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Abstract 

Background 

Most studies on stroke have been designed to examine one deficit in isolation, yet survivors 

often have multiple deficits in different domains. While the mechanisms underlying multiple-

domain deficits remain poorly understood, network-theoretical methods may open new 

avenues of understanding. 

Methods 

50 subacute stroke patients (7±3days post-stroke) underwent diffusion-weighted magnetic 

resonance imaging and a battery of clinical tests of motor and cognitive functions. We 

defined indices of impairment in strength, dexterity, and attention. We also computed 

imaging-based probabilistic tractography and whole brain connectomes. Overlaying 

individual lesion masks onto the tractograms enabled us to split the connectomes into their 

affected and unaffected parts and associate them to impairment. 

Results 

To efficiently integrate inputs from different sources, brain networks rely on a “rich-club” of 

a few hub nodes. Lesions harm efficiency, particularly when they target the rich-club. We 

computed efficiency of the unaffected connectome, and found it was more strongly correlated 

to impairment in strength, dexterity and attention than efficiency of the total connectome. The 

magnitude of the correlation between efficiency and impairment followed the order attention 

> dexterity ≈ strength. Network weights associated with the rich-club were more strongly 

correlated to efficiency than non-rich-club weights. 

Conclusions 
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Attentional impairment is more sensitive to disruption of coordinated network activity 

between brain regions than motor impairment, which is sensitive to disruption of localized 

network activity. Providing more accurate reflections of actually functioning parts of the 

network enables the incorporation of information about the impact of brain lesions on 

connectomics contributing to a better understanding of underlying stroke mechanisms. 

Keywords: stroke; motor; attention; structural; connectivity 
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Non-standard Abbreviations and Acronyms:  

DWI = Diffusion-Weighted Imaging 

WM = White Matter 

GE = Global Efficiency 

NIBS = Non-Invasive Brain Stimulation 

NMF = Nonnegative Matrix Factorization 

RC = Rich-Club 

TAP = Test of Attentional Performance 

CTT = Color Trail Test 

VAF = Variance Accounted For 
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Introduction  

It has long been acknowledged that different brain regions are linked together in complex 

patterns, making networks a natural mathematical model for the brain, with regions of the 

brain serving as nodes and edges being weighted according to structural characteristics.1–4 

Furthermore, neuroimaging evidence in humans suggests that stroke is a network disease, 

indicating that using network theory as the basis of a model for stroke5–7 might significantly 

enhance the understanding of stroke, its deficits and the recovery therefrom. 

It is useful to think of networks on a spectrum between regularity and randomness. 

Connectivity in regular networks tends to feature well-defined local communities, while in 

random networks it tends to feature one global community with costly long-distance 

connections;8 brain networks occupy the zone on the spectrum in which the tradeoff between 

global integration and local segregation is optimal.1 They optimize the tradeoff with an 

architecture featuring a small set of hub nodes called a “rich-club” (RC).1,9 These hubs are 

“rich” because they are strongly connected to nearby nodes, and form a “club” because they 

are strongly connected to each other. The RC can be thought of as a backbone for global 

connectivity, and therefore “attacks” (e.g., stroke lesions) against it will have a greater impact 

on global connectivity than random attacks of similar magnitude.9 

When brain networks are “attacked” by a stroke, the effect on global integration can be 

considerable, particularly when the attack focuses on the RC.10 Likewise, the effect on 

behavioral function can be significant, particularly on cognitive functions, such as attention, 

that rely heavily on global integration as opposed to those functions whose neurological 

substrate is more localized, such as sensorimotor functions.11 

Structural connectomics relies on models of white matter (WM) tractography computed from 

diffusion-weighted imaging (DWI). In areas with high axon density, water molecule diffusion 
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has a strong preference for the direction of the axons, i.e., high anisotropy. By chaining 

together high-anisotropy voxels in the relevant directions, one can extract a model for WM 

tracts. Typically, stroke-lesioned brain tissue undergoes significant changes including 

liquefactive necrosis, reducing the anisotropy with consequences on the modelled WM tracts. 

