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ABSTRACT 22 

The prevalent paradigm governing bacterial two-component signaling systems (TCSs) is specificity, 23 

wherein the histidine kinase (HK) of a TCS exclusively activates its cognate response regulator 24 

(RR). Crosstalk, where HKs activate noncognate RRs, is considered evolutionarily disadvantageous 25 

because it can compromise adaptive responses by leaking signals. Yet, crosstalk is observed in 26 

several bacteria. Here, to resolve this paradox, we propose an alternative paradigm where crosstalk 27 

can be advantageous. We envisioned ‘programmed’ environments, wherein signals appear in 28 

predefined sequences. In such environments, crosstalk that primes bacteria to upcoming signals may 29 

improve adaptive responses and confer evolutionary benefits. To test this hypothesis, we employed 30 

mathematical modeling of TCS signaling networks and stochastic evolutionary dynamics 31 

simulations. We considered the comprehensive set of bacterial phenotypes, comprising thousands of 32 

distinct crosstalk patterns, competing in varied signaling environments. Our simulations predicted 33 

that in programmed environments phenotypes with crosstalk facilitating priming would outcompete 34 

phenotypes without crosstalk. In environments where signals appear randomly, bacteria without 35 

crosstalk would dominate, explaining the specificity widely seen. Additionally, a testable prediction 36 

was that the phenotypes selected in programmed environments would display ‘one-way’ crosstalk, 37 

ensuring priming to ‘future’ signals. Interestingly, the crosstalk networks we deduced from available 38 

data on TCSs of Mycobacterium tuberculosis all displayed one-way crosstalk, offering strong 39 

support to our predictions. Our study thus identifies potential evolutionary underpinnings of crosstalk 40 

in bacterial TCSs, suggests a reconciliation of specificity and crosstalk, makes testable predictions of 41 

the nature of crosstalk patterns selected, and has implications for understanding bacterial adaptation 42 

and the response to interventions. 43 

  44 
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IMPORTANCE 45 

Bacteria use two-component signaling systems (TCSs) to sense and respond to environmental 46 

changes. The prevalent paradigm governing TCSs is specificity, where signal flow through TCSs is 47 

insulated; leakage to other TCSs is considered evolutionarily disadvantageous. Yet, crosstalk 48 

between TCSs is observed in many bacteria. Here, we present a potential resolution of this paradox. 49 

We envision programmed environments, wherein stimuli appear in predefined sequences. Crosstalk 50 

that primes bacteria to upcoming stimuli could then confer evolutionary benefits. We demonstrate 51 

this benefit using mathematical modeling and evolutionary simulations. Interestingly, we found 52 

signatures of predicted crosstalk patterns in Mycobacterium tuberculosis. Furthermore, specificity 53 

was selected in environments where stimuli occurred randomly, thus reconciling specificity and 54 

crosstalk. Implications follow for understanding bacterial evolution and for interventions. 55 

  56 
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INTRODUCTION 57 

Bacteria sense and respond to environmental cues predominantly via two-component 58 

signaling systems (TCSs) (1). The first component of a TCS is the transmembrane histidine kinase 59 

(HK). The HK detects the stimulus, which typically is a chemical ligand, and gets 60 

autophosphorylated. The phosphorylated HK (HK-P) binds to and transfers its phosphoryl group to 61 

the response regulator (RR), the second component of the TCS. Phosphorylated RR (RR-P) typically 62 

dimerizes and triggers changes in downstream gene expression, mounting a response to the stimulus 63 

(1, 2). Cognate HK-RR pairs, which belong to a TCS, are generally co-expressed under a single 64 

promoter in an operon (3), and are often upregulated as part of the response to the stimulus (1, 2).  65 

Bacteria can have many tens of distinct TCSs, each performing a different function (1). 66 

Evolutionary pressure is thought to have rendered TCSs specific: the HK of a TCS rarely 67 

phosphorylates the RR of another TCS (4). Crosstalk between TCSs, defined as phosphotransfer 68 

from the HK of one TCS to the RR of another TCS, is considered disadvantageous because it 69 

dissipates the signal, decreasing the concentration of the cognate RR-P, and thereby weakening the 70 

response (4). Moreover, unwanted responses due to gene expression downstream of noncognate RR-71 

Ps might get triggered. Bacteria typically acquire novel TCSs through gene duplication (5), which 72 

would naturally allow crosstalk before diversification of the TCSs into distinct pathways (6, 7). 73 

Several experimental and modeling studies have argued that despite the extensive homology between 74 

TCS proteins, there is strong evolutionary pressure for these paralogs to be specific (5, 8-13). For 75 

instance, crosstalk between TCSs can be abrogated by as few as two mutations, indicative of the 76 

evolutionary pressure favoring specificity (8). Further, during the evolution of new TCSs post gene 77 

duplication, bacteria have been predicted to eliminate crosstalk before new TCS functionalities can 78 

arise (9). The sequence space occupied by the paralogs is thought to be sparse, allowing easy 79 

establishment of such specificity (12). 80 
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Yet, crosstalk between bacterial TCSs continues to be observed, and, in some bacteria, in 81 

significant measure. Approximately 3% of the 850 interactions between TCS proteins in E. coli, for 82 

instance, were between noncognate HK-RR pairs (14). A substantially larger fraction, ~50% of the 83 

23 interactions, were between noncognate pairs in M. tuberculosis (15). Given the evolutionary 84 

advantages of specificity together with the relative ease of establishing it, the observed crosstalk is 85 

puzzling. Indeed, in some organisms, such as C. crescentus (16) and M. xanthus (17), no crosstalk 86 

has been observed among hundreds of interactions. The observed crosstalk may thus not be 87 

attributable to chance and may instead have evolutionary underpinnings. Unraveling potential 88 

evolutionary advantages of crosstalk is expected to have important implications for our 89 

understanding of bacterial adaptation, survival, and response to interventions (1, 18, 19). 90 

Here, we conceived of an evolutionary paradigm in which crosstalk could be beneficial. We 91 

hypothesized that in programmed environments, where signals consistently appear in a predefined 92 

sequence, crosstalk between TCSs that would prime the bacterium to upcoming signals might confer 93 

an evolutionary advantage. To test this hypothesis, we constructed a mechanistic mathematical 94 

model of generalized multi-TCS signaling networks and performed comprehensive evolutionary 95 

dynamics simulations. We challenged model predictions with available experimental observations 96 

and found evidence in support of our hypothesis. Additionally, we arrived at a plausible synthesis of 97 

the seemingly conflicting observations of specificity and crosstalk in bacterial TCS systems. 98 

