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Summary

e Annual rings from 30 year old vines in a California rootstock trial were measured to
determine the effects of 15 different rootstocks on Chardonnay and Cabernet Sauvignon
scions. Viticultural traits measuring vegetative growth, yield, berry quality, and nutrient
uptake were collected at the beginning and end of the lifetime of the vineyard.

e X-ray Computed Tomography (CT) was used to measure ring widths in 103 vines. Ring
width was modeled as a function of ring number using a negative exponential model.
Early and late wood ring widths, cambium width, and scion trunk radius were correlated
with 27 traits.

e Modeling of annual ring width shows that scions alter the width of the first rings but that
rootstocks alter the decay thereafter, consistently shortening ring width throughout the
lifetime of the vine. The ratio of yield to vegetative growth, juice pH, photosynthetic
assimilation and transpiration rates, and stomatal conductance are correlated with scion
trunk radius.

e Rootstocks modulate secondary growth over years, altering hydraulic conductance,
physiology, and agronomic traits. Rootstocks act in similar but distinct ways from climate
to modulate ring width, which borrowing techniques from dendrochronology, can be used
to monitor both genetic and environmental effects in woody perennial crop species.

Key words: dendrochronology, hydraulic conductance, perennial, physiology, rootstocks,
viticulture, wine, wood anatomy

Introduction

Grafting is the joining of plant tissues together, through either natural or artificial means (Gaut et
al., 2019). When a root system (the rootstock) is grafted to a shoot system (the scion,
pronounced sai ¢ uhn), a graft junction is formed, with vascular connections connecting the two
systems into a single organism (Thomas & Frank, 2019). Hormones, tissue regeneration, and
molecular pathways regulating vascular development are important to this process (Melnyk,
2017; Nanda & Melnyk, 2018). Often, the rootstock and scion are genetically distinct, combining
two genotypes into a single chimera if no genetic incompatibility arises (Thomas et al., 2022).
When genetically distinct root and shoot systems are grafted together (a heterograft), they can
be compared to different grafted rootstock and scion genotypes, the same genotype grafted to
itself (a homograft), or an ungrafted plant (own-rooted) (Frank & Chitwood, 2016). Any
difference in scion or rootstock traits relative to a different combination of grafted genotypes can
be used to infer the genetic basis of reciprocal communication between root and shoot systems.
Graft-induced signaling between genotypes has been used extensively during domestication,
breeding, and agricultural improvement of crops (Williams et al., 2021).

Grafting can be performed across the flowering plants (Reeves et al., 2022). Especially in long-
lived, woody perennials, grafting can be necessary for cultivation and even domestication itself
(Warschefsky et al., 2016). In perennial species, grafting has been used to modulate scion
architecture through dwarfing, to alter fruit bearing through precocity and productivity, to change
fruit quality, and to confer pathogen resistance and abiotic stress tolerance (Warschefsky et al.,
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2016). Over 80% of vineyards grow grafted grapes, a process that became widespread in
response to the phylloxera (Daktulosphaira vitifoliae Fitch) crisis, in which grafting to tolerant
and/or resistant rootstocks derived from North American Vitis species allowed wine and table
grape scions to grow in infested soils (Ollat et al., 2016). Subsequently, grapevine rootstocks
were recognized as not only conferring resistance to pathogens besides phylloxera (Cousins &
Walker, 2002; Hwang et al., 2010; Ferris et al., 2012), but also salinity and drought tolerance
(Zhang et al., 2002; Serra et al., 2014), as well as altering scion mineral composition (Walker et
al., 2004; Gautier et al., 2018, 2020; Migicovsky et al., 2019; Harris et al., 2022) and the
chemistry and maturation of berries (Ruhl, 1989; Walker et al., 2000; Kodur, 2011; Cheng et al.,
2017). One of the most desirable properties that grapevine rootstocks can affect is Ravaz (or
harvest) index: the ratio of yield to pruning weight (or, 1-year-old cuttings weighed the following
dormant season at pruning). A high Ravaz index is desirable to maximize yield and minimize
vine management. However, in some cases, a Ravaz index may be too high, indicating that the
vine is overcropped and often resulting in reduced fruit quality and reduced vine size (Bravdo et
al., 1984). Grapevine rootstocks modulate both components of Ravaz index, yield and vigor
(McCarthy & Cirami, 1990; Ezzahouani & Williams, 1995; Jones et al., 2009; Migicovsky et al.,
2021). Water and nutrient uptake are two of the principal means by which rootstocks affect
reproductive and vegetative growth, consequently also influencing berry composition (Keller,
2020).

