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Abstract 8 

Multi-cellular organism development involves orchestrated gene regulations of different cell types and 9 

cell states. Single-cell RNA-Seq, enable simultaneous observation of cells in various states, making it 10 

possible to study the underlying molecular mechanisms. However, most of the analytical methods do not 11 

make full use of the dynamics captured. Here, we model single-cell RNA-seq data obtained from a 12 

developmental process as a function of gene regulatory network using stochastic differential equations 13 

(SDEs). Based on dynamical systems theory, we showed that pair-wise gene expression correlation 14 

coefficients can accurately infer cell state transitions and validated it using mouse muscle cell 15 

regeneration scRNA-seq data. We then applied our analytical framework to the PDAC (Pancreatic ductal 16 

adenocarcinoma) mouse model scRNA-seq data. Through transition cells found in the pancreatic 17 

preinvasive lesions scRNA-seq data, we can better explain the heterogeneity and predict distinct cell fate 18 

even at early tumorigenesis stage. This suggests that the biomarkers identified by transition cells can be 19 

potentially used for diagnosis, prognosis and therapeutics of diseases.  20 

Introduction 21 

During the development of multi-cell organisms, different cells make their own decisions to different cell 22 

types and cell states. Understanding the underlying molecular mechanisms can deliver deeper insights on 23 

physiology, morphology and etiology of diseases. Gene expression, a readout of the developmental 24 

processes, opens a window to observe these fundamental molecular processes and construct models such 25 

as gene regulatory networks (GRNs) to understand differentiations and fate decisions (Cardoso-Moreira 26 

et al., 2020). By studying the differentially expressed genes (DEGs) at different stages of the 27 

developmental processes, we can identify candidate biomarkers of the process, thus determining the 28 

diagnostic signatures and therapeutic targets for diseases (Rodriguez-Esteban & Jiang, 2017). 29 

Traditional ways comparing gene expressions using wet lab experiments leverage molecular biology tools 30 

such as real-time quantitative PCR (qPCR). However, qPCR requires specific primers for genes of interest, 31 

which limits the discovery power to candidate genes. With the emergence of high-throughput RNA 32 

sequencing technique, we can unbiasedly investigate the expression profile of thousands of genes at the 33 

same time. Yet, bulk RNA sequencing is only able to detect average expression levels of these genes from 34 

cells in different states. The averaging smooth out heterogeneity among these cells, making it hard to 35 

characterize the underlying dynamics, especially for state transitions. State transitions, required by 36 

differentiation, dedifferentiation and transdifferentiation, play crucial roles in many developmental 37 

processes, such as hematopoiesis and tissue regeneration, and can cause diseases if becoming 38 

uncontrolled (Brackston et al., 2018; Mulas et al., 2021). Due to a lack of analytical tools, it remains 39 

challenging to understand the full pictures of these transitions. 40 
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Recently, single-cell RNA-seq has been widely used to study gene expressions of heterogeneous samples. 41 

Its ability to measure cell-to-cell variations can reveal complex and rare cell populations, making it possible 42 

to study dynamical transition processes (Hwang et al., 2018; Wang et al., 2019). Currently, however, 43 

computational tools available for finding cellular states and state transitions are limited. The commonly 44 

used methods cluster cells in lower dimensions produced by approaches such as PCA, t-SNE and UMAP, 45 

and annotate each cluster based on well-established markers (Hwang et al., 2018). Yet, few reliable 46 

markers exist for transition cells comparing to well-defined stable cells. Although trajectory-based 47 

methods such as monocle and Slingshot order cells by pseudotime, assuming that state transitions 48 

generate continuous expression profiles, they still cannot distinguish transition cells from cells in the 49 

stable states, and extract clearsignals to characterize the transition processes (Zhou et al., 2021). While 50 

Cellrank (Lange et al., 2022) and Mutrans (Zhou et al., 2021), defines macrostates and attractor basins to 51 

separate stable cells and transition cells, rely on the cell-cell similarity without explaining the underlying 52 

gene regulatory mechanisms, through, for example, constructing gene regulatory networks (GRNs) 53 

