

1 **Title:** Modeling clonal evolution and oncogenic dependency *in vivo* in the context of
2 hematopoietic transformation

3 **Authors:** Robert L. Bowman¹, Andrew Dunbar^{1,2}, Tanmay Mishra¹, Wenbin Xiao^{1,3}, Michael R.
4 Waarts^{1,4}, Inés Fernández Maestre^{1,4}, Shira E. Eisman¹, Louise Cai¹, Sheng F. Cai^{1,2}, Pablo Sanchez
5 Vela¹, Shoron Mowlia¹, Anthony R. Martinez Benitez¹, Young Park¹, Isabelle S. Csete¹, Aishwarya
6 Krishnan¹, Darren Lee¹, Nayla Boorady¹, Chad R. Potts⁵, Matthew T. Jenkins⁵, Martin P. Carroll⁶,
7 Sara E. Meyer⁷, Linde A. Miles¹, P. Brent Ferrell, Jr.⁴, Jennifer J. Trowbridge⁸, and Ross L.
8 Levine^{1*}

9 **Affiliations:**

10 ¹Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New
11 York, NY, USA.

12 ²Leukemia Service, Department of Medicine and Center for Hematologic Malignancies,
13 Memorial Sloan Kettering Cancer Center, New York, 10065 NY, USA.

14 ³Department of Pathology, Memorial Sloan Kettering Cancer Center; New York, NY, USA.

15 ⁴Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering
16 Cancer Center, New York, NY, USA.

17 ⁵Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center; Nashville, TN, USA.

18 ⁶Department of Medicine, Perelman Cancer Center, University of Pennsylvania, Philadelphia,
19 PA, USA

20 ⁷Department of Cancer Biology, Thomas Jefferson University, Sidney Kimmel Cancer Center,
21 Philadelphia, PA, USA

22 ⁸The Jackson Laboratory, Bar Harbor; ME, USA.

23 ***Corresponding Author:** Dr. Ross Levine

24 E-mail: leviner@mskcc.org

25 Phone: 646-888-2747

26 Fax: 646-422-0890

27 **Summary:**

28 Cancer evolution is a multifaceted process involving the acquisition of somatic mutations and
29 progressive epigenetic dysregulation of cellular fate. Both cell-intrinsic mechanisms and
30 environmental interactions provide selective pressures capable of promoting clonal evolution and
31 expansion, with single-cell and bulk DNA sequencing offering increased resolution into this
32 process¹⁻⁴. Advances in genome editing, single-cell biology and expressed lentiviral barcoding
33 have enabled new insights into how transcriptional/epigenetic states change with clonal
34 evolution^{5,6}. Despite the extensive catalog of genomic alterations revealed by resequencing
35 studies^{7,8}, there remain limited means to functionally model and perturb this evolutionary process
36 in experimental systems⁹. Here we integrated multi-recombinase (Cre, Flp, and Dre) tools for
37 modeling reversible, sequential mutagenesis from premalignant clonal hematopoiesis to acute
38 myeloid leukemia. We demonstrate that somatic acquisition of *Flt3* activating mutations elicits
39 distinct phases of acute and chronic activation resulting in differential cooperativity with *Npm1*
40 and *Dnmt3a* disease alleles. We next developed a generalizable allelic framework allowing for the
41 reversal of oncogenic mutations at their endogenous loci. We found that reversal of
42 mutant *Flt3* resulted in rapid leukemic regression with distinct alterations in cellular compartments
43 depending upon co-occurring mutations. These studies provide a path to model sequential
44 mutagenesis and deterministically investigate mechanisms of transformation and oncogenic
45 dependency in the context of clonal evolution.

46 **MAIN:**

47 Gene discovery and genomic landscape studies have elucidated a spectrum of somatic mutations
48 in human cancers, with progressive changes in clonal fitness through iterative cycles of selection,
49 expansion, and stochastic drift^{4,10}. Large scale studies on clinical isolates have observed
50 intratumoral heterogeneity through spatially/temporally separated sampling¹¹⁻¹³ or through targeted
51 single-cell DNA-sequencing studies^{2,3}. In myeloid malignancies, mutations in epigenetic modifiers
52 (e.g. *DNMT3A*, *TET2*) have been identified as subclonal, low variant allele frequency (VAF)
53 events in the blood of healthy individuals in premalignant clonal hematopoiesis (CH) and as clonal
54 events in leukemia. Despite a paucity of *FLT3* mutations in CH, the receptor tyrosine kinase *FLT3*
55 is the most commonly mutated gene in acute myeloid leukemia (AML) often presenting as a
56 relatively late hit in leukemic evolution. Patients harboring the triplet of *DNMT3A*, *NPM1* and
57 *FLT3* mutations suffer a dismal prognosis⁷ and represent a genetic archetype for the transition from
58 premalignant CH to transformed AML. Our understanding of the processes underlying this
59 evolution is limited by a lack of deterministic experimental systems to evaluate the consequences
60 of sequential mutational acquisition *in vivo*.

61 Experimental systems have largely relied upon ectopic overexpression models, Cre-Lox
62 technology¹⁴, and the increasing use of CRISPR/CAS9 genome editing in different species¹⁵⁻¹⁸.
63 Questions regarding sequential mutagenesis and contextual cooperativity are not adequately
64 addressed by these existing systems, particularly for mutant *FLT3*¹⁹ where internal tandem
65 duplication (ITD) mutations occur late in leukemic transformation yet have not been investigated
66 when acquired subsequent to other leukemia disease alleles. Here we model stepwise clonal
67 evolution in myeloid malignancy by integrating new and existing tools centered on the orthogonal
68 DNA recombinases Cre, Dre, and Flp (**Extended Data Fig. 1a**). We developed inducible models
69 of *Flt3^{ITD}* for both Flp and Dre recombinase which, when paired with cooperating alleles, result in
70 lethal, penetrant models of AML. We further deploy methods for orthogonally inducing Cre and
71 Dre recombinase enabling extended sequential mutagenesis and for investigating the consequences
72 of perturbing cancer evolution through reversible oncogene expression.

73 **Inducible mouse model of *Flt3* internal tandem duplication**

74 We first developed an endogenously targeted, Flp-inducible *Flt3*^{Frt-ITD} allele which could be
75 inverted by a tamoxifen (TAM) inducible FlpoERT2 allele (**Figure 1a, Extended Data Fig. 1b**).
76 By 6 weeks post tamoxifen administration, we observed penetrant leukocytosis (mean WBC:
77 *Flt3*^{Frt-ITD} 38.21, *WT* 10.37, $p \leq 4.5 \times 10^{-4}$) driven by a myeloid bias and expansion of cKit⁺ cells in
78 the blood (mean 6w:4.8% vs. Control: 0.31% $p \leq 5.27 \times 10^{-3}$; **Figure 1b, Extended Data Fig. 1b-c**). By 8-10 weeks, this leukocytosis had largely resolved, with WBCs decreasing to near normal
79 levels ($p \leq 0.133$) despite persistent anemia (mean HCT%: 40.4 vs. 51.4, $p \leq 1.71 \times 10^{-7}$), and
80 thrombocytopenia (mean PLT K/ μ L: 467 vs. 1240, $p \leq 8.96 \times 10^{-6}$; **Extended Data Fig. 1d**). *Flt3*<sup>Frt-
81 ITD</sup> mice developed significant splenomegaly (mean: 361.99mg vs. 90.35mg $p \leq 2.84 \times 10^{-3}$), and a
82 pathological myeloid infiltrate into both the spleen and liver (**Figure 1c, Extended Data 1e**). An
83 increase in immature myeloid cells, reduction in megakaryocytes, and near absence of erythroid
84 cells was evident in the bone marrow in *Flt3*^{Frt-ITD} mice. Splenic architecture was also disrupted—
85 pathological findings which persisted even after resolution of leukocytosis (**Figure 1c, Extended
86 Data Fig. 1f**). Along this time course, we observed an expansion of lineage negative hematopoietic
87 stem and progenitor cells (HSPCs; mean 6w 50.1% vs. Control 8.55%, $p \leq 0.0016$) specifically
88 the Lin⁻Sca-1⁺cKit⁺ (LSKs) in the bone marrow (4w vs. Control marrow: $p \leq 0.0382$; **Figure 1d**,
90 **Extended Data Fig. 1g**).

91 We next wanted to determine how somatic acquisition of *Flt3*^{Frt-ITD} mutations changed the
92 transcriptional landscape of HSPCs. We performed low pass, multiplexed 3' RNA-sequencing on
93 purified LSKs and granulocytic-monocytic progenitors (GMPs; cKit⁺Sca1⁺Cd34⁺Cd16/32⁺) from
94 *Flt3*^{ITD} mice 2, 4, 6 or 8 weeks after TAM administration and from *Flt3*^{WT} mice 4 weeks after TAM
95 (**Extended Data Fig. 2a**). Along this time course >200 genes were downregulated in LSKs with
96 *Flt3*^{Frt-ITD} activation, and >500 were upregulated with at least one time point (**Extended Data Fig.
97 2b, Supplementary Table 1a**). These alterations could be largely consolidated into three distinct
98 phases of transcriptional alterations along the 8-week time course including genes which were (1)
99 acutely (in)activated and dysregulation was sustained (2) delayed changes in gene expression seen
100 after 4+ weeks, and (3) transiently dysregulated at 2 weeks post *Flt3*^{ITD} activation and then
101 normalized (**Extended Data Fig. 2c**). Sustained changes in transcriptional output included reduced
102 expression of heme synthesis genes ($FDR \leq 2.05 \times 10^{-6}$) with concomitant downregulated

103 expression of the erythroid transcription factors *Gata1* (8w $p \leq 1.51 \times 10^{-16}$) and *Gata2* (8w $p \leq$
104 7.11×10^{-23} ; **Figure 1e-f**) and increased expression of MYC target genes ($FDR \leq 4.97 \times 10^{-3}$).
105 Expression of STAT5 target genes peaked two weeks following mutational activation ($FDR \leq$
106 0.044) whereas increased expression of negative signaling regulators including *Cish* (8w vs. WT
107 $p \leq 8.99 \times 10^{-15}$; log2FC 2.82) and *Socs2* persisted (8w vs WT $p \leq 8.17 \times 10^{-133}$; log2FC 4.1; **Figure**
108 **1e-f; Extended Data Fig. 2d**). In addition to transient increased expression of dendritic-cell like
109 genes at 2 weeks, gene expression signatures indicative of MAPK/KRAS signaling were also
110 upregulated ($FDR \leq 0.00389$) with transient expression of AP-1 complex members (*Jund*, *Junb*,
111 *Fos*) and the MAPK target *Egr1* (**Figure 1e-f; Extended Data Fig. 2e**). Critical regulators of
112 hematopoietic stem cell self-renewal including *Tal1*, *Meis1*, *Mecom*, *Hoxb5*, and *Hoxa9* were
113 consistently decreased in expression (**Extended Data 2f**).

114 To understand the functional consequences of somatic *Flt3*^{Frt-ITD} activation on stem/progenitor
115 function and relative fitness, we performed competitive transplantation between *Flt3*^{Frt-ITD} and
116 Cd45.1 WT unfractionated marrow. Activation of *Flt3*^{Frt-ITD} with TAM 4 weeks after
117 transplantation resulted in robust, sustained competitive outgrowth of *Flt3*^{Frt-ITD} cells compared to
118 WT competitor cells (mean Cd45.2% at 18w 88.89% vs. 25.8%, $p \leq 6.54 \times 10^{-4}$; **Figure 1g**). By
119 contrast, *Flt3*^{Frt-ITD} mutant cells were incapable of robustly engrafting into recipient mice and
120 propagating disease in secondary recipients (**Extended Data Fig. 2g**). Consistent with the lack of
121 self-renewal *in vivo*, *Flt3*^{Frt-ITD} acquisition resulted in the depletion of long-term hematopoietic
122 stem cells (LT-HSCs; Lin⁻Sca-1⁺cKit⁺CD150⁺CD48⁻), both with respect to Cd45.2 *Flt3*^{Frt-ITD}
123 (mean \pm s.e.m.; Control: 1.37 \pm 0.22% vs. TAM: 0.024 \pm 0.007%, $p \leq 0.0004$) and cell non-
124 autonomous depletion of Cd45.1 WT stem cells (mean \pm s.e.m.; Control: 0.9 \pm 0.2% vs. TAM:
125 0.18 \pm 0.1, $p \leq 0.0194$; **Extended Data Fig. 2h-i**), resolving a question unanswered by existing
126 tools^{20,21}. These findings demonstrate that while *Flt3*^{Frt-ITD} cells can give rise to a robust
127 myeloproliferative disease, HSPCs lose long-term hematopoietic self-renewal once *Flt3*^{ITD} is
128 acquired which we hypothesize represents a key feature conferred by cooperating AML disease
129 alleles.

130 **Cooperating mutations license mutant-*Flt3* to promote leukemic transformation**

131 We next crossed *Flt3*^{Frt-ITD} mice with a *Npm*^{Frt-c} mutant allele⁹ and somatically activated both alleles
132 with a TAM-inducible FlpoERT2 allele. In contrast to primary *Flt3*^{Frt-ITD} mice which had a median
133 survival of 48 weeks post-TAM, *Npm*^{Frt-c}-*Flt3*^{Frt-ITD} (NF) mice rapidly succumbed to leukemia
134 within 4 weeks following TAM administration (log rank $p \leq 8.78 \times 10^{-7}$; **Figure 2a; Extended Data**
135 **Fig. 3a**). In a transplantation model, mice engrafted with *Npm*^{Frt-c}-*Flt3*^{Frt-ITD} cells exhibited a robust
136 increase in WBC (mean 380.6 K/ μ L, ANOVA $p \leq 0.0001$) with rapidly progressive anemia (mean
137 HCT 15.99% ANOVA, $p \leq 0.0001$) and thrombocytopenia (mean PLT 97.40K/ μ L, ANOVA $p \leq$
138 0.0001) by 4 weeks post-transplantation which was not seen with somatic expression of either
139 *Flt3*^{Frt-ITD} or *Npm*^{Frt-c} alone. All recipient mice showed pathological features consistent with a fully
140 penetrant, rapid AML (**Figure 2b; Extended Data Fig. 3b-c**). Unlike *Flt3*^{Frt-ITD} single mutant mice,
141 the increase in WBC with *Npm*^{Frt-c}-*Flt3*^{Frt-ITD} did not normalize and continued to increase to levels
142 observed in AML patients with *FLT3/NPM1*^c mutations,²² even with limiting doses of TAM
143 exposure, which reduced the proportion of mutant cells which were induced (**Extended Data Fig.**
144 **3d**).

145 We next sought to assess the impact of mutant *Flt3* acquisition subsequent to a common co-
146 occurring CH mutation, specifically *Dnmt3a*^{Lox-R878H}. We administered Cre mRNA by
147 electroporation *ex vivo* to induce *Dnmt3a*^{Lox-R878H} expression, and TAM was used to activate *Flt3*^{Frt-}
148 ^{ITD} four weeks after transplant (**Figure 2c**). While the *Npm1*^{Frt-c}-*Flt3*^{Frt-ITD} mice rapidly succumbed
149 to AML with *Flt3*^{Frt-ITD} activation, there were no significant differences in survival between
150 *Dnmt3a*^{Lox-R878H}-*Flt3*^{Frt-ITD} and *Flt3*^{Frt-ITD} only mice (median survival DF 25.5w vs. F 25w, log rank p
151 ≤ 0.69 ; **Extended Data Fig. 3e**). In these *Dnmt3a*^{Lox-R878H}-*Flt3*^{Frt-ITD} (DF) mice, we observed the
152 same increase and subsequent decreases in WBC as in the *Flt3*^{Frt-ITD} alone model (mean DF WBC:
153 8w 41 K/ μ L vs. 13w 20 K/ μ L, $p \leq 0.0015$); however, by 18-20 weeks post-TAM, the DF mice
154 developed progressive leukocytosis (mean WBC 110 K/ μ L, $p \leq 0.0269$; **Extended Data Fig. 3f**).
155 Critically, like *Npm1*^{Frt-c}-*Flt3*^{Frt-ITD}, *Dnmt3a*^{Lox-R878H}-*Flt3*^{Frt-ITD} cells were capable of engrafting into
156 secondary recipients (mean Cd45.2% 12w DF 76.3% vs. F 0.99%, $p \leq 1.17 \times 10^{-4}$) and propagating
157 disease, albeit at a longer latency than the aggressive *Npm1*^{Frt-c}-*Flt3*^{Frt-ITD} model (**Figure 2d**).

158 Gene expression analysis revealed that in comparison to *Npm1*^{Frt-c}-*Flt3*^{Frt-ITD} LSKs, *Dnmt3a*^{Lox-R878H}-
159 *Flt3*^{Frt-ITD} LSKs were enriched for expression of E2F targets (GSEA NES 1.74, $FDR \leq 8.43 \times 10^{-5}$),

160 cell cycle signatures (GSEA FDR $1.46 \leq 2.96 \times 10^{-3}$) and expression of immature markers including
161 *Gpr56*, *Cd34*, *Abcc1*, *Kit* and *Mpl* (**Figure 2e; Supplementary Table 1b**). In contrast, *Npm1*^{Frt-c}-
162 *Flt3*^{Frt-ITD} leukemias expressed lower levels of Cd34 within the stem cell compartment ($p \leq 0.0032$),
163 matching the clinical immunophenotype^{23,24}, and had higher levels of *Hox* gene expression
164 particularly *Hoxa7* and *Hoxa9* (**Extended Data Fig. 3g-h; Supplementary Table 1c**). LSKs and
165 GMPs from *Npm1*^{Frt-c}-*Flt3*^{Frt-ITD} leukemias had increased inflammatory gene expression
166 particularly for TNF α and NF κ B, reminiscent of early-stage *Flt3*^{Frt-ITD} activation. In particular,
167 *Npm1*^{Frt-c}-*Flt3*^{Frt-ITD} LSKs were specifically enriched for genes transiently activated with *Flt3*^{Frt-ITD}
168 acquisition alone (LSK $p \leq 0.0001$) suggesting that *Npm1*^c cooperates to “lock” *Flt3*^{ITD} cells into
169 an early activation state (**Figure 2f**).
170

171 Immunophenotypically, we observed an expansion of the progenitor compartment for *Dnmt3a*^{Lox-}
172 *R878H*-*Flt3*^{Frt-ITD} cells (%GMP of Cd45.2 mean \pm s.e.m. DF: $7.1 \pm 1.16\%$ vs. NF: $2.32 \pm 0.41\%$, $p \leq$
173 0.0029) while *Npm1*^{Frt-c}-*Flt3*^{Frt-ITD} leukemias were enriched for LSKs (%LSK of Cd45.2
174 mean \pm s.e.m. DF: 0.4 ± 0.09 vs NF: 1.8 ± 0.16 , $p \leq 0.0001$; **Extended Data Fig. 4a**). Mass
175 cytometry (CyTOF) analysis showed that *Npm1*^{Frt-c}-*Flt3*^{Frt-ITD} leukemias had increased numbers of
176 cells enriched for dendritic-like characteristics (expression of Cd11c, $p \leq 1.46 \times 10^{-3}$), while
177 *Dnmt3a*^{Lox-R878H}-*Flt3*^{Frt-ITD} leukemias had expression of markers more consistent with a granulocytic
178 bias ($p \leq 3.84 \times 10^{-4}$; **Figure 2g; Extended Data Fig. 4b-d**). These differentiation biases were
179 present even at the level of stem cells, with LSKs from *Npm1*^{Frt-c}-*Flt3*^{Frt-ITD} mice expressing higher
180 levels of the GM-CSF receptor *Csf2ra* ($p \leq 2.08 \times 10^{-3}$) and *Dnmt3a*^{Lox-R878H}-*Flt3*^{Frt-ITD} LSKs
181 expressing increased levels of the G-CSF receptor *Csf3r* ($p \leq 7.39 \times 10^{-8}$) (**Extended Data Fig. 3h**).
182 Collectively, these models demonstrate that different co-occurring mutations are capable of
183 transforming *Flt3* mutant cells, albeit with distinct latencies, phases of cooperativity, and
184 transcriptional /immunophenotypic outputs.