Although rootstocks can influence grapevine growth, yield, and berry qualities, the primary
source of variation in these traits is the environment (Kidman et al., 2014, Keller, 2020). In non-
grafted plants, the root and shoot systems are in constant communication with each other. In
particular, the root and shoot systems must communicate to enable hydraulic conductivity, the
movement of water from the roots through the vasculature of plants to the leaves and other
aerial parts where it is transpired (evaporated) or guttated (exuded). Through water uptake and
vasculature, both environment and rootstocks converge on an often overlooked component of
plant growth in perennial crops: secondary growth. The effects of the environment on secondary
growth in woody perennials can be so strong that, using methods from dendrochronology, the
widths of tree rings can be used to infer water availability and the length of the growing season.
In angiosperms, the vascular cambium divides during the growing season to create xylem
vessels and fibers (Rathgeber et al., 2016). The daughter cells enlarge, thicken secondary
walls, and eventually undergo cell death to form the empty lumen that transports water from the
root to shoot systems. Grapevines and other vines and lianas have ring porous wood and
produce wider vessels early in the season and narrow vessels later (Pratt, 1974; Ewers et al.,
1990; Wheeler & LaPasha, 1994). Grapevine annual ring width is environmentally responsive.
In 14 year old Vitis vinifera L. cv. Merlot grafted to 140 Ruggeri (Munitz et al., 2018) and 12 year
old V. vinifera L. cv. ‘Cabernet sauvignon’ grafted to 140 Ruggeri (Netzer et al., 2019), annual
ring width, vessel diameter, and hydraulic conductivity all increase with applied water, most
strongly at the beginning of the growing season when cambial activity is strongest (Berstein &
Fahn, 1960).

Grapevine wood anatomy is also affected by grafting. Five year old V. vinifera L. cv. Piedirosso
vines grafted to 420A have more numerous, narrower vessels in late wood compared to
ungrafted counterparts, conferring safer water transport under drought conditions (De Micco et
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al., 2018). A comparison of wood anatomy between seven year old V. vinifera L. cv. Cabernet
Sauvignon vines grafted to Riparia Gloire, 420A, and 1103 Paulsen found that a narrow
rootstock stem size restricted hydraulic conductivity and affected physiological performance
compared to a smoother graft junction with less discrepancy in rootstock and scion stem
diameters (Shtein et al., 2017). The extent and success of grafting may also play a role in the
effect of rootstock on scion. For example, in a recent study of the effects of alignment of scion
and rootstock, vine growth was significantly impacted in the nursery and the first year of
establishment when there was partial alignment. However, in years 2 and 3, these differences
disappeared (Marin et al., 2022).

Here, using X-ray Computed Tomography (CT) to examine ring widths in 30 year old
Chardonnay and Cabernet Sauvignon scion wood grafted to 15 different rootstocks from a
California vineyard, we measured the effects of rootstocks on secondary growth. Within the size
ranges of each scion, rootstock additively modulates scion trunk radius across a continuous
range differing by up to 143% in width. Modeling ring width as a function of ring number, we find
that scion modulates the widths of the first rings, whereas rootstock modulates decay,
cumulatively affecting secondary growth throughout the lifetime of the vine. Traits collected early
and late during the lifetime of the vineyard show correlations with scion trunk radius, including
juice pH and Ravaz index, reflecting effects on vegetative growth. Consistent with previous
work, scion trunk radius is also correlated with physiological performance, affecting
photosynthetic assimilation, transpiration rate, and stomatal conductance. Our results show that
the cumulative effects of grapevine rootstocks on viticultural traits act consistently over decades
by altering physiological performance through scion wood anatomy.

Materials and Methods

Vineyard history, management, and design

A complete history of the vineyard sampled in this study is available in Migicovsky et al. (2021),
reprinted here for convenience. In 1991 rootstocks were planted near Lodi in San Joaquin
County, California, before scionwood was whip-grafted to the planted rootstock in 1992. The
scion cutting was a cane (1 year old wood) when it was grafted. The soil type was a Tokay fine
sandy loam soil. Vines were grafted to the following rootstocks: Freedom, Ramsey, 1103
Paulsen, 775 Paulsen, 110 Richter, 3309 Couderc, Kober 5BB, SO4, Teleki 5C, 101-14 Mgt,
039-16, 140 Ruggeri, Schwarzman, 420 A, and K51-32. The parental Vitis species for each
rootstock are presented in Table 1 (Hardie & Cirami, 1988; Riaz et al., 2019). The two scion
varieties were Chardonnay (selection FPS 04) and Cabernet Sauvignon (selection FPS 07).
Rows were oriented east-west with vine spacing of 2.13 m by 3.05 m. The trellis system was a
bilateral cordon with fixed foliage wires and the vines were cordon trained and spur pruned. The
experimental design was a randomized complete block design, split between Chardonnay and
Cabernet Sauvignon. There were four replications per treatment (rootstock). There were eight
or nine vines per plot, except for Kober 5BB and SO4, which had four or five vines each, to fit all
treatments in the block.

Trait collection
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Historical data across 8 traits and all 15 rootstocks were collected for 5 years, from 1995 to
1999, and described in Migicovsky et al. (2021). These traits were: soluble solids content,
titratable acidity, pH, berry weight, cluster number, yield, pruning weight, and Razav index (a
measurement of crop load calculated by dividing yield by pruning weight from the following
dormant season). Contemporary data for all 15 rootstocks were also collected for 4 years, from
2017 to 2020, for the 8 traits included in the historical data set. Berry measurements were not
calculated for 5BB Kober and SO4 in 2017 only, due to sample mislabelling at the time. In
addition to the 8 traits from the historical data, numerous additional traits were collected for one
or more years in the contemporary data set, including petiole nutrition measurements, cordon
length, and yeast assimilable nitrogen (YAN). For a full summary of the number of measured
samples for each trait included in analysis, for each scion, for each year, see Supporting
Information Table S1.

