

1 **Effects of netarsudil-family Rho kinase inhibitors on human trabecular meshwork cell**
2 **contractility and actin remodeling using a bioengineered ECM hydrogel**

3
4 Tyler Bagué^a, Ayushi Singh^{a,b}, Rajanya Ghosh^a, Hannah Yoo^a, Curtis Kelly^c, Mitchell A. deLong^c,
5 Casey C. Kopczynski^c, Samuel Herberg^{a,b,d,e,f*}
6

7 **Affiliations:**

8 ^a Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University,
9 Syracuse, NY 13210, USA

10 ^b Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse,
11 NY 13210, USA

12 ^c Aerie Pharmaceuticals Inc., Durham, NC 27703, USA

13 ^d Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University,
14 Syracuse, NY 13210, USA

15 ^e BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA

16 ^f Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244,
17 USA

18

19 *To whom correspondence should be addressed: Samuel Herberg, PhD, Assistant Professor;
20 Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 505
21 Irving Avenue, Neuroscience Research Building Room 4609, Syracuse, NY 13210, USA, email:
22 herbergs@upstate.edu

23

24

25 **Keywords:** Primary open-angle glaucoma, ROCK inhibition, Rhopressa, tissue relaxation,
26 cytoskeleton

27

28

29

30 **Abstract**

31 Interactions between trabecular meshwork (TM) cells and their extracellular matrix (ECM)
32 are critical for normal outflow function in the healthy eye. Multifactorial dysregulation of the TM
33 is the principal cause of elevated intraocular pressure that is strongly associated with glaucomatous
34 vision loss. Key characteristics of the diseased TM are pathologic contraction and actin stress fiber
35 assembly, contributing to overall tissue stiffening. Among first-line glaucoma medications, the
36 Rho-associated kinase inhibitor (ROCKi) netarsudil is known to directly target the stiffened TM
37 to improve outflow function via tissue relaxation involving focal adhesion and actin stress fiber
38 disassembly. Yet, no *in vitro* studies have explored the effect of netarsudil on human TM (HTM)
39 cell contractility and actin remodeling in a 3D ECM environment. Here, we use our bioengineered
40 HTM cell-encapsulated ECM hydrogel to investigate the efficacy of different netarsudil-family
41 ROCKi compounds on reversing pathologic contraction and actin stress fibers. Netarsudil and all
42 related experimental ROCKi compounds exhibited significant ROCK1/2 inhibitory and focal
43 adhesion disruption activities. Furthermore, all ROCKi compounds displayed potent contraction-
44 reversing effects on HTM hydrogels upon glaucomatous induction in a dose-dependent manner,
45 relatively consistent with their biochemical/cellular inhibitory activities. At their tailored EC₅₀
46 levels, netarsudil-family ROCKi compounds exhibited distinct effect signatures of reversing
47 pathologic HTM hydrogel contraction and actin stress fibers, independent of the cell strain used.
48 Netarsudil outperformed the experimental ROCKi compounds in support of its clinical status. In
49 contrast, at uniform EC₅₀-levels using netarsudil as reference, all ROCKi compounds performed
50 similarly. Collectively, our data suggest that netarsudil exhibits high potency to rescue HTM cell
51 pathobiology in a tissue-mimetic 3D ECM microenvironment, solidifying the utility of our

52 bioengineered hydrogel model as a viable screening platform to further our understanding of TM
53 pathophysiology in glaucoma.

54

55 **Introduction**

56 The trabecular meshwork (TM) drains the aqueous humor to regulate outflow resistance,
57 thereby maintaining normal intraocular pressure in the healthy eye (Overby et al., 2009; Tamm et
58 al., 2015). The dynamic reciprocity between TM cells and their extracellular matrix (ECM) is
59 critical in this process, as TM cells regulate tissue contraction and ECM remodeling to support
60 outflow homeostasis (Kelley et al., 2009). In primary open-angle glaucoma, the most common
61 form of glaucoma (Kwon et al., 2009), the TM undergoes increased fibrotic-like contraction, actin
62 stress fiber assembly, ECM remodeling, and overall stiffening (Kwon et al., 2009; Wang et al.,
63 2017). These cell-driven alterations lead to decreased trabecular outflow and consequently
64 increased intraocular pressure, which if left untreated can push the TM to exceed its adaptive
65 homeostatic capacity in a feed-forward loop (Stamer and Acott, 2012; Wang et al., 2017; Acott et
66 al., 2021). The resulting TM dysfunction poses a serious threat to normal vision; approximately
67 80 million people worldwide are affected by glaucoma, a leading cause of blindness (Quigley,
68 1993; Quigley and Broman, 2006; Weinreb et al., 2014), and this number is projected to increase
69 by almost 40% over the next 20 years (Tham et al., 2014).

70 Most ocular hypertension/glaucoma medications do not specifically target the diseased TM.
71 They rather lower intraocular pressure by increasing uveoscleral outflow, bypassing the TM
72 altogether, or by decreasing aqueous humor production (Beidoe and Mousa, 2012; Lin et al., 2018).
73 In contrast, the FDA-approved Rho-associated kinase inhibitor (ROCKi) netarsudil, the active
74 ingredient in RhopressaTM, increases outflow through the stiffened TM to increase outflow via

75 reducing TM contraction as a function of ECM-focal adhesion and actin stress fiber disassembly
76 (Rao et al., 2001; Zhang et al., 2012; Wang and Chang, 2014; Rao et al., 2017; Tanna and Johnson,
77 2018). The ability of netarsudil to improve outflow facility has been demonstrated in preclinical
78 animal studies (Wang et al., 2015; Li et al., 2016), in an *ex vivo* perfusion study of human donor
79 eyes (Ren et al., 2016), and in two human clinical studies (Kazemi et al., 2018; Sit et al., 2021). In
80 contrast, only a single study to date has investigated netarsudil's effect on normal and
81 glaucomatous human TM (HTM) cell actin remodeling *in vitro* using live cell-imaging (Keller and
82 Kopczynski, 2020). To our knowledge, no study has directly assessed the effect of netarsudil on
83 HTM cell contractility in a relevant 3D ECM environment.

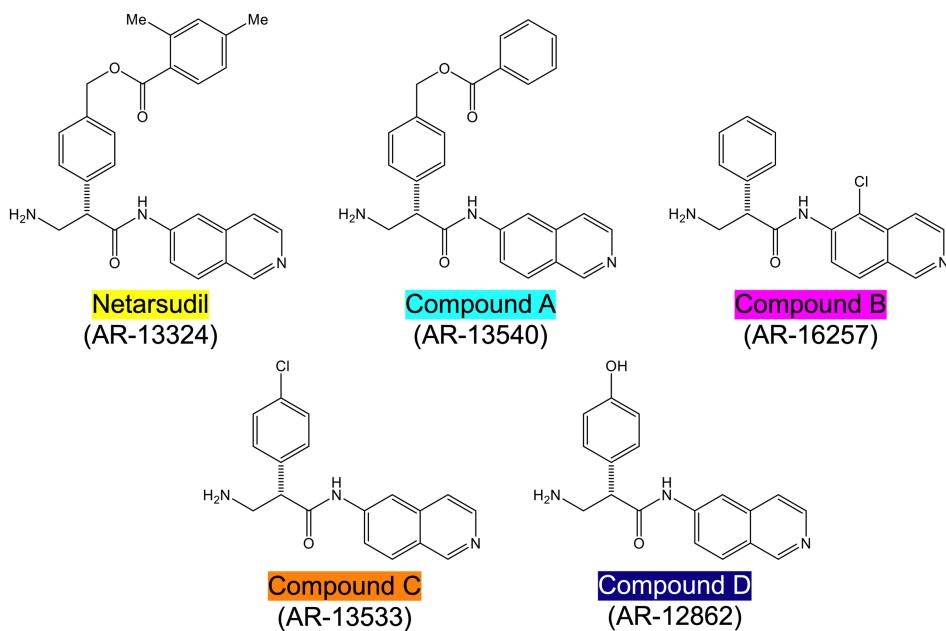
84 In the juxtaganular tissue region, TM cells reside embedded within a soft 3D ECM
85 comprised of fibrillar and non-fibrillar collagens, elastic fibrils, glycosaminoglycans,
86 proteoglycans, and matricellular proteins (Acott and Kelley, 2008; Tamm, 2009; Hann and Fautsch,
87 2011; Keller and Acott, 2013; Abu-Hassan et al., 2014). This is in stark contrast to conventional
88 2D tissue culture substrates that are known to create non-physiological culture conditions (Caliari
89 and Burdick, 2016; Jensen and Teng, 2020). To that end, ECM biopolymer hydrogels provide a
90 favorable tissue-mimetic 3D microenvironment and facilitate accurate *in vitro* modeling of cellular
91 behaviors (Li et al., 2021). We recently reported a bioengineered ECM hydrogel composed of
92 donor-derived HTM cells encapsulated within ECM biopolymers native to the TM to more
93 accurately recapitulate the juxtaganular tissue region under normal and simulated
94 glaucomatous conditions (Li et al., 2022a; Li et al., 2022b). Importantly, our model enables
95 correlative analyses of TM cell cytoskeletal organization with tissue-level functional changes such
96 as pathologic contraction contingent on 3D TM cell-ECM interactions.

97 Here, we investigate the effects of clinically-used netarsudil and different netarsudil-family
98 experimental ROCKi compounds on reversing transforming growth factor beta 2 (TGF β 2)-
99 induced (Inatani et al., 2001; Agarwal et al., 2015) pathologic HTM cell contractility and actin
100 remodeling using our bioengineered ECM hydrogel.

