

# 1 CRISPR-Cas provides limited phage immunity to a prevalent gut

## 2 bacterium in gnotobiotic mice

3

4 Torben Sølbeck Rasmussen<sup>1\*</sup>, Anna Kirstine Koefoed<sup>1</sup>, Ling Deng<sup>1</sup>, Musemma K. Muhammed<sup>1</sup>,  
5 Geneviève M. Rousseau<sup>2,3</sup>, Witold Kot<sup>4</sup>, Sabrina Sprotte<sup>5</sup>, Horst Neve<sup>5#</sup>, Charles M.A.P. Franz<sup>5</sup>,  
6 Axel Kornerup Hansen<sup>6</sup>, Finn Kvist Vogensen<sup>1</sup>, Sylvain Moineau<sup>2,3,7</sup>, Dennis Sandris Nielsen<sup>1\*</sup>

7

8 <sup>1</sup> Section of Microbiology and Fermentation, Dept. of Food Science, Faculty of Science, University of Copenhagen,  
9 Denmark

10 <sup>2</sup> Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université  
11 Laval, Québec, Canada, G1V 0A6

12 <sup>3</sup> Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, Canada, G1V  
13 0A6

14 <sup>4</sup> Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of  
15 Copenhagen, Frederiksberg, Denmark

16 <sup>5</sup> Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany

17 <sup>6</sup> Section of Experimental Animal Models, Dept. of Veterinary and Animal Sciences, University of Copenhagen,  
18 Frederiksberg, Denmark

19 <sup>7</sup> Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec,  
20 Canada, G1V 0A6

21 <sup>#</sup> Retired

22 <sup>\*</sup>Address correspondence to [torben@food.ku.dk](mailto:torben@food.ku.dk) and [dn@food.ku.dk](mailto:dn@food.ku.dk), Department of Food Science, University of Copenhagen,  
23 Denmark

## 24 Abstract

25 Many prokaryotes harbor the adaptive CRISPR-Cas system, which stores small nucleotide  
26 fragments from previous invasions of nucleic acids via viruses or plasmids. This molecular archive  
27 blocks further invaders carrying identical or similar nucleotide sequences. However, very few of  
28 these systems have been experimentally confirmed to be active in gut bacteria. Here, we  
29 experimentally demonstrate that the type I-C CRISPR-Cas system of the prevalent gut bacterium  
30 *Eggerthella lenta* can specifically target and cleave foreign DNA *in vitro* by using a plasmid  
31 transformation assay. We also show that the CRISPR-Cas system acquires new immunities (spacers)  
32 from the genome of a virulent *E. lenta* phage using traditional phage-assays *in vitro* but also *in vivo*  
33 using gnotobiotic (GB) mice. An increased number of spacer acquisition events were observed when  
34 *E. lenta* was exposed to a low multiplicity of infection *in vitro*, and three phage genes were found  
35 to contain protospacer hotspots. Interestingly, much less new spacer acquisitions were detected *in*  
36 *vivo* than *in vitro*. Longitudinal analysis of phage-bacteria interactions showed sustained  
37 coexistence in the gut of GB mice, with phage abundance being approximately one log higher than  
38 the bacteria. Our findings show that while the type I-C CRISPR-Cas system is active *in vitro* and *in*  
39 *vivo*, a highly virulent phage *in vitro* was still able co-exist with its bacterial host *in vivo*. Taken  
40 altogether, our results suggest that the CRISPR-Cas defense system of *E. lenta* provides only partial  
41 immunity in the gut.

## 42 Introduction

43 Bacteria and archaea have the unique ability of acquiring resistance to various prokaryotic  
44 viruses (bacteriophages and archaeal viruses) and plasmids via CRISPR-Cas systems. This adaptive  
45 immunity is obtained by incorporating short fragments of DNA (spacers ~30 nucleotides) from the  
46 invading genetic elements within the CRISPR array of the host genome (the adaptation stage). This  
47 memory of past infections enables the cell to recognize and cleave the DNA/RNA from subsequent  
48 invaders with identical or similar sequences (the interference stage) [1]. The acquired spacers are  
49 located in a clustered regularly interspaced short palindromic repeat (CRISPR) array where each  
50 spacer is flanked by direct repeats. CRISPR-associated genes (Cas) are often flanking the CRISPR  
51 arrays and are coding for proteins needed for the above-mentioned stages. The CRISPR array is  
52 transcribed and processed into CRISPR RNAs (crRNA), which will, in the interference stage, guide  
53 Cas nucleases to search and cleave nucleic acids of the invader that match the spacer, and thereby  
54 ultimately prevent infection [2–5].

55 During the past decade, extensive analyses of Cas proteins have revealed highly diverse  
56 CRISPR-Cas systems, which are currently classified into two large classes (Class 1 and Class 2),  
57 six types (I–VI) and numerous subtypes [6]. For example, the Class 1 type I-C CRISPR-Cas system  
58 is characterized by the following *cas* gene order *cas3-cas5-cas8c-cas7-cas4-cas1-cas2*, which are  
59 situated next to a CRISPR-array [7–10].

60 The microbes inhabiting the human gut (the gut microbiota, GM) play important roles in  
61 human health and disease [11]. It is therefore important to understand how bacteria defend  
62 themselves against phages in this ecosystem [12]. Most of the CRISPR-Cas research on gut-related  
63 bacteria is based on computational approaches [13–15], whereas experimental studies are sparse  
64 [16,17]. However, Soto-Perez et al. demonstrated transcription and interference activity of a type I-  
65 C CRISPR-Cas system by constructing a *Pseudomonas aeruginosa* strain carrying *Eggerthella lenta*

66 cas genes, that subsequently was infected by *P. aeruginosa* phages [16]. A type I-C CRISPR-Cas  
67 previously found in *Bifidobacterium* spp. has recently also been described in the widespread human  
68 gut bacterium *Eggerthella lenta* [16,18]. *E. lenta* is a common member of the human GM and  
69 seems to be more abundant in individuals suffering from type-2-diabetes (T2D) [19,20] and might  
70 play a role in disease etiology via its production of imidazole propionate that impairs insulin  
71 signaling [19].

72 Here we investigate the functionality (adaptation and interference activity) of the type I-C  
73 CRISPR-Cas system harbored by *E. lenta* DSM 15644 against a virulent *E. lenta* siphophage  
74 PMBT5 (genome size 30,930 bp) in both *in vitro* and *in vivo* (in the gut) settings.

## 75 **Methods**

### 76 **Bacterial strains, phage, and growth medium**

77 *Eggerthella lenta* DSM 15644 (GCA\_003340005.1), *E. lenta* DSM 2243<sup>T</sup> (GCF\_000024265.1) and  
78 phage PMBT5 (MH626557.1) were used in this study. Wilkins Chalgren Anaerobe medium (WCA,  
79 Sigma-Aldrich, St. Louis, Missouri, USA) was used for culturing as broth in Hungate tubes (Sciquip  
80 Limited, Newtown, UK), as solid media containing 1.5% (w/v) agar or as soft agar containing 0.5%  
81 (w/v) agar (Oxoid<sup>TM</sup>, Thermo Fisher Scientific, Waltham, Massachusetts, USA). Anaerobic  
82 conditions were obtained as previously described [21]. Bacteria (containing cells from a single  
83 colony) were transferred from a WCA-plate to WCA-broth inside an anaerobic chamber and the  
84 bacterial cultures were subsequently incubated at 37°C for 1-3 days depending on the assay.

85

### 86 **Phage propagation and assays**

87 For phage propagation, a culture of *E. lenta* DSM 15644 with an OD<sub>600nm</sub> between 0.25 and 0.30 (~  
88 5 x 10<sup>8</sup> colony forming units (CFU)/mL) was centrifuged for 10 min at 5 000 x g and the

89 supernatant was discarded. The bacterial pellet was resuspended in 200  $\mu$ L of 40 mM CaCl<sub>2</sub> and  
90 mixed with 100  $\mu$ L phage PMBT5 lysate followed by incubation for 10 min at room temperature to  
91 increase phage-adsorption. The phage-infected culture was subsequently added to either melted  
92 (52°C) WCA soft agar for plaque assay or added to WCA-broth for phage amplification. The  
93 inoculated WCA media were incubated anaerobically for 17-20 h at 37°C and OD<sub>600nm</sub> was  
94 measured with Genesys™ 30 Visible spectrophotometer (Thermo Fisher Scientific).

95

## 96 **DNA extraction from cultures, lysates, and feces**

97 DNA extraction from bacterial cultures, phage lysates, and fecal pellets were performed using the  
98 Bead-Beat Micro AX gravity kit (A&A Biotechnology, Gdańsk, Poland) following the protocol of  
99 the manufacturer. Purified DNA was stored at -80°C. A negative control representing *E. lenta* DSM  
100 15644 with its native spacers along with a contamination control, consisting of autoclaved MilliQ  
101 water (Millipore corporation, Burlington, Massachusetts, USA), was included throughout all DNA  
102 extractions and PCR-steps.

103

## 104 **Primer design**

105 Primers were designed with Geneious Prime v. 2019.0.4 and motif search was performed to ensure  
106 unique primer binding sites on the genome of *E. lenta* DSM 15644. Primer specificity was tested *in*  
107 *silico* using NCBI primer-BLAST with strict parameters as described previously [22]. Primers  
108 (Thermo Fisher Scientific) are listed in Table S1.

