

1 Reduced Neutralization of SARS-CoV-2 Omicron Variant in Sera from SARS- 2 CoV-1 Survivors after 3-dose of Vaccination

4 Xuesen Zhao^{1, 2, 3 #*}, Danying Chen^{1, 2, 3 #}, Xiaohua Hao^{1, 3 #}, Yaruo Qiu^{1, 2, 3 #}, Juan Du^{1,}
5 ^{2, 3}, Yuanyuan Zhang^{1, 2, 3}, Fan Xiao^{1, 2, 3}, Xinglin Li^{1, 2, 3}, Yanjun Song^{1, 2, 3}, Rui Song^{1,}
6 ³, Xi Wang^{1, 2, 3 *}, Ronghua Jin^{1, 2, 3 *}

7
8 ¹Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious
9 Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China

¹⁰ ²Beijing Institute of Infectious Diseases, Beijing, 100015, China.

11 ³National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical
12 University, Beijing 100015, P.R. China.

13
14 **Running Title:** Reduced SARS-CoV-2 Omicron neutralization in sera from SARS-
15 CoV-1 survivors after 3-dose of vaccination

$$a = \# \text{Th}_1 = \# \{1 \leq i \leq n \mid \text{Th}_1 \in \text{Th}_i\} = \# \{1 \leq i \leq n \mid \text{Th}_1 \in \text{Th}_i\} = 1$$

* Corresponding author's mailing address:

20 Xuesen Zhao, E-mail: zhaoxuesen@ccmu.edu.cn

21 Xi Wang, E-mail: xiwang@ccmu.edu.cn

22 Ronghua Jin, E-mail: ronghuajin@ccmu.edu.cn

23 **ABSTRACT**

24 Recent studies found that Omicron variant escapes vaccine-elicited immunity.

25 Interestingly, potent cross-clade pan-sarbecovirus neutralizing antibodies were found

26 in survivors of the infection by SARS-CoV-1 after BNT162b2 mRNA vaccination (N

27 *Engl J Med. 2021 Oct 7;385(15):1401-1406*). These pan-sarbecovirus neutralizing

28 antibodies were observed to efficiently neutralize the infection driven by the S protein

29 from both SARS-CoV and multiple SARS-CoV-2 variants of concern (VOC) including

30 B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta). However, whether these cross-

31 reactive antibodies could neutralize the Omicron variant is still unknown. Based on the

32 data collected from a cohort of SARS-CoV-1 survivors received 3-dose of

33 immunization, our studies reported herein showed that a high level of neutralizing

34 antibodies against both SARS-CoV-1 and SARS-CoV-2 were elicited by a 3rd-dose of

35 booster vaccination of protein subunit vaccine ZF2001. However, a dramatically

36 reduced neutralization of SARS-CoV-2 Omicron Variant (B.1.1.529) is observed in

37 sera from these SARS-CoV-1 survivors received 3-dose of Vaccination. Our results

38 indicates that the rapid development of pan-variant adapted vaccines is warranted.

39

40

41 **To the Editor:** The currently circulating SARS-CoV-2 Omicron variant evades
42 neutralizing antibodies elicited by COVID-19 vaccines.^{1,2} A previous study indicated
43 that BNT162b2 messenger RNA (mRNA) vaccine induces potent cross-clade pan-
44 sarbecovirus neutralizing antibodies in survivors of the infection by SARS-CoV-1, a
45 coronavirus that caused a global SARS outbreak in 2003.^{3,4} However, the ability of
46 these cross-reactive antibodies boosted in SARS-CoV-1 survivors to neutralize the
47 Omicron variant is still unclear.

