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Abstract

Multi-cellular organism development involves orchestrated gene regulations of different cell types and
cell states. Single-cell RNA-Seq, enable simultaneous observation of cells in various states, making it
possible to study the underlying molecular mechanisms. However, most of the analytical methods do not
make full use of the dynamics captured. Here, we model single-cell RNA-seq data obtained from a
developmental process as a function of gene regulatory network using stochastic differential equations
(SDEs). Based on dynamical systems theory, we showed that pair-wise gene expression correlation
coefficients can accurately infer cell state transitions and validated it using mouse muscle cell
regeneration scRNA-seq data. We then applied our analytical framework to the PDAC (Pancreatic ductal
adenocarcinoma) mouse model scRNA-seq data. Through transition cells found in the pancreatic
preinvasive lesions scRNA-seq data, we can better explain the heterogeneity and predict distinct cell fate
even at early tumorigenesis stage. This suggests that the biomarkers identified by transition cells can be
potentially used for diagnosis, prognosis and therapeutics of diseases.

Introduction

During the development of multi-cell organisms, different cells make their own decisions to different cell
types and cell states. Understanding the underlying molecular mechanisms can deliver deeper insights on
physiology, morphology and etiology of diseases. Gene expression, a readout of the developmental
processes, opens a window to observe these fundamental molecular processes and construct models such
as gene regulatory networks (GRNs) to understand differentiations and fate decisions (Cardoso-Moreira
et al.,, 2020). By studying the differentially expressed genes (DEGs) at different stages of the
developmental processes, we can identify candidate biomarkers of the process, thus determining the
diagnostic signatures and therapeutic targets for diseases (Rodriguez-Esteban & Jiang, 2017).

Traditional ways comparing gene expressions using wet lab experiments leverage molecular biology tools
such as real-time quantitative PCR (qPCR). However, qPCR requires specific primers for genes of interest,
which limits the discovery power to candidate genes. With the emergence of high-throughput RNA
sequencing technique, we can unbiasedly investigate the expression profile of thousands of genes at the
same time. Yet, bulk RNA sequencing is only able to detect average expression levels of these genes from
cells in different states. The averaging smooth out heterogeneity among these cells, making it hard to
characterize the underlying dynamics, especially for state transitions. State transitions, required by
differentiation, dedifferentiation and transdifferentiation, play crucial roles in many developmental
processes, such as hematopoiesis and tissue regeneration, and can cause diseases if becoming
uncontrolled (Brackston et al., 2018; Mulas et al., 2021). Due to a lack of analytical tools, it remains
challenging to understand the full pictures of these transitions.
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Recently, single-cell RNA-seq has been widely used to study gene expressions of heterogeneous samples.
Its ability to measure cell-to-cell variations can reveal complex and rare cell populations, making it possible
to study dynamical transition processes (Hwang et al., 2018; Wang et al., 2019). Currently, however,
computational tools available for finding cellular states and state transitions are limited. The commonly
used methods cluster cells in lower dimensions produced by approaches such as PCA, t-SNE and UMAP,
and annotate each cluster based on well-established markers (Hwang et al., 2018). Yet, few reliable
markers exist for transition cells comparing to well-defined stable cells. Although trajectory-based
methods such as monocle and Slingshot order cells by pseudotime, assuming that state transitions
generate continuous expression profiles, they still cannot distinguish transition cells from cells in the
stable states, and extract clearsignals to characterize the transition processes (Zhou et al., 2021). While
Cellrank (Lange et al., 2022) and Mutrans (Zhou et al., 2021), defines macrostates and attractor basins to
separate stable cells and transition cells, rely on the cell-cell similarity without explaining the underlying
gene regulatory mechanisms, through, for example, constructing gene regulatory networks (GRNs)
(Hwang et al., 2018). Still lacking are systematic ways to discriminate and characterize transition cells from
stable cells.

In systems biology, differential equations are popular tools to describe the dynamical processes in living
cells. Differential equations typically model evolving gene expressions as rate functions of gene regulatory
relations. Model parameters can be interpreted as strength of regulations. After estimating parameters
through wet lab experiments or data fitting, we can potentially find numerical solutions and
stable/unstable states accordingly (loannis Stefanou & Jean Sulem, 2021). However, the approaches have
proven to be computationally complex and expensive and can only be applied to model systems involving
hundreds of genes. If we want to include more genes to describe the entire developmental processes, the
number of variables and parameters become very large, making it challenging for finding solutions and
further analysis (Daun et al., 2008; Kreutz, 2020). Instead of trying to decipher the whole regulatory
process and underlying regulators, here, we propose that Pearson’s correlation coefficients between gene
pairs can be used as the metrics to identify transition cells and understand molecular mechanisms during
developmental processes.