185 **Expanding the sequential mutagenesis toolkit with Dre recombinase**

186 Given most inducible murine models use Cre or Flp recombinase and the vast majority of human
187 cancers have 3 or more pathogenic disease alleles, we sought to develop AML models with 3
188 orthogonal recombinases, aiming to add reversible mutant activation to our approach. We therefore

189 chose to develop a model induced by Dre recombinase, a Cre-homologue capable of recombining
190 Rox sites. We developed a dual-recombinase strategy to activate and then inactivate a mutation of
191 interest termed GOLDI-Lox (governing oncogenic loci by dre inversion and lox deletion; **Figure**
192 **3a**). In this model, a pair of Lox2272 sites flank a staggered, heterotypic Rox12 - RoxP pair, which
193 themselves flank an inverted mutant exon encoding the same ITD mutation as in the *Flt3*^{Frt-ITD}
194 allele. In the non-recombined state, the proximity (82bp) of the Lox2272 sites prevents Cre
195 recombination at this locus²⁵. Upon Dre activation, the *Flt3*^{ITD} encoding exons are inverted
196 resulting in reorientation of the internal Lox2272 site and relocation at a sufficient distance from
197 the distal Lox2272 site to permit recombination upon treatment with Cre. A similar strategy was
198 used to reversibly activate *Jak2V617F* in the accompanying manuscript (Dunbar A. & Bowman
199 R. *et. al*, 2022). To evaluate the efficacy of this strategy, we crossed this mouse (*Flt3*^{GL-ITD}) to a
200 Dre Reporter (RLTG; TdTomato reporter) and a TAM-inducible Ubc:CreER allele. HSPCs from
201 these mice were infected with a Dre retrovirus for 48 hours with or without Cre induction by 4-
202 hydroxy-tamoxifen (4-OHT). PCR demonstrated that Dre activation was indeed capable of
203 inverting the target locus, while subsequent administration of 4-OHT resulted in deletion of the
204 target locus (**Figure 3b**).

205 To benchmark the *Flt3*^{GL-ITD} allele we crossed it to a Cre-inducible *Npm1*^{Lox-c} allele and the TAM-
206 inducible Ubc:CreER. *Npm1*^{WT}-*Flt3*^{GL-ITD} or *Npm1*^{Lox-c}-*Flt3*^{GL-ITD} mice were treated with TAM, and
207 8 weeks later, HSPCs were electroporated with Dre mRNA *ex vivo* and then transplanted into
208 lethally irradiated recipient mice (**Figure 3c**). As expected, mice transplanted with *Npm1*^{WT}-*Flt3*^{GL-}
209 ^{ITD} mutant cells developed leukocytosis with monocytosis 7w post-transplant ($p \leq 0.0103$), with a
210 subsequent decrease at 11w post-transplant ($p \leq 0.062$) (**Figure 3d**). By contrast, *Npm1*^{Lox-c}-*Flt3*^{GL-}
211 ^{ITD} cells developed rapid, progressive leukocytosis (4w mean WBC 191.46 K/ μ L) with fully
212 penetrant progression to AML with similar latency and immunophenotypic characteristics as the
213 Flp-inducible *Npm1*^{Frt-c}-*Flt3*^{Frt-ITD} model. Consistent with our previous data in primary human
214 samples showing these mutant alleles potently synergize to promote clonal dominance,³ these data
215 underscore that co-occurring mutations with potent mutational synergy can induce AML when
216 activated simultaneously or in sequence.

217 **Sequential mutagenesis reveals stage and mutant-specific alterations in differentiation**

218 While *Npm1*^C-*Flt3*^{ITD} combinations potently induce AML in mice, the majority of AML patients
219 with *NPM1*^C and *FLT3*^{ITD} mutant alleles acquire these mutations subsequent to an antecedent
220 mutation, most commonly *DNMT3A*. Moreover, the presence of these 3 mutations in concert
221 confers a particularly dismal prognosis for AML patients.⁷ We sought to model this combination
222 of alleles using 3 separably inducible alleles for *Dnmt3a*^{Lox-R878H}, *Npm1*^{Frt-c}, and *Flt3*^{GL-ITD} (**Figure**
223 **4a**). *Dnmt3a*^{Lox-R878H} was induced by Cre mRNA electroporation *ex vivo* into HSPCs at transplant.
224 Following transplant, *Npm1*^{Frt-c} mutations were then activated in a subset of mice with the TAM-
225 inducible FlpoERT2 allele. By 16 weeks post-*Npm1*^{Frt-c} activation, *Dnmt3a*^{Lox-R878H}-*Npm1*^{Frt-c} (DN)
226 mutant mice developed anemia (M/ μ L mean \pm s.e.m. DN 8.2 \pm 0.16 vs WT 9.7 \pm 0.12, $p \leq 0.0001$)
227 and a myeloid bias notable for an increase in Cd11b⁺Gr1^{high} granulocytic cells (ANOVA $p \leq$
228 0.0014; **Extended Data Fig. 5a**).

229 To model subsequent acquisition of *Flt3*^{ITD}, we then electroporated Dre mRNA into an additional
230 subset of *Dnmt3a*^{Lox-R878H}-*Npm1*^{Frt-c} and *Npm1*^{Frt-c} HSPCs followed by transplantation to generate 4
231 new experimental groups (**Figure 4a**). *Npm1*^{Frt-c}-*Flt3*^{GL-ITD} (NF) mice developed AML within 4
232 weeks post-transplantation with significant leukocytosis (mean WBC 178.6 K/ μ L, mean Mono
233 43.9 K/ μ L), anemia (mean HCT 19.9%), and cKit⁺ peripheral blood cells (mean 11.5% of Cd45.2
234 cells; **Figure 4b, Extended Data Fig. 5b-c**). The triple-mutant *Dnmt3a*^{Lox-R878H}-*Npm1*^{Frt-c}-*Flt3*^{GL-ITD}
235 (DNF) developed leukocytosis (mean WBC 104.25 K/ μ L, Mono 25.9 K/ μ L) and anemia (mean
236 HCT 18.7%) consistent with AML, albeit with a slightly longer latency (DNF 6w vs. NF 4w).
237 Single-mutant *Npm1*^{Frt-c} (N) and double-mutant *Dnmt3a*^{Lox-R878H}-*Npm1*^{Frt-c} (DN) cells reliably
238 engrafted but only developed leukemia at longer latency (median survival N 7.7w vs. DN 11.5w,
239 log rank $p \leq 0.0082$; **Figure 4b**). We observed monoallelic *Dnmt3a*^{Lox-R878H}-specific enrichment of
240 LT-HSCs in addition to other genotype-specific alterations in downstream progenitor and mature
241 cells (**Figure 4c, Extended Data Fig. 5d-e**). Specifically, while *Flt3*^{GL-ITD} appeared to be the
242 dominant driver of LSK expansion, antecedent *Dnmt3a*^{Lox-R878H} mutations resulted in a further
243 increase in this population (mean LSK% of Lin⁻ NF: 3.8% vs DNF: 9.52%, $p \leq 0.0038$; **Figure**
244 **4d**). These results indicate that while mutations in *Dnmt3a* promote pre-leukemic HSPC
245 expansion, mutations in *Flt3* were the dominant drivers of immunophenotypic HSPC expansion at
246 leukemic transformation.

247

248 To assess if the conserved clone-specific immunophenotypic properties we observed in our murine
249 models were seen in clinical isolates from AML patients, we performed single-cell DNA-
250 sequencing (scDNA-seq) with surface immunophenotyping on 97,086 cells across 4 patient
251 samples possessing a combination of mutations in *DNMT3A*, *NPM1* and *FLT3* (**Extended Data**
252 **Fig. 6a**). We observed the expected decrease in CD34 expression in *NPM1* mutant clones
253 ($\log_{2}FC = -1.81$, $FDR \leq 4.01 \times 10^{-206}$), matching both the well-established clinical
254 immunophenotype^{23,24} and our *Npm1^{Frt-c}-Flt3^{Frt-ITD}* model (**Extended Data Fig. 6b**). Clustering
255 based on immunophenotype revealed 6 communities of cells with representation of most clusters
256 across the 4 samples (**Figure 4e, Extended Data Fig. 6c**). We identified differentially expressed
257 surface markers between the communities such that cells in community 1 expressed primitive
258 HSPC markers including CD90 (92% of cells, $\log_{2}FC 1.79$), cells in community 2 cells expressed
259 maturation markers such as CD14 (92% of cells, $\log_{2}FC 1.46$), and community 3 cells represented
260 a progenitor enriched fraction with increased CD45RA expression (83% of cells, $\log_{2}FC 1.36$)
261 (**Figure 4e, Extended Data 6c-d**). We found clones were differentially distributed across the
262 communities with *DNMT3A-FLT3* (DF) mutant clones most enriched in community 3 progenitor-
263 like cells (66% of DF cells) and *NPM1-FLT3* (NF) cells enriched in community 2 differentiated
264 cells (58.9%) (**Figure 4e-f**). Finally, triple -mutant *DNMT3A-NPM1-FLT3* (DNF) cells were most
265 enriched within the community 1 stem-like cells (49%), mirroring DNF mice which had the largest
266 proportion of LSKs (**Figure 4d,f**). These data confirm that different mutational combinations
267 which promote leukemic transformation have differential impact on the leukemic hierarchy.

268 **Orthogonal chemical-genetic tools for modeling leukemia**

269 A major limitation of the approaches described above and with other studies exploring mutational
270 activation/cooperativity is the need for transplantation/adoptive transfer, which represents a
271 “bottleneck” that selects out specific clones. To enable sequential mutational induction in the
272 absence of transplantation, we employed chemical-genetic approaches capable of inducing Flp and
273 Dre activation which are orthogonal to existing TAM-inducible ER fusions. For Flp, we developed
274 a trimethoprim (TMP)-stabilizing Flpo dihydrofolate reductase (FlpoDHFR) fusion²⁶. In a
275 FlpoDHFR encoding retroviral infection-transplantation model, *in vivo* TMP treatment induced
276 aggressive AML in *Npm1^{Frt-c}-Flt3^{Frt-ITD}* cells with the same latency and immunophenotypic
277 characteristics as the TAM-inducible FlpoERT2 system (**Extended Data 7a**).

278 For Dre, we used a Stabilized Peptide Linkage (StaPL) approach²⁷ by splitting Dre with an HCV-
279 derived NS3 protease resulting in constitutive autoproteolysis of the construct (**Figure 5a**).
280 Inhibition of proteolytic activity with the NS3 inhibitor asunaprevir (ASV) resulted in efficient
281 recombination (mean±s.e.m. 91±0.79%), albeit with detectable recombinase activity in the
282 absence of ligand (mean±s.e.m. 9.9±0.96; **Extended Data Fig. 7b**). This background
283 recombination was nearly eliminated by cloning an ornithine-decarboxylase protected degron²⁸
284 adjacent to the NS3 cut site (DreStaPL-ODC) resulting in degradation of the N-terminal fragment
285 of Dre (mean±s.e.m. 0.043±0.008; **Extended Data Fig. 7b**). Critically, the DreStaPL-ODC was
286 orthogonally inducible to both TAM-inducible CreER and the trimethoprim (TMP)-stabilizing
287 Flpo dihydrofolate reductase (FlpoDHFR) fusions (**Figure 5b**). Thus, to complement existing Flpo
288 and Cre tools, we generated two new DreStaPL-ODC mouse lines targeting either the 3' UTR of
289 the endogenous *Vav1* locus or the *H11* safe harbor under the control of a synthetic CAG promoter
290 (**Extended Data Fig. 7c**). CAG:DreStaPL-ODC mice displayed robust recombinase inducibility
291 *in vivo* with NS3 inhibition by grazoprevir (GZV) (mean±s.e.m. 24.83±3.28) whereas the
292 *Vav1*:DreStaPL-ODC mice demonstrated reduced recombination activity (mean±s.e.m.
293 0.176±0.05; $p \leq 0.0001$; **Extended Data Fig. 7d**).

294 Finally, we sought to eliminate any reliance upon transplant for disease development. We
295 proceeded with the *Vav1*:DreStaPL-ODC allele to model *Flt3^{GL-ITD}* acquisition as a late, subclonal
296 event. We crossed these alleles to mice harboring Ubc:CreER and either Cre-inducible *Npm1^{Lox-c}*
297 or *Idh2^{Lox-R140Q}* mutations. Mice were administered TAM to activate either *Npm1^{Lox-c}* or *Idh2^{Lox-R140Q}*
298 and then 2 weeks later treated with GZV to induce the *Flt3^{GL-ITD}* allele (**Figure 5c**). Despite the
299 reduced *Flt3^{GL-ITD}* induction frequency of *Vav1*:DreStaPL-ODC, *Npm1^{Lox-c}-Flt3^{GL-ITD}* mice
300 developed an aggressive AML by 6 weeks post-GZV induction highlighting the potency of this
301 mutational combination (**Figure 5d**). In contrast, *Idh2^{Lox-R140Q}-Flt3^{GL-ITD}* (IF) mice developed a
302 longer latency AML with more modest leukocytosis (mean WBC K/μL: IF 38.12 vs. NF 143.9, p
303 ≤ 0.042) and reduced fraction of peripheral blood cKit+ cells compared to the *Npm1^{Lox-c}-Flt3^{GL-ITD}*
304 model (mean±s.e.m.; IF 1.53±0.46 vs. NF 12.7±2.8, $p \leq 0.0042$; **Figure 5d; Extended Data Fig.**
305 **7e**). Despite the differences in disease latency, both models showed increased myeloid lineage
306 commitment (mean Cd11b+% *Flt3*: 26.16%, IF: 77.95%, NF: 62.03%) and capacity to transplant
307 AML into secondary recipients (**Figure 5e; Extended Data Fig. 7f-g**). In sum, these chemical-

308 genetic tools allow for modular, deterministic control of clonal evolution in malignancy in the
309 absence of transplantation.

310 **Evaluating oncogene dependency of mutant-*Flt3***

311 We next sought to perturb disease evolution by abrogating the expression of mutant *Flt3* *in vivo*
312 with Cre-inducible mutant *Flt3* reversion using the GOLDI-lox allele. *In vitro*, 4-OHT treatment
313 led to reversal of the *Flt3^{GL-ITD}* allele with concomitant reduction in cell number from leukemic
314 *Npm1^{Lox-c}-Flt3^{GL-ITD}* (NF) mice but not *FlopoERT2 Npm1^{Frt-c} Flt3^{Frt-ITD}* mice (**Extended Data Fig.**
315 **8a-b**). This decrease in cellularity was due in part to increased apoptosis as evidenced by increased
316 AnnexinV+DAPI+ cells ($p \leq 0.0163$; **Extended Data Fig. 8c**). Cells from leukemic *Npm1^{Lox-c}-*
317 *Flt3^{GL-ITD}* (NF) and *Idh2^{Lox-R140Q}-Flt3^{GL-ITD}* (IF) mice were then transplanted into lethally irradiated
318 recipients and monitored for disease development at which point they were treated with TAM to
319 delete the *Flt3^{GL-ITD}* allele. *Flt3^{GL-ITD}* ablation with TAM-mediated Cre expression was associated
320 with a near complete reduction of WBC and decrease in spleen mass by 7 days in both the NF and
321 IF mice (Pre- vs. Post-TAM WBC K/ μ L mean: NF 77.8 vs. 2.42; IF 106.7 vs. 0.82; **Figure 6a-b**).
322 Pathological analysis of sectioned bone marrow revealed a decrease in cellularity and nuclear
323 condensation consistent with differentiation in both models (**Figure 6c**). *Flt3^{GL-ITD}* reversal also
324 induced a reduction in lineage negative HSPCs in both models (NF: $p \leq 0.0021$, IF: $p \leq 0.0006$;
325 **Figure 6d**), with NF mice expanding granulocytes and a Cd11c⁺ dendritic-like population upon
326 TAM-treatment (**Extended Data 8d**). While the IF mice displayed a reduction in LSKs (mean
327 %LSK of Cd45.2 Control: 4.01% vs. TAM: 0.81%), NF mice had an increase in
328 immunophenotypic LSKs (mean %LSK of Cd45.2 Control: 1.74% vs. TAM: 3.37%) with
329 concomitant reduction in Lin⁻Kit⁺Scal⁻ progenitor cells (**Figure 6d**). Similar results were observed
330 after 4-OHT administration in *ex vivo* culture of NF cells ($p \leq 0.0148$; **Extended Data Fig. 8e**).

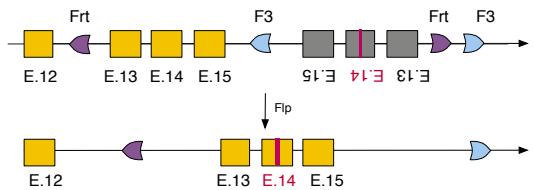
331 This increase in phenotypic LSKs suggested that reversal of *Flt3^{ITD}* expression induces a
332 compensatory increase in inflammation and resultant upregulation of *Scal* expression. Gene
333 expression profiling of *Npm1^{Lox-c}-Flt3^{GL-ITD}* HSPCs showed that TAM treatment was associated
334 with an increase in inflammatory gene set primarily driven by an IFN γ response (GSEA NES:
335 2.39, *FDR* $\leq 8.8 \times 10^{-12}$) and STAT3/IL6 signaling (GSEA NES: 1.39, *FDR* $\leq 3.3 \times 10^{-2}$; **Figure 6e**;
336 **Supplementary Table 1d**). Consistent with this, measurement of serum cytokine levels showed

337 an increase in IL6 ($p \leq 0.0011$) levels (**Extended Data 8f**). We also observed a decrease in Hoxa9
338 and Meis1 target gene expression (NES -2.91, $FDR \leq 2.55 \times 10^{-19}$) underscored by decreased
339 expression of the transcription factors themselves (**Figure 6e; Extended Data Fig. 8g;**
340 **Supplementary Table 1e**). Additionally, we observed a reduction in gene expression signatures
341 for cell cycle related E2F targets, MYC targets and ERK pathway engagement (**Figure 6e;**
342 **Extended Data Fig. 8g**), with immunohistochemical analysis supporting these findings (**Figure**
343 **6f, Extended Data 8h**). Finally, *Npm1^{Lox-c}-Flt3^{GL-ITD}* HSPCs showed re-engagement with
344 erythropoiesis by an increase in genes associated with Heme synthesis (NES 1.92, $FDR \leq 8.5 \times 10^{-7}$)
345 as well as increased expression of *Gata1* ($FDR \leq 2.56 \times 10^{-7}$) and *Epor* ($FDR \leq 8.9 \times 10^{-17}$; **Figure**
346 **6e; Extended Data Fig. 8g**). Collectively, these alterations indicate that mutant-*Flt3* deletion in
347 AML cells is associated with a reduction in proliferation, reduced expression of key hematopoietic
348 self-renewal transcriptional regulators, and attenuated signal transduction.

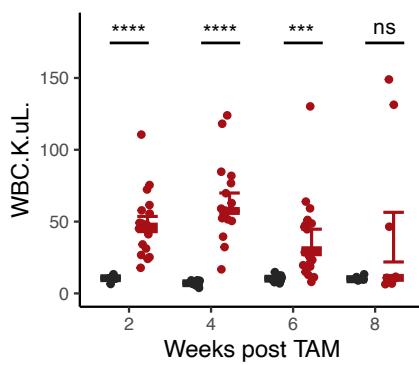
349 We observed an initial decrease in mutant chimerism, and long-term treatment with TAM resulted
350 in an increase in overall survival, with a subset of *Npm1^{Lox-c}-Flt3^{GL-ITD}* (2/10) showing no evidence
351 of disease relapse (**Figure 6g; Extended Data Fig. 8i**). In mice with recurrent AML, we observed
352 AMLs with residual Dre-activated *Flt3^{GL-ITD}* that was not deleted by Cre as well as evidence of
353 continued Cre-mediated *Flt3^{GL-ITD}* deletion (**Extended Data Fig. 8j**). These findings suggest that
354 reversal of mutant *Flt3^{ITD}* can reduce leukemic burden and improve survival, although leukemic
355 clones can recur through both *Flt3^{ITD}*-dependent and independent mechanisms.

