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Abstract

The topology of endoplasmic reticulum (ER) network is highly regulated by various cellular
and environmental stimuli and affects major functions such as protein quality control and the
cell’s response to metabolic changes. The ability to quantify the dynamical changes of the ER
structures in response to cellular perturbations is crucial for the development of novel
therapeutic approaches against ER associated diseases, such as hereditary spastic paraplegias
and Niemann Pick Disease type C. However, the rapid movement and small spatial dimension
of ER networks make this task challenging. Here, we combine video-rate super-resolution
imaging with a state-of-the-art semantic segmentation method capable of automatically
classifying sheet and tubular ER domains inside individual cells. Data are skeletonised and
represented by connectivity graphs to enable the precise and efficient quantification and
comparison of the network connectivity from different complex ER phenotypes. The method,
called ERnet, is powered by a Vision Transformer architecture, and integrates multi-head self-
attention and channel attention into the model for adaptive weighting of frames in the time
domain. We validated the performance of ERnet by measuring different ER morphology
changes in response to genetic or metabolic manipulations. Finally, as a means to test the
applicability and versatility of ERnet, we showed that ERnet can be applied to images from
different cell types and also taken from different imaging setups. Our method can be deployed
in an automatic, high-throughput, and unbiased fashion to identify subtle changes in cellular
phenotypes that can be used as potential diagnostics for propensity to ER mediated disease, for

disease progression, and for response to therapy.
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Introduction

The endoplasmic reticulum (ER) is the largest membranous structure in eukaryotic cells and
acts as a platform for protein synthesis and quality control and for various organelle-
interactions (Schwartz and Blower 2016). The healthy function of the ER depends on its
dynamics and structure (Westrate et al., 2015), which are highly regulated by intra- and
extracellular stimuli. The ER consists of distinct domains including sheets and tubules, and
features growth tips and tubular connections, so called three-way junctions. Perturbations to
the ER structure and dynamics caused by genetic defects or metabolic stress have been
associated with a variety of diseases (Schonthal 2012), such as spastic paraplegias (HSPs) and
Niemann Pick Disease type C (NPC). Hence, to understand the role of ER in diseases, it is
important and necessary to characterise ER morphology comprehensively, which may provide
powerful phenotypes to screen drugs against ER associated disorders. However, given the
extent of the ER network and its complexity, the precise and quantitative measurement of ER
topology and movement has remained challenging. The ER network in a single cell consists of
thousands of interconnected tubules that undergo constant rearrangements via processes
including continuous tubular elongation, contraction, and fusion. Furthermore, there are rapid
transitions between sheet and tubular domains with distinct putative functions (Lu et al., 2020).
Recently, capabilities have emerged to reveal such dynamic changes in ER topology in live
cells, at sub-wavelength resolution. Structured illumination microscopy (SIM), for example,
can be used to resolve details of ER topology and its rapid remodelling process (Nixon-Abell
et al, 2016; Guo et al., 2018). However, the data have only been interpreted qualitatively,
without attempts to quantify ER topology or its structural changes precisely. So far, no suitable
metrics exist, nor analysis tools, that can be used for such a purpose. Compared to other
organelles, such as mitochondria and lysosomes, which are structurally simpler organelles that
are often well separated from one another, the ER consists of highly convoluted and structurally
connected domains. The task is further complicated by the fact that the signal to noise ratio of
images obtained during live cell microscopy is often poor, while a clear differentiation of the
organelle from its background is required to ensure successful segmentation into tubular and

sheet domains. For moving structures, and time lapse imaging, this becomes a formidable task.

A number of machine-learning based methods have been developed for the segmentation of
cells (Stringer et al., 2021), mitochondria (Fischer et al., 2020; Lefebvre et al., 2021), and

nuclei (Hollandi et al., 2020), which provide robust and precise classification of cell structures.
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73 However, to date, thresholding remains the standard method of use for ER segmentation
74  (English and Voeltz 2013; Pain et al., 2019; Garcia-Pardo et al., 2021), a method which lacks
75  both sensitivity and specificity and thus quantitative conclusions are hard to draw, especially
76  in situations where image quality is compromised by noise. Alternative methods are based on
77  labour intensive manual labelling of image data to generate specialised datasets for training of
78  machine learning algorithms. These approaches do not generalise well to work with changing
79  experimental setups or varying sample types (Extended Data Fig. 1) (Arganda-Carreras et al.,
80  2017). An additional challenge for ER segmentation can be seen in temporal consistency.
81  Conventional segmentation is performed on a frame-by-frame basis, and segmented structures
82 in sequential (time-lapse) images lose temporal continuity and thereby cause artefacts
83  (Belthangady and Royer 2019). Currently, there is no ER segmentation method capable of
84  taking dynamic, spatial and temporal topology changes into consideration. Hence, more
85 efficient and accurate classification schemes need to be developed for sequential imaging data,
86  to be able to study ER structural changes as the they occur in live cells.
87
88  To address these difficulties, we developed ERnet, a deep learning-based software that
89  automatically segments ER, classifies its domains into tubules and sheets, and quantifies
90  structural and dynamic features in super-resolution image sequences obtained from live cells.
91  We provided ERnet with an intuitive user interface to make it a broadly accessible tool for
92  biologists (Extended Data Fig. 2) and to promote ER-related research in basic science and
93  clinical applications. While conventional segmentation methods based on thresholding classify
94  objects according to image intensity, ERnet is trained with large image datasets to model the
95  domain knowledge of ER structures, i.e., the shapes of tubules and sheets. As a result, it enables
96  feature specific segmentation with enhanced robustness, specificity, and sensitivity regardless
97  of the pixel intensity in the images. After segmentation, ERnet quantifies topological features
98  of the ER and recognises subtle changes in the ER structure and dynamics for various stress
99  conditions, including gene knockout /knockdown, ATP depletion and Calcium depletion etc.
100  To validate the method, we tested the segmentation accuracy of ERnet on in vitro models
101  subjected to different genetic and metabolic manipulations, including cells mimicking
102 phenotypes of HSP and NPC. Two phenotypes were identified as sensitive readouts of the ER
103 response in these models, namely the degree of fragmentation of ER networks and the
104  heterogeneity in tubule connections. Both are indicators for the functional state of the ER

