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ABSTRACT

The prevalent paradigm governing bacterial two-component signaling systems (TCSs) is specificity,
wherein the histidine kinase (HK) of a TCS exclusively activates its cognate response regulator
(RR). Crosstalk, where HKs activate noncognate RRs, is considered evolutionarily disadvantageous
because it can compromise adaptive responses by leaking signals. Yet, crosstalk is observed in
several bacteria. Here, to resolve this paradox, we propose an alternative paradigm where crosstalk
can be advantageous. We envisioned ‘programmed’ environments, wherein signals appear in
predefined sequences. In such environments, crosstalk that primes bacteria to upcoming signals may
improve adaptive responses and confer evolutionary benefits. To test this hypothesis, we employed
mathematical modeling of TCS signaling networks and stochastic evolutionary dynamics
simulations. We considered the comprehensive set of bacterial phenotypes, comprising thousands of
distinct crosstalk patterns, competing in varied signaling environments. Our simulations predicted
that in programmed environments phenotypes with crosstalk facilitating priming would outcompete
phenotypes without crosstalk. In environments where signals appear randomly, bacteria without
crosstalk would dominate, explaining the specificity widely seen. Additionally, a testable prediction
was that the phenotypes selected in programmed environments would display ‘one-way’ crosstalk,
ensuring priming to ‘future’ signals. Interestingly, the crosstalk networks we deduced from available
data on TCSs of Mycobacterium tuberculosis all displayed one-way crosstalk, offering strong
support to our predictions. Our study thus identifies potential evolutionary underpinnings of crosstalk
in bacterial TCSs, suggests a reconciliation of specificity and crosstalk, makes testable predictions of
the nature of crosstalk patterns selected, and has implications for understanding bacterial adaptation

and the response to interventions.
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IMPORTANCE

Bacteria use two-component signaling systems (TCSs) to sense and respond to environmental
changes. The prevalent paradigm governing TCSs is specificity, where signal flow through TCSs is
insulated; leakage to other TCSs is considered evolutionarily disadvantageous. Yet, crosstalk
between TCSs is observed in many bacteria. Here, we present a potential resolution of this paradox.
We envision programmed environments, wherein stimuli appear in predefined sequences. Crosstalk
that primes bacteria to upcoming stimuli could then confer evolutionary benefits. We demonstrate
this benefit using mathematical modeling and evolutionary simulations. Interestingly, we found
signatures of predicted crosstalk patterns in Mycobacterium tuberculosis. Furthermore, specificity
was selected in environments where stimuli occurred randomly, thus reconciling specificity and

crosstalk. Implications follow for understanding bacterial evolution and for interventions.
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INTRODUCTION

Bacteria sense and respond to environmental cues predominantly via two-component
signaling systems (TCSs) (1). The first component of a TCS is the transmembrane histidine kinase
(HK). The HK detects the stimulus, which typically is a chemical ligand, and gets
autophosphorylated. The phosphorylated HK (HK-P) binds to and transfers its phosphoryl group to
the response regulator (RR), the second component of the TCS. Phosphorylated RR (RR-P) typically
dimerizes and triggers changes in downstream gene expression, mounting a response to the stimulus
(1, 2). Cognate HK-RR pairs, which belong to a TCS, are generally co-expressed under a single

promoter in an operon (3), and are often upregulated as part of the response to the stimulus (1, 2).

Bacteria can have many tens of distinct TCSs, each performing a different function (1).
Evolutionary pressure is thought to have rendered TCSs specific: the HK of a TCS rarely
phosphorylates the RR of another TCS (4). Crosstalk between TCSs, defined as phosphotransfer
from the HK of one TCS to the RR of another TCS, is considered disadvantageous because it
dissipates the signal, decreasing the concentration of the cognate RR-P, and thereby weakening the
response (4). Moreover, unwanted responses due to gene expression downstream of noncognate RR-
Ps might get triggered. Bacteria typically acquire novel TCSs through gene duplication (5), which
would naturally allow crosstalk before diversification of the TCSs into distinct pathways (6, 7).
Several experimental and modeling studies have argued that despite the extensive homology between
TCS proteins, there is strong evolutionary pressure for these paralogs to be specific (5, 8-13). For
instance, crosstalk between TCSs can be abrogated by as few as two mutations, indicative of the
evolutionary pressure favoring specificity (8). Further, during the evolution of new TCSs post gene
duplication, bacteria have been predicted to eliminate crosstalk before new TCS functionalities can
arise (9). The sequence space occupied by the paralogs is thought to be sparse, allowing easy

establishment of such specificity (12).
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Yet, crosstalk between bacterial TCSs continues to be observed, and, in some bacteria, in
significant measure. Approximately 3% of the 850 interactions between TCS proteins in E. coli, for
instance, were between noncognate HK-RR pairs (14). A substantially larger fraction, ~50% of the
23 interactions, were between noncognate pairs in M. tuberculosis (15). Given the evolutionary
advantages of specificity together with the relative ease of establishing it, the observed crosstalk is
puzzling. Indeed, in some organisms, such as C. crescentus (16) and M. xanthus (17), no crosstalk
has been observed among hundreds of interactions. The observed crosstalk may thus not be
attributable to chance and may instead have evolutionary underpinnings. Unraveling potential
evolutionary advantages of crosstalk is expected to have important implications for our

understanding of bacterial adaptation, survival, and response to interventions (1, 18, 19).

Here, we conceived of an evolutionary paradigm in which crosstalk could be beneficial. We
hypothesized that in programmed environments, where signals consistently appear in a predefined
sequence, crosstalk between TCSs that would prime the bacterium to upcoming signals might confer
an evolutionary advantage. To test this hypothesis, we constructed a mechanistic mathematical
model of generalized multi-TCS signaling networks and performed comprehensive evolutionary
dynamics simulations. We challenged model predictions with available experimental observations
and found evidence in support of our hypothesis. Additionally, we arrived at a plausible synthesis of

the seemingly conflicting observations of specificity and crosstalk in bacterial TCS systems.