356 Conclusion

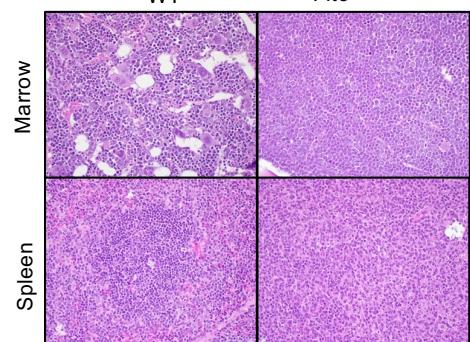
357 Advances in whole genome sequencing and single-cell genomics have offered refined resolution
358 into the evolutionary processes underlying cancer development and response to therapy^{1-3,29,30 31}.
359 While GEMMs have served as a robust means to model disease, spatio-temporal control of
360 stepwise somatic alterations has remained elusive. Here we show that the use of orthogonal
361 recombinases allows one to model sequential mutational acquisition and to develop AML models
362 which follow the trajectories observed in patient samples. This led to insights into leukemic
363 transformation and will inform studies of how mutational order, cell type of mutation acquisition,
364 and mutational clonal representation impact leukemic transformation and the response to therapy.
365

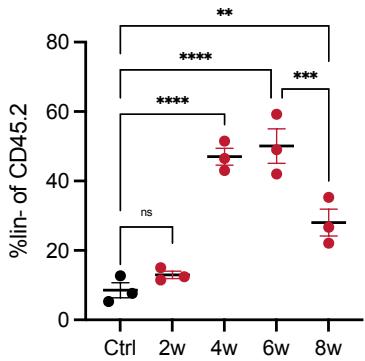

366 Most importantly, these studies provide a template by which multiple mutations can be
367 deterministically and sequentially induced *in vivo*, without the selection bottlenecks induced by
368 transplantation,³² simultaneous CRISPR editing of different mutant alleles,^{17,18} or ectopic mutant
369 gene expression^{32 33,34}. Each of these approaches will have an important role in modeling cancer
370 evolution and clonal complexity, and there may be advantages to combining endogenous targeting
371 and multiplex CRISPR editing to better model mutational complexity *in vivo*. We believe that the
372 use of orthogonal recombinases will allow investigators to induce different mutations in different
373 susceptible populations and to use single-cell technologies to both follow clonal evolution over
374 time and delineate how mutational events coordinately alter cell state. Moreover, the use of
375 reversible systems to activate and inactivate mutant alleles from their endogenous loci builds upon
376 previous transgenic/reversible shRNA models³⁵⁻³⁷ to allow more precise, mutant-specific
377 reversible gene activation. This allows for new insights into oncogenic dependency and into how
378 cancer disease alleles alter the transcriptional, epigenetic and phenotypic output of cancer cells.
379 Moreover, this system can be used to credential new mutant-specific dependencies in different
380 malignant contexts and to delineate mechanisms of oncogenic dependency and escape which can
381 inform preclinical and clinical therapeutic studies.

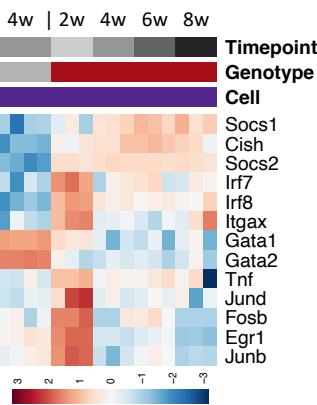
382

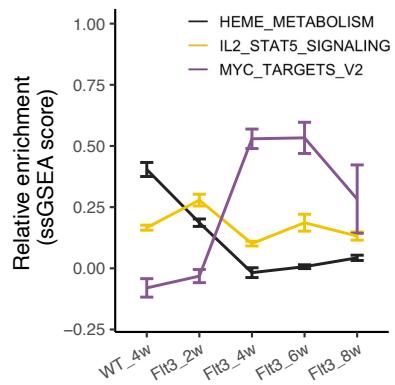

383 There are many limitations to our current approach, as we are limited to simultaneously modeling
384 a small number of disease alleles, and most human cancers present as an amalgam of clonal
385 complexity which changes throughout disease progression and in response to specific therapies³⁸.
386 Moreover, our system does not account for the important role of non-genetic factors, including
387 epigenetic remodeling, in cancer evolution and therapeutic response,⁶ and we have not investigated
388 how complex mutant clones interact with the local and system tumor microenvironment and
389 immune system. However, our work provides a roadmap to investigate clonal evolution and inter-
390 clonal interactions in different malignant contexts, including in the context of cell non-autonomous
391 factors which alter mutational rate and/or selection. As our ability to fill in the atlas of somatic
392 genetic events which occur from normal cells to pre-malignant somatic expansion to overt
393 transformation in the human context expands,³⁹ the continued development of more advanced
394 systems to model clonal evolution will afford an unprecedented view of the mechanisms mediating
395 transformation with biologic, therapeutic, and translational import.

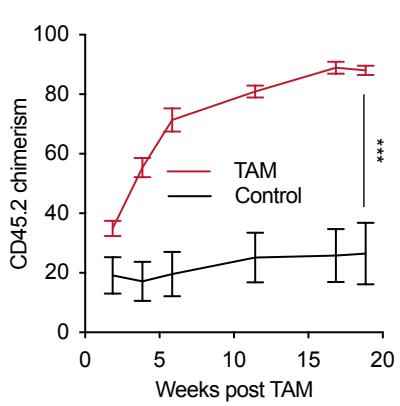
396


a


b

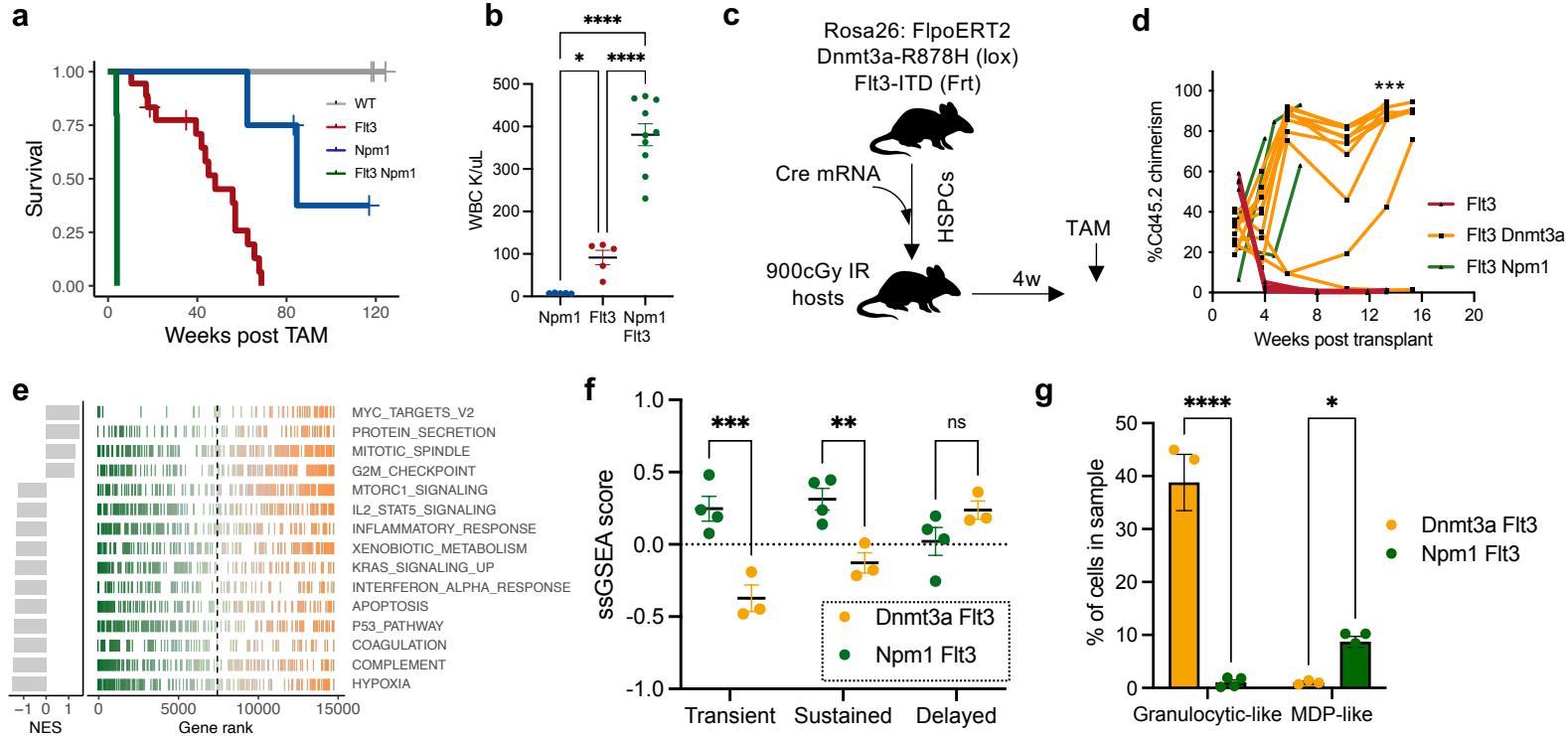

c


d


e

f

g

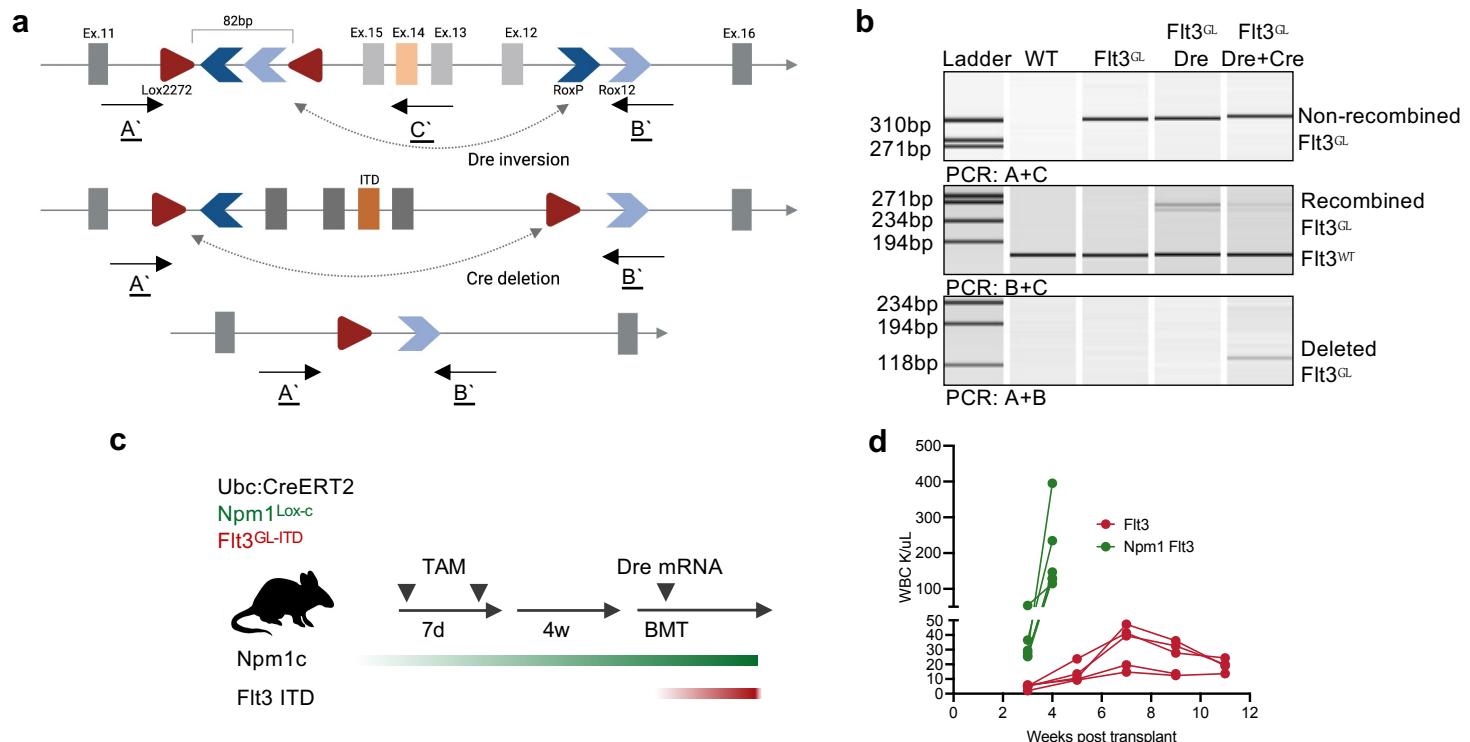

398 **Figure Legends**

399 Figure 1: Flp-recombinase inducible *Flt3^{ITD}* activation

400 **a**, schematic *Flt3^{Frt-ITD}* targeted to the endogenous *Flt3* locus replacing WT exons. Flp-
401 recombination deletes WT exons and inverts mutant exons resulting in *Flt3^{ITD}* expression. **b**, strip
402 chart of WBC K/ μ L in WT (black) or Rosa26:FlpoERT2 *Flt3^{Frt-ITD}* (red) mice at the indicated
403 timepoint posts TAM. (n=10-19 per group) **c**, H&E staining of bone marrow or spleen in WT or
404 Rosa26:FlpoERT2 *Flt3^{Frt-ITD}* mice 16 weeks post TAM treatment (400x). **d**, strip chart indicating
405 %lin⁻ cells in WT (Ctrl) or *Flt3^{Frt-ITD}* bone marrow. (red; n=3 per group). **e**, Row normalized
406 heatmap of RNA-sequencing data in WT (grey) or *Flt3^{Frt-ITD}* (red) LSKs following TAM treatment
407 at the indicated timepoints. **f**, Z-scored ssGSEA values for the indicated Hallmark geneset in either
408 WT or *Flt3^{Frt-ITD}* mice following TAM treatment. (n=3 per group). **g**, Peripheral blood chimerism
409 (%Cd45.2) in mice engrafted with WT (Cd45.1) and *Flt3^{Frt-ITD}* (Cd45.2) cells following treatment
410 with TAM (red) or control (black). (n=6-7 per group). Error bars reflect the mean \pm s.e.m.; and p-
411 values are calculated by Student's t-test (b,g) and Fisher's LSD test (d). ** $p \leq 0.01$ *** $p \leq 0.001$
412 **** $p \leq 0.0001$

413

Bowman et al Figure 2

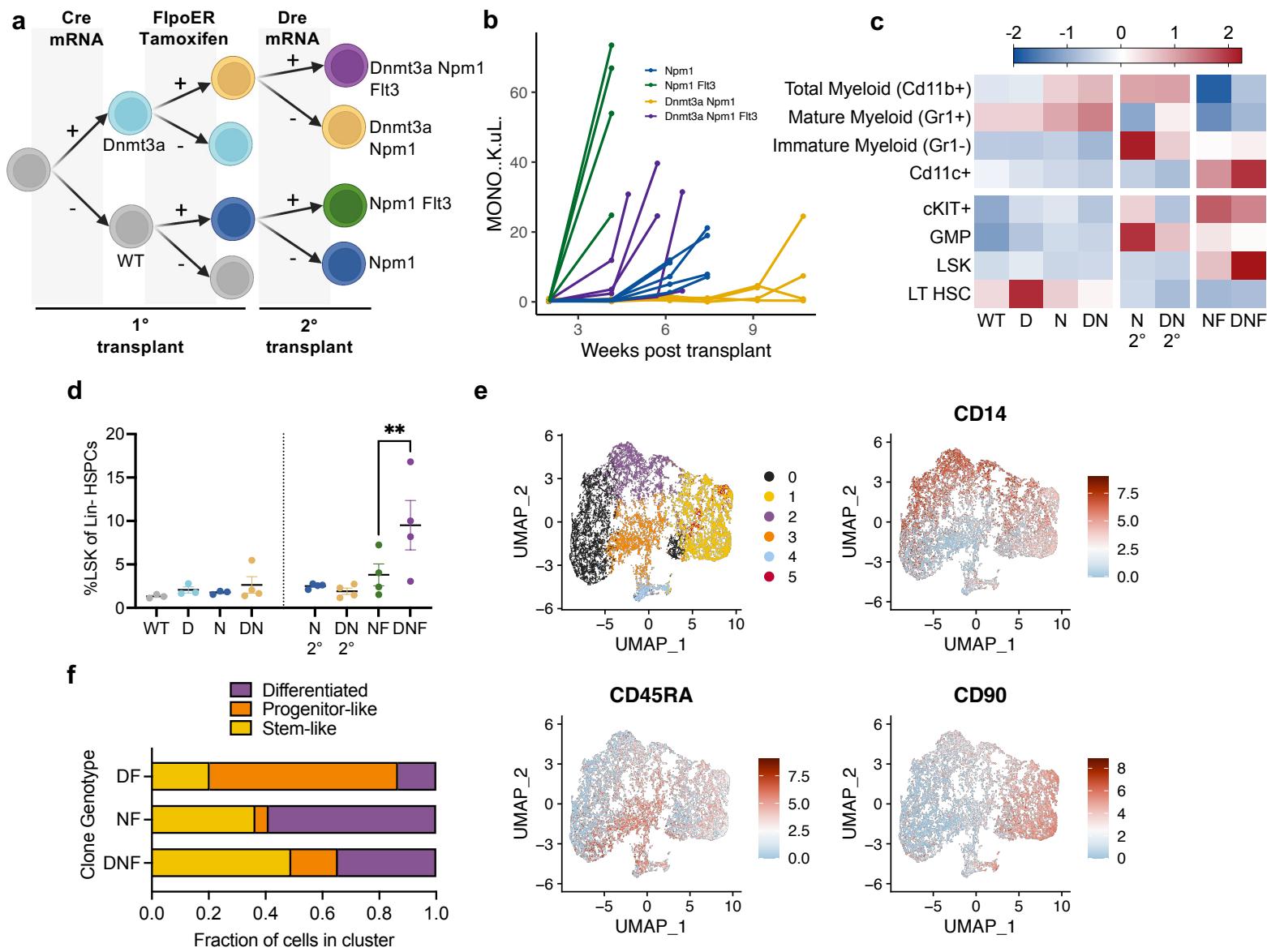


414

415 Figure 2: Flt3^{ITD}-driven models of leukemogenesis

416 **a**, Kaplan-Meier survival curve for Rosa26:FlpoERT2 WT (grey), *Flt3*^{Frt-ITD} (red), *Npm1*^{c-Frt} (blue),
417 or *Npm1*^{c-Frt} *Flt3*^{Frt-ITD} (green) following treatment with TAM. (n=4-18 per group). **b**, Bone marrow
418 was transplanted into lethally irradiated recipient mice. After transplant (4w) mice were treated
419 with TAM to activate the indicated genotypes. Strip chart indicates WBC. (n=5-10 per group) **c**,
420 Bone marrow transplant-mediated sequential mutagenesis experimental schematic indicating order
421 of *Dnmt3a*^{Loox-R878H} (Cre mRNA) and *Flt3*^{Frt-ITD} (TAM) activation. **d**, Bone marrow from Cd45.1
422 WT or Cd45.2 cells from *Npm1*^{c-Frt} *Flt3*^{Frt-ITD} (green), *Dnmt3a*^{Loox-R878H} *Flt3*^{Frt-ITD} (orange) or *Flt3*^{Frt-}
423 ^{ITD} only (red) mutant mice >20w after TAM treatment were transplanted in competition into
424 secondary lethally irradiated recipients. Peripheral blood chimerism (%Cd45.2) depicted for
425 individual mice. (n=3-10 per group). **e**, RNA-sequencing data from *Npm1*^{Lox-C} *Flt3*^{GL-ITD} or
426 *Dnmt3a*^{Loox-R878H} *Flt3*^{Frt-ITD} control LSKs. Gene ranks from GSEA are depicted as a linechart for the
427 indicated HALLMARK gene set. **f**, normalized ssGSEA scores on RNA-sequencing data from
428 LSKs sorted from symptomatic *Npm1*^{c-Frt} *Flt3*^{Frt-ITD} (green) or *Dnmt3a*^{Loox-R878H} *Flt3*^{Frt-ITD} (orange)
429 mice. Genesets were derived from Extended Data 2c. (n=3 per group) **g**, Barplot depicting %bone
430 marrow cells with a Granulocyte-like (left, Cluster 1) or MDP-like (right, Cluster 11)
431 immunophenotype characterized by CyTOF. (n=3-4 per group). Error bars reflect the mean \pm s.e.m.;
432 and p-values are calculated by Fisher's LSD test (b,f,g) and Student's t-test (d) and * $p \leq 0.05$ **
433 $p \leq 0.01$ *** $p \leq 0.001$ **** $p \leq 0.0001$