(Hwang et al., 2018). Still lacking are systematic ways to discriminate and characterize transition cells from 54 

stable cells.  55 

In systems biology, differential equations are popular tools to describe the dynamical processes in living 56 

cells. Differential equations typically model evolving gene expressions as rate functions of gene regulatory 57 

relations. Model parameters can be interpreted as strength of regulations. After estimating parameters 58 

through wet lab experiments or data fitting, we can potentially find numerical solutions and 59 

stable/unstable states accordingly (Ioannis Stefanou & Jean Sulem, 2021). However, the approaches have 60 

proven to be computationally complex and expensive and can only be applied to model systems involving 61 

hundreds of genes. If we want to include more genes to describe the entire developmental processes, the 62 

number of variables and parameters become very large, making it challenging for finding solutions and 63 

further analysis (Daun et al., 2008; Kreutz, 2020). Instead of trying to decipher the whole regulatory 64 

process and underlying regulators, here, we propose that Pearson’s correlation coefficients between gene 65 

pairs can be used as the metrics to identify transition cells and understand molecular mechanisms during 66 

developmental processes. 67 

Results 68 

Modeling gene expressions using SDEs 69 

To model gene expressions as a function of GRNs, we used stochastic differential equations (SDEs)  70 

depicting the developmental processes; where X denotes gene expression levels, 𝑓(𝑿) a function of 71 

regulatory relations, and 𝝈𝑊𝑡 the scaled Wiener process: 72 

𝑑𝑿

𝑑𝑡
= 𝑓(𝑿) + 𝝈𝑊𝑡. 73 

( 1 ) 74 

To simplify the model, we can linearize 𝑓(𝑿) using Taylor’s expansion: 75 

𝑑𝑿

𝑑𝑡
= 𝑪𝑿 + 𝝈𝑊𝑡. 76 

( 2 ) 77 

By solving equation (2), the covariance matrix of 𝑿𝒕 can be written as:  78 
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𝑐𝑜𝑣(𝑿𝒕, 𝑿𝒕) = (𝑒𝑪𝑡𝑿𝟎𝑒𝑪𝑇𝑡𝑿𝟎
𝑻 + ∫ 𝑒𝑪(𝑡−𝑠)𝝈𝑒𝑪𝑇(𝑡−𝑠)𝝈𝑇𝑑𝑠

𝑡

0
) − 𝐸(𝑿𝒕)(𝐸(𝑿𝒕))

𝑇
, 79 

( 3 ) 80 

where 𝑿𝟎 is the gene expression levels at the initial time point, while 𝑿𝒕 is the gene expression levels at 81 

time t. We assume that most of cells captured by scRNA-seq are approximately equilibrium according to 82 

Boltzmann distribution. Taking the derivative of the covariance matrix, we arrive at equation (4), the 83 

continuous-time Lyapunov equation: 84 

𝜕𝑐𝑜𝑣(𝑿𝒕,𝑿𝒕)

𝜕𝑡
= 𝑪𝑐𝑜𝑣(𝑿𝒕, 𝑿𝒕) + 𝑐𝑜𝑣(𝑿𝒕, 𝑿𝒕)𝑪𝑇 + 𝝈𝝈𝑻 = 0. 85 

( 4 ) 86 

According to Simon et al. (Freedman et al., 2022), one of the conclusions that can be drawn from equation 87 

(4) is when a cell is in a transition state, its gene pair-wise Pearson’s correlation coefficients are more likely 88 

to be close to ±1. Briefly, the C matrix can be diagonalize into 𝑷𝚲𝑷−𝟏, and equation (4) can be written as 89 

𝝀 𝚺̃ + 𝚺̃𝝀𝑯 + 𝑫̃ = 0, where 𝚺̃ = 𝑷−𝟏𝚺(𝑷𝑯)
−𝟏

,  𝑫̃ = 𝑷−𝟏𝝈𝝈𝑻(𝑷𝑯)
−𝟏

. After plugging in the eigenvalues 90 

and eigenvectors of matrix C, the covariance between gene i and j can be further simplified as in equation 91 