109

110 **CRISPR-Cas interference assay**

111 An interference assay was designed using plasmid pNZ123 [23] containing two different spacers  
112 originating from the native CRISPR array of *E. lenta* DSM 15644 (Spacer 2 (S2): 5'-  
113 TCAGATTGTCGGGGTTGCCTGTCCCCGCCTATCG-3', Spacer 1 (S1): 5'-  
114 AATCGAATCTTCGCCCTTGC GGCGAAAACCGG-3') which were flanked by different  
115 protospacer adjacent motifs (PAMs) (Table S1). Two native spacers were included in the construct  
116 to increase the interference activity. Based on literature investigating type I-C CRISPR-Cas systems  
117 [16,24,25], we tested the interference activity with two different PAMs (5'-GGG, and 5'-TTC),  
118 since no experimental data identifying a functional PAM for the type I-C CRISPR-Cas system in *E.*  
119 *lenta* DSM 15644 were available at that time. The pNZ123-derivatives were generated with the  
120 Gibson Assembly® Cloning kit (NEB, Ipswich, Massachusetts, USA) and thereafter transformed  
121 into *E. lenta* DSM 15644 by electroporation as previously described [26]. Plasmid constructs were  
122 confirmed with PCR and Sanger sequencing (Macrogen, Amsterdam, Netherlands). A minimum  
123 inhibitory concentration test (Table S2) showed that *E. lenta* DSM 15644 was sensitive to  
124 chloramphenicol (Sigma-Aldrich) at a concentration above 1 µg/mL, thus 5 µg/mL chloramphenicol  
125 was used in media to select cells that were transformed with a plasmid (pNZ123) carrying a  
126 chloramphenicol-resistance gene [23].

127

128 **Detection of spacer acquisition**

129 “CRISPR adaptation PCR technique using reamplification and electrophoresis” (CAPTURE) was  
130 applied to detect expanded CRISPR arrays with increased sensitivity [27] in the type I-C CRISPR-  
131 Cas system harbored by *E. lenta* DSM 15644. The CAPTURE protocol is based on an initial PCR  
132 amplification followed by a reamplification (nested PCR) with primer sets representing different  
133 strategies (internal, degenerate, repeat) [27]. PCRs were performed on SureCycler8800 (Agilent

134 Technologies, Santa Clara, California, USA) following the CAPTURE protocol [27] using  
135 DreamTaq Green PCR Master Mix (Thermo Fisher Scientific), but annealing temperatures were  
136 adjusted to fit the designed primer sets (Table S1). After the initial PCR amplification, the PCR  
137 products were migrated on an 2% agarose gel suspended in 0.5X TBE buffer (45 mM Tris-Borate,  
138 1 mM EDTA) at 110 Volts. The 1-kb plus DNA ladder (Thermo Fisher Scientific) was used as  
139 marker. Only every second lane was loaded with sample to minimize between-sample  
140 contamination. A sterile scalpel was used to cut out a fraction of the gel, with no visible band, that  
141 represented PCR-products with a DNA size ranging from 200-400 bp. The expected size for a single  
142 spacer acquisition in *E. lenta* DSM 15644 was 254 bp for the initial PCR (Table S3). The PCR-  
143 products were thereafter extracted from the gel with GeneJet Gel Extraction kit (Thermo Fisher  
144 Scientific) as recommended [27]. Reamplification was performed with the degenerate primer set  
145 according to the CAPTURE protocol [27] (Figure S1). In a volume ratio of 2:1, AMPure XP  
146 bindings beads (Beckman Coulter, Brea, California, USA) were used to clean the extracted PCR  
147 products to remove DNA fragments (< 100 bp) before library preparation.

148

#### 149 **Gnotobiotic mice study**

150 Twelve gnotobiotic (GB) outbred Swiss-Webster mice (Tac:SW, Taconic Biosciences A/S, Lille  
151 Skensved, Denmark) were bred at Section of Experimental Animal Models (University of  
152 Copenhagen) in an isolator and represented 8 female and 4 male animals. They were divided into 3  
153 groups of 4 and housed two-by-two according to the same sex (Table S4): *E. lenta* (EL) + PMBT5  
154 (EL+Phage, n=4), *E. lenta* + SM buffer (100 mM NaCl, 8 mM MgSO<sub>4</sub>, 50 mM Tris-Cl) (EL+Saline,  
155 n=4), and a baseline (as GB control, n= 4) that were sacrificed at age 3 weeks (Figure 1). The  
156 remaining 8 mice were transferred to the Department of Experimental Medicine (University of  
157 Copenhagen) in individual ventilated cages at age 5 weeks. Cage and housing conditions were as

158 previously described [28]. The cages were sterilized and mounted to a sterile ventilation system.  
159 Animals were provided sterilized water and *ad libitum* low-fat diet (LF, D12450J, Research Diets,  
160 New Brunswick, New Jersey, USA). After two weeks of acclimatization (i.e. 7 weeks of age), the  
161 mice were ear-tagged, weighed, and individual feces were sampled. Next, the EL+Phage mice were  
162 orally administered with a mixture of bacterial host-phage cultures (*E. lenta* DSM 15644 and  
163 PMBT5) at a MOI of 1 (total  $3 \times 10^7$  CFU and PFU). With a volume of 40  $\mu$ L, the bacteria and  
164 phages/saline were mixed in the ratio of 1:1 before being deposited on the tongue of the mice. This  
165 procedure was repeated after 6 h for a second inoculation. The bacterial cultures were in their  
166 exponential phase when orally administered to the mice and grown anaerobically prior to  
167 inoculation. Individual feces were then sampled (Figure 1a) along with body weight measurements  
168 (Figure S2) until the end of the experiment. Mouse feces were sampled at day 1 (before first  
169 inoculation), day 1.5 (6 hours after first culture inoculation), day 2, day 3, day 4, day 5, day 12, day  
170 19, and day 26. As controls, feces were also sampled when transferred from isolator to individual  
171 ventilated cages (arrival) and from baseline mice prior euthanization. All samples were stored at -  
172 80°C. The mice were euthanized by cervical dislocation at 10 weeks of age after anesthesia with a  
173 mixture of hypnotic (Apotek, Skanderborg, Denmark) and midazolam (Braun, Kronberg im Taunus,  
174 Germany) as described earlier [28]. Handling of mice during sampling were performed aseptically  
175 with the disinfectant VirkonS® (Pharmaxim, Helsingborg, Sweden) as recommended by the  
176 manufacturer. The germ-free status was initially evaluated by the size of the cecum (enlarged) of  
177 the baseline mice and culture plating (no growth) confirming the germ-free status of the mice. We  
178 also performed qPCR with universal primers targeting the 16S rRNA gene and sequenced the full  
179 16S rRNA gene profile of fecal samples obtained at selected time points during the study. Of note,  
180 also before inoculation of the germ-free mice qPCR and 16S rRNA gene sequencing showed signs  
181 of bacterial contaminants (Figure S3). Given the enlarged cecum and absence of growth by plating

182 we speculated that these signs reflect dead bacteria killed by sterilization of the feed. Procedures  
183 were carried out in accordance with the Directive 2010/63/EU and the Danish Animal  
184 Experimentation Act (license-ID: 2017-15-0201-01262).

185 **Sequencing of PCR-products**

186 Sequencing was performed with Illumina NextSeq 550 using v2 MID output 2×150 cycles  
187 chemistry and barcodes as earlier described [29]. Illumina adaptors were designed specifically for  
188 *E. lenta* DSM 15644 (Table S1). To ensure the quality of the samples, additional cleaning with  
189 AMPure XP binding beads (Beckman Coulter), assessment of PCR-products size by gel  
190 electrophoresis, and DNA concentration measurements with Qubit HS® (Thermo Fisher Scientific)  
191 were performed between each PCR step prior to Illumina sequencing. The average sequencing depth  
192 was 231 637 reads (minimum 54 123 reads and maximum 340 311 reads) for the *in vitro* samples,  
193 and 112 927 reads (minimum 15 138 reads and maximum 320 818 reads) for the *in vivo* samples  
194 (Accession: PRJEB47947, available at ENA). Full 16S rRNA gene sequencing was performed with  
195 the MinION platform from Oxford Nanopore Technologies (ONT, Oxford, UK), as previously  
196 described [30].

197

198 **Processing of raw sequencing data**

199 Paired ends of raw sequencing reads were merged with Usearch 11.0.667 [31] (-fastq\_mergepairs)  
200 with default settings to ensure overlapping sequences of the forward and reverse reads.  
201 Subsequently, redundant sequences of primers and Illumina adaptors were removed with cutadapt  
202 2.6 [32] (Figure S3).

203

204 **Bioinformatic analysis of sequencing and genomic data**

205 The alignment package BWA [33], which is based on Burrow-Wheeler transformation, was used  
206 for alignment of short Illumina reads against the phage PMBT5 genome and visually interpreted  
207 with the use of Tablet 1.21.02.08 [34]. Samples with  $\leq 30$  reads that could be assigned to the PMBT5  
208 phage genome were not considered, due to the numerous PCR cycles [27] and the cut off gel  
209 fragments that might have introduced minor contaminations. Local BLASTn [35] was used to match  
210 spacers originating from the type I-C CRISPR array of *E. lenta* DSM 15644 to viral genomes in the  
211 HuVirDB [16]. WebLogo [36] was used to visualize PAM sequences. CRISPRDetect [37] was used  
212 to identify CRISPR-Cas systems in genome sequences. The database of potential anti-CRISPR (acr)  
213 protein [38] was used to screen for acr proteins encoded by phage PMBT5 by the “-blast” option  
214 with default settings in the alignment tool DIAMOND [39], and visualized in CLC Sequence viewer  
215 8.0. The requirements of potential acr protein candidates were set to a minimum 40% of the amino  
216 acid (AA) identity sequence, length at minimum 100 AA, and for the alignment to contain shared  
217 domains with contiguous sequences.

