magnetic stimulation, use of medication that interacts with NIBS, severe sensory,
musculoskeletal or cognitive deficit incompatible with understanding instructions or
performing experiments. For detailed patient characteristics please see Table 1. The lesion
locations were representative of the overall stroke patient population as shown in the lesion
heatmap (Fig 1A), and were not used as a selection criterion. All patients gave written
informed consent at the time of enrolment. The current data was acquired in the framework of
alarger project (TiMeS project work package 1) and all research was approved by the local

ethical committee swissethics (approva number 2018-01355).
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Figure 1. Cohort characteristics. (A) Lesion heatmap where all patients' lesions are co-registered to the MNI template
brain and flipped onto the right hemisphere. Titlesrefer to z coordinates in the MNI space, i.e. mm superior to the anterior
commissure. (B) Patient flowchart. Please note that of the recruited patients, only those who underwent MRI and all
behavioral tests were included in the study.

Vaue® Unit
Sex 38 male/ 12 femae Peatients
Age 65.2+13.7 Years
Time of MRI 4+2 Days post-stroke
Time of behavioral tests 7+3 Days post-stroke
Paretic side 28 left / 22 right Patients
Thrombolysis 17 yes/ 33 no Patients
NIHSS 58+5 Points
FMUE 536+18.1 Points
Fist grip strength 28.1+15.8 Kgforce
Pinch grip strength 36+22 Kgforce
Key grip strength 58+33 Kgforce
Box & Block test 346+ 186 Blocks
Purdue pegboard test 6.7+4.4 Pegs
CTT part A 77 £ 56 Seconds
CTT pat B 143+ 78 Seconds
RT on dertnesstest of TAP 342 +130 Milliseconds
RT on divided attention test (single condition) of TAP 1012 + 205 Milliseconds

#Categorical values are given as breakdowns by level of the category, separated by forward slashes. Numeric values are
given with mean and standard deviation, separated by =+.

NIHSS = National Ingtitutes of Health Stroke Scale.

FMUE = Fugl-Meyer Upper Extremity score

RT = Reaction Time
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Clinical Assessment

Each patient underwent MRI at the subacute stage in addition to a battery of clinical tests of
motor and cognitive function. The focus of this work was on motor and attentional functions.
Motor strength was measured by performing the fist, grip and pinch strength test*? on both
hands, motor dexterity by performing the Box&Block® and Purdue® tests. Attentional
functions were measured using the Test of Attentional Performance (TAP),* the Color Trail
Test (CTT) parts A and B,***" and the Bells test.'® These tests were selected for fitting in the
Sohlberg-Mateer model, which involves the use of five types of attention of increasing

difficulty.’

MRI Data Acquisition

All images were acquired using a 3T MAGNETOM Prisma (Siemens Hedlthcare, Erlangen,

Germany) with a 64-channel head and neck coil.

T1l-weighted anatomic images were acquired using 3D magnetization-prepared, rapid
acquisition gradient-echo sequence (MPRAGE) with the following parameters. 192 axial
slices, response time = 2300ms, echo time = 2.96ms, flip angle = 9°, voxel size = 1x1x1mm,

field of view = 256x256mm.
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For the DWI, diffusion gradients with five different gradient strengths (b-values =
[300,700,1000,2000,3000]s/mm?; shell-samples = [3,7,16,29,46]) were obtained in 101 non-
collinear directions distributed equally over the brain in 84 axial slices. The images were
acquired using the pulsed gradient spin echo technique with the following parameters:
repetition time = 5000ms, echo time = 77ms, field of view = 234x234mm, voxel
resolution=1.6x1.6x1.6mm, readout bandwidth = 1630Hz/pixel, GRAPPA acceleration factor

=3.

Seven T2-weighted images without diffusion weighting (b=0s/mm?) were acquired, including

onein opposite phase encoded direction.

L esion Segmentation

All the lesion masks were hand-drawn using MRview from MRtrix3%° and subsequently
verified by a neurologist. This enabled us to also compute, for each streamline, the binary
value indicating whether or not the streamline passed through the lesion as described in

previous work. ™
Image Analysis

Tissue partial volume maps were estimates from the T1-weighted image and registered to the
average b0 image using FSL.?* FreeSurfer was used to obtain a brain parcellation including
74 cortical areas per hemisphere (Destrieux atlas), subcortical areas (thalamus, caudate,
putamen, hippocampus, amygdala), the cerebellum, and a subdivison of the brainstem
(midbrain, pons, medulla), yielding 163 brain areas.? The voxels corresponding to the lesion

were stamped out and replaced by the mirrored voxels of the contralateral side.