RESULTS 99 

Crosstalk can confer a fitness advantage in programmed environments 100 

We first considered a hypothetical environment involving N=2 signals, denoted I1 and I2, 101 

recognized by two TCSs of a bacterium, TCS1 and TCS2, made up of the proteins HK1 and RR1 and 102 

HK2 and RR2, respectively. Depending on the nature of interactions between the TCSs, four 103 

phenotypes could exist (Fig. 1a): 1) with no crosstalk (phenotype 1); 2) with crosstalk between HK1 104 

and RR2 (phenotype 2); 3) with crosstalk between HK2 and RR1 (phenotype 3); and 4) with 105 
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bidirectional crosstalk (phenotype 4). We developed a detailed model of signal transduction in a TCS 106 

network, allowing for all possible crosstalk patterns between the TCSs (Methods). The model builds 107 

on previous models of TCS signaling (9, 15, 20, 21), generalizing them to multi-TCS networks with 108 

crosstalk. The novelty of our approach lies in recognizing and incorporating the role of the 109 

environment. We applied our model to each of the four phenotypes. We first considered the scenario 110 

representing a programmed environment. Specifically, we let the signal I1 be followed by I2. For 111 

simplicity, we let the signals be identical except for the time of their onset (Fig. 1b). We also 112 

assumed the signals to be square pulses arriving in quick succession, mimicking the typical way 113 

environments impose stresses (22); we considered alternative signal types below. Using the model, 114 

we predicted the concentrations of RR1-P and RR2-P over time (Fig. 1b top panel) as a proxy for the 115 

responses of the bacteria to the two stimuli. Further, we estimated the fitness, ϕ1 and ϕ2, of the 116 

bacteria associated with the responses of the two TCSs, and the overall fitness,  , combining the 117 

two (Fig. 1b bottom panel). The fitness was determined by the strength of the cognate responses to 118 

the individual stimuli (Methods). 119 

For phenotype 1, where TCSs are insulated, our model predicted that the responses to the two 120 

signals were, expectedly, identical except for a shift in time (black curves in Fig. 1b). When I1 121 

arrived, bacterial fitness dropped sharply, indicating a changed environment to which the bacterium 122 

was yet to adapt. The bacterium mounted an adaptive response, improving its fitness with time. As 123 

RR1-P increased, the fitness, ϕ1, recovered. The same phenomenon was observed upon the arrival of 124 

I2. The absence of crosstalk implied that the responses to I1 and I2 were independent. Although the 125 

fitness was nearly fully restored eventually, the time-averaged overall fitness,  , was lower than  126 
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 127 

Fig. 1 Mathematical model of TCS signaling predicts advantages of crosstalk. (a) All possible phenotypes 128 
with N=2 TCSs. Cognate interactions (black arrows) and crosstalk (red arrows) are shown. These interactions 129 
are also depicted compactly in the ‘interaction matrix’ for each phenotype (Methods). Orange squares 130 
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represent cognate interactions and blue squares crosstalk.  (b) Signal-response behavior and fitness of the 131 
phenotypes in a programmed environment. The purple filled rectangles depict the presence of the input 132 
signals, with the darker shade representing I1 and the lighter shade I2. The signal strength is 104 nM for both. 133 
The top panel shows the concentrations of activated RRs and the bottom panel the associated fitness of the 134 
responses. The phenotypes are color coded and dark and light curves represent TCS1

 and TCS2, respectively. 135 
Crosstalk strength is γ=0.26. The inset shows the reduction in time-averaged fitness of the different 136 
phenotypes due to the signals. The fitness is 1 in an unperturbed environment. (c) Selection coefficient in a 137 
programmed environment. σ as a function of γ when I1 is followed by I2. (d) Optimal crosstalk strength. 138 
Dependence of σ on γ for phenotype 2. Inset shows the fitness of the two TCSs contributing to σ. (e) Selection 139 
coefficients in random environment. σ as a function of γ when I1 and I2 follow no order. Fitness is calculated 140 
as the mean over all possible signal sequences. 141 

 142 

unity, indicative of the vulnerability of the bacterium ‘during’ adaptation to the changed 143 

environment.  144 

For phenotype 2, with HK1→RR2 crosstalk (red curves in Fig. 1b), our model predicted that 145 

before the arrival of I2, signal leakage to TCS2 resulted in lower RR1-P and, hence, ϕ1 than for 146 

phenotype 1. The signal leakage, however, triggered TCS2. The resulting RR2-P upregulated HK2 147 

and RR2. When I2 came up, the bacterium responded faster and better than phenotype 1; RR2-P and 148 

ϕ2 were higher than for phenotype 1. The overall fitness,  , increased beyond that of phenotype 1. 149 

Thus, the bacterium was predicted to be more sensitive and responsive to the upcoming stimulus due 150 

to crosstalk, increasing its fitness. This scenario was illustrative of the possible advantage of 151 

crosstalk in a programmed environment. 152 

For phenotype 3, with HK2→RR1 crosstalk, in our model predictions, the needless signal 153 

dissipation to RR1 following the onset of I2 induced a fitness loss (blue curves in Fig. 1b). Finally, 154 

for phenotype 4, with bidirectional crosstalk, RR1-P was like phenotype 2 due to dissipation before 155 

the arrival of I2, but the advantage of priming was lost due to the HK2→RR1 crosstalk after the 156 

arrival of I2, resulting in an overall fitness loss (green curves in Fig. 1b). The predicted time-157 

averaged fitness loss, 1 − , of the four phenotypes over the entire signal-response period 158 
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highlights the advantage of phenotype 2, which has a crosstalk pattern that mirrors the signal 159 

sequence, over the other phenotypes (Fig. 1b inset). 160 

Next, we examined how the fitness advantage would depend on the strength of crosstalk 161 

using our model. We defined the selection coefficient, σ, for any phenotype as the difference 162 

between the time-averaged fitness of the phenotype and that of phenotype 1, the latter without any 163 

crosstalk. We quantified the strength of crosstalk using γ, the ratio of the rates of phosphotransfer to 164 

noncognate and cognate RRs (Methods). The larger was the value of γ, the greater was the extent of 165 

crosstalk. We found from our predictions that for all the values of γ studied, phenotype 2 had 166 

positive σ, whereas the other phenotypes had negative σ (Fig. 1c), consistent with the results above. 167 