Nonetheless, many paths pass through lesioned tissue, even though they might not correspond 

to a functioning axon bundle.  

We set out to answer two questions. First, is the understanding of connectomics significantly 

enhanced by the lesion structure information derived from DWI? To answer this question, we 

defined the structural connectome with and without explicit lesion information, respectively, 

and compared the data to behavioral metrics. 

Second, how strongly are network-theoretic notions of global connectivity or RC integrity 

associated with stroke-induced impairment in different behavioral domains? We 

hypothesized that global connectivity and RC integrity will be associated with these 

behavioral functions, but that this association will be stronger in the “less-localized” 

attentional domain than in the “more-localized” motor domain. To test this hypothesis, we 

defined indices of impairment in motor and attentional functioning, and correlated them with 

a mathematically-defined notion of global efficiency (GE). 
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Methods  

Patients 

We recruited eighty-five stroke patients admitted between 2018 and 2021 to the stroke unit of 

the Hospital of Valais in Sion, Switzerland, of which � � �� completed both imaging 

sessions and behavioral tests and were therefore included in the study (Fig 1B). The inclusion 

criteria included being older than eighteen years, presence of a motor deficit, and absence of 

contraindications for MRI or noninvasive brain stimulation (NIBS). Exclusion criteria 

included requests not to be informed in case of incidental findings, inability to provide 

informed consent, severe neuropsychiatric or medical disease, history of seizures, pregnancy, 

regular use of narcotic drugs, presence of implanted devices incompatible with MRI or 

transcranial magnetic stimulation, use of medication that interacts with NIBS, severe sensory, 

musculoskeletal or cognitive deficit incompatible with understanding instructions or 

performing experiments. For detailed patient characteristics please see Table 1. The lesion 

locations were representative of the overall stroke patient population as shown in the lesion 

heatmap (Fig 1A), and were not used as a selection criterion. All patients gave written 

informed consent at the time of enrolment. The current data was acquired in the framework of 

a larger project (TiMeS project work package 1) and all research was approved by the local 

ethical committee swissethics (approval number 2018-01355). 
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Figure 1: Cohort characteristics. (A) Lesion heatmap where all patients’ lesions are co-registered to the MNI template 
brain and flipped onto the right hemisphere. Titles refer to z coordinates in the MNI space, i.e. mm superior to the anterior 
commissure. (B) Patient flowchart. Please note that of the recruited patients, only those who underwent MRI and all 
behavioral tests were included in the study. 

 Valuea Unit 

Sex 38 male / 12 female Patients 

Age 65.2 ± 13.7 Years 

Time of MRI 4 ± 2 Days post-stroke 

Time of behavioral tests 7 ± 3 Days post-stroke 

Paretic side 28 left / 22 right Patients 

Thrombolysis 17 yes / 33 no Patients 

NIHSS 5.8 ± 5 Points 

FMUE 53.6 ± 18.1 Points 

Fist grip strength 28.1 ± 15.8 Kg force 

Pinch grip strength 3.6 ± 2.2 Kg force 

Key grip strength 5.8 ± 3.3 Kg force 

Box & Block test 34.6 ± 18.6 Blocks 

Purdue pegboard test 6.7 ± 4.4 Pegs 

CTT part A 77 ± 56 Seconds 

CTT part B 143 ± 78 Seconds 

RT on alertness test of TAP 342 ± 130 Milliseconds 

RT on divided attention test (single condition) of TAP 1012 ± 205 Milliseconds 

 

aCategorical values are given as breakdowns by level of the category, separated by forward slashes. Numeric values are 
given with mean and standard deviation, separated by ±. 
NIHSS = National Institutes of Health Stroke Scale. 

FMUE = Fugl-Meyer Upper Extremity score 

RT = Reaction Time 
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Clinical Assessment 

Each patient underwent MRI at the subacute stage in addition to a battery of clinical tests of 

motor and cognitive function. The focus of this work was on motor and attentional functions. 