RESULTS
Crosstalk can confer a fitness advantage in programmed environments

We first considered a hypothetical environment involving N=2 signals, denoted |1 and Iz,
recognized by two TCSs of a bacterium, TCS; and TCS», made up of the proteins HK: and RR1 and
HK> and RR>, respectively. Depending on the nature of interactions between the TCSs, four
phenotypes could exist (Fig. 1a): 1) with no crosstalk (phenotype 1); 2) with crosstalk between HK

and RR2 (phenotype 2); 3) with crosstalk between HK> and RR1 (phenotype 3); and 4) with
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bidirectional crosstalk (phenotype 4). We developed a detailed model of signal transduction ina TCS
network, allowing for all possible crosstalk patterns between the TCSs (Methods). The model builds
on previous models of TCS signaling (9, 15, 20, 21), generalizing them to multi-TCS networks with
crosstalk. The novelty of our approach lies in recognizing and incorporating the role of the
environment. We applied our model to each of the four phenotypes. We first considered the scenario
representing a programmed environment. Specifically, we let the signal 11 be followed by I2. For
simplicity, we let the signals be identical except for the time of their onset (Fig. 1b). We also
assumed the signals to be square pulses arriving in quick succession, mimicking the typical way
environments impose stresses (22); we considered alternative signal types below. Using the model,
we predicted the concentrations of RR1-P and RRz-P over time (Fig. 1b top panel) as a proxy for the

responses of the bacteria to the two stimuli. Further, we estimated the fitness, ¢1and ¢, of the
bacteria associated with the responses of the two TCSs, and the overall fitness, <¢> , combining the

two (Fig. 1b bottom panel). The fitness was determined by the strength of the cognate responses to

the individual stimuli (Methods).

For phenotype 1, where TCSs are insulated, our model predicted that the responses to the two
signals were, expectedly, identical except for a shift in time (black curves in Fig. 1b). When Iy
arrived, bacterial fitness dropped sharply, indicating a changed environment to which the bacterium
was yet to adapt. The bacterium mounted an adaptive response, improving its fitness with time. As
RR1-P increased, the fitness, ¢1, recovered. The same phenomenon was observed upon the arrival of

I.. The absence of crosstalk implied that the responses to 11 and I> were independent. Although the

fitness was nearly fully restored eventually, the time-averaged overall fitness, (gb) , was lower than
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Fig. 1 Mathematical model of TCS signaling predicts advantages of crosstalk. (a) All possible phenotypes
with N=2 TCSs. Cognate interactions (black arrows) and crosstalk (red arrows) are shown. These interactions
are also depicted compactly in the ‘interaction matrix’ for each phenotype (Methods). Orange squares
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represent cognate interactions and blue squares crosstalk. (b) Signal-response behavior and fitness of the
phenotypes in a programmed environment. The purple filled rectangles depict the presence of the input
signals, with the darker shade representing I and the lighter shade I,. The signal strength is 104 nM for both.
The top panel shows the concentrations of activated RRs and the bottom panel the associated fitness of the
responses. The phenotypes are color coded and dark and light curves represent TCS; and TCS,, respectively.
Crosstalk strength is y=0.26. The inset shows the reduction in time-averaged fitness of the different
phenotypes due to the signals. The fitness is 1 in an unperturbed environment. (c) Selection coefficient in a
programmed environment. ¢ as a function of y when 11 is followed by I.. (d) Optimal crosstalk strength.
Dependence of 6 on y for phenotype 2. Inset shows the fitness of the two TCSs contributing to c. (e) Selection
coefficients in random environment. ¢ as a function of y when I; and I, follow no order. Fitness is calculated
as the mean over all possible signal sequences.

unity, indicative of the vulnerability of the bacterium ‘during’ adaptation to the changed

environment.

For phenotype 2, with HK1—RR: crosstalk (red curves in Fig. 1b), our model predicted that
before the arrival of Iz, signal leakage to TCS resulted in lower RR1-P and, hence, ¢1 than for
phenotype 1. The signal leakage, however, triggered TCS,. The resulting RR2-P upregulated HK>

and RR2. When I> came up, the bacterium responded faster and better than phenotype 1; RR.-P and
#2 were higher than for phenotype 1. The overall fitness, <¢> , increased beyond that of phenotype 1.

Thus, the bacterium was predicted to be more sensitive and responsive to the upcoming stimulus due
to crosstalk, increasing its fitness. This scenario was illustrative of the possible advantage of

crosstalk in a programmed environment.

For phenotype 3, with HK>—RR1 crosstalk, in our model predictions, the needless signal
dissipation to RR1 following the onset of 1> induced a fitness loss (blue curves in Fig. 1b). Finally,
for phenotype 4, with bidirectional crosstalk, RR1-P was like phenotype 2 due to dissipation before
the arrival of I, but the advantage of priming was lost due to the HK>—RR; crosstalk after the

arrival of I, resulting in an overall fitness loss (green curves in Fig. 1b). The predicted time-

averaged fitness loss, 1—<¢> , of the four phenotypes over the entire signal-response period
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highlights the advantage of phenotype 2, which has a crosstalk pattern that mirrors the signal

sequence, over the other phenotypes (Fig. 1b inset).

Next, we examined how the fitness advantage would depend on the strength of crosstalk
using our model. We defined the selection coefficient, o, for any phenotype as the difference
between the time-averaged fitness of the phenotype and that of phenotype 1, the latter without any
crosstalk. We quantified the strength of crosstalk using v, the ratio of the rates of phosphotransfer to
noncognate and cognate RRs (Methods). The larger was the value of vy, the greater was the extent of
crosstalk. We found from our predictions that for all the values of y studied, phenotype 2 had
positive o, whereas the other phenotypes had negative o (Fig. 1c), consistent with the results above.
Further, for phenotype 2, o displayed a maximum at intermediate y (Fig. 1d). Increasing y increased
priming and improved the response to I», increasing fitness. Beyond a point, however, the advantage
of priming diminished, but the response to I1 continued to be compromised, lowering the overall
fitness (Fig. 1d inset). Thus, according to our model, limited crosstalk offered a fitness advantage to

phenotype 2.