105  network, and can be used, e.g., to quantify the degree of disorganisation, shrinkage, and
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106  collapse of ER structures in models of disease. In summary, ERnet enables automated
107  segmentation of ER structures and parametric analysis of ER topology in models used for
108  genetic or therapeutic screening.

109

110

111  Results

112 The ERnet model architecture is optimised to segment and capture network information
113 obtained from video-rate super-resolution imaging data.

114

115  The general design of ERnet is schematised in Fig. la. First, the reconstructed sequential
116  images of the ER were segmented in ERnet, followed by the classification of ER structures
117  into tubules and sheets. The tubular structure was further skeletonised using a surface axis
118  thinning algorithm (Lee et al., 1994). After this, the nodes and edges of the skeletonised ER
119  were identified to plot a topology graph via a graph theory-based module (Peixoto, 2014).
120 Instead of relying on the commonly applied convolution neural networks (CNN), our model
121  builds upon a Vision Transformer architecture (Dosovitskiy et al., 2020) which outperforms a
122 comparable state-of-the-art CNN with higher classification accuracy and four times fewer
123 computational resources. Key to our method is that, rather than paying attention to the physical
124 locations of the nodes, it focuses on the ER’s network features, e.g. the connectivity between
125  nodes. For instance, metrics such as number of fragments and clustering coefficients can be
126  extracted to determine the ER topology.

127

128  The core component in our workflow is a Vision Transformer based model ERnet that performs
129  the segmentation of the super-resolution images recorded at video rates (Fig. 1b). ERnet is
130 designed to have a temporal window of five adjacent frames as input which permits the model
131  to process sequentially correlated ER structures. By introducing a set of sequential frames with
132 temporally overlapping structures, moving objects demonstrate a higher correlation than
133 random background noise which improves the recognition of ER structures and allows the
134 model to obtain more comprehensive domain knowledge that is critical to assess the structural
135  integrity of the ER network correctly. To reduce the computational cost associated with the
136  large data volumes generated by time sequenced imaging data, ERnet makes use of a so called
137 3D shifted window (Liu et al. 2021) that not only applies self-attention to information within

138  specific individual images themselves but also to features that persist between different frames
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139  in the sequence. We also combine the multi-head self-attention (MSA) mechanism (Vaswani
140  etal,2017) with a channel attention mechanism (Christensen et al., 2022) in the ERnet, a design
141 which makes the method more adaptive to different ER phenotypes.

142

143  ERnet performs precise segmentation and topological analysis of the ER structures in
144  sequential SIM images.

145

146  The ER is a highly dynamic structure and at any instance thousands of tubules move and change
147  position, direction, and network connections. The purpose of ERnet is to obtain quantitative
148  information from the above ER structural changes which are closely linked to disease
149  phenotypes. To quantify these intracellular changes, we first tested performance of ERnet using
150  SIM images of COS-7 cells. Fig. 2a shows a single frame of the ER (grey) from a set of
151  sequential images captured from a COS-7 cell expressing mEmerald-Sec61b (Nixon-Abell et
152 al., 2016). The performed segmentation successfully identified the whole ER structure,
153  differentiated it from the cytosol background and further classified it into tubular (cyan) and
154  sheet domains (yellow) (Fig. 2a). Then, the tubular ER was skeletonised from the whole
155  structure and the nodes (tubule junctions, shown in red) and edges (tubules, green) were
156 identified as two key topological components to map the network connectivity via the Python
157  package Graph-tool (Peixoto 2014).