In addition to these datasets, sampling took place at the vineyard for physiological
measurements in 2018 and 2019. This sampling was performed using only 3 of the rootstocks,
for each scion: Teleki 5C, Freedom, and 1103 Paulsen. In 2018, sampling was performed once
a week for 8 weeks from June 19th, 2018 to August 6th, 2018. In 2019, sampling was
performed once a week for 7 weeks from June 17th, 2019 to July 29th, 2019. For each
rootstock x scion combination, 3 vines were sampled, and for each vine, 2 leaves were
measured. Measurements were subsequently averaged across leaves from a particular vine.
The same 2 leaves were measured for both physiological traits and leaf temperature.

Physiological traits were measured using a portable photosynthesis system (LI-6800, LICOR
Biosciences, Lincoln, NE, USA) on clear sky days. Flow (600 pmol s'l), H,0 (RH_air 50%), C,0
(CO2_r 400 pmol mol™), temperature (Tleaf 33 °C), and light (1800 umol m? s™) were kept
constant throughout sampling periods. Three measurements were taken: stomatal conductance
(GSW, mol mr12 s(11), photosynthetic CO2 rate (A, ymol mr12 si'11), and transpiration rate (E, mol
mi12 si11). Fully expanded, sunlight leaves were measured, and each leaf was from a different
shoot on the vine and selected to represent the canopy as a whole. Measurements were taken
midday (approximately 10:30 am — 2:30 pm). Leaf temperature measurements were taken
either immediately before or after the physiological measurements using an infrared
thermometer (Extech 42515), scanning the same leaves measured for physiological traits.

X-ray Computed Tomography and ring measurement

All trunk samples were collected on March 2, 2021 using a chainsaw. Trunk sections were
roughly 20 cm long and taken 15-20 cm below the cordon wire (101.6 cm height) at the head of
the vine, normally just below cordon split. Given that 1 year old scionwood was grafted in 1992
and cuttings of it were taken in 2021, the physiological age of the trunk samples was 30 years
old, although the vineyard itself was only 29 years old. Samples were placed in polyethylene
bags, sealed, and shipped to Michigan State University. CT images were taken from the middle
of the vine samples. The total image height was approximately 95 cm. Images were scanned at
75 kV and 450 pamps in continuous mode with 2880 projections and 2 frames averaged on a
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North Star Imaging X3000. The focal spot size was 33.75 microns and the detector was set to
12.5 frames per second. Scan time was 8 minutes. Scans were reconstructed using the efX-CT
software from North Star Imaging (Rogers, MN). Final voxel resolution was 63.9 um and pixel
resolution was 63.9 um by 63.9 um (0.00639 cm by 0.00639 cm). From each 3D CT image,
three individual slices were taken for analysis. One slice was from the top of the image, one was
from the middle of the image, and the last was from the bottom of the image. All slices were
aligned to be taken perpendicular to the vine samples. In ImageJ (Abramoff et al., 2004). A thin
line was drawn from the center of the pith to the bark avoiding eccentric growth and crossing
rings as perpendicular as possible. Landmarks were placed according to Figure 1A. Euclidean
distance converting from pixels to centimeters was used to calculate ring widths. Models of ring
width as a function of ring number were fitted with the three slices per each vine. Ring width
measurements across the 3 slices for each vine were averaged for trait correlation analysis.

Data analysis

Data analysis was performed in Python (v. 3.7.3) using Jupyter notebooks (v. 1.0.0) (Kluyver et
al., 2016). Numpy (v. 1.19.4) (Harris et al., 2020) and Pandas (v. 1.3.5) (McKinney, 2011) were
used to work with arrays and dataframes and Matplotlib (v. 3.1.0) (Hunter, 2007) and Seaborn
(v. 0.11.2) (Waskom, 2021) were used for visualization. The negative exponential model

ring width = A + B x e ~f*Ting number \yaq fit using the curve_fit() function from Scipy (v. 1.7.3)
(Virtanen et al., 2020). The Statsmodels module (v. 0.13.2) (Seabold & Perktold, 2010) was
used to perform ordinary least squares (OLS) and analysis of variance (ANOVA) modeling as
well as for using the Benjamini-Hochberg (BH) procedure for multiple-test correction. The .corr()
function in Pandas was used to calculate Spearman’s rank correlation coefficient. For
correlations between scion trunk radius and physiological traits, the repeated measures
correlation coefficient (r,,) was calculated using the Pingouin module (v. 0.5.1) (Vallat, 2018).
The repeated measures correlation coefficient (Bakdash & Marusich, 2017) fits an overall
correlation coefficient on a population of repeated measures. In our case the repeated
measures are physiological measurements on scions with three different rootstocks (Teleki 5C,
Freedom, and 1103 Paulsen) on 15 different dates across 2018 and 2019. All code and data to
reproduce the results and visualizations in this manuscript, with comments and narrative, can be
found in a Jupyter notebook
https://github.com/DanChitwood/grapevine_rings/blob/main/grapevine_ring_analysis_v2.ipynb.