101

102 **Materials and Methods**

103 ***HTM cell isolation and culture.***


104 Human donor eye tissue use was approved by the SUNY Upstate Medical University Institutional
105 Review Board (protocol #1211036), and all experiments were performed in accordance with the
106 tenets of the Declaration of Helsinki for the use of human tissue. Primary human TM (HTM) cells
107 were isolated from healthy donor corneal rims discarded after transplant surgery, as previously
108 described (Li et al., 2021; Li et al., 2022a; Li et al., 2022b), and cultured according to established
109 protocols (Stamer et al., 1995; Keller et al., 2018). Three normal HTM cell strains (HTM05
110 [Male/57], HTM07 [Male/39], HTM36 [Female/56]) were used for the experiments in this study.
111 All HTM cell strains were validated with dexamethasone-induced (DEX; Fisher Scientific,
112 Waltham, MA, USA; 100 nM) myocilin expression in more than 50% of cells by
113 immunocytochemistry and immunoblot analyses (**Suppl. Fig. 1**). All studies were conducted using
114 cell passage 3-7. HTM cells were cultured in low-glucose Dulbecco's Modified Eagle's Medium
115 (DMEM; Gibco; Thermo Fisher Scientific) containing 10% fetal bovine serum (FBS; Atlanta
116 Biologicals, Flowery Branch, GA, USA) and 1% penicillin/streptomycin/glutamine (PSG; Gibco)
117 and maintained at 37°C in a humidified atmosphere with 5% CO₂. Fresh media was supplied every
118 2-3 days.

119

120 **Rho kinase inhibitors.**

121 Netarsudil (AR-13324), compound A (AR-13540), compound B (AR-16257), compound C
122 (AR-13533), and compound D (AR-12862) were synthesized at Aerie Pharmaceuticals Inc.,
123 Durham, NC, USA (Fig. 1). All stocks were provided at 1.0 mM in dimethyl sulfoxide (DMSO).
124 The solutions were sterilized using 0.2 μ m syringe filters.

125

126

127 **Fig. 1. Structures of netarsudil-family ROCKi test compounds.** Color code used throughout all
128 figures.

129

130 **Biochemical and cell-based activity assays.**

131 Protein kinase assays (ROCK1 and ROCK2; from Invitrogen; Thermo Fisher Scientific) were
132 conducted using serially diluted netarsudil/compounds A-D, as previously described (Sturdivant
133 et al., 2016). In brief, ROCK1/2 activity was quantitated in 96-well white, flatbottom, half-area,
134 nonbinding assay plates (No. 3642; Corning; Sigma-Aldrich) using the Kinase-Glo®
135 Luminescent Kinase Assay (Promega, Madison, WI, USA) according to the manufacturer's

136 instructions. Dose response analyses were conducted to establish IC₅₀ values, which were
137 converted to K_i values using the Cheng-Prusoff Equation (K_i = IC₅₀ / (1 + ([ATP]/K_m ATP))).

138 Cell-based assays measuring disruption of focal adhesions were conducted using transformed
139 HTM cells (TM-1; kind gift from Donna Peters; Department of Ophthalmology and Visual
140 Sciences, University of Wisconsin), as previously described (Sturdivant et al., 2016). In brief,
141 HTM cells were grown on fibronectin-coated glass-bottom 96-well plates and incubated in media
142 containing serially diluted netarsudil/compounds A-D for 6 h, followed by fixing in formaldehyde
143 and routine processing for immunocytochemistry. HTM cells were stained with an anti-paxillin
144 primary antibody followed by incubation with an Alexa Fluor-488 fluorescent secondary antibody
145 and Hoechst 33342 counterstain (all from Invitrogen) to reveal focal adhesions and nuclei,
146 respectively. Images were collected on an INCell 1000 imager (GE Healthcare, Marlborough, MA,
147 USA), and total area of focal adhesions was measured using a custom algorithm developed using
148 the INCell Developer Toolbox, v1.6. Dose response analyses were conducted to establish IC₅₀
149 values.

150

151 ***Hydrogel precursor solutions.***

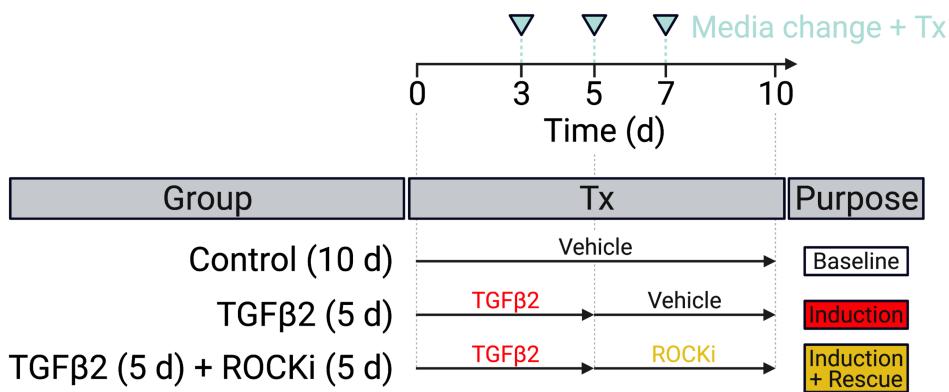
152 Methacrylate-conjugated bovine collagen type I (MA-COL; Advanced BioMatrix, Carlsbad,
153 CA, USA) was reconstituted in sterile 20 mM acetic acid at 6 mg/ml. Immediately prior to use, 1
154 ml MA-COL was neutralized with 85 μ l neutralization buffer (Advanced BioMatrix) according to
155 the manufacturer's instructions. Thiol-conjugated hyaluronic acid (SH-HA; Glycosil®; Advanced
156 BioMatrix) was reconstituted in sterile diH₂O containing 0.5% (w/v) photoinitiator (4-(2-
157 hydroxyethoxy) phenyl-(2-propyl) ketone; Irgacure® 2959; Sigma-Aldrich, St. Louis, MO, USA)
158 at 10 mg/ml according to the manufacturer's protocol. In-house expressed elastin-like polypeptide

159 (SH-ELP; thiol via cysteine in KCTS flanks (Zhang et al., 2015; Li et al., 2021)) was reconstituted
160 in DPBS at 10 mg/ml and sterilized using a 0.2 μ m syringe filter in the cold. The photoactive ECM
161 biopolymers can form chemical crosslinks via methacrylate, thiol-ester, or disulfide linkages.

162

163 ***Preparation of HTM hydrogels.***

164 HTM cells (1.0×10^6 cells/ml) were thoroughly mixed with MA-COL (3.6 mg/ml), SH-HA
165 (0.5 mg/ml, 0.025% (w/v) photoinitiator) and SH-ELP (2.5 mg/ml) on ice (**Suppl. Fig. 2A**),
166 followed by pipetting 10 μ l droplets of the HTM cell-laden hydrogel precursor solution onto
167 polydimethylsiloxane-coated (PDMS; Sylgard 184; Dow Corning) 24-well culture plates (**Suppl.**
168 **Fig. 2B**), according to our established protocols (Li et al., 2021; Li et al., 2022a; Li et al., 2022b).
169 Alternatively, 30 μ l droplets of the HTM cell-laden hydrogel precursor solution were pipetted onto
170 Surfasil-coated (Fisher Scientific) 18 \times 18-mm square glass coverslips followed by placing a
171 regular 12-mm round glass coverslip onto the hydrogels to facilitate even spreading of the polymer
172 solution. HTM hydrogels were crosslinked by exposure to UV light (OmniCure S1500 UV Spot
173 Curing System; Excelitas Technologies, Mississauga, Ontario, Canada) at 320-500 nm, 2.2 W/cm²
174 for 5 s. The HTM hydrogel-adhered coverslips were removed with fine-tipped tweezers and placed
175 hydrogel-side facing up in PDMS-coated 24-well culture plates (**Suppl. Fig. 2C**).


176

177 ***HTM hydrogel treatments.***

178 HTM hydrogels were cultured in DMEM with 10% FBS and 1% PSG, and subjected to the
179 following treatments for 10 d: **1) Control** (vehicle: 40 μ M HCL, 0.002% BSA [0-5 d]; 0.1%
180 DMSO [5-10 d]; all from Thermo Fisher Scientific) for 0-10 d [=Baseline], **2) TGF β 2** (TGF β 2:
181 2.5 ng/ml; R&D Systems, Minneapolis, MN, USA) for 0-5 d followed by vehicle control (0.1%

182 DMSO) for 5-10 d [=Induction], and 3) **TGF β 2 + ROCKi** (TGF β 2: 2.5 ng/ml; R&D Systems) for
183 0-5 d followed by netarsudil/compounds A-D (0.0001 μ M, 0.001 μ M, 0.01 μ M, 0.1 μ M, 1.0 μ M;
184 Aerie Pharmaceuticals) or Y27632 (10 μ M; Sigma-Aldrich) [=Induction + Rescue] (Fig. 2). First,
185 dose response analyses (i.e., the ability to reduce TGF β 2-induced HTM hydrogel contraction) were
186 conducted with netarsudil and compounds A-D to establish EC₅₀ values using one HTM cell strain
187 (i.e., HTM07); Y27632 served as a reference control. Subsequently, netarsudil was directly
188 compared with compounds A-D at their respective EC₅₀ using three HTM cell strains (i.e., HTM05,
189 HTM07, HTM36), with netarsudil at 1.0 μ M serving as a reference control.