The DWI were preprocessed using MRtrix3,° and FSL*(Gibbs ringing, motion, field

inhomogeneity, susceptibility-induced off-resonance field, eddy currents and biasfield

9
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correction). Multi-shell multi-tissue constrained spherical deconvolution” was used to
estimate the fiber orientation distributions within each voxel. Whole-brain probabilistic
tractography was performed using the MRtrix3 second-order integration over fiber
orientation distribution method,” initiating streamlines in al voxels of the WM. Streamline
tracking parameters were set to default values, except the minimum streamline length of
1.6mm. For each dataset, 1 million streamlines were selected with both endpoints in the
individual cortical or subcortical mask using the Dipy software package.* Every streamline
was weighted fitting the underlying diffusion compartment model using a Stick-Ball-
Zeppelin® model using COMMIT, a practice designed to boost the anatomical accuracy of

the tractography mainly by avoiding or down-weighting false positives.?
Total and Unaffected Connectome

For each patient, a structural connectome was built with 13,202 pairs of areas obtained
through the parcellation.’®?” As in our previous work,’® we did not limit the analyses to
considering the numbers of streamlines between areas, a method which suffers from serious
pitfalls.”® Instead, we computed whole brain connectomes as follows: for each pair of regions
of interest, we compute the sum of the COMMIT weights of the streamlines that run between
the two regions. Taken together, the COMMIT weighting and the large number of
streamlines ensure that the estimated diffusion connectivity stabilizes, mitigating the pitfalls

by improving the robustness and reproducibility of diffusion connectivity estimations.”*?

Then we use the binary map indicating whether or not the streamline passed through the

lesion to split the full connectome C,,,; into the sum

Crotal = Cunaffected +D 1)

Ctotal [i:j] = Zstreamline k goes fromito j Wi (2)

10
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Cunaffected [l;]] = Z streamline k goes fromito j Wi (3)
and does not pass through the lesion

D [l;]] = Z streamline k goes fromito j Wi (4)
and passes through the lesion

In this way, we are able to incorporate the lesion more explicitly and by only considering
streamlines which are not lesioned, simultaneously encode true structural connectivity and

mitigate the potential for artifacts of e.g., Wallerian degeneration.®
Rich-club, Edge Weight, and Node Weight

We considered the same set of nodes as found by van den Heuvel and Sporns to form the RC,
namely the bilateral precuneus, superior frontal cortex, superior parietal cortex, hippocampus,
putamen, and thalamus.® Finally, we split the edges into three groups (Fig 2): pure RC
connections (between RC nodes); feeder connections (between a RC and a non-RC node);

and local connections (between non-RC nodes).

Each edge has a weight; each node has a weight, defined to be the sum of the weights of al

edges linked to that node.

11
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Figure 2: Connectome nodes and edges on glass brain. Our parcellation contains 163 nodes, depicted as dots on the brain.
18 of these nodes, shown as enlarged dots, are the RC nodes. The edges are partitioned into pure RC (A, red), feeder (B,
green), and local (C, blue) types.

Dimensionality Reduction

The behavioral metrics of strength, dexterity and attention all were represented by multiple
features, which implies a need for dimensionality reduction. Popular methods include
principal component analysis and nonnegative matrix factorization (NMF);** because our
data are nonnegative by nature and distance from zero impairment has a relevant meaning,
we chose NMF. The amount of information that is lost by reducing features is captured by
calculating the proportion of variance accounted for (VAF) by the low-dimensiona

representation.®

Behavioral Metrics

12
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To measure strength impairment, we consider the average force in three trials exerted by the

patients on both hands, and calculate a normalized impairment metric as follows:

_ Fnonpa‘retic - Fparetic (5)

an‘m
Fnonpa‘retic + Fparetic

in afist grip, a pinch grip and a key grip,*? giving the three features FIST,,,,m, PINCH,yrm,
and KEY,, .- These features are bounded between -1 and 1, where -1 means only the paretic
hand exerts force, 0 means both hands exert equal force, and 1 means only the nonparetic
hand exerts force. While mildly negative values are possible, they are unlikely to be clinically
meaningful, so we set negative values to zero in order for the features to be nonnegative.
Patients missing all three of FIST,;-m, PINCH, o @nd KEY,, ., Were excluded; those who
were missing some but not all were replaced by the mean of al non-missing data in the
respective field. Finally, we used NMF (VAF = 97%) to reduce the three features into one

strength impai rment index
strength = 1.39 X FIST,ppm + 1.43 X PINCH ,pyq + 1.53 X KEY, 01m- (6)