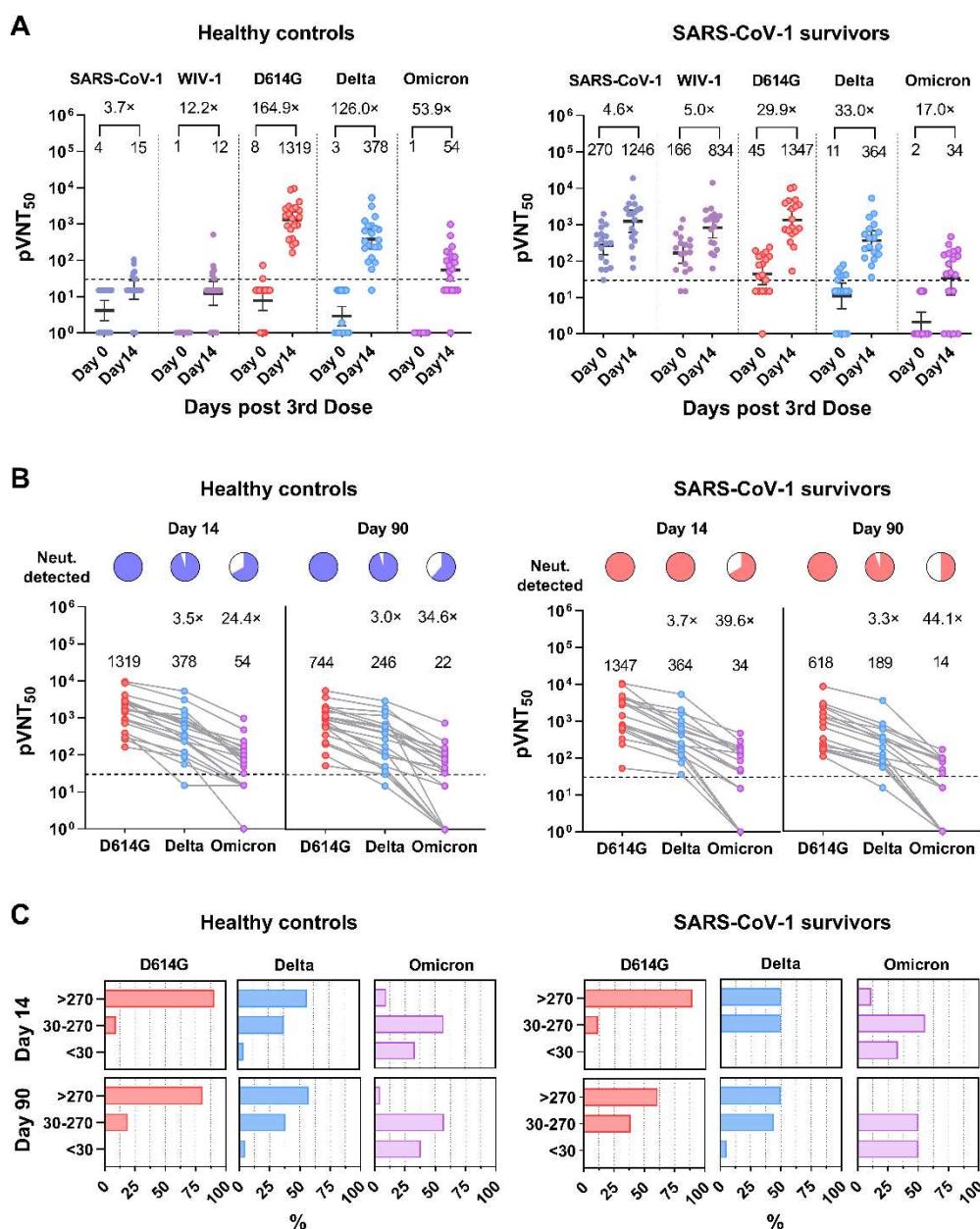
48 To address this question, sera samples were obtained from two panels of
49 participants (Fig. S1 and Table S1). The SARS-CoV-1 survivors panel comprised 18
50 participants with SARS-CoV-1 infection history in 2003. The healthy controls panel
51 contained 21 healthcare professionals from a previously described cohort.⁵ Both panels
52 had received 3-dose of vaccination (two priming doses of CoronaVac followed with
53 one booster dose of protein subunit vaccine ZF2001). For all sera samples, a VSV-based
54 pseudovirus system was utilized to determine neutralizing antibodies against three
55 SARS-CoV-2 variants including prototype virus (D614G), Delta, Omicron (Fig. S2),
56 and SARS-CoV-1 (Tor2), and SARS-like bat coronaviruses WIV-1, on day 0, 14, 90
57 after third dose vaccination.