Further, for phenotype 2, σ displayed a maximum at intermediate γ (Fig. 1d). Increasing γ increased 168 

priming and improved the response to I2, increasing fitness. Beyond a point, however, the advantage 169 

of priming diminished, but the response to I1 continued to be compromised, lowering the overall 170 

fitness (Fig. 1d inset). Thus, according to our model, limited crosstalk offered a fitness advantage to 171 

phenotype 2. 172 

Specificity is advantageous in ‘random’ environments 173 

Using the same phenotypes above, we applied out model to estimate σ in a random 174 

environment, where there was no defined sequence of signals (Methods). Now, phenotype 1 had the 175 

highest estimated fitness; σ was negative for all the other phenotypes (Fig. 1e). Because the 176 

upcoming signal was not pre-specified, priming conferred no advantage. The detrimental effects of 177 

crosstalk then decreased fitness regardless of the crosstalk pattern. Thus, σ was equal for phenotypes 178 

2 and 3, which had one crosstalk interaction each, and lower for phenotype 4, which had two 179 

crosstalk interactions. Moreover, the greater the value of γ, the lower was the value of σ in the 180 

random environment. Thus, in the absence of a consistent sequence of stimuli, our model predicted 181 

that evolutionary pressure may select for specificity.  182 
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Using sensitivity analysis, we found that the inferences above were robust to variations in 183 

parameter values (Supplementary Fig. 1). Furthermore, our findings were robust to the fitness 184 

construct employed (Supplementary Text 1; Supplementary Fig. 2) and the nature of the signals; we 185 

tested both square pulses and exponentially decaying signals (Supplementary Fig. 3). Our model also 186 

predicted that with decaying signals the fitness advantage of crosstalk ceased when the interval 187 

between the signals was either too small or too large (Supplementary Fig. 3). When the interval was 188 

too small, the second signal appeared before significant priming could happen, whereas when the 189 

interval was too large, the priming faded away before the second signal could arrive. These latter 190 

predictions were consistent with observations in E. coli (23), where priming conferred a significant 191 

fitness advantage, manifested as enhanced growth rate, only for a range of time gaps between 192 

signals. 193 

Programmed environments favor one-way crosstalk 194 

For the minimal case of N=2, phenotype 2 alone could anticipate I2 following I1 and thus was 195 

predicted to have the highest fitness in our model. For bacteria with more than two TCSs, the fittest 196 

phenotype is not obvious, as such anticipation is possible with multiple phenotypes. For instance, the 197 

phenotype with the crosstalk interactions HK1→RR2 and HK2→RR3 as well as the phenotype with 198 

HK1→RR2 and HK1→RR3 could anticipate the sequence I1→I2→I3. The number of phenotypes 199 

grows exponentially with N. A bacterium with N TCSs will have N cognate and up to N(N-1) 200 

noncognate interactions. Depending on whether each of the latter interactions is realized or not, a 201 

total of 2N(N-1) phenotypes can exist, each representing a distinct crosstalk pattern. For N=3, this 202 

would amount to 26=64 phenotypes and for N=4 to 212=4096 phenotypes. Identifying the fittest 203 

phenotype would thus require a comprehensive assessment of each of these phenotypes. We 204 

performed this assessment next.  205 
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We considered N=3. We numbered the phenotypes from 1 to 64, starting with the phenotype 206 

with no crosstalk and ending with the phenotype with all crosstalk interactions realized (Fig. 2a). We 207 

subjected each phenotype to a programmed environment with the signal sequence I1→I2→I3. We 208 

also allowed the signals to have different durations, more realistically mimicking natural 209 

environments. For each scenario, we applied our model to predict signal-response characteristics and 210 

estimated the resulting fitness.  211 

When the signals were all of the same duration, our model predicted that the phenotype that 212 

was the fittest depended on the strength of crosstalk, γ. When γ was small, phenotype 12, which had 213 

HK1→RR2, HK2→RR3 and HK1→RR3 interactions was the fittest (Fig. 2b). Its fitness was only 214 

slightly higher than that of phenotype 10, which had HK1→RR2 and HK2→RR3 interactions. Note 215 

that both these phenotypes anticipated upcoming signals and were fitter than phenotype 1, which had 216 

no crosstalk. As γ increased, phenotype 10 became fitter than phenotype 12 in our predictions. 217 

Interestingly, the fitness of the latter decreased beyond a threshold γ and eventually dropped below 218 

that of phenotype 1. Phenotype 10, however, remained fitter than phenotype 1 throughout. We 219 

understood these trends as follows. When γ was low, the cost of signal dissipation was small. Thus, 220 

the gain from crosstalk by HK1 with both RR2 and RR3 and by HK2 with RR3 more than 221 

compensated for the fitness loss due to leakage. However, as γ increased, the latter cost increased 222 

and limiting crosstalk became advantageous. Accordingly, our model predicted that crosstalk 223 

between HK1 and RR2 and between HK2 and RR3, which ensured the requisite anticipation of 224 

upcoming signals, were retained, resulting in an overall fitness gain, whereas the redundant crosstalk 225 

between HK1 and RR3 was eliminated in the fittest phenotype. 226 

We next increased the duration of I2 6-fold (Fig. 2c). When γ was small, phenotype 2, which 227 

had the HK1→RR2 interaction alone was the fittest in our predictions. As γ increased, phenotype 10, 228 

which had HK1→RR2 and HK2→RR3 interactions, became the fittest. With weak crosstalk, the 229 

advantage of priming to I3 through the entire duration of I2 was not enough to compensate for the 230 
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loss of response to I2. Phenotype 2, which did not have the HK2→RR3 interaction was therefore the 231 

fittest. On the other hand, when crosstalk was stronger, the priming from both HK1→RR2 and 232 

HK2→RR3 compensated for any signal dissipation, rendering phenotype 10 the fittest in our 233 

predictions.  234 

We also considered the effect of shortening the duration of I2 (Fig. 2d, e). When the duration 235 

was shortened by 50%, phenotypes 12 and 10 were predicted to be the fittest, depending on γ, in a 236 

manner similar to when the signals were all of the same duration (Fig. 2b, d). The shortening of the 237 

duration by 50% thus did not affect the cost-benefit analysis substantially. Shortening the duration 5-238 

fold, however, made a difference, with phenotypes 3 and 11 now the fittest (Fig. 2e). As above, when 239 