190

191

192 **Fig. 2. Experimental design.** HTM hydrogels were treated with vehicle control (=baseline) or
193 TGF β 2 for 5 d to induce a glaucoma-like cell phenotype (=induction) before adding netarsudil-
194 family ROCKi test compounds for the next 5 d in absence of TGF β 2 (=induction + rescue), with
195 fresh media supplied every 2-3 days.
196

197 *HTM hydrogel contraction analysis.*

198 Longitudinal brightfield images of HTM hydrogels subjected to the different treatments were
199 acquired at 0 d and 10 d with an Eclipse Ti microscope (Nikon Instruments, Melville, NY, USA).
200 Construct area was measured using Fiji software (National Institutes of Health (NIH), Bethesda,
201 MD, USA) and normalized to 0 d followed by normalization to controls.

202 ***HTM hydrogel cell viability analysis.***

203 The number of viable cells inside HTM hydrogels subjected to the different treatments for 10
204 d was measured with the CellTiter 96® Aqueous Non-Radioactive Cell Proliferation Assay (MTS;
205 Promega) according to the manufacturer's instructions. HTM hydrogels were incubated with the
206 staining solution (38 µl MTS, 2 µl PMS solution, 200 µl DMEM) at 37°C for 1.5 h. Absorbance at
207 490 nm was recorded using a spectrophotometer plate reader (BioTek, Winooski, VT, USA).
208 Blank (DMEM with the staining solution)-subtracted absorbance values served as a direct measure
209 of HTM cell viability.

210

211 ***HTM hydrogel immunocytochemistry analysis.***

212 HTM hydrogels on coverslips subjected to the different treatments for 10 d were fixed with 4%
213 paraformaldehyde (Thermo Fisher Scientific) at 4°C overnight, permeabilized with 0.5% Triton™
214 X-100 (Thermo Fisher Scientific), blocked with blocking buffer (BioGeneX), and incubated with
215 Phalloidin-iFluor 488 to stain for F-actin (Abcam, Cambridge, MA, USA) and a Cy3-conjugated
216 primary antibody against α-smooth muscle actin (anti-αSMA [C6198] 1:500; Sigma-Aldrich).
217 Nuclei were counterstained with 4',6'-diamidino-2-phenylindole (DAPI; Abcam). Coverslips were
218 mounted with ProLong™ Gold Antifade (Invitrogen) on Superfrost™ microscope slides (Fisher
219 Scientific), and fluorescent images were acquired with a Zeiss LSM 780 confocal microscope
220 (Zeiss, Germany). The image size was set to 512 x 512 pixels in x/y with a resolution of 1.66 µm
221 per pixel. Individual z-stacks consisted of 7 slices with the z-step interval set to 13.3 µm.
222 Fluorescence signal intensity of F-actin and αSMA were determined using Z-project maximum
223 intensity projections in FIJI (NIH) with image background subtraction.

224

225 **Statistical analysis.**

226 Individual sample sizes are specified in each figure caption. Comparisons between groups were
227 assessed by one-way or two-way analysis of variance (ANOVA) with Tukey's multiple
228 comparisons *post hoc* tests, as appropriate. All data are shown with mean \pm SD, some with
229 individual data points. The significance level was set at $p < 0.05$ or lower. GraphPad Prism software
230 v9.3 (GraphPad Software, La Jolla, CA, USA) was used for all analyses.

231

232 **Results**

233 ***In vitro* activity of netarsudil-family ROCK inhibitors.**

234 First, we investigated the specific inhibitory activity of different netarsudil-family ROCKi
235 against the two human Rho kinase isoforms ROCK1 and ROCK2, as well as the compounds'
236 ability to disrupt focal adhesions in HTM cells according to established protocols (Lin et al., 2018).
237 All ROCKi compounds exhibited significant inhibitory activity against ROCK1 and ROCK2, with
238 the order of potency from highest to lowest as follows: compound A > compound C > compound
239 B > netarsudil > compound D (**Table 1**). The rank order of potency to disrupt HTM cell focal
240 adhesions on conventional 2D culture substrates was: compound C > compound
241 A > netarsudil > compound D (**Table 1**).

242

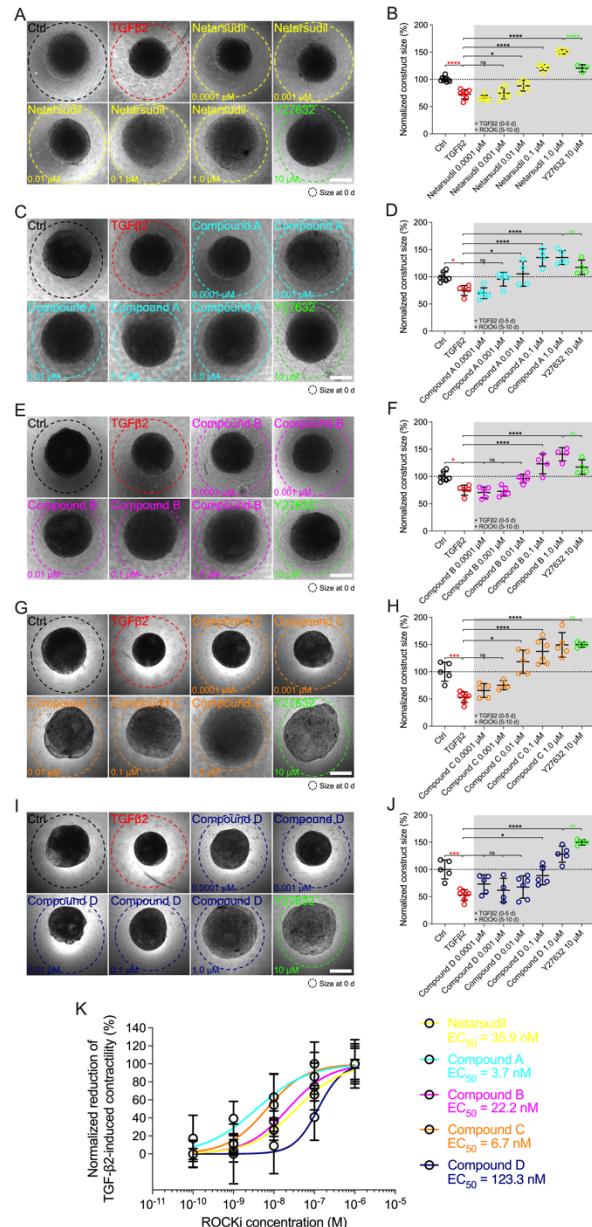
243 **Table 1. *In vitro* potency of netarsudil-family ROCK inhibitors.**

Compound	ROCK1 K_i (nM)	ROCK2 K_i (nM)	HTM IC_{50} (nM)
Netarsudil	2.6 ± 0.7	2.8 ± 0.7	17 ± 2
Compound A	1.5 ± 0.7	1.2 ± 0.3	15 ± 3
Compound B	$1.7 \pm 0.0^*$	$2.0 \pm 0.0^*$	Not tested
Compound C	1.8 ± 0.3	1.2 ± 0.4	5.6 ± 0.7
Compound D	4.5 ± 2.0	1.7 ± 0.7	193 ± 51

Mean \pm SEM, $N \geq 3$, $^*N = 2$; K_i , inhibition constant; IC_{50} , half maximal inhibitory concentration

244 Together, these data show that netarsudil-family ROCKi treatments exhibit potent
245 ROCK1/2 inhibitory and focal adhesion disruption activities. The differential responses observed
246 with clinically-used netarsudil compared to experimental compounds A-D likely stems from
247 differences in compound structure/chemistry (**Fig. 1**), affecting cellular uptake and efficacy.

248


249 ***Dose response analysis of netarsudil-family ROCK inhibitors on reversing TGF β 2-induced***
250 ***HTM hydrogel contraction.***

251 The contractility status of the TM influences outflow resistance and intraocular pressure
252 (Dismuke et al., 2014). In our recent study, we showed that HTM cells encapsulated in ECM
253 biopolymer hydrogels are highly contractile, and that TGF β 2 increases HTM hydrogel contraction
254 compared to vehicle-treated controls (Li et al., 2021).

255 Therefore, to investigate the potency of different netarsudil-family ROCKi compounds in
256 rescuing pathologic HTM hydrogel contraction, constructs were treated with TGF β 2 for 5 d to
257 induce a glaucoma-like cell phenotype before adding netarsudil/compounds A-D over a broad dose
258 range for the next 5 d in the absence of TGF β 2. Treatment with TGF β 2 significantly increased
259 HTM hydrogel contraction compared to controls (=lower values; **Fig. 3A-J**), consistent with our
260 previous reports (Li et al., 2021; Li et al., 2022a; Li et al., 2022b). All ROCKi treatments reversed
261 TGF β 2-induced contraction in a dose-dependent manner (=higher values). For netarsudil, we
262 observed significantly decreased HTM hydrogel contraction using 0.01 μ M and higher
263 concentrations compared to the TGF β 2 group in a near-linear fashion. Netarsudil at 0.1 μ M was
264 equivalent to the standard concentration of 10 μ M Y27632 (i.e., 100x more concentrated), whereas
265 1.0 μ M netarsudil was significantly more potent compared to Y27632 (**Fig. 3A,B**). The EC₅₀ for
266 netarsudil was 35.9 nM (**Fig. 3K**). Similarly, for compound A, we found significantly decreased