Specificity is advantageous in ‘random’ environments

Using the same phenotypes above, we applied out model to estimate ¢ in a random
environment, where there was no defined sequence of signals (Methods). Now, phenotype 1 had the
highest estimated fitness; o was negative for all the other phenotypes (Fig. 1e). Because the
upcoming signal was not pre-specified, priming conferred no advantage. The detrimental effects of
crosstalk then decreased fitness regardless of the crosstalk pattern. Thus, o was equal for phenotypes
2 and 3, which had one crosstalk interaction each, and lower for phenotype 4, which had two
crosstalk interactions. Moreover, the greater the value of vy, the lower was the value of ¢ in the
random environment. Thus, in the absence of a consistent sequence of stimuli, our model predicted

that evolutionary pressure may select for specificity.
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Using sensitivity analysis, we found that the inferences above were robust to variations in
parameter values (Supplementary Fig. 1). Furthermore, our findings were robust to the fitness
construct employed (Supplementary Text 1; Supplementary Fig. 2) and the nature of the signals; we
tested both square pulses and exponentially decaying signals (Supplementary Fig. 3). Our model also
predicted that with decaying signals the fitness advantage of crosstalk ceased when the interval
between the signals was either too small or too large (Supplementary Fig. 3). When the interval was
too small, the second signal appeared before significant priming could happen, whereas when the
interval was too large, the priming faded away before the second signal could arrive. These latter
predictions were consistent with observations in E. coli (23), where priming conferred a significant
fitness advantage, manifested as enhanced growth rate, only for a range of time gaps between

signals.

Programmed environments favor one-way crosstalk

For the minimal case of N=2, phenotype 2 alone could anticipate I, following I, and thus was
predicted to have the highest fitness in our model. For bacteria with more than two TCSs, the fittest
phenotype is not obvious, as such anticipation is possible with multiple phenotypes. For instance, the
phenotype with the crosstalk interactions HK;—RR2 and HK>—RR3 as well as the phenotype with
HK;—RR2 and HK:—RR3 could anticipate the sequence I1—Il,—13. The number of phenotypes
grows exponentially with N. A bacterium with N TCSs will have N cognate and up to N(N-1)
noncognate interactions. Depending on whether each of the latter interactions is realized or not, a
total of 2NMN-1 phenotypes can exist, each representing a distinct crosstalk pattern. For N=3, this
would amount to 26=64 phenotypes and for N=4 to 2'=4096 phenotypes. Identifying the fittest
phenotype would thus require a comprehensive assessment of each of these phenotypes. We

performed this assessment next.

10
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We considered N=3. We numbered the phenotypes from 1 to 64, starting with the phenotype
with no crosstalk and ending with the phenotype with all crosstalk interactions realized (Fig. 2a). We
subjected each phenotype to a programmed environment with the signal sequence l1—l>—l3. We
also allowed the signals to have different durations, more realistically mimicking natural
environments. For each scenario, we applied our model to predict signal-response characteristics and

estimated the resulting fitness.

When the signals were all of the same duration, our model predicted that the phenotype that
was the fittest depended on the strength of crosstalk, y. When y was small, phenotype 12, which had
HK:—RR2, HK>—RR3 and HK1—RR3 interactions was the fittest (Fig. 2b). Its fitness was only
slightly higher than that of phenotype 10, which had HK:—RR2 and HK>—RR3 interactions. Note
that both these phenotypes anticipated upcoming signals and were fitter than phenotype 1, which had
no crosstalk. As y increased, phenotype 10 became fitter than phenotype 12 in our predictions.
Interestingly, the fitness of the latter decreased beyond a threshold y and eventually dropped below
that of phenotype 1. Phenotype 10, however, remained fitter than phenotype 1 throughout. We
understood these trends as follows. When y was low, the cost of signal dissipation was small. Thus,
the gain from crosstalk by HK1 with both RR2 and RR3 and by HK> with RR3 more than
compensated for the fitness loss due to leakage. However, as vy increased, the latter cost increased
and limiting crosstalk became advantageous. Accordingly, our model predicted that crosstalk
between HK; and RR2 and between HK> and RR3, which ensured the requisite anticipation of
upcoming signals, were retained, resulting in an overall fitness gain, whereas the redundant crosstalk

between HK; and RR3 was eliminated in the fittest phenotype.

We next increased the duration of I 6-fold (Fig. 2c). When y was small, phenotype 2, which
had the HK:—RR: interaction alone was the fittest in our predictions. As y increased, phenotype 10,
which had HK1—RR2 and HK>—RRz3 interactions, became the fittest. With weak crosstalk, the
advantage of priming to Iz through the entire duration of I, was not enough to compensate for the

11
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loss of response to I.. Phenotype 2, which did not have the HK>—RR3 interaction was therefore the
fittest. On the other hand, when crosstalk was stronger, the priming from both HK;—RR2 and
HK>—RR3 compensated for any signal dissipation, rendering phenotype 10 the fittest in our

predictions.

We also considered the effect of shortening the duration of 1> (Fig. 2d, ). When the duration
was shortened by 50%, phenotypes 12 and 10 were predicted to be the fittest, depending on vy, in a
manner similar to when the signals were all of the same duration (Fig. 2b, d). The shortening of the
duration by 50% thus did not affect the cost-benefit analysis substantially. Shortening the duration 5-
fold, however, made a difference, with phenotypes 3 and 11 now the fittest (Fig. 2e). As above, when
v was small, phenotype 11, with the crosstalk interactions HK;—RR3 and HK>—RR3, both
anticipating the upcoming signal I3, was the fittest in our model. This was because at low values of v,
priming to I3 while I, was present did not add to the cost due to signal dissipation significantly, as I»
was present for a short while. However, as y increased, phenotype 3, which had the single crosstalk
interaction HK;—RR3 was the fittest. The cost of dissipation, although 1> was short-lived, was no
longer affordable. The phenotype that let 11 prime the bacterium to the next ‘major’ signal, I3, was
thus the fittest. Finally, as with the N=2 scenario, the results were similar when exponentially

decaying signals were used instead of square pulses (Fig. 2f).