Results
Modeling gene expressions using SDEs

To model gene expressions as a function of GRNs, we used stochastic differential equations (SDEs)
depicting the developmental processes; where X denotes gene expression levels, f(X) a function of
regulatory relations, and aW,; the scaled Wiener process:

ax _

(1)
To simplify the model, we can linearize f (X) using Taylor’s expansion:
dx
P CX + oW;,.
(2)

By solving equation (2), the covariance matrix of X; can be written as:
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79 cov(Xe, Xp) = (eCtheCTth + fot ec(t_s)aeCT(t_s)aTds) — E(Xt)(E(Xt))T,
80 (3)

81  where Xy is the gene expression levels at the initial time point, while X; is the gene expression levels at
82 time t. We assume that most of cells captured by scRNA-seq are approximately equilibrium according to
83 Boltzmann distribution. Taking the derivative of the covariance matrix, we arrive at equation (4), the
84 continuous-time Lyapunov equation:

85 —acové):"xt) = Ccov(Xy, Xy) + cov(Xy, X)C" + aa” = 0.

86 (4)

87  According to Simon et al. (Freedman et al., 2022), one of the conclusions that can be drawn from equation
88 (4)is when a cellis in a transition state, its gene pair-wise Pearson’s correlation coefficients are more likely
89  to be close to *1. Briefly, the C matrix can be diagonalize into PAP~1, and equation (4) can be written as
90 AX+3AH +D =0, where = P‘IZ(PH)_l, D= P‘laaT(P”)_l. After plugging in the eigenvalues
91  and eigenvectors of matrix C, the covariance between gene j and j can be further simplified as in equation
92 (5):

-Dy, -D ,
93 =22 P (Tfllz) Pl ~ (7‘:1) PigPjq (if PigPjq # 0).
94 (5)

95  According to bifurcation theory (loannis Stefanou & Jean Sulem, 2021), all the eigenvalues of C should be
96  negative at stable states, while the maximum eigenvalue (1,) approaches 0, if the cell is transiting from a
97  stable state to an unstable state:

. . Xjj
98 /115210 Pij Al;r—r}o Xy T 1
99 (6)

100  Thus, by using simple metrics, Pearson’s correlation coefficients, we can relate gene expressions with
101  cellular behaviors and identify transition cells during developmental processes.

102
103  Validation using mouse muscle cell regeneration data

104  To validate our method, we applied our analysis framework to a mouse muscle cell regeneration scRNA-
105 seq data (McKellar et al., 2021), which contain stable cells and transition cells annotated by canonical
106  genes. Because of the small population size of transient cell states, McKellar et al. integrated 111 single-
107  cell RNA-seq datasets to study gene expression dynamics in muscle injury response. Due to the large
108 number of cells in the integrated dataset, we selected a subset of the datasets (Fig. 1a) to compare the
109 Pearson’s correlation coefficients between transition cells and stable cells. We calculated gene pair-wise
110 Pearson’s correlations and corresponding transition index for each cell as describe in Methods. We found
111 that the transition indices for cells in the transition state are significantly higher than cells in stable states
112 (Fig. 1b-c) (Wilcoxon test; p-value < 0.01).
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Fig. 1 Transition index defined according to the distribution of Pearson’s correlation coefficients can accurately
identify transition cells. a, A subset of integrated data was selected to validate our method’s capability in
identifying transition cells. b, UMAP colored by cell types annotated using canonical markers. ¢, UMAP colored by
transition index.

