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Abstract 18 

The topology of endoplasmic reticulum (ER) network is highly regulated by various cellular 19 

and environmental stimuli and affects major functions such as protein quality control and the 20 

cell’s response to metabolic changes. The ability to quantify the dynamical changes of the ER 21 

structures in response to cellular perturbations is crucial for the development of novel 22 

therapeutic approaches against ER associated diseases, such as hereditary spastic paraplegias 23 

and Niemann Pick Disease type C. However, the rapid movement and small spatial dimension 24 

of ER networks make this task challenging. Here, we combine video-rate super-resolution 25 

imaging with a state-of-the-art semantic segmentation method capable of automatically 26 

classifying sheet and tubular ER domains inside individual cells. Data are skeletonised and 27 

represented by connectivity graphs to enable the precise and efficient quantification and 28 

comparison of the network connectivity from different complex ER phenotypes. The method, 29 

called ERnet, is powered by a Vision Transformer architecture, and integrates multi-head self-30 

attention and channel attention into the model for adaptive weighting of frames in the time 31 

domain. We validated the performance of ERnet by measuring different ER morphology 32 

changes in response to genetic or metabolic manipulations. Finally, as a means to test the 33 

applicability and versatility of ERnet, we showed that ERnet can be applied to images from 34 

different cell types and also taken from different imaging setups. Our method can be deployed 35 

in an automatic, high-throughput, and unbiased fashion to identify subtle changes in cellular 36 

phenotypes that can be used as potential diagnostics for propensity to ER mediated disease, for 37 

disease progression, and for response to therapy.  38 
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Introduction 39 

 40 
The endoplasmic reticulum (ER) is the largest membranous structure in eukaryotic cells and 41 

acts as a platform for protein synthesis and quality control and for various organelle-42 

interactions (Schwartz and Blower 2016). The healthy function of the ER depends on its 43 

dynamics and structure (Westrate et al., 2015), which are highly regulated by intra- and 44 

extracellular stimuli. The ER consists of distinct domains including sheets and tubules, and 45 

features growth tips and tubular connections, so called three-way junctions. Perturbations to 46 

the ER structure and dynamics caused by genetic defects or metabolic stress have been 47 

associated with a variety of diseases (Schönthal 2012), such as spastic paraplegias (HSPs) and 48 

Niemann Pick Disease type C (NPC). Hence, to understand the role of ER in diseases, it is 49 

important and necessary to characterise ER morphology comprehensively, which may provide 50 

powerful phenotypes to screen drugs against ER associated disorders. However, given the 51 

extent of the ER network and its complexity, the precise and quantitative measurement of ER 52 

topology and movement has remained challenging. The ER network in a single cell consists of 53 

thousands of interconnected tubules that undergo constant rearrangements via processes 54 

including continuous tubular elongation, contraction, and fusion. Furthermore, there are rapid 55 

transitions between sheet and tubular domains with distinct putative functions (Lu et al., 2020). 56 

Recently, capabilities have emerged to reveal such dynamic changes in ER topology in live 57 

cells, at sub-wavelength resolution. Structured illumination microscopy (SIM), for example, 58 

can be used to resolve details of ER topology and its rapid remodelling process (Nixon-Abell 59 

et al, 2016; Guo et al., 2018).  However, the data have only been interpreted qualitatively, 60 

without attempts to quantify ER topology or its structural changes precisely. So far, no suitable 61 

metrics exist, nor analysis tools, that can be used for such a purpose. Compared to other 62 

organelles, such as mitochondria and lysosomes, which are structurally simpler organelles that 63 

are often well separated from one another, the ER consists of highly convoluted and structurally 64 

connected domains. The task is further complicated by the fact that the signal to noise ratio of 65 

images obtained during live cell microscopy is often poor, while a clear differentiation of the 66 

organelle from its background is required to ensure successful segmentation into tubular and 67 

sheet domains. For moving structures, and time lapse imaging, this becomes a formidable task. 68 

 69 

A number of machine-learning based methods have been developed for the segmentation of 70 

cells (Stringer et al., 2021), mitochondria (Fischer et al., 2020; Lefebvre et al., 2021), and 71 

nuclei (Hollandi et al., 2020), which provide robust and precise classification of cell structures.  72 
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However, to date, thresholding remains the standard method of use for ER segmentation 73 

(English and Voeltz 2013; Pain et al., 2019; Garcia-Pardo et al., 2021), a method which lacks 74 

both sensitivity and specificity and thus quantitative conclusions are hard to draw, especially 75 

in situations where image quality is compromised by noise. Alternative methods are based on 76 

labour intensive manual labelling of image data to generate specialised datasets for training of 77 

machine learning algorithms. These approaches do not generalise well to work with changing 78 

experimental setups or varying sample types (Extended Data Fig. 1) (Arganda-Carreras et al., 79 

2017). An additional challenge for ER segmentation can be seen in temporal consistency. 80 

Conventional segmentation is performed on a frame-by-frame basis, and segmented structures 81 

in sequential (time-lapse) images lose temporal continuity and thereby cause artefacts 82 

(Belthangady and Royer 2019). Currently, there is no ER segmentation method capable of 83 

taking dynamic, spatial and temporal topology changes into consideration. Hence, more 84 

efficient and accurate classification schemes need to be developed for sequential imaging data, 85 

to be able to study ER structural changes as the they occur in live cells.  86 

 87 

To address these difficulties, we developed ERnet, a deep learning-based software that 88 

automatically segments ER, classifies its domains into tubules and sheets, and quantifies 89 

structural and dynamic features in super-resolution image sequences obtained from live cells. 90 

We provided ERnet with an intuitive user interface to make it a broadly accessible tool for 91 

biologists (Extended Data Fig. 2) and to promote ER-related research in basic science and 92 

clinical applications. While conventional segmentation methods based on thresholding classify 93 

objects according to image intensity, ERnet is trained with large image datasets to model the 94 

domain knowledge of ER structures, i.e., the shapes of tubules and sheets. As a result, it enables 95 

feature specific segmentation with enhanced robustness, specificity, and sensitivity regardless 96 

of the pixel intensity in the images. After segmentation, ERnet quantifies topological features 97 

of the ER and recognises subtle changes in the ER structure and dynamics for various stress 98 

conditions, including gene knockout /knockdown, ATP depletion and Calcium depletion etc. 99 

To validate the method, we tested the segmentation accuracy of ERnet on in vitro models 100 

subjected to different genetic and metabolic manipulations, including cells mimicking 101 

phenotypes of HSP and NPC. Two phenotypes were identified as sensitive readouts of the ER 102 

response in these models, namely the degree of fragmentation of ER networks and the 103 

heterogeneity in tubule connections. Both are indicators for the functional state of the ER 104 

network, and can be used, e.g., to quantify the degree of disorganisation, shrinkage, and 105 
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collapse of ER structures in models of disease. In summary, ERnet enables automated 106 

segmentation of ER structures and parametric analysis of ER topology in models used for 107 

genetic or therapeutic screening. 108 

 109 

 110 

Results 111 

The ERnet model architecture is optimised to segment and capture network information 112 

obtained from video-rate super-resolution imaging data.  113 

 114 

The general design of ERnet is schematised in Fig. 1a. First, the reconstructed sequential 115 

images of the ER were segmented in ERnet, followed by the classification of ER structures 116 

into tubules and sheets. The tubular structure was further skeletonised using a surface axis 117 

thinning algorithm (Lee et al., 1994). After this, the nodes and edges of the skeletonised ER 118 

were identified to plot a topology graph via a graph theory-based module (Peixoto, 2014). 119 