In all these cases, an intriguing feature of the fittest phenotypes is directed, ‘one-way’
crosstalk. If we denote the signal sequence as l1—l>—I3—..., then the fittest phenotypes had
crosstalk of the type HKi—RR; with j>i. In other words, the crosstalk that enabled priming to
‘upcoming’ signals was favored. Reverse signal flow, where j<i, resulted in phenotypes that suffered
fitness loss. In the interaction matrices, the fittest phenotypes all had non-zero entries in the upper
triangular portions and never in the lower triangular portions (Fig. 2a). To test the robustness of this
prediction, we adopted two strategies. We performed comprehensive evolutionary dynamics
simulations to examine whether the fitness advantage predicted by the calculations above would lead

12
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258  without crosstalk, and seven other phenotypes with different one-way crosstalk patterns. The signal sequence is l.—1,— 3. The fitness of the fittest

259  phenotypes and of phenotype 1 as functions of the strength of crosstalk, y, when (b) signals were of the same duration (500 s), or when I lasted (c) 3000 s,
260 (d) 250, and (e) 100 s, and (f) when the signals decayed exponentially. The colored bars at the top of each panel graphically depict the range of y over which
261  the respective color-coded phenotype has the highest fitness. Cartoons of the signal patterns are at the left in each panel.
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to the selection of the corresponding phenotypes with the one-way crosstalk patterns. Second, we

sought evidence of these predictions in available experimental data.

Evolutionary simulations predict selection of phenotypes with one-way crosstalk patterns

mirroring signal sequences

Using the descriptions above of the responses of different phenotypes to stimuli, we
performed stochastic, discrete generation, Wright-Fisher evolutionary simulations (24) (Fig. 3a;
Methods) to determine which phenotypes would get selected in different environments. We now
considered N=4 TCSs, increasing the complexity to a total of 4096 phenotypes, making it even more
difficult to predict the fittest phenotypes intuitively. We performed simulations with two types of
initial conditions: 1) the ‘homogeneous condition’, where a single phenotype existed, and 2) the
‘mixed condition’, where all the phenotypes were equally represented. With each initial condition,
we considered both random and programmed environments. With N=4, we had four types of signals,
one for each of the TCSs. We let each bacterium be stimulated four times. In the random
environment, each stimulus was chosen randomly from the four possible signals. In the programmed
environment, the signals followed a predetermined sequence, where the signals all appeared once and
in a fixed order. We computed the fitness of each of the 4096 species in each of these environments.
In each generation, we allowed every bacterium to be selected with a probability proportional to its
fitness. The selected bacteria were duplicated to replace lost bacteria and ensure a constant bacterial
population. The bacteria were then subjected to mutations. A mutation involved a change in the
crosstalk network of the bacterium, resulting in an altered phenotype. Specifically, we allowed each
of the N(N-1)=12 potential crosstalk interactions within a bacterium to be flipped (from existent to
non-existent and vice versa) with a probability y, the mutation rate, in each generation. The resulting
pool of bacteria formed the substrate for evolution in the next generation. We repeated this process

over a large number of generations and performed several realizations.
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Fig. 3 Stochastic evolutionary dynamics simulations show selection of crosstalk in programmed environments and specificity in random
environments. (a) Schematic of Wright-Fisher simulations. Simulations proceed in discrete generations and with fixed populations (n) comprising bacteria of
different phenotypes, indicated by their interaction matrices. In each generation, bacteria are exposed to stimuli. Depending on their response, fitness selection
takes place and less-fit bacteria are eliminated. Lost bacteria are replaced with copies of selected ones, chosen randomly. The resulting bacteria mutate,
illustrated using green boxes in the interaction matrices, resulting in altered phenotypes, which form the substrate for selection in the next generation. (b)
Evolution in a random environment. The phenotype without any crosstalk (blue) gets fixed whether the initial population is homogeneous (left) or mixed
(middle). The phenotype with all crosstalk interactions is also shown for comparison (green). The gray lines are trajectories of the two phenotypes in each of
50 realizations. The thick lines are means. Trajectories of all other phenotypes are not shown. The crosstalk strength was set to y = 0.26. The inset in the left
plot is the rank-ordered selection coefficient of all the phenotypes. The interaction matrices of the five most and five least fit phenotypes are shown (right). (c)
Evolution in a programmed environment. The one-way crosstalk phenotype mirroring the signal sequence I;—1,—I3—1s, which has the highest fitness,
dominates the population (red), whether the initial population is homogeneous (left) or mixed (middle). The inset in the left plot is the rank-ordered selection
coefficient of all the phenotypes. The interaction matrices of the five most and five least fit phenotypes are depicted (right). Simulations used N=4 TCSs.
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In the random environment, our simulations predicted that the phenotype without any
crosstalk dominated the population (Fig. 3b). For the homogenous condition, we initiated simulations
with the species containing all crosstalk interactions. Gradually, phenotypes with fewer crosstalk
interactions emerged. Eventually, the phenotype with no crosstalk emerged and dominated the
population. With the mixed condition, the latter species began to dominate the population from the
early stages and was soon fixed in the population. These observations agree with the prevalent
paradigm of TCS signaling favoring specificity (5, 8, 9, 12). Also, rank-ordering phenotypes by their
fitness values (Fig. 3b, inset) revealed that phenotypes with increasing number of crosstalk
interactions had decreasing fitness. To illustrate this, we present the crosstalk patterns of the top five
and bottom five fittest phenotypes (Fig. 3b). The former have zero or one crosstalk interaction and

the latter have all or one less crosstalk interactions, respectively.

In the programmed environment, which followed the signal sequence l1—l2—I3—l4, the
phenotype with the crosstalk pattern mirroring this signal sequence dominated the population (Fig.
3c). For the homogeneous condition, we used the species without crosstalk to initiate simulations.
Gradually, mutants with crosstalk emerged and grew, causing the initial species to decline.
Eventually, the phenotype with the crosstalk pattern mirroring the signal sequence emerged and
dominated the population. For the mixed condition, the latter phenotype grew from the early stages
and was rapidly fixed. Arranging the fitness values in descending order (Fig. 3c, inset) displays the
benefit of priming for upcoming stimuli. The five fittest phenotypes all had crosstalk interactions in
the upper triangle of their interaction matrices, indicating one-way crosstalk patterns that prime
bacteria to upcoming signals (Fig. 3c). The least fit phenotypes had the lower triangle of the
interaction matrices populated, indicating crosstalk that had signal flows opposite to the sequence of

stimuli.