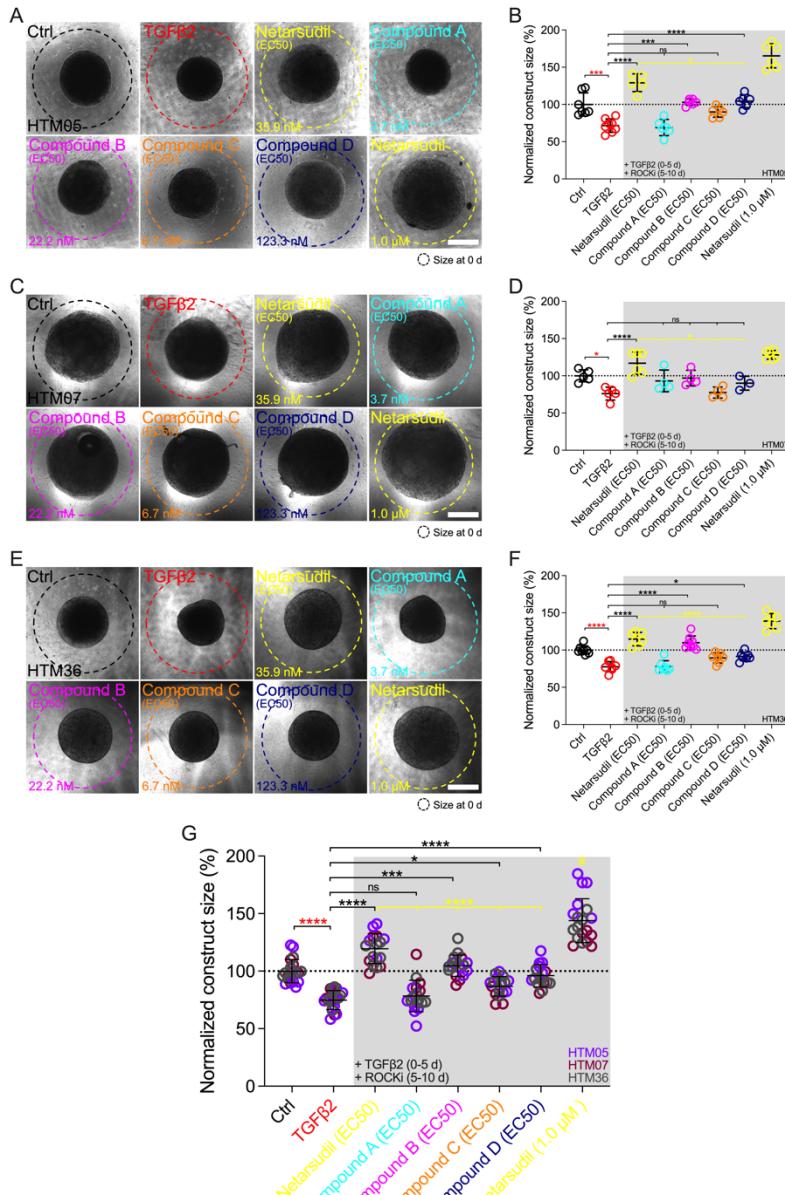
267 TGF β 2-induced HTM hydrogel contraction at 0.01 μ M and above, plateauing at 0.1 μ M.
268 Consequently, even at 1.0 μ M compound A was not different from 10 μ M Y27632 (**Fig. 3C,D**).
269 The EC₅₀ for compound A was 3.7 nM (**Fig. 3K**). For compound B, we observed significantly
270 decreased HTM hydrogel contraction only at 0.1 μ M and 1.0 μ M compared to the TGF β 2 group,
271 with behavior at 1.0 μ M being comparable to compound A (**Fig. 3E,F**). The EC₅₀ for compound
272 B was 22.2 nM (**Fig. 3K**). For compound C, we found significantly decreased TGF β 2-induced
273 HTM hydrogel contraction using 0.01 μ M and above, with a noticeable “jump” between 0.001 μ M
274 and 0.01 μ M. Of note, even at 1.0 μ M compound C was comparable to standard 10 μ M Y27632
275 (**Fig. 3G,H**), which showed some variability between experiments. The EC₅₀ for compound C was
276 6.7 nM (**Fig. 3K**). Lastly, for compound D, we observed significantly decreased HTM hydrogel
277 contraction only at 0.1 μ M and 1.0 μ M compared to the TGF β 2 group – similar to compound B –
278 with a more “blunted” response over the tested dose range compared to all other ROCKi treatments
279 (**Fig. 3I,J**). Consequently, the EC₅₀ for compound D was 123.3 nM (**Fig. 3K**).

280 Together, these data show that netarsudil-family ROCKi treatments exhibit potent
281 contraction-reversing effects on HTM cell-encapsulated ECM hydrogels upon glaucomatous
282 induction in a dose-dependent manner. The order of potency from highest to lowest was as follows:
283 compound A>compound C>compound B>netarsudil>compound D, precisely matching the
284 compounds’ independently acquired ROCK1/2 inhibitory activities (**Table 1**).
285

286

287 **Fig. 3. Dose response effects of netarsudil-family ROCKi treatment following TGF β 2-
288 induction on HTM hydrogel contraction.** Representative brightfield micrographs of HTM
289 hydrogels encapsulated with HTM07 subjected to (A) netarsudil, (C) compound A, (E) compound
290 B, (G) compound C, or (I) compound D over a broad dose range for 10 d, with Y27632 serving as
291 reference control (dashed lines outline original construct size at 0 d). Scale bars, 1 mm. Construct
292 size quantification of HTM hydrogels subjected to (B) netarsudil, (D) compound A, (F) compound
293 B, (H) compound C, or (J) compound D (N = 3-8 replicates per group). (K) ROCKi dose response
294 curves with calculated EC₅₀ values. Data shown as Mean \pm SD with individual data points.
295 Significance was determined by one-way ANOVA using multiple comparisons tests (*p<0.05,
296 ***p<0.001, ****p<0.0001; ns = not significant).

297


298 ***Comparison of netarsudil-family ROCK inhibitors at EC₅₀ on reversing TGF β 2-induced HTM***
299 ***hydrogel contraction.***

300 Next, we directly compared the different netarsudil-family ROCKi compounds at their
301 respective EC₅₀ to assess the tailored efficacy in rescuing TGF β 2-induced HTM hydrogel
302 contraction using HTM05 (**Fig. 4A,B**), HTM07 (**Fig. 4C,D**), and HTM36 (**Fig. 4E,F**). Of note,
303 HTM05 and HTM36 cells showed an overall greater inherent contractility (i.e., vehicle-treated
304 controls) compared to HTM07 (**Fig. 4A,C,E**), consistent with normal donor-to-donor variability
305 observed in previous studies (Li et al., 2021). Treatment with TGF β 2 significantly increased HTM
306 hydrogel contraction by ~25% over controls, independent of the cell strain used (**Fig. 4A-G**).
307 Netarsudil at 35.9 nM significantly decreased TGF β 2-induced HTM hydrogel contraction,
308 reaching ~120% across all three cell strains. While this overall effect was significantly less
309 compared to max level netarsudil at 1.0 μ M (=reference control and highest values; **Fig. 4G**), the
310 difference in efficacy (~1.2-fold) was not as large as the order-of-magnitude lower dose would
311 suggest. Compound A at 3.7 nM failed to reverse HTM hydrogel contraction compared to the
312 TGF β 2 group in all HTM cell strains tested (**Fig. 4A-G**). Compound B at 22.2 nM significantly
313 decreased TGF β 2-induced HTM hydrogel contraction using HTM05 (**Fig. 4A,B**) and HTM36
314 cells (**Fig. 4E,F**), reaching baseline levels; yet, the overall rescuing effect was less compared to
315 netarsudil-EC₅₀ (**Fig. 4G**). Compound C at 6.7 nM failed to rescue HTM hydrogel contraction
316 compared to the TGF β 2 group across HTM cell strains (**Fig. 4A-G**), showing similar behavior as
317 compound A. Lastly, compound D at 123.3 nM significantly decreased TGF β 2-induced HTM
318 hydrogel contraction using HTM05 (**Fig. 4A,B**) and HTM36 cells (**Fig. 4E,F**), approximating
319 baseline levels. The overall rescuing effect was equivalent to compound B but less compared to
320 netarsudil-EC₅₀ (**Fig. 4G**). To rule out that HTM hydrogel contractility was influenced by the cell

321 number, we assessed HTM cell viability in constructs subjected to the different treatments at the
322 experimental end point. No differences were noted across treatment groups for all HTM cell strains
323 (**Suppl. Fig. 3**).