Instead of relying on the commonly applied convolution neural networks (CNN), our model 120 

builds upon a Vision Transformer architecture (Dosovitskiy et al., 2020) which outperforms a 121 

comparable state-of-the-art CNN with higher classification accuracy and four times fewer 122 

computational resources. Key to our method is that, rather than paying attention to the physical 123 

locations of the nodes, it focuses on the ER’s network features, e.g. the connectivity between 124 

nodes. For instance, metrics such as number of fragments and clustering coefficients can be 125 

extracted to determine the ER topology. 126 

 127 

The core component in our workflow is a Vision Transformer based model ERnet that performs 128 

the segmentation of the super-resolution images recorded at video rates (Fig. 1b). ERnet is 129 

designed to have a temporal window of five adjacent frames as input which permits the model 130 

to process sequentially correlated ER structures. By introducing a set of sequential frames with 131 

temporally overlapping structures, moving objects demonstrate a higher correlation than 132 

random background noise which improves the recognition of ER structures and allows the 133 

model to obtain more comprehensive domain knowledge that is critical to assess the structural 134 

integrity of the ER network correctly. To reduce the computational cost associated with the 135 

large data volumes generated by time sequenced imaging data, ERnet makes use of a so called 136 

3D shifted window (Liu et al. 2021) that not only applies self-attention to information within 137 

specific individual images themselves but also to features that persist between different frames 138 
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in the sequence. We also combine the multi-head self-attention (MSA) mechanism (Vaswani 139 

et al, 2017) with a channel attention mechanism (Christensen et al., 2022) in the ERnet, a design 140 

which makes the method more adaptive to different ER phenotypes.  141 

 142 

ERnet performs precise segmentation and topological analysis of the ER structures in 143 

sequential SIM images. 144 

 145 

The ER is a highly dynamic structure and at any instance thousands of tubules move and change 146 

position, direction, and network connections. The purpose of ERnet is to obtain quantitative 147 

information from the above ER structural changes which are closely linked to disease 148 

phenotypes. To quantify these intracellular changes, we first tested performance of ERnet using 149 

SIM images of COS-7 cells. Fig. 2a shows a single frame of the ER (grey) from a set of 150 

sequential images captured from a COS-7 cell expressing mEmerald-Sec61b (Nixon-Abell et 151 

al., 2016). The performed segmentation successfully identified the whole ER structure, 152 

differentiated it from the cytosol background and further classified it into tubular (cyan) and 153 

sheet domains (yellow) (Fig. 2a). Then, the tubular ER was skeletonised from the whole 154 

structure and the nodes (tubule junctions, shown in red) and edges (tubules, green) were 155 

identified as two key topological components to map the network connectivity via the Python 156 

package Graph-tool (Peixoto 2014).  157 

 158 

SIM provide high spatial-temporal resolution of ER structures thus suitable for live cell 159 

imaging (Extended Data Fig. 3). A single pixel on the camera frame has a length scale of 42 160 

nm in real space, almost a quarter of the average width of an ER tubule (~160 nm, measured 161 

as the average width on SIM images taken). This means that misclassification of a few, or even 162 

just one, image pixels can mean the difference between identification of a tubule as connected, 163 

or as disrupted. This leads to errors in the classification of network features, and vice versa to 164 

a bias when quantifying the network connectivity. In disease models, this could lead to 165 

erroneous phenotypes. The semantic segmentation of individual pixels from SIM images 166 

ensures the structural integrity of networks identified and prevents information loss, an 167 

improvement of traditional algorithms used in the past. Figs. 2a and b show how the method 168 

performs. A clear segmentation of ER structure (Fig. 2b) is achieved in regions containing 169 

dense ER tubule networks, as can be seen from the enlarged region indicated by the white box 170 

in Fig. 2a. This permits the distinction of tubules and their junctions in confined regions, 171 
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measuring less than 300 nm across (highlighted by yellow dashed lines) with good structural 172 

detail. The segmented ER was then skeletonised (middle panel of Fig. 2a and b) and classified 173 

into edges (green tubules, right panel, Figs. 2a and b) and nodes (red spots, right panel, Figs. 174 

2a and b). Finally, ERnet quantified the number of edges and nodes (top plot, Fig. 2c) and the 175 

percentage of areas covered by tubules and sheets (bottom plot, Fig. 2c), respectively, across 176 

the whole ER. Here, ER tubules were defined as linear branched structures and sheets as flat 177 

membrane cisternae as shown in Fig. 2a and d. Morphological features, such as the percentage 178 

of tubules/sheets among the whole ER, reflect ER status (Lu et al., 2020) and provide 179 

indications for possible ER defects. ER stress induced by an absence of the GTPase Rab7, 180 

which is known to modulate lysosome-ER contact sites, leads to the enlargement of ER sheets 181 

and the reduction of tubular domains in the cell periphery (Mateus et al., 2018). On the other 182 

hand, a depletion of protrudin, an ER reshaping protein, induces HSP associated ER 183 

dysfunctions by disrupting the sheet-to-tubule balance (Chang et al, 2013). Therefore, and as 184 

investigated in more detail in the subsequent sections, it is expected that the topological 185 

features of the ER, such as its connectivity, assortativity, or clustering coefficients, change for 186 

different phenotypes and with disease progression. It is worth highlighting that, although the 187 

ER tubular network underwent stark morphology changes (Movie 1) and demonstrated 188 

fluctuations in the numbers of nodes and edges (top panel, Fig. 2c) within individual recordings, 189 

its tubule and sheet percentage among the whole ER remained stable (bottom panel, Fig. 2c), 190 

which suggests that the overall connections do not change in the absence of a stimuli. 191 

 192 

In the canonical model of ER structures, ER tubules radiate from sheets towards the cell 193 

periphery (Westrate et al., 2015), and the two structures are thought not to overlap. However, 194 

we observed that tubular structures also reside on the ER sheets themselves (Fig. 2d and Movie 195 

2), which was distinguished by ERnet as seen in Fig. 2d and Movie 3. Like freestanding tubules, 196 

they undergo rapid elongation and contractions, which can either lead to new tubular 197 

connections (blue arrows), or separations (grey arrows). A subsequent 3D reconstruction of 198 

SIM image sections further validated that such tubules are directly attached to the sheets, and 199 

are not the result of a projection view artefact (Fig. 2e and Movie 4). Analysis of over 500 cells 200 

showed that this phenomenon is a common feature of the ER network (Fig. 2f). Furthermore, 201 

we saw that sheet-based tubules form potential contact points for lysosomes. In Extended Data 202 