434

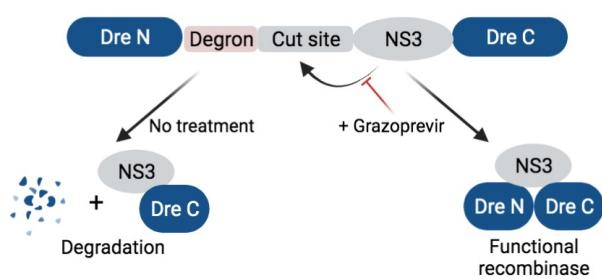

436

437

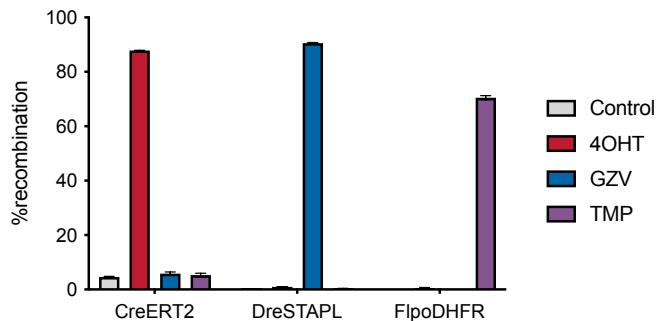
438 Figure 3: Dual-recombinase, reversible models of oncogene activation

439 **a**, Schematic depicting GOLDI-Lox knockin *Flt3^{GL-ITD}* construct to the endogenous *Flt3* locus, replacing exons 12-15. Flanking exons 11 and 16 are indicated in light grey, Lox2272 sites are indicated by red triangles, heterotypic RoxP and Rox12 sites are indicated in dark and light blue chevrons respectively. Inverted exons 12-15 are present at baseline with the W51 ITD encoded in exon 14 (orange). A', B' and C' indicate relative position of primers used in (b) to detect Dre-mediated inversion and Cre-mediated deletion. **b**, Lin⁻ bone marrow from WT of Ubc:CreERT2 *Flt3^{GL-ITD}* mice was infected with MSCV:Dre-IRES-GFP retrovirus or mock infection. Infected cells were treated \pm 4-OHT to activate Cre, and DNA was isolated from the whole culture 72 hours post treatment. PCR was used to evaluate Dre-inversion and Cre-deletion, visualized by capillary gel electrophoresis (Qiaxcel). **c**, Schema representing experimental setup where Ubc:CreERT2 *Flt3^{GL-ITD}* mice were treated with TAM to activate *Npm1^{Lox-C}*. Eight weeks after TAM treatment, mice were euthanized and lin⁻ HSPCs were isolated for Dre mRNA electroporation. Cells (20,000-100,000) were then transplanted into lethally Cd45.1 recipients along with 200,000 whole bone marrow from Cd45.1 mice. Disease development was monitored by complete blood count. **d**, WBC (K/ μ L) from mice as described in (c). (n=5-6 per group).

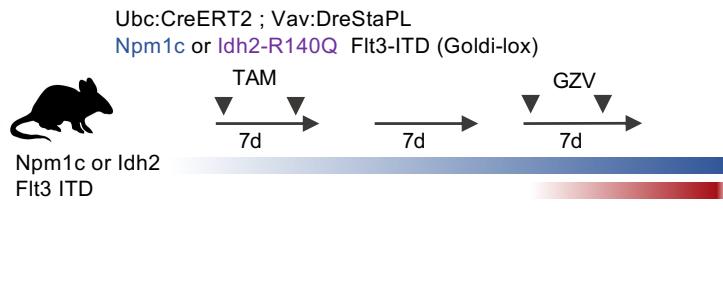
454

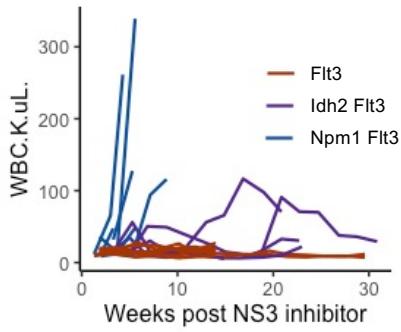

456

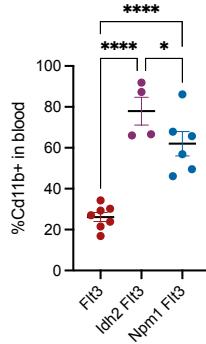
457 Figure 4: Triple-mutant, sequential models of clonal evolution towards acute myeloid leukemia


458 **a**, Schematic depicting sequential mutagenesis scheme with *Dnmt3a*^{*Los-R878H*} being activated at first
459 transplant with Cre mRNA, *Npm1*^{*c-Frt*} activated post transplant with TAM-mediated
460 Rosa26:FlpoERT2 activation, and *Flt3*^{*GL-ITD*} finally activated with Dre mRNA at secondary
461 transplant. **b**, Peripheral blood monocyte count (K/ μ L) in secondary transplant for the indicated
462 genotypes. (n=5 per group). **c**, Heatmap depicting relative abundance of indicated cell populations
463 (rows) for the indicated genotypes (columns) in bone marrow isolated from mice either 20 weeks
464 post transplant (WT, *Dnmt3a*^{*Los-R878H*} (D), *Npm1*^{*c-Frt*} (N), *Dnmt3a*^{*Los-R878H*} *Npm1*^{*c-Frt*} (DN)) or when
465 symptomatic (*Npm1*^{*c-Frt*} 2° (N 2°), *Dnmt3a*^{*Los-R878H*} *Npm1*^{*c-Frt*} 2° (DN 2°), *Npm1*^{*c-Frt*} *Flt3*^{*GL-ITD*} (NF),
466 or *Dnmt3a*^{*Los-R878H*} *Npm1*^{*c-Frt*} *Flt3*^{*GL-ITD*} (DNF)). Secondary transplant indicated by 2°, following
467 either Dre-mRNA or mock electroporation. **d**, Strip chart from mice depicted in (c) with y-axis
468 indicated %LSKs of Lin⁻ Cd45.2 in bone marrow. (n=3-4 per group). **e**, UMAP of protein
469 abundance on 4 AML patient samples depicting either cluster number (top left), CD14 (top right),
470 CD45RA (bottom left) or CD90 (bottom left) expression. **f**, Stacked barplot indicating fraction of
471 cells present in three of the clusters from (e) for either *DNMT3A-FLT3* (DF), *NPM1-FLT3* (NF)
472 or *DNMT3A-NPM1-FLT3* (DNF) mutant cells. Error bars reflect the mean \pm s.e.m.; and p-values
473 are calculated by Fisher's LSD test (d) ** $p \leq 0.01$.

474

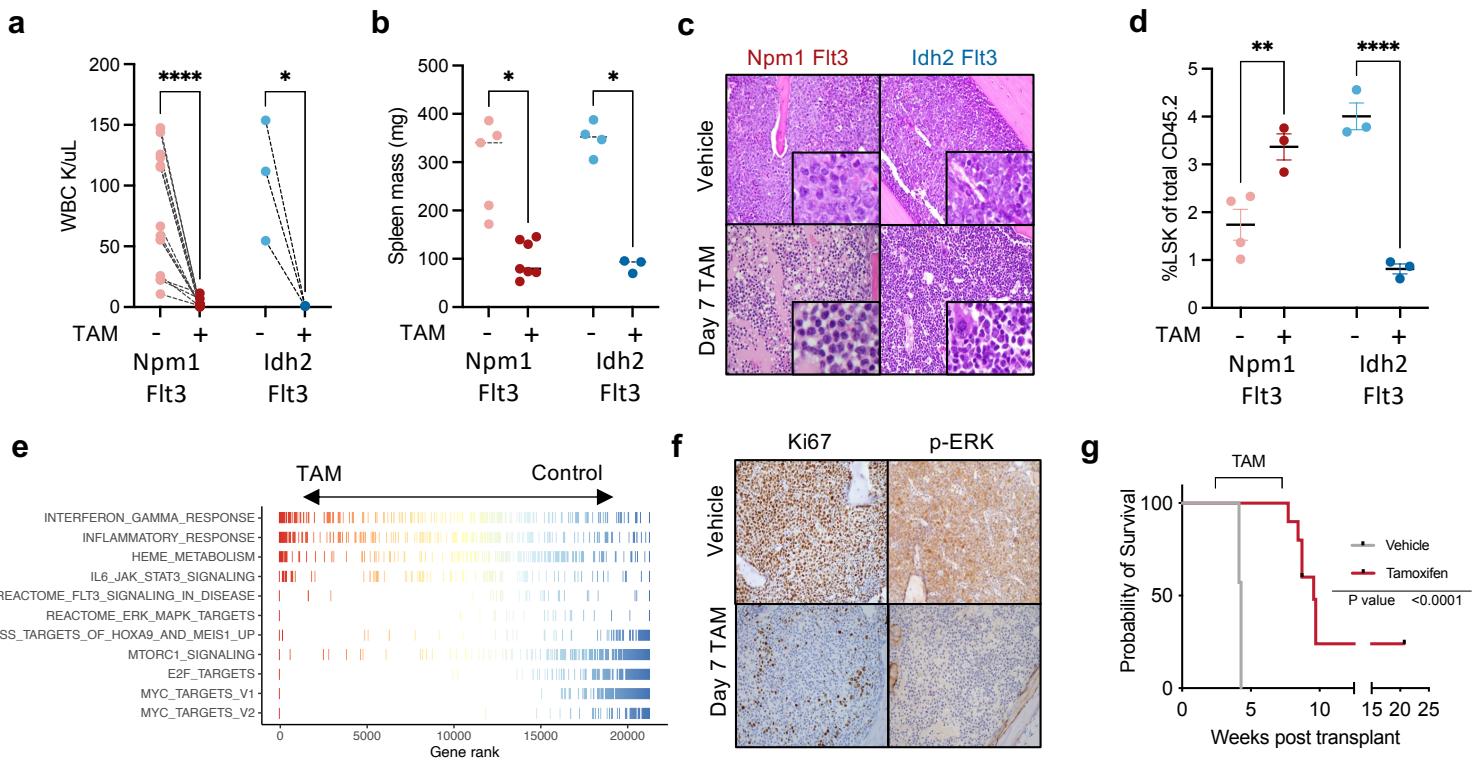

a


b


c

d

e

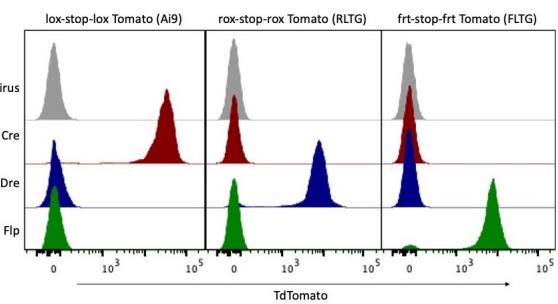


476

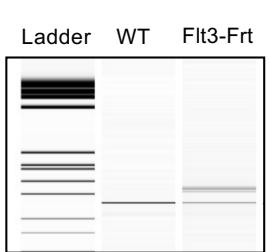
477 Figure 5: Chemically-inducible orthogonal recombinase activation

478 **a**, Schematic depicting DreSTAPL-ODC construct indicating that treatment with NS3 protease
479 inhibitor results in complex formation of the split N and C-terminus of Dre. In the absence of NS3-
480 inhibitin, proteolytic cleavage reveals the ODC degron leading to degradation of the N-terminus.
481 **b**, Lin⁻ bone marrow from Rosa26: TdTomato (Lox-stop-Lox, Ai14), Rosa26:RLTG (Rox-stop-
482 rox) or Rosa26:FLTG (Frt-stop-Frt) mice were infected with retroviral vectors encoding GFP and
483 CreER, DreSTAPL-ODC, or FlpoDHFR respectively. Cultures were treated with the DMSO, 4-
484 OHT (400nM), GZV (10μM) or TMP (1μM) as indicated. Barplot depicts recombination in
485 infected population (%TdTomato+ of GFP+ cells). (n=3 per group). **c**, Experimental schema for
486 primary mice with Ubc:CreERT2, Vav1:DreSTAPL-ODC, *Flt3^{GL-ITD}* as well as either *Idh2^{Lox-R140Q}*
487 or *Npm1^{Lox-C}*. Schema depicts dosing schedule of either TAM or GZV to activate Cre and Dre
488 respectively. **d**, Line chart depicting in peripheral blood monocyte (K/μL) counts in *Flt3^{GL-ITD}* (red),
489 *Npm1^{Lox-C} Flt3^{GL-ITD}* or *Idh2^{Lox-R140Q} Flt3^{GL-ITD}* mice following GZV treatment. (n=4-13 per group).
490 **e**, Stripchart indicating %Cd11b+ cells in the peripheral blood of mice depicted in (c-d) at either
491 16 weeks post GZV treatment (*Flt3^{GL-ITD}* and *Idh2^{Lox-R140Q} Flt3^{GL-ITD}*) or when symptomatic (*Npm1^{Lox-}*
492 ^c *Flt3^{GL-ITD}*). (n=4-7 per group). Error bars reflect the mean ± s.e.m.; and p-values are calculated
493 by Fisher's LSD test (e) * $p \leq 0.05$ *** $p \leq 0.0001$.

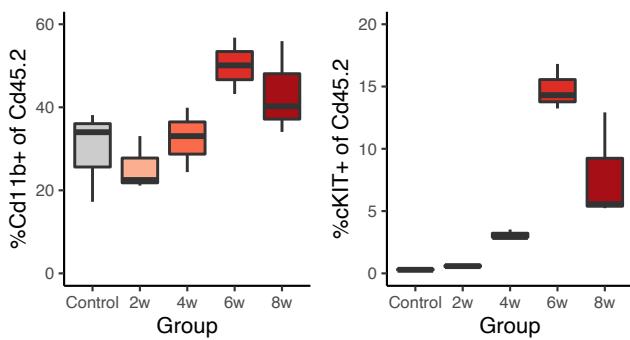
494

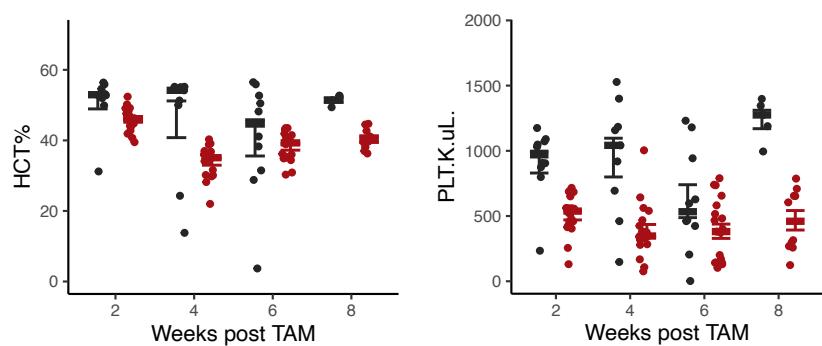

496

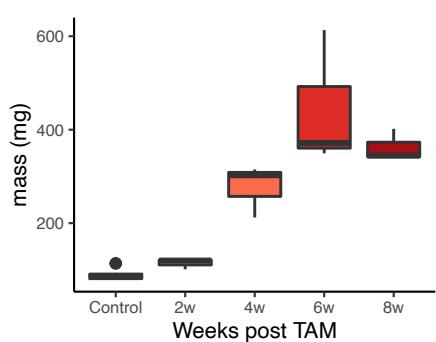
497 **Figure 6: Reversible *Flt3* mutagenesis in acute myeloid leukemia**

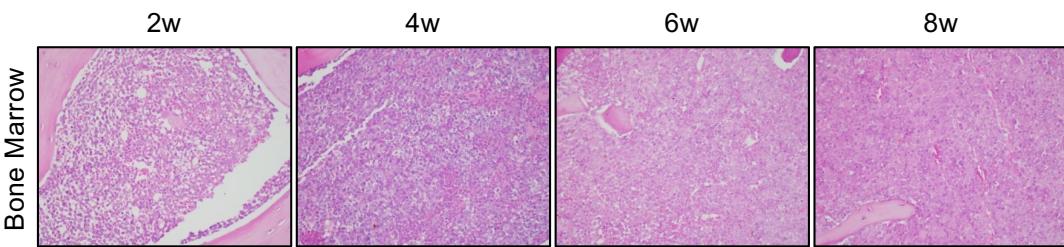

498 Secondary transplant of *Npm1*^{Lox-C} *Flt3*^{GL-ITD} (red; 20,000 cells) or *Idh2*^{Lox-R140Q} *Flt3*^{GL-ITD} (blue; 499 500,000) from Figure 5 were engrafted into lethally irradiated secondary recipients with 500,000 500 Cd45.1 WT cells. After transplant mice were monitored for disease development (*Npm1*^{Lox-C} *Flt3*^{GL- 501 ITD} 4 weeks, or *Idh2*^{Lox-R140Q} *Flt3*^{GL-ITD} 10 weeks), and then euthanized following 7 days of TAM 502 treatment (a-g). **a**, Peripheral blood WBC (K/ μ L) before and after TAM treatment.(n=3-14 per 503 group) **b**, Spleen mass in control and TAM treated mice. (n=3-7 per group). **c**, Bone marrow H&E 504 stained from either control mice or after 7 days of TAM (400x). **d**, Dot chart depicting %LSKs of 505 Cd45.2 cells in bone marrow from control and TAM treated mice for the indicated disease models. 506 (n=3-4 per group). **e**, RNA-sequencing data from lin- HSPCs purified from 7-day TAM treated 507 *Npm1*^{Lox-C} *Flt3*^{GL-ITD} or control mice. Gene ranks from GSEA are depicted as a linechart for the 508 indicated HALLMARK gene set. **f**, Immunohistochemical staining on bone marrow for Ki67 (left) 509 and phospho-ERK1/2 (right) for untreated (top) and 7 day TAM treated (bottom) *Npm1*^{Lox-C} *Flt3*^{GL- 510 ITD} mice. **g**, Kaplan-Meier survival curve of mice engrafted with 500,000 Cd45.1 WT cells and 511 40,000 bone marrow cells from symptomatic *Npm1*^{Lox-C} *Flt3*^{GL-ITD} mice from Figure 5. Mice were 512 either treated with control chow (grey) or placed on a TAM-chow diet (red) for 4 weeks. (n=7-10) 513 Error bars reflect the mean \pm s.e.m.; and p-values are calculated by Dunn's test (a,b), Fisher's LSD 514 test (d) and Log-Rank test (g). * $p \leq 0.05$ ** $p \leq 0.01$ *** $p \leq 0.001$ **** $p \leq 0.0001$