58 The third dose of ZF2001 vaccine rapidly induced a significant increase in
59 humoral immune response. As shown in figure 1A and S3, the geometric mean titers
60 (GMTs) of neutralizing antibodies against the three SARS-CoV-2 variants were
61 significantly increased on day 14 after administration of the third dose in both SARS-
62 CoV-1 survivors panel and healthy controls panel, in consistence with recent third dose

63 booster studies.⁵ A boosting of anti-SARS-CoV-1 and anti-WIV-1 neutralizing
64 antibodies were also observed in SARS-CoV-1 survivors but not in healthy controls
65 (Fig. S3). Importantly, Omicron neutralization titer was dramatically lower than that to
66 D614G (Fig. 1B and C and S4). At 90 days post the third dose, only a half or less were
67 positive for neutralizing antibodies against the Omicron variant in both of the two
68 panels (Fig. 1B). Our results collectively indicate that a 3-dose vaccination is effective
69 at inducing neutralizing immunity to SARS-CoV-2 prototypical D614G and Delta
70 variants but not to Omicron variant even in SARS-CoV-1 survivors tested.

71 Potent pan-sarbecovirus neutralizing antibodies are elicited in survivors of SARS-
72 CoV-1 infection after the BNT162b2 mRNA vaccination.⁴ In our research, we also
73 found a relatively broad spectrum of neutralizing antibodies boosted by a third dose
74 vaccination in SARS-CoV-1 survivors. However, these antibodies exhibited
75 dramatically reduced neutralization to SARS-CoV-2 Omicron variant, which indicates
76 that the development of pan variants-adapted vaccines is warranted.

77


78

79

80

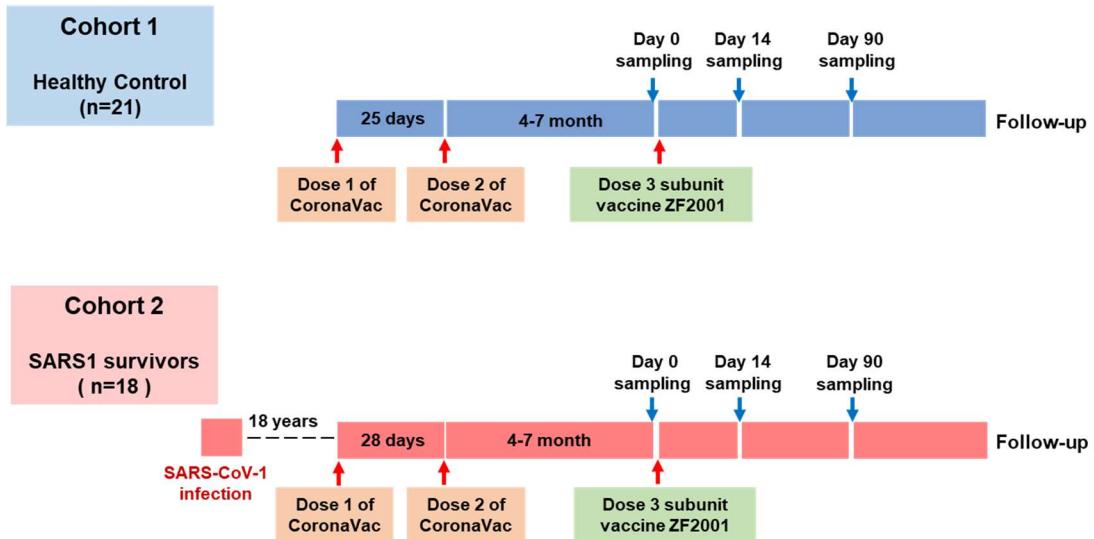
81

82

83

84 **Figure 1. Boosting of Cross-Clade Pan-Sarbecovirus Neutralizing Antibodies but
85 not for Omicron in SARS-CoV-1 survivors.**

86 **(A)** Results of pseudovirus neutralization assays using participants' sera against SARS-
87 CoV-1, SARS-like CoV WIV-1, SARS-CoV-2 D614G strain, Delta strain, and Omicron
88 strain the day before and 14 days after the third vaccination. Neutralizing antibody titers
89 are expressed as sera fold-dilution required to achieve 50% pseudovirus neutralization