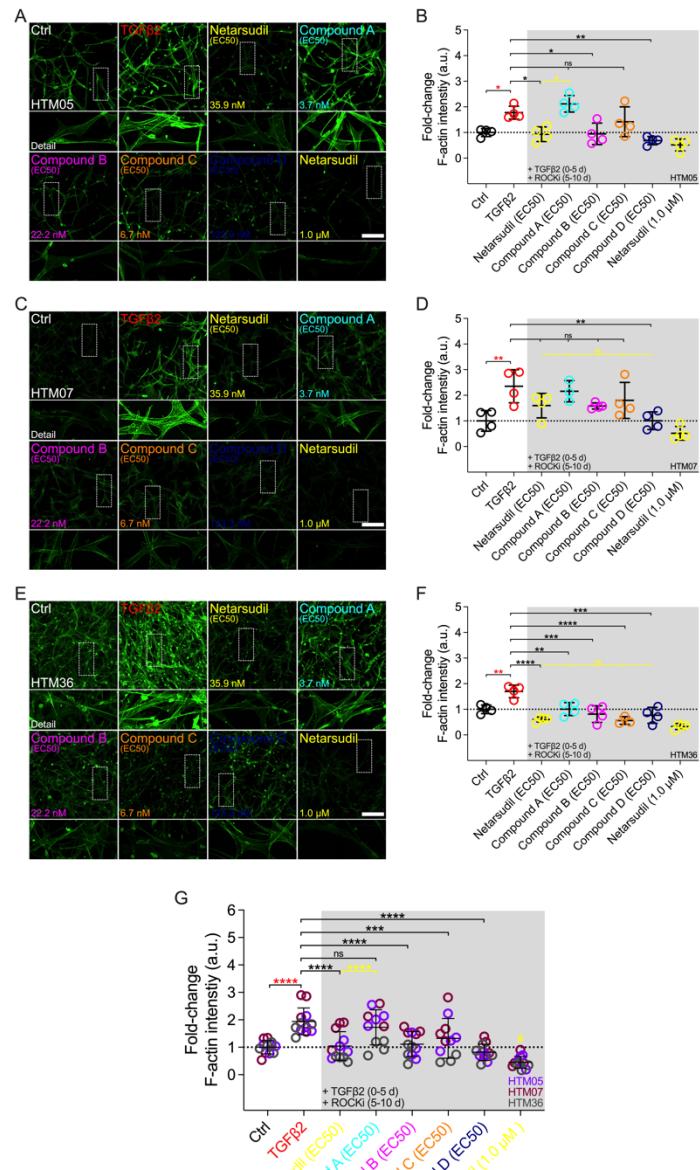
324 Together, these data show that the different netarsudil-family ROCKi treatments at tailored
325 EC₅₀-levels exhibit distinct signatures of rescuing pathologic HTM hydrogel contraction,
326 independent of the HTM cell strain used. The overall order of efficacy from highest to lowest was
327 as follows: netarsudil>compound B>compound D>compound C>compound A. Netarsudil at both
328 EC₅₀ and max levels outperformed the experimental compounds A-D, thereby validating its
329 clinical status in our soft tissue-mimetic 3D ECM hydrogel system.

330

331

332 **Fig. 4. Effects of netarsudil-family ROCKi treatment at EC $_{50}$ following TGF β 2-induction on**
 333 **HTM hydrogel contraction.** Representative brightfield micrographs of HTM hydrogels
 334 encapsulated with (A) HTM05, (C) HTM07, or (E) HTM36 subjected to the different treatments
 335 for 10 d, with max level netarsudil serving as reference control (dashed lines outline original
 336 construct size at 0 d). Scale bars, 1 mm. Construct size quantification of HTM hydrogels
 337 encapsulated with (B) HTM05, (D) HTM07, or (F) HTM36 (N = 3-8 replicates per group). (G)
 338 Construct size quantification of HTM hydrogels encapsulated with HTM05 (purple), HTM07
 339 (maroon), or HTM36 (gray). Data shown as Mean \pm SD with individual data points. Significance
 340 was determined by one- or two-way ANOVA using multiple comparisons tests (*p < 0.05,
 341 ***p < 0.001, ****p < 0.0001; ns = not significant; #p < 0.0001 vs. all other groups).
 342

343 ***Comparison of netarsudil-family ROCK inhibitors at EC₅₀ on reversing TGF β 2-induced HTM***
344 ***cell actin cytoskeletal remodeling.***

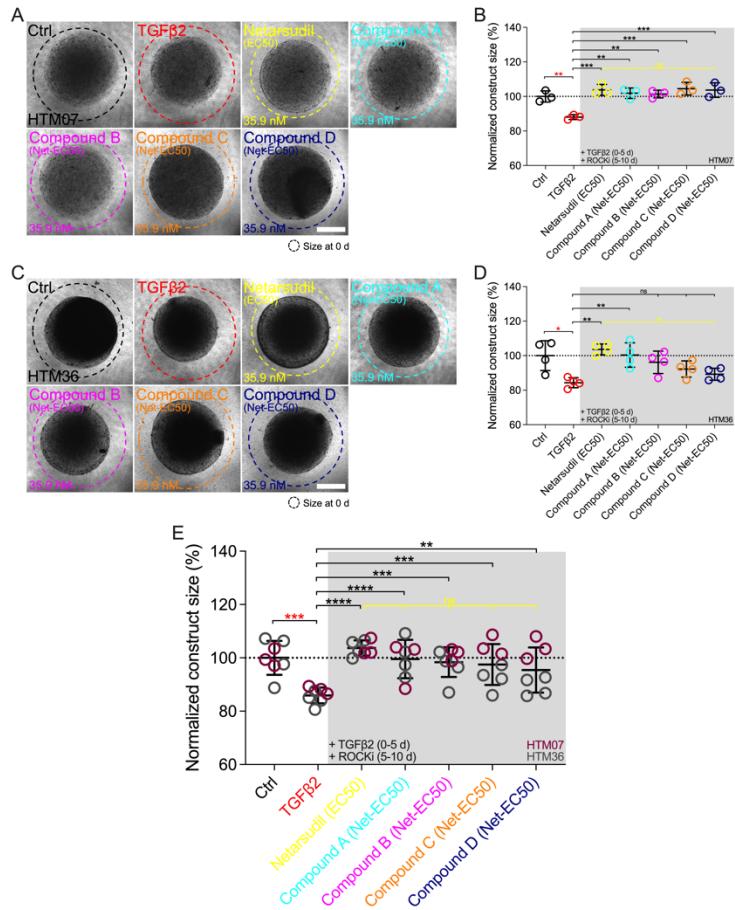

345 The actin cytoskeleton is the primary force-generating machinery, with filamentous (F)-
346 actin fiber arrangement directly affecting cell and tissue contraction (Svitkina, 2018). F-actin and
347 alpha smooth muscle actin (α SMA) fibers are involved in HTM cell contractility regulation, and
348 we have previously demonstrated that their abundance and organization is altered in hydrogel-
349 encapsulated HTM cells under simulated glaucomatous conditions (Li et al., 2021).

350 Therefore, we next investigated the efficacy of different netarsudil-family ROCKi
351 compounds at their respective EC₅₀ to reverse TGF β 2-induced HTM cell actin stress fiber
352 formation within 3D ECM hydrogels using the same three different cell strains. Treatment with
353 TGF β 2 significantly increased F-actin stress fiber formation/signal intensity compared to controls,
354 independent of the cell strain used (Fig. 5A-G). Netarsudil at 35.9 nM significantly decreased
355 TGF β 2-induced F-actin stress fibers using HTM05 (Fig. 5A,B) and HTM36 cells (Fig. 5E,F),
356 restoring baseline levels (Fig. 5G). Similar to the contraction data, this overall effect was
357 significantly less compared to netarsudil reference control at 1.0 μ M (=lowest values). Compound
358 A at 3.7 nM failed to reverse F-actin stress fibers compared to the TGF β 2 group using HTM05
359 (Fig. 5A,B) and HTM07 cells (Fig. 5C,D). While a significant reduction was noted using HTM36
360 (Fig. 5E,F), the overall response across cell strains was not different from TGF β 2 (Fig. 5G).
361 Compound B at 22.2 nM significantly decreased TGF β 2-induced F-actin stress fibers using
362 HTM05 (Fig. 5A,B) and HTM36 cells (Fig. 5E,F), reaching baseline levels, with the overall
363 rescuing effect comparable to netarsudil-EC₅₀ (Fig. 5G). Compound C at 6.7 nM failed to rescue
364 F-actin stress fibers compared to the TGF β 2 group using HTM05 (Fig. 5A,B) and HTM07 cells
365 (Fig. 5C,D). A significant reduction was noted using HTM36 (Fig. 5E,F), driving the overall

366 response across cell strains to be significantly different from TGF β 2 and equivalent to netarsudil-
367 EC₅₀ (**Fig. 5G**). Lastly, compound D at 123.3 nM significantly decreased TGF β 2-induced F-actin
368 stress fibers across all three HTM cell strains, with the overall rescuing effect being comparable
369 to netarsudil-EC₅₀ (**Fig. 5A-G**). Of note, while TGF β 2-treated HTM hydrogels showed
370 qualitatively increased α SMA stress fiber formation/signal intensity compared to controls, no
371 differences were noted across treatment groups for all HTM cell strains (**Suppl. Fig. 4**).

372 Together, these data show that irrespective of the HTM cell strain used the different
373 netarsudil-family ROCKi treatments at tailored EC₅₀-levels exhibit distinct effects of relaxing
374 pathologic F-actin stress fibers in ECM hydrogel-encapsulated cells. The overall order of efficacy
375 from highest to lowest was as follows: compound D>netarsudil>compound B>compound
376 C>compound A. Netarsudil performed similarly to compounds B-D, with max level netarsudil
377 nearly abolishing the F-actin signal.