218 **High-throughput qPCR (HT-qPCR) assays**

219 The BioMark HD system was used for qPCR analysis with a Flex Six IFC chip (Fluidigm, San  
220 Francisco, California, USA) as previously described [22]. For bacteria and phage quantification,  
221 strain specific primers (Table S1) were designed to target the *cas1c* gene (NCBI GeneID: 69511386)  
222 in *E. lenta* DSM 15644 and a putative tail encoding gene (NCBI GeneID: 54998184) in PMBT5. A  
223 universal 16S rRNA primes targeting the V3-region was used as a control (Table S1). The quality  
224 of the primers was evaluated with AriaMX Real-time and Brilliant III Ultra-Fast SYBR® Green  
225 Low ROX qPCR Master Mix (Agilent Technologies) prior HT qPCR analysis as earlier described  
226 [22]. Bacterial culture of *E. lenta* DSM 15644 ( $5 \times 10^8$  CFU/mL –  $OD_{600nm} = 0.27$ ) was mixed with  
227 feces from germ-free mice prior DNA extraction to ensure that the genomic DNA used for the

228 standard curve was treated as the investigated samples. The criteria for including a primer set for  
229 qPCR analysis was absence of primer dimers, no additional PCR fragments (evaluated by the  
230 melting curve), and a standard curve with efficiency between 98-102%,  $R^2 > 0.991$ , slope  $\sim -3.2$ ,  
231 and intercept around 38. Samples with less than 10 gene copies were discarded from the analysis.  
232

## 233 **Results**

234 In this study we investigated the activity of the type I-C CRISPR-Cas system (Figure 2) harbored  
235 by *Eggerthella lenta* DSM 15644, when the bacterial cells were infected with the virulent phage  
236 PMBT5 during either *in vitro* or *in vivo* settings. To investigate if the type I-C CRISPR-Cas system  
237 has previously acquired spacers from other phages, we aligned the 25 native spacers in the CRISPR  
238 array with the HuVirDB (Human virome database) [16]. Only three spacers (S18, S9, and S7) were  
239 assigned to 7 viral contigs in the HuVirDB (Table S5), which was further supported by the spacers  
240 matching two recently assembled phage genomes [40]; S18 matched a *Siphoviridae* isolate  
241 (GenBank ID: BK046045.1) and S9 and S7 an unknown phage (GenBank ID: BK052885.1) [40].  
242 None of the native spacers of *E. lenta* DSM 15644 matched phage PMBT5 genome (Table S6).

243

### 244 **Type I-C CRISPR-Cas system of *E. lenta* can acquire new immunities *in vitro* and the 245 new spacers preferentially target three hotspots of phage PMBT5 genome**

246 The infection of *E. lenta* DSM 15644 with the virulent phage PMBT5 was assayed at four different  
247 MOI for 144 hours (Figure 3a). The bacterial cultures infected at MOI 10 and 1 grew to a  
248 significantly (t-test,  $p < 0.005$ ) higher cell density ( $OD_{600nm} = 0.16-0.17$ , approx. 48 hours after  
249 infection) compared to MOI 0.1 and 0.01 ( $OD_{600nm} = 0.04-0.07$ ) (Figure 3). The cell density of the  
250 phage-infected cultures at MOI 10 and 1 was still markedly decreased (t-test,  $p < 0.005$ ) compared

251 to the bacterial cultures with no phages. Different *in vitro* assays (Supplemental Methods) were  
252 performed to try to isolate CRISPR-protected bacteriophage insensitive mutants as well as plasmid  
253 interfering mutants, but to no avail (Figure S4). However, deep sequencing of PCR-amplified  
254 CRISPR-arrays from *E. lenta* DSM 15644 revealed 13 newly acquired spacers that matched phage  
255 PMBT5 genome in cultures with all four MOIs (Figures 3 and S5). The size of the acquired phage-  
256 associated spacers varied from 29-37 bp. The matching 13 unique protospacers are located in the  
257 genes coding for a phage terminase, portal-, minor structural-, adsorption-, or several  
258 uncharacterized proteins (Figures 3c and 3d, & Table S7). Based on these 13 protospacers, the PAM  
259 was predicted as 5'-TTC, but no clear motifs could be detected in the flanking sequences on both  
260 sides of the protospacer (Figure S6, & Table S7). Interestingly, 3 out of the 13 phage protospacers  
261 appeared as hotspots since they together represented 91.7% of the reads (174 637 reads out of 190  
262 317 reads) matching the phage genome in all four MOIs (Figures 3c and 3d). These three  
263 protospacer hotspots were found within the coding sequences of a portal protein and two  
264 hypothetical proteins (YP\_009807283.1, YP\_009807291.1, and YP\_009807318.1, Table S7). The  
265 ratio of spacer acquisitions from the hotspots varied notably between the MOIs, e.g. the fraction of  
266 spacer acquisitions targeting a hypothetical protein (YP\_009807291.1\*\*) was 11.5%, 92.6%,  
267 92.6%, and 14.4% for MOI 10, 1, 0.1, and 0.01, respectively (Table S7).

268 Only a low number of reads matched the phage PMBT5 genome at MOI 10 and 1 (MOI 10: 2  
269 648 reads (1.4%), MOI 1: 15 832 reads (8.3%) of total 190 317 reads), suggesting that at these MOIs  
270 the predominant phage resistance mechanism in these cultures was not related to CRISPR-Cas  
271 immunity. The bacterial cultures infected at MOI 0.1 and 0.01 grew only to a low cell density, yet  
272 a relatively high fraction of persisting cells acquired new spacers that matched the genome of phage  
273 PMBT5 (MOI 0.1: 72 397 reads (38.0%), MOI 0.01: 99 440 reads (52.2%) of total 190 317 reads).  
274 Interestingly, the number of spacer acquisitions matching the phage PMBT5 genome was almost

275 linear from MOI 10 to 0.01, while bacterial biomass as determined by OD<sub>600nm</sub> had an inverse  
276 tendency with a decreased growth from MOI 10 to 0.01 (Figure 3). This suggested that a low MOI  
277 may favor the adaptation activity of the type I-C CRISPR-Cas system. Taken altogether, the type I-  
278 C CRISPR-Cas system of *E. lenta* DSM 15644 can acquire new spacers from an invading phage  
279 genome.

280 Sequencing of all samples yielded a total of 12 276 803 reads of which 1.55% (190 317 reads)  
281 contained spacer acquisitions events that could be assigned to phage PMBT5 genome, but only one  
282 new spacer acquisition at the time. The remaining reads (98.45%) could be assigned to PCR  
283 products with no spacer acquisitions (primer dimers, 74%) and chromosomal DNA from *E. lenta*  
284 DSM 15644 (24.45%). The reads assigned to the chromosomal DNA covered the native CRISPR  
285 array (positions 1 572 740 to 1 574 444 bp) and showed a 100% nucleotide identity to 24 out of 25  
286 spacers (Figure S7). No reads matched other parts of the bacterial DNA. This phenomenon was  
287 observed at all four MOIs as well as with the control without phage, suggesting that it did not  
288 dependent on the presence of phages.

289

## 290 **Efficient interference activity of the type I-C CRISPR-Cas system**

291 A plasmid interference assay was also conducted to further evaluate the functionality of the type I-  
292 C CRISPR-Cas system of *E. lenta* DSM 15644. Two protospacers, matching S1 and S2 from the  
293 native CRISPR-array of *E. lenta*, were cloned into the vector pNZ123 with one of two PAMs (TTC  
294 or GGG) and introduced into *E. lenta*. This yielded three transformants (15644-pNZ123::GGG-S2-  
295 GGG-S1, 15644-pNZ123::TTC-S2-TTC-S1, 15644-pNZ123::WT). While the 5'-TTC motif was  
296 identified in our above phage assays, other studies [16,24,25] had suggested that GGG may be the  
297 PAM of the type I-C CRISPR-Cas system of *E. lenta*. Note that plasmid pNZ123 provides  
298 chloramphenicol resistance to the bacterial transformants. If the interference complexes of the type

299 I-C CRISPR-Cas system recognize and cleave the two protospacers (S2 and S1), cloned into the  
300 pNZ123 vector, the chloramphenicol resistance will be lost and these bacterial transformants will  
301 be sensitive to the antibiotic. The efficiency of transformation (CFU/µg DNA) was clearly reduced  
302 (> 5 logs) with the two recombinant plasmids pNZ123::GGG-S2-GGG-S1 and 15644  
303 pNZ123::TTC-S2-TTC-S1 compared to the control pNZ123::WT (Figure 4). These data indicate  
304 that the type I-C CRISPR-Cas system of *E. lenta* is also functional against plasmid invasion and has  
305 PAM flexibility.