To measure dexterity impairment, we consider the number of fine motor tasks performed by
the patient with both hands in a given time limit. As before, we calculate the normalized

functional metric

_ Nnonparetic - Nparetic
NTLOTTTL - (7)
Nnonparetic + Nparetic

in the box-and-block test® and the Purdue pegboard test,' set negative values to zero, impute
missing data, and use NMF (VAF = 97%) to reduce the two features into one dexterity

impairment index

dexterity = 1.43 X B&B,,p;m + 1.53 X Purdue, ,rm. (8)

13
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To measure functional deficits in attention, we began with the widely-used model of

Sohlberg-Mateer,*® which suggests measuring five tasks of increasing difficulty, as described

in Table 2:
Component Type of Task Metric Unit
Focused Response to discrete stimuli Mean RT on aertness test (no warning) of TAP  Milliseconds
Ability to work in a quiet Seconds
Sustained _ Completiontimeof CTT part A
environment
Selective Ability to ignore distractors Completion time of Bells test® Seconds
Alternating Shifting attention between tasks Completion time of CTT part B Seconds
Divided Response to multiple stimuli Mean RT on divided attention test of TAP Milliseconds

A penalty of 0.7 seconds was added for every omission in the Bells test

RT = Reaction Time
We normalize each of these features to have maximal value 1, impute missing values, and use
NMF (VAF = 94%) to reduce the five normalized features to one attention impai rment index

attention = 1.34 X focused + 0.98 X sustained + 1.40 X selective + 1.32 X

alternating + 2.35 X divided. 9
Global Efficiency

Most networks lie on a spectrum between local segregation and global integration. Many
biological networks are “small-world” networks, which have both the clustered nature of
33,34

locally segregated networks and the short path length of globally integrated networks.

The GE of anetwork with n nodes is defined by Rubinov and Sporns® as

GE = ———Xi+j @ (10)

14
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where d;; is the length of the shortest path between nodes i and j, ie. the smallest sum of
reciprocal edge weights in any path from i to j. GE of the brain networks were computed

using MATLAB’s Brain Connectivity Toolbox.**

Data availability

Datawill be made available upon reasonabl e request.

Results
We computed the weighted GE of each patient’s total connectome C,,.,; and unaffected
CONNECLOME Cyypqfrecteqas aNd then correlated these with strength, dexterity and attention

impairment.

As GE was correlated with lesion volume, we considered lesion volume as a confounder. To
establish the wisdom of using GE nonetheless, we performed recursive feature elimination on
linear regression models of typeimpairment ~ lesion volume + GE;orq1 + GEynassectea

and in all three domains, the last predictor variable remaining Was G Eynqfrectea-

All correlations were estimated using bootstrap resampling®™ with 10,000 iterations, i.e., at
each iteration we drew 50 patients from our sample of 50 (with replacement) and computed
the respective correlations on the subsample. We computed the Pearson correlation between
GE,yq; and impairment (Fig 3, blue; strength: r = —.20, P = .07, dexterity: r = —.11, P =
.25, atention: r = —.41, P =.0001); and between GE, qffectea and impairment (Fig 3,
green; strength: r = —.30, P = .02, dexterity: r = —.30, P = .05, attention: r = —.55, P <

0.001). The negative correlations are expected, given that GE is known to contribute to better

15
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functional outcomes;"** p-values are proportions of bootstrap correlations that were non-

negative.

We computed effect sizes for the difference between r(GEynqffectea, impairment) and
r(GE,y1q1, impairment) across bootstrap iterations using Cohen's d statistic rather than
Student’s ¢ due to the latter showing inflated effect sizes with large datasets;*’ p-values were
computed by probability of superiority.® GEynaffectea WS more strongly correlated with
impairment than GE,,.,; (strength: d = —0.73, P = .07, dexterity: d = —1.1, P =.006,
attention: d = —1.5, P =.004). We did not control for age, as age was found not to be a

meaningful covariate in previous studies of older healthy subjects.™

d=-1.1
p=.006
0.6 d=-0.73 ’
0.4
0.2
0.0
-0.24

-0.44

Pearson correlation

-0.6

-0.84

p=.50 d=-19
p=.06

mmGE_total

== GE_unaffected
strength dexterity attention
Figure 3: Bootstrapped correations between connectome GE and impairment. Boxplots show bootstrapped Pearson
correlations on the ordinata between GE and the three types of impairment on the abscissa. Blue plots refer to GE;otq; ,While
green plots refer to GEynqfrectea- Note that all correlationstend to be negative and that correlations with GEypnaffected
tend to be stronger (i.e. more negative) than those with GE¢,:4;. Note also that GE tends to be more strongly correlated to

attention impairment than to strength or dexterity impairment, while it seemsto be equally strongly correlated to strength
and dexterity impairment.