Motor strength was measured by performing the fist, grip and pinch strength test12 on both 

hands, motor dexterity by performing the Box&Block13 and Purdue14 tests. Attentional 

functions were measured using the Test of Attentional Performance (TAP),15 the Color Trail 

Test (CTT) parts A and B,16,17 and the Bells test.18 These tests were selected for fitting in the 

Sohlberg-Mateer model, which involves the use of five types of attention of increasing 

difficulty.19 

MRI Data Acquisition 

All images were acquired using a 3T MAGNETOM Prisma (Siemens Healthcare, Erlangen, 

Germany) with a 64-channel head and neck coil.  

T1-weighted anatomic images were acquired using 3D magnetization-prepared, rapid 

acquisition gradient-echo sequence (MPRAGE) with the following parameters: 192 axial 

slices, response time = 2300ms, echo time = 2.96ms, flip angle = 9°, voxel size = 1×1×1mm, 

field of view = 256×256mm.  
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For the DWI, diffusion gradients with five different gradient strengths (b-values = 

[300,700,1000,2000,3000]s/mm2; shell-samples = [3,7,16,29,46]) were obtained in 101 non-

collinear directions distributed equally over the brain in 84 axial slices. The images were 

acquired using the pulsed gradient spin echo technique with the following parameters: 

repetition time = 5000ms, echo time = 77ms, field of view = 234x234mm, voxel 

resolution=1.6×1.6×1.6mm, readout bandwidth = 1630Hz/pixel, GRAPPA acceleration factor 

= 3.  

Seven T2-weighted images without diffusion weighting (b=0s/mm2) were acquired, including 

one in opposite phase encoded direction. 

Lesion Segmentation 

All the lesion masks were hand-drawn using MRview from MRtrix320 and subsequently 

verified by a neurologist. This enabled us to also compute, for each streamline, the binary 

value indicating whether or not the streamline passed through the lesion as described in 

previous work.10 

Image Analysis 

Tissue partial volume maps were estimates from the T1-weighted image and registered to the 

average b0 image using FSL.21 FreeSurfer was used to obtain a brain parcellation including 

74 cortical areas per hemisphere (Destrieux atlas), subcortical areas (thalamus, caudate, 

putamen, hippocampus, amygdala), the cerebellum, and a subdivision of the brainstem 

(midbrain, pons, medulla), yielding 163 brain areas.22 The voxels corresponding to the lesion 

were stamped out and replaced by the mirrored voxels of the contralateral side. 

The DWI were preprocessed using MRtrix3,20 and FSL21(Gibbs ringing, motion, field 

inhomogeneity, susceptibility-induced off-resonance field, eddy currents and bias-field 
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correction). Multi-shell multi-tissue constrained spherical deconvolution23 was used to 

estimate the fiber orientation distributions within each voxel. Whole-brain probabilistic 

tractography was performed using the MRtrix3 second-order integration over fiber 

orientation distribution method,20 initiating streamlines in all voxels of the WM. Streamline 

tracking parameters were set to default values, except the minimum streamline length of 

1.6mm. For each dataset, 1 million streamlines were selected with both endpoints in the 

individual cortical or subcortical mask using the Dipy software package.24 Every streamline 

was weighted fitting the underlying diffusion compartment model using a Stick-Ball-

Zeppelin25 model using COMMIT, a practice designed to boost the anatomical accuracy of 

the tractography mainly by avoiding or down-weighting false positives.26  

Total and Unaffected Connectome 

For each patient, a structural connectome was built with 13,202 pairs of areas obtained 

through the parcellation.10,27 As in our previous work,10 we did not limit the analyses to 

considering the numbers of streamlines between areas, a method which suffers from serious 

pitfalls.28 Instead, we computed whole brain connectomes as follows: for each pair of regions 

of interest, we compute the sum of the COMMIT weights of the streamlines that run between 

the two regions. Taken together, the COMMIT weighting and the large number of 

streamlines ensure that the estimated diffusion connectivity stabilizes, mitigating the pitfalls 

by improving the robustness and reproducibility of diffusion connectivity estimations.26,29 