378


379

380 **Fig. 5. Effects of netarsudil-family ROCKi treatment at EC₅₀ following TGF β 2-induction on**
 381 **HTM cell F-actin stress fibers within ECM hydrogels.** Representative confocal fluorescence
 382 micrographs of F-actin in HTM hydrogels encapsulated with (A) HTM05, (C) HTM07, or (E)
 383 HTM36 subjected to the different treatments for 10 d (F-actin = green). Scale bar, 200 μ m.
 384 Quantification of relative F-actin signal intensity in HTM hydrogels encapsulated with (B) HTM05,
 385 (D) HTM07, or (F) HTM36 (N = 4 replicates per group). (G) Pooled quantification of relative F-
 386 actin signal intensity in HTM hydrogels encapsulated with HTM05 (purple), HTM07 (maroon), or
 387 HTM36 (gray) (N = 4 replicates per group and HTM cell strain). Data shown as Mean \pm SD with
 388 individual data points. Significance was determined by one- or two-way ANOVA using multiple
 389 comparisons tests (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001; ns = not significant; #p<0.01
 390 vs. Ctrl, TGF β 2, netarsudil, and compounds A-C).
 391

392 ***Comparison of netarsudil-family ROCK inhibitors at equivalent netarsudil-EC₅₀ on reversing***
393 ***TGF β 2-induced HTM hydrogel contraction.***

394 To remove the potential confounder of variable ROCKi dosing, we compared the efficacy
395 of the different netarsudil-family compounds in rescuing TGF β 2-induced HTM hydrogel
396 contraction at a uniform ROCKi concentration of 35.9 nM, the determined netarsudil-EC₅₀, using
397 HTM07 (**Fig. 6A,B**) and HTM36 cells (**Fig. 6C,D**). Treatment with TGF β 2 significantly increased
398 HTM hydrogel contraction by ~15% over controls for both cell strains (**Fig. 6A-E**). This was
399 slightly less compared to earlier experiments, likely due to the necessity of using higher passage
400 cells in this experiment; this trend of overall reduced hydrogel contractility continued across all
401 treatment groups. As expected, netarsudil significantly decreased TGF β 2-induced HTM hydrogel
402 contraction, restoring baseline in both cell strains (**Fig. 6A-E**). For HTM07, compounds A-D
403 significantly decreased HTM hydrogel contraction compared to the TGF β 2 group reaching levels
404 equivalent to netarsudil (**Fig. 6A,B,E**). For HTM36, compound A at a ~10-fold higher dose than
405 earlier experiments significantly decreased TGF β 2-induced HTM hydrogel contraction, whereas
406 compounds B-D failed to rescue pathologic contraction (**Fig. 6C,D**). The overall response across
407 both HTM cell strains was that all ROCKi compounds significantly reversed TGF β 2-induced
408 HTM hydrogel contraction, with no differences noted between netarsudil and compounds A-D
409 (**Fig. 6E**).

410 Together, these data show that the different netarsudil-family ROCKi treatments at uniform
411 EC₅₀-levels lose their distinct signatures of rescuing pathologic HTM hydrogel contraction
412 independent of the HTM cell strain used. When tested at equimolar dosing, netarsudil performed
413 similarly to the compounds A-D, suggesting that subtle differences in experimental compound-
414 specific activities can be offset by matching their doses with the clinical drug.

415

416 **Fig. 6. Effects of netarsudil-family ROCKi treatment at uniform netarsudil-EC₅₀ following**
417 **TGF β 2-induction on HTM hydrogel contraction.** Representative brightfield micrographs of
418 HTM hydrogels encapsulated with (A) HTM07 or (C) HTM36 subjected to the different treatments
419 for 10 d (dashed lines outline original construct size at 0 d). Scale bars, 1 mm. Construct size
420 quantification of HTM hydrogels encapsulated with (B) HTM07 or (D) HTM36 (N = 3-4 replicates
421 per group). (E) Construct size quantification of HTM hydrogels encapsulated with HTM07
422 (maroon) or HTM36 (gray). Data shown as Mean \pm SD with individual data points. Significance
423 was determined by one- or two-way ANOVA using multiple comparisons tests (*p<0.05,
424 **p<0.01, ***p<0.001, ****p<0.0001; ns = not significant).

425

426 Discussion

427 *In vitro* studies of TM cell function are fundamentally hampered by conventional cell
428 culture systems. It is widely accepted that cells in 3D environments made of relevant ECM proteins
429 frequently show divergent behavior compared to 2D, highlighting the need for more accurate
430 tissue-mimetic TM model systems for drug screening purposes (Bhadriraju and Chen, 2002;

431 Edmondson et al., 2014). Our recently described HTM cell-encapsulated ECM hydrogel system
432 was engineered with this in mind (Li et al., 2021). The HTM hydrogel facilitates accurate and
433 reliable modeling of 3D cell-cell and cell-ECM interactions as seen in the juxtaganular region
434 of the native TM tissue, at a level not possible with other biomaterials-based models (for a recent
435 review see (Lamont et al., 2021)). Importantly, this can be accomplished under both normal and
436 simulated glaucomatous conditions (Li et al., 2021; Li et al., 2022a; Li et al., 2022b). We
437 previously demonstrated the bidirectional responsiveness of the HTM hydrogel to pathologic
438 TGF β 2 induction (Inatani et al., 2001) and ROCKi rescue using standard Y27632 (Rao et al., 2001)
439 for correlative analyses of TM cell cytoskeletal organization with tissue-level functional changes
440 (Li et al., 2021).

441 Therefore, the goal of the present study was to use our HTM hydrogel as screening platform
442 to investigate the effects of clinically-used netarsudil and different netarsudil-family experimental
443 ROCKi compounds on reversing TGF β 2-induced pathologic HTM cell contraction and actin stress
444 formation – both strongly associated with outflow dysfunction in glaucoma. Unlike other ocular
445 hypertension/glaucoma medications that do not specifically target the diseased outflow tract,
446 netarsudil directly addresses the TM outflow pathway. Its main mode of action is to increase
447 outflow via disassembly of TM cell ECM-focal adhesions as well as actin stress fibers, thereby
448 potently relaxing the stiffened tissue (Zhang et al., 2012; Wang and Chang, 2014; Sturdivant et al.,
449 2016; Rao et al., 2017; Lin et al., 2018; Tanna and Johnson, 2018). In addition to the clinically-
450 used netarsudil, two sets of experimental ROCKi compounds related to netarsudil were selected
451 and provided by Aerie Pharmaceuticals Inc. One set included two compounds that performed
452 similarly or better than netarsudil in Aerie's *in vitro* screening but did not perform as well in
453 intraocular pressure-lowering studies using normotensive Dutch Belted rabbits (unpublished data):

454 compounds A and C. The other set included two compounds that did not perform as well as
455 netarsudil both *in vitro* and *in vivo*: compound B and D.

456 First, we investigated the specific inhibitory activity of the different netarsudil-family
457 ROCKi compounds against ROCK1 and ROCK2 together with their ability to disrupt HTM cell
458 focal adhesions. Of note, these biochemical and cell-based activity assays were performed
459 independently in the laboratories of Aerie Pharmaceuticals. All ROCKi compounds exhibited
460 significant ROCK1/2 inhibitory activity, with the order of potency (K_i (average of ROCK1/2)) from
461 highest to lowest being: compound A (~1.4 nM) > compound C (~1.5 nM) > compound B (~1.9
462 nM) > netarsudil (~2.7 nM) > compound D (~3.1 nM). Similarly, the rank order of potency (IC_{50}) to
463 disrupt HTM cell focal adhesions was: compound C (~5.6 nM) > compound A (~15 nM) > netarsudil
464 (~17 nM) > compound D (~193 nM). Compound B was not directly tested; however, in a previous
465 experiment its racemate (i.e., 50% of compound B and 50% of its inactive enantiomer) was
466 assessed in the HTM cell focal adhesion assay showing an IC_{50} of ~42 nM (unpublished data).
467 With this information in mind, the expanded rank order would be: compound C > compound A
468 > netarsudil > compound B > compound D – clearly grouping compounds A and C in a similar range
469 as netarsudil, whereas compounds B and D overall would group below netarsudil. Collectively, all
470 netarsudil-family ROCKi were far more potent than Y27632 (K_i of ~31.5 nM; IC_{50} of ~1738 nM),
471 consistent with previous studies using the same biochemical and cell-based assays (Lin et al.,
472 2018). The differential responses observed with clinically-used netarsudil compared to
473 experimental compounds A-D likely stems from differences in compound structure/chemistry,
474 affecting cellular uptake and efficacy. Compound A was nearly identical to netarsudil in terms of
475 disrupting HTM cell focal adhesions but as its benzoic acid moiety is unsubstituted, it is more
476 quickly metabolized than netarsudil. The metabolism occurs when its ester linkage is hydrolyzed

477 by cellular esterases. In contrast, compounds B and C cannot be metabolized by cellular esterases
478 at all. And while compound D potently inhibited ROCK1/2 activity, it is partially ionized at
479 physiological pH and performed worst in the HTM cell focal adhesion assay. It is thought that this
480 ionization inhibits cellular penetration and thus decreases the compound's effectiveness in whole-
481 cell assays.

482 Next, we investigated the dose response behavior of the different netarsudil-family ROCKi
483 compounds in rescuing pathologic TGF β 2-induced HTM hydrogel contraction according to our
484 previously published protocol (Li et al., 2021). All ROCKi compounds exhibited potent
485 contraction-reversing effects on HTM cell-encapsulated ECM hydrogels upon glaucomatous
486 induction in a dose-dependent manner. The order of potency from highest to lowest was:
487 compound A (EC₅₀ of 3.7 nM)>compound C (6.7 nM)>compound B (22.2 nM)>netarsudil (35.9
488 nM)>compound D (123.3 nM). Strikingly, this precisely matched the compounds' independently
489 determined ROCK1/2 inhibitory activity profiles, which were made available to the masked study
490 team only after the completion of all hydrogel experiments to avoid unintentional bias. Importantly,
491 these data suggest that the HTM hydrogel contraction assay based on a robust glaucomatous
492 induction and rescue protocol facilitates accurate measurements of ROCKi potency in a tissue-
493 mimetic 3D ECM microenvironment. The subtle differences observed in the rank order of
494 netarsudil-family ROCKi potency between the HTM hydrogel contraction assay (for EC₅₀) and
495 the HTM cell focal adhesion disruption assay (for IC₅₀) could be explained by the differences in
496 cell source. While all hydrogel studies herein used primary HTM cells derived from healthy donors,
497 the focal adhesion assay relied on the SV40 TAg transformed HTM cell line TM-1 (Filla et al.,
498 2002; Liu et al., 2002).