90 (pVNT₅₀). Dots indicate individual sera samples, dark horizontal lines for each group
91 denote geometric mean titers (GMTs), the error bars indicate the 95% confidence
92 intervals (CI), and the dashed lines indicate the lower limit of detection (LOD, 30). **(B)**
93 Pie charts show the proportion of vaccinees within each group that had detectable
94 neutralization against the indicated SARS-CoV-2 pseudovirus at 14 and 90 days
95 following the third dose of vaccination. Fold-decrease in GMT of Delta and Omicron
96 relative to wild type within healthy controls and SARS-CoV-1 survivors (shown as a
97 number with the "×" symbol); The statistical significance is analyzed by the two-tailed
98 Wilcoxon matched-pairs signed-rank test. pVNT₅₀ below the quantitative range but still
99 within the qualitative range (i.e., partial inhibition is observed but a dose-response curve
100 cannot be fit because it does not sufficiently span the pVNT50) was counted half (15)
101 of LOD and no inhibition at all was counted as 1 in statistical analysis. **(C)** The
102 percentages of pVNT₅₀ in bar plots after stratification in low (<30), medium (30–270),
103 or high (>270) neutralizing antibody titers are shown for D614G, Delta, and Omicron
104 in healthy controls and SARS-CoV-1 survivors panels.

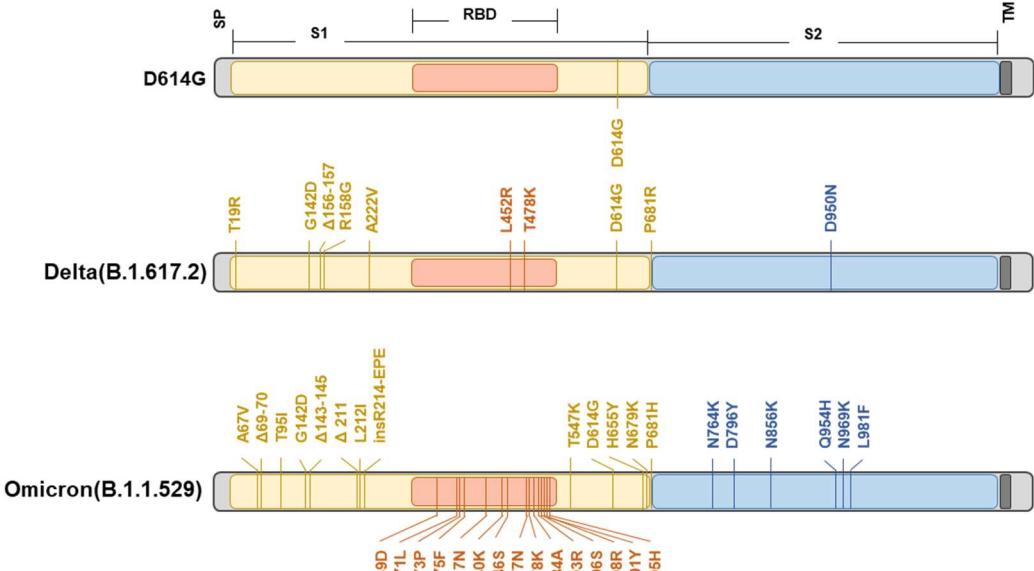
105

106

107

108

109


110 **Figure S1. Schematic of trial process timeline**

111 Sera samples were obtained from two panels of participants. The healthy controls panel
112 comprised 21 healthcare professionals at Beijing Ditan Hospital from a previously
113 described clinical trial cohort⁵ (healthy controls). The SARS-CoV-1 survivors panel
114 comprised 18 participants who had been infected with SARS-CoV-1 18 years ago
115 (SARS-CoV-1 survivors). Both of the two panels had received 3-dose of vaccination
116 (two priming doses of CoronaVac in a 28-day interval 4–8 months earlier before one
117 booster dose of protein subunit vaccine ZF2001). Sera samples were collected on day
118 0, 14, 90 after third dose vaccination.