158

159  SIM provide high spatial-temporal resolution of ER structures thus suitable for live cell
160  imaging (Extended Data Fig. 3). A single pixel on the camera frame has a length scale of 42
161  nm in real space, almost a quarter of the average width of an ER tubule (~160 nm, measured
162 asthe average width on SIM images taken). This means that misclassification of a few, or even
163  just one, image pixels can mean the difference between identification of a tubule as connected,
164  or as disrupted. This leads to errors in the classification of network features, and vice versa to
165 a bias when quantifying the network connectivity. In disease models, this could lead to
166  erroneous phenotypes. The semantic segmentation of individual pixels from SIM images
167  ensures the structural integrity of networks identified and prevents information loss, an
168  improvement of traditional algorithms used in the past. Figs. 2a and b show how the method
169  performs. A clear segmentation of ER structure (Fig. 2b) is achieved in regions containing
170  dense ER tubule networks, as can be seen from the enlarged region indicated by the white box

171  in Fig. 2a. This permits the distinction of tubules and their junctions in confined regions,


https://doi.org/10.1101/2022.05.17.492189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.17.492189; this version posted May 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

172 measuring less than 300 nm across (highlighted by yellow dashed lines) with good structural
173 detail. The segmented ER was then skeletonised (middle panel of Fig. 2a and b) and classified
174  into edges (green tubules, right panel, Figs. 2a and b) and nodes (red spots, right panel, Figs.
175  2aand b). Finally, ERnet quantified the number of edges and nodes (top plot, Fig. 2c) and the
176  percentage of areas covered by tubules and sheets (bottom plot, Fig. 2c), respectively, across
177  the whole ER. Here, ER tubules were defined as linear branched structures and sheets as flat
178  membrane cisternae as shown in Fig. 2a and d. Morphological features, such as the percentage
179  of tubules/sheets among the whole ER, reflect ER status (Lu et al., 2020) and provide
180 indications for possible ER defects. ER stress induced by an absence of the GTPase Rab7,
181  which is known to modulate lysosome-ER contact sites, leads to the enlargement of ER sheets
182  and the reduction of tubular domains in the cell periphery (Mateus et al., 2018). On the other
183  hand, a depletion of protrudin, an ER reshaping protein, induces HSP associated ER
184  dysfunctions by disrupting the sheet-to-tubule balance (Chang et al, 2013). Therefore, and as
185 investigated in more detail in the subsequent sections, it is expected that the topological
186  features of the ER, such as its connectivity, assortativity, or clustering coefficients, change for
187  different phenotypes and with disease progression. It is worth highlighting that, although the
188  ER tubular network underwent stark morphology changes (Movie 1) and demonstrated
189  fluctuations in the numbers of nodes and edges (top panel, Fig. 2¢) within individual recordings,
190 its tubule and sheet percentage among the whole ER remained stable (bottom panel, Fig. 2c),
191  which suggests that the overall connections do not change in the absence of a stimuli.

192

193  In the canonical model of ER structures, ER tubules radiate from sheets towards the cell
194  periphery (Westrate et al., 2015), and the two structures are thought not to overlap. However,
195  we observed that tubular structures also reside on the ER sheets themselves (Fig. 2d and Movie
196  2), which was distinguished by ERnet as seen in Fig. 2d and Movie 3. Like freestanding tubules,
197  they undergo rapid elongation and contractions, which can either lead to new tubular
198  connections (blue arrows), or separations (grey arrows). A subsequent 3D reconstruction of
199  SIM image sections further validated that such tubules are directly attached to the sheets, and
200  are not the result of a projection view artefact (Fig. 2e and Movie 4). Analysis of over 500 cells
201  showed that this phenomenon is a common feature of the ER network (Fig. 2f). Furthermore,
202  we saw that sheet-based tubules form potential contact points for lysosomes. In Extended Data

203  Fig. 4, it is shown that lysosomes play a role to actively guide a tubular structure on sheet
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204  domain similar to what has been observed to standard ER-lysosome contact points reported by
205  usrecently (Lu et a., 2020).

206

207  ERnet analysis reveals the complex connectivity of the ER tubular network.

208

209  ERnet can be used to quantify the connectivity of edges and nodes before plotting a
210  corresponding connectivity graph (Fig. 3a). The connectivity graph highlights that the network
211  of the ER largely constitutes of three-way junctions (red nodes, Fig. 3a) while the ER edges
212 are capped with growth ends (green nodes, Fig. 3a).

213

214  To assess the integrity of the ER, we defined each disconnected ER region as a fragment. As
215  the ER is constantly reshaping, the total number of fragments fluctuates during each recording
216  (Fig. 3b). However, despite these ongoing structural modifications, ERnet reveals that in a
217  typical healthy cell, a single large fragment comprises the majority of all edges and nodes at
218  all times (over 92% of all the 3000 nodes and 95% of all the 2500 edges in the shown example).
219  As quantitative parameters, we defined node and edge ratios (the number of nodes or edges in
220  the largest fragment divided by the total number of nodes or edges, respectively), see Fig. 3c.
221  Per definition, these values range from close to 0 (fully fragmented ER) to 1 (fully connected).
222 Additionally, ERnet quantified the degrees of the ER nodes, i.e., how many edges (tubules)
223 connect to each node (junction). As shown in Fig. 3d, three-way junctions are the most
224  abundant and represent 78% of all junction types in this example. Despite the prevailing model
225  of ER morphology, where three-way junctions interconnect to form the whole ER tubular
226  network, ERnet also identified nodes connected with more than three edges (tubules), i.e.,
227  multi-way junctions. The presence of multi-way junctions indicates the heterogeneous
228  connectivity of ER tubules that are organised in a higher order of complexity than previously
229  assumed.