γ was small, phenotype 11, with the crosstalk interactions HK1→RR3 and HK2→RR3, both 240 

anticipating the upcoming signal I3, was the fittest in our model. This was because at low values of γ, 241 

priming to I3 while I2 was present did not add to the cost due to signal dissipation significantly, as I2 242 

was present for a short while. However, as γ increased, phenotype 3, which had the single crosstalk 243 

interaction HK1→RR3 was the fittest. The cost of dissipation, although I2 was short-lived, was no 244 

longer affordable. The phenotype that let I1 prime the bacterium to the next ‘major’ signal, I3, was 245 

thus the fittest. Finally, as with the N=2 scenario, the results were similar when exponentially 246 

decaying signals were used instead of square pulses (Fig. 2f).  247 

In all these cases, an intriguing feature of the fittest phenotypes is directed, ‘one-way’ 248 

crosstalk. If we denote the signal sequence as I1→I2→I3→…, then the fittest phenotypes had 249 

crosstalk of the type HKi→RRj with j>i. In other words, the crosstalk that enabled priming to 250 

‘upcoming’ signals was favored. Reverse signal flow, where j<i, resulted in phenotypes that suffered 251 

fitness loss. In the interaction matrices, the fittest phenotypes all had non-zero entries in the upper 252 

triangular portions and never in the lower triangular portions (Fig. 2a). To test the robustness of this 253 

prediction, we adopted two strategies. We performed comprehensive evolutionary dynamics 254 

simulations to examine whether the fitness advantage predicted by the calculations above would lead 255 
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 256 

Fig. 2 One-way crosstalk patterns yielded the fittest phenotypes. (a) One-way crosstalk patterns with N=3 TCSs. Interaction matrices of phenotype 1, 257 
without crosstalk, and seven other phenotypes with different one-way crosstalk patterns. The signal sequence is I1→I2→I3. The fitness of the fittest 258 
phenotypes and of phenotype 1 as functions of the strength of crosstalk, γ, when (b) signals were of the same duration (500 s), or when I2 lasted (c) 3000 s, 259 
(d) 250 s, and (e) 100 s, and (f) when the signals decayed exponentially. The colored bars at the top of each panel graphically depict the range of γ over which 260 
the respective color-coded phenotype has the highest fitness. Cartoons of the signal patterns are at the left in each panel.261 
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to the selection of the corresponding phenotypes with the one-way crosstalk patterns. Second, we 262 

sought evidence of these predictions in available experimental data. 263 

Evolutionary simulations predict selection of phenotypes with one-way crosstalk patterns 264 

mirroring signal sequences 265 

Using the descriptions above of the responses of different phenotypes to stimuli, we 266 

performed stochastic, discrete generation, Wright-Fisher evolutionary simulations (24) (Fig. 3a; 267 

Methods) to determine which phenotypes would get selected in different environments. We now 268 

considered N=4 TCSs, increasing the complexity to a total of 4096 phenotypes, making it even more 269 

difficult to predict the fittest phenotypes intuitively. We performed simulations with two types of 270 

initial conditions: 1) the ‘homogeneous condition’, where a single phenotype existed, and 2) the 271 

‘mixed condition’, where all the phenotypes were equally represented. With each initial condition, 272 

we considered both random and programmed environments. With N=4, we had four types of signals, 273 

one for each of the TCSs. We let each bacterium be stimulated four times. In the random 274 

environment, each stimulus was chosen randomly from the four possible signals. In the programmed 275 

environment, the signals followed a predetermined sequence, where the signals all appeared once and 276 

in a fixed order. We computed the fitness of each of the 4096 species in each of these environments. 277 

In each generation, we allowed every bacterium to be selected with a probability proportional to its 278 

fitness. The selected bacteria were duplicated to replace lost bacteria and ensure a constant bacterial 279 

population. The bacteria were then subjected to mutations. A mutation involved a change in the 280 

crosstalk network of the bacterium, resulting in an altered phenotype. Specifically, we allowed each 281 

of the N(N-1)=12 potential crosstalk interactions within a bacterium to be flipped (from existent to 282 

non-existent and vice versa) with a probability µ, the mutation rate, in each generation. The resulting 283 

pool of bacteria formed the substrate for evolution in the next generation. We repeated this process 284 

over a large number of generations and performed several realizations. 285 

 286 
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 287 

Fig. 3 Stochastic evolutionary dynamics simulations show selection of crosstalk in programmed environments and specificity in random 288 
environments. (a) Schematic of Wright-Fisher simulations. Simulations proceed in discrete generations and with fixed populations (n) comprising bacteria of 289 
different phenotypes, indicated by their interaction matrices. In each generation, bacteria are exposed to stimuli. Depending on their response, fitness selection 290 
takes place and less-fit bacteria are eliminated. Lost bacteria are replaced with copies of selected ones, chosen randomly. The resulting bacteria mutate, 291 
illustrated using green boxes in the interaction matrices, resulting in altered phenotypes, which form the substrate for selection in the next generation. (b) 292 
Evolution in a random environment. The phenotype without any crosstalk (blue) gets fixed whether the initial population is homogeneous (left) or mixed 293 
(middle). The phenotype with all crosstalk interactions is also shown for comparison (green). The gray lines are trajectories of the two phenotypes in each of 294 
50 realizations. The thick lines are means. Trajectories of all other phenotypes are not shown. The crosstalk strength was set to γ = 0.26. The inset in the left 295 
plot is the rank-ordered selection coefficient of all the phenotypes. The interaction matrices of the five most and five least fit phenotypes are shown (right). (c) 296 
Evolution in a programmed environment. The one-way crosstalk phenotype mirroring the signal sequence I1→I2→I3→I4, which has the highest fitness, 297 
dominates the population (red), whether the initial population is homogeneous (left) or mixed (middle). The inset in the left plot is the rank-ordered selection 298 
coefficient of all the phenotypes.  The interaction matrices of the five most and five least fit phenotypes are depicted (right). Simulations used N=4 TCSs. 299 

 300 
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In the random environment, our simulations predicted that the phenotype without any 301 

crosstalk dominated the population (Fig. 3b). For the homogenous condition, we initiated simulations 302 

with the species containing all crosstalk interactions. Gradually, phenotypes with fewer crosstalk 303 

interactions emerged. Eventually, the phenotype with no crosstalk emerged and dominated the 304 

population. With the mixed condition, the latter species began to dominate the population from the 305 

early stages and was soon fixed in the population. These observations agree with the prevalent 306 

paradigm of TCS signaling favoring specificity (5, 8, 9, 12). Also, rank-ordering phenotypes by their 307 

fitness values (Fig. 3b, inset) revealed that phenotypes with increasing number of crosstalk 308 

interactions had decreasing fitness. To illustrate this, we present the crosstalk patterns of the top five 309 

and bottom five fittest phenotypes (Fig. 3b). The former have zero or one crosstalk interaction and 310 

the latter have all or one less crosstalk interactions, respectively. 311 

In the programmed environment, which followed the signal sequence I1→I2→I3→I4, the 312 

phenotype with the crosstalk pattern mirroring this signal sequence dominated the population (Fig. 313 