Results
Variation in scion trunk radius arises from cumulative effects of rootstocks on ring width

Scion trunk radius varies most strongly by scion, but within scion, rootstock exerts a strong
additive effect (Figure 1B-C). For the model scion trunk radius ~ scion * rootstock , scion
explains 46.53% of variation (p = 3.50x10™"°) in scion trunk radius and rootstock 16.57% (p =
0.0057), while the interaction effect only 2.42% (p = 0.980) (Table 2). Scion shifts the range of
scion trunk radii conferred by rootstocks in an additive fashion. Within Chardonnay, the median
scion trunk radius arising from the rootstock conferring the widest radius (775 Paulsen, 4.05 cm)
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245 s 143% wider than the rootstock conferring the narrowest radius (Schwarzmann, 2.84 cm)

246  (Figure 1B). The same rootstocks define the range of scion trunk radii within Cabernet

247  Sauvignon and closely follow the order of that in Chardonnay, with the rootstock conferring the
248  widest radius (775 Paulsen, 4.94 cm) 129% wider than that conferring the narrowest

249  (Schwarzmann, 3.83 cm) (Figure 1C).

250

251  Tree ring widths can be modeled as a function of ring number using a negative exponential
252  model (Fritts et al., 1969). We applied the model ring width = A + B * e~k*Ting number 4

253  measure how scion and rootstock modulate ring width across the scion trunk. Comparing the
254  overall model to models fitted with +/- 1.5 standard deviations from the mean values for 4, B,
255  and k shows how each of these variables acts (Figure 2A). A transposes ring width, including
256  the asymptote, up and down across all rings, B affects the widths of the first rings but not the
257  asymptote of the later rings, and k affects the decay, how rapidly the ring width approaches the
258 asymptote. For all rings, modeled width was higher in Cabernet Sauvignon than Chardonnay
259  (Figure 2B-C), consistent with scion trunk radii (Figure 1). If models of ring width are calculated
260 for each rootstock for each scion, differences in decay are observed by rootstock (Figure 2D-E).
261  For example, one of the rootstocks conferring a wider scion trunk radius (1103 Paulsen, dark
262 greenin Figure 2D-E) maintains higher ring widths, whereas one of the rootstocks conferring a
263  narrower scion trunk radius (Teleki 5C, dark pink in Figure 2D-E) rapidly drops in ring width
264  value after the first couple rings. Additionally Cabernet Sauvignon has higher ring widths in the
265  first couple rings compared to Chardonnay, but both scions fall to a similar asymptote around
266 0.2 cm in later rings. To quantify these trends, we calculated modeled 4, B, and k values for
267 each vine (Figure 2F-H) and analyzed how they vary across scion and rootstock variables using
268 the model trait ~ scion * rootstock (Table 2). No terms were significant for A, which is the
269 translation of the curve along the y axis, but rootstock was almost significant with p = 0.0565
270 and explained 22.21% of the variation (Table 2). scion explains 13.67% of variation in B, the
271  spread of the early rings, and is highly significant (p = 0.000068) while rootstock explains more
272  variability at 19.01% but was much less significant (p = 0.0593). For k, the decay, only

273  rootstock was significant (p = 0.0298) explaining 22.68% of the variation. We conclude that
274  scion modulates the widths of the first rings, as evidenced by being highly significant for

275 modulating modeled B values. Rootstock, contrastingly, modulates ring widths more

276  consistently throughout the trunk and across the lifetime of the vine by modulating the decay, k
277  (Table 2).

278

279 Ravaz (harvest) index and juice pH are robustly correlated with scion ring and trunk width

280

281  To determine traits most correlated with ring features and if there are specific ring features that
282  correlate with specific traits, we correlated all traits with all ring features. The ring features were
283 modeled 4, B, and k values (Figure 2F-H), early and late ring widths 1 to 8, outer ring widths,
284  cambium, and total width (or, scion trunk radius). Only rings 1 to 8 were measured individually
285  because after these, boundaries between rings and early and late wood became

286 indistinguishable. As described in Materials and Methods and detailed in Supporting

287 Information Table S1, some traits were collected only during 1995-1999, others 2017-2020,
288  and some for both periods. To understand general trends in the data, we visualized the
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distribution of correlation coefficients for each trait, for each scion, across the years the trait was
measured with scion trunk radius, as an overall summary (Figure 3A). Median Spearman’s rank
correlation coefficient values between traits and scion trunk radius range from around -0.4 to
0.4. Some traits have similar correlation coefficient values between the two scions, while others
are contrasting. For example, whereas pruning weight is strongly positively correlated with scion
trunk radius in both scions, juice pH is similarly positively correlated in Chardonnay, but more
neutral in Cabernet Sauvignon. Yield divided by pruning weight (also known as harvest, or
specifically in grapevines as Ravaz, index) is strongly negatively correlated in both Chardonnay
and Cabernet Sauvignon. In contrast, petiole tissue Mg and Ca traits were strongly negatively
correlated with scion trunk radius in Chardonnay and more neutral in Cabernet Sauvignon
(Figure 3A).