230

231  Next, the assortativity and clustering coefficients (Fig. 3e and f), that describe connectivity
232 patterns of nodes, were calculated based on the above metrics. The assortativity coefficient
233 measures the tendency of nodes to connect with others of the same degree (Newman 2002)
234 while the clustering coefficient reflects the tendency of nodes to cluster together. Assortativity
235  coefficients range from -1 (fully heterogeneous connectivity, i.e. nodes only connect with those

236  of different degrees) to +1 (fully homogeneous connectivity, i.e. nodes only connect with those
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237  of same degree). Clustering coefficients describe another aspect of a node’s connectivity: they
238  measure if the neighbouring nodes of a given node tend to connect to each other, i.e. to cluster.
239  Similarly, for clustering coefficients, 1 describes a perfectly clustered network while O refers to
240  no clustering. Fig. 3e shows the ER as a weak assortative network, which suggests a slight
241  tendency of nodes to connect with nodes of the same degree. Additionally, the low clustering
242 coefficients (Fig. 3f) demonstrate a lack of aggregation of nodes and edges in the whole ER of
243 this cell.

244

245  To further investigate the structural dynamics of the ER, we tracked the lifetime of multi-way
246  junctions and their transitions from multi-way to three-way junctions. Fig. 3g and h show the
247  rapid transitions between three-way (yellow arrows) and multi-way junctions (blue arrows)
248  driven by ER tubule reshaping. As shown in these cases, the formation of four or five-way
249  junctions need simultaneous connections of more than three tubules at the same junction, which
250  occurs with a lower chance than the formation of a three-way junction that only requires the
251  connection of three tubules. Additionally, any movement of a tubule away from its multi-way
252 junction can lead to the collapse of this junction and the generation of at least two three-way
253  junctions. Therefore, as shown in Fig. 31, the average lifetime of a multi-way junction is much
254  shorter, i.e., less than a third (10.1 s vs 30.8 s) of that of a three-way junction.

255

256  Quantitative analysis of ER structures reveals phenotypic characteristics of the ER in
257  stress models.

258

259  ER morphological defects caused by mutations in genes encoding ER-reshaping proteins or by
260  metabolic perturbations have been linked to a variety of human diseases (Westrate et al., 2015).
261  However, the exact phenotypical ER disruption under these conditions has not yet been
262  sufficiently characterised. Using ERnet, we first analysed the ER morphological defects in
263  stress models mimicking the ER phenotypes in two neurodegenerative diseases, namely
264  Hereditary Spastic Paraplegias (HSPs) and Niemann-Pick disease type C (NPC). The inherited
265 neurological disorder HSPs can be characterised by progressive lower-limb weakness and
266  muscle stiffness, which are caused by mutations in genes encoding ER reshaping proteins such
267  as atlastin (ATL) (Zhao et al., 2001) and protrudin (Mannan et al., 2006). We used ERnet to
268  examine the ER morphology defects in individual cells of different models by measuring two

269  topological features, i.e., the degree of ER tubule fragmentation and the heterogeneity in in
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270  these tubular connections. Compared with control cells, an ATL knock-out (KO) leads to a
271  collapse of the ER network integrity. Such ER fragmentation was clearly revealed in ATL KO
272 cells by the increasing number of fragments and a 20-fold reduction of the node ratio (99% in
273  control vs. 5.4% in ATL KO) (Fig. 4a and Movie 5 and 6). ERnet also highlighted that the lack
274  of ATL significantly altered the connectivity in ER tubular network, as witnessed by a reduced
275  percentage of three-way junctions among all the nodes (26% vs. 78% in control) and by the
276  disorganised connectivity (-0.25 in assortativity). These measurements provided quantitative
277  rather than descriptive evidence of ATL’s role in ER tubular network formation, which was
278  previously reported to be crucial for the fusion of ER membranes and, thus, to form continuous
279  networks (Zhao et al.,2001). With these quantitative analyses, we can compare morphological
280  defects caused by different treatments. In another model of HSPs, depletion of protrudin
281  (Extended Data Fig. 5) resulted similarly in ER tubular network fragmentation (305 fragments)
282  (Movie 7) and in disorganised connectivity, however, to a lesser extent. A further metric
283  suitable for the comparison of ER health under different treatments is the size of the ER, which
284  is revealed by the connectivity graph. An ATL KO cell that was more fragmented than a
285  protrudin KD cell suffered from a more severe shrinkage of the ER with a smaller number of
286  nodes and edges (Fig. 4a), indicating that ER membranes may be degraded or recycled in
287  response to stresses. The similar phenotypes observed in both genetic models suggest the
288  connectivity defect in the ER may be a general cause of HSPs.

289

290  Next, we induced cholesterol accumulation in lysosomes by U18666A administration to the
291  cell, which induces a blockage of the cholesterol transfer from lysosomes to the ER in NPC
292 (Ko et al., 2001). The accumulation of cholesterol in lysosomes leads to lysosome deposition
293  in perinuclear regions and, therefore, affects the ER structure and distribution (Lu et al., 2020).
294  However, the exact ER morphological defects have not yet been characterised. ERnet revealed
295  that the ER of U18666A-treated cells features a disassortative network (-0.34) and its low node
296  ratio (3.4%) suggests a highly fragmented structure (Fig, 4a and b, Movie 8), which highlights
297  that lysosomal defects can strongly affect the ER and thus provides us with a useful tool to
298  improve our understanding of organelle dysfunction in NPC.