3c). For the homogeneous condition, we used the species without crosstalk to initiate simulations. 314 

Gradually, mutants with crosstalk emerged and grew, causing the initial species to decline. 315 

Eventually, the phenotype with the crosstalk pattern mirroring the signal sequence emerged and 316 

dominated the population. For the mixed condition, the latter phenotype grew from the early stages 317 

and was rapidly fixed. Arranging the fitness values in descending order (Fig. 3c, inset) displays the 318 

benefit of priming for upcoming stimuli. The five fittest phenotypes all had crosstalk interactions in 319 

the upper triangle of their interaction matrices, indicating one-way crosstalk patterns that prime 320 

bacteria to upcoming signals (Fig. 3c). The least fit phenotypes had the lower triangle of the 321 

interaction matrices populated, indicating crosstalk that had signal flows opposite to the sequence of 322 

stimuli. 323 

These results were not restricted to N=4 TCSs. With N=2 (Supplementary Fig. 4) and N=3 324 

TCSs (Supplementary Fig. 5) as well, the phenotype with no crosstalk was selected in random 325 
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environments and the phenotype with the crosstalk pattern mirroring the sequence of signals was 326 

selected in programmed environments. 327 

These simulations thus point to environments where crosstalk may be evolutionarily favored. 328 

It is possible that such programmed environments may have been the reasons for the selection of the 329 

crosstalk that is observed in some bacteria. Our model and simulations go beyond offering a 330 

plausible explanation of the origins of such crosstalk and predict that the crosstalk selected is 331 

expected to be one-way. We next sought evidence of one-way crosstalk patterns in available 332 

experimental data. 333 

Evidence of one-way crosstalk in TCSs of M. tuberculosis 334 

In a recent study, crosstalk between the TCSs of M. tuberculosis has been mapped using in 335 

vitro assays of phosphotransfer from HKs to all cognate and non-cognate RRs (15). Significant 336 

crosstalk was observed (Fig. 4a), which allowed us to assess signal flows through extended TCS 337 

networks. Using the crosstalk interactions, we identified all possible signal flows, or cascades, in the 338 

TCSs of M. tuberculosis as follows. We considered the HK PhoR, for instance, which showed 339 

crosstalk with the RR DevR (Fig. 4a). DevS, the cognate HK of DevR, further showed crosstalk with 340 

the RR NarL. NarS, the cognate HK of NarL, did not engage in any crosstalk. Thus, when PhoR gets 341 

activated, it can transmit a portion of the signal to DevR. Similarly, crosstalk of DevS with NarL 342 

would transmit some portion of the signal from DevS-DevR to the NarS-NarL system, at which point 343 

the signal flow would be terminated. Hence, PhoR-PhoP, DevS-DevR, and NarS-NarL form a 344 

cascade of signal flow via crosstalk. In this cascade, the signal is not transmitted either to PhoP from 345 

DevS or NarS or to DevR from NarS, making the flow one-way. 346 

Following the procedure above, we started with each of the TCSs of M. tuberculosis and 347 

traced the resulting cascades. We found 12 such cascades (Fig. 4b). The longest cascade involved 4 348 

TCSs. There were four cascades involving 3 TCSs each and seven cascades involving 2 TCSs each.  349 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2022. ; https://doi.org/10.1101/2022.05.18.492451doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492451
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

 350 

 351 

Fig. 4 Crosstalk patterns in M. tuberculosis TCSs in vitro were one-way. (a) Complete crosstalk map 352 
between TCSs of M. tuberculosis. The HKs (left column) and their cognate RRs (right column) are connected 353 
by green arrows. Crosstalk interactions observed (15) are shown as red dashed arrows. (b) Crosstalk cascades. 354 
All possible signal flows based on the crosstalk interactions in (a). (c) Superimposed signal cascades. 355 
Examples of crosstalk patterns resulting from superimposition of cascades from (b). 356 

 357 
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(Representative interaction matrices for all these cases are presented at the bottom in Fig. 4.) Note 358 

that all the cascades had one-way crosstalk with the patterns resembling the fittest phenotypes in our 359 

simulations above. 360 

By superimposing the cascades above, we obtained additional one-way crosstalk patterns, 361 

reflective of the patterns identified in our simulations. Two such patterns are depicted in Fig. 4c. For 362 

instance, the crosstalk pattern involving MtrB-MtrA, PhoR-PhoP, and TcrY-TcrX (Fig. 4c top panel) 363 

was equivalent to phenotype 12 in the N=3 case discussed above (Fig. 2b). Similarly, the pattern 364 

involving KdpD-KdpE, DevS-DevR, and NarS-NarL (Fig. 4c bottom panel) was equivalent to 365 

phenotype 11 in the N=3 case above (Fig. 2b). Remarkably, we could not find any crosstalk pattern 366 

that was not one-way. This evidence of exclusive one-way crosstalk in the TCSs of M. tuberculosis 367 

offered strong support to the predictions of our model and simulations.  368 

To assess whether the crosstalk could have evolutionarily underpinnings, we sought 369 

signatures of evolutionary pressures against diversification post gene duplication in the sequences of 370 

the TCS proteins using bioinformatics analysis (Supplementary Text 2). The analysis, conducted on a 371 

subset of the TCSs, suggested that this evolutionary pressure may have been lesser for the TCSs 372 

involved in crosstalk than for the TCSs that were specific, offering further support to the notion that 373 

the observed crosstalk may have been evolutionarily favored (Supplementary Text 2, Supplementary 374 