Multiple test adjustment on 5,786 correlations between each ring feature with trait values for
each scion and for each year resulted in 26 significant correlations with p < 0.05 (Figure 3B).

Our strategy in correlating each trait against each ring feature was to agnostically determine if
the traits measured in years corresponding to rings (or preceding years, given the patterning of
grapevine organs the year before they emerge) (Khanduja & Balasubrahmanyam, 1972;
Srinivasan & Mullins, 1976; Guilpart et al., 2014; Chitwood et al., 2021) showed associations
with each other. We did not detect any specific associations of rings with traits measured for the
years they were patterned. Further, rather than building chronologies and correcting for age-
related growth trends as is typically done in dendrochronology studies, we leverage the fact that
all vines are the same age, allowing the widths for each ring across vines to be compared with
each other. Significant correlations tended to include Chardonnay and traits measured in 1995-
1999; however, this does not mean that Cabernet Sauvignon or traits measured in 2017-2020
are necessarily more weakly correlated with ring features, as these factor levels have relatively
more missing data points as a result of both missing ring data (Figure 1) and trait data
(Supporting Information Table S1). The missing ring data was generally a result of vines
which had become scion-rooted over time and could therefore not be accurately sampled for
rootstock-effects. Of the 26 significant correlations, 11 include Ravaz index and 8 juice pH
(Figure 3B). Harvest index tended to be negatively correlated with ring and trunk widths while
juice pH was positively correlated. There were no strong patterns of specific ring features
correlating with traits except that there were no significant correlations with cambium width and
that there were more correlations with late wood (12) compared to early wood (5). The
correlation between Ravaz index and scion trunk radius was consistently negative across 1995-
1999 in both Chardonnay and Cabernet Sauvignon, although the correlations were stronger and
driven by variability in vines with smaller scion trunk radii in Chardonnay (Figure 4A). The
negative correlation in Ravaz index with ring features is driven by strong positive correlations
between pruning weight and ring width in both scions (Figure 3A). Vines with larger ring widths
tended to produce more vegetative growth (higher pruning weight) while the impact on
reproductive growth (yield) was weak. As a result, Ravaz index had a high negative correlation
with scion trunk radius, indicating that vines with larger trunks had lower ratios of yield/pruning
weight. Similar to Ravaz index, the positive correlation between juice pH and scion trunk radius
is maintained in Chardonnay across 1995-1999 but is not significant for Cabernet Sauvignon
(Figure 4B).
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333

334  Impact of scion trunk radius on vine physiology

335

336  To determine the physiological implications of rootstock choice, assimilation rate (A),

337  transpiration rate (E), stomatal conductance (gsw), and leaf temperature were measured for 15
338 dates during the 2018-2019 growing seasons. To better synchronously measure time-intensive
339  physiological traits with replication, three rootstocks were chosen that happen to span low to
340  high scion trunk radius values: from low to high, Teleki 5C, Freedom, and 1103 Paulsen (Figure
341  1B-C). The repeated measures correlation coefficient (1), which fits an overall correlation

342  coefficient value to a population of multiple measurements (Bakdash & Marusich, 2017), was
343  used (Figure 5). Measurements on the three rootstocks, measured for each scion of each of the
344 15 dates, were used as repeated measures to calculate an overall correlation coefficient

345  between each physiological trait and scion trunk radius. Repeated measure correlation

346  coefficients for assimilation rate, transpiration rate, and stomatal conductance with scion trunk
347  radius, for both Chardonnay and Cabernet Sauvignon, were positive, ranging between 0.28 and
348 0.37, and highly significant. The same correlations for leaf temperature, measured using an
349 infrared temperature gun on the same leaves from which physiological traits were taken, were
350 near 0 and not significant. For the rootstocks spanning scion trunk radius values that were

351 measured, we conclude that vines with wider trunks are more photosynthetically active, both
352  transpiring and assimilating more (Figure 5).

353

354  Discussion

355

356  Within the scion trunk radius ranges of Chardonnay and Cabernet Sauvignon, rootstocks

357 modulate size in an additive, continuous fashion up to 143% (Figure 1B-C). These results build
358  upon and support previous observations comparing seven year old Cabernet Sauvignon grafted
359 onto 1103 Paulsen, 420A, and Riparia Gloire (Shtein et al., 2017). Although our study does not
360 include Riparia Gloire, which had an unusually small trunk diameter (and which was proposed
361 as a mechanism by which hydraulic conductance and physiological performance are limited),
362  we confirm that Cabernet Sauvignon grafted onto 1103 Paulsen has a wider scion trunk radius
363  than 420A. Similarly, De Micco et al. (2018), in comparing five year old ungrafted Piedirosso to
364  vines grafted to 420A, found that grafting limits hydraulic conductivity in desirable ways,

365 increasing berry quality. Rather than a binary view of graft formation either inhibiting or

366  permitting hydraulic conductance as a consequence of trunk diameter and wood anatomy, in
367 comparing 15 rootstocks, we instead observe a continuous range of scion trunk radii. In using
368  two scions, we also see that these effects are additive, layered on top of the larger scion effect,
369  mostly preserving the ranking of scion trunk radii conferred by different rootstocks (Figure 1;
370 Table 2).