299

300 Finally, we tested performance of ERnet in cells upon ER collapse under metabolic
301  manipulations that significantly affect the overall homeostasis inside the cell. The sequential

302  SIM images showed that the ER largely loses its dynamic reshaping capabilities upon the
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303  administration of store-operated calcium entry (SOCE) inhibitor SKF96365 (Merritt et al.,
304  1990) (Movie 9). In the connectivity graph, the ER was largely fragmented and featured as a
305  disassortative network (Fig. 4a and b). Compared with SKF96365, NaN; depletes ATP
306 (McAbeeetal., 1987) that supports all the energy consuming processes inside the cell including
307 ER tubule elongation, retraction, and membrane fusion. Therefore, ATP depletion by NaNj;
308  was expected to significantly inhibit the structural dynamics of the ER. ERnet successfully
309 revealed the level of fragmentation of the ER tubular network which resulted from the lack of
310  ATP (Fig. 4a and b, Movie 10); however, such phenotypes were not equivalent to the severe
311  ER defects caused by the depletion of ER reshaping proteins, as the node ratio of ER in ATP
312 depleted cells is nearly 4-fold of that in ATL KO cells (0.19 vs 0.05).

313

314  Overall, these evaluations highlight the advantages of ERnet to provide quantitative
315  assessments while being sensitive enough to detect the subtle ER morphology changes,
316  especially when it comes to network connectivity, that is required for the investigation of ER-
317  related disease phenotypes.

318

319  Versatility test demonstrates robust performance of ERnet in different cell lines and
320  microscopy techniques.

321

322  While ERnet has been demonstrated to be suitable for the quantification of ER dynamics in
323  different cell models related to ER stress and diseases, the validation of its robustness and
324  versatility is crucial to ensure its successful application for a wide range of research. Fig. 5
325  presents the analysis of images obtained using different microscopy techniques including
326  widefield, confocal, and Airyscan microscopy. Even though ERnet’s precision may depend on
327  the spatial resolution of the corresponding images, it performed reasonably well for all imaging
328  techniques with all the tubules and sheets clearly classified and quantified (Source Data Fig.
329 5). Furthermore, we also performed validation tests for varying cell types commonly used in
330 cell biology research, such as HEK, CHO, SH-SY5Y cells, and primary cultures of
331  hippocampal neurons and glial cells derived from embryonic rats. Although the specific ER
332 phenotypes varied among the cell types, ERnet was able to robustly identify the corresponding
333  tubular and sheet domains and performed subsequent quantitative analyses based on the
334  segmentation (Source Data Fig. 5). The presented reliable segmentations performed on various

335  cell lines and imaging setups further highlight ERnet’s robustness and its precision for the
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336  structural analysis of ER networks while providing key metrics suitable to quantify the subtle
337 changes in ER fragmentation and the heterogeneity in tubule connections, crucial for the
338  evaluation of cell healthiness and disease progression.

339

340  Discussion

341

342 Quantitative cell biology that measures the cellular organelle properties such as shape, position,
343  and mobility provides the basis of analysing the structure and function of organelles in both
344  fundamental and therapeutic research. Here, we introduce ERnet, a versatile tool that performs
345  robust and precise segmentations and permits the quantitative analysis of ER structures in a
346  variety of conditions, including different cell models, cell types and images taken with different
347  microscope techniques. ERnet generates multiple metrics informing on the connectivity of the
348  ER network and permits the quantitative comparisons of ER integrity and structural defects
349  among different stress models. ERnet clearly highlights the fragmented structures and reduced
350  connections of ER networks in stress conditions, which becomes particularly evident in models
351  mimicking phenotypes of HSPs and NPC. While it is difficult and tedious to manually identify
352 and quantify whole ER structures or the fragmented ER pieces of the above models, ERnet
353  provides an automatic and rapid analysis of various phenotypes, which may be used to evaluate
354  disease severity in diagnosis or treatment effects during drug screening.

355

356  The high accuracy of ERnet’s semantic segmentation is based on the model design. In contrast
357  to state-of-the-art CNN models commonly used in image segmentation, ERnet is constructed
358 in a Vision Transformer architecture that outperforms CNNs with higher accuracy in image
359 classification tasks but with four times fewer computational resources (Dosovitskiy et al., 2020;
360  Paul and Chen 2021). Another advantage of our design is its capability for temporal domain
361 analyses of objects from sequential images. We also integrated two attention mechanisms:
362  multi-head self-attention and channel attention into the Transformer architecture. These
363  mechanisms greatly enhance the learning ability of ERnet in classifying ER structures in the
364  spatio-temporal domain. While machine learning methods have previously been implemented
365  to reconstruct ER structures based on electro-microscopy images (Liu et al., 2019) and to
366 identify ER stress marker-whorls (Guo et al., 2022), ERnet can be applied for video-rate image
367  segmentation and the analysis of live cells, thus, further extending the deep learning toolbox