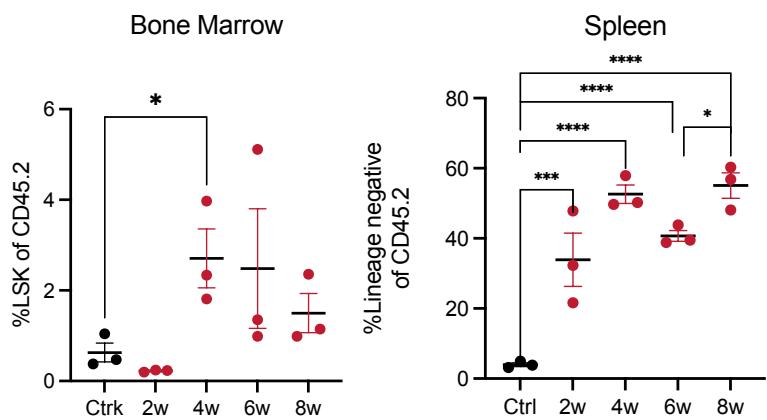
515


a


b

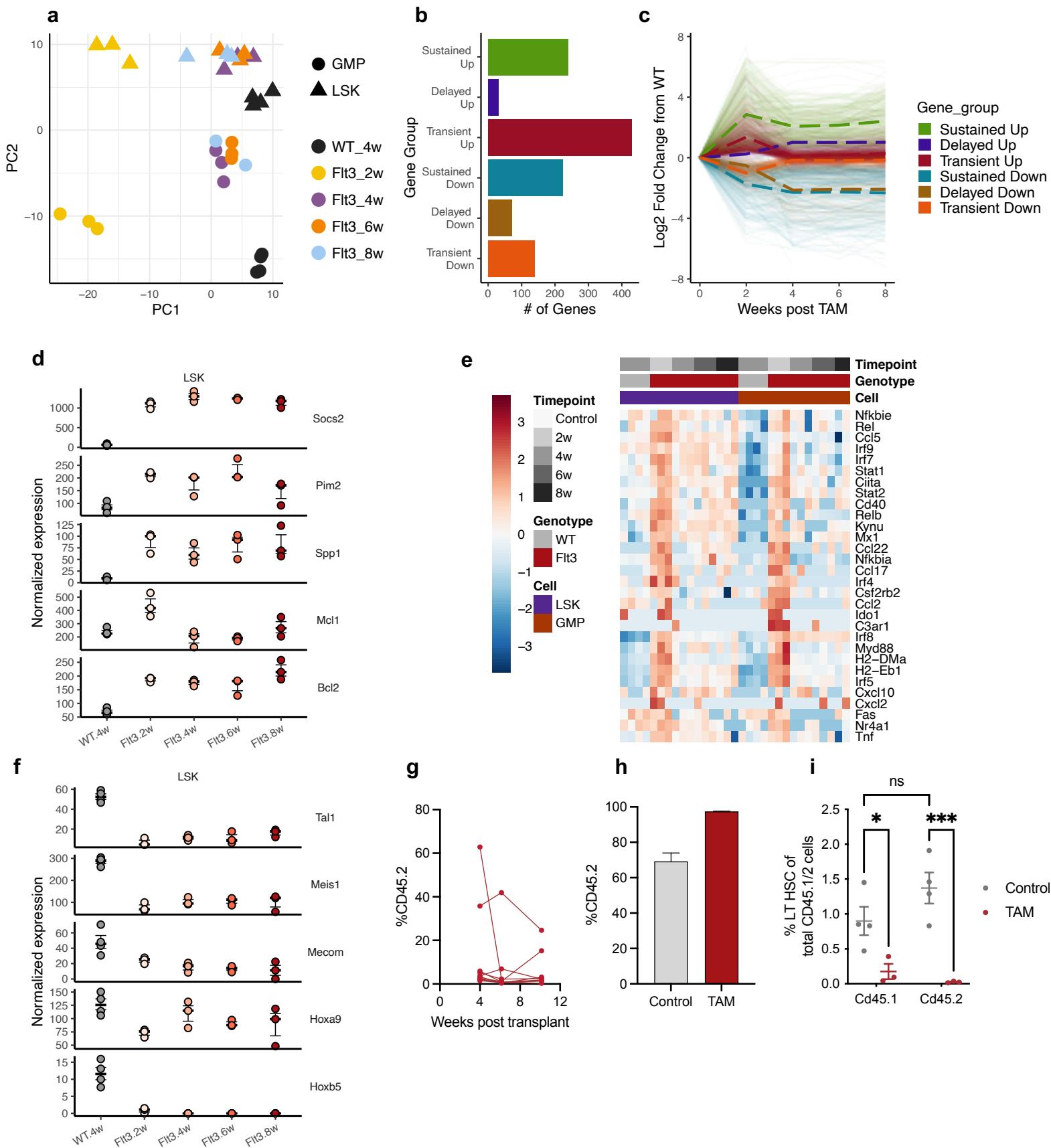

c


d


e

f

g

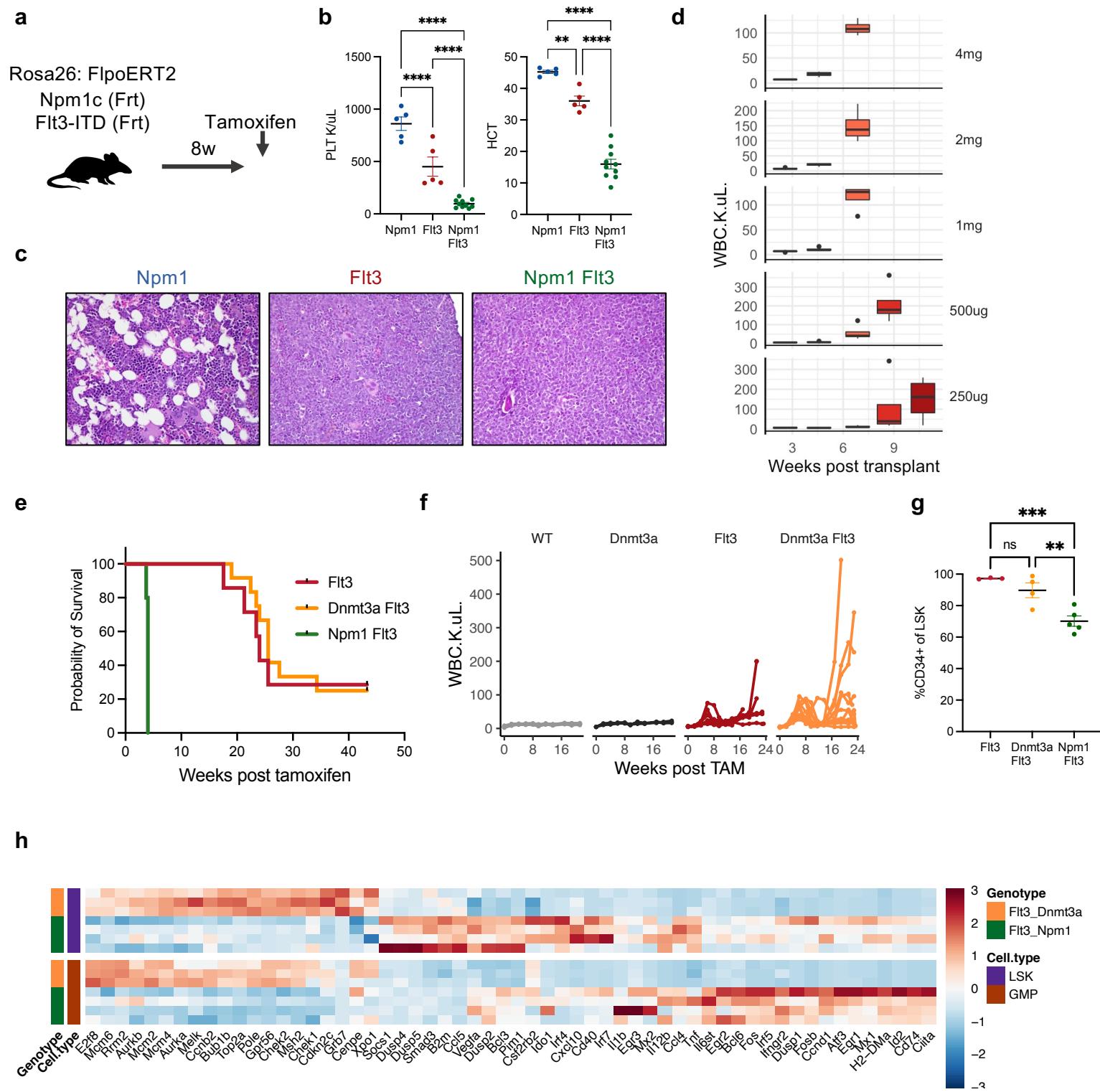

517

518 Extended Data Fig. 1: Flp-inducible *Flt3*^{Frt-ITD} mice demonstrate aberrant hematopoietic
519 phenotypes

520 **a**, Lin⁻ bone marrow was isolated from mice encoding a transcriptional stop cassette flanked by
521 either Lox, Rox or Frt sites. Cells were infected with an GFP+ retrovirus encoding either Cre, Dre
522 or Flp. Excision of the stop cassette in all three reporter lines results in TdTomato expression.
523 Histogram depicts TdTomato expression in GFP+, virally infected cells. **b**, Rosa26:FlpoERT2
524 *Flt3*^{Frt-ITD} or WT mice were treated with TAM, and DNA was isolated for PCR to evaluate excision
525 at the *Flt3* locus. Lower band indicates WT *Flt3* upper band indicates Flp-mediated inversion. PCR
526 was visualized with capillary electrophoresis (Qiaxcel). **c**, Lethally irradiated Cd45.1 recipient
527 mice were transplanted with Rosa26:FlpoERT2 *Flt3*^{Frt-ITD} bone marrow and treated with TAM 4
528 weeks after engraftment. Boxplot depicting total myeloid (Cd11b⁺, left) and cKIT+ (right) cells of
529 Cd45.2 cells in bone marrow transplant at 2, 4, 6 and 8 weeks post TAM. Control mice are *Flt3*^{WT}
530 and 4 weeks post TAM. (n=3 per group) **d**, Hematocrit (%), left), platelets (K/µL, middle) and
531 monocytes (K/µL, right) from primary Rosa26:FlpoERT2 *Flt3*^{Frt-ITD} or WT at 2, 4, 6, and 8 weeks
532 post TAM. (n=10-19 per group) **e**, As in (c), mice were transplanted with Rosa26:FlpoERT2
533 *Flt3*^{Frt-ITD} bone marrow and treated with TAM 4 weeks after engraftment. Boxplots depict spleen
534 mass 2, 4, 6 and 8 weeks post TAM. Control mice are *Flt3*^{WT} and 4 weeks post TAM. **f**, H&E
535 staining of bone marrow from mice described in panels c and e (400X). (n=3 per group) **g**, Dot
536 chart depicting %LSK of Cd45.2 cells in bone marrow (left) or %Lin⁻ of Cd45.2 in spleen (right)
537 from mice transplanted with Rosa26:FlpoERT2 *Flt3*^{Frt-ITD} at 2, 4, 6, and 8 weeks post TAM. (n=3
538 per group). Error bars reflect the mean ± s.e.m.; and p-values are calculated by Fisher's LSD test
539 (g), * $p \leq 0.05$ *** $p \leq 0.001$ **** $p \leq 0.0001$. Boxplots depict median and IQR with whiskers
540 extending to 1.5*IQR.

541

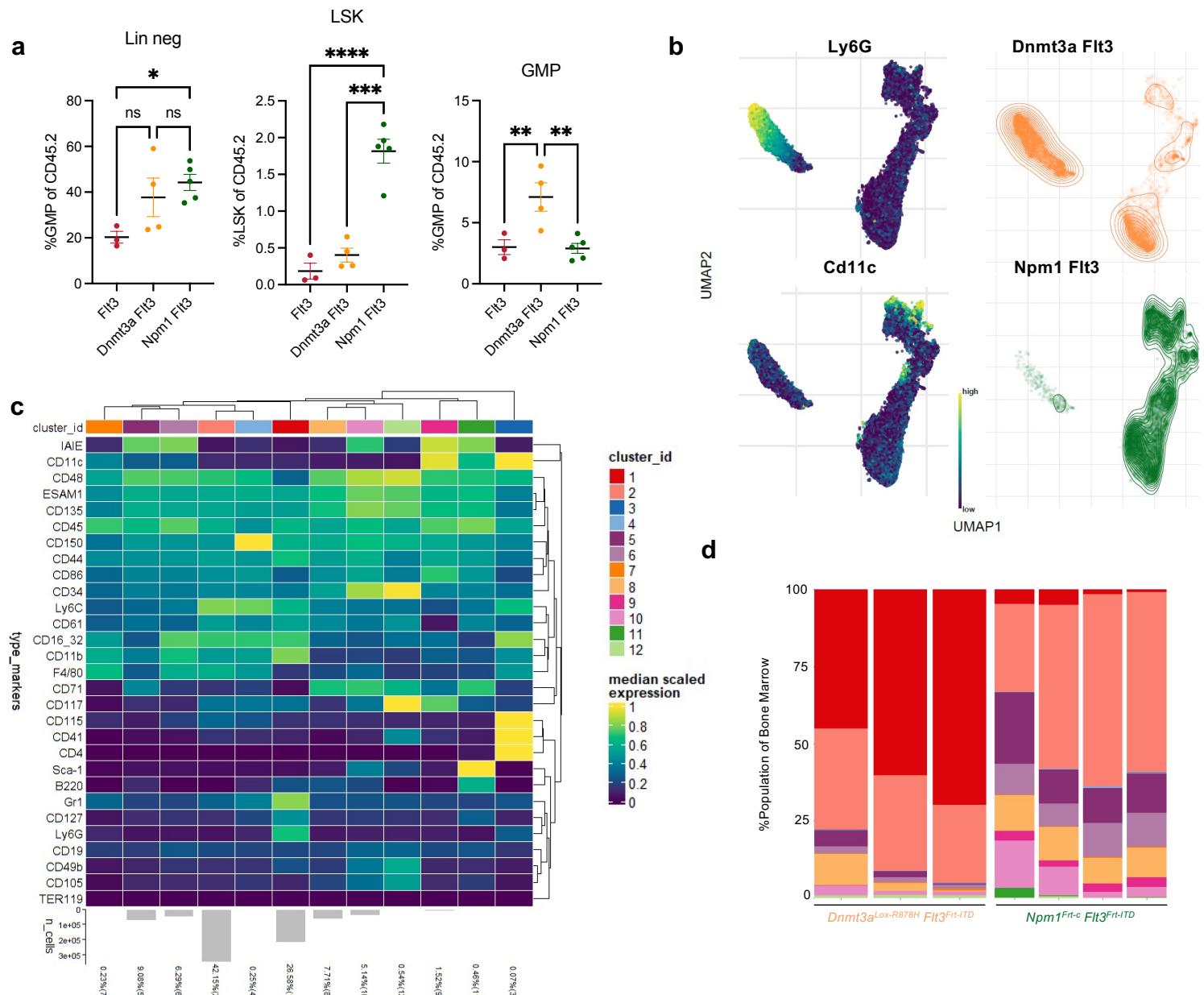
Bowman et al Extended Data 2



543

544 Extended Data Fig. 2: Transcriptional alterations associated with stem cell dysregulation in
545 *Flt3*^{Frt-ITD} mice

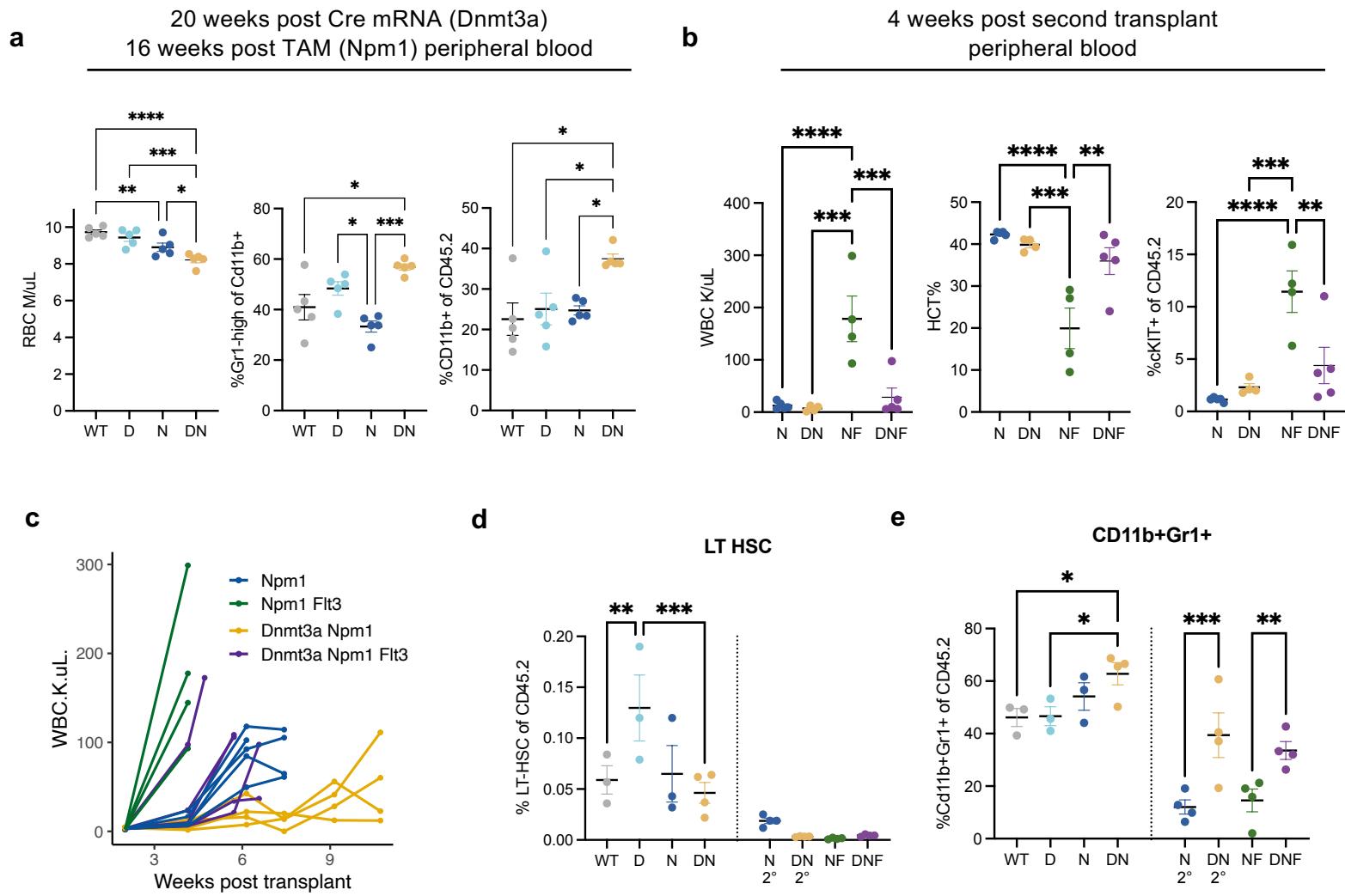
546 **a**, Principal component analysis on RNA-sequencing data of the 1000 most variable genes across
547 LSKs and GMPs sorted from WT or *Flt3*^{Frt-ITD} LSKs at either 2, 4, 6 or 8 weeks post TAM. (n=2-
548 3 per group). **b**, Barplot depicting number of downregulated (blue) and upregulated (red)
549 differentially expressed genes in LSKs for the indicated comparisons. **c**, Row-normalized heatmap
550 depicting average expression levels for gene clusters identified by K-means clustering. **d**, Boxplot
551 depicting normalized gene expression values in WT or *Flt3*^{Frt-ITD} LSKs at either 2, 4, 6 or 8 weeks
552 post TAM. (n=2-3 per group) **e**, Row-normalized heatmap of RNA-sequencing data in WT or
553 *Flt3*^{Frt-ITD} LSKs and GMPs at either 2, 4, 6 or 8 weeks post TAM. **f**, Boxplot depicting normalized
554 gene expression values for stem related genes in WT or *Flt3*^{Frt-ITD} LSKs as in (d). (n=2-3 per group)
555 **g**, Primary Rosa26:FlpoERT2 *Flt3*^{Frt-ITD} mice were treated with TAM at 6 weeks of age, and bone
556 marrow was harvested 24 weeks after TAM. Cells (2x10⁶) from *Flt3*^{Frt-ITD} mice were mixed with
557 Cd45.1 whole bone marrow (3x10⁵) and transplanted into lethally irradiated Cd45.1 recipients.
558 Linechart depicts Cd45.2 chimerism in peripheral blood. (n=10) **h**, Rosa26:FlpoERT2 *Flt3*^{Frt-ITD}
559 was mixed with Cd45.1 WT cells 1:1 and transplanted into lethally irradiated Cd45.1 recipient
560 mice. Mice were treated with TAM 4 weeks post engraftment, and euthanized 16 weeks post TAM.
561 Barplot depicts Cd45.2 chimerism at 16 weeks post TAM. (n=3-4 per group). **i**, As in (h), whole
562 bone marrow was isolated from mice 16 weeks post TAM, and LT-HSC (lin⁻ cKIT⁺ Sca1⁺ Cd48⁻
563 Cd150⁺) were quantified by flow cytometry in both the Cd45.1 WT and Cd45.2 mutant
564 compartment. (n=3-4 per group). Error bars reflect the mean ± s.e.m.; and p-values are calculated
565 by Fisher's LSD test (i), * p ≤ 0.05 *** p ≤ 0.001.