115  Transition cells in pancreatic preinvasive lesions

116 We next used our method to investigate the biological processes in pancreatic preinvasive lesions.
117 Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognoses but has the
118 potential to be cured if being diagnosed at very early stage (Pancreatic Cancer Prognosis | Johns Hopkins
119  Medicine, n.d.). Schlesinger et al. (Schlesinger et al., 2020) used mouse model to perform a time course
120  scRNA-Seq during the progression from preinvasive lesions to tumor formation, making it possible to
121  explore the early molecular processes giving rise to PDAC. Briefly, they used Ptfla-Cret?; Rosa26's-dTomato
122 mice as control and Kras+/LSL-G12D; Ptfla-Cret?; Rosa26tomate mice in the experimental group and
123 injected Tamoxifen to induce preinvasive lesions. Pancreas was collected at 6 time points (17 days, 6
124  weeks, 3 months, 5 months, 9 months, 15 months post-tamoxifen injection (PTI)) after the injection for
125  sequencing. Metaplastic cells were observed beginning at 3M post-injection (Fig. 2a). To study the
126  metaplastic cells during the disease progression, we calculated the eCDF (empirical Cumulative
127 Distribution Function) of the Pearson’s correlation coefficients at different time points (Fig. 2b). The
128  transition index is significantly different for cells at different time points (Wilcoxon test; p-value < 0.01).
129  We observed groups of cells in the early stage whose transition indices are higher than cells at the same
130  stage (Fig. 2c-d), which suggest that these were the transition cells during the tumorigenesis. To further
131  characterize transition cells and better understand their roles in the early events of preinvasive lesions,
132  we found DEGs of transition cells comparing to other cells at 3M PTI and did a gene set enrichment
133 analysis. Interestingly, transition cells at 3M PTI are heterogeneous and reflect different potential paths
134  of metaplastic cells (Fig. 2e). These paths include stomach-like metaplasia and becoming tumor cells,
135 which coincides with the observations at later time points (Ma et al., 2022).
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136  Wethen explored the process before the accumulation of pancreatic intraepithelial neoplasia (PanIN) that
137 can be observed through Hematoxylin and Eosin (H&E) staining. The transition index of control groups has
138 no significant difference with that of 17D PTI (Wilcoxon test; p-value=0.34) but not 6W PTI (Wilcoxon test;
139  p-value < 0.01). If we plot the eCDF of gene pair-wise Pearson’s correlation coefficients for each cell, we
140 can see there are two clusters of cells at 6W PTI, and the transition cells accumulate starting from 17D PTI
141 (Fig. 3b-d). We found 650 DEGs in total when comparing transition cells at 6W PTI to the control group,
142 where 491 of them are unique for transition cells. Among these 491 genes, many of them are in signaling
143 pathways reported to be deregulated during carcinogenesis (Reyes-Castellanos et al., 2020). And we also
144 found some genes such as CD47, a ‘don’t eat me signal’, and Sox4, identified to promote cancer
145 development, are upregulated in transition cells comparing to stable cells at 6W PTI. This also suggested
146  the cellular behaviors of transition cells are different from that of stable cells even at the same sample
147  collecting time point.
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Fig. 2 Transition cells reveal the heterogeneity of metaplastic cells even at very early stage. a, Study design of the public
data GSE141017. b, ECDF of gene pair-wise Pearson’s correlations of metaplastic cells at different time points. c, UMAP
colored by sample collected time points. d, UMAP colored by transition index. Red circles: high transition index at early
time points e, The enrichment analysis of DEGs found using transition cells comparing with baselines at 3M PTl indicates
distinct subpopulations of metaplastic cells at later time points.
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Fig. 3 The distribution of gene
pair-wise Pearson’s correlation
coefficients illustrates ADM
(Acinar  ductal metaplasia)
process through transition cells.
a-d, The distribution of gene
Pearson’s correlation are
different across early stages of
ADM process. The eCDF is
different both between groups
overall (a, black: control; blue:
17D PTI; red: 6W PTI) and within
groups (b, control, ¢, 17D and d,
6W PTI). e-f, UMAP plot of acinar
cells colored by e, transition index
f, sample collecting time. g,
Transition cells at 17D and 6W PTI
highlighted on the UMAP. h,
Number of DEGs found by
transition cells and all cells 6W PTI
comparing to the control group. i,
HALLMARK pathway enrichment
using 491 DEGs found only by
transition cells.