Then we use the binary map indicating whether or not the streamline passed through the 

lesion to split the full connectome ������ into the sum 
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      (4) 

In this way, we are able to incorporate the lesion more explicitly and by only considering 

streamlines which are not lesioned, simultaneously encode true structural connectivity and 

mitigate the potential for artifacts of e.g., Wallerian degeneration.30 

Rich-club, Edge Weight, and Node Weight 

We considered the same set of nodes as found by van den Heuvel and Sporns to form the RC, 

namely the bilateral precuneus, superior frontal cortex, superior parietal cortex, hippocampus, 

putamen, and thalamus.9 Finally, we split the edges into three groups (Fig 2): pure RC 

connections (between RC nodes); feeder connections (between a RC and a non-RC node); 

and local connections (between non-RC nodes). 

Each edge has a weight; each node has a weight, defined to be the sum of the weights of all 

edges linked to that node.  
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Figure 2: Connectome nodes and edges on glass brain. Our parcellation contains 163 nodes, depicted as dots on the brain. 
18 of these nodes, shown as enlarged dots, are the RC nodes. The edges are partitioned into pure RC (A, red), feeder (B, 
green), and local (C, blue) types.  

Dimensionality Reduction 

The behavioral metrics of strength, dexterity and attention all were represented by multiple 

features, which implies a need for dimensionality reduction. Popular methods include 

principal component analysis and nonnegative matrix factorization (NMF);31 because our 

data are nonnegative by nature and distance from zero impairment has a relevant meaning, 

we chose NMF. The amount of information that is lost by reducing features is captured by 

calculating the proportion of variance accounted for (VAF) by the low-dimensional 

representation.31 

Behavioral Metrics 
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To measure strength impairment, we consider the average force in three trials exerted by the 

patients on both hands, and calculate a normalized impairment metric as follows: 

���
� �
����������	 � �������	

����������	 � �������	
        (5) 

in a fist grip, a pinch grip and a key grip,12 giving the three features ������
� , �������
� , 

and �����
� . These features are bounded between -1 and 1, where -1 means only the paretic 

hand exerts force, 0 means both hands exert equal force, and 1 means only the nonparetic 

hand exerts force. While mildly negative values are possible, they are unlikely to be clinically 

meaningful, so we set negative values to zero in order for the features to be nonnegative. 

Patients missing all three of ������
� , �������
� and �����
� were excluded; those who 

were missing some but not all were replaced by the mean of all non-missing data in the 

respective field. Finally, we used NMF (��� � 97%) to reduce the three features into one 

strength impairment index 

� !"#$ % � 1.39 ) ������
� � 1.43 ) �������
� � 1.53 ) �����
� .  (6) 

To measure dexterity impairment, we consider the number of fine motor tasks performed by 

the patient with both hands in a given time limit. As before, we calculate the normalized 

functional metric 

���
� �
����������	 � �������	

����������	 � �������	
        (7) 

in the box-and-block test32 and the Purdue pegboard test,14 set negative values to zero, impute 

missing data, and use NMF (��� � 97%) to reduce the two features into one dexterity 

impairment index 

,"- "!	 . � 1.43 ) /&/��
� � 1.53 ) �1!,1"��
� .    (8) 
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To measure functional deficits in attention, we began with the widely-used model of 

Sohlberg-Mateer,19 which suggests measuring five tasks of increasing difficulty, as described 

in Table 2: 

Component Type of Task Metric Unit 

Focused Response to discrete stimuli Mean RT on alertness test (no warning) of TAP Milliseconds 

Sustained 
Ability to work in a quiet 

environment 
Completion time of CTT part A 

Seconds 

Selective Ability to ignore distractors Completion time of Bells testa Seconds 

Alternating Shifting attention between tasks Completion time of CTT part B Seconds 

Divided Response to multiple stimuli Mean RT on divided attention test of TAP Milliseconds 

 

aA penalty of 0.7 seconds was added for every omission in the Bells test 

RT = Reaction Time 

 

We normalize each of these features to have maximal value 1, impute missing values, and use 