499 We then directly compared the different netarsudil-family ROCKi compounds at their
500 respective EC₅₀ to assess the compounds' tailored efficacy in rescuing TGFβ2-induced HTM
501 hydrogel contraction and actin stress fiber formation within the 3D biopolymer network. First, the
502 different ROCKi treatments exhibited distinct signatures of reversing pathologic HTM hydrogel
503 contraction independent of the cell strain used. The overall order of efficacy from highest to lowest
504 was: netarsudil (relative hydrogel size vs. controls of ~120%; TGFβ2 at ~75%)>compound B
505 (~105%)>compound D (~96%)>compound C (~87%)>compound A (~78%). These findings were
506 somewhat unexpected as they did not match the rank order of the earlier dose response experiments.
507 The same ROCKi stock solutions were used to prepare the distinct EC₅₀-level treatments as single-
508 use aliquots to avoid potential freeze and thaw damage. Hence, there were no concerns of drug
509 degradation. However, it is possible that the aggressive two-step dilution for compounds A and C,
510 which performed worst in this experiment, from the original 1 mM stock to obtain the desired low
511 nanomolar doses may have contributed to drug instability in the organic solvent DMSO. All other
512 ROCKi compounds required only a one-step dilution to achieve the EC₅₀-level doses, lending
513 support for this potential explanation. Of note, these data are in line with Aerie's observation of
514 compounds A and C being unable to significantly lower intraocular pressure in studies using
515 normotensive Dutch Belted rabbits (unpublished data). A key take-away from these experiments
516 is that netarsudil at both EC₅₀ and maximum efficacy level outperformed the experimental ROCKi
517 compounds A-D, thereby validating its clinical status in our 3D TM hydrogel system. Second, the
518 different netarsudil-family ROCKi compounds exhibited distinct effects of relaxing pathologic F-
519 actin stress fibers in ECM hydrogel-encapsulated HTM cells. The order of overall efficacy from
520 highest to lowest was: compound D (relative F-actin signal fold-change vs. controls of ~0.8;
521 TGFβ2 at ~1.9)>netarsudil (~1.0)>compound B (~1.1)>compound C (~1.3)>compound A (~1.7).

522 Hence, the actin cytoskeletal remodeling data also revealed a complex pattern in which the most
523 potent compounds A and C according to their EC₅₀ were the worst performers here. Collectively,
524 these data showed that netarsudil and most/all other related experimental ROCKi compounds
525 potently rescued pathologic HTM hydrogel contraction and relaxed fibrotic-like F-actin stress
526 fibers, consistent with previous studies (Lin et al., 2018; Keller and Kopczynski, 2020).

527 Lastly, to eliminate the potential confounder of variable ROCKi dosing, we compared the
528 efficacy of the different netarsudil-family compounds in rescuing TGF β 2-induced HTM hydrogel
529 contraction at uniform netarsudil-EC₅₀-levels across treatment groups. To do so, the dosing of the
530 various compounds was adjusted as follows: compound A (~10-fold more), compound B (~1.6-
531 fold more), compound C (~5.3-fold more), and compound D (~3.4-fold less). When tested at
532 equimolar dosing, we observed that netarsudil performed similarly to the related experimental
533 ROCKi compounds A-D independent of the HTM cell strain used, suggesting that subtle
534 differences in compound-specific activities can be offset by matching their doses with the clinical
535 drug.

536 In conclusion, our data suggest that (i) netarsudil exhibits high potency to reverse
537 pathologic TM cell contraction and actin stress formation in a tissue-mimetic 3D ECM
538 microenvironment in support of its clinical use, and (ii) that our bioengineered hydrogel is a viable
539 screening platform to complement and expand conventional 2D monolayer cell cultures and
540 preclinical animal models in pursuit of furthering our understanding of TM cell pathobiology in
541 glaucoma.

542

543 **Data and materials availability**

544 All data needed to evaluate the conclusions in the paper are present in the paper and/or the
545 Supplementary Materials. Additional data related to this paper may be requested from the authors.

546

547 **Disclosure**

548 C.K., M.A.d.L., and C.C.K. are employees of and stockholders in Aerie Pharmaceuticals,
549 Inc. All other authors report no conflicts of interest.

550

551 **Funding**

552 This project was supported in part by a Syracuse University BioInspired Pilot Grant (to
553 S.H.), unrestricted grants to SUNY Upstate Medical University Department of Ophthalmology
554 and Visual Sciences from Research to Prevent Blindness (RPB) and from Lions Region 20-Y1 (to
555 S.H.), and a RPB Career Development Award (S.H.).

556

557 **Acknowledgments**

558 We thank Dr. Robert W. Weisenthal and the team at Specialty Surgery Center of Central
559 New York for providing corneal rim specimens. We also thank Dr. Nasim Annabi at the University
560 of California – Los Angeles for providing the KCTS-ELP, and Dr. Mariano S. Viapiano and the
561 Neuroscience Microscopy Core at Upstate Medical University for imaging support. **Author**
562 **contributions:** T.B., A.S., R.G., H.Y., C.K., M.A.d.L., C.C.K., and S.H. designed all experiments,
563 collected, analyzed, and interpreted the data. T.B. and S.H. wrote the manuscript. All authors
564 commented on and approved the final manuscript. S.H. conceived and supervised the research.

565 **References**

566 Abu-Hassan, D.W., Acott, T.S., and Kelley, M.J. (2014). The Trabecular Meshwork: A Basic
567 Review of Form and Function. *J Ocul Biol* 2, 9.

568 Acott, T.S., and Kelley, M.J. (2008). Extracellular matrix in the trabecular meshwork. *Exp Eye
569 Res* 86, 543-561.

570 Acott, T.S., Vranka, J.A., Keller, K.E., Raghunathan, V., and Kelley, M.J. (2021). Normal and
571 glaucomatous outflow regulation. *Prog Retin Eye Res* 82, 100897.

572 Agarwal, P., Daher, A.M., and Agarwal, R. (2015). Aqueous humor TGF- β 2 levels in patients
573 with open-angle glaucoma: A meta-analysis. *Molecular vision* 21, 612-620.

574 Beidoe, G., and Mousa, S.A. (2012). Current primary open-angle glaucoma treatments and future
575 directions. *Clin Ophthalmol* 6, 1699-1707.

576 Bhadriraju, K., and Chen, C.S. (2002). Engineering cellular microenvironments to improve cell-
577 based drug testing. *Drug Discov Today* 7, 612-620.

578 Caliari, S.R., and Burdick, J.A. (2016). A practical guide to hydrogels for cell culture. *Nat
579 Methods* 13, 405-414.

580 Dismuke, W.M., Liang, J., Overby, D.R., and Stamer, W.D. (2014). Concentration-related
581 effects of nitric oxide and endothelin-1 on human trabecular meshwork cell contractility.
582 *Exp Eye Res* 120, 28-35.

583 Edmondson, R., Broglie, J.J., Adcock, A.F., and Yang, L. (2014). Three-dimensional cell culture
584 systems and their applications in drug discovery and cell-based biosensors. *Assay Drug
585 Dev Technol* 12, 207-218.

586 Filla, M.S., Liu, X., Nguyen, T.D., Polansky, J.R., Brandt, C.R., Kaufman, P.L., and Peters,
587 D.M. (2002). In vitro localization of TIGR/MYOC in trabecular meshwork extracellular
588 matrix and binding to fibronectin. *Invest Ophthalmol Vis Sci* 43, 151-161.

589 Hann, C.R., and Fautsch, M.P. (2011). The elastin fiber system between and adjacent to collector
590 channels in the human juxtaganular tissue. *Invest Ophthalmol Vis Sci* 52, 45-50.

591 Inatani, M., Tanihara, H., Katsuta, H., Honjo, M., Kido, N., and Honda, Y. (2001). Transforming
592 growth factor-beta 2 levels in aqueous humor of glaucomatous eyes. *Graefes Arch Clin
593 Exp Ophthalmol* 239, 109-113.

594 Jensen, C., and Teng, Y. (2020). Is It Time to Start Transitioning From 2D to 3D Cell Culture?
595 *Front Mol Biosci* 7, 33.

596 Kazemi, A., McLaren, J.W., Kopczynski, C.C., Heah, T.G., Novack, G.D., and Sit, A.J. (2018).
597 The Effects of Netarsudil Ophthalmic Solution on Aqueous Humor Dynamics in a
598 Randomized Study in Humans. *J Ocul Pharmacol Ther* 34, 380-386.

599 Keller, K.E., and Acott, T.S. (2013). The Juxtacanalicular Region of Ocular Trabecular
600 Meshwork: A Tissue with a Unique Extracellular Matrix and Specialized Function. *J
601 Ocul Biol* 1, 3.