371

372  Scion trunk radius is the summation of annual ring widths and by measuring the outcome of 30
373  years of growth, we are able to identify the mechanisms by which rootstocks alter wood

374  anatomy (Figure 2). Using the model ring width = A + B x e~k*Ting number 'scion most strongly
375 modulates B, the spread of the first rings (Figure 2A; Table 2). Considering that scions were
376  whip grafted to rootstocks in their first year of growth, scion effects are expected to dominate in
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the absence of any rootstock. Rootstock most strongly modulates the decay of ring width k
thereafter, which can be interpreted as a consistent effect across all rings for the lifetime of the
grafted vine. How rootstocks modulate annual ring width is illuminated by previous studies
demonstrating how the environment does so. In grapevines and other lianas, rings arise from
high cambial activity early in the growing season and less at the end, creating the alternating
seasonal pattern of early and late wood (Berstein & Fahn, 1960; Pratt, 1974; Kozlowski, 1983;
Ewers et al., 1990; Wheeler & LaPasha, 1994). As shown previously by Munitz et al. (2018),
ring width increases with water availability, especially in the early growing season (late deficit)
when cambial activity is greatest. Hypotheses of rootstocks (Shtein et al., 2017) and grafting
(De Micco et al., 2018) altering physiological performance by restricting hydraulic conductance
are derived from extrapolating from these well-studied environmental effects of water availability
in the early season coinciding with meristem activity and the development of wood anatomy.

The impact of environment and rootstocks on physiological performance are derived both from
ring width and trunk diameter as well as parallel changes in vessel anatomy affecting overall
hydraulic conductivity of the vine. Generally in vines vessel length and diameter are correlated
with stem diameter (Ewers & Fisher, 1989; Jacobsen et al., 2012, 2015) and grafting impacts
vessel frequency and size in peach, cherry, and apple as well (Olmstead et al., 2006;
Gongalves et al., 2007; Tombesi et al., 2009). Density of vessels is not affected by irrigation, but
overall vessel diameter and diameter of large vessels increases with water availability,
especially under late deficit in the early growing season (Munitz et al., 2018; Netzer et al.,
2019). A previous study noted increases in the frequency of more narrow vessels in late wood in
response to grafting (De Micco et al., 2018). However, when considered with annual ring width
and the distribution of vessel diameters, grafting reduces hydraulic conductivity (De Micco et al.,
2018) and rootstocks with larger trunk diameters increase it (Shtein et al., 2017). Vessels are
visible in our X-ray CT images and can be measured (Figure 1), but as the pixel resolution is
limited to 63.9 um, we are unable to measure narrow vessel diameters that constitute an
important segment of vessels in the bimodal distribution of grapevine (Munitz et al., 2018) and
which grafting is reported to increase in frequency (De Micco et al., 2018). The impacts of
rootstocks on hydraulic connectivity can nonetheless be inferred from physiological
performance, as photosynthetic assimilation rate, transpiration rate, and stomatal conductance
all decrease when water status is impaired (Romero & Martinez-Cutillas, 2012). Across these
three rootstocks, we observe highly significant correlations between physiological parameters
known to be affected by hydraulic conductivity with scion trunk radius (Figure 5). Although the
extent of alignment between rootstock and scion was not evaluated in this study, vines with
complete alignment may have higher levels of transpiration than those with partial alignment,
indicating that the success of grafting itself may also play a role in physiological differences.
However, in previous work this did not correspond to hydraulic conductivity differences across
the graft measured in three year old vines at the end of the study (Marin et al., 2022).

Vegetative growth can indicate water availability (Tyree & Ewers, 1991; Munitz et al., 2017), and
from this perspective it is not surprising that some of the most correlated traits with rootstock-
induced changes in scion trunk radii are related to growth (Figures 3-5). Indeed, a previous
study of this vineyard suggested that the 1998 reduction in yield observed may be due to a dry