NMF (��� � 94%) to reduce the five normalized features to one attention impairment index 

2  "# 	3# � 1.34 ) 4351�", � 0.98 ) �1� 2	#", � 1.40 ) �"8"5 	9" � 1.32 )

28 "!#2 	#$ � 2.35 ) ,	9	,",.       (9) 

Global Efficiency 

Most networks lie on a spectrum between local segregation and global integration. Many 

biological networks are “small-world” networks, which have both the clustered nature of 

locally segregated networks and the short path length of globally integrated networks.33,34 

The GE of a network with # nodes is defined by Rubinov and Sporns34 as 

;� �
�

������
∑

�


�

��� ,         (10) 
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where ,�� is the length of the shortest path between nodes 	 and �, ie. the smallest sum of 

reciprocal edge weights in any path from 	 to �. GE of the brain networks were computed 

using MATLAB’s Brain Connectivity Toolbox.34 

Data availability  

Data will be made available upon reasonable request. 

 

Results  

We computed the weighted GE of each patient’s total connectome ������  and unaffected 

connectome �������	��
 ; and then correlated these with strength, dexterity and attention 

impairment.  

As GE was correlated with lesion volume, we considered lesion volume as a confounder. To 

establish the wisdom of using GE nonetheless, we performed recursive feature elimination on 

linear regression models of type 	<=2	!<"#  ~ 8"�	3# 9381<" � ;������ � ;�������	��
  

and in all three domains, the last predictor variable remaining was ;�������	��
 . 

All correlations were estimated using bootstrap resampling35 with 10,000 iterations, i.e., at 

each iteration we drew 50 patients from our sample of 50 (with replacement) and computed 

the respective correlations on the subsample. We computed the Pearson correlation between 

;������  and impairment (Fig 3, blue; strength: ! � ?.20, � � .07, dexterity: ! � ?.11, � �

.25, attention: ! � ?.41, � � .0001); and between ;�������	��
  and impairment (Fig 3, 

green; strength: ! � ?.30, � � .02, dexterity: ! � ?.30, � � .05, attention: ! � ?.55, � @

0.001). The negative correlations are expected, given that GE is known to contribute to better 
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functional outcomes;11,36 p-values are proportions of bootstrap correlations that were non-

negative.  

We computed effect sizes for the difference between !A;�������	��
 , 	<=2	!<"# B and 

!A;������ , 	<=2	!<"# B across bootstrap iterations using  Cohen’s , statistic rather than 

Student’s   due to the latter showing inflated effect sizes with large datasets;37 p-values were 

computed by probability of superiority.38 ;�������	��
  was more strongly correlated with 

impairment than ;������  (strength: , � ?0.73, � � .07, dexterity: , � ?1.1, � � .006, 

attention: , � ?1.5, � � .004). We did not control for age, as age was found not to be a 

meaningful covariate in previous studies of older healthy subjects.11 

 

Figure 3: Bootstrapped correlations between connectome GE and impairment. Boxplots show bootstrapped Pearson 
correlations on the ordinata between GE and the three types of impairment on the abscissa. Blue plots refer to ������� ,while 
green plots refer to ��������	��
 . Note that all correlations tend to be negative and that correlations with ��������	��
 
tend to be stronger (i.e. more negative) than those with �������. Note also that GE tends to be more strongly correlated to 
attention impairment than to strength or dexterity impairment, while it seems to be equally strongly correlated to strength 
and dexterity impairment.  

It is known from work of van den Heuvel and Sporns9 that attacks on pure RC edges result in 

more loss of GE than attacks of similar magnitude on feeder or local edges. Conversely, we 
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expected that greater integrity of pure RC edges should correspond to greater GE in the 

network, and this is the case (Fig 4A, left: one-way ANOVA � � 82.1, � @ 0.001). Greater 

integrity of RC nodes also corresponds to greater GE in the network (Fig 4B, left: two-sample 

t test � � 2.6, � � .009). 