368  for biomedical research.
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369 By applying ERnet, we characterised the structural features of the dynamic ER network. First,
370  we found that the dominance of three-way junctions is a necessity to produce a continuous ER
371  network which can spread throughout the cell and, in addition to the prevalence of three-way
372  junctions, it has been observed that a healthy ER contains approximately 20% of multi-way
373  junctions (degree > 3). In contrast, all the stress manipulations of ER morphology, including
374  models of HSPs and NPC, resulted in the fragmentation of ER structures to varying extents
375  (Fig. 4). Although the ER fragmentation may be easily visualised in images, it is difficult to
376  evaluate the severity of fragmentation caused by different treatments and even harder to
377  compare based on descriptive imaging data. ERnet not only demonstrates the degree of
378  fragmentation, but also analysed this morphological defect from different angles with a list of
379  metrics. Therefore, we can have a quantitative and comprehensive understanding of the ER
380  phenotype and a reliable comparison of treatments by plotting the numerical data informing us
381  on the level of ER fragmentation and connectivity in a same framework (Fig. 4b). We showed
382 an example of multi-parameter analysis of ER in single cells in sequential frames,
383  demonstrating the consistency of the phenotype during the recording (Fig. 4b). This
384  consistency is more prominent in the population level, as the data point to different cells under
385  the same condition grouped together and separated from the data from other conditions
386  (Extended Data Fig. 6). This demonstrates that ERnet is suitable to detect and measure
387  phenotypic characteristics of the ER in different cell populations. All these provide a powerful

388  tool to investigate potential therapies for ER associated diseases.

389  Another key advantage of deep learning-based image processing is their ability to drive novel
390 biological observations. Since ERnet is sensitive to structural features, our model was able to
391  identify sheet-based tubules. These ER components share similar structures and dynamics with
392  the tubules that radiate from the sheet domains towards the periphery of the cell, however, their
393  position in the sheet domain greatly extends the coverage of the tubular ER towards the cell
394  centre and even close to the nucleus. Finally, the observed sheet-based tubules’ close contact
395  with lysosomes might permit beneficial material exchange and structure regulation as
396  lysosomes are one of the cell’s sensing hubs. How the sheet-based tubules are regulated in both

397  physiological and pathological conditions will be an important question for future studies.

398  We believe our work demonstrates an efficient tool for precise structure segmentation and
399  multi-parameter analysis of ER phenotypes. Its user-friendly graphical interface and automatic

400  batch processing can save a significant amount of manual curation in imaging annotation and,
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401  therefore, speed up ER associated disease research and therapeutic screenings. In the future,
402  the integration of ERnet with other organelle analysis tools, such as methods for lysosomes
403  and mitochondria characterisations, will open the door to quantitative and comprehensive
404  investigations of multi-organelle interactions and their roles in the development, degeneration,

405  and ageing of cells.
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603  Methods

604  Cell culture

605  COS-7 cells were purchased from the American Type Culture Collection (ATCC). COS-7 cells
606  were grown in T75 or T25 flasks or six-well plates by incubation at 37°C in a 5% CO:
607  atmosphere. Complete medium for normal cell growth consisted of 90% Dulbecco’s modified
608 Eagle’s medium (DMEM), 10% fetal bovine serum (FBS) and 1% streptomycin. Cells were
609 kept in logarithmic phase growth and passaged on reaching 70 to 80% confluence
610  (approximately every 3 to 4 days). Medium was changed every 2 or 3 days. For structured
611  illumination microscopy (SIM) imaging experiments, COS-7 cells were plated onto Nunc Lab-
612  Tek II Chambered Coverglass (Thermo Fisher Scientific, 12-565-335) to achieve ~70%
613  confluence before transfection.

614
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615  COS-7 cells were transfected with mEmerald-Sec61b-C1 (Addgene #90992, gifted by Jennifer
616  Lippincott-Schwartz, Janelia Research Campus) as indicated with Lipofectamine 2000
617  according to the manufacturer’s protocol 24 to 48 hours before imaging. Cells were stained
618  with SiR-Lysosome at 1 uM for 4 hours before imaging. Cells were imaged in a microscope
619  stage top micro-incubator (OKO Lab) with continuous air supply (37°C and 5% CO3). Cells
620  were treated with U18666A (662015, Sigma) at 10 uM for 24 hr to block cholesterol transfer
621  from lysosomes to ER before imaging. Cells were treated with SKF-96365 (S7809, Sigma) at
622 100 uM for 3 hr to deplete Calcium before imaging. Cells were treated with NaN3 (0.05% w/v)
623  and 2-deoxy-glucose (20 mM) for 2 hr to deplete ATP before imaging. SH-SYS5Y cells were
624  cultured and images as previously described (Michel et al., 2014). HEK cells were cultured
625  and imaged as previous described (Lu et al., 2019). ATL KO model was gifted by Prof. Junjie
626  Hu, Chinese Academy of Sciences, China. CHO-K1 cells were purchased from ATCC and
627  were cultured in Ham's F-12 Nutrient Mixture medium supplemented with 10% FBS, 2 mM
628  L-Glutamine and 100 U/mL Penicillin-Streptomycin (Pen/Strep). Cells were transfected with
629  pFLAG_ER mCherry (Avezov et al.,2015). U20S cells were purchased from ATCC and were
630  cultured in DMEM supplemented with 10% FBS, 2 mM L-Glutamine and 100 U/mL Pen/Strep.
631  Cells were transfected with pFLAG_ER mCherry (Avezov et al., 2015).