306

### 307 **Co-existence of *E. lenta* and phages in the gut of gnotobiotic mice**

308 While we could see spacer acquisition events *in vitro* when *E. lenta* DSM 15644 was infected with  
309 phage PMBT5, this study also aimed to explore CRISPR-Cas activities *in vivo*. In total, 12  
310 gnotobiotic (GB) mice were used to (i) investigate the coexistence of *E. lenta* DSM 15644 and phage  
311 PMBT5, and to (ii) see if the type I-C CRISPR-Cas system contribute to phage resistance. The mice  
312 received either a mixture of *E. lenta* (EL) and phages (EL+Phage) or EL and saline (EL+Saline)  
313 (Figure 1). The abundance of bacteria and phages was estimated by qPCR with specific primers  
314 (DSM15644-Cas1, PMBT5-Tail). EL+Phage mice showed sustained co-existence of bacteria and  
315 phages throughout the study (Figure 5), however, at day 26 both simultaneously decreased in  
316 abundance. Phages appeared consistently to be 1 log higher compared to its bacterial host until day  
317 19. Interestingly, *E. lenta* could co-exist with its antagonist virulent phage, since the bacterial  
318 abundance detected in the EL+Phage were comparable to the EL+Saline mice (Figure 5).

319

### 320 **Temporary and limited CRISPR-Cas adaptation activity in the gut of gnotobiotic mice**

321 The CAPTURE protocol [27] followed by deep sequencing was used again to investigate if the  
322 CRISPR array of *E. lenta* DSM 15644 had expanded during colonization in the gut of GB mice.

323 The size of the DNA fragments on an agarose gel suggested expanded CRISPR arrays containing  
324 even multiple spacer acquisitions. These expanded CRISPR arrays were observed both in samples  
325 from EL+Phage mice (Figure 6), EL+Saline mice, and pure bacterial cultures of the WT *E. lenta*  
326 (Figure S8). A protospacer matching the genome of phage PMBT5 as indeed detected in some of  
327 the expanded CRISPR arrays (EL+Phage), however, it was only at day 12 and until day 26 that the  
328 number of spacers matching the genome of phage PMBT5 were above 100 reads (Figure 6). In  
329 contrary to the *in vitro* settings, only one newly acquired spacer (with 75 742 reads out of 76 846  
330 total phage-associated reads, 98.6%) targeted the same phage gene (YP\_009807312.1, Figure 6).  
331 The PAM for this single protospacer was 5'-TTC (Figure S6). The sequencing yielded a total of 10  
332 716 969 reads of which only 0.7% contained spacer acquisitions that could be assigned to the phage  
333 PMBT5 genome. The remaining reads (99.3%) were assigned to PCR products with no spacer  
334 acquisition (primer dimers, 89.2%), and to the *E. lenta* genome (10.1%) as also observed in the *in*  
335 *vitro* experiment (Figure S7). Overall, the results indicated a temporary and limited CRISPR-Cas  
336 mediated adaptation activity when exposed to phage PMBT5 in a GB mouse model.

## 337 **Discussion**

338 Here we report the activity of a type I-C CRISPR-Cas system harbored by the prevalent human gut  
339 bacterium *E. lenta* [41] when exposed to virulent phages in both *in vitro* and *in vivo* settings. With  
340 a highly sensitive PCR-based protocol [27] and deep sequencing, we detected MOI-dependent  
341 CRISPR-Cas adaptation activity against phage PMBT5 when infecting *E. lenta* DSM 15644 (Figure  
342 3). A decrease in bacterial growth in phage-infected cultures is likely explained by impaired fitness  
343 due to acquired phage resistance [42–44] that was not associated to CRISPR-Cas immunity [45].  
344 The bacterial cultures infected at MOIs of 0.1 and 0.01 had a relative higher number of new spacers  
345 matching the phage genome as compared to cultures infected at MOIs 10 and 1 (Figure 3). It has  
346 been shown that low MOI 0.01 can activate dormancy in archaea and allow them to recover from

347 active CRISPR-Cas immunity [46]. Similar mechanisms of dormancy might explain why *E. lenta*  
348 DSM 15644 cultures infected with phage PMBT5 at MOI 0.1 and 0.01 of revealing limited growth,  
349 were found to have increased frequencies of spacer acquisitions compared to cultures infected with  
350 MOI 10 and 1.

351 Using *in vitro* settings, 13 protospacers of phage PMBT5 were targeted at all four MOIs of  
352 which 3 appeared preferred targets, while only 1 protospacer was targeted in the GB mice. These  
353 hotspots of spacer acquisition were within genes coding for a portal protein and three hypothetical  
354 proteins (Figures 3 and 6, & Table S7). Based on the 14 protospacers, the adaptation PAM was  
355 predicted as 5'-TTC (Figure S6), which is in agreement with another study that predicted similar  
356 adaptation PAM for type I-C CRISPR-Cas systems in 15 different *E. lenta* strains using  
357 computational approaches [16].

358 The distinctly different environmental conditions for phage-bacteria interactions in test tubes versus  
359 the spatial heterogeneity found in real gastrointestinal conditions in GB mice [47], may explain this  
360 clear difference in the number of unique acquired spacers between the *in vitro* and *in vivo* settings.  
361 The bacterial to phage ratio in the mouse feces was estimated at 10 (phages were 1 log higher than  
362 bacteria, Figure 5), so the decreased frequency of spacer acquisition during *in vivo* conditions may  
363 be in line with the low frequency of spacer acquisition observed in the *in vitro* settings with a MOI  
364 of 10 (Figures 3 & 6).

365 While the numbers of reads representing the acquired spacers are arbitrary values due to the  
366 basic principles of the CAPTURE protocol [27], it appears that spacer acquisition may be relatively  
367 rare in *E. lenta* DSM 15644 when exposed to phage PMBT5 in both *in vitro* and *in vivo* settings.  
368 This would also be in accordance with other studies investigating spacer acquisitions [48,49]. Of  
369 note, two hypothetical proteins encoded by phage PMBT5 had identical (E-value < 10<sup>-23</sup>) AA  
370 domains as four potential anti-CRISPR (acr) protein clusters [38] (YP\_009807310.1: cluster 2517

371 + 20298 and YP\_009807284.1: cluster 12618 + 59526) (Figure S9). Therefore, if these phage  
372 proteins contain acr features, it might have challenged the detection of spacer acquisitions in *E. lenta*  
373 and thereby limited CRISPR-Cas immunity.

374 In both the *in vitro* and *in vivo* settings, less than 2% of the total sequenced reads could be  
375 assigned to the phage PMBT5 genome, while ~ 25% were assigned to the genome of *E. lenta*, and  
376 the remaining reads were primer dimers. The reads that matched to the chromosomal DNA framed  
377 almost the entire native CRISPR array (Figure S6) and no other bacterial genes. This phenomenon  
378 was detected in all samples independent of the presence of phages. Whether this observation has  
379 biological relevance or is just PCR-generated artefacts is not known. Other potential biological  
380 explanations may be homologous recombination (driven by the repeats) or a mechanism where the  
381 spacers are shuffled to increase spacer diversity at the leader and more expressed end of the CRISPR  
382 array. Self-targeting immune memories of CRISPR-Cas have previously been demonstrated [50–  
383 52], but does not seem to explain our observation of spacers matching the CRISPR array of the host  
384 since no chromosomal genes were targeted.

385 Using a plasmid system in which we cloned two spacers (S2 and S1) originating from the native  
386 CRISPR array of *E. lenta* DSM 15644, we showed clear interference activity of the type I-C  
387 CRISPR-Cas system, including the necessity of the PAM 5'-GGG and 5'-TTC (Figure 4).  
388 Considering that the adaptation and interference stages consist of different protein complexes being  
389 formed, the PAM requirements may be different for both stages [53]. Thereby explaining why both  
390 PAM 5'-GGG and 5'-TTC showed high interference efficiency, while 5'-TTC appears to be the  
391 preferred PAM that is involved in spacer acquisition. Although, one protospacer was detected with  
392 5'-GGG as PAM (Table S7). The observed interference activity of the type I-C CRISPR-Cas system  
393 in *E. lenta* DSM 15644 is in line with another study that reported transcription and interference  
394 activity of a type I-C CRISPR-Cas system from the closely related strain *E. lenta* DSM 2243<sup>T</sup> [16].

395 Soto-Perez et al. conducted an experimental design using the evolutionary distinct (from *E. lenta*)  
396 bacterium *Pseudomonas aeruginosa* and its associated *P. aeruginosa* phages [16]. Whereas we  
397 investigated CRISPR immunity of *E. lenta* using natural host-phage relations. Despite the high  
398 genomic similarity between *E. lenta* DSM 2243<sup>T</sup> and DSM 15644 [16], the *E. lenta* DSM 2243<sup>T</sup>  
399 showed no susceptibility against the PMBT5 phage (Figure S10).

400 The phage PMBT5 was highly virulent *in vitro* since the bacterial culture was completely  
401 cleared after phage amplification (Figure S10). It is therefore intriguing, why the bacterial  
402 abundance was similar with and without the presence of this seemingly highly virulent phage  
403 (Figure 5) during the 26 days in GB mice. Considering that only one new spacer acquisition was  
404 detected in GB mice, it suggests that the type I-C CRISPR-Cas in *E. lenta* DSM 15644 does not  
405 constitute the main phage resistance strategy in the investigated conditions. Other resistance  
406 mechanisms [12,54] are likely involved. In addition, the contribution of physical parameters should  
407 not be neglected, since small cavities in the intestinal lumen, mucus production (from host cells)  
408 [55,56], protection by numerous bacterial cell layers in microcolony structures [57–59], and the  
409 overall spatial distribution in the gut may have protected the bacteria from phages. Avoiding  
410 infections would mean less phage resistance, and perhaps even avoiding impaired fitness that is  
411 sometimes associated with phage resistance [42–44]. In our mouse model, some sort of equilibrium  
412 between bacterial cell division and phage infection of susceptible cells seemed to have occurred  
413 (Figure 5). This would be in accordance with a study showing that the spatial heterogeneity of the  
414 gut limits predation and favors the coexistence of phages and bacteria [47]. Other studies have also  
415 shown host-phage coexistence in other experimental and theoretical settings using the bacterium  
416 *Streptococcus thermophilus* and its lytic phage 2972 [60,61].