Fig. 4, it is shown that lysosomes play a role to actively guide a tubular structure on sheet 203 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2022. ; https://doi.org/10.1101/2022.05.17.492189doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492189
http://creativecommons.org/licenses/by-nc-nd/4.0/


domain similar to what has been observed to standard ER-lysosome contact points reported by 204 

us recently (Lu et a., 2020).  205 

 206 

ERnet analysis reveals the complex connectivity of the ER tubular network. 207 

 208 

ERnet can be used to quantify the connectivity of edges and nodes before plotting a 209 

corresponding connectivity graph (Fig. 3a). The connectivity graph highlights that the network 210 

of the ER largely constitutes of three-way junctions (red nodes, Fig. 3a) while the ER edges 211 

are capped with growth ends (green nodes, Fig. 3a).  212 

 213 

To assess the integrity of the ER, we defined each disconnected ER region as a fragment. As 214 

the ER is constantly reshaping, the total number of fragments fluctuates during each recording 215 

(Fig. 3b). However, despite these ongoing structural modifications, ERnet reveals that in a 216 

typical healthy cell, a single large fragment comprises the majority of all edges and nodes at 217 

all times (over 92% of all the 3000 nodes and 95% of all the 2500 edges in the shown example). 218 

As quantitative parameters, we defined node and edge ratios (the number of nodes or edges in 219 

the largest fragment divided by the total number of nodes or edges, respectively), see Fig. 3c. 220 

Per definition, these values range from close to 0 (fully fragmented ER) to 1 (fully connected). 221 

Additionally, ERnet quantified the degrees of the ER nodes, i.e., how many edges (tubules) 222 

connect to each node (junction). As shown in Fig. 3d, three-way junctions are the most 223 

abundant and represent 78% of all junction types in this example. Despite the prevailing model 224 

of ER morphology, where three-way junctions interconnect to form the whole ER tubular 225 

network, ERnet also identified nodes connected with more than three edges (tubules), i.e., 226 

multi-way junctions. The presence of multi-way junctions indicates the heterogeneous 227 

connectivity of ER tubules that are organised in a higher order of complexity than previously 228 

assumed.  229 

 230 

Next, the assortativity and clustering coefficients (Fig. 3e and f), that describe connectivity 231 

patterns of nodes, were calculated based on the above metrics. The assortativity coefficient 232 

measures the tendency of nodes to connect with others of the same degree (Newman 2002) 233 

while the clustering coefficient reflects the tendency of nodes to cluster together. Assortativity 234 

coefficients range from -1 (fully heterogeneous connectivity, i.e. nodes only connect with those 235 

of different degrees) to +1 (fully homogeneous connectivity, i.e. nodes only connect with those 236 
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of same degree). Clustering coefficients describe another aspect of a node’s connectivity: they 237 

measure if the neighbouring nodes of a given node tend to connect to each other, i.e. to cluster. 238 

Similarly, for clustering coefficients, 1 describes a perfectly clustered network while 0 refers to 239 

no clustering. Fig. 3e shows the ER as a weak assortative network, which suggests a slight 240 

tendency of nodes to connect with nodes of the same degree. Additionally, the low clustering 241 

coefficients (Fig. 3f) demonstrate a lack of aggregation of nodes and edges in the whole ER of 242 

this cell.  243 

 244 

To further investigate the structural dynamics of the ER, we tracked the lifetime of multi-way 245 

junctions and their transitions from multi-way to three-way junctions. Fig. 3g and h show the 246 

rapid transitions between three-way (yellow arrows) and multi-way junctions (blue arrows) 247 

driven by ER tubule reshaping. As shown in these cases, the formation of four or five-way 248 

junctions need simultaneous connections of more than three tubules at the same junction, which 249 

occurs with a lower chance than the formation of a three-way junction that only requires the 250 

connection of three tubules. Additionally, any movement of a tubule away from its multi-way 251 

junction can lead to the collapse of this junction and the generation of at least two three-way 252 

junctions. Therefore, as shown in Fig. 3i, the average lifetime of a multi-way junction is much 253 

shorter, i.e., less than a third (10.1 s vs 30.8 s) of that of a three-way junction.  254 

 255 

Quantitative analysis of ER structures reveals phenotypic characteristics of the ER in 256 

stress models. 257 

 258 

ER morphological defects caused by mutations in genes encoding ER-reshaping proteins or by 259 

metabolic perturbations have been linked to a variety of human diseases (Westrate et al., 2015). 260 

However, the exact phenotypical ER disruption under these conditions has not yet been 261 

sufficiently characterised. Using ERnet, we first analysed the ER morphological defects in 262 

stress models mimicking the ER phenotypes in two neurodegenerative diseases, namely 263 

Hereditary Spastic Paraplegias (HSPs) and Niemann-Pick disease type C (NPC). The inherited 264 

neurological disorder HSPs can be characterised by progressive lower-limb weakness and 265 

muscle stiffness, which are caused by mutations in genes encoding ER reshaping proteins such 266 

as atlastin (ATL) (Zhao et al., 2001) and protrudin (Mannan et al., 2006). We used ERnet to 267 

examine the ER morphology defects in individual cells of different models by measuring two 268 

topological features, i.e., the degree of ER tubule fragmentation and the heterogeneity in in 269 
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these tubular connections. Compared with control cells, an ATL knock-out (KO) leads to a 270 

collapse of the ER network integrity. Such ER fragmentation was clearly revealed in ATL KO 271 

cells by the increasing number of fragments and a 20-fold reduction of the node ratio (99% in 272 

control vs. 5.4% in ATL KO) (Fig. 4a and Movie 5 and 6). ERnet also highlighted that the lack 273 

of ATL significantly altered the connectivity in ER tubular network, as witnessed by a reduced 274 

percentage of three-way junctions among all the nodes (26% vs. 78% in control) and by the 275 

disorganised connectivity (-0.25 in assortativity). These measurements provided quantitative 276 

rather than descriptive evidence of ATL’s role in ER tubular network formation, which was 277 

previously reported to be crucial for the fusion of ER membranes and, thus, to form continuous 278 

networks (Zhao et al., 2001). With these quantitative analyses, we can compare morphological 279 

defects caused by different treatments. In another model of HSPs, depletion of protrudin 280 

(Extended Data Fig. 5) resulted similarly in ER tubular network fragmentation (305 fragments) 281 

(Movie 7) and in disorganised connectivity, however, to a lesser extent. A further metric 282 

suitable for the comparison of ER health under different treatments is the size of the ER, which 283 

is revealed by the connectivity graph. An ATL KO cell that was more fragmented than a 284 

protrudin KD cell suffered from a more severe shrinkage of the ER with a smaller number of 285 

nodes and edges (Fig. 4a), indicating that ER membranes may be degraded or recycled in 286 

response to stresses. The similar phenotypes observed in both genetic models suggest the 287 

connectivity defect in the ER may be a general cause of HSPs.  288 

 289 

Next, we induced cholesterol accumulation in lysosomes by U18666A administration to the 290 

cell, which induces a blockage of the cholesterol transfer from lysosomes to the ER in NPC 291 