It is known from work of van den Heuvel and Sporns’ that attacks on pure RC edges result in

more loss of GE than attacks of similar magnitude on feeder or local edges. Conversely, we
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expected that greater integrity of pure RC edges should correspond to greater GE in the
network, and thisis the case (Fig 4A, left: oneeway ANOVA F = 82.1, P < 0.001). Greater
integrity of RC nodes also corresponds to greater GE in the network (Fig 4B, left: two-sample

ttest T = 2.6, P =.009).

It has been shown that among hedlthy older subjects, when considering correlations to
attention, which requires integration of inputs from across the brain, pure RC edges are
strongest, then feeder, then local. However, no such order exists for correlations to visual
processing, which is more localized."* The same holds when considering RC nodes as

opposed to non-RC nodes.

We have found analogous results to those reported by Baggio and colleagues* in healthy
older adults. Pure RC edge weights have more negative (i.e. stronger) correlations to behavior
than feeder and local edges, and this gap is smallest for strength and largest for attention (Fig
4A, right: one-way ANOVA. Strength: F = 6.5, P <.001; dexterity: F = 19.7, P < 0.001;
attention: F = 89.4, P < 0.001). Similarly, RC node weights have stronger correlations to
behavior than non-RC node weights, and this gap is smallest for strength and largest for
attention (Fig 4B, right: two-sample t test. Strength: T = 0.7, P = .474; dexterity: T = 2.0,

P = .048; attention: T = 3.0, P =.003).
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Figure 4: Correlations between connectome GE, graph weights, and impairment. Plots show mean and standard deviation.
(A, I€ft) Correlations between edge weight and GEynarrectea- Please note that the order pure RC > feeder > local holds. (A,
right) Correlations between edge weight and impairment. Please note that the order pure RC < feeder < local holds in all
domains, and that the gap is largest in the attentional domain. (B, left) Correlations between node weight and GEynafrected-
Please note that RC nodes have stronger correlation to GEypnafsectea than non-RC nodes. (B, right) Correlations between
node weight and impairment. Please note that RC nodes have stronger correlations to behavior than non-RC nodes and that
the gap increases between strength, dexterity, and attention.

Discussion

Given the complex interactions between different brain areas, mathematical tools for complex
network analyses offer an exciting opportunity to better understand mechanisms underlying
neurological disorders, especially when current findings strongly support the maxim that
many neurological disorders, including stroke, are network disorders>® Therefore, by
evaluating the patient’s specific brain connectivity, connectomics has great potential to yield

important insights into post-stroke impai rment and recovery mechanisms.

Our data suggest there are considerable differences in the mechanisms underlying deficits in

the motor and attentional domains. These differences provide justified optimism that while
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treatments designed to promote more globally efficient brain networks are likely to have

benefitsin treating many deficits, thisis particularly true of attentional deficits.

While the stroke patients in this study were selected for their motor deficit, many also showed
cognitive/attentional deficits (e.g., 39/50 pathological on MOCA). It has been suggested from
studies of older healthy subjects and stroke patients™ that cognitive functions, such as
attention, memory or language functions, are more heavily reliant on integration of inputs
from different parts of the brain than functions such as motor or visual ones, which reside in
“more specialized” local brain networks. This important assumption has been confirmed by
our findings that GE,;.qffectea 1S More strongly correlated to attention than to motor strength
or dexterity, highlighting the reliance of the attentional domain on larger-scale emergent
dynamics. Note that the correlation between GE,qffecreq @nd strength does not differ
significantly from that between GE,qffeccea and dexterity, highlighting the fact that the
motor domain, whether for pure strength production or for more fine motor skills, is less
reliant on emergent (larger-scale) dynamics than attention is. Mathematical modeling
conducted by Sporns and van den Heuvel has found that the resilience of brain networks to
“attack” varies depending on the place of attack, indicating that attacks on pure RC edges
result in greater drops in GE than other (non-RC) attacks of similar magnitude.® Accordingly,
we found that RC node weight and pure RC edge weight were more strongly correlated to
attention than to motor functions, suggesting that the importance of the RC is derived from its

disproportionate impact on GE.