It has been shown that among healthy older subjects, when considering correlations to 

attention, which requires integration of inputs from across the brain, pure RC edges are 

strongest, then feeder, then local. However, no such order exists for correlations to visual 

processing, which is more localized.11 The same holds when considering RC nodes as 

opposed to non-RC nodes.  

We have found analogous results to those reported by Baggio and colleagues11 in healthy 

older adults. Pure RC edge weights have more negative (i.e. stronger) correlations to behavior 

than feeder and local edges, and this gap is smallest for strength and largest for attention (Fig 

4A, right: one-way ANOVA. Strength: � � 6.5, � @ .001; dexterity: � � 19.7, � @ 0.001; 

attention: � � 89.4, � @ 0.001). Similarly, RC node weights have stronger correlations to 

behavior than non-RC node weights, and this gap is smallest for strength and largest for 

attention (Fig 4B, right: two-sample t test. Strength: � � 0.7, � � .474; dexterity: � � 2.0,

� � .048; attention: � � 3.0, � � .003). 
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Figure 4: Correlations between connectome GE, graph weights, and impairment. Plots show mean and standard deviation. 
(A, left) Correlations between edge weight and ��������	��
. Please note that the order pure RC > feeder > local holds. (A, 
right) Correlations between edge weight and impairment. Please note that the order pure RC < feeder < local holds in all 
domains, and that the gap is largest in the attentional domain. (B, left) Correlations between node weight and ��������	��
. 
Please note that RC nodes have stronger correlation to ��������	��
  than non-RC nodes. (B, right) Correlations between 
node weight and impairment. Please note that RC nodes have stronger correlations to behavior than non-RC nodes and that 
the gap increases between strength, dexterity, and attention. 

Discussion  

Given the complex interactions between different brain areas, mathematical tools for complex 

network analyses offer an exciting opportunity to better understand mechanisms underlying 

neurological disorders, especially when current findings strongly support the maxim that 

many neurological disorders, including stroke, are network disorders.5,39 Therefore, by 

evaluating the patient’s specific brain connectivity, connectomics has great potential to yield 

important insights into post-stroke impairment and recovery mechanisms.  

Our data suggest there are considerable differences in the mechanisms underlying deficits in 

the motor and attentional domains. These differences provide justified optimism that while 
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treatments designed to promote more globally efficient brain networks are likely to have 

benefits in treating many deficits, this is particularly true of attentional deficits. 

While the stroke patients in this study were selected for their motor deficit, many also showed 

cognitive/attentional deficits (e.g., 39/50 pathological on MOCA). It has been suggested from 

studies of older healthy subjects11 and stroke patients40 that cognitive functions, such as 

attention, memory or language functions, are more heavily reliant on integration of inputs 

from different parts of the brain than functions such as motor or visual ones, which reside in 

“more specialized” local brain networks. This important assumption has been confirmed by 

our findings that ;�������	��
  is more strongly correlated to attention than to motor strength 

or dexterity, highlighting the reliance of the attentional domain on larger-scale emergent 

dynamics. Note that the correlation between ;�������	��
  and strength does not differ 

significantly from that between ;�������	��
 and dexterity, highlighting the fact that the 

motor domain, whether for pure strength production or for more fine motor skills, is less 

reliant on emergent (larger-scale) dynamics than attention is. Mathematical modeling 

conducted by Sporns and van den Heuvel has found that the resilience of brain networks to 

“attack” varies depending on the place of attack, indicating that attacks on pure RC edges 

result in greater drops in GE than other (non-RC) attacks of similar magnitude.9 Accordingly, 

we found that RC node weight and pure RC edge weight were more strongly correlated to 

attention than to motor functions, suggesting that the importance of the RC is derived from its 

disproportionate impact on GE. 