These results were not restricted to N=4 TCSs. With N=2 (Supplementary Fig. 4) and N=3
TCSs (Supplementary Fig. 5) as well, the phenotype with no crosstalk was selected in random
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environments and the phenotype with the crosstalk pattern mirroring the sequence of signals was

selected in programmed environments.

These simulations thus point to environments where crosstalk may be evolutionarily favored.
It is possible that such programmed environments may have been the reasons for the selection of the
crosstalk that is observed in some bacteria. Our model and simulations go beyond offering a
plausible explanation of the origins of such crosstalk and predict that the crosstalk selected is
expected to be one-way. We next sought evidence of one-way crosstalk patterns in available

experimental data.

Evidence of one-way crosstalk in TCSs of M. tuberculosis

In a recent study, crosstalk between the TCSs of M. tuberculosis has been mapped using in
vitro assays of phosphotransfer from HKSs to all cognate and non-cognate RRs (15). Significant
crosstalk was observed (Fig. 4a), which allowed us to assess signal flows through extended TCS
networks. Using the crosstalk interactions, we identified all possible signal flows, or cascades, in the
TCSs of M. tuberculosis as follows. We considered the HK PhoR, for instance, which showed
crosstalk with the RR DevR (Fig. 4a). DevsS, the cognate HK of DevR, further showed crosstalk with
the RR NarL. NarS, the cognate HK of NarL, did not engage in any crosstalk. Thus, when PhoR gets
activated, it can transmit a portion of the signal to DevR. Similarly, crosstalk of DevS with NarL
would transmit some portion of the signal from DevS-DeVR to the NarS-NarL system, at which point
the signal flow would be terminated. Hence, PhoR-PhoP, DevS-DevR, and NarS-NarL form a
cascade of signal flow via crosstalk. In this cascade, the signal is not transmitted either to PhoP from

DevsS or NarS or to DevR from NarS, making the flow one-way.

Following the procedure above, we started with each of the TCSs of M. tuberculosis and
traced the resulting cascades. We found 12 such cascades (Fig. 4b). The longest cascade involved 4

TCSs. There were four cascades involving 3 TCSs each and seven cascades involving 2 TCSs each.
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Fig. 4 Crosstalk patterns in M. tuberculosis TCSs in vitro were one-way. (a) Complete crosstalk map
between TCSs of M. tuberculosis. The HKs (left column) and their cognate RRs (right column) are connected
by green arrows. Crosstalk interactions observed (15) are shown as red dashed arrows. (b) Crosstalk cascades.
All possible signal flows based on the crosstalk interactions in (a). (c) Superimposed signal cascades.
Examples of crosstalk patterns resulting from superimposition of cascades from (b).
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(Representative interaction matrices for all these cases are presented at the bottom in Fig. 4.) Note
that all the cascades had one-way crosstalk with the patterns resembling the fittest phenotypes in our

simulations above.

By superimposing the cascades above, we obtained additional one-way crosstalk patterns,
reflective of the patterns identified in our simulations. Two such patterns are depicted in Fig. 4c. For
instance, the crosstalk pattern involving MtrB-MtrA, PhoR-PhoP, and TcrY-TcrX (Fig. 4c top panel)
was equivalent to phenotype 12 in the N=3 case discussed above (Fig. 2b). Similarly, the pattern
involving KdpD-KdpE, DevS-DevR, and NarS-NarL (Fig. 4c bottom panel) was equivalent to
phenotype 11 in the N=3 case above (Fig. 2b). Remarkably, we could not find any crosstalk pattern
that was not one-way. This evidence of exclusive one-way crosstalk in the TCSs of M. tuberculosis

offered strong support to the predictions of our model and simulations.

To assess whether the crosstalk could have evolutionarily underpinnings, we sought
signatures of evolutionary pressures against diversification post gene duplication in the sequences of
the TCS proteins using bioinformatics analysis (Supplementary Text 2). The analysis, conducted on a
subset of the TCSs, suggested that this evolutionary pressure may have been lesser for the TCSs
involved in crosstalk than for the TCSs that were specific, offering further support to the notion that
the observed crosstalk may have been evolutionarily favored (Supplementary Text 2, Supplementary

Fig. 6 and 7, Supplementary Table 2).

DISCUSSION

Despite the strong evolutionary arguments favoring specificity in bacterial TCSs (4, 5),
crosstalk between TCSs has been observed (14, 15). Here, we present an alternative evolutionary
paradigm where crosstalk would be advantageous. Using modeling of TCS signaling networks and
comprehensive evolutionary dynamics simulations, we predicted that in programmed environments,
where stimuli arrive in a predetermined sequence, crosstalk that would prime bacteria to upcoming

signals would confer an evolutionary benefit. Thus, specific crosstalk patterns that mirror the
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sequences of stimuli could get selected in bacteria living in such environments. Analyzing recent in
vitro data (15), we found that potential crosstalk networks involving the TCSs of M. tuberculosis all
displayed one-way signal flow, consistent with the notion of priming and selection in programmed
environments. This new evolutionary paradigm is not in conflict with the paradigm underlying
specificity. Our modeling and simulations predicted that when no predetermined sequence of stimuli
existed, specificity was evolutionarily favored. Our study, thus, offers a conceptual framework that
synthesizes specificity and crosstalk in bacterial TCS systems. They appear to be two sides of the
same coin; they are both outcomes of the same evolutionary forces, but in environments that present
signals differently. Programmed environments may be rarer, resulting in the lower prevalence of

crosstalk.