(5): 92 

𝚺𝑖𝑗 = ∑ ∑ 𝑷𝑖𝑘 (
−𝑫𝑘𝑙

̃

𝜆𝑘+𝜆𝑙
) 𝑷𝑙𝑗

𝐻
𝑙 ≈ (

−𝑫𝑑𝑑̃

2𝜆𝑑
) 𝑷𝑖𝑑𝑷𝑗𝑑𝑘  (𝑖𝑓 𝑷𝑖𝑑𝑷𝑗𝑑 ≠ 0). 93 

( 5 ) 94 

According to bifurcation theory (Ioannis Stefanou & Jean Sulem, 2021), all the eigenvalues of C should be 95 

negative at stable states, while the maximum eigenvalue (𝜆𝑑) approaches 0, if the cell is transiting from a 96 

stable state to an unstable state: 97 

lim
𝜆𝑑→0

𝝆𝑖𝑗 = lim
𝜆𝑑→0

𝚺𝑖𝑗

√𝚺𝑖𝑖𝚺𝑗𝑗
= ±1. 98 

( 6 ) 99 

Thus, by using simple metrics, Pearson’s correlation coefficients, we can relate gene expressions with 100 

cellular behaviors and identify transition cells during developmental processes. 101 

 102 

Validation using mouse muscle cell regeneration data 103 

To validate our method, we applied our analysis framework to a mouse muscle cell regeneration scRNA-104 

seq data (McKellar et al., 2021), which contain stable cells and transition cells annotated by canonical 105 

genes. Because of the small population size of transient cell states, McKellar et al. integrated 111 single-106 

cell RNA-seq datasets to study gene expression dynamics in muscle injury response. Due to the large 107 

number of cells in the integrated dataset, we selected a subset of the datasets (Fig. 1a) to compare the 108 

Pearson’s correlation coefficients between transition cells and stable cells. We calculated gene pair-wise 109 

Pearson’s correlations and corresponding transition index for each cell as describe in Methods. We found 110 

that the transition indices for cells in the transition state are significantly higher than cells in stable states 111 

(Fig. 1b-c) (Wilcoxon test; p-value < 0.01).  112 
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  113 

 114 

Transition cells in pancreatic preinvasive lesions 115 

We next used our method to investigate the biological processes in pancreatic preinvasive lesions. 116 

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognoses but has the 117 

potential to be cured if being diagnosed at very early stage (Pancreatic Cancer Prognosis | Johns Hopkins 118 

Medicine, n.d.). Schlesinger et al. (Schlesinger et al., 2020) used mouse model to perform a time course 119 

scRNA-Seq during the progression from preinvasive lesions to tumor formation, making it possible to 120 

explore the early molecular processes giving rise to PDAC. Briefly, they used Ptf1a-CreER; Rosa26LSL-tdTomato 121 

mice as control and Kras+/LSL-G12D; Ptf1a-CreER; Rosa26LSL-tdTomato mice in the experimental group and 122 

injected Tamoxifen to induce preinvasive lesions. Pancreas was collected at 6 time points (17 days, 6 123 

weeks, 3 months, 5 months, 9 months, 15 months post-tamoxifen injection (PTI)) after the injection for 124 

sequencing. Metaplastic cells were observed beginning at 3M post-injection (Fig. 2a). To study the 125 

metaplastic cells during the disease progression, we calculated the eCDF (empirical Cumulative 126 

Distribution Function) of the Pearson’s correlation coefficients at different time points (Fig. 2b). The 127 

transition index is significantly different for cells at different time points (Wilcoxon test; p-value < 0.01). 128 

We observed groups of cells in the early stage whose transition indices are higher than cells at the same 129 

stage (Fig. 2c-d), which suggest that these were the transition cells during the tumorigenesis. To further 130 

characterize transition cells and better understand their roles in the early events of preinvasive lesions, 131 

we found DEGs of transition cells comparing to other cells at 3M PTI and did a gene set enrichment 132 

analysis. Interestingly, transition cells at 3M PTI are heterogeneous and reflect different potential paths 133 

of metaplastic cells (Fig. 2e). These paths include stomach-like metaplasia and becoming tumor cells, 134 

which coincides with the observations at later time points (Ma et al., 2022).  135 

Fig. 1 Transition index defined according to the distribution of Pearson’s correlation coefficients can accurately 
identify transition cells. a, A subset of integrated data was selected to validate our method’s capability in 
identifying transition cells. b, UMAP colored by cell types annotated using canonical markers. c, UMAP colored by 
transition index. 
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We then explored the process before the accumulation of pancreatic intraepithelial neoplasia (PanIN) that 136 

can be observed through Hematoxylin and Eosin (H&E) staining. The transition index of control groups has 137 

no significant difference with that of 17D PTI (Wilcoxon test; p-value=0.34) but not 6W PTI (Wilcoxon test; 138 

p-value < 0.01). If we plot the eCDF of gene pair-wise Pearson’s correlation coefficients for each cell, we 139 

can see there are two clusters of cells at 6W PTI, and the transition cells accumulate starting from 17D PTI 140 