119

120

121

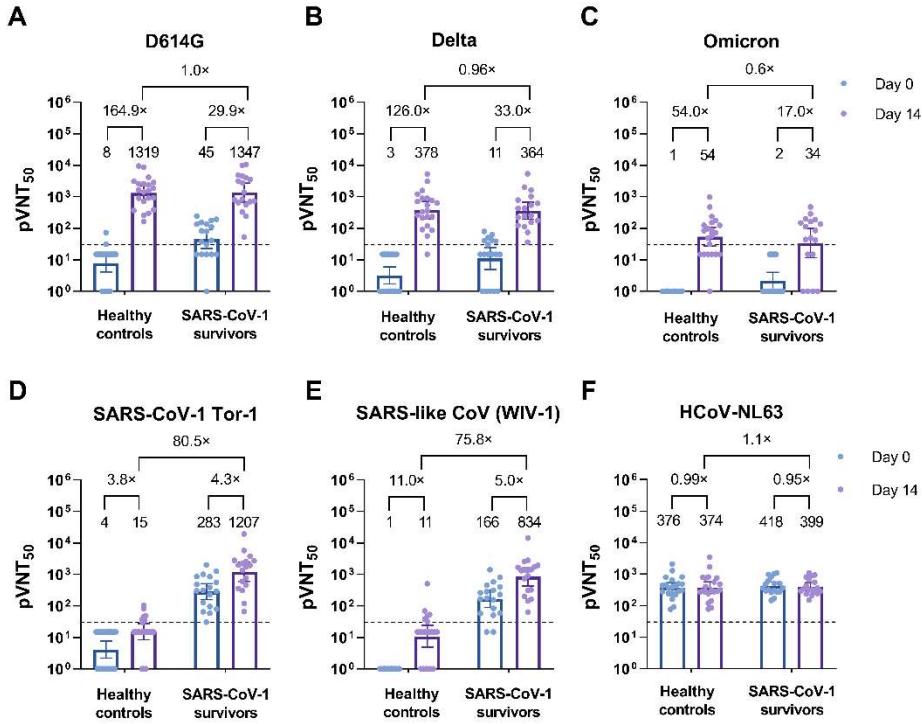
122

123

124 **Figure S2 Schematic illustration of the mutations on VOCs spike**

125 Schematic of SARS-CoV-2 spike protein structure and mutations of variants used in
126 this study are illustrated. Omicron variant mutations used in this study were based on
127 the most prevalent mutations (>85% frequency) found in GISAID and reflect the
128 dominant Omicron variant. The regions within the spike protein are abbreviated as
129 follows: SP, signal peptide; RBD, receptor-binding domain; TM, transmembrane
130 domain.

131


132

133

134

135

136

137

138 **Figure S3. Neutralizing antibody titers (pVNT₅₀) against three SARS-CoV-2 VOCs**

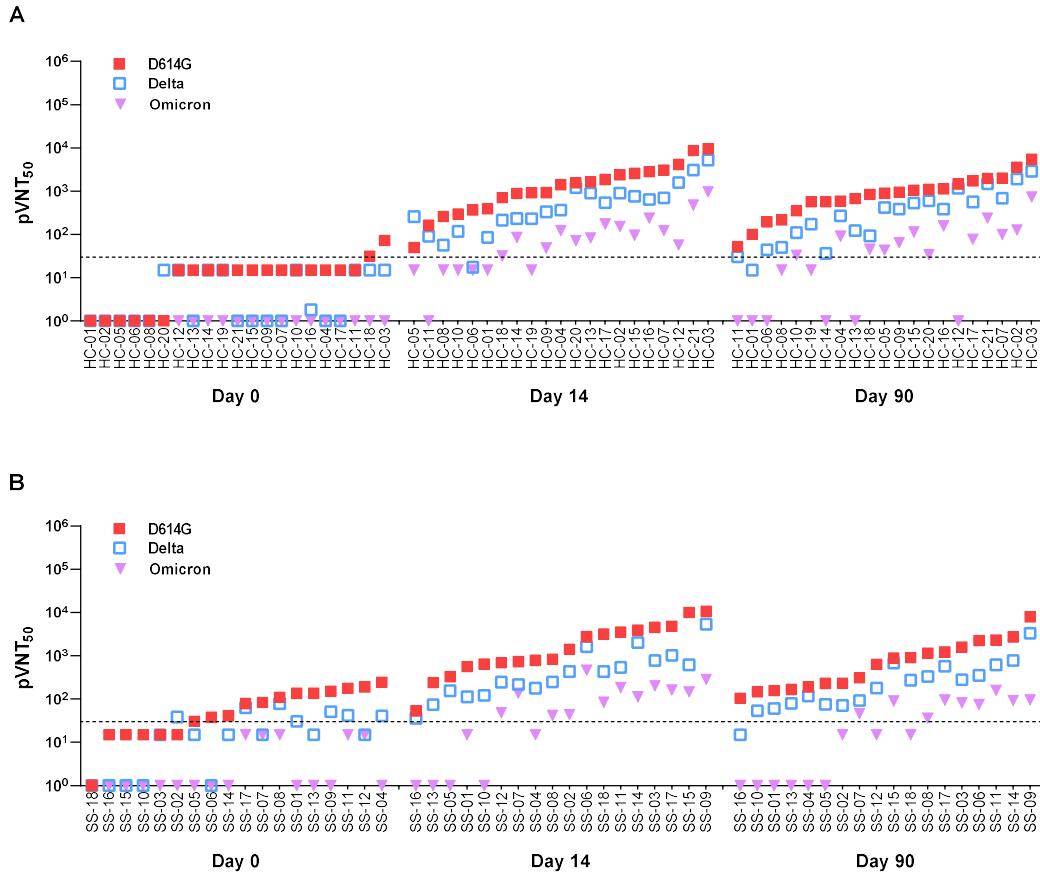
139 **from study participants immediately before (Day 0) or after (Day 14) the third**