Independent evidence exists of one-way crosstalk aiding bacterial adaptation in programmed
environments. In E. coli, evolutionary experiments showed how ‘anticipation’, facilitated by
crosstalk, is selected for when the environment displays a specified pattern of carbon source
switching (22). Similarly, in S. cerevisiae, preparation of the bacterium to respond to oxidative stress
while experiencing heat shock was a result of adaptation; these stresses are typically experienced in
the same temporal order (22). Furthermore, the complex structure of environments can become
ingrained in in silico biochemical networks in order to predict environmental changes preemptively
(25). In agreement, this adaptive behavior was evident in E. coli, where a match between the
covariation of transcriptional responses and the sequence of temperature and oxygen stresses
triggering them was observed (25). Evidence also exists of pathogenic bacteria evolving crosstalk to
adapt to their hosts. For instance, mutations in the TCS BfmS-BfmR of P. aeruginosa in individuals
with cystic fibrosis were recently found to alter, facilitated via crosstalk by the noncognate HK GtrS,
regulation of downstream gene expression in order to promote biofilm formation and chronic

infection (26). Similarly, in a-proteobacteria, multiple HKs of the HWE/HisKA-2 family can control
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the phosphorylation of the same response regulators in a coordinated manner and tune downstream

gene expression (27).

Based on the signaling cascades we deduced from the in vitro TCS crosstalk interactions of
M. tuberculosis, it would be interesting to identify corresponding sequences of stimuli, potentially
unveiling information of the environments to which M. tuberculosis may have adapted. The
ligands/stimuli that many of the TCSs sense, however, remain unknown, precluding such analysis
(28). Yet, specific instances suggesting such adaption could be identified from the cascades. For
example, the TCS PrrB-PrrA is reported to be involved in the early replication steps of M.
tuberculosis inside macrophages (29). The TCS MprB-MprA has been argued to be essential for
establishing persistent infection (30), a state of slower or halted replication from which the bacterium
can be reactivated to establish active infection (31). Disruption of mprA affected processes required
for survival during the persistence and subsequent infection stages (30). One could thus argue that
crosstalk from PrrB-PrrA to MprB-MprA may be favorable because it would prime the bacterium to
activate the processes necessary for establishing persistent infection, a key feature of successful
tuberculosis infection (32), once entry is gained into a macrophage. Indeed, this one-way crosstalk
was observed in the in vitro cascades (15). Future experiments may assess the advantage of such

crosstalk in vivo.

Crosstalk is not limited to bacterial TCSs. Examples of crosstalk exist in human growth factor
signaling networks (33), MAPK networks of yeast (34), and between TOR and CIP pathways in S.
pombe (35). The evolutionary underpinnings of these crosstalk interactions may be more difficult to
unravel because of the more involved regulatory structures in these organisms than in the simpler
bacterial TCS systems. Yet, controlled evolutionary experiments suggest selection of cross-
regulation patterns in broad agreement with our predictions. For instance, the yeast S. cerevisiae,
which is commonly used in the fermentation industry, is subjected to heat, ethanolic stress and
oxidative stress, in that order, in the industrial process (22). The related regulatory networks were

21


https://doi.org/10.1101/2022.05.18.492451
http://creativecommons.org/licenses/by-nc-nd/4.0/

432

433

434

435

436

437

438

439

440

441

442

443

444

445
446

447

448

449

450

451

452

453

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.18.492451; this version posted May 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

observed to have the following crosstalk interactions: heat—ethanolic, heat—oxidative, and
ethanolic—oxidative (22). This is similar to the phenotype 12 in the N=3 case in our model (Fig. 2a).
Furthermore, when the organism was artificially exposed to these stresses in the reverse order, the
crosstalk interactions switched their directions (22). These scenarios, together with our proposed

paradigm, point to the possible evolutionary advantages of crosstalk.

Because of its evolutionary advantages, crosstalk may be a potential target of intervention.
With pathogenic bacteria, crosstalk may sharpen the already sophisticated strategies to evade host
immune responses and promote virulence (28, 36). Bacterial HKs offer promising targets of
intervention (1, 18). Where crosstalk may aid bacterial survival and adaptation, as suggested for
instance with M. tuberculosis (15), targeting HKs engaged in crosstalk could prove a more potent
strategy than targeting specific HKs. It would not only block the cognate response of the targeted
HK, but also compromise the responses of the TCSs that would otherwise have been primed by the

targeted HK via crosstalk.

METHODS
Mathematical model of TCS signaling with crosstalk

We developed a mathematical model to describe bacterial signal transduction via TCSs. We
considered the scenario in which a bacterium contains N distinct TCSs, which can be engaged in
crosstalk (Fig. 5a). We built the model by envisioning the set of events associated with the i" TCS

engaged in crosstalk with the j'" TCS (i, j e{L2,..., N}), listed below as reactions.

kf,basal *
HK; WHKi 1)
|+ HK, =22 | HK, )
|+ HK ot | K 3)

b, actv,input
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. HK, %IiHKf (4)
HK; +RR, k:)ii;"“:HKfRRj oy HK; +RR (5)
,HK +RR. —k;#liHKjRRj s | HK; +RR’ (6)
HK, +RR;%\HKiRR;%HKi +RR, (7)
IiHKi+RR;%\IiHKiRR;ﬂ>IiHKi+RRj )
! +HKiRR;T+:::‘IiHKiRR;&>IiHKi +RR; ©)
I, + HKRR, %\IiHK:RRj%IiHKi +RR (10)
2RR’ +P &#(RR;)ZPJ. (12)
P —m 5P +m, (12)
(RR)?P, —=>(RR))?P, +m, (13)
m,—=—>m, +1-HK, +RR, (14)
| —my g (15)

Here, the subscript i refers to the i"" TCS. We recognize that HK; can be activated reversibly at some

basal level, i.e., in the absence of any input signal, to its active form, HKi* (reaction (1)) (37). The

input, 1i, can bind reversibly to HK; or HK; to yield the complexes liHK; or IiHKi*, respectively
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(reactions (2) and (3)). liHKi can lead to the activated complex IiHKi* at a rate higher than the basal
rate above (reaction (4)). HKi* can bind RRj and activate it via phosphotransfer, yielding HK; and
RR; (reaction (5)). An analogous reaction occurs with IiHKi* binding to RR; (reaction (6)). Note

that in these reactions, j=i would imply cognate interactions. HK; can bind to RRT and exert

phosphatase activity (reaction (7)), consistent with the bifunctional nature of typical HKs, which act
as both kinases and phosphatases (1, 9, 38). The latter activity can also be triggered by IiHK;
(reaction (8)). The reversible binding of |; to the intermediate HK-RR complexes is also possible

(reactions (9) and (10)). Thus, we assumed that RR binding to HK does not influence ligand binding

to HK. Binding rates of non-cognate partners (kflij’phtrf and kf,ij’phtse) are weaker than cognate partners

kf ij k ii *

i i ij, phtrf fij, phtse . .