(Fig. 3b-d). We found 650 DEGs in total when comparing transition cells at 6W PTI to the control group, 141 

where 491 of them are unique for transition cells. Among these 491 genes, many of them are in signaling 142 

pathways reported to be deregulated during carcinogenesis (Reyes-Castellanos et al., 2020). And we also 143 

found some genes such as CD47, a ‘don’t eat me signal’, and Sox4, identified to promote cancer 144 

development, are upregulated in transition cells comparing to stable cells at 6W PTI. This also suggested 145 

the cellular behaviors of transition cells are different from that of stable cells even at the same sample 146 

collecting time point. 147 

Fig. 2 Transition cells reveal the heterogeneity of metaplastic cells even at very early stage. a, Study design of the public 
data GSE141017. b, ECDF of gene pair-wise Pearson’s correlations of metaplastic cells at different time points. c, UMAP 
colored by sample collected time points. d, UMAP colored by transition index. Red circles: high transition index at early 
time points e, The enrichment analysis of DEGs found using transition cells comparing with baselines at 3M PTI indicates 
distinct subpopulations of metaplastic cells at later time points. 
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 148 

To further investigate how transition cells can help us understand the early events of PDAC, we select 17 149 

transition cells whose gene expressions are clustered closer to most of the acinar cells in the control group 150 

(Fig. 4a). Though there was no DEGs that could be found for these 17 transition cells when comparing the 151 

mean expressions with the control group, the gene pair-wise Pearson’s correlations of 5 genes are 152 

significantly increased in the transition cells (Wilcoxon test; p-value < 0.01). The expression level of these 153 

Fig. 3 The distribution of gene 
pair-wise Pearson’s correlation 
coefficients illustrates ADM 
(Acinar ductal metaplasia) 
process through transition cells. 
a-d, The distribution of gene 
Pearson’s correlation are 
different across early stages of 
ADM process. The eCDF is 
different both between groups 
overall (a, black: control; blue: 
17D PTI; red: 6W PTI) and within 
groups (b, control, c, 17D and d, 
6W PTI). e-f, UMAP plot of acinar 
cells colored by e, transition index 
f, sample collecting time. g, 
Transition cells at 17D and 6W PTI 
highlighted on the UMAP. h, 
Number of DEGs found by 
transition cells and all cells 6W PTI 
comparing to the control group. i, 
HALLMARK pathway enrichment 
using 491 DEGs found only by 
transition cells. 
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genes was quite low at early stage but were upregulated at later time points (Fig. 4c), suggesting the 154 

potential capability of using genes found by transition cells as early diagnosis signals.  155 

Discussions 156 

Single-cell RNA-seq enables a high-resolution measurement of the dynamics during developmental 157 

processes. However, current analytical tools are deficient to study these dynamics and state transitions. 158 

Here, we propose a metric based on gene pair-wise Pearson’s correlation coefficients to quantify the 159 

transition cells and better understand the developmental processes. Transition cells are heterogenous 160 

and can imply distinct cell fates. Transition state pancreatic metaplastic cells at 3M PTI indicate different 161 

evolving directions of metaplastic cells. Moreover, transition cells identified by Pearson’s correlations 162 

reflect the alteration of the gene regulations underlying comparing to cells in the stable states, thus can 163 

give us opportunities to investigate the subtle changes during developmental processes. Taken together, 164 

our study bridged together dynamics systems theory with single cell RNA-seq, proposed a simple metrics 165 

and the analytical framework that can advance understanding molecular dynamics during both normal 166 

and abnormal developmental processes, and can potentially be applied to diagnosis, prognosis and 167 

therapeutics of diseases.   168 

Methods 169 

Single-cell RNA-seq datasets 170 

Both mouse muscle cell regeneration and PDAC mouse model single-cell RNA-seq datasets were obtained 171 

from previous publications. The PDAC dataset were downloaded through GEO Series accession number 172 