566

568

569 Extended Data Fig. 3: *Npm1*^{Fr-C} and *Dnmt3a*^{Lox-R878H} license *Flt3*^{Fr-ITD} for transformation

570 **a**, Schematic indicating simultaneous activation of *Npm1*^{Fr-C} and *Flt3*^{Fr-ITD} by TAM-mediated
571 FlpoERT2 activation. **b**, As in Figure 2b, bone marrow was transplanted into lethally irradiated
572 recipient mice. After transplant (4w) mice were treated with TAM to activate the indicated
573 genotypes. Stripchart indicates peripheral blood platelets (K/ μ L) (left) or hematocrit (%) (right) 4
574 weeks post TAM. (n=5-10). **c**, H&E staining on bone marrow from the indicated genotypes 4
575 weeks post TAM as in (b). **d**, Bone marrow from Rosa26:FlpoERT2 *Npm1*^{Fr-C} *Flt3*^{Fr-ITD} mice were
576 transplanted into lethally irradiated recipients and treated with the indicated titration of TAM.
577 Boxplots depict WBC (K/ μ L) at biweekly bleeds post TAM. (n=3 per group). **e**, Kaplan-Meier
578 survival curve of *Flt3*^{Fr-ITD} (red), *Dnmt3a*^{Lox-R878H} *Flt3*^{Fr-ITD} (orange), and *Npm1*^{Lox-C} *Flt3*^{Fr-ITD} mice
579 following TAM-mediated Rosa26:FlpoERT2 activation. (n=5-12 per group). **f**, Line chart
580 depicting monocytes (K/ μ L) of WT, *Dnmt3a*^{Lox-R878H}, *Flt3*^{Fr-ITD} and *Dnmt3a*^{Lox-R878H} *Flt3*^{Fr-ITD} mice
581 following TAM-mediated activation of Rosa26:FlpoERT2. (n=3-12 per group). **g**, Fraction of
582 Cd34+ cells in LSKs in bone marrow from *Flt3*^{Fr-ITD}, *Npm1*^{Fr-C} *Flt3*^{Fr-ITD}, and *Dnmt3a*^{Lox-R878H}
583 *Flt3*^{Fr-ITD} mice. (n=3-5 per group). **h**, Column-normalized heatmap of gene expression data from
584 LSKs (bottom, purple) or GMPs (top, orange) from *Npm1*^{c-Frt} *Flt3*^{Fr-ITD} (green) or *Dnmt3a*^{Lox-R878H}
585 *Flt3*^{Fr-ITD} (orange) leukemic mice (rows) with each column depicting the indicated gene. Error bars
586 reflect the mean \pm s.e.m.; and p-values are calculated by Fisher's LSD test (b,g), ** $p \leq 0.01$ ***
587 $p \leq 0.001$ **** $p \leq 0.0001$. Boxplots depict median and IQR with whiskers extending to 1.5*IQR.
588

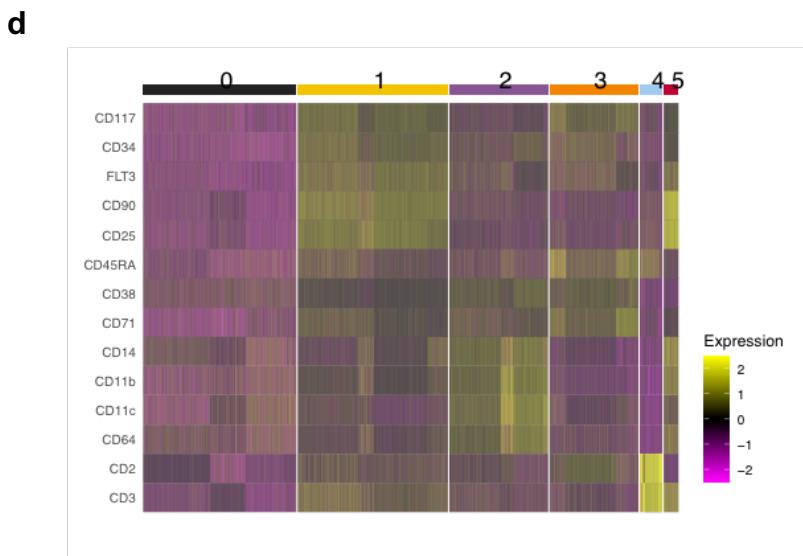
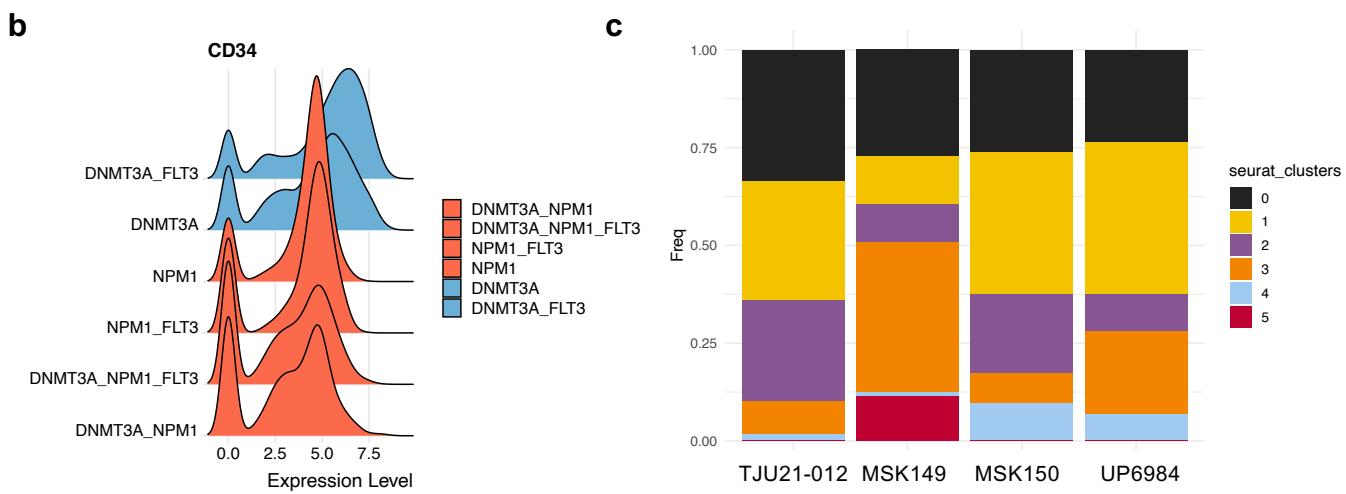
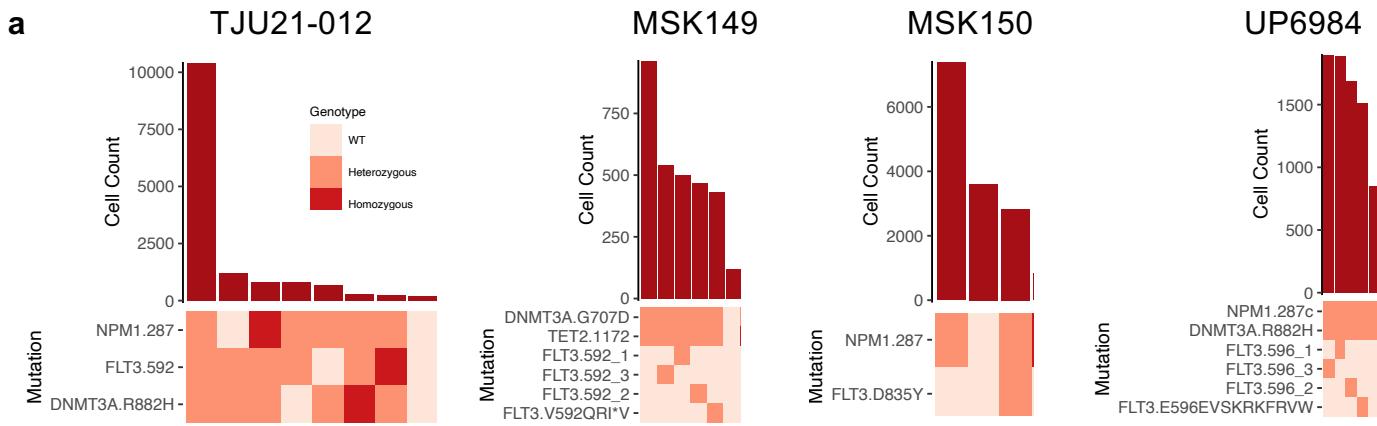

590

591 Extended Data Fig. 4: Immunophenotypic characterization of *Dnmt3a-Flt3* and *Npm1-Flt3*

592 leukemias

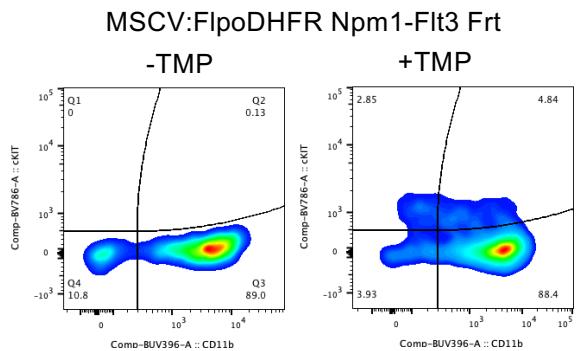
593 **a**, Dot chart depicting %lin⁻ (left), %LSK⁺ (middle) and GMP (right) of Cd45.2 cells in bone
594 marrow from *Flt3*^{Frt-ITD}, *Npm1*^{Frt-C} *Flt3*^{Frt-ITD}, and *Dnmt3a*^{Lox-R878H} *Flt3*^{Frt-ITD} mice. (n=3-5 per group)
595 **b**, UMAP depicting CyTOF-derived abundance levels of Ly6G (top left) and Cd11c (bottom left)
596 in bone marrow from leukemic mice. Relative frequency of cells from *Dnmt3a*^{Lox-R878H} *Flt3*^{Frt-ITD}
597 (top right) and *Npm1*^{Frt-C} *Flt3*^{Frt-ITD} (bottom right) are depicted as density contour plots. **c**, Heatmap
598 indicating CyTOF-derived median scaled expression value for markers (rows) in each cluster of
599 cells (columns). Cluster abundance is depicted as a barplot on the bottom of the graph. **d**, Stacked
600 barplot depicting abundance of cells in clusters from (d) for *Dnmt3a*^{Lox-R878H} *Flt3*^{Frt-ITD} (left) and
601 *Npm1*^{Frt-C} *Flt3*^{Frt-ITD} (right) leukemias. Error bars reflect the mean \pm s.e.m.; and p-values are
602 calculated by Fisher's LSD test (a), * $p \leq 0.05$ ** $p \leq 0.01$ *** $p \leq 0.001$ **** $p \leq 0.0001$.

603

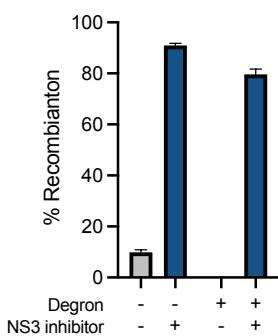




605

606 Extended Data Fig. 5: Immunophenotypic characterization of sequential mutagenesis models

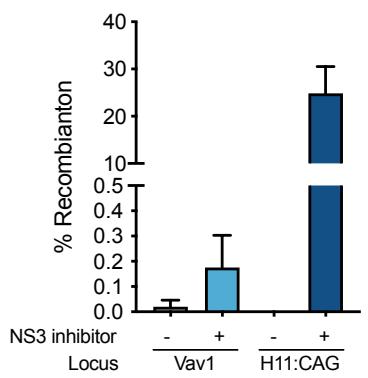

607 Related to experimental scheme depicted in Figure 4. **a**, Flow cytometric analysis in the peripheral
608 blood at the end of the first transplant (20 weeks post *Dnmt3a*^{Lox-R878H}/Cre, 16 weeks post *Npm1*<sup>Frt-
609 C/Flp</sup>) for total myeloid cells (Left, %Cd11b+ of total Cd45.2), monocytic cells (middle, %Gr1^{mid}
610 of Cd45.2), and granulocytic cells (right, %Gr1^{high} of Cd45.2). (n=5 per group). **b**, Flow cytometric
611 analysis in the peripheral blood 4 weeks after the second transplant (4 weeks after *Flt3*^{GL-ITD}/Dre
612 or mock electroporation) for cKIT+ cell (Left), monocytic cells (middle, %Gr1^{mid} of Cd45.2), and
613 granulocytic cells (right, %Gr1^{high} of Cd45.2). (n=4-5 per group). **c**, Peripheral blood WBC count
614 (K/ μ L) in secondary transplant for the indicated genotypes. (n=5 per group). **d-e**, Strip chart from
615 mice depicted in Figure 4c with y-axis indicating %LT-HSC (d), or %Cd11b⁺Gr1⁺ (e) cells within
616 the Cd45.2 compartment for the indicated genotypes. N 2° and DN 2° indicate secondary transplant
617 with mock mRNA electroporation. (n=3-4 per group). Error bars reflect the mean \pm s.e.m.; and p-
618 values are calculated by Fisher's LSD test (a,b,d,e), * $p \leq 0.05$ ** $p \leq 0.01$ *** $p \leq 0.001$ **** p
619 ≤ 0.0001 .

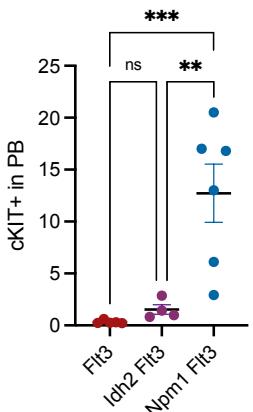
620



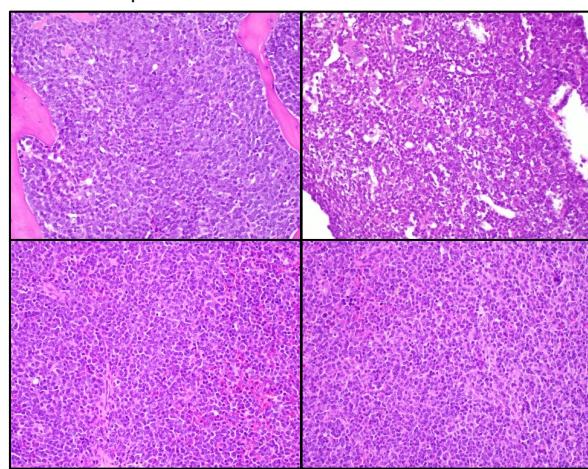
622
623 Extended Data Fig. 6: Single cell DNA sequencing and surface immunophenotyping of AML
624 samples
625 **a**, Clonographs depicting mutation abundance for each sample. Top bar plot depicts number of
626 cells identified with a given genotype and ranked by decreasing frequency. Bottom, heat map
627 indicates mutation zygosity for each clone. **b**, Histogram depicting log-normalized CD34
628 expression in indicated clones, with *NPM1*^{mutant} clones depicted in red and *NPM1*^{WT} clones depicted
629 in blue. **c**, Stacked barplot depicting relative abundance of different cell communities for each
630 sample. **d**, Row normalized heatmap depicting expression of select markers across the different
631 cell communities, high expression indicated in yellow and low expression indicated in purple.
632

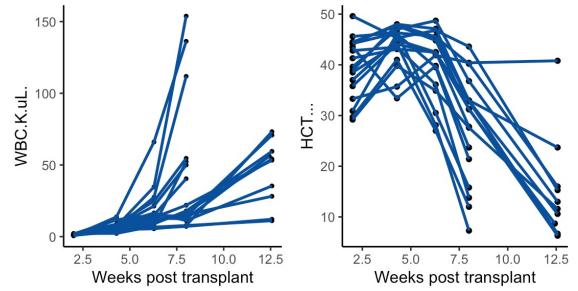
a


b


c

d

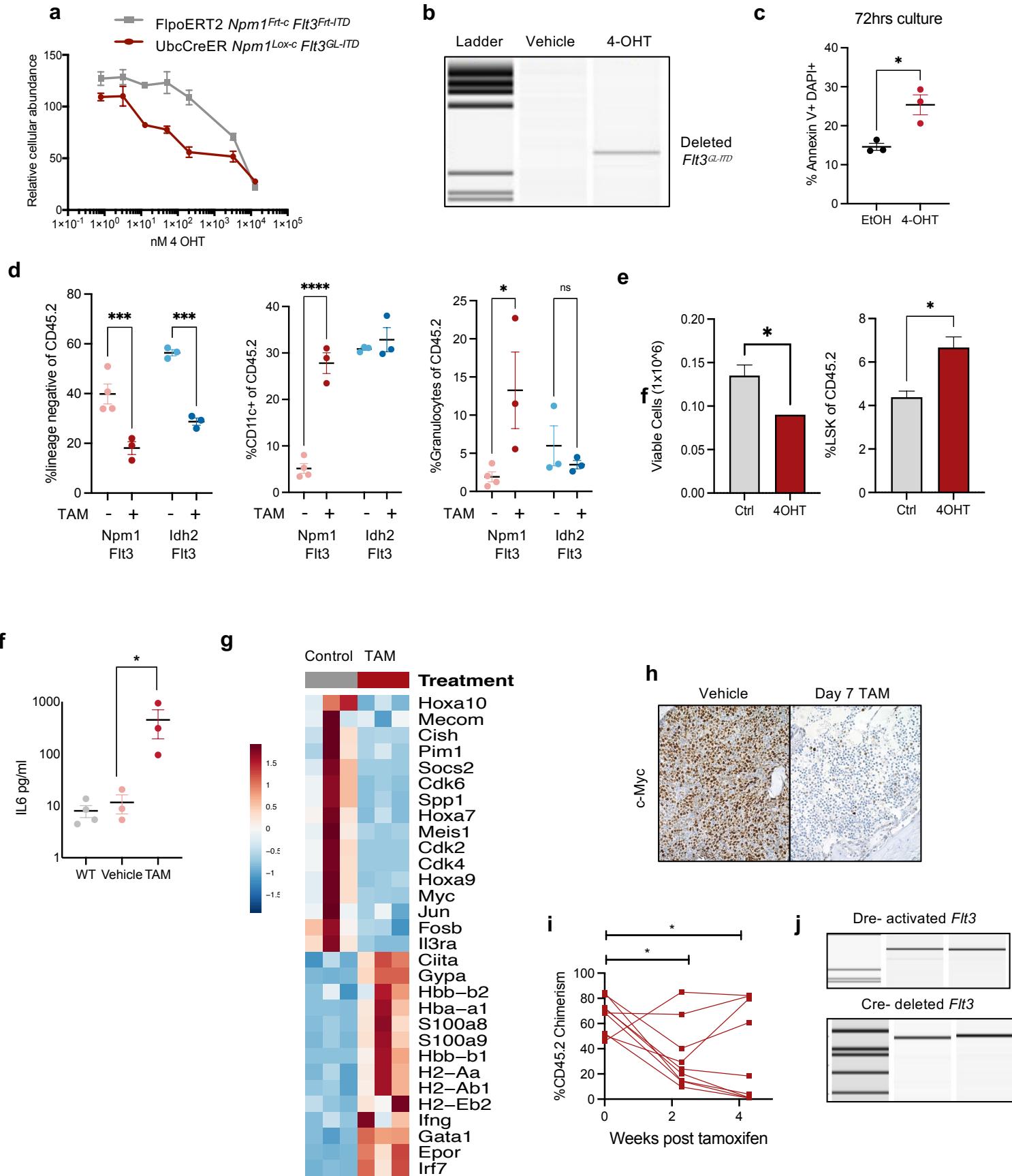

e


Npm1 Flt3

Idh2 Flt3

f

g



634

635 Extended Data Fig. 7: Inducible recombinases for modeling *Flt3* activation and leukemogenesis

636 **a**, Bone marrow was isolated 6 days after 5-FU treatment from *Npm1^{Fr}-C Flt3^{Fr-ITD}* mice and
637 infected with MSCV:FlpoDHFR IRES GFP virus. Cells were transplanted with 200,000 Cd45.1
638 WT cells into lethally irradiated recipients and engraftment was monitored by flow cytometry.
639 Mice were treated with and without the FlpoDHFR stabilizing agent trimethoprim (TMP).
640 Representative flow plot indicating accumulation of cKIT+ cells in the peripheral blood following
641 TMP-treatment. **b**, Lin- bone marrow from Rosa26:RLTG mice were infected with
642 MSCV:DreSTAPL(ODC)-IRES-GFP virus with and without the ODC degron and treated with
643 10uM asunaprevir (ASV). Barplot depicting recombination (%TdTomato+ from Rosa26:RLTG).
644 (n=3 per group). **c**, Schematic representation of CAG:DreSTAPL-ODC WPRE knockin into the
645 H11 locus (top) or P2A-DreSTAPL-ODC knockin into the terminal exon of the Vav1 locus
646 (bottom) replacing the endogenous stop codon. **d**, DreSTAPL-ODC knockin mice from (d) were
647 crossed to the Rosa26:RLTG reporter and treated with GZV. Recombination was assessed by
648 %TdTomato+ in the peripheral blood 2 weeks post GZV treatment. (n=3-5 per group). **e**, Stripchart
649 depicting cKIT+ cells in the peripheral blood of *Flt3^{GL-ITD}*, *Idh2^{Lox-R140Q} Flt3^{GL-ITD}* or *Npm1^{Lox-C} Flt3^{GL-ITD}*
650 mice 12 weeks after GZV treatment (or at symptomatic endpoint for *Npm1^{Lox-C} Flt3^{GL-ITD}* mice).
651 (n=4-6 per group). **f**, H&E staining in *Npm1^{Lox-C} Flt3^{GL-ITD}* (left) and *Idh2^{Lox-R140Q} Flt3^{GL-ITD}* (right)
652 for bone marrow (top) and spleen (bottom) from symptomatic mice (400X). **g**, Whole bone marrow
653 cells (500,000) from symptomatic *Idh2^{Lox-R140Q} Flt3^{GL-ITD}* mice were transplanted into lethally
654 irradiated recipients with 200,000 Cd45.1 WT bone marrow. Line chart depicts WBC (K/ μ L; left)
655 and hematocrit (%; right) at the indicated time point post transplantation. (n=17), Error bars reflect
656 the mean \pm s.e.m.; and p-values are calculated by Fisher's LSD test (e), ** $p \leq 0.01$ *** $p \leq 0.001$.