Fig. 6 and 7, Supplementary Table 2). 375 

DISCUSSION 376 

Despite the strong evolutionary arguments favoring specificity in bacterial TCSs (4, 5), 377 

crosstalk between TCSs has been observed (14, 15). Here, we present an alternative evolutionary 378 

paradigm where crosstalk would be advantageous. Using modeling of TCS signaling networks and 379 

comprehensive evolutionary dynamics simulations, we predicted that in programmed environments, 380 

where stimuli arrive in a predetermined sequence, crosstalk that would prime bacteria to upcoming 381 

signals would confer an evolutionary benefit. Thus, specific crosstalk patterns that mirror the 382 
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sequences of stimuli could get selected in bacteria living in such environments. Analyzing recent in 383 

vitro data (15), we found that potential crosstalk networks involving the TCSs of M. tuberculosis all 384 

displayed one-way signal flow, consistent with the notion of priming and selection in programmed 385 

environments. This new evolutionary paradigm is not in conflict with the paradigm underlying 386 

specificity. Our modeling and simulations predicted that when no predetermined sequence of stimuli 387 

existed, specificity was evolutionarily favored. Our study, thus, offers a conceptual framework that 388 

synthesizes specificity and crosstalk in bacterial TCS systems. They appear to be two sides of the 389 

same coin; they are both outcomes of the same evolutionary forces, but in environments that present 390 

signals differently. Programmed environments may be rarer, resulting in the lower prevalence of 391 

crosstalk. 392 

Independent evidence exists of one-way crosstalk aiding bacterial adaptation in programmed 393 

environments. In E. coli, evolutionary experiments showed how ‘anticipation’, facilitated by 394 

crosstalk, is selected for when the environment displays a specified pattern of carbon source 395 

switching (22). Similarly, in S. cerevisiae, preparation of the bacterium to respond to oxidative stress 396 

while experiencing heat shock was a result of adaptation; these stresses are typically experienced in 397 

the same temporal order (22). Furthermore, the complex structure of environments can become 398 

ingrained in in silico biochemical networks in order to predict environmental changes preemptively 399 

(25). In agreement, this adaptive behavior was evident in E. coli, where a match between the 400 

covariation of transcriptional responses and the sequence of temperature and oxygen stresses 401 

triggering them was observed (25). Evidence also exists of pathogenic bacteria evolving crosstalk to 402 

adapt to their hosts. For instance, mutations in the TCS BfmS-BfmR of P. aeruginosa in individuals 403 

with cystic fibrosis were recently found to alter, facilitated via crosstalk by the noncognate HK GtrS, 404 

regulation of downstream gene expression in order to promote biofilm formation and chronic 405 

infection (26). Similarly, in α-proteobacteria, multiple HKs of the HWE/HisKA-2 family can control 406 
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the phosphorylation of the same response regulators in a coordinated manner and tune downstream 407 

gene expression (27). 408 

Based on the signaling cascades we deduced from the in vitro TCS crosstalk interactions of 409 

M. tuberculosis, it would be interesting to identify corresponding sequences of stimuli, potentially 410 

unveiling information of the environments to which M. tuberculosis may have adapted. The 411 

ligands/stimuli that many of the TCSs sense, however, remain unknown, precluding such analysis 412 

(28). Yet, specific instances suggesting such adaption could be identified from the cascades. For 413 

example, the TCS PrrB-PrrA is reported to be involved in the early replication steps of M. 414 

tuberculosis inside macrophages (29). The TCS MprB-MprA has been argued to be essential for 415 

establishing persistent infection (30), a state of slower or halted replication from which the bacterium 416 

can be reactivated to establish active infection (31). Disruption of mprA affected processes required 417 

for survival during the persistence and subsequent infection stages (30). One could thus argue that 418 

crosstalk from PrrB-PrrA to MprB-MprA may be favorable because it would prime the bacterium to 419 

activate the processes necessary for establishing persistent infection, a key feature of successful 420 

tuberculosis infection (32), once entry is gained into a macrophage. Indeed, this one-way crosstalk 421 

was observed in the in vitro cascades (15). Future experiments may assess the advantage of such 422 

crosstalk in vivo.  423 

Crosstalk is not limited to bacterial TCSs. Examples of crosstalk exist in human growth factor 424 

signaling networks (33), MAPK networks of yeast (34), and between TOR and CIP pathways in S. 425 

pombe (35). The evolutionary underpinnings of these crosstalk interactions may be more difficult to 426 

unravel because of the more involved regulatory structures in these organisms than in the simpler 427 

bacterial TCS systems. Yet, controlled evolutionary experiments suggest selection of cross-428 

regulation patterns in broad agreement with our predictions. For instance, the yeast S. cerevisiae, 429 

which is commonly used in the fermentation industry, is subjected to heat, ethanolic stress and 430 

oxidative stress, in that order, in the industrial process (22). The related regulatory networks were 431 
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observed to have the following crosstalk interactions: heat→ethanolic, heat→oxidative, and 432 

ethanolic→oxidative (22). This is similar to the phenotype 12 in the N=3 case in our model (Fig. 2a). 433 

Furthermore, when the organism was artificially exposed to these stresses in the reverse order, the 434 

crosstalk interactions switched their directions (22). These scenarios, together with our proposed 435 

paradigm, point to the possible evolutionary advantages of crosstalk. 436 

Because of its evolutionary advantages, crosstalk may be a potential target of intervention. 437 

With pathogenic bacteria, crosstalk may sharpen the already sophisticated strategies to evade host 438 

immune responses and promote virulence (28, 36). Bacterial HKs offer promising targets of 439 

intervention (1, 18). Where crosstalk may aid bacterial survival and adaptation, as suggested for 440 

instance with M. tuberculosis (15), targeting HKs engaged in crosstalk could prove a more potent 441 

strategy than targeting specific HKs. It would not only block the cognate response of the targeted 442 

HK, but also compromise the responses of the TCSs that would otherwise have been primed by the 443 

targeted HK via crosstalk. 444 

METHODS 445 

Mathematical model of TCS signaling with crosstalk 446 

We developed a mathematical model to describe bacterial signal transduction via TCSs. We 447 

considered the scenario in which a bacterium contains N distinct TCSs, which can be engaged in 448 

crosstalk (Fig. 5a). We built the model by envisioning the set of events associated with the ith TCS 449 

engaged in crosstalk with the jth TCS ( , {1,2,..., }i j N ), listed below as reactions. 450 

,

,

*f basal

b basal

k

i ik
HK HK   (1) 451 

,

,

f input

b input

k

i i i ik
I HK I HK+   (2) 452 

, ,

, ,

* *f actv input

b actv input

k

i i i ik
I HK I HK+   (3) 453 
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,