140 **vaccination.** Results of pseudovirus neutralization assays using participants' sera

141 **against SARS-CoV-2 prototypical D614G variant (A), Delta strain (B), Omicron strain**

142 **(C), SARS-CoV-1 (D), SARS-like CoV WIV-1 (E) and HCoV-NL63 (F). GMTs are**

143 **shown above the bars, and the error bars indicate the 95% CI, and the dashed lines**

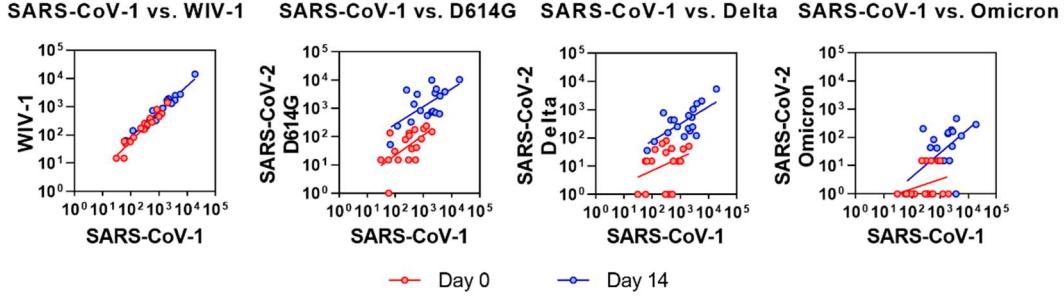

144 **indicate the LOD (30). Fold-increase in GMTs of boosted versus non-boosted**

145 **individuals is shown as a number with "x" symbol.**

146

147

148


149

150 **Figure S4. Neutralizing titers against SARS-CoV-2 variants D614G, Delta and**
151 **Omicron in SARS-CoV-1 survivors and Healthy controls individuals.**

152 pVNT₅₀ values of sera collected at the day before the third dose vaccination (Day 0),
153 14 days post the third dose (Day 14) and 90 days post the third dose (Day 90) in Healthy
154 controls panel (A) and SARS-CoV-1 survivors panel (B). Each pVNT₅₀ was determined
155 in two independent experiments (each with two technical replicates). The median of the
156 two independent determinations is plotted. Dashed line indicates the LOD.

157

158

159

160 **Figure S5. A cross-reactivity of neutralizing antibody response is increased by the**
161 **third-dose of vaccination in SARS-CoV-1 survivors.** pVNT₅₀ data from SARS-CoV-
162 1 survivors panel participants that received two-dose vaccination series (Day 0; red
163 circles) or were boosted with the third-dose of ZF2001 vaccination (Day 14; blue circles)
164 were used for linear regression analysis of SARS-CoV-1 versus WIV-1 or SARS-CoV-
165 1 versus SARS-CoV-2 VOCs pseudovirus neutralization. SARS-CoV-1 neutralization
166 titers strongly correlated with WIV-1 neutralization at the day before the 3rd dose ($R^2 =$
167 0.9334; slope = 1.022; $p < 0.0001$) and at 14 days post the 3rd dose vaccination ($R^2 =$
168 0.9519; slope = 0.9022; $p < 0.0001$). SARS-CoV-1 neutralization titers correlated with
169 D614G neutralization at the day before the 3rd dose ($R^2 = 0.3742$; slope = 0.7148; $p <$
170 0.01) and at 14 days post the 3rd dose vaccination ($R^2 = 0.4132$; slope = 0.6237; $p <$
171 0.01). SARS-CoV-1 neutralization titers showed no significant relationship with Delta
172 neutralization the day before the third-dose of vaccination ($R^2 = 0.1131$; slope = 0.4584;
173 $p = 0.17$); however, “ZF2001-boosted” individuals showed a significant correlation
174 with Delta neutralization titers ($R^2 = 0.4739$; slope = 0.6053; $p < 0.01$); SARS-CoV-1
175 neutralization titers showed no significant relationship with Omicron neutralization the
176 day before the third-dose of vaccination ($R^2 = 0.1050$; slope = 0.3396; $p = 0.19$) and
177 showed a little bit of correlation at 14 days after the third-dose of vaccination ($R^2 =$