(Ko et al., 2001). The accumulation of cholesterol in lysosomes leads to lysosome deposition 292 

in perinuclear regions and, therefore, affects the ER structure and distribution (Lu et al., 2020). 293 

However, the exact ER morphological defects have not yet been characterised. ERnet revealed 294 

that the ER of U18666A-treated cells features a disassortative network (-0.34) and its low node 295 

ratio (3.4%) suggests a highly fragmented structure (Fig, 4a and b, Movie 8), which highlights 296 

that lysosomal defects can strongly affect the ER and thus provides us with a useful tool to 297 

improve our understanding of organelle dysfunction in NPC.  298 

 299 

Finally, we tested performance of ERnet in cells upon ER collapse under metabolic 300 

manipulations that significantly affect the overall homeostasis inside the cell. The sequential 301 

SIM images showed that the ER largely loses its dynamic reshaping capabilities upon the 302 
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administration of store-operated calcium entry (SOCE) inhibitor SKF96365 (Merritt et al., 303 

1990) (Movie 9). In the connectivity graph, the ER was largely fragmented and featured as a 304 

disassortative network (Fig. 4a and b). Compared with SKF96365, NaN3 depletes ATP 305 

(McAbee et al., 1987) that supports all the energy consuming processes inside the cell including 306 

ER tubule elongation, retraction, and membrane fusion. Therefore, ATP depletion by NaN3 307 

was expected to significantly inhibit the structural dynamics of the ER. ERnet successfully 308 

revealed the level of fragmentation of the ER tubular network which resulted from the lack of 309 

ATP (Fig. 4a and b, Movie 10); however, such phenotypes were not equivalent to the severe 310 

ER defects caused by the depletion of ER reshaping proteins, as the node ratio of ER in ATP 311 

depleted cells is nearly 4-fold of that in ATL KO cells (0.19 vs 0.05).   312 

 313 

Overall, these evaluations highlight the advantages of ERnet to provide quantitative 314 

assessments while being sensitive enough to detect the subtle ER morphology changes, 315 

especially when it comes to network connectivity, that is required for the investigation of ER-316 

related disease phenotypes.  317 

 318 

Versatility test demonstrates robust performance of ERnet in different cell lines and 319 

microscopy techniques. 320 

 321 

While ERnet has been demonstrated to be suitable for the quantification of ER dynamics in 322 

different cell models related to ER stress and diseases, the validation of its robustness and 323 

versatility is crucial to ensure its successful application for a wide range of research. Fig. 5 324 

presents the analysis of images obtained using different microscopy techniques including 325 

widefield, confocal, and Airyscan microscopy. Even though ERnet’s precision may depend on 326 

the spatial resolution of the corresponding images, it performed reasonably well for all imaging 327 

techniques with all the tubules and sheets clearly classified and quantified (Source Data Fig. 328 

5). Furthermore, we also performed validation tests for varying cell types commonly used in 329 

cell biology research, such as HEK, CHO, SH-SY5Y cells, and primary cultures of 330 

hippocampal neurons and glial cells derived from embryonic rats. Although the specific ER 331 

phenotypes varied among the cell types, ERnet was able to robustly identify the corresponding 332 

tubular and sheet domains and performed subsequent quantitative analyses based on the 333 

segmentation (Source Data Fig. 5). The presented reliable segmentations performed on various 334 

cell lines and imaging setups further highlight ERnet’s robustness and its precision for the 335 
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structural analysis of ER networks while providing key metrics suitable to quantify the subtle 336 

changes in ER fragmentation and the heterogeneity in tubule connections, crucial for the 337 

evaluation of cell healthiness and disease progression.  338 

 339 

Discussion 340 

 341 

Quantitative cell biology that measures the cellular organelle properties such as shape, position, 342 

and mobility provides the basis of analysing the structure and function of organelles in both 343 

fundamental and therapeutic research. Here, we introduce ERnet, a versatile tool that performs 344 

robust and precise segmentations and permits the quantitative analysis of ER structures in a 345 

variety of conditions, including different cell models, cell types and images taken with different 346 

microscope techniques. ERnet generates multiple metrics informing on the connectivity of the 347 

ER network and permits the quantitative comparisons of ER integrity and structural defects 348 

among different stress models. ERnet clearly highlights the fragmented structures and reduced 349 

connections of ER networks in stress conditions, which becomes particularly evident in models 350 

mimicking phenotypes of HSPs and NPC. While it is difficult and tedious to manually identify 351 

and quantify whole ER structures or the fragmented ER pieces of the above models, ERnet 352 

provides an automatic and rapid analysis of various phenotypes, which may be used to evaluate 353 

disease severity in diagnosis or treatment effects during drug screening.  354 

 355 

The high accuracy of ERnet’s semantic segmentation is based on the model design. In contrast 356 

to state-of-the-art CNN models commonly used in image segmentation, ERnet is constructed 357 

in a Vision Transformer architecture that outperforms CNNs with higher accuracy in image 358 

classification tasks but with four times fewer computational resources (Dosovitskiy et al., 2020; 359 

Paul and Chen 2021). Another advantage of our design is its capability for temporal domain 360 

analyses of objects from sequential images. We also integrated two attention mechanisms: 361 

multi-head self-attention and channel attention into the Transformer architecture. These 362 

mechanisms greatly enhance the learning ability of ERnet in classifying ER structures in the 363 

spatio-temporal domain. While machine learning methods have previously been implemented 364 

to reconstruct ER structures based on electro-microscopy images (Liu et al., 2019) and to 365 

identify ER stress marker-whorls (Guo et al., 2022), ERnet can be applied for video-rate image 366 

segmentation and the analysis of live cells, thus, further extending the deep learning toolbox 367 

for biomedical research. 368 
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By applying ERnet, we characterised the structural features of the dynamic ER network. First, 369 

we found that the dominance of three-way junctions is a necessity to produce a continuous ER 370 

network which can spread throughout the cell and, in addition to the prevalence of three-way 371 

junctions, it has been observed that a healthy ER contains approximately 20% of multi-way 372 

junctions (degree > 3). In contrast, all the stress manipulations of ER morphology, including 373 

models of HSPs and NPC, resulted in the fragmentation of ER structures to varying extents 374 

(Fig. 4). Although the ER fragmentation may be easily visualised in images, it is difficult to 375 

evaluate the severity of fragmentation caused by different treatments and even harder to 376 

compare based on descriptive imaging data. ERnet not only demonstrates the degree of 377 

fragmentation, but also analysed this morphological defect from different angles with a list of 378 

metrics. Therefore, we can have a quantitative and comprehensive understanding of the ER 379 

phenotype and a reliable comparison of treatments by plotting the numerical data informing us 380 

on the level of ER fragmentation and connectivity in a same framework (Fig. 4b). We showed 381 

an example of multi-parameter analysis of ER in single cells in sequential frames, 382 

demonstrating the consistency of the phenotype during the recording (Fig. 4b). This 383 

consistency is more prominent in the population level, as the data point to different cells under 384 

the same condition grouped together and separated from the data from other conditions 385 