,

*f actv

b actv

k

i i i ik
I HK I HK   (4) 454 

, ,

, ,

* * *f ij phtrf phtrf

b ij phtrf

k k

i j i j i jk
HK RR HK RR HK RR+ ⎯⎯⎯→ +  (5) 455 

, ,

, ,

* * *f ij phtrf phtrf

b ij phtrf

k k

i i j i i j i i jk
I HK RR I HK RR I HK RR+ ⎯⎯⎯→ +  (6) 456 

, ,

, ,

* *f ij phtse phtse

b ij phtse

k k

i j i j i jk
HK RR HK RR HK RR+ ⎯⎯⎯→ +   (7) 457 

, ,

, ,

* *f ij phtse phtse

b ij phtse

k k

i i j i i j i i jk
I HK RR I HK RR I HK RR+ ⎯⎯⎯→ +  (8) 458 

,

,

* *f input phtse

b input

k k

i i j i i j i i jk
I HK RR I HK RR I HK RR+ ⎯⎯⎯→ +  (9) 459 

, ,

, ,

* * *f actv input phtrf

b actv input

k k

i i j i i j i i jk
I HK RR I HK RR I HK RR+ ⎯⎯⎯→ +  (10) 460 

,

,

* * 22 ( )
p bind

p unbind

k

j j j jk
RR P RR P+   (11) 461 

btpnk

j j jP P m⎯⎯⎯→ +   (12) 462 

* 2 * 2( ) ( )tpnk

j j j j jRR P RR P m⎯⎯→ +   (13) 463 

trnk

j j j jm m HK RR⎯⎯→ +  +   (14) 464 

,deg inputk

iI ⎯⎯⎯→   (15) 465 

Here, the subscript i refers to the ith TCS. We recognize that HKi can be activated reversibly at some 466 

basal level, i.e., in the absence of any input signal, to its active form, 
*

iHK  (reaction (1)) (37). The 467 

input, Ii, can bind reversibly to HKi or HKi
* to yield the complexes IiHKi or 

*

i iI HK , respectively 468 
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(reactions (2) and (3)). IiHKi can lead to the activated complex 
*

i iI HK  at a rate higher than the basal 469 

rate above (reaction (4)). 
*

iHK  can bind jRR  and activate it via phosphotransfer, yielding HKi and 470 

*

jRR  (reaction (5)). An analogous reaction occurs with 
*

i iI HK  binding to RRj (reaction (6)). Note 471 

that in these reactions, j=i would imply cognate interactions. HKi can bind to 
*

jRR  and exert 472 

phosphatase activity (reaction (7)), consistent with the bifunctional nature of typical HKs, which act 473 

as both kinases and phosphatases (1, 9, 38). The latter activity can also be triggered by IiHKi 474 

(reaction (8)). The reversible binding of Ii to the intermediate HK-RR complexes is also possible 475 

(reactions (9) and (10)). Thus, we assumed that RR binding to HK does not influence ligand binding 476 

to HK. Binding rates of non-cognate partners ( , ,f ij phtrfk  and , ,f ij phtsek ) are weaker than cognate partners 477 

( , ,f ii phtrfk  and , ,f ii phtsek ), and the attenuation factor is , , , ,

, , , ,

1
f ij phtrf f ij phtse

f ii phtrf f ii phtse

k k

k k
 = =  . 

*

jRR  dimerizes and 478 

binds to the corresponding promoter Pj (reaction (11)). This binding enhances transcription 479 

compared to its basal level (reactions (12) and (13)); i.e., tpn btpnk k . Transcription produces mRNA, 480 

denoted by m, which are then translated, with the HK and RR translated in the ratio :1  (reaction 481 

(14)). Here, we recognize that the response also typically upregulates the corresponding TCS 482 

proteins (2, 39). Input signals degrade with rate constant ,deg inputk  (reaction (15)). All the other entities 483 

present in the network are assumed to degrade with a rate constant degk  (not written explicitly for 484 

convenience). 485 

Next, we estimated the rate of synthesis of HK and RR proteins by assuming that the DNA 486 

binding reactions are fast compared to transcription and translation reactions (15, 20). Let PT be the 487 

total concentration of promoter binding sites present on the bacterial genome, with f
b
 and f

f
 the 488 

fractions of promoter sites in the bound and the free states, respectively. We assumed pseudo-489 

equilibrium between DNA binding reactions, yielding 490 
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* 2

, ,( )( )p bind f T j p unbind b Tk f P RR k f P=   (16) 491 

If 1 , ,/p unbind p bindK k k=  is the equilibrium dissociation constant for reaction (11), we get 492 

 493 

 494 

495 
Fig. 5 Schematic of mathematical model of TCS signaling with crosstalk. (a) Architecture of the 496 
generalized mathematical model. The input Ii is detected by HKi, which gets phosphorylated (HKi with a 497 
yellow dot) and then transfers the phosphoryl group either to the cognate response regulator, RRi (blue), or 498 
non-cognate response regulator (RRj, j i (green)). Activated RRs trigger downstream gene expression via 499 

promoter Pi. Inactive HKs can act as phosphatases, which dephosphorylate active RRs. (b) Sample interaction 500 
matrix for N=4. The diagonal positions represent cognate and non-diagonal positions non-cognate 501 
interactions. Zeros in the non-diagonal cells represent the absence of the corresponding crosstalk interactions. 502 
The ratio of the phosphotransfer rate for non-cognate and cognate interactions is γ. 2N(N-1) such interaction 503 
matrices are possible depending on whether each non-diagonal entry is zero or not. 504 

 505 

1

* 2( )

f

b j

f K

f RR
=   (17) 506 

Because f
b
+f
f
=1, it follows that 507 

* 2

1

1

( )
1

f

j

f
RR

K

=

+

  (18) 508 

and 509 
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1

* 2

1

1
( )

b

j

f
K

RR

=

+

  (19) 510 

We now have the concentration of promoters in the basal and active states. Reactions (11) to (13) 511 

estimate the rate of upregulation of the corresponding TCS as follows. From reactions (12) and (13), 512 

the change of mRNA concentration would be 513 

j

btpn f T tpn b T deg j

dm
k f P k f P k m

dt
= + −   (20) 514 

Applying the pseudo-equilibrium approximation to mRNA dynamics, i.e., 
dmj

dt
≈0, gives 515 

btpn T tpn

j f b

deg btpn

k P k
m f f

k k

 
= + 

 
 