178 0.3199; slope = 0.8464; p < 0.05)

179 **Table S1 Demographics of study participants included in this study**

Panel	Healthy controls	SARS-CoV-1 vaccination
Number of participants	21	18
Age (Median, range)	39 (22-57)	62(39-76)
Males	2	8
Females	19	10
Days interval between the second and third doses (Days, Median, range)	185 (138-226)	144 (42-228)

180

181 **Materials and Methods**

182 **Ethical statement**

183 The study protocol was approved by the Ethics Committee of the Institute of
184 Beijing Ditan Hospital, Capital Medical University (IRB#2021-(024)-02). Written
185 informed consent was obtained from all participants before the enrollment. This trial
186 was registered with ChiCTR2100051998.

187 **Sera samples**

188 The sera samples of SARS-CoV-1 convalescents and healthy healthcare workers
189 were provided by Beijing Ditan Hospital, Beijing, China. Sera samples were classified
190 into two panels (Fig. S1): **1)** SARS-CoV-1 survivors received three doses of
191 heterologous vaccines (two priming doses of CoronaVac in a 28-day interval 4–8
192 months earlier before one booster dose of a protein subunit vaccine ZF2001); **2)** Healthy

193 medical workers received three doses of heterologous vaccines with the same
194 immunization strategy. Participants were sampled at the day before the 3rd vaccination
195 and invited for follow up visits at approximately 14 and 90 days. Detailed information
196 is available in Table S1.

197 **Cell transfection and pseudotyped virus production**

198 The pSectag2 vector was used to construct recombinant plasmid of codon optimized
199 spike proteins of SARS-CoV-2 prototype (Wuhan-1 reference strain containing D614G
200 mutation) and variants, with a 19 amino acid truncation at the C-terminus of the spike
201 protein¹ (with mutations shown in Fig. S2). HEK-293T cells were transfected with the
202 plasmids expressing different S protein respectively. VSV-ΔG-G*-Luc pseudovirus
203 (*Kerafast, Boston, MA*) was added 6 h after the transfection. 24 h after the transfection,
204 the supernatant was replaced with fresh complete DMEM medium. Supernatants were
205 collected at 48 h and 72 h after the transfection, passed through a 0.45 µm filter,
206 aliquoted and stored at -80 °C.

207 **Pseudotyped virus titration**

208 For titration, TREx-293/hACE2 cells were seeded into 96 well plate with 2 µg/ml Tet
209 (~2x10⁴ cells per well), incubated at 37°C and discarded the supernatant before use.
210 Next day, pseudoviruses stock were taken out the from -80 °C. Pseudoviruses were
211 diluted starting with a 10-fold dilution in a new 96 well plate, followed by eight 3-fold
212 serial dilutions, and each dilution were made in six replicate wells. The diluents were
213 added to the 96 well plate prepared the day before (100 µl per well) and another 6 wells

214 were set as blank control without virus. After incubation for 18h, the luciferase substrate
215 was added for chemiluminescence detection. The 50% tissue culture infectious dose
216 (TCID₅₀) of the pseudovirus is calculated by the Reed-Muench method, the cut-off
217 value is 10 times the value of blank control.