Our approach adds personalization to traditional connectomics by separating fibers according 

to whether or not they are impacted by the patient’s particular lesion. This approach has 

borne fruit, as the unaffected connectome is more strongly associated with behavior than the 

traditional total connectome. From a hypothesis-driven perspective, the importance of 
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including a lesion profile in the measurement of brain networks is obvious as WM tracts can 

be detected by DWI-derived tractography, though probably with more diffusivity 

inhomogeneities, even if they are interrupted by a lesion (particularly in the early post-stroke 

period). Such tractography by itself fails to acknowledge that if tracts are interrupted by the 

lesion, their ability to transmit information is compromised and they will not contribute to the 

normal functioning of the network. From a data-driven perspective, it has been found that 

;������  does not differ significantly either over time, or even between stroke patients and 

healthy controls,40 casting doubt on the value of ;������  as a biomarker. By contrast, we 

provide evidence that ;�������	��
  differs significantly from ;������ , and that in stroke 

patients ;�������	��
  is more strongly correlated to behavior than ;������  is. 

Consequently, we find that explicitly discarding tracts that pass through the lesion as 

inoperative ensures that the unaffected connectome is a more accurate reflection of true 

patterns of connectivity than the traditional structural connectome, and thus a better candidate 

as a stroke-related biomarker. 

Limitations 

The primary drawback of our approach is that splitting the total connectome into its affected 

and unaffected parts requires that one draw lesion masks and overlay them onto the 

tractography. This imposes considerable additional work, yet we are convinced that the 

benefits in terms of relevance to behavior and understanding of mechanisms are worth the 

cost. In addition to being time-consuming and labor intensive, they require substantial 

anatomical expertise, which might introduce a considerable source of variability; both on an 

inter-rater and (to a lesser extent) test-retest basis.41 While the use of machine learning 

algorithms to delineate lesions holds some promise, it is a sufficiently difficult task that at the 
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time of writing, human-drawn lesions remain the gold standard, with even the best available 

algorithms failing to come close to inter-rater levels of agreement with humans.42 
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Future Work 

This study was conducted cross-sectionally, however longitudinal evaluation of parameters of 

network efficiency in the affected and unaffected parts of the network will open novel 

opportunities to study the mechanisms underlying recovery of multi-domain (e.g., motor and 

attention) post-stroke deficits. It will provide novel insights into the reorganization of 

structural brain networks, how these reorganizational patterns relate to recovery of behavioral 

functions, and whether they allow prediction of outcome or treatment stratification. In 

particular, it would be worth investigating whether among our cohort, patients’ increase in 

GE over time was associated with recovery from their impairment, particularly attentional 

impairment. 

There are biological reasons to expect that this might occur. Reparative axonal sprouting is 

characterized by growth of long-distance connections,43 the precise type of connections that 

contribute most to GE. It has also been found to be clearly associated with post-stroke 

behavioral recovery.43 

Conclusions 

While the patients in our cohort were selected for motor deficits, most of them also had an 

attention deficit, which can have an additional impact on the recovery process. This 

considerable overlap between motor and attentional deficits implies the need for finer-grained 

discriminators between multidomain deficits and their underlying mechanisms.  

Here, we suggest structural connectivity analyses of RC properties with a focus on affected 

and unaffected parts of the network to better characterize these multi-domain deficits in the 

subacute stage after stroke. These analyses allow the following conclusions: First, current 

structural connectomics approaches use DWI to trace axon fiber bundles and simply rely on 
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lesion-induced tract inhomogeneities. However, this implicit consideration of the lesion is 

suboptimal, particularly in the acute and subacute phase as it might lead to the tractography 

finding tracts that are no longer functional. Therefore, the results support the importance of 

explicitly overlaying lesion masks onto the tractography to be able to split the structural 

connectome into its unaffected (well-functioning) and affected (non-functional) parts to 

determine which parts of the brain network are actually relevant to residual functions and 

impairment. Secondly, based on this approach, the results suggest that in stroke patients, 

attention is more sensitive to non-integrity of the connectome (especially the RC) and the 

resulting deficiency of GE than motor functions, strongly underscoring the differential 

importance of RC network properties for different behavioral functions. The results further 

confirm and are consistent with reports in healthy subjects that the neural substrate 

underlying motor functions is rather localized, while that underlying attention is based on a 

more global representation in terms of RC organization. 
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