417     Although, the CRISPR-Cas system only provided limited phage immunity, this is the first study  
418     to show the activity of the type I-C CRISPR-Cas system in *E. lenta* targeting its antagonist phage  
419     in both *in vitro* and *in vivo* settings.

420     **Acknowledgements**

421     We thank Professor Alejandro Reyes (Universidad de los Andes, Colombia) for initial discussions  
422     of the design of the gnotobiotic mouse (GB) model and we also thank Dr. Frank Hille (Max Rubner-  
423     Institut, Germany) for suggestions that improved the initial draft of the manuscript. In addition, we  
424     are grateful to Helene Farlov and Mette Nelander at Section of Experimental Animal Models  
425     (University of Copenhagen, Denmark) for handling GB mice in the isolator, as well as the staff at  
426     Department of Experimental Medicine (University of Copenhagen, Denmark) for their cooperation  
427     in housing the GB mice. We also thank lab technicians Pernille Lærke Jensen and Emilie Gaal at  
428     Section of Microbiology and Fermentations (University of Copenhagen, Denmark) for helping with  
429     the interference activity assay.

430     **Funding**

431     Funding was provided by the Danish Council for Independent Research with grant ID: DFF-6111-  
432     00316 (PhageGut). This work is supported by the Joint Programming Initiative ‘Healthy Diet for a  
433     Healthy Life’, specifically here, the Danish Agency for Science and Higher Education. S.M.  
434     acknowledges funding from the Canadian Institutes of Health Research (Team grant on Intestinal  
435     Microbiomics, Institute of Nutrition, Metabolism, and Diabetes). S.M. holds a Tier 1 Canada  
436     Research Chair in Bacteriophages.

## 437 **Author contributions**

438 TSR, DSN, AKH, and SM conceived the research idea and designed the study; TSR and AKK  
439 performed the experiments; TSR, AKK, DSN, SM, GR, WK, LD, MKM, SS, HN, CMAPF, and  
440 FKV performed laboratory and data analysis; TSR wrote the first draft of the manuscript. All authors  
441 critically revised and approved the final version of the manuscript.

## 442 **Competing interests**

443 All authors declare no conflicts of interest.

## 444 **Supplemental materials**

445 All supplemental materials (figures, tables, primer lists, additional methods etc.) are available  
446 through the link [https://osf.io/n5dqj/?view\\_only=bf883f5b3c2444d58acd7409d797d9a0](https://osf.io/n5dqj/?view_only=bf883f5b3c2444d58acd7409d797d9a0).

## 447 **References**

- 448 1 McGinn J, Marraffini LA. Molecular mechanisms of CRISPR-Cas spacer acquisition. *Nat Rev Microbiol*  
449 2019;17:7–12. doi:10.1038/s41579-018-0071-7
- 450 2 Brouns SJ, Jore MM, Lundgren M, *et al.* Small CRISPR RNAs guide antiviral defense in prokaryotes.  
451 *Science* 2008;321:960–4. doi:10.1126/science.1159689
- 452 3 Barrangou R, Fremaux C, Deveau H, *et al.* CRISPR provides acquired resistance against viruses in  
453 prokaryotes. *Science* 2007;315:1709–12. doi:10.1126/science.1138140
- 454 4 Ishino Y, Shinagawa H, Makino K, *et al.* Nucleotide sequence of the iap gene, responsible for alkaline  
455 phosphatase isoenzyme conversion in *Escherichia coli*, and identification of the gene product. *J Bacteriol*  
456 1987;169:5429–33. doi:10.1128/jb.169.12.5429-5433.1987
- 457 5 Bolotin A, Quinquis B, Sorokin A, *et al.* Clustered regularly interspaced short palindrome repeats (CRISPRs)  
458 have spacers of extrachromosomal origin. *Microbiology* 2005;151:2551–61. doi:10.1099/mic.0.28048-0
- 459 6 Makarova KS, Wolf YI, Iranzo J, *et al.* Evolutionary classification of CRISPR–Cas systems: a burst of class 2  
460 and derived variants. *Nat Rev Microbiol* 2019;18. doi:10.1038/s41579-019-0299-x

461 7 Makarova KS, Wolf YI, Alkhnbashi OS, *et al.* An updated evolutionary classification of CRISPR-Cas  
462 systems. *Nat Rev Microbiol* 2015;13:722–36. doi:10.1038/nrmicro3569

463 8 Hochstrasser ML, Taylor DW, Kornfeld JE, *et al.* DNA targeting by a minimal CRISPR RNA-guided  
464 cascade. *Mol Cell* 2016;63:840–51. doi:10.1016/j.molcel.2016.07.027

465 9 Lee H, Zhou Y, Taylor DW, *et al.* Cas4-dependent prespacer processing ensures high-fidelity programming of  
466 CRISPR arrays. *Mol Cell* 2018;70:48–59.e5. doi:10.1016/j.molcel.2018.03.003

467 10 Lee H, Dhingra Y, Sashital DG. The Cas4-Cas1-Cas2 complex mediates precise prespacer processing during  
468 CRISPR adaptation. *eLife* 2019;8:1–26. doi:10.7554/eLife.44248

469 11 Rasmussen TS, Koefoed AK, Jakobsen RR, *et al.* Bacteriophage-mediated manipulation of the gut  
470 microbiome - promises and presents limitations. *FEMS Microbiol Rev* 2020;44:507–21.  
471 doi:10.1093/femsre/fuaa020

472 12 Bernheim A, Sorek R. The pan-immune system of bacteria: antiviral defence as a community resource. *Nat  
473 Rev Microbiol* 2020;18:113–9. doi:10.1038/s41579-019-0278-2

474 13 Louwen R, Staals RHJ, Endtz HP, *et al.* The role of CRISPR-Cas systems in virulence of pathogenic bacteria.  
475 *Microbiol Mol Biol Rev* 2014;78:74–88. doi:10.1128/MMBR.00039-13

476 14 Grissa I, Vergnaud G, Pourcel C. CRISPRcompar: a website to compare clustered regularly interspaced short  
477 palindromic repeats. *Nucleic Acids Res* 2008;36:W145–8. doi:10.1093/nar/gkn228

478 15 Tajkarimi M, Wexler HM. CRISPR-Cas systems in *Bacteroides fragilis*, an important pathobiont in the  
479 human gut microbiome. *Front Microbiol* 2017;8:2234. doi:10.3389/fmicb.2017.02234

480 16 Soto-Perez P, Bisanz JE, Berry JD, *et al.* CRISPR-Cas system of a prevalent human gut bacterium reveals  
481 hyper-targeting against phages in a human virome catalog. *Cell Host Microbe* 2019;26:325–335.e5.  
482 doi:10.1016/j.chom.2019.08.008

483 17 Cornuault JK, Moncaut E, Loux V, *et al.* The enemy from within: a prophage of *Roseburia intestinalis*  
484 systematically turns lytic in the mouse gut, driving bacterial adaptation by CRISPR spacer acquisition. *ISME J*  
485 2020;14:771–87. doi:10.1038/s41396-019-0566-x

486 18 Pan M, Nethery MA, Hidalgo-Cantabrana C, *et al.* Comprehensive mining and characterization of CRISPR-  
487 Cas systems in *Bifidobacterium*. *Microorganisms* 2020;8:720. doi:10.3390/microorganisms8050720

488 19 Koh A, Molinaro A, Ståhlman M, *et al.* Microbially produced imidazole propionate impairs insulin signaling  
489 through mTORC1. *Cell* 2018;175:947–961.e17. doi:10.1016/j.cell.2018.09.055

490 20 Qin J, Li Y, Cai Z, *et al.* A metagenome-wide association study of gut microbiota in type 2 diabetes. *Nature*  
491 2012;490:55–60. doi:10.1038/nature11450

492 21 Rasmussen TS, Streidl T, Hitch TCAA, *et al.* *Sporofaciens musculi* gen. nov., sp. nov., a novel bacterium  
493 isolated from the caecum of an obese mouse. *Int J Syst Evol Microbiol* 2021;71:004673.  
494 doi:10.1099/ijsem.0.004673

495 22 Muhammed MK, Krych L, Nielsen DS, *et al.* A high-throughput qPCR system for simultaneous quantitative  
496 detection of dairy *Lactococcus lactis* and *Leuconostoc* bacteriophages. *PLoS One* 2017;12:e0174223.  
497 doi:10.1371/journal.pone.0174223

498 23 De Vos W. Gene cloning and expression in lactic streptococci. *FEMS Microbiol Lett* 1987;46:281–95.  
499 doi:10.1016/0378-1097(87)90113-3

500 24 Rao C, Chin D, Ensminger AW. Priming in a permissive type I-C CRISPR-Cas system reveals distinct  
501 dynamics of spacer acquisition and loss. *RNA* 2017;23:1525–38. doi:10.1261/rna.062083.117

502 25 Burmistrz M, Rodriguez Martinez JI, Krochmal D, *et al.* Clustered regularly interspaced short palindromic  
503 repeat (CRISPR) RNAs in the *Porphyromonas gingivalis* CRISPR-Cas I-C system. *J Bacteriol*  
504 2017;199:e00275-17. doi:10.1128/JB.00275-17