(kf,iiyphm and kf'ii’phtse), and the attenuation factor is y = = <1. RRJ. dimerizes and
f ,ii, phtrf f ,ii, phtse

binds to the corresponding promoter Pj (reaction (11)). This binding enhances transcription
compared to its basal level (reactions (12) and (13)); i.e., ktlon > kbtlon . Transcription produces mRNA,

denoted by m, which are then translated, with the HK and RR translated in the ratio A:1 (reaction

(14)). Here, we recognize that the response also typically upregulates the corresponding TCS

proteins (2, 39). Input signals degrade with rate constant kdeg,input (reaction (15)). All the other entities

present in the network are assumed to degrade with a rate constant kdeg (not written explicitly for

convenience).

Next, we estimated the rate of synthesis of HK and RR proteins by assuming that the DNA
binding reactions are fast compared to transcription and translation reactions (15, 20). Let Pt be the

total concentration of promoter binding sites present on the bacterial genome, with £, and Jj,the

fractions of promoter sites in the bound and the free states, respectively. We assumed pseudo-
equilibrium between DNA binding reactions, yielding
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kp,bind ( ff I:)T )(RR;)Z = kp,unbind fb I:)T (16)

If K, =K, ping /Ko pina i the equilibrium dissociation constant for reaction (11), we get

Fig. 5 Schematic of mathematical model of TCS signaling with crosstalk. (a) Architecture of the
generalized mathematical model. The input I; is detected by HK;, which gets phosphorylated (HK; with a
yellow dot) and then transfers the phosphoryl group either to the cognate response regulator, RR; (blue), or
non-cognate response regulator (RR;, j = i (green)). Activated RRs trigger downstream gene expression via

promoter P;. Inactive HKSs can act as phosphatases, which dephosphorylate active RRs. (b) Sample interaction
matrix for N=4. The diagonal positions represent cognate and non-diagonal positions non-cognate
interactions. Zeros in the non-diagonal cells represent the absence of the corresponding crosstalk interactions.
The ratio of the phosphotransfer rate for non-cognate and cognate interactions is y. 2NN-Y such interaction
matrices are possible depending on whether each non-diagonal entry is zero or not.

f

Do K (17)

f, (RR))

Because fb +];=1, it follows that
1

fom—r (18)
RR?)?

l+( )

Kl

and
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f=— T (19)

We now have the concentration of promoters in the basal and active states. Reactions (11) to (13)
estimate the rate of upregulation of the corresponding TCS as follows. From reactions (12) and (13),

the change of mMRNA concentration would be

dam.
M f,P 4k, f.P —k,.m (20)

btpn tpn dei
dt p p g9 )

Applying the pseudo-equilibrium approximation to mRNA dynamics, i.e., ’~0 gives

Kyor P k
m, = i"” [ff+k“’” fb] (21)

deg btpn

By substituting expressions (18) and (19) into (21), we obtain

l+ tpn (RR )
m kbtpn P kbtpn Kl
j *\2
a kdeg 1+ (RR])
Kl

(22)

These mMRNA molecules translate at the rate ki to produce HKj and RRj molecules in the ratio 4:1.

dHK _ akm, (23)
dt
dRR,
dt L= ktrnrnj (24)
Substltutlng a and Stoen =4, we get the synthesis rates of HK and RR by mRNA translation as

btpn deé
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2
l+a (RRj)
dHK; K,
— L =IpP ; (25)
dt RR;)
1+
Kl
()
dRR, TR
=P (26)
dt (RRJ-)
1+
Kl
The rate equations for reactions (1) — (15) can be written following standard mass action
terms and by utilizing the expressions (25) and (26) as follows.
% = _(kf,bas x HK; + kf,input x 1, x HK; +Zkf,ij,phtse x HK; x RR;)
i
1 (Ky s X HK 4Ky o0 X LHK + 3 K X HKCRR, + 3k x HKGRRY) 27)
i i
*\2
RR:
l+ax ( KJ)
+ABP; x 5 |~ Keeg X HK|
(%)
1+~
Kl
dHK . ) .
dt = _(kb,bas x HK; + kf,actv,input x|; x HK; +Zkf,ij,phtrf HK; RRj) 28)
J
+(kf,bas x HK; + kb,actv,input X IiHKi* +Zkb,ij,phtrf X HKi*RRj)_ kdeg X HKi*
i
dli(;-thi = _(kb,input x [;HK; + kf,actv x [;HK; +Zkf,ij,phtse x [;HK; x RR;)
j
+(kf,input x|y x HK; 4K o X I HK +kahtrf X IiHKi*RRj (29)
i

x |, HK;

deg

J i
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dl,HK;
dt

+(kf,actv,input x| x HKi* +K¢ oo X THK; +Zkb,ij,phtrf x IiHKi*RRj) -k
i

deg

dRR,

— (XKt X HKG XRR; + 3 K e X HK] X RR, )

+(Z Ko gt X HKTRR 4 3 K 5 o X EHKCRR; + 3 K, X HKGRR

*

]

2
(RR7)
1+ ax "
£ Koo % | KRR} ) + Py (R—R*)lz —Ky, xRR,
1410
Kl
dzsi = (3K e X R} X (HK + 1LHK ) 4K, g X (RRY ) % P)

(X Ky X (HITRR; + 1 HKRR, )+ K g % (R ) P

3Ky e X HKGRR] + LHKRR] )) = kg R

dHK'RR, .
Tj = _(<kf,actv,input x 1+ kb,ij,phtrf + kphtrf )X HK; RR])
(Ko et opu X THKCRR, 4K e X HK X RR, ) =Koy x HKRR,
dHK.RR’ )
Tj = _((kf,input X Ii + kphtse + kb,ij,phtse)>< HKI RRJ)

(K, e % LHKRR? 4K 4 oo x HK, xRRY) =k, x HK,RR

dI,HK'RR. .