632

633  siRNA transfection and Western

634

635  blotProtrudin were depleted using SMARTpool: ON-TARGETplus, Dharmacon. Negative
636  siRNA control (MISSION siRNA Universal negative control) was purchased from Sigma-
637  Aldrich. COS-7 cells were plated in both glass-bottom Petri dishes (for imaging) and six-well
638  plates (for Western blot validation). Cells were transfected with 20 nM siRNA oligonucleotides
639  and 20 nM negative control siRNA using Lipofectamine RNAiMax (Thermo Fisher Scientific)
640  according to the manufacturer’s protocol. After 6 hours of siRNA transfection, the cells were
641  washed and the medium was replaced with complete culture medium. Twenty-four hours after
642  the siRNA transfection, cells were transfected with plasmid DNA indicated in Results using
643  Lipofectamine 2000 (Invitrogen). On the day of imaging, cells were stained with Sir-Lysosome.
644  Cells in glass Petri dishes were imaged 24 hours after DNA transfection.

645

646  Cells in six-well plates were harvested for Western blot validation 72 hours after siRNA
647  transfection. Protein concentration was measured using a bicinchoninic acid (BCA) protein
648 assay kit. Immunoblotting was performed by standard SDS-polyacrylamide gel
649  electrophoresis/Western protocols. Primary antibody concentrations were as follows: anti-
650  Protrudin at 1:5000; GAPDH (glyceraldehyde-3-phosphate dehydrogenase) at 1:30,000;
651  tubulin at 1:5000. Secondary antibodies (Sigma-Aldrich) were used at 1:3000 for all rabbit
652  antibodies and for all mouse antibodies. The signal was detected with SuperSignal West Pico
653  Chemiluminescent Substrate.

654  Widefield and Structured illumination microscopy

655  SIM imaging was performed using a custom three-color system built around an Olympus [X71
656  microscope stage, which we have previously described (Young et al., 2016). Laser wavelengths
657 of 488 nm (iBEAM-SMART-488, Toptica), 561 nm (OBIS 561, Coherent), and 640 nm (MLD
658 640, Cobolt) were used to excite fluorescence in the samples. The laser beam was expanded to
659  fill the display of a ferroelectric binary Spatial Light Modulator (SLM) (SXGA-3DM, Forth
660  Dimension Displays) to pattern the light with a grating structure. The polarization of the light
661  was controlled with a Pockels cell (M350-80-01, Conoptics). A 60x/1.2 numerical aperture
662  (NA) water immersion lens (UPLSAPO 60XW, Olympus) focused the structured illumination
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663  pattern onto the sample. This lens also captured the samples’ fluorescent emission light before
664  imaging onto an sSCMOS camera (C11440, Hamamatsu). The maximum laser intensity at the
665  sample was 20 W/cm?. Raw images were acquired with the HCImage software (Hamamatsu)
666  torecord image data to disk and a custom LabView program (freely available upon request) to
667  synchronize the acquisition hardware. Multicolour images were registered by characterising
668  channel displacement using a matrix generated with TetraSpeck beads (Life Technologies)
669  imaged in the same experiment as the cells. COS-7 cells expressing mEmerald-Sec61b-C1 (ER
670  marker) and stained with SiR-Lysosome (lysosome marker) were imaged by SIM every 1.5 s
671  (including imaging exposure time of both channels) for 60 frames.

672

673  Reconstruction of the SIM images with LAG SIM

674

675  Resolution-enhanced images were reconstructed from the raw SIM data with LAG SIM, a
676  custom plugin for Fiji/ImagelJ available in the Fiji Updater. LAG SIM provides an interface to
677  the Java functions provided by fairSIM (Miiller et al., 2016). LAG SIM allows users of our
678  custom microscope to quickly iterate through various algorithm input parameters to reproduce
679  SIM images with minimal artifacts; integration with Squirrel (Culley et al., 2018) provides
680 numerical assessment of such reconstruction artifacts. Furthermore, once appropriate
681  reconstruction parameters have been calculated, LAG SIM provides batch reconstruction of
682  data so that a folder of multicolour, multi-frame SIM data can be reconstructed overnight with
683  no user input.

684

685  AiryScan imaging

686

687  AiryScan imaging was performed using a LSM 880 confocal microscope (Zeiss). A Zeiss Plan-
688  Apochromat 63x%/1.40 DIC M27 Oil objective was used. For visualisation of ER structure, ER
689  mCherry was excited by a diode-pumped solid-state (DPSS) 561 nm laser (1% intensity) and
690  detected using the AiryScan detector. Bit depth was set at 16 bits. Using the Fast-Airyscan
691  mode, live-cell time-lapse images were acquired every 1 second (60 frames) with an image
692  size of 1364 x 1244 pixels. Cells were kept in a controlled environment (37°C, 5% CO.) during
693  imaging. Following acquisitions, images were deconvoluted using the Airyscan processing.
694  Image processing was performed in software ZEN 2.3 SP1 FP3 (black) (ver.14.0.25.201).