GSE141017. And the mouse muscle cell regeneration dataset were downloaded at 173 

https://datadryad.org/stash/dataset/doi:10.5061%2Fdryad.t4b8gtj34  174 

Fig. 4 Transition cells and their corresponding significant genes at early stage of ADM phase can 
indicate the expression level at later time points. a, Transition cells at early stage of ADM phase. b, 
Significantly expressed genes found by Pearson’s correlation and mean expression when comparing 
transition cells at 17D PTI and control. (Red: differentially expressed at 6W PTI) c, The expression level 
of significant genes found by Pearson’s correlation. 
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Cell type annotation 175 

Cell types were determined based on the original publications. Briefly, PDAC dataset has the public 176 

available metadata containing cluster numbers with cell barcodes. In the original publication, they 177 

provided a relation between cell types and the cluster number. We annotated cells by mapping the cluster 178 

number of each cell with the cell types according to the publication. Mouse muscle cell regeneration 179 

dataset makes the cell type information available in public repositories. We annotate committed 180 

progenitors and myoblasts as transition cells and others as stable cells according to the original publication 181 

and canonical markers.  182 

Analysis framework 183 

The analysis framework was shown in Fig. 5. Briefly, single-cell RNA-seq data was normalized and scaled 184 

using Seurat (v4.0.0). Meta cells were generated by combining nearest neighbors in PCA dimensions to 185 

eliminate dropouts. Oscillating genes were removed using Oscope (v1.26.0) and top 100 most variable 186 

genes were selected for calculating gene pair-wise Pearson’s correlation based on nearest 200 neighbors 187 

in the PCA dimensions.  188 

Transition index 189 

Transition index was defined to quantify the possibility that a cell to be a transition cell according to the 190 

distribution of gene pair-wise Pearson’s correlations of the cell. We first found the maximal difference of 191 

eCDF of Pearson’s correlations between the reference group and group of interest, and then used the 192 

percentage of gene pairs within this range as the transition index. 193 

transition index=
∑ (𝑎𝑟𝑔𝑚𝑎𝑥𝑥(𝐷)<|𝜌𝑖|<𝑎𝑟𝑔𝑚𝑖𝑛𝑥(𝐷))𝑖

∑ |𝜌𝑖|≥0𝑖
 194 

Reference 195 

Fig. 5 Analysis framework. Meta cells are generated through normalized and scaled scRNA-seq by combining 

their nearest neighbors to eliminate dropout issues. Most variable non-oscillating genes are selecting for 

computing gene pair-wise Pearson’s correlations. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.18.492572doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492572
http://creativecommons.org/licenses/by-nc-nd/4.0/


Brackston, R. D., Lakatos, E., & Stumpf, M. P. H. (2018). Transition state characteristics during cell differentiation. 196 
PLoS Computational Biology, 14(9). https://doi.org/10.1371/JOURNAL.PCBI.1006405 197 

Cardoso-Moreira, M., Sarropoulos, I., Velten, B., Mort, M., Cooper, D. N., Huber, W., & Kaessmann, H. (2020). 198 
Developmental Gene Expression Differences between Humans and Mammalian Models. Cell Reports, 33(4), 199 
108308. https://doi.org/10.1016/J.CELREP.2020.108308 200 

Daun, S., Rubin, J., Vodovotz, Y., & Clermont, G. (2008). EQUATION-BASED MODELS OF DYNAMIC BIOLOGICAL 201 
SYSTEMS. Journal of Critical Care, 23(4), 585. https://doi.org/10.1016/J.JCRC.2008.02.003 202 

Freedman, S. L., Xu, B., Goyal, S., & Mani, M. (2022). A dynamical systems treatment of transcriptomic trajectories 203 
in hematopoiesis. BioRxiv, 2021.05.03.442465. https://doi.org/10.1101/2021.05.03.442465 204 

Hwang, B., Lee, J. H., & Bang, D. (2018). Single-cell RNA sequencing technologies and bioinformatics pipelines. 205 
Experimental & Molecular Medicine 2018 50:8, 50(8), 1–14. https://doi.org/10.1038/s12276-018-0071-8 206 

Ioannis Stefanou, & Jean Sulem. (2021). Instabilities Modeling in Geomechanics. In John Wiley & Sons. 207 
https://books.google.com/books?hl=en&lr=&id=q_ArEAAAQBAJ&oi=fnd&pg=PA31&dq=bifurcation+theory+ode&o208 
ts=Cj5baFqsmB&sig=euCeZG3KtPbQ4czzXqt4ZSmvUuQ#v=onepage&q=bifurcation%20theory%20ode&f=false 209 