(Extended Data Fig. 6). This demonstrates that ERnet is suitable to detect and measure 386 

phenotypic characteristics of the ER in different cell populations. All these provide a powerful 387 

tool to investigate potential therapies for ER associated diseases. 388 

Another key advantage of deep learning-based image processing is their ability to drive novel 389 

biological observations. Since ERnet is sensitive to structural features, our model was able to 390 

identify sheet-based tubules. These ER components share similar structures and dynamics with 391 

the tubules that radiate from the sheet domains towards the periphery of the cell, however, their 392 

position in the sheet domain greatly extends the coverage of the tubular ER towards the cell 393 

centre and even close to the nucleus. Finally, the observed sheet-based tubules’ close contact 394 

with lysosomes might permit beneficial material exchange and structure regulation as 395 

lysosomes are one of the cell’s sensing hubs. How the sheet-based tubules are regulated in both 396 

physiological and pathological conditions will be an important question for future studies.  397 

We believe our work demonstrates an efficient tool for precise structure segmentation and 398 

multi-parameter analysis of ER phenotypes. Its user-friendly graphical interface and automatic 399 

batch processing can save a significant amount of manual curation in imaging annotation and, 400 
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therefore, speed up ER associated disease research and therapeutic screenings. In the future, 401 

the integration of ERnet with other organelle analysis tools, such as methods for lysosomes 402 

and mitochondria characterisations, will open the door to quantitative and comprehensive 403 

investigations of multi-organelle interactions and their roles in the development, degeneration, 404 

and ageing of cells.  405 
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Methods 603 

Cell culture 604 

COS-7 cells were purchased from the American Type Culture Collection (ATCC). COS-7 cells 605 
were grown in T75 or T25 flasks or six-well plates by incubation at 37°C in a 5% CO2 606 
atmosphere. Complete medium for normal cell growth consisted of 90% Dulbecco’s modified 607 
Eagle’s medium (DMEM), 10% fetal bovine serum (FBS) and 1% streptomycin. Cells were 608 
kept in logarithmic phase growth and passaged on reaching 70 to 80% confluence 609 
(approximately every 3 to 4 days). Medium was changed every 2 or 3 days. For structured 610 
illumination microscopy (SIM) imaging experiments, COS-7 cells were plated onto Nunc Lab-611 
Tek II Chambered Coverglass (Thermo Fisher Scientific, 12-565-335) to achieve ∼70% 612 
confluence before transfection. 613 

 614 
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COS-7 cells were transfected with mEmerald-Sec61b-C1 (Addgene #90992, gifted by Jennifer 615 
Lippincott-Schwartz, Janelia Research Campus) as indicated with Lipofectamine 2000 616 
according to the manufacturer’s protocol 24 to 48 hours before imaging. Cells were stained 617 
with SiR-Lysosome at 1 μM for 4 hours before imaging. Cells were imaged in a microscope 618 
stage top micro-incubator (OKO Lab) with continuous air supply (37°C and 5% CO2). Cells 619 
were treated with U18666A (662015, Sigma) at 10 μM for 24 hr to block cholesterol transfer 620 
from lysosomes to ER before imaging. Cells were treated with SKF-96365 (S7809, Sigma) at 621 
100 μM for 3 hr to deplete Calcium before imaging. Cells were treated with NaN3 (0.05% w/v) 622 
and 2-deoxy-glucose (20 mM) for 2 hr to deplete ATP before imaging. SH-SY5Y cells were 623 
cultured and images as previously described (Michel et al., 2014). HEK cells were cultured 624 
and imaged as previous described (Lu et al., 2019). ATL KO model was gifted by Prof. Junjie 625 
Hu, Chinese Academy of Sciences, China. CHO-K1 cells were purchased from ATCC and 626 
were cultured in Ham's F-12 Nutrient Mixture medium supplemented with 10% FBS, 2 mM 627 
L-Glutamine and 100 U/mL Penicillin-Streptomycin (Pen/Strep). Cells were transfected with 628 
pFLAG_ER mCherry (Avezov et al., 2015). U2OS cells were purchased from ATCC and were 629 
cultured in DMEM supplemented with 10% FBS, 2 mM L-Glutamine and 100 U/mL Pen/Strep. 630 
Cells were transfected with pFLAG_ER mCherry (Avezov et al., 2015).  631 
 632 
siRNA transfection and Western  633 
 634 
blotProtrudin were depleted using SMARTpool: ON-TARGETplus, Dharmacon. Negative 635 
siRNA control (MISSION siRNA Universal negative control) was purchased from Sigma-636 
Aldrich. COS-7 cells were plated in both glass-bottom Petri dishes (for imaging) and six-well 637 
plates (for Western blot validation). Cells were transfected with 20 nM siRNA oligonucleotides 638 
and 20 nM negative control siRNA using Lipofectamine RNAiMax (Thermo Fisher Scientific) 639 
according to the manufacturer’s protocol. After 6 hours of siRNA transfection, the cells were 640 
washed and the medium was replaced with complete culture medium. Twenty-four hours after 641 
the siRNA transfection, cells were transfected with plasmid DNA indicated in Results using 642 
Lipofectamine 2000 (Invitrogen). On the day of imaging, cells were stained with Sir-Lysosome. 643 
Cells in glass Petri dishes were imaged 24 hours after DNA transfection. 644 
 645 
Cells in six-well plates were harvested for Western blot validation 72 hours after siRNA 646 
transfection. Protein concentration was measured using a bicinchoninic acid (BCA) protein 647 
assay kit. Immunoblotting was performed by standard SDS–polyacrylamide gel 648 
electrophoresis/Western protocols. Primary antibody concentrations were as follows: anti-649 
Protrudin at 1:5000; GAPDH (glyceraldehyde-3-phosphate dehydrogenase) at 1:30,000; 650 
tubulin at 1:5000. Secondary antibodies (Sigma-Aldrich) were used at 1:3000 for all rabbit 651 
antibodies and for all mouse antibodies. The signal was detected with SuperSignal West Pico 652 
Chemiluminescent Substrate. 653 