10
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1997 dormant season (Migicovsky et al., 2021). The cumulative precipitation for 1997 was 2,533
inches. In comparison, precipitation for 1995, 1996, 1998, and 1999, ranged from 3,377 to 7,775
inches, indicating that there was substantially more rainfall during these years (Migicovsky et
al., 2021). The 1998 season is one of the same years where the correlation with Ravaz index,
the ratio of yield to pruning weight, is weak for both Chardonnay and Cabernet Sauvignon
(Figure 4A). However, overall, the correlations with Ravaz index are some of the strongest. As
scion trunk radius increases in Chardonnay, Ravaz index decreases, driven mostly by year-to-
year variation in vines with narrow trunk diameters from 1995 to 1999 (Figure 4A). The
relationship is less strong for Cabernet Sauvignon. Similar to 1998, the correlation with the
Ravaz index from 1996 is also poor. Both 1996 and 1998 were years previously reported to
have low yields, and as a result, low Ravaz indexes. Although the reason for low yields in 1996
is unclear, among the 1995-1999 data, it was the year with the highest pruning weights,
indicating a stronger investment in vegetative growth (Migicovsky et al., 2021). Underlying the
strongest correlations between Ravaz index and scion trunk radius observed in both scions are
years of higher yields and lower pruning weights (1995, 1997, and 1999) (Figure 3A), thus
indicating that in years that enable high reproductive growth, yields are lower in large scions.
While there was a modestly positive correlation between yield and scion trunk radius in
Cabernet Sauvignon, the correlation for Chardonnay was modestly negative which likely
explains why the correlation between Ravaz index and scion trunk radius was higher for
Chardonnay. Taken together, these findings indicate that generally vines with a larger trunk
radius will have a lower Ravaz index as a result of having higher vegetative growth (pruning
weight). This relationship is stronger in Chardonnay, which also generally had smaller vines
(Figure 1B) as well as lower yields in comparison to Cabernet Sauvignon (Migicovsky et al.,
2021). A lower Ravaz index is not desirable for grape growers, because it leads to higher
management costs relative to the increase in profit (or yield).

Similar to pruning weight, juice pH had a strong positive correlation with scion trunk radius, but
only in Chardonnay, which was consistently observed across 1995 to 1999 (Figures 3, 4). Juice
pH is potentially influenced by potassium uptake of rootstocks (Ruhl, 1989; Kodur, 2011), but
we did not observe strong correlations between petiole potassium levels and scion trunk radius
(Figure 3A). We mention correlations with juice pH because it is strongly positive and scion-
specific, and it is consistent across years (Figure 4B), in addition to showing that effects on
hydraulic conductivity and growth associated with ring width and trunk diameter can potentially
affect berry quality through indirect mechanisms of water and nutrient uptake (Keller et al.,
2012; Mantilla et al., 2018; Migicovsky et al., 2019). We focus on the correlation of traits with
scion trunk radius as a cumulative indicator of rootstock-mediated effects on scion annual ring
widths, but in correlating with each ring feature, we note that there are only 5 significant
correlations with early wood ring widths compared to 12 significant correlations with late wood
ring widths (Figure 3B). De Micco et al. (2018) also note that grafting induces more, narrower
vessels creating wider latewood rings compared to ungrafted vines. Although speculation, it
might be that water availability in the early season environment corresponding with cambial
activity mostly affects early wood ring width (Munitz et al., 2017; Netzer et al., 2019) whereas
rootstocks act relatively more on latewood and narrower vessels (Figure 3B; (De Micco et al.,

11
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2018)), contributing to a consistent genetic, environmentally-independent mechanism of
modulating wood anatomy.

Regardless of mechanism, our results show that rootstocks act consistently over decades to
modulate growth and other scion traits. Although the significant correlations after multiple test
adjustments are biased by small amounts of missing data (Figure 3B; Supporting Information
Table S1), the strength, direction, and scion-specificity of the correlations are consistent for
traits from the beginning (1995-1999) to the end (2017-2020) of the 30 year life of the vineyard
we studied (Figure 3A). Vessels in V. vinifera are only active 1-3 years before inactivation and
no vessels are active after 7 years (Pratt, 1974, Tibbetts & Ewers, 2000; Pratt & Jacobsen,
2018). From this perspective, the continuous range of scion trunk radii conferred by grapevine
rootstocks (Figure 1) is a symptom and consequence of consistent modulation of wood
anatomy across the years (Figure 2) that renews the hydraulic effects on rootstocks on
viticultural traits (Figures 3-4) through physiological mechanisms (Figure 5). Just as used in
dendrochronology to infer climatic conditions from secondary growth, annual rings can be used
as a way to allow the vines themselves to report on genetic and environmental effects that are
modulating their performance. The wide-ranging and continuous effects of rootstocks on scion
wood anatomy are a powerful way that grape growers can precisely modulate the vegetative
growth versus yield, and indirectly berry and resulting wine quality, by altering hydraulic
conductivity consistently over years, with important implications for the use of rootstocks in all
woody perennial species.
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507 ZM, JFS, JLH, DRH, LMJ, MK, RKS, and PC collected vineyard trait data and/or prepared wood
508 for analysis. MYG and JM collected and prepared X-ray CT images. DHC measured ring widths.
509 TA, ARA, JDD, BMG, IK, MRM, ELM, AWS, ALD, SS, and DHC analyzed data. ZM and DHC
510 coordinated research, data analysis, and manuscript writing. DHC wrote a first draft of the

511  manuscript which all authors read, commented on, and edited.

512

513 Data Availability

514

515  X-ray CT cross-sections with landmarks are deposited on Dryad:

516  http://dx.doi.org/10.5061/dryad.ggnk98sqaf. All data and code to reproduce results are posted on
517  the Github repository https://github.com/DanChitwood/grapevine_rings.

518

519  Supporting Information Table S1: Numbers of measured samples for each trait, for each

520  scion, for each year.