Kreutz, C. (2020). A New Approximation Approach for Transient Differential Equation Models. Frontiers in Physics, 210 
0, 70. https://doi.org/10.3389/FPHY.2020.00070 211 

Lange, M., Bergen, V., Klein, M., Setty, M., Reuter, B., Bakhti, M., Lickert, H., Ansari, M., Schniering, J., Schiller, H. 212 
B., Pe’er, D., & Theis, F. J. (2022). CellRank for directed single-cell fate mapping. Nature Methods 2022 19:2, 19(2), 213 
159–170. https://doi.org/10.1038/s41592-021-01346-6 214 

Ma, Z., Lytle, N. K., Chen, B., Jyotsana, N., Novak, S. W., Cho, C. J., Caplan, L., Ben-Levy, O., Neininger, A. C., 215 
Burnette, D. T., Trinh, V. Q., Tan, M. C. B., Patterson, E. A., Arrojo e Drigo, R., Giraddi, R. R., Ramos, C., Means, A. L., 216 
Matsumoto, I., Manor, U., … DelGiorno, K. E. (2022). Single-Cell Transcriptomics Reveals a Conserved Metaplasia 217 
Program in Pancreatic Injury. Gastroenterology, 162(2), 604-620.e20. 218 
https://doi.org/10.1053/J.GASTRO.2021.10.027/ATTACHMENT/2564CDDB-D03F-4EAD-8CF2-219 
C61526A942AB/MMC8.MP4 220 

McKellar, D. W., Walter, L. D., Song, L. T., Mantri, M., Wang, M. F. Z., de Vlaminck, I., & Cosgrove, B. D. (2021). 221 
Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal 222 
muscle regeneration. Communications Biology 2021 4:1, 4(1), 1–12. https://doi.org/10.1038/s42003-021-02810-x 223 

Mulas, C., Chaigne, A., Smith, A., & Chalut, K. J. (2021). Cell state transitions: definitions and challenges. 224 
Development (Cambridge), 148(20). https://doi.org/10.1242/DEV.199950/272516 225 

Pancreatic Cancer Prognosis | Johns Hopkins Medicine. (n.d.). Retrieved May 11, 2022, from 226 
https://www.hopkinsmedicine.org/health/conditions-and-diseases/pancreatic-cancer/pancreatic-cancer-prognosis 227 

Reyes-Castellanos, G., Masoud, R., & Carrier, A. (2020). Mitochondrial Metabolism in PDAC: From Better 228 
Knowledge to New Targeting Strategies. Biomedicines 2020, Vol. 8, Page 270, 8(8), 270. 229 
https://doi.org/10.3390/BIOMEDICINES8080270 230 

Rodriguez-Esteban, R., & Jiang, X. (2017). Differential gene expression in disease: A comparison between high-231 
throughput studies and the literature. BMC Medical Genomics, 10(1), 1–10. https://doi.org/10.1186/S12920-017-232 
0293-Y/FIGURES/6 233 

Schlesinger, Y., Yosefov-Levi, O., Kolodkin-Gal, D., Granit, R. Z., Peters, L., Kalifa, R., Xia, L., Nasereddin, A., Shiff, I., 234 
Amran, O., Nevo, Y., Elgavish, S., Atlan, K., Zamir, G., & Parnas, O. (2020). Single-cell transcriptomes of pancreatic 235 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.18.492572doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492572
http://creativecommons.org/licenses/by-nc-nd/4.0/


preinvasive lesions and cancer reveal acinar metaplastic cells’ heterogeneity. Nature Communications 2020 11:1, 236 
11(1), 1–18. https://doi.org/10.1038/s41467-020-18207-z 237 

Wang, Z., Feng, X., & Li, S. C. (2019). SCDevDB: A database for insights into single-cell gene expression profiles 238 
during human developmental processes. Frontiers in Genetics, 10(SEP), 903. 239 
https://doi.org/10.3389/FGENE.2019.00903/BIBTEX 240 

Zhou, P., Wang, S., Li, T., & Nie, Q. (2021). Dissecting transition cells from single-cell transcriptome data through 241 
multiscale stochastic dynamics. Nature Communications 2021 12:1, 12(1), 1–15. https://doi.org/10.1038/s41467-242 
021-25548-w 243 

 244 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.18.492572doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492572
http://creativecommons.org/licenses/by-nc-nd/4.0/