505 26 Lemay M-L, Tremblay DM, Moineau S. Genome engineering of virulent lactococcal phages using CRISPR-  
506 Cas9. *ACS Synth Biol* 2017;6:1351–8. doi:10.1021/acssynbio.6b00388

507 27 McKenzie RE, Almendros C, Vink JNA, *et al.* Using CAPTURE to detect spacer acquisition in native  
508 CRISPR arrays. *Nat Protoc* 2019;14:976–90. doi:10.1038/s41596-018-0123-5

509 28 Rasmussen TS, de Vries L, Kot W, *et al.* Mouse vendor influence on the bacterial and viral gut composition  
510 exceeds the effect of diet. *Viruses* 2019;11:435. doi:10.3390/v11050435

511 29 Krych Ł, Kot W, Bendtsen KMB, *et al.* Have you tried spermine? A rapid and cost-effective method to  
512 eliminate dextran sodium sulfate inhibition of PCR and RT-PCR. *J Microbiol Methods* 2018;144:1–7.  
513 doi:10.1016/j.mimet.2017.10.015

514 30 Hui Y, Tamez-Hidalgo P, Cieplak T, *et al.* Supplementation of a lacto-fermented rapeseed-seaweed blend  
515 promotes gut microbial- and gut immune-modulation in weaner piglets. *J Anim Sci Biotechnol* 2021;12:1–14.  
516 doi:10.1186/s40104-021-00601-2

517 31 Edgar RC. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* 2010;26:2460–1.  
518 doi:10.1093/bioinformatics/btq461

519 32 Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal*  
520 2011;17:10. doi:10.14806/ej.17.1.200

521 33 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*  
522 2009;25:1754–60. doi:10.1093/bioinformatics/btp324

523 34 Milne I, Stephen G, Bayer M, *et al.* Using Tablet for visual exploration of second-generation sequencing data.  
*Brief Bioinform* 2013;14:193–202. doi:10.1093/bib/bbs012

525 35 Johnson M, Zaretskaya I, Raytselis Y, *et al.* NCBI BLAST: a better web interface. *Nucleic Acids Res*  
526 2008;36:W5–9. doi:10.1093/nar/gkn201

527 36 Crooks GE, Hon G, Chandonia J-M, *et al.* WebLogo: a sequence logo generator. *Genome Res* 2004;14:1188–  
528 90. doi:10.1101/gr.849004

529 37 Biswas A, Staals RHJ, Morales SE, *et al.* CRISPRDetect: A flexible algorithm to define CRISPR arrays. *BMC*  
530 *Genomics* 2016;17:356. doi:10.1186/s12864-016-2627-0

531 38 Gussow AB, Park AE, Borges AL, *et al.* Machine-learning approach expands the repertoire of anti-CRISPR  
532 protein families. *Nat Commun* 2020;11:3784. doi:10.1038/s41467-020-17652-0

533 39 Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. *Nat Methods*  
534 2015;12:59–60. doi:10.1038/nmeth.3176

535 40 Tisza MJ, Buck CB. A catalog of tens of thousands of viruses from human metagenomes reveals hidden  
536 associations with chronic diseases. *Proc Natl Acad Sci* 2021;118:1–11. doi:10.1073/pnas.2023202118

537 41 Koppel N, Bisanz JE, Pandelia M-E, *et al.* Discovery and characterization of a prevalent human gut bacterial  
538 enzyme sufficient for the inactivation of a family of plant toxins. *eLife* 2018;7:33953.  
539 doi:10.7554/eLife.33953

540 42 Koskella B, Lin DM, Buckling A, *et al.* The costs of evolving resistance in heterogeneous parasite  
541 environments. *Proceedings Biol Sci* 2012;279:1896–903. doi:10.1098/rspb.2011.2259

542 43 Harcombe WR, Bull JJ. Impact of phages on two-species bacterial communities. *Appl Environ Microbiol*  
543 2005;71:5254–9. doi:10.1128/AEM.71.9.5254-5259.2005

544 44 Seed KD, Yen M, Shapiro BJ, *et al.* Evolutionary consequences of intra-patient phage predation on microbial  
545 populations. *eLife* 2014;3:e03497. doi:10.7554/eLife.03497

546 45 Hampton HG, Watson BNJ, Fineran PC. The arms race between bacteria and their phage foes. *Nature*  
547 2020;577:327–36. doi:10.1038/s41586-019-1894-8

548 46 Bautista MA, Zhang C, Whitaker RJ. Virus-induced dormancy in the archaeon *Sulfolobus islandicus*. *mBio*  
549 2015;6:e02565-14. doi:10.1128/mBio.02565-14

550 47 Lourenço M, Chaffringeon L, Lamy-Besnier Q, *et al*. The spatial heterogeneity of the gut limits predation and  
551 fosters coexistence of bacteria and bacteriophages. *Cell Host Microbe* 2020;28:390-401.e5.  
552 doi:10.1016/j.chom.2020.06.002

553 48 McGinn J, Marraffini LA. CRISPR-Cas systems optimize their immune response by specifying the site of  
554 spacer integration. *Mol Cell* 2016;64:616–23. doi:10.1016/j.molcel.2016.08.038

555 49 Heler R, Samai P, Modell JW, *et al*. Cas9 specifies functional viral targets during CRISPR-Cas adaptation.  
556 *Nature* 2015;519:199–202. doi:10.1038/nature14245

557 50 Weissman JL, Stoltzfus A, Westra ER, *et al*. Avoidance of self during CRISPR immunization. *Trends*  
558 *Microbiol* 2020;28:543–53. doi:10.1016/j.tim.2020.02.005

559 51 Stern A, Keren L, Wurtzel O, *et al*. Self-targeting by CRISPR: gene regulation or autoimmunity? *Trends*  
560 *Genet* 2010;26:335–40. doi:10.1016/j.tig.2010.05.008

561 52 Stachler A-E, Turgeman-Grott I, Shtifman-Segal E, *et al*. High tolerance to self-targeting of the genome by  
562 the endogenous CRISPR-Cas system in an archaeon. *Nucleic Acids Res* 2017;45:5208–16.  
563 doi:10.1093/nar/gkx150

564 53 Shah SA, Erdmann S, Mojica FJM, *et al*. Protospacer recognition motifs: mixed identities and functional  
565 diversity. *RNA Biol* 2013;10:891–9. doi:10.4161/rna.23764

566 54 Ofir G, Melamed S, Sberro H, *et al*. DISARM is a widespread bacterial defence system with broad anti-phage  
567 activities. *Nat Microbiol* 2018;3:90–8. doi:10.1038/s41564-017-0051-0

568 55 Sausset R, Petit MA, Gaboriau-Routhiau V, *et al*. New insights into intestinal phages. *Mucosal Immunol*  
569 2020;13:205–15. doi:10.1038/s41385-019-0250-5

570 56 Yang C, Ottemann KM. Control of bacterial colonization in the glands and crypts. *Curr Opin Microbiol*  
571 2019;47:38–44. doi:10.1016/j.mib.2018.11.004

572 57 Eriksen RS, Mitarai N, Sneppen K. Sustainability of spatially distributed bacteria-phage systems. *Sci Rep*  
573 2020;10:3154. doi:10.1038/s41598-020-59635-7

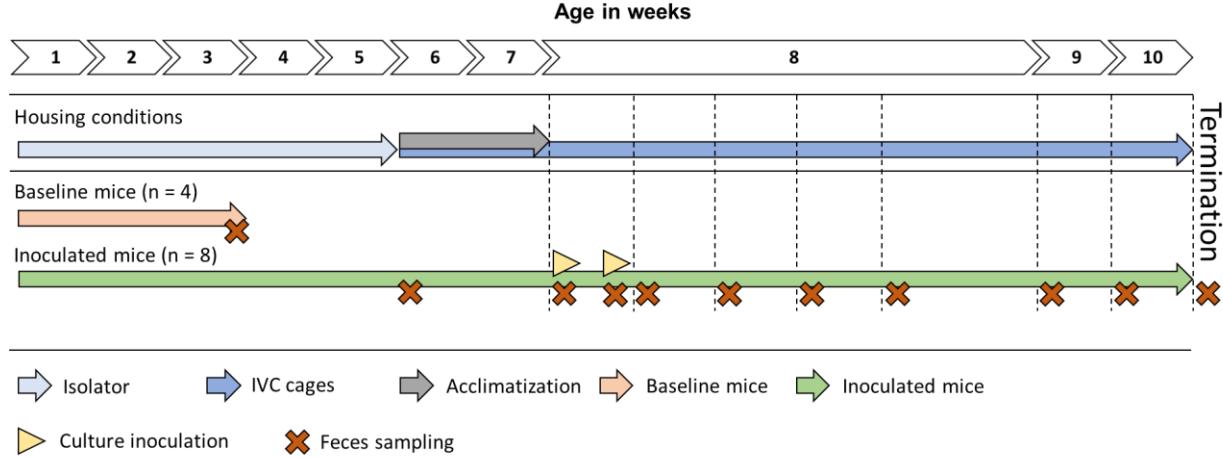
574 58 Eriksen RS, Svenningsen SL, Sneppen K, *et al*. A growing microcolony can survive and support persistent  
575 propagation of virulent phages. *Proc Natl Acad Sci* 2017;115:337–42. doi:10.1073/pnas.1708954115

576 59 Abedon ST. Phage ‘delay’ towards enhancing bacterial escape from biofilms: a more comprehensive way of

577 viewing resistance to bacteriophages. *AIMS Microbiol* 2017;3:186–226. doi:10.3934/microbiol.2017.2.186

578 60 Weissman JL, Holmes R, Barrangou R, *et al.* Immune loss as a driver of coexistence during host-phage

579 coevolution. *ISME J* 2018;12:585–97. doi:10.1038/ismej.2017.194


580 61 Common J, Morley D, Westra ER, *et al.* CRISPR-Cas immunity leads to a coevolutionary arms race between

581 *Streptococcus thermophilus* and lytic phage. *Philos Trans R Soc Lond B Biol Sci* 2019;374:20180098.