Widefield and Structured illumination microscopy 654 

SIM imaging was performed using a custom three-color system built around an Olympus IX71 655 
microscope stage, which we have previously described (Young et al., 2016). Laser wavelengths 656 
of 488 nm (iBEAM-SMART-488, Toptica), 561 nm (OBIS 561, Coherent), and 640 nm (MLD 657 
640, Cobolt) were used to excite fluorescence in the samples. The laser beam was expanded to 658 
fill the display of a ferroelectric binary Spatial Light Modulator (SLM) (SXGA-3DM, Forth 659 
Dimension Displays) to pattern the light with a grating structure. The polarization of the light 660 
was controlled with a Pockels cell (M350-80-01, Conoptics). A 60×/1.2 numerical aperture 661 
(NA) water immersion lens (UPLSAPO 60XW, Olympus) focused the structured illumination 662 
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pattern onto the sample. This lens also captured the samples’ fluorescent emission light before 663 
imaging onto an sCMOS camera (C11440, Hamamatsu). The maximum laser intensity at the 664 
sample was 20 W/cm2. Raw images were acquired with the HCImage software (Hamamatsu) 665 
to record image data to disk and a custom LabView program (freely available upon request) to 666 
synchronize the acquisition hardware. Multicolour images were registered by characterising 667 
channel displacement using a matrix generated with TetraSpeck beads (Life Technologies) 668 
imaged in the same experiment as the cells. COS-7 cells expressing mEmerald-Sec61b-C1 (ER 669 
marker) and stained with SiR-Lysosome (lysosome marker) were imaged by SIM every 1.5 s 670 
(including imaging exposure time of both channels) for 60 frames. 671 
 672 
Reconstruction of the SIM images with LAG SIM 673 
 674 
Resolution-enhanced images were reconstructed from the raw SIM data with LAG SIM, a 675 
custom plugin for Fiji/ImageJ available in the Fiji Updater. LAG SIM provides an interface to 676 
the Java functions provided by fairSIM (Müller et al., 2016). LAG SIM allows users of our 677 
custom microscope to quickly iterate through various algorithm input parameters to reproduce 678 
SIM images with minimal artifacts; integration with Squirrel (Culley et al., 2018) provides 679 
numerical assessment of such reconstruction artifacts. Furthermore, once appropriate 680 
reconstruction parameters have been calculated, LAG SIM provides batch reconstruction of 681 
data so that a folder of multicolour, multi-frame SIM data can be reconstructed overnight with 682 
no user input. 683 
 684 
AiryScan imaging 685 
 686 
AiryScan imaging was performed using a LSM 880 confocal microscope (Zeiss). A Zeiss Plan-687 
Apochromat 63×/1.40 DIC M27 Oil objective was used. For visualisation of ER structure, ER 688 
mCherry was excited by a diode-pumped solid-state (DPSS) 561 nm laser (1% intensity) and 689 
detected using the AiryScan detector. Bit depth was set at 16 bits. Using the Fast-Airyscan 690 
mode, live-cell time-lapse images were acquired every 1 second (60 frames) with an image 691 
size of 1364 × 1244 pixels. Cells were kept in a controlled environment (37°C, 5% CO2) during 692 
imaging. Following acquisitions, images were deconvoluted using the Airyscan processing. 693 
Image processing was performed in software ZEN 2.3 SP1 FP3 (black) (ver.14.0.25.201). 694 
 695 
Confocal Imaging 696 
 697 
A part of confocal imaging was performed using a STELLARIS 8 confocal microscope (Leica). 698 
A HC PL APO CS2 63x/1.40 OIL objective was used. For visualisation of ER structure, ER 699 
mCherry was excited by 587 nm of white light laser (WLL) with 3% intensity and detected 700 
using the HyD S3 detector (detection range: 592-750 nm). Bit depth was set at 16 bits. Live-701 
cell time-lapse images were acquired every 1.5 seconds (90 frames) with an image size of 512 702 
× 512 pixels. Cells were kept in a controlled environment (37°C, 5% CO2) during imaging. 703 
 704 
ERnet construction 705 
 706 
For the segmentation of the sequential endoplasmic reticulum (ER) images, a spatio-temporal 707 
shifted window vision transformer neural network is trained and used. The proposed model is 708 
inspired by the previous models Vision Transformer (Dosovitskiy et al. 2020), its more 709 
efficient shifted window variant Swin (Liu et al. 2021), with its extension for video 710 
classification Video Swin (Liu et al. 2021a), and adaption to image restoration SwinIR (Liang 711 
et al. 2021). Swin introduced the inductive bias to self-attention called shifted window multi-712 
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head attention (SW-MSA) which can be compared to the inductive bias inherent in 713 
convolutional networks. SwinIR introduced residual blocks to the Swin transformer to help 714 
preserve high-frequency information for deep feature extraction. The Video Swin transformer 715 
extended the SW-MSA to three dimensions, such that spatio-temporal data can be included in 716 
the local attention for the self-attention calculation. Further to this, the success of the channel 717 
attention mechanism (Zhang et al. 2018) inspired the inclusion of this other inductive bias in 718 
addition to 3D local self-attention following the SW-MSA approach. 719 

The inputs to the model have the dimension 𝑇 × 𝐻 ×𝑊 × 𝐶 , where 𝑇  is 5 for ERnet (5 720 
adjacent temporal frames) and 𝐶 is 1 (grayscale inputs). A shallow feature extraction module 721 
in the beginning of the network architecture, shown in Fig. 1, projects the input into a feature 722 
map, 𝐹! , of 𝑇 × 𝐻 ×𝑊 × 𝐷  dimension, where the embedding dimension, 𝐷 , is a 723 
hyperparameter. The feature map is passed through a sequence of residual blocks denoted 724 
Window Channel Attention Block (WCAB) 725 

𝐹" = 𝐻#$%&(𝐹"'(), 𝑖 = 11, . . , 𝑛 726 

Inside each WCAB is a sequence of Swin Transformer Layers (STLs), in which multi-head 727 
self-attention is calculated using local attention with shifted window mechanism. Inputs to STL 728 
layer is partitioned into )

*
× +,

-!  3D tokens of 𝑃 ×𝑀. × 𝐷  dimension. For a local window 729 
feature, 𝑥 ∈ ℝ*×-!×0, query, key and value matrices, {𝑄, 𝐾, 𝑉} ∈ ℝ*-!×0, are computed by 730 
multiplication with projection matrices following the original formulation of transformers. 731 
Attention is then computed as 732 

Attention(𝑄, 𝐾, 𝑉) = SoftMax(𝑄𝐾)/√𝑑 + 𝐵)𝑉, 733 

where 𝐵 ∈ ℝ*!×-!×-! is a relative positional bias found to lead to significant improvements 734 
in classification performance. STLs are joined in a way similar to the residual blocks, although 735 
the use of SW-MSA is alternated with a version without shifted windows, W-MSA, ensuring 736 
that attention is computed across window boundaries, which would not have been the case 737 
without SW-MSA. 738 

After the final STL, the 𝑚-th layer, in a WCAB, a transposed 3-dimensional convolutional 739 
layer is used to project the 3D tokens back into a 𝑇 × 𝐻 ×𝑊 × 𝐷 feature map, 𝐹",2. A channel 740 
attention module is then used on 𝐹",2  to determine the dependencies between channels 741 
following the calculation of the channel attention statistic. The mechanism works by using 742 
global adaptive average pooling to reduce the feature map to a vector which, after passing 743 
through a 2D convolutional layer, becomes weights that are multiplied back onto 𝐹",2 such that 744 
channels are adaptively weighed. A residual is then obtained by adding a skip connection from 745 
the beginning of the 𝑖 -th WCAB to prevent the loss of information, i.e., low-frequency 746 
information, and the vanishing gradient problem. A fusion layer combines the temporal 747 
dimension and the channel dimensions. For the final upsampling module, we use the sub-pixel 748 
convolutional filter to expand the image dimensions by aggregating the fused feature maps. 749 