Our approach adds personalization to traditional connectomics by separating fibers according
to whether or not they are impacted by the patient’s particular lesion. This approach has
borne fruit, as the unaffected connectome is more strongly associated with behavior than the

traditional total connectome. From a hypothesis-driven perspective, the importance of
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including alesion profile in the measurement of brain networks is obvious as WM tracts can
be detected by DWI-derived tractography, though probably with more diffusivity
inhomogeneities, even if they are interrupted by alesion (particularly in the early post-stroke
period). Such tractography by itself fails to acknowledge that if tracts are interrupted by the
lesion, their ability to transmit information is compromised and they will not contribute to the
normal functioning of the network. From a data-driven perspective, it has been found that
GE,,.; does not differ significantly either over time, or even between stroke patients and
healthy controls,®® casting doubt on the value of GE,,,, as a biomarker. By contrast, we

provide evidence that GE,pqffectea differs significantly from GE.,.,;, and that in stroke

patients GEynqffectea 1S More strongly correlated to behavior than GE, Is.

Consequently, we find that explicitly discarding tracts that pass through the lesion as
inoperative ensures that the unaffected connectome is a more accurate reflection of true
patterns of connectivity than the traditional structural connectome, and thus a better candidate

as astroke-related hiomarker.
Limitations

The primary drawback of our approach is that splitting the total connectome into its affected
and unaffected parts requires that one draw lesion masks and overlay them onto the
tractography. This imposes considerable additional work, yet we are convinced that the
benefits in terms of relevance to behavior and understanding of mechanisms are worth the
cost. In addition to being time-consuming and labor intensive, they require substantial
anatomical expertise, which might introduce a considerable source of variability; both on an
inter-rater and (to a lesser extent) test-retest basis.* While the use of machine learning

algorithms to delineate lesions holds some promise, it is a sufficiently difficult task that at the
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time of writing, human-drawn lesions remain the gold standard, with even the best available

agorithms failing to come close to inter-rater levels of agreement with humans.*?
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FutureWork

This study was conducted cross-sectionally, however longitudinal evaluation of parameters of
network efficiency in the affected and unaffected parts of the network will open novel
opportunities to study the mechanisms underlying recovery of multi-domain (e.g., motor and
attention) post-stroke deficits. It will provide novel insights into the reorganization of
structural brain networks, how these reorganizational patterns relate to recovery of behavioral
functions, and whether they allow prediction of outcome or treatment stratification. In
particular, it would be worth investigating whether among our cohort, patients increase in
GE over time was associated with recovery from their impairment, particularly attentional

impairment.

There are biological reasons to expect that this might occur. Reparative axonal sprouting is
characterized by growth of long-distance connections,” the precise type of connections that
contribute most to GE. It has aso been found to be clearly associated with post-stroke

behavioral recovery.®

Conclusions

While the patients in our cohort were selected for motor deficits, most of them aso had an
attention deficit, which can have an additional impact on the recovery process. This
considerable overlap between motor and attentional deficits implies the need for finer-grained

discriminators between multidomain deficits and their underlying mechanisms.

Here, we suggest structural connectivity analyses of RC properties with a focus on affected
and unaffected parts of the network to better characterize these multi-domain deficits in the
subacute stage after stroke. These analyses allow the following conclusions: First, current
structural connectomics approaches use DWI to trace axon fiber bundles and simply rely on
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lesion-induced tract inhomogeneities. However, this implicit consideration of the lesion is
suboptimal, particularly in the acute and subacute phase as it might lead to the tractography
finding tracts that are no longer functional. Therefore, the results support the importance of
explicitly overlaying lesion masks onto the tractography to be able to split the structura
connectome into its unaffected (well-functioning) and affected (non-functional) parts to
determine which parts of the brain network are actually relevant to residual functions and
impairment. Secondly, based on this approach, the results suggest that in stroke patients,
attention is more sensitive to non-integrity of the connectome (especially the RC) and the
resulting deficiency of GE than motor functions, strongly underscoring the differential
importance of RC network properties for different behavioral functions. The results further
confirm and are consistent with reports in healthy subjects that the neural substrate
underlying motor functions is rather localized, while that underlying attention is based on a

more global representation in terms of RC organization.
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