657

659

660 Extended Data Fig. 8: Immunophenotypic and molecular characteristics of *Flt3*-genetic ablation
661 **a**, cKIT+ cells from Rosa26:FlpoERT2 *Npm1*^{Frt-C} *Flt3*^{Frt-ITD} (grey) and Ubc:CreER
662 Vav1:DreStaPL-ODC *Npm1*^{Lox-C} *Flt3*^{GL-ITD} (red) were cultured in Stemspan supplemented with
663 20ng SCF and treated with escalating doses of 4-OHT. Relative cellular abundance was assessed
664 with PrestoBlue at 72 hours of culture. (n=3 per group). **b**, PCR depicting *Flt3*^{GL-ITD} deletion with
665 4-OHT treatment *ex vivo*, visualized by capillary electrophoresis. **c**, Cells were cultured as in (a)
666 with either 400nM 4-OHT or vehicle control. Apoptosis was assessed by Annexin V and DAPI by
667 flow cytometry. (n=3 per group). **d**, Dot chart depicting %lin- (left), %Cd11c+ (middle) and
668 granulocytes (Cd11b+Gr1^{high}; right) of Cd45.2 cells in bone marrow from control and TAM treated
669 mice for the indicated disease models. (n=3-4 per group). **e**, cKIT+ cells from leukemic *Npm1*^{Lox-C}
670 *Flt3*^{GL-ITD} mice were plated over a bone marrow endothelial feeder layer and treated with 4-OHT
671 (400nM) or vehicle control. Total cell number (left) and %LSK of Cd45.2 (right) were assessed 6
672 days after plating. (n=3 per group). **f**, Serum cytokine levels for IL-6 from WT, untreated *Npm1*^{Lox-C}
673 *Flt3*^{GL-ITD}, and TAM-treated (7d) *Npm1*^{Lox-C} *Flt3*^{GL-ITD} mice. (n=3-4 per group). **g**, Row-normalized
674 heatmap of RNA-sequencing data in untreated (grey) or 7 day TAM-treated (red) leukemic
675 *Npm1*^{Lox-C} *Flt3*^{GL-ITD} mice. **h**, Immunohistochemical detection of c-MYC in bone marrow from
676 control and TAM (7 day) treated *Npm1*^{Lox-C} *Flt3*^{GL-ITD} (400X). **i**, Peripheral blood chimerism of
677 (%Cd45.2) of *Npm1*^{Lox-C} *Flt3*^{GL-ITD} following the initiation of TAM-treatment. (n=9 per group). **j**,
678 PCR evaluating Dre-mediated inversion (top) and Cre-mediated deletion (bottom) of *Flt3*^{GL-ITD} in
679 recurrent *Npm1*^{Lox-C} *Flt3*^{GL-ITD} leukemias following TAM treatment. PCR products were visualized
680 by capillary gel electrophoresis (Qiaxcel). (n=2 representative of a cohort of 9). Error bars reflect
681 the mean \pm s.e.m.; and p-values are calculated by Student's T-test (b,d) and Fisher's LSD test
682 (c,e,i,j), * $p \leq 0.05$ ** $p \leq 0.01$ **** $p \leq 0.0001$.

683

684

685 **Methods**

686 *Mouse model generation:*

687 All protocols were approved by the MSKCC IACUC under protocol 07-10-016. Ubc:CreERT2
688 (strain 007001), RC::RLTG (strain 026931) and RC::FLTG (strain 026932) mice were purchased
689 from Jackson Labs. The Rosa26:FlpoERT2 and Npm1^{Frt-c} mice were described previously and
690 provided by the Trowbridge laboratory⁹. The Dnmt3a^{Lox-R878H}, Npm1^{Lox-c} and *Idh2*^{R140Q} were
691 described previously^{40,41,42}. The *Flt3*^{Frt-ITD} and *Flt3*^{GL-ITD} mice were generated at Ingenious targeting
692 labs. The targeting construct for *Flt3*^{Frt-ITD} was generated A 9.8 kb genomic DNA used to construct
693 the targeting vector was first subcloned from a positively identified C57BL/6 BAC clone (RP23-
694 280N16). The region was designed such that the long homology arm (LA) extends ~7 kb 5' to the
695 5' FRT cassette, and the short homology arm (SA) extends about 2 kb 3' to the insertion of the
696 inversion cassette. The inversion cassette is flanked by mutant F3 sites that point away from each
697 other. The 3' FRT site is placed right before the 3' F3 site. The inversion cassette consists of exon
698 13-mutant exon 14* (humanized Flt3-IDT)-exon 15 and the flanking genomic sequences from
699 upstream of exon 13 to downstream of exon 15 for correct splicing (Inv.saE13-14*-E15Sd). This
700 cassette was inserted in the reverse direction downstream of exon 15. The Lox2272-flanked Neo
701 cassette was inserted immediately upstream of the inversion cassette and is 235 bp away from wt
702 exon 15. The targeting region is 985 bp containing exons 13- 15. Ten micrograms of the targeting
703 vector was linearized and then transfected by electroporation of C57Bl/6 (B6) embryonic stem
704 cells. After selection with G418 antibiotic, surviving clones were expanded for PCR analysis to
705 identify recombinant ES clones. After successful clone identification, the neomycin cassette was
706 removed with a transient pulse of Cre recombinase and clones were reconfirmed following
707 expansion. Finally, ES cells were injected in C57B6 mice via tetraploid complementation (NYU).
708

709 The targeting construct for *Flt3*^{GL-ITD}, was generated as follows: A 9.8 kb genomic DNA used to
710 construct the targeting vector was first subcloned from a positively identified C57BL/6 BAC clone
711 (RP23-280N16). The region was designed such that the long homology arm (LA) extends ~5.7 kb
712 5' to the cluster of Lox2272-Rox-Rox12-Lox2272 sites, and the short homology arm (SA) extends
713 about 1.9 kb 3' to the Neo cassette and 3' Rox12 site. The inversion cassette is in between the

714 second set of Lox2272 and Rox sites, and it consists of exons 12-15 with the IDT mutation
715 engineered in exon 14 (Flt3-IDT) and the flanking genomic sequences from upstream of exon 12
716 to downstream of exon 15 for correct splicing (SaE12-W51-15Sd). The inversion cassette replaces
717 wt exons 12-15 and the same flanking genomic sequences included in the cassette. The deleted
718 region is 2.19 kb. The FRT-flanked Neo cassette is inserted immediately downstream of the
719 inversion cassette. Each pair of the recombination sites are in opposite direction. Ten micrograms
720 of the targeting vector was linearized and then transfected by electroporation of FLP C57Bl/6
721 (BF1) embryonic stem cells. After selection with G418 antibiotic, surviving clones were expanded
722 for PCR analysis to identify recombinant ES clones. The Neo cassette in targeting vector has been
723 removed during ES clone expansion. Targeted iTL BF1 (C57BL/6 FLP) embryonic stem cells
724 were microinjected into Balb/c blastocysts. Resulting chimeras with a high percentage black coat
725 color were mated to C57BL/6 WT mice to generate Germline Neo Deleted mice. Tail DNA was
726 analyzed as described below from pups with black coat color.

727 The knockin constructs for the *Vav1:DreStaPL*-ODC and *H11:CAG:DreStaPL*-ODC mice were
728 synthesize (IDT) and assembled via Gibson assembly. Knockin constructs were injected into
729 zygotes with Cas9 ribonucleotide complexes targeting either *Vav1* or *H11* at Memorial Sloan
730 Kettering Cancer Center using the Mouse Genetics Core Facility. Founders were screened by PCR
731 genotyping. Complete sequences of all mouse models will be available on benchling.

732

733 *Tissue harvest and bleeds*

734 Peripheral blood was isolated by submandibular bleeds. Complete blood counts were assessed on
735 a ProCyte by IDEXX. For flow cytometry analysis whole blood was lysed with RBC lysis buffer
736 (Biolegend). For terminal tissue isolation, mice were euthanized with CO₂ asphyxiation, tissues
737 were dissected and fixed with 10% Zinc formalin for histopathological analysis. For whole bone
738 marrow isolation, the femur, hip and tibia were dissected and cleaned. Cells were isolated by
739 centrifugation at 8000xG for 1 minute. Single cell suspension were generated from crushed whole
740 spleen and filtered through a 70uM filter. RBC lysis was performed (Biolegend) and cells were
741 prepared for downstream processing or frozen in 10%DMSO+90% fetal bovine serum.

742

743 *Bone marrow transplant:*

744 Donor cells were either prepared fresh or thawed from frozen cells. Fresh cells were prepared as
745 described above. When prepared from frozen cells, cells were thawed at 37C into warm FACS
746 buffer (PBS+2%fetal bovine serum (FBS)), centrifuged at 1500rpm for 5 minutes, washed once
747 with warm and resuspended in PBS. Donor cells and support cells were mixed at desired ratios as
748 indicated. The day before injection, Cd45.2 recipient mice were irradiated with 900cGy using an
749 Xcellerator cesium irradiator. Recipient mice were heated under a heat lamp for 5-10 minutes to
750 induce vasodilation in preparation for tail vein injection. Mice were restrained using a rotating tail
751 injector restrainer and 200ul of cells were injected per mouse.

752

753 *In vivo drug dosing:*

754 Tamoxifen (TAM) powder (500mg) was dissolved in 25ml of corn oil, wrapped in foil and shaken
755 at 225rpm overnight. TAM was the aliquoted and stored at -80C. Upon dosing, TAM was thawed
756 and dosed at 200ul (4mg) per mouse via oral gavage. Tamoxifen chow was purchased from Envigo
757 and provided *ad libitum*. Grazoprevir (GZV) powder (100mg) was dissolved in 1ml of DMSO
758 and frozen at -80C. GZV was administered *in vivo* with Ritonavir (RTV) and Lopinavir (LPV).
759 RTV 40mg/ml DMSO) and LPV (40mg/ml DMSO) were mixed together in a 1:4 ratio (RTV:LPV)
760 and stored at -80C. For *in vivo* dosing, 27.5 μ L GZV was added to 27.5 RTV/LPV, 400 μ L of
761 PEG400, and finally 635 μ L PBS. Mice were dosed with the GZV+RTV+LPV mix at 200ul via
762 intraperitoneal (IP) injection with a 27.5G insulin syringe. Trimethoprim (TMP) powder (100mg)
763 was dissolved in 1ml of DMSO and frozen in 110ul aliquots at -80C. Upon dosing, TMP was made
764 fresh by thawing an aliquot and adding 440ul of PEG400 and 550ul of PBS to get a final volume
765 of 1100ul. Mice were dosed at 200ul via intraperitoneal (IP) injection with a 27.5G insulin syringe.

766

767 *Cloning:*

768 Codon optimized versions of Cre, CreERT2 and Dre were synthesized (Thermo) and subcloned
769 into pENTR using the directional TOPO cloning kit. Flpo was PCR amplified from a FlpoERT2
770 construct provided by Dr. Alex Joyner at MSKCC, and then TOPO cloned into pENTR using the
771 same approach. DreStaPL and DreStaPL-ODC were generated by a gibson reaction with the
772 backbone generated through inverse PCR of the pENTR vector, and the StaPL containing insert
773 synthesized as a gBlock for IDT. A similar approach was used for inserting DHFR downstream of

774 Flpo. These pENTR constructs were then cloned into a MSCV:IRES GFP destination vector using
775 a gateway cloning approach (Thermo: LR Clonase II).

776

777 *Virus generation and viral infection*

778 MSCV retroviral vectors were transfected with pCL-Eco packaging vector into 293T-17 cells
779 using JetPRIME following the manufacturers protocol (5ug each, 1:1). Conditioned media was
780 collected 72 hours later and passed through a 0.45uM filter. Virus was either used fresh or stored
781 at -80C for later usage. For viral infection in Figure 4 and Extended Data 8, lineage negative bone
782 marrow was isolated using the Mouse Hematopoietic Progenitor Cell Isolation Kit (StemCell
783 19856) and plated over retronectin coated 6 or 12 well plates for 2 hours in RPMI+10%FBS
784 supplemented with Penicillin/Streptomycin, 20ng SCF, 10ng IL6 and 10ng IL3. Virus and 100X
785 HEPES was added to the wells, then plates were spun for 1 hour at 800xG at 37C. Following spin,
786 small molecule ligands used to activate recombinases were added to a final concentration as
787 indicated ethanol (v/v 0.0015%), DMSO (v/v 0.1%), 4-hydroxytamoxifen (4-OHT; 400nM),
788 trimethoprim (TMP; 1uM) or grazoprevir (GZV, 10uM). Cells were harvested for flow cytometric
789 analysis 48 hours post infection. For viral infection followed by transplantation in Extended Data
790 8, a similar approach was utilized with the following modifications. Donor mice were treated with
791 5-FU 6 days prior to harvest. Mice were euthanized as described above, and bone marrow was
792 isolated by flushing bones with 10ml of FACS buffer with a 26.5 gauge needle. Whole bone
793 marrow was plated retronectin plates as described above, and cells were harvested for transplant 2
794 hours after infection.

795

796 *Histology staining and immunohistochemistry, photography*

797 Spleen, liver and tibia samples were fixed (4% paraformaldehyde) for >24 hours and embedded in
798 paraffin. Sections were cut using microtome (Mikrom International AG), mounted on slides
799 (ThermoScientific), and dried at 37°C overnight. Hematoxylin and eosin (H&E) staining was
800 performed on a COT20 stainer (Medite). All sample handling and preparation was performed by
801 Tri-Institutional Laboratory of Comparative Pathology (LCP) facility. The following antibodies
802 were used for immunohistochemistry: phospho-44/42 MAPK (Erk1/2) (Cell Signaling 4376,
803 1:100). Pictures were taken at 400X magnification using an Olympus microscope and analyzed

804 with Olympus Cellsens software. Tissue sections were formally evaluated by a hematopathologist
805 (W. Xiao).

806

807 *Cell culture:*

808 For Extended Data 8a, 5000 cKIT+ cells from either Ubc:CreER *Npm1*^{Lox-c}*Flt3*^{GL-ITD} or
809 *Rosa26:FlpoERT2 Npm1*^{Frt-c}*Flt3*^{Frt-ITD} leukemias were added to non TC coated 96 well plate in
810 StemSpan (STEMCell) supplemented with Penicillin/Streptomycin and 20ng/ml of SCF with a
811 titration range of 4-OHT. Cellular abundance was read out 72 hours later using the Presto Blue
812 assay (Thermo) on a Cytation 3 (BioTek) plate reader. Similar cultures conditions were used in
813 Extended Data 8b for apoptosis analysis, scaled to a 12 well plate with 400nM 4-OHT. Cell
814 viability was assessed with tryphan blue on a Vicell Blue Cell Counter (Beckman Coulter).

815 *Ex vivo* cultures over bone marrow endothelial cells were performed as previously described.
816 Briefly, 100,000 myristoylated-Akt immortalized bone marrow endothelial cells were plated into
817 a fibronectin coated 12 well plate for 48 hours. Cultures were washed twice with PBS, and then
818 50,000 cKIT+ splenocytes from Ubc:CreER *Npm1*^{Lox-c}*Flt3*^{GL-ITD} leukemic mice were plated in
819 StemSpan with Penicillin/Streptomycin and 20ng/ml of SCF. Media was changed 3 days later, and
820 on day 6, cultures were harvested with Accutase (Biolegend) for viability by tryphan blue and
821 assessment by flow cytometry.

822

823 *Flow cytometry and sorting:*

824 Freshly isolated or cryopreserved cells were washed twice with FACS buffer (phosphate buffered
825 saline (PBS)+ 2% fetal bovine serum). Cells were incubated with antibody cocktails for 15 minutes
826 at 4°C. Complete antibody details can be found in Supplementary Table 2. Following antibody
827 incubation, cells were washed with FACS buffer and resuspended in a DAPI containing FACS
828 buffer solution for analysis and sorting. Flow cytometry analysis was performed on a BD
829 LSRFortessa with analysis using FACSDiva and FlowJo (v10.9). Cell isolation with FACS was
830 performed on a Sony SH800.

831

832 *Nucleic acid isolation and RNA-sequencing library generations*

833 DNA was isolated using the DNeasy Blood & Tissue Kit (Qiagen). RNA was isolated using the
834 Direct-zol RNA Microprep Kit (Zymo Research, R2061) and quantified using the Agilent High

835 Sensitivity RNA ScreenTape (Agilent 5067- 5579) on an Agilent 2200 TapeStation. 3' multiplexed
836 RNA-sequencing was performed with the Takara SMART-Seq v4 3' DE Kit (Takara 635040)
837 followed by Nextera XT (Illumina FC-131-1024) library preparation. For full length RNA-
838 sequencing, cDNA was generated from 1ng of input RNA using the SMART-Seq HT Kit (Takara
839 634455) at half reaction volume. cDNA and tagmented libraries were quantified using High
840 Sensitivity D5000 ScreenTape (5067- 5592) and High Sensitivity D1000 ScreenTape respectively
841 (5067- 5584). Libraries were sequenced on a NovaSeq at the Integrated Genomics Operation
842 (IGO) at MSKCC.

843

844 *Mass Cytometry and data analysis:*

845 Cryopreserved mouse whole bone marrow or spleen cells were thawed and counted.
846 Approximately 1 million from each mouse analyzed were used. Live cells were rested for 2 hours
847 in RPMI + 10% FBS (Gibco) (cRPMI) and then stained for viability with 5 M Cell-ID Cisplatin
848 (Fluidigm 201198, 201194) for 2.5 minutes and washed in cRPMI. Cells were fixed with
849 paraformaldehyde at a final concentration of 1.6% for 10 mins at RT in the dark and washed with
850 Maxpar PBS (Fluidigm). Palladium mass-tag barcoding was performed as previously described
851 using combinations of 6 palladium isotopes with Cell-ID 20-plex Pd barcoding kit (Fluidigm).1,2
852 All barcoded cells were then combined and washed with Maxpar cell staining buffer (CSB)
853 (Fluidigm) and stained first with anti-CD16/32-159Tb for 30min, followed by the rest of the
854 surface antibody cocktail for 30 mins (Supplementary Table 2). Cells were then washed with PBS,
855 and permeabilized with ice cold 100% methanol (Fischer Scientific) for at least 30 mins. Following
856 permeabilization, cell were washed and pelleted twice with CSB followed by intracellular antibody
857 staining for 30 mins. Just prior to data collection, cells were stained with 250 nM Cell-ID Iridium
858 intercalator (Fluidigm) in PBS with 1.6% PFA for 30 mins at 4°C and then washed per protocol.
859 Cells were then washed and rehydrated in double deionized water and collected on a Helios mass
860 cytometer (Fluidigm). Barcorded .fcs files were normalized and debarcoded with Fluidigm
861 Debarcoder software. Files were downloaded and gated in Cytobank (BeckmanCoulter) for single
862 intercalator positive cells. Cd45.2-positive cells were gated and files were downloaded and loaded
863 into R for use by the CATALYST package.3,4 Analysis and plots were created using this following
864 standard workflows.