The model is trained by minimising a multi-class cross-entropy loss function 750 

𝐿34(Θ; 𝐷) =
1
𝑁QR

1
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where 𝑘 and 𝑗 are iterators over a total of 𝐾 unique classes, and 𝑓";	7,8+ (𝑘) is a function equal to 752 
1 if the target class for the pixel at (𝑥, 𝑦) of the 𝑖th image is 𝑘 and equal to 0 otherwise. In this 753 
paper, we study the segmentation of background, tubules, sheets, and sheet-based tubules and, 754 
therefore, 𝐾 = 4 in the equation above. 755 

The training data is obtained by acquiring experimental data using structured illumination 756 
microscopy (SIM). A total of 20 sequential stacks of different samples are acquired, where 757 
each stack consists of 60 SIM images reconstructed with ML-SIM. The super-resolved SIM 758 
outputs are then segmented by manually finetuning a random forest model in the Weka plugin 759 
for ImageJ on an image-by-image basis.  760 

 761 
Network analysis methods 762 
 763 
To quantify the structural changes in the ER, methods from network analysis are applied 764 
(Boccalettti et al., 2006; Costa et al., 1987). We represent the ER structure of tubules through 765 
an undirected and unweighted graph. All tubule junctions are represented by nodes, and the 766 
tubules by edges.  767 
 768 
Networks are built in a python routine and their metrics are measured through the python 769 
package graph-tool (Peixoto 2014) and network x (Hagberg et al., 2008). We measure the size 770 
of the network through the number of nodes: 𝑁, and edges: 𝐸, within the system. The number 771 
of edges attached to one node is called the nodes degree: 𝑘, and the distribution of the degrees 772 
is one of the most fundamental parts of the analysis of network structures.  773 
 774 
To quantify the structural arrangements of the ER, we focus on primary network connectivity 775 
metrics. Firstly, we measure the network density, 𝑑, between nodes and edges (see Eq. (2)). 776 
Other metrics that describe the network connectivity are the global clustering coefficient (see 777 
Eq. (2)) and the network assortativity (see Eq.(3)). The global clustering coefficient describes 778 
the tendency of the network to build triangles, by relating triplets to each other. Three nodes 779 
connected to each other through three edges are a 𝑐𝑙𝑜𝑠𝑒𝑑	𝑡𝑟𝑖𝑝𝑙𝑒𝑡, while three nodes connected 780 
to each other through two edges are called an 𝑜𝑝𝑒𝑛	𝑡𝑟𝑖𝑝𝑙𝑒𝑡 (Newman 2003). The network 781 
assortativity describes the likelihood of nodes connecting with nodes of similar properties; here 782 
specifically, as is common, a node degree. Assortative mixing is contrasted to disassortative 783 
mixing where nodes tend to connect to others of dissimilar properties (Cimini et al., 2019). The 784 
assortativity coefficient, 𝑟, is described in Eq.(3), where 𝑒"; is the fraction of edges linking a 785 
node with type 𝑖 to nodes of type 𝑗, 𝑎" is the sum over 𝑒"; for all 𝑗 and 𝑏" is the sum over 𝑒"; 786 
for all 𝑖. An assortativity coefficient of 𝑟 = 0 indicates no mixing preference, whereas positive 787 
values indicate assortative and negative values disassortative tendencies.  788 
 789 

𝑑 =
2𝐸

𝑁(𝑁 − 1) 
(1) 

𝐶𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑙𝑜𝑠𝑒𝑑	𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑙𝑙	𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠  

(2) 

𝑟 =
∑ 𝑒"" −∑ 𝑎"𝑏"""

1 − ∑ 𝑎"𝑏""
 

(3) 
 

Additionally, we include macroscopic network arrangements by counting the number of 790 
network components. Networks may be entirely connected or composed of many distinct 791 
components (Albert 2005). For networks evolving over time, network components outline 792 
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merging or splitting behaviour. In networks with many components, the most characteristic 793 
topological features are often exhibited in the largest component (Storgatz 2001).  794 

Data visualization 795 

Videos of time-lapse imaging and analysis were performed using Fiji (NIH). The connectivity 796 
graphs in the figures are re-plotted by a Python module named “connectivity graph.py”. 797 
Instructions of using this module is provided inside the file.  798 

Statistical analysis 799 

Statistical significance between two values was determined using a two-tailed, unpaired 800 
Student’s t test (GraphPad Prism). Statistical analysis of three or more values was performed 801 
by one-way analysis of variance with Tukey’s post hoc test (GraphPad Prism). All data are 802 
presented as the mean ± SEM; *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. 803 
Statistical parameters including the exact value of n, the mean, median, dispersion and 804 
precision measures (mean ± SEM), and statistical significance are reported in the figures and 805 
figure legends. Data are judged to be statistically significant when P < 0.05 by two-tailed 806 
Student’s t test. In the figures, asterisks denote statistical significance as calculated by 807 
Student’s t test (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001).  808 
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Fig. 1: Workflow of ER structure segmentation and ERnet construction.  844 
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a. The processing pipeline of ER segmentation and analysis. Time-lapse SIM images were 880 
first segmented by ERnet to classify the tubules and sheets. The tubular network of ER 881 
after segmentation was further skeletonised and the nodes and edges were identified to 882 
plot the connectivity graph. Using graph theory-based methods, we quantified the 883 
metrics of the ER network features that describe the topology and dynamics.  884 

b. The Transformer based architecture of ERnet. A moving window loads adjacent frames 885 
(Xt-2 to Xt+2) as inputs from the time-lapse images into ERnet. A shallow feature 886 
extraction module then projects the input into a feature map which is followed by a 887 
sequence of residual blocks denoted with Window Channel Attention Block (WCAB). 888 
Inside each WCAB, there is a sequence of Swin Transformer Layers (STLs).  889 
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Fig. 2: Semantic segmentation of ER and classification of tubules and sheets.  899 
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a. An example of a segmentation result from video-rate SIM images of the ER. From left 933 
to right: 1) SIM image, 2) segmentation of ER tubular (cyan), sheet (yellow) and sheet-934 
based tubule (magenta) region, 3) skeletonisation of the tubular domain, and 4) 935 
identification of nodes (red spots) and edges (green lines) based on the skeleton 936 
structure. Scale bar: 5 µm. 937 

b. Zoomed-in regions of the above panel. The yellow dashed circles indicate nodes that 938 
are closely positioned but can still be identified by ERnet. Scale bar: 2 µm. 939 

c. Quantitative analysis of the ER shown in (a). Top panel: quantification of edges and 940 
nodes of the ER tubules of the time-lapse frames. Bottom panel: percentage of the ER 941 
tubules (cyan) and sheet (yellow) of the time-lapse frames. See Source Data Fig. 2c. 942 

d. A representative frame from time-lapse images shows the structure of sheet-based 943 
tubules. Top left panel: a SIM image of the ER structure. Top right panel: segmentation 944 
of the three ER structures: sheet-based tubules (magenta), sheet (yellow), tubules (cyan). 945 