  (21) 516 

By substituting expressions (18) and (19) into (21), we obtain 517 

* 2

1

* 2

1

( )
1

( )
1

tpn j

btpnbtpn T

j

jdeg

k RR

k Kk P
m

RRk

K

 
+  

 =

+

  (22) 518 

These mRNA molecules translate at the rate ktrn to produce HKj and RRj molecules in the ratio λ:1. 519 

j

trn j

dHK
k m

dt
=   (23) 520 

j

trn j

dRR
k m

dt
=   (24) 521 

Substituting 
ktpn

kbtpn
=α and 

ktrnkbtpn

kdeg
=β, we get the synthesis rates of HK and RR by mRNA translation as 522 
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The rate equations for reactions (1) – (15) can be written following standard mass action 525 

terms and by utilizing the expressions (25) and (26) as follows. 526 
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The rate constants involved were obtained from the literature (9, 20, 40) (Supplementary 540 

Table 1). The rate equations were integrated in MATLAB using the routine ode15s and with chosen 541 

initial conditions (Supplementary Table 1). In all our simulations, the above equations were first 542 

solved in the absence of stimuli for a sufficiently long time so that the basal autophosphorylation 543 

reactions balanced the degradation reactions and all the proteins reached a steady state. Using the 544 

latter as the pre-stimulus state of the bacterium, the above equations were solved in the presence of 545 

stimuli. The solution depended on the phenotype, described next. 546 

Interaction matrix 547 

For a bacterium with N TCSs, different phenotypes are possible depending on the presence or 548 

absence of specific crosstalk interactions. An interaction matrix defines the identity of each 549 

phenotype (Fig. 5b). The ijth element in the matrix represents the strength of the cross-interaction 550 

between HKi and RRj relative to the cognate interaction. The cognate interactions are all assumed to 551 

be equally strong and occupy the diagonal entries. The cross-interactions are also assumed to be of 552 

the same relative intensity, γ, whenever they exist. The non-diagonal entities are thus either 0 or γ. 553 

Since there are N(N-1) non-diagonal elements present, with 2 state values possible for each of them, 554 

we get 2N(N-1) different phenotypes. 555 
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Fitness formulation 556 

We constructed a fitness variable based on the response of a TCS to a time-dependent input. 557 

We defined the fitness corresponding to the ith TCS as 558 

( )
( ) exp (1 )i

i b

m

I t
t f

I


 
= − − 

 
  (40) 559 

where 
1

* 2

1

1
( )

b

i

f
K

RR

=

+

 follows from Eq. (19) above. The term ( )i mI t I−  reflects the inverse 560 

relationship between the fitness and input intensity. Im is taken as the maximum (or peak) input 561 

value. Thus, as Ii increases, it reflects an increasing change in the environment, inducing a more 562 

significant fitness loss until the bacterium responds and adapts. The recovery of fitness following the 563 

response is determined by the second entity in the fitness variable, 1 bf− , where bf  denotes the 564 

fraction of promoters bound by RR*. (We recall that K1 is the dissociation constant of
* 2( )j jRR P .) As 565 

this fraction increases, the magnitude of the response also rises, leading to greater fitness given the 566 

signal. This formulation of fitness makes sure that i  lies between 0 and 1. TCSs are assumed to 567 

contribute independently to fitness. Thus, for a bacterium with N TCSs, the total instantaneous 568 

fitness is the product of individual fitness values: 569 

1

( ) ( )
N

i

i

t t 
=

=   (41) 570 

In the absence of any signal, 1 = . Similarly, with a perfect response, i.e., with 1bf = ,   is again 1. 571 

We also considered an alternative fitness formulation and found no qualitative differences in our 572 

results (Supplementary Text 1). 573 
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Stochastic evolutionary simulations 574 

We performed Wright-Fisher simulations to describe the competition between different 575 

phenotypes in random and programmed environments. We considered discrete generations with a 576 

fixed population of bacteria. Our simulations had these steps: 577 

1. We initialized the population in one of two ways: 578 

a. Homogeneous population, comprising a colony of a single, chosen phenotype 579 

b. Mixed population, comprising equal numbers of all possible phenotypes 580 

2. We computed the fitness of bacteria as follows: 581 

a. In a programmed environment, we employed the sequence of stimuli 582 

1 2 ... NI I I→ → →  . The fitness of each phenotype was the time-average of the 583 

fitness ( )t  when all the N signals were elicited once: 584 

0

1
( )

T

t dt
T

 =    (42) 585 

  Here, T was chosen to be the time when the last signal faded away. 586 

b. In a random environment, the signals were elicited in a random sequence. Thus, NN 587 

signal sequences were possible, allowing for the signals to repeat. The fitness of each 588 

phenotype was then the mean of its time-averaged fitness estimated separately for 589 

each of the NN possible sequences: 590 

0

1
( )

T

sequence
t dt

T
 =    (43) 591 

sequence
 =   (44) 592 

3. We next estimated ‘control’ fitness, measuring the reduction in fitness in the absence of any 593 

response, using: 594 
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( )1
exp

T

i
control

i m

I t
dt

T I


 
= − 

 
   (45) 595 

This has the same expression as i , but without the bf  term. 596 

4. Fitness selection happens on the bacteria in a generation. For each bacterium, we examined 597 

whether the fitness   was larger than (1 )control control r + −  , where [0,1]r  was a random 598 

number from a uniform distribution. The latter choice accounted for any stochastic variations 599 

in environmental factors and associated selection forces. If   was larger, the bacterium 600 

survived. Else, it was removed. 601 

5. From the survivors, we randomly selected some and duplicated them to replace lost bacteria 602 

and maintain the population constant. 603 

6. We mutated the resulting bacteria. In our simulations, a mutation toggled a potential crosstalk 604 

interaction between on and off. For instance, for a bacterium with crosstalk between HKi and 605 

RRj, mutation would turn the corresponding , ,f ij phtrfk  and , ,f ij phtsek  from γ×10-3 nM-1s-1 to 0. 606 

Every bacterium was checked for the possibility of mutation with probability μ at each of the 607 

2N(N-1) crosstalk interactions possible. 608 

7. We repeated the above procedure from step 4. 609 

One generation in our simulation time frame was typically T=N×500 s, with N signals elicited in 610 

each generation. This made sure that all the TCSs could be triggered in principle. We performed 611 

simulations over a large number of generations and over 50 realizations for each parameter setting, 612 

which ensured reliable statistics. 613 

Codes and data availability 614 

The MATLAB codes used to estimate the fitness values, perform Wright-Fisher simulations, 615 

and the codon and amino acid sequence files, domain information, alignment files, and the raw data 616 
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for the resulting phylogenetic trees employed for evolution analyses are available at the GitHub 617 

repository https://github.com/vembha/TCS_crosstalk_evolution. 618 
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