Tj = _((kb,actv,input + kb,ij,phtrf + kphtrf )X IiHKi RRJ)
+(kf,actv,input x 1 x HKi*RRj + kf,ij,phtrf X IiHKi* X RR])_kdeg x 1, HKi*RRj
dI,HK,RR' .

Tj = _(( kb,input + kb,ij,phtse + kphtse )X Ii HKI RRJ)

(K o ¥ 1, X HKRR 4K, ox L HK < RRY) =Ky, x L HKRR?

= _(kb,actv,input x IiHKi* +Kp aery X IiHKi* + Zkb,ij,phtrf x IiHKi* x RR;)
j

(30)

(31)

(32)

(33)

(34)

(35)

(36)
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% =K, ping x(RR}“)2 % P + Ky unping ><(RR}*)2 P + Kgeg X(RR;)Z P (37)
d(RR) P

j j *\2 *\2 2

d; L =K, g x(RRj) P+ K g x(RRj) X P, + Ky X(RRJ_) P (38)
% = ~Kieg,input < Ii (39)

The rate constants involved were obtained from the literature (9, 20, 40) (Supplementary
Table 1). The rate equations were integrated in MATLAB using the routine ode15s and with chosen
initial conditions (Supplementary Table 1). In all our simulations, the above equations were first
solved in the absence of stimuli for a sufficiently long time so that the basal autophosphorylation
reactions balanced the degradation reactions and all the proteins reached a steady state. Using the
latter as the pre-stimulus state of the bacterium, the above equations were solved in the presence of

stimuli. The solution depended on the phenotype, described next.

Interaction matrix

For a bacterium with N TCSs, different phenotypes are possible depending on the presence or
absence of specific crosstalk interactions. An interaction matrix defines the identity of each
phenotype (Fig. 5b). The ij element in the matrix represents the strength of the cross-interaction
between HK; and RRj relative to the cognate interaction. The cognate interactions are all assumed to
be equally strong and occupy the diagonal entries. The cross-interactions are also assumed to be of
the same relative intensity, y, whenever they exist. The non-diagonal entities are thus either O or v.
Since there are N(N-1) non-diagonal elements present, with 2 state values possible for each of them,

we get 2NN-D different phenotypes.
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Fitness formulation

We constructed a fitness variable based on the response of a TCS to a time-dependent input.

We defined the fitness corresponding to the i"" TCS as

I (t
#0) = exp(—#(l— fb)j (40)
1
where f, =—— — follows from Eq. (19) above. The term ~ ,(t)/1, reflects the inverse
1+ 1
(RR')*

relationship between the fitness and input intensity. I is taken as the maximum (or peak) input
value. Thus, as | increases, it reflects an increasing change in the environment, inducing a more

significant fitness loss until the bacterium responds and adapts. The recovery of fitness following the

response is determined by the second entity in the fitness variable, 1- f,, where f, denotes the

fraction of promoters bound by RR”. (We recall that K; is the dissociation constant of(RR}b)2 P..) As
this fraction increases, the magnitude of the response also rises, leading to greater fitness given the
signal. This formulation of fitness makes sure that @, lies between 0 and 1. TCSs are assumed to

contribute independently to fitness. Thus, for a bacterium with N TCSs, the total instantaneous

fitness is the product of individual fitness values:
N

s0=]T40® (41)
i=1

In the absence of any signal, ¢ =1. Similarly, with a perfect response, i.e., with f,=1, ¢ is again 1.

We also considered an alternative fitness formulation and found no qualitative differences in our

results (Supplementary Text 1).
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Stochastic evolutionary simulations

We performed Wright-Fisher simulations to describe the competition between different
phenotypes in random and programmed environments. We considered discrete generations with a

fixed population of bacteria. Our simulations had these steps:

1. We initialized the population in one of two ways:
a. Homogeneous population, comprising a colony of a single, chosen phenotype
b. Mixed population, comprising equal numbers of all possible phenotypes

2. We computed the fitness of bacteria as follows:

a. Inaprogrammed environment, we employed the sequence of stimuli
|, > 1, >..—= | . The fitness of each phenotype was the time-average of the

fitness ¢(t) when all the N signals were elicited once:

(#) == [#0ak (42)

Here, T was chosen to be the time when the last signal faded away.

b. Inarandom environment, the signals were elicited in a random sequence. Thus, NN
signal sequences were possible, allowing for the signals to repeat. The fitness of each
phenotype was then the mean of its time-averaged fitness estimated separately for

each of the NN possible sequences:

() e = 7 [ $OE 43)

(8)=((#) s (44)

3. We next estimated ‘control’ fitness, measuring the reduction in fitness in the absence of any

response, using:
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¢c0ntro| = Tl '([ dtH exp (_ III_(t)] (45)

m

This has the same expression as @ , but without the fb term.

4. Fitness selection happens on the bacteria in a generation. For each bacterium, we examined
whether the fitness <¢> was larger than @, +(1—¢Comm|)>< I', where r [0,1] was a random
number from a uniform distribution. The latter choice accounted for any stochastic variations
in environmental factors and associated selection forces. If <¢> was larger, the bacterium

survived. Else, it was removed.

5. From the survivors, we randomly selected some and duplicated them to replace lost bacteria
and maintain the population constant.

6. We mutated the resulting bacteria. In our simulations, a mutation toggled a potential crosstalk

interaction between on and off. For instance, for a bacterium with crosstalk between HK; and
RR;j, mutation would turn the corresponding k“jyIohtrf and kf,ij’phtse from yx10° nMs to 0.

Every bacterium was checked for the possibility of mutation with probability p at each of the
2N(N-D) crosstalk interactions possible.

7. We repeated the above procedure from step 4.

One generation in our simulation time frame was typically T=Nx500 s, with N signals elicited in
each generation. This made sure that all the TCSs could be triggered in principle. We performed
simulations over a large number of generations and over 50 realizations for each parameter setting,

which ensured reliable statistics.

Codes and data availability

The MATLAB codes used to estimate the fitness values, perform Wright-Fisher simulations,

and the codon and amino acid sequence files, domain information, alignment files, and the raw data
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for the resulting phylogenetic trees employed for evolution analyses are available at the GitHub

repository https://github.com/vembha/TCS_crosstalk evolution.
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