Bottom panel: three sequential frames showing the dynamic reshaping of sheet-based 946 
tubules from the above green boxed region. Blue arrows indicate a continuously 947 
elongating sheet-based tubule and grey arrows indicate a retraction. Scale bars: 5 µm 948 
(top) and 2 µm (bottom). See Source Data Fig. 2d for quantitative analysis.  949 

e. Volumetric view of 3D reconstruction of the sectioning SIM showing that the sheet-950 
based tubules (magenta) are embedded in sheet domains (yellow). Scale bar: 2 µm 951 
(bottom). 952 

f. Violin plots of the percentages of tubules (T), sheets (S) and sheet-based tubules (SBT) 953 
in COS-7 cells (N=500), showing that the presence of the sheet-based tubules is a 954 
common feature of the ER network. See Source Data Fig. 2f.  955 
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Fig. 3: Quantitative analysis by ERnet reveals the complex connectivity of ER tubular 999 
network.  1000 
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a. The topology of an ER tubular network is represented by a connectivity graph. i: a 1049 
polygonal structure organized by three-way junctions and tubules, ii: a representative 1050 
region of multi-way junctions (dark blue spots), iii: a representative region of ER 1051 
tubular growth tips (green spots).  1052 
 1053 

b-f. Quantitative analysis of the cell shown in (a) over a time window of 45 s. See Source 1054 
Data Fig. 3b-f.  1055 
 1056 



b. Number of components (ER fragments) in time-lapse images.  1057 
 1058 

c. Changes of the node or edge ratio over time.  1059 
 1060 

d. Quantification of the nodes of different degrees, showing a dominance of third-degree 1061 
nodes (three-way junctions). Same colour scheme as in (a).  1062 

 1063 
e-f. Changes of assortativity and clustering coefficients in time-lapse images.  1064 
 1065 
g-h. Examples of transitions between three-way (yellow arrows) and multi-way junctions   1066 
       (yellow arrows: three-way, blue arrows: four-way, green arrows: five-way) junctions.   1067 
       Scale bar: 1 µm. 1068 

 1069 
i. Quantification of the lifetime of junctions (nodes) with different degrees. ****P < 1070 

0.0001, Tukey’s one-way ANOVA. n ≥ 20 events per condition from three independent 1071 
experiments. See Source Data Fig. 3i.  1072 
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Fig. 4: Quantitative analysis of ER phenotypic characteristics in disease associated 1113 
models. 1114 
 1115 
 1116 
 1117 
 1118 
 1119 
 1120 
 1121 
 1122 
 1123 
 1124 
 1125 
 1126 
 1127 
 1128 
 1129 
 1130 
 1131 
 1132 
 1133 
 1134 
 1135 
 1136 
 1137 
 1138 
 1139 
 1140 
 1141 
 1142 
 1143 
 1144 
 1145 
 1146 
 1147 
 1148 
 1149 
 1150 
 1151 
 1152 
 1153 
 1154 
 1155 
 1156 
 1157 
 1158 
 1159 
 1160 
 1161 
 1162 
 1163 
 1164 
 1165 
 1166 

 1167 
a. Connectivity graphs of ER structures in models mimicking phenotypes of HSPs and 1168 

NPC and metabolic stress induced by calcium and ATP depletion. Nodes of different 1169 
degrees are labeled with different colours: green (degree 1), light blue (degree 2), red 1170 
(degree 3), dark blue (degree >3).  1171 



b. Topological features of the ER tubular network in above conditions were quantitatively 1172 
analysed by ERnet. The effects on ER structures from different treatments can be 1173 
directly visualised and compared by plotting the distribution of node integrating ratio 1174 
(y axis) and assortativity coefficient (x axis). The analysis of ER phenotype, such as 1175 
that in ATL KO cells, demonstrated a severe fragmentation and altered connectivity in 1176 
the numerical data plot. See Source Data Fig. 4b.  1177 
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Fig. 5: Robust performance of ERnet in versatility test. 1230 
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a. A variety of cell lines with different ER morphologies were imaged by different 1290 
microscopy techniques to investigate the robustness and versatility of ERnet. ER 1291 
structures of COS-7, HEK, CHO, SH-SY5Y, primary cultures of hippocampal neurons 1292 
and glial cells were tested, as well as images acquired by widefield, confocal and 1293 
Airyscan microscopy.  Scale bars: 20 µm.  1294 
 1295 

b. The topology of an ER tubular network of the COS-7 cell from the confocal image 1296 
shown in (a) is represented by a connectivity graph. Nodes of different degrees are 1297 
labeled with different colours: green (degree 1), light blue (degree 2), red (degree 3), 1298 
dark blue (degree >3). Bottom right: a zoomed-in region of of the black boxed part in 1299 
the connectivity, demonstrating the complex connectivity revealed by ERnet from 1300 
confocal microscopy image. The following analysis of c-f is based on this image data.  1301 

 1302 
c. Quantitative analysis of the ER structure of the above image data reveals the topology 1303 

features of ER tubular network. Top: percentage of the ER tubules (cyan), sheet 1304 
(yellow), and sheet-based tubules (magenta) of the time-lapse frames. Middle and 1305 
bottom: changes of assortativity and clustering coefficients in time-lapse images. See 1306 
Source Data Fig. 5 for c and d. 1307 
 1308 

d. Quantitative analysis of the connectivity of the ER tubular network in the above cell. 1309 
Top: quantification of the nodes of different degrees, showing a dominance of third-1310 
degree nodes (three-way junctions). Middle: number of components (ER fragments) in 1311 
time-lapse images. Bottom: changes of the node/edge ratio over time.  1312 
 1313 
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Extended Data Fig. 1: A test Weka trainable segmentation with different input data. 1345 
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result of the new input data. Scale bars 5 µm. 1377 
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Extended Data Fig. 2: ERnet graphical user interface.  1395 
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Extended Data Fig. 5: Western blot validation of Protrudin depletion 1528 
 1529 
 1530 
 1531 
 1532 
 1533 
 1534 
 1535 
 1536 
 1537 
 1538 
 1539 
 1540 
 1541 
 1542 
 1543 



-0.6 0.1

1.0

1.2

0.6

0.0

control

U18666A

No
de

 ra
tio

Assortativity

Extended Data Fig. 6: Analysis by ERnet revealing the phenotype consistency in the cell 1544 
population.  1545 
 1546 
 1547 
 1548 
 1549 
 1550 
 1551 
 1552 
 1553 
 1554 
 1555 
 1556 
 1557 
 1558 
 1559 
 1560 
 1561 
 1562 
 1563 
 1564 
 1565 
 1566 
 1567 
 1568 
 1569 
 1570 
 1571 
 1572 
 1573 
 1574 
 1575 
 1576 
 1577 
 1578 
 1579 
 1580 
Data from the same cell are plotted in the same colour. Time-lapsed SIM images (30 frames, 1581 
1.5s/frame for all the data points) of ER structure in each single cell were segmented and 1582 
analysed by ERnet. The light orange and blue backgrounds suggest the grouped distribution of 1583 
the data points from the same condition. See Source Data Extended Data Fig. 6.  1584 
 1585 
 1586 
 1587 
 1588 
 1589 