To further investigate how transition cells can help us understand the early events of PDAC, we select 17
transition cells whose gene expressions are clustered closer to most of the acinar cells in the control group
(Fig. 4a). Though there was no DEGs that could be found for these 17 transition cells when comparing the
mean expressions with the control group, the gene pair-wise Pearson’s correlations of 5 genes are
significantly increased in the transition cells (Wilcoxon test; p-value < 0.01). The expression level of these
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154  genes was quite low at early stage but were upregulated at later time points (Fig. 4c), suggesting the
155 potential capability of using genes found by transition cells as early diagnosis signals.
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Fig. 4 Transition cells and their corresponding significant genes at early stage of ADM phase can
indicate the expression level at later time points. a, Transition cells at early stage of ADM phase. b,
Significantly expressed genes found by Pearson’s correlation and mean expression when comparing
transition cells at 17D PTI and control. (Red: differentially expressed at 6W PTI) c, The expression level
of significant genes found by Pearson’s correlation.
156 Discussions
157  Single-cell RNA-seq enables a high-resolution measurement of the dynamics during developmental
158  processes. However, current analytical tools are deficient to study these dynamics and state transitions.
159 Here, we propose a metric based on gene pair-wise Pearson’s correlation coefficients to quantify the
160  transition cells and better understand the developmental processes. Transition cells are heterogenous
161  and can imply distinct cell fates. Transition state pancreatic metaplastic cells at 3M PTI indicate different
162  evolving directions of metaplastic cells. Moreover, transition cells identified by Pearson’s correlations
163 reflect the alteration of the gene regulations underlying comparing to cells in the stable states, thus can
164  give us opportunities to investigate the subtle changes during developmental processes. Taken together,
165  our study bridged together dynamics systems theory with single cell RNA-seq, proposed a simple metrics
166  and the analytical framework that can advance understanding molecular dynamics during both normal
167 and abnormal developmental processes, and can potentially be applied to diagnosis, prognosis and
168  therapeutics of diseases.
169  Methods
170  Single-cell RNA-seq datasets
171 Both mouse muscle cell regeneration and PDAC mouse model single-cell RNA-seq datasets were obtained
172 from previous publications. The PDAC dataset were downloaded through GEO Series accession number
173  GSE141017. And the mouse muscle cell regeneration dataset were downloaded at
174  https://datadryad.org/stash/dataset/doi:10.5061%2Fdryad.t4b8gtj34
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175  Cell type annotation

176 Cell types were determined based on the original publications. Briefly, PDAC dataset has the public
177  available metadata containing cluster numbers with cell barcodes. In the original publication, they
178 provided a relation between cell types and the cluster number. We annotated cells by mapping the cluster
179  number of each cell with the cell types according to the publication. Mouse muscle cell regeneration
180  dataset makes the cell type information available in public repositories. We annotate committed
181 progenitors and myoblasts as transition cells and others as stable cells according to the original publication
182 and canonical markers.

183 Analysis framework

184  The analysis framework was shown in Fig. 5. Briefly, single-cell RNA-seq data was normalized and scaled
185 using Seurat (v4.0.0). Meta cells were generated by combining nearest neighbors in PCA dimensions to
186  eliminate dropouts. Oscillating genes were removed using Oscope (v1.26.0) and top 100 most variable
187  genes were selected for calculating gene pair-wise Pearson’s correlation based on nearest 200 neighbors
188 in the PCA dimensions.

Gene selection

Data pre-processing Pitchfork bifurcation:
: eliminate oscillating genes . ; 1=
Capture the dynamics of B8 Blgz glg3 BI-8)
gene expression: sCRNA-seq 1 . Cell 1
PigPig#0, X =X, cre Py el
i select most variable genes
No constrain about X;>0:
Scaled log-normalize . Pearson’s correlation
l Cell selection
Eliminate dropout: generate each R;j should be
meta cell according to calculated based on the celln
nearest neighbors in PCA same/similar regulation
dimension relations: select nearest

neighbors in PCA dimension
for Pearson’s correlation
calculation

Fig. 5 Analysis framework. Meta cells are generated through normalized and scaled scRNA-seq by combining
their nearest neighbors to eliminate dropout issues. Most variable non-oscillating genes are selecting for
computing gene pair-wise Pearson’s correlations.

189 Transition index

190 Transition index was defined to quantify the possibility that a cell to be a transition cell according to the
191  distribution of gene pair-wise Pearson’s correlations of the cell. We first found the maximal difference of
192 eCDF of Pearson’s correlations between the reference group and group of interest, and then used the
193 percentage of gene pairs within this range as the transition index.

Yi(argmaxy(D)<|pi|<argminy (D))
Yilpilz0

194 transition index=
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