602 Keller, K.E., Bhattacharya, S.K., Borras, T., Brunner, T.M., Chansangpetch, S., Clark, A.F.,
603 Dismuke, W.M., Du, Y., Elliott, M.H., Ethier, C.R., Faralli, J.A., Freddo, T.F.,
604 Fuchshofer, R., Giovingo, M., Gong, H., Gonzalez, P., Huang, A., Johnstone, M.A.,
605 Kaufman, P.L., Kelley, M.J., Knepper, P.A., Kopczynski, C.C., Kuchtey, J.G., Kuchtey,
606 R.W., Kuehn, M.H., Lieberman, R.L., Lin, S.C., Liton, P., Liu, Y., Lutjen-Drecoll, E.,
607 Mao, W., Masis-Solano, M., Mcdonnell, F., Mcdowell, C.M., Overby, D.R.,
608 Pattabiraman, P.P., Raghunathan, V.K., Rao, P.V., Rhee, D.J., Chowdhury, U.R., Russell,
609 P., Samples, J.R., Schwartz, D., Stubbs, E.B., Tamm, E.R., Tan, J.C., Toris, C.B.,
610 Torrejon, K.Y., Vranka, J.A., Wirtz, M.K., Yorio, T., Zhang, J., Zode, G.S., Fautsch,
611 M.P., Peters, D.M., Acott, T.S., and Stamer, W.D. (2018). Consensus recommendations
612 for trabecular meshwork cell isolation, characterization and culture. *Exp Eye Res* 171,
613 164-173.

614 Keller, K.E., and Kopczynski, C. (2020). Effects of Netarsudil on Actin-Driven Cellular
615 Functions in Normal and Glaucomatous Trabecular Meshwork Cells: A Live Imaging
616 Study. *J Clin Med* 9.

617 Kelley, M.J., Rose, A.Y., Keller, K.E., Hessle, H., Samples, J.R., and Acott, T.S. (2009). Stem
618 cells in the trabecular meshwork: present and future promises. *Exp Eye Res* 88, 747-751.

619 Kwon, Y.H., Fingert, J.H., Kuehn, M.H., and Alward, W.L. (2009). Primary open-angle
620 glaucoma. *N Engl J Med* 360, 1113-1124.

621 Lamont, H.C., Masood, I., Grover, L.M., El Haj, A.J., and Hill, L.J. (2021). Fundamental
622 Biomaterial Considerations in the Development of a 3D Model Representative of Primary
623 Open Angle Glaucoma. *Bioengineering (Basel)* 8.

624 Li, G., Mukherjee, D., Navarro, I., Ashpole, N.E., Sherwood, J.M., Chang, J., Overby, D.R.,
625 Yuan, F., Gonzalez, P., Kopczynski, C.C., Farsiu, S., and Stamer, W.D. (2016).
626 Visualization of conventional outflow tissue responses to netarsudil in living mouse eyes.
627 *Eur J Pharmacol* 787, 20-31.

628 Li, H., Bague, T., Kirschner, A., Strat, A.N., Roberts, H., Weisenthal, R.W., Patteson, A.E.,
629 Annabi, N., Stamer, W.D., Ganapathy, P.S., and Herberg, S. (2021). A tissue-engineered
630 human trabecular meshwork hydrogel for advanced glaucoma disease modeling. *Exp Eye
631 Res* 205, 108472.

632 Li, H., Henty-Ridilla, J.L., Bernstein, A.M., Ganapathy, P.S., and Herberg, S. (2022a). TGFbeta2
633 regulates human trabecular meshwork cell contractility via ERK and ROCK pathways
634 with distinct signaling crosstalk dependent on the culture substrate. *Curr Eye Res*, 1-41.

635 Li, H., Raghunathan, V., Stamer, W.D., Ganapathy, P.S., and Herberg, S. (2022b). Extracellular
636 Matrix Stiffness and TGFbeta2 Regulate YAP/TAZ Activity in Human Trabecular
637 Meshwork Cells. *Front Cell Dev Biol* 10, 844342.

638 Lin, C.W., Sherman, B., Moore, L.A., Laethem, C.L., Lu, D.W., Pattabiraman, P.P., Rao, P.V.,
639 Delong, M.A., and Kopczynski, C.C. (2018). Discovery and Preclinical Development of
640 Netarsudil, a Novel Ocular Hypotensive Agent for the Treatment of Glaucoma. *J Ocul
641 Pharmacol Ther* 34, 40-51.

642 Liu, X., Huang, C.Y., Cai, S., Polansky, J.R., Kaufman, P.L., and Brandt, C.R. (2002).
643 Transformation of human trabecular meshwork cells with SV40 TAg alters promoter
644 utilization. *Curr Eye Res* 25, 347-353.

645 Overby, D.R., Stamer, W.D., and Johnson, M. (2009). The changing paradigm of outflow
646 resistance generation: towards synergistic models of the JCT and inner wall endothelium.
647 *Exp Eye Res* 88, 656-670.

648 Quigley, H.A. (1993). Open-angle glaucoma. *N Engl J Med* 328, 1097-1106.

649 Quigley, H.A., and Broman, A.T. (2006). The number of people with glaucoma worldwide in
650 2010 and 2020. *Br J Ophthalmol* 90, 262-267.

651 Rao, P.V., Deng, P.F., Kumar, J., and Epstein, D.L. (2001). Modulation of aqueous humor
652 outflow facility by the Rho kinase-specific inhibitor Y-27632. *Invest Ophthalmol Vis Sci*
653 42, 1029-1037.

654 Rao, P.V., Pattabiraman, P.P., and Kopczynski, C. (2017). Role of the Rho GTPase/Rho kinase
655 signaling pathway in pathogenesis and treatment of glaucoma: Bench to bedside research.
656 *Exp Eye Res* 158, 23-32.

657 Ren, R., Li, G., Le, T.D., Kopczynski, C., Stamer, W.D., and Gong, H. (2016). Netarsudil
658 Increases Outflow Facility in Human Eyes Through Multiple Mechanisms. *Invest
659 Ophthalmol Vis Sci* 57, 6197-6209.

660 Sit, A.J., Gupta, D., Kazemi, A., McKee, H., Challa, P., Liu, K.C., Lopez, J., Kopczynski, C., and
661 Heah, T. (2021). Netarsudil Improves Trabecular Outflow Facility in Patients with
662 Primary Open Angle Glaucoma or Ocular Hypertension: A Phase 2 Study. *Am J*
663 *Ophthalmol* 226, 262-269.

664 Stamer, W.D., and Acott, T.S. (2012). Current understanding of conventional outflow
665 dysfunction in glaucoma. *Curr Opin Ophthalmol* 23, 135-143.

666 Stamer, W.D., Seftor, R.E., Williams, S.K., Samaha, H.A., and Snyder, R.W. (1995). Isolation
667 and culture of human trabecular meshwork cells by extracellular matrix digestion. *Curr*
668 *Eye Res* 14, 611-617.

669 Sturdivant, J.M., Royalty, S.M., Lin, C.W., Moore, L.A., Yingling, J.D., Laethem, C.L.,
670 Sherman, B., Heintzelman, G.R., Kopczynski, C.C., and Delong, M.A. (2016). Discovery
671 of the ROCK inhibitor netarsudil for the treatment of open-angle glaucoma. *Bioorg Med*
672 *Chem Lett* 26, 2475-2480.

673 Svitkina, T. (2018). The Actin Cytoskeleton and Actin-Based Motility. *Cold Spring Harbor*
674 *perspectives in biology* 10, a018267.

675 Tamm, E.R. (2009). The trabecular meshwork outflow pathways: structural and functional
676 aspects. *Exp Eye Res* 88, 648-655.

677 Tamm, E.R., Braunger, B.M., and Fuchshofer, R. (2015). Intraocular Pressure and the
678 Mechanisms Involved in Resistance of the Aqueous Humor Flow in the Trabecular
679 Meshwork Outflow Pathways. *Prog Mol Biol Transl Sci* 134, 301-314.

680 Tanna, A.P., and Johnson, M. (2018). Rho Kinase Inhibitors as a Novel Treatment for Glaucoma
681 and Ocular Hypertension. *Ophthalmology* 125, 1741-1756.

682 Tham, Y.C., Li, X., Wong, T.Y., Quigley, H.A., Aung, T., and Cheng, C.Y. (2014). Global
683 prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic
684 review and meta-analysis. *Ophthalmology* 121, 2081-2090.

685 Wang, K., Read, A.T., Sulcik, T., and Ethier, C.R. (2017). Trabecular meshwork stiffness in
686 glaucoma. *Exp Eye Res* 158, 3-12.

687 Wang, R.F., Williamson, J.E., Kopczynski, C., and Serle, J.B. (2015). Effect of 0.04% AR-
688 13324, a ROCK, and norepinephrine transporter inhibitor, on aqueous humor dynamics in
689 normotensive monkey eyes. *J Glaucoma* 24, 51-54.

690 Wang, S.K., and Chang, R.T. (2014). An emerging treatment option for glaucoma: Rho kinase
691 inhibitors. *Clin Ophthalmol* 8, 883-890.

692 Weinreb, R.N., Aung, T., and Medeiros, F.A. (2014). The pathophysiology and treatment of
693 glaucoma: a review. *JAMA* 311, 1901-1911.

694 Zhang, K., Zhang, L., and Weinreb, R.N. (2012). Ophthalmic drug discovery: novel targets and
695 mechanisms for retinal diseases and glaucoma. *Nat Rev Drug Discov* 11, 541-559.

696 Zhang, Y.N., Avery, R.K., Vallmajó-Martin, Q., Assmann, A., Vegh, A., Memic, A., Olsen,
697 B.D., Annabi, N., and Khademhosseini, A. (2015). A Highly Elastic and Rapidly
698 Crosslinkable Elastin-Like Polypeptide-Based Hydrogel for Biomedical Applications.
699 *Adv Funct Mater* 25, 4814-4826.
700

701