582 doi:10.1098/rstb.2018.0098

583

a)



b)

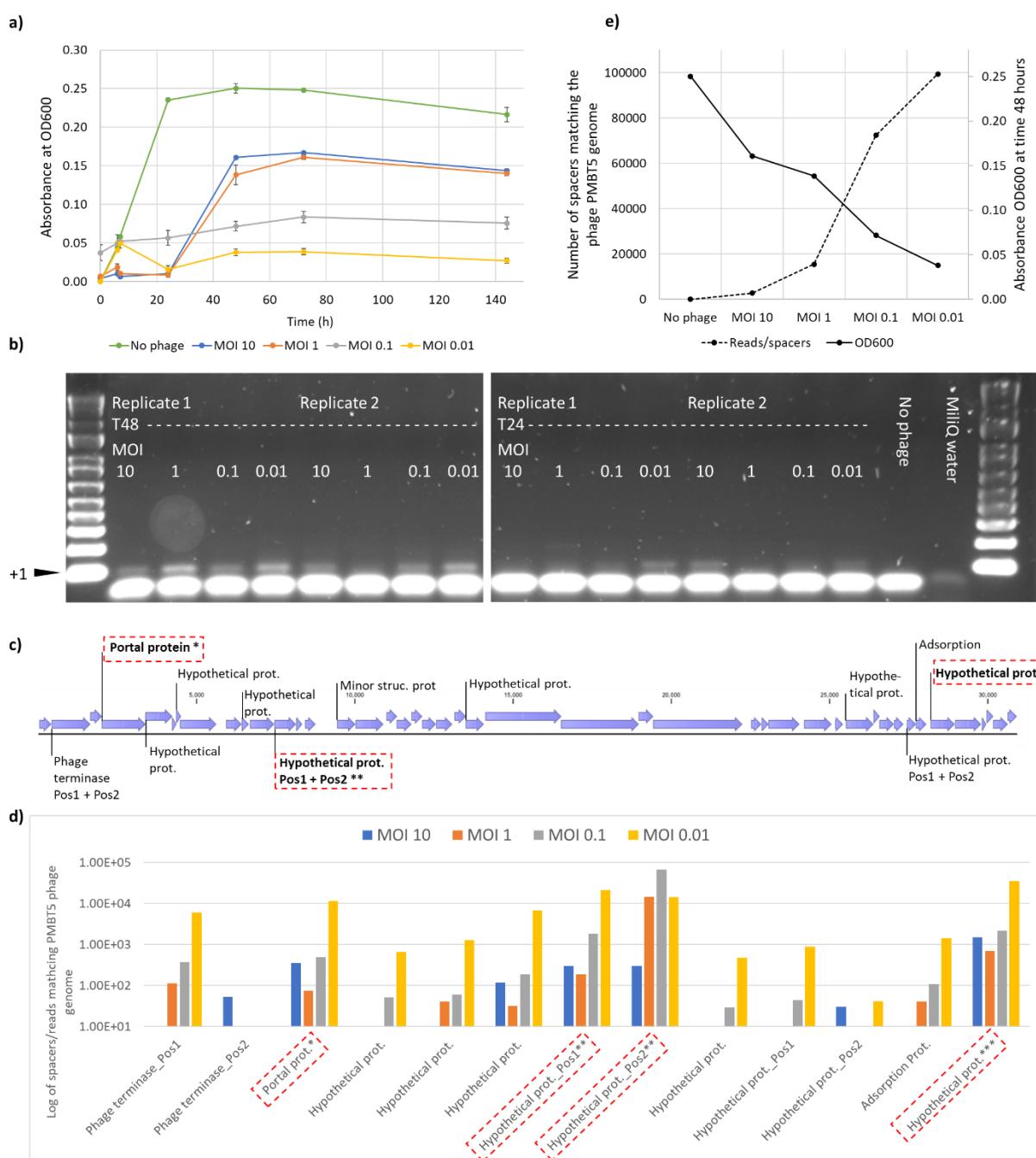
| Intervention   | Group name | Bacterial strain                   | Phage strain / Saline |
|----------------|------------|------------------------------------|-----------------------|
| Inoculated     | EL+Saline  | <i>Eggerthella lenta</i> DSM 15644 | SM buffer             |
| Inoculated     | EL+Phage   | <i>Eggerthella lenta</i> DSM 15644 | PMBT5                 |
| No inoculation | Baseline   | -                                  | -                     |

584

585 Figure 1: Timeline of the gnotobiotic mouse model. a) Showing the lifespan of the mice included in the study. The mice  
586 were initially bred and housed in a germ-free isolator (light blue arrow) until age of 5 weeks when they were transferred  
587 to IVCs (dark blue arrow) for individual group caging followed by two weeks of acclimatization (grey arrow) prior  
588 to intervention at age 7 weeks. Feces (brown cross) were sampled from each individual mouse before and after inoculation  
589 (yellow triangle) with phages and/or bacteria. The baseline mice were euthanized and sampled at age of 3 weeks. b)  
590 Listing of the experimental groups, their abbreviation, and the inoculated bacterium and/or phage. SM buffer was used  
591 as saline solution.

592

593

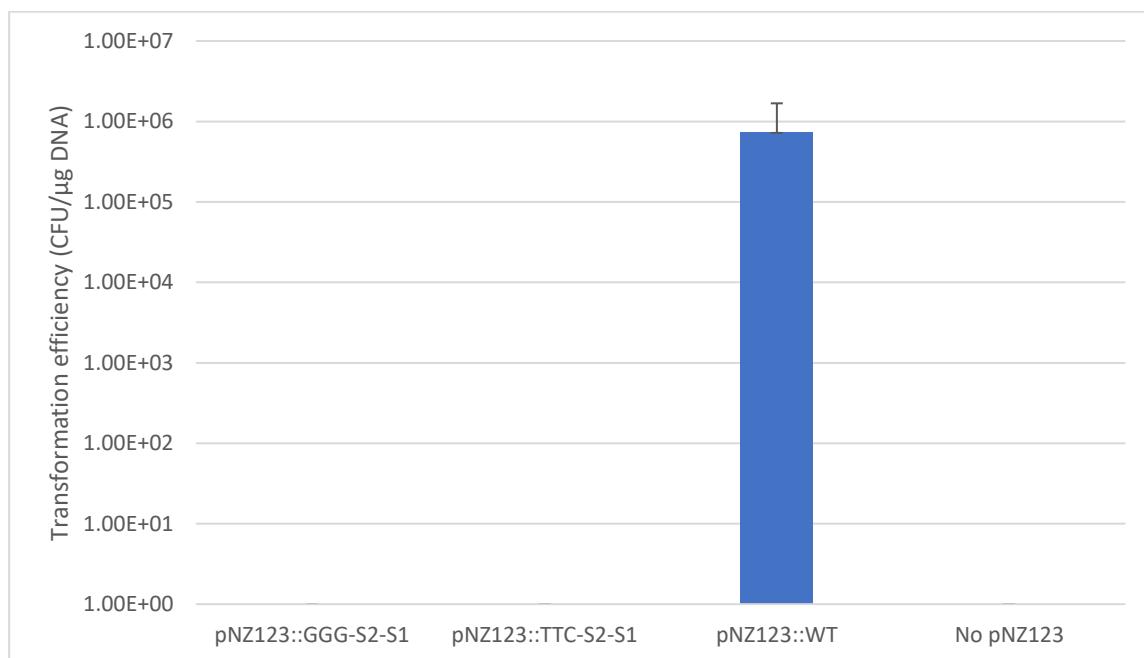

594

5'