865

866 *mRNA electroporation*
867 Lineage negative bone marrow cells were isolated using the Mouse Hematopoietic Progenitor Cell
868 Isolation Kit (StemCell 19856) and electroporated with a custom Dre mRNA (Tri-Link) using the
869 Thermo Neon electroporation device according to the manufacturer's protocol (100ul kit, Thermo
870 MPK10025). In brief, lineage negative bone marrow cells were resuspended in 153ul of buffer T
871 and 17ul of Dre mRNA (1ug/ul) was added and mixed by pipetting. Immediately after RNA
872 addition, cells were electroporated using one pulse of 1700V for 20ms. Following electroporation,
873 cells were added to serum free media (StemSpan) with 50ng SCF and 10ng IL3 without antibiotics.
874 For transplantation experiments, cells were incubated at 37 degrees for 1 hour and then injected
875 into mice as described above. For extended culture, antibiotics were added 4 hours after
876 electroporation.

877

878 *Bioinformatic analysis*
879 *RNA-sequencing:* FASTQ files were demultiplexed using a java script from Takara. FASTQ files
880 were mapped and transcript counts were enumerated using STAR (genome version mm10 and
881 transcript version genecode M13). Counts were input into R and RNA-sequencing analysis was
882 completed using DESeq2. Gene set enrichment analysis was performed using the fgsea package
883 with genesets extracted from the msigdbr package. Single sample gene set enrichment analysis
884 was performed using the gsva package. Figures were generated using ggplot2 and tidyheatmaps
885 packages. Complete scripts will be made available on github.

886

887 *Patient samples*
888 Patients with acute myeloid leukemia between 2014-2020 were studied. Informed consent from
889 patients was obtained in accordance with the Declaration of Helinski and according to protocols
890 by the institutional IRBs. This study was approved by MSKCC IRB (protocol #15-017) and
891 Thomas Jefferson University (TJU) IRB (protocol #17D.083). Diagnosis, AML status, and normal
892 karyotype were confirmed and assigned based on World Health Organization classification
893 criteria. Samples from patients were collected and process by the Human Oncology Tissues Bank
894 at MSKCC or the Heme Malignancy Repository at TJU. Bone marrow mononuclear cells were
895 isolated by Ficoll and viably frozen. MSKCC samples were subjected to high-throughput genetic
896 sequencing with HemePACT, a targeted deep sequencing assay of 685 gene recurrently mutated

897 in hematologic malignancies. Variants and short insertion/deletions are identified as described
898 previously (Miles, Bowman Nature 2020). Samples were selected from patients harboring a
899 confirmed FLT3-ITD mutation co-mutated with DNMT3A and/or NPM1 mutations where 1) all
900 mutations were covered by the Mission Bio Custom amplicon panel, 2) variant allele frequency of
901 each mutation was >5%, and 3) cell number collected was feasible for downstream processing
902 (>5x10⁶ cells).

903

904 *Single-cell DNA+Protein sequencing library preparation and sequencing*

905 Patient samples were thawed and quantified using a Countess cell counter. Viable cells (1.0-
906 4.0x10⁶) were resuspended in Cell Staining Buffer (Mission Bio) and incubated with TruStain FcX
907 and Blocking Buffer (Mission Bio) for 15min on ice. The Biolegend TotalSeq-D Heme Panel
908 consisting of 45 oligo-conjugated antibodies (AOC; Supplementary Table 2) and a custom
909 TotalSeq-D AOC against human CD135 (0.5mg/mL; FLT3/FLK2; clone BV10A4H2) was
910 resuspended in Cell Staining Buffer and then incubated with the blocked cell suspending for 30
911 min on ice. Cells were washed multiple times with Cell Staining Buffer and finally resuspended
912 in Cell Buffer (Mission Bio). Stained cells were requantified, loaded into a Tapestri microfluidics
913 cartridge, encapsulated, lysed and barcoded as previously described (Miles, Bowman Nature 2020,
914 Pellegrino, M. Genome Res, 2018). DNA and Protein PCR products were then isolated and
915 purified as previously described (Miles Bowman Nature 2020). All libraries were quantified using
916 an Aligent Bioanalyzer, normalized, and pooled for sequencing on an Illumina NovaSeq by the
917 MSKCC Integrated Genomics Core. FASTQ files were processed via the Tapestri pipeline on the
918 Mission Bio cloud server. H5 files were downloaded and processed with in house scripts in R,
919 complete scripts and tutorial wil be made available on github. Briefly, H5 files were read into using
920 the h5read function from the ‘rhdf5’ package. Variants were filtered if they were not genotyped in
921 less than 20% of cells, or possessed an initial variant allele frequency <0 .005%. Subsequently,
922 non-synonymous protein encoding variants were filtered with a depth (DP) cutoff of 10, gene
923 quality (GQ) cutoff of 30, and allele frequency cutoff of <20% for wildtype, 20-80% for
924 heterozygous and >80% for homozygous calls. Cells that possessed GATK calls from the tapestri
925 pipeline that passed these filtered were retained, and were consolidated into isogenic clones.
926 Protein data was generated from the tapestri pipeline as raw counts, and imported into R as a Seurat
927 object. The protein data was logNormalized, centered and scaled on a per sample basis, and the

928 top 4 principle components were used to as input in the KNN neighbor identification. Subsequent
929 community identification was performed with the 'FindClusters' function with a resolution
930 variable of 0.25. The clone information was applied as metadata, and all subsequent analysis
931 occurred in Seurat, including generation of ridgeplots, feature heatmaps, and UMAPs.

932

933 *Data availability*

934 All raw and processed sequencing data will be made accessible via the NCBI Gene-Expression
935 Omnibus (GEO) mouse and dbGAP.

936

937

938 **ACKNOWLEDGEMENTS**

939 We are grateful to members of the Levine Lab for their discussion of the work. We would also like
940 to acknowledge Dr. Alex Joyner (MSKCC), Dr. Patricia Jensen (NIH) and Dr. Tudor Badea (NIH)
941 for discussion on Dre-Rox technology and Dr. George Vassiliou for sharing the *Npm1*^{Lox-C} mice.
942 This work was supported by National Cancer Institute awards P01 CA108671 (R.L.L.). R.L.L.
943 was supported by a Leukemia and Lymphoma Society Scholar award. R.L.B. was supported by a
944 Damon Runyon-Sohn Fellowship and the National Cancer Institute (K99CA248460). A.J.D. is a
945 William Raveis Charitable Fund Physician-Scientist of the Damon Runyon Cancer Research
946 Foundation (PST-24-19). He also has received funding from the National Institute of Health
947 (T32CA009207), American Association of Cancer Research (17-40-11-DUNB) and the American
948 Association of Clinical Oncology. L.A.M. was supported by the National Cancer Institute
949 (K99CA252005). Studies supported by MSK core facilities were supported in part by MSKCC
950 Support Grant/Core Grant P30 CA008748 and the Marie-Josée and Henry R. Kravis Center for
951 Molecular Oncology. R.L.L. is also supported by a Leukemia & Lymphoma Society Specialized
952 Center of Research grant.

953

954 **AUTHOR CONTRIBUTIONS**

955 R.L.B., A.D, and R.L.L. conceived and designed the study. R.L.B., A.D., T.M., M.R.W., I.F.M.,
956 S.F.C., P.S.V., and P.B.F., designed and executed experiments. T.M., S.E.E., S.M., L.C., Y.P.,
957 A.M.B, I.S.C., D.L., N.B., and A.K. provided technical support on experiments. R.L.B., A.J.D.
958 W.X., M.R.W., I.F.M., S.C., and P.B.F. analyzed the data W.X., provided histopathological

959 assessment. R.L.B. performed all computational analysis. C.R.P., M.T.J., and P.B.J. designed,
960 executed, and analyzed the CyTOF experiments. S.M., M.P.C., L.A.M., P.B.F., and J.J.T. provided
961 critical discussion on experimental design and crucial reagents. R.L.L. supervised the study.
962 R.L.B. and R.L.L. wrote the manuscript with significant revisions and critical feedback from A.D.
963 and L.A.M., all authors reviewed and commented on the final manuscript.

964

965 COMPETING INTEREST DECLARATION

966 R.L.L. is on the supervisory board of Qiagen and is a scientific advisor to Imago, Mission Bio,
967 Bakx, Zentalis, Ajax, Auron, Prelude, C4 Therapeutics and Isoplexis. He has received research
968 support from Abbvie, Constellation, Ajax, Zentalis and Prelude. He has received research support
969 from and consulted for Celgene and Roche and has consulted for Syndax, Incyte, Janssen, Astellas,
970 Morphosys and Novartis. He has received honoraria from Astra Zeneca and Novartis for invited
971 lectures and from Gilead and Novartis for grant reviews. S.F.C. is a consultant for and holds equity
972 interest in Imago Biosciences. R.L.B. and L.A.M. have received honoraria from Mission Bio and
973 are members of the Speakers Bureau for Mission Bio. M.P.C. has consulted for Janssen
974 Pharmaceuticals. J.J.T. holds a sponsored research project with H3 Biomedicine. P.B.F has
975 received research funding from Incyte, Forma Therapeutics, and Astex Pharmaceuticals. No other
976 authors report competing interests.

977

978

979 REFERENCES

980

- 981 1 Gao, R. *et al.* Delineating copy number and clonal substructure in human tumors from single-cell
982 transcriptomes. *Nat Biotechnol* **39**, 599-608, doi:10.1038/s41587-020-00795-2 (2021).
- 983 2 Morita, K. *et al.* Clonal evolution of acute myeloid leukemia revealed by high-throughput single-
984 cell genomics. *Nat Commun* **11**, 5327, doi:10.1038/s41467-020-19119-8 (2020).
- 985 3 Miles, L. A. *et al.* Single-cell mutation analysis of clonal evolution in myeloid malignancies.
986 *Nature* **587**, 477-482, doi:10.1038/s41586-020-2864-x (2020).
- 987 4 Martincorena, I. *et al.* Universal Patterns of Selection in Cancer and Somatic Tissues. *Cell* **171**,
988 1029-1041 e1021, doi:10.1016/j.cell.2017.09.042 (2017).
- 989 5 Gutierrez, C. *et al.* Multifunctional barcoding with ClonMapper enables high-resolution study of
990 clonal dynamics during tumor evolution and treatment. *Nat Cancer* **2**, 758-772,
991 doi:10.1038/s43018-021-00222-8 (2021).
- 992 6 Fennell, K. A. *et al.* Non-genetic determinants of malignant clonal fitness at single-cell
993 resolution. *Nature* **601**, 125-131, doi:10.1038/s41586-021-04206-7 (2022).
- 994 7 Papaemmanuil, E. *et al.* Genomic Classification and Prognosis in Acute Myeloid Leukemia. *N
995 Engl J Med* **374**, 2209-2221, doi:10.1056/NEJMoa1516192 (2016).

996 8 Cancer Genome Atlas Research, N. *et al.* Genomic and epigenomic landscapes of adult de novo
997 acute myeloid leukemia. *N Engl J Med* **368**, 2059-2074, doi:10.1056/NEJMoa1301689 (2013).
998 9 Loberg, M. A. *et al.* Sequentially inducible mouse models reveal that Npm1 mutation causes
999 malignant transformation of Dnmt3a-mutant clonal hematopoiesis. *Leukemia* **33**, 1635-1649,
1000 doi:10.1038/s41375-018-0368-6 (2019).
1001 10 McGranahan, N. & Swanton, C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and
1002 the Future. *Cell* **168**, 613-628, doi:10.1016/j.cell.2017.01.018 (2017).
1003 11 Mardis, E. R. *et al.* Recurring mutations found by sequencing an acute myeloid leukemia
1004 genome. *N Engl J Med* **361**, 1058-1066, doi:10.1056/NEJMoa0903840 (2009).
1005 12 Biswas, D. *et al.* A clonal expression biomarker associates with lung cancer mortality. *Nat Med*
1006 **25**, 1540-1548, doi:10.1038/s41591-019-0595-z (2019).
1007 13 Barthel, F. P. *et al.* Longitudinal molecular trajectories of diffuse glioma in adults. *Nature* **576**,
1008 112-120, doi:10.1038/s41586-019-1775-1 (2019).
1009 14 Shih, A. H. *et al.* Mutational cooperativity linked to combinatorial epigenetic gain of function in
1010 acute myeloid leukemia. *Cancer Cell* **27**, 502-515, doi:10.1016/j.ccr.2015.03.009 (2015).
1011 15 Sanchez-Rivera, F. J. *et al.* Rapid modelling of cooperating genetic events in cancer through
1012 somatic genome editing. *Nature* **516**, 428-431, doi:10.1038/nature13906 (2014).
1013 16 Leibold, J. *et al.* Somatic Tissue Engineering in Mouse Models Reveals an Actionable Role for
1014 WNT Pathway Alterations in Prostate Cancer Metastasis. *Cancer Discov* **10**, 1038-1057,
1015 doi:10.1158/2159-8290.CD-19-1242 (2020).
1016 17 Hodis, E. *et al.* Stepwise-edited, human melanoma models reveal mutations' effect on tumor and
1017 microenvironment. *Science* **376**, eabi8175, doi:10.1126/science.abi8175 (2022).
1018 18 Tothova, Z. *et al.* Multiplex CRISPR/Cas9-Based Genome Editing in Human Hematopoietic
1019 Stem Cells Models Clonal Hematopoiesis and Myeloid Neoplasia. *Cell Stem Cell* **21**, 547-555
1020 e548, doi:10.1016/j.stem.2017.07.015 (2017).
1021 19 Lee, B. H. *et al.* FLT3 mutations confer enhanced proliferation and survival properties to
1022 multipotent progenitors in a murine model of chronic myelomonocytic leukemia. *Cancer Cell* **12**,
1023 367-380, doi:10.1016/j.ccr.2007.08.031 (2007).
1024 20 Chu, S. H. *et al.* FLT3-ITD knockin impairs hematopoietic stem cell quiescence/homeostasis,
1025 leading to myeloproliferative neoplasm. *Cell Stem Cell* **11**, 346-358,
1026 doi:10.1016/j.stem.2012.05.027 (2012).
1027 21 Mead, A. J. *et al.* Niche-mediated depletion of the normal hematopoietic stem cell reservoir by
1028 Flt3-ITD-induced myeloproliferation. *J Exp Med* **214**, 2005-2021, doi:10.1084/jem.20161418
1029 (2017).
1030 22 Frohling, S. *et al.* Prognostic significance of activating FLT3 mutations in younger adults (16 to
1031 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study
1032 Group Ulm. *Blood* **100**, 4372-4380, doi:10.1182/blood-2002-05-1440 (2002).
1033 23 Alcalay, M. *et al.* Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML)
1034 shows a distinct gene expression profile characterized by up-regulation of genes involved in
1035 stem-cell maintenance. *Blood* **106**, 899-902, doi:10.1182/blood-2005-02-0560 (2005).
1036 24 Verhaak, R. G. *et al.* Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML):
1037 association with other gene abnormalities and previously established gene expression signatures
1038 and their favorable prognostic significance. *Blood* **106**, 3747-3754, doi:10.1182/blood-2005-05-
1039 2168 (2005).
1040 25 Hoess, R., Wierzbicki, A. & Abremski, K. Formation of small circular DNA molecules via an in
1041 vitro site-specific recombination system. *Gene* **40**, 325-329, doi:10.1016/0378-1119(85)90056-3
1042 (1985).
1043 26 Sando, R., 3rd *et al.* Inducible control of gene expression with destabilized Cre. *Nat Methods* **10**,
1044 1085-1088, doi:10.1038/nmeth.2640 (2013).

1045 27 Jacobs, C. L., Badiie, R. K. & Lin, M. Z. StaPLs: versatile genetically encoded modules for
1046 engineering drug-inducible proteins. *Nat Methods* **15**, 523-526, doi:10.1038/s41592-018-0041-z
1047 (2018).

1048 28 Taxis, C., Stier, G., Spadaccini, R. & Knop, M. Efficient protein depletion by genetically
1049 controlled deprotection of a dormant N-degron. *Mol Syst Biol* **5**, 267, doi:10.1038/msb.2009.25
1050 (2009).

1051 29 Jamal-Hanjani, M. *et al.* Tracking the Evolution of Non-Small-Cell Lung Cancer. *N Engl J Med*
1052 **376**, 2109-2121, doi:10.1056/NEJMoa1616288 (2017).

1053 30 Ding, L. *et al.* Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome
1054 sequencing. *Nature* **481**, 506-510, doi:10.1038/nature10738 (2012).

1055 31 Smith, C. C. *et al.* Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by
1056 single-cell analysis. *Blood* **130**, 48-58, doi:10.1182/blood-2016-04-711820 (2017).

1057 32 Dash, A. B. *et al.* A murine model of CML blast crisis induced by cooperation between
1058 BCR/ABL and NUP98/HOXA9. *Proc Natl Acad Sci U S A* **99**, 7622-7627,
1059 doi:10.1073/pnas.102583199 (2002).

1060 33 Bjelosevic, S. *et al.* Serine Biosynthesis Is a Metabolic Vulnerability in FLT3-ITD-Driven Acute
1061 Myeloid Leukemia. *Cancer Discov* **11**, 1582-1599, doi:10.1158/2159-8290.CD-20-0738 (2021).

1062 34 Kim, S. K. *et al.* JAK2 is dispensable for maintenance of JAK2 mutant B-cell acute
1063 lymphoblastic leukemias. *Genes Dev* **32**, 849-864, doi:10.1101/gad.307504.117 (2018).

1064 35 Dickins, R. A. *et al.* Tissue-specific and reversible RNA interference in transgenic mice. *Nat
1065 Genet* **39**, 914-921, doi:10.1038/ng2045 (2007).

1066 36 Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. *Mol
1067 Cell* **4**, 199-207, doi:10.1016/s1097-2765(00)80367-6 (1999).

1068 37 Politi, K. *et al.* Lung adenocarcinomas induced in mice by mutant EGF receptors found in human
1069 lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. *Genes
1070 Dev* **20**, 1496-1510, doi:10.1101/gad.1417406 (2006).

1071 38 Turajlic, S. *et al.* Deterministic Evolutionary Trajectories Influence Primary Tumor Growth:
1072 TRACERx Renal. *Cell* **173**, 595-610 e511, doi:10.1016/j.cell.2018.03.043 (2018).

1073 39 Lee-Six, H. *et al.* The landscape of somatic mutation in normal colorectal epithelial cells. *Nature*
1074 **574**, 532-537, doi:10.1038/s41586-019-1672-7 (2019).

1075 40 Guryanova, O. A. *et al.* DNMT3A mutations promote anthracycline resistance in acute myeloid
1076 leukemia via impaired nucleosome remodeling. *Nat Med* **22**, 1488-1495, doi:10.1038/nm.4210
1077 (2016).

1078 41 Vassiliou, G. S. *et al.* Mutant nucleophosmin and cooperating pathways drive leukemia initiation
1079 and progression in mice. *Nat Genet* **43**, 470-475, doi:10.1038/ng.796 (2011).

1080 42 Shih, A. H. *et al.* Combination Targeted Therapy to Disrupt Aberrant Oncogenic Signaling and
1081 Reverse Epigenetic Dysfunction in IDH2- and TET2-Mutant Acute Myeloid Leukemia. *Cancer
1082 Discov* **7**, 494-505, doi:10.1158/2159-8290.CD-16-1049 (2017).

1083