21
222 Table 1: Rootstock parentage
523
Rootstock | Parentage
775 Paulsen | V. berlandieri Rességuier 2 x V. rupestris du Lot
1103 Paulsen | V. berlandieri Rességuier 2 x V. rupestris du Lot
3309 Couderc V. riparia x V. rupestris
110 Richter | V. berlandieri Boutin B x V. rupestris du Lot
Kober 5BB V. berlandieri Ress;%lqulgeﬁierv riparia Gloire de
039-16 V. vinifera Almeria x V. rotundifolia Male No. 1
S04 V. berlandieri Rességuier 2 x V. riparia Gloire de
Montpellier
Freedom | Fresno 1613- 59 x Dog Ridge 5
Ramsey Vitis x champinii
140 Ruggeri | V. berlandieri Boutin B x V. rupestris du Lot
420A V. berlandieri x V. riparia
101-14 MGT | V. riparia X V. rupestris
K51-32 V. x champinii, V. riparia
Teleki 5C V. berlandieri Rességuier 2 x V. riparia Gloire de
Montpellier
Schwarzmann Unknown V. rupestris x V. riparia Gloire de Montpellier
524
525
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526  Table 2: For traits scion trunk radius and A4, B, and k values from the model
527  ring width = A + B = e~**ringnumber the percent variation explained and p values for each
528 factor in the model trait ~ scion * rootstock

529
Scion Rootstock Scion x Rootstock
Trait Percent value Percent value Percent value
variation P variation P variation b
Scion trunk '
radius 46.53% 3.50x107° | 16.57% 0.0057 2.42% 0.980
A | 1.78% 0.160 | 2221%  0.0565 | 10.35% 0.632
B | 13.67% 0.000068| 19.01%  0.0593 | 10.64% 0.470
k | 0.33% 0.527 | 22.68% = 0.0298 | 16.86% 0.139
530
531
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Figure 1: Grapevine rings and scion trunk radii. A) X-ray CT cross-section through a
grapevine trunk. Along a line from the center of the pith to bark, landmarks are placed indicating
early (darker shade color) and late (lighter shade color) wood, the remaining outer rings, and
cambium. B-C) Boxplots showing distributions of scion trunk radii (cm) in B) Chardonnay (solid)
relative to Cabernet Sauvignon (transparent) and number of Chardonnay vines measured and
C) Cabernet Sauvignon (solid) relative to Chardonnay (transparent) and number of Cabernet

Sauvignon vines measured.
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Figure 2: Models of ring width. A) For the negative exponential model ring width = A + B *
e ~k+ring number the gyerall model fitted to all the data (black solid line) and models fitted with
values +1.5 standard deviations (solid lines) and -1.5 standard deviations (dashed lines) for A
(magenta lines), B (blue lines), and k (orange lines). B) A swarmplot of all measured ring widths
for Chardonnay (green) and Cabernet Sauvignon (purple) with an overall model (black) and
models for each scion, C) models for each vine measured colored by scion, D) models for each
rootstock for Chardonnay scions, and E) models for each rootstock for Cabernet Sauvignon
scions. F-H) Boxplots of model values by rootstock and by scion for F) 4, G) B, and H) k.
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553  Figure 3: Correlations between ring features and traits. A) Boxplot showing distributions of
554  Spearman’s rank correlation coefficient values for correlation between indicated traits for

555  Chardonnay (green) and Cabernet Sauvignon (purple) and scion trunk radius (cm). B) 26 traits
556  that remain significant at p < 0.05 after Benjamini-Hochberg multiple test correction. The year,
557  scion, and trait as well as ring features (modeled values, early ring widths, late ring widths, outer
558  ring width, or total width) are indicated. Negative (burnt orange) to positive (violet) correlation
559 coefficient values are indicated by scale and also provided by text for each correlation.
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562  Figure 4: Correlations by year for harvest index and pH with scion trunk radius. Asterisks
563 indicate significant correlations (as indicated in Figure 3B), based on multiple testing correction.
564  For correlations between A) yield divided by pruning weight (harvest, or Ravaz, index) and B)
565  juice pH correlations with scion trunk radius (cm) for data from each scion and indicated year
566 (black data points) and a modeled trendline (blue) are superimposed over all data for the trait
567 (Chardonnay, green; Cabernet Sauvignon, purple) across the years shown.
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Figure 5: Repeated measures correlation between physiological traits and scion trunk
radius for three rootstocks. Repeated measure correlation coefficient (r.,) and p value are
shown for the overall fitted correlation between A) A, assimilation rate (umol m?s™), B) E,
transpiration rate (mol m?s™), C) gsw, stomatal conductance (mol m?s™), and D) leaf
temperature (°F) with scion trunk radius (cm) across 3 rootstocks measured on 15 dates across
two years. The scions and rootstocks (T = Teleki 5C, F = Freedom, and P = 1103 Paulsen) are
indicated in the top panels and dates are indicated as shown by color, yellow shades for 2018

and blue for 2019.
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Rootstock
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@ Chardonnay
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= Modeled trendline for indicated correlation e Cabernet sauvignon data point

® Data representing indicated correlation
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