218 **Neutralization assay**

219 The neutralization assay was performed as previously described^{2, 3}. Briefly, sera
220 samples which inactivated at 56°C for 30 min were 3-fold serial diluted commencing
221 with a 30-fold dilution, and each dilution was made in two replicate wells. Virus control
222 wells with only virus and cells were set up in each plate. Equivalent pseudovirus (1300
223 TCID₅₀/ml) was incubated with the sera at 37 °C for 1.5 h, and the mixture was then
224 added into the 96 well plate with TReX-293/hACE2 cells. After 18 h the neutralization
225 assay was developed with a luciferase assay system (Promega), and the relative light
226 units (RLU) were read on a Promega GloMax Luminometer. The neutralization rate (%)
227 was calculated as following:

228 Neutralization Rate (%) = $\frac{RLU_{pseudovirus} - RLU_{pseudovirus \text{ with } mAb}}{RLU_{pseudovirus} - RL_{\text{blank}}}$ 100%. Neutralizing
229 antibody titers are expressed as sera fold-dilution required to achieve 50% pseudovirus
230 neutralization (pVNT₅₀). pVNT₅₀ was interpolated from the neutralization curves
231 determined using the log(inhibitor) vs. normalized response -- Variable slope fit using
232 automatic outlier detection in GraphPad Prism Software.

233 **SARS-CoV-2 Spike Variants**

234 This study utilized three SARS-CoV-2 spike variants. The D614G (B.1) variant

235 contained D614G as the only spike mutation. The Delta (B.1.617.2) variant contained
236 spike mutations T19R, G142D, Δ156-157, R158G, A222V, L452R, T478K, D614G,
237 P681R, D950N. The Omicron (B.1.1.529) variant contained spike mutations A67V,
238 Δ69-70, T95I, G142D, Δ143-145, Δ211, L212I, +214EPE, G339D, S371L, S373P,
239 S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R,
240 N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K,
241 Q954H, N969K, L981F. The spike mutations listed here were present in corresponding
242 pseudovirus used in this study.

243 **Data and statistical analyses**

244 Geometric Mean Titers (GMTs) with confidence interval (CI) of 95% were
245 performed using GraphPad Prism 9.0. pVNT₅₀ below the lower limit of detection (<30)
246 was recorded as 15 and no inhibition at all was counted as 1 in the geometric mean
247 calculation. Wilcoxon matched-pairs signed-rank test was performed to detect
248 significant differences in neutralizing titers between the prototype containing D614G
249 mutation and the other variants as well as in titers before and after the third dose. The
250 Bonferroni correction was applied to correct for the increase in type 1 error from
251 multiple testing (adjustment for multiplicity).

252 **Acknowledgments**

253 This work was supported by the funding from Beijing Municipal Science & Technology
254 Commission, (No. Z201100007920017) to R.J. and National Science Foundation of
255 China (81772173 and 81971916) and National Science and Technology Major Project

256 of China (2018ZX10301-408-002) to X.Z., National Science Foundation of China
257 (82102363) to D.C. and Beijing Natural Science Foundation (M21007) to J.D.

258 **Authors' contributions**

259 X.Z., X.W., and R.J. conceived, designed and supervised the experiments; X.Z., D.C.
260 and X.W. wrote the manuscript; D.C., Y.Q., X.L., and Y.S. performed the neutralization
261 experiments. R.S., X.H., J.D., Y.Z., and F.X. provided convalescent sera and patients
262 information. All of authors approved the final manuscript.

263 **Declaration of interests**

264 All authors declare no competing interest.

265

266 **References**

- 267 1. Rossler A, Riepler L, Bante D, von Laer D, Kimpel J. SARS-CoV-2 Omicron
268 Variant Neutralization in Serum from Vaccinated and Convalescent Persons. *N Engl J
269 Med* 2022;386:698-700.
- 270 2. Planas D, Saunders N, Maes P, et al. Considerable escape of SARS-CoV-2 Omicron
271 to antibody neutralization. *Nature* 2022;602:671-5.
- 272 3. Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with
273 severe acute respiratory syndrome. *N Engl J Med* 2003;348:1953-66.
- 274 4. Tan CW, Chia WN, Young BE, et al. Pan-Sarbecovirus Neutralizing Antibodies in
275 BNT162b2-Immunized SARS-CoV-1 Survivors. *N Engl J Med* 2021;385:1401-6.
- 276 5. Cao Y, Hao X, Wang X, et al. Humoral immunogenicity and reactogenicity of
277 CoronaVac or ZF2001 booster after two doses of inactivated vaccine. *Cell Res*

278 2022;32:107-9.

279

280