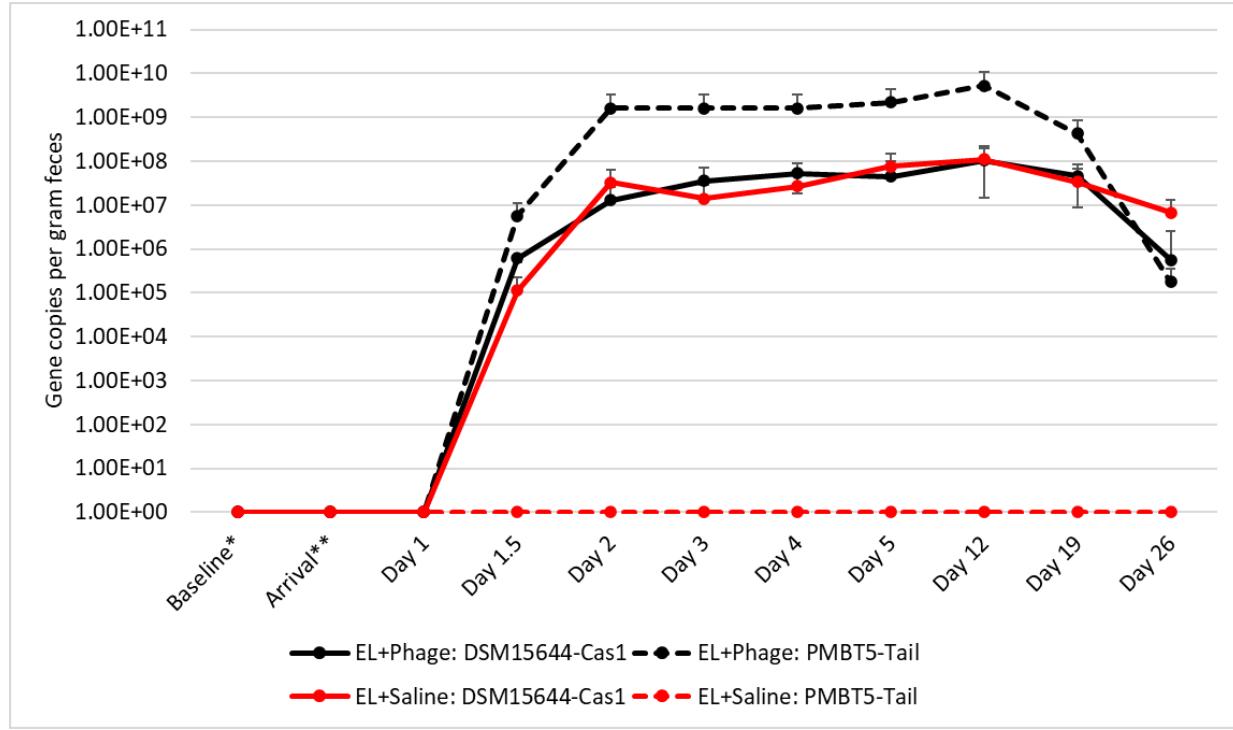
595

596 Figure 2: The order and structure of the type I-C CRISPR-Cas system found in *E. lenta* DSM 15644. R = Repeat, S =  
597 Spacer, TR = Terminal repeat.




598

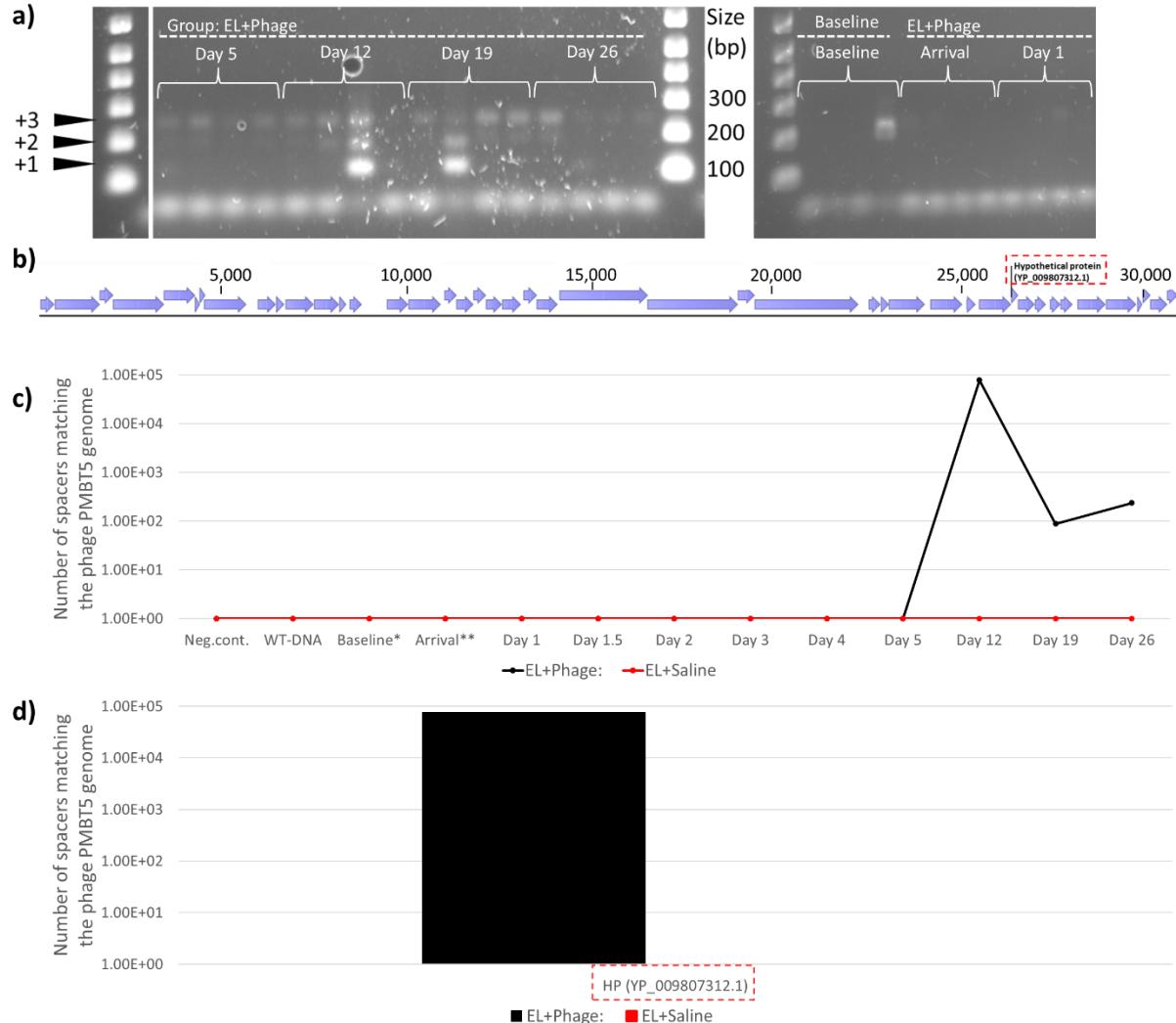
599 Figure 3: Overview of spacer acquisitions in the *in vitro* settings. a) Growth curve of *E. lenta* DSM 15644 during  
600 infection with phage PMBT5 at four different multiplicities of infections (MOI) and a control with no phages added.  
601 Bacterial growth was measured at several time points (absorbance at OD<sub>600nm</sub>) for 144 hours. b) Expanded CRISPR  
602 arrays in selected samples (Figure S8 for all samples) representing two replicates of all four MOI after 48 hours and 24  
603 hours of incubation of *E. lenta* DSM 15644 exposed to phage PMBT5. DNA ladder is a 100-bp scale. With the  
604 degenerate primers, the expanded CRISPR array with one spacer “+1” was expected to yield a PCR product at ~110 bp  
605 (Figure S1). No expanded CRISPR arrays were observed in samples with no added phages (after 48 hours incubation)


606 or with MilliQ water added. The PCR-product at ~40 bp likely represented primer dimers. c) The annotated genome of  
607 phage PMBT5 highlights the genes that are presented in d) with a bar plot showing the number of reads/spacers that  
608 matched to phage genes at MOI 10, 1, 0.01, and 0.01. Three genes appeared as hotspots of spacer acquisitions (coding  
609 for the portal protein (YP\_009807283.1\*) and two hypothetical proteins (YP\_009807291.1\*\* and  
610 YP\_009807318.1\*\*\*) and are marked by boxes with red dashed lines. A few genes were targeted at different positions  
611 (Pos) within the same gene. e) Graph illustrating a tendency of an inverse relation between MOI and cell density  
612 (OD<sub>600nm</sub>) of reads/spacer acquisitions in *E. lenta* DSM 15644 exposed to phage PMBT5.

613



614


615 Figure 4: Bar plot showing colony forming units per µg DNA (CFU/µg DNA) in a logarithmic scale of transformed *E.*  
616 *lenta* DSM 15644 cells with plasmid pNZ123 and derivatives that provides chloramphenicol resistance. *E. lenta* DSM  
617 15644 was transformed with pNZ123 (WT) and two derivatives containing each the same two protospacers but a  
618 different PAM (pNZ123::GGG-S2-GGG-S1, pNZ123::TTC-S2-TTC-S1, pNZ123::WT). Absence of plasmid  
619 transformation indicates interference activity of the type I-C CRISPR-Cas system. Transformation assays were  
620 performed 2, 2, 4, and 4 times, respectively.



621

622 Figure 5: The bacterial and phage abundance in feces samples at different time points and measured by qPCR. Primers  
623 designed to specifically target the genomes of *E. lenta* DSM 15644 (*cas1* gene) and phage PMBT5 (gene coding for a  
624 putative tail protein) were used to measure total gene copies found in the feces samples. A minimum threshold of 10  
625 gene copies was applied. \*Feces samples from GB mice euthanized at the age of 3 weeks, \*\* feces samples from GB  
626 mice when transferred from isolator to individual ventilated cages at another housing facility.

627



628

629

630 Figure 6: Overview of spacer acquisitions in the *in vivo* settings. a) An agarose gel showing spacer acquisitions in  
631 selected samples representing EL+Phage mice from day 5, day 12, day 19, and day 26, as well as from controls at arrival  
632 (Day 1) and baseline mice. A 100-bp DNA ladder was used to estimate PCR product size. With the degenerate primers,  
633 the acquisition of one spacer “+1” was expected to yield a PCR product at ~110 bp (Figure S1) and then ~70 bp for  
634 additional spacers. The PCR-product at ~40 bp likely represented primer dimers. b) The annotated phage genome of  
635 PMBT5 highlight the genes that are presented in c) with a line plot showing reads/spacers over time and d) as a bar plot  
636 showing the number of reads/spacers that matched at the phage genome. Only one phage gene coding for a hypothetical  
637 protein (YP\_009807312.1) appeared as a source of spacers. This is marked by a box with red dashed lines. HP =  
638 hypothetical protein.