695

696  Confocal Imaging

697

698 A part of confocal imaging was performed using a STELLARIS 8 confocal microscope (Leica).
699 A HC PL APO CS2 63x/1.40 OIL objective was used. For visualisation of ER structure, ER
700  mCherry was excited by 587 nm of white light laser (WLL) with 3% intensity and detected
701  using the HyD S3 detector (detection range: 592-750 nm). Bit depth was set at 16 bits. Live-
702 cell time-lapse images were acquired every 1.5 seconds (90 frames) with an image size of 512
703  x 512 pixels. Cells were kept in a controlled environment (37°C, 5% CO,) during imaging.
704

705  ERnet construction

706

707  For the segmentation of the sequential endoplasmic reticulum (ER) images, a spatio-temporal
708  shifted window vision transformer neural network is trained and used. The proposed model is
709  inspired by the previous models Vision Transformer (Dosovitskiy et al. 2020), its more
710  efficient shifted window variant Swin (Liu et al. 2021), with its extension for video
711  classification Video Swin (Liu et al. 2021a), and adaption to image restoration SwinIR (Liang
712 etal. 2021). Swin introduced the inductive bias to self-attention called shifted window multi-
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713 head attention (SW-MSA) which can be compared to the inductive bias inherent in
714 convolutional networks. SwinIR introduced residual blocks to the Swin transformer to help
715  preserve high-frequency information for deep feature extraction. The Video Swin transformer
716  extended the SW-MSA to three dimensions, such that spatio-temporal data can be included in
717  the local attention for the self-attention calculation. Further to this, the success of the channel
718  attention mechanism (Zhang et al. 2018) inspired the inclusion of this other inductive bias in
719  addition to 3D local self-attention following the SW-MSA approach.

720  The inputs to the model have the dimension T X H X W X C, where T is 5 for ERnet (5
721  adjacent temporal frames) and C is 1 (grayscale inputs). A shallow feature extraction module
722 in the beginning of the network architecture, shown in Fig. 1, projects the input into a feature
723 map, F,, of TXHXW XD dimension, where the embedding dimension, D, is a
724  hyperparameter. The feature map is passed through a sequence of residual blocks denoted
725  Window Channel Attention Block (WCAB)

726 Fi = HWCAB(Fi—l)i i = 11,..,7’1

727  Inside each WCAB is a sequence of Swin Transformer Layers (STLs), in which multi-head
728  self-attention is calculated using local attention with shifted window mechanism. Inputs to STL

729  layer is partitioned into % X 7\4—‘/'2/ 3D tokens of P X M? x D dimension. For a local window

730  feature, x € RP*M**P_ query, key and value matrices, {Q, K, V} € RPM**P are computed by
731  multiplication with projection matrices following the original formulation of transformers.
732 Attention is then computed as

733 Attention(Q, K, V) = SoftMax(QK” /Nd + B)V,

734 where B € RPP*M**M* g 4 relative positional bias found to lead to significant improvements
735  in classification performance. STLs are joined in a way similar to the residual blocks, although
736  the use of SW-MSA is alternated with a version without shifted windows, W-MSA, ensuring
737  that attention is computed across window boundaries, which would not have been the case
738  without SW-MSA.

739  After the final STL, the m-th layer, in a WCAB, a transposed 3-dimensional convolutional
740  layer is used to project the 3D tokens back intoa T X H X W X D feature map, F;,,,. A channel
741  attention module is then used on F;,, to determine the dependencies between channels
742  following the calculation of the channel attention statistic. The mechanism works by using
743  global adaptive average pooling to reduce the feature map to a vector which, after passing
744 through a 2D convolutional layer, becomes weights that are multiplied back onto F; ,,, such that
745  channels are adaptively weighed. A residual is then obtained by adding a skip connection from
746  the beginning of the i-th WCAB to prevent the loss of information, i.e., low-frequency
747  information, and the vanishing gradient problem. A fusion layer combines the temporal
748  dimension and the channel dimensions. For the final upsampling module, we use the sub-pixel
749  convolutional filter to expand the image dimensions by aggregating the fused feature maps.

750  The model is trained by minimising a multi-class cross-entropy loss function

N w

1 1 N exp(F(0;1F),5x)
. — PILXY,
751 LCE(G,D)—NE WH E E —fi;”x,y(k)log[ 3

i=1 x=1y=1k=1 j=1 exp(F(8;1))x,y;5)
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752 where k and j are iterators over a total of K unique classes, and lexy (k) is a function equal to

753 1 if the target class for the pixel at (x, y) of the i image is k and equal to 0 otherwise. In this
754  paper, we study the segmentation of background, tubules, sheets, and sheet-based tubules and,
755  therefore, K = 4 in the equation above.

756  The training data is obtained by acquiring experimental data using structured illumination
757  microscopy (SIM). A total of 20 sequential stacks of different samples are acquired, where
758  each stack consists of 60 SIM images reconstructed with ML-SIM. The super-resolved SIM
759  outputs are then segmented by manually finetuning a random forest model in the Weka plugin
760  for Imagel on an image-by-image basis.

761

762  Network analysis methods

763

764  To quantify the structural changes in the ER, methods from network analysis are applied
765  (Boccalettti et al., 2006; Costa et al., 1987). We represent the ER structure of tubules through
766  an undirected and unweighted graph. All tubule junctions are represented by nodes, and the
767  tubules by edges.

768

769  Networks are built in a python routine and their metrics are measured through the python
770  package graph-tool (Peixoto 2014) and network x (Hagberg et al., 2008). We measure the size
771  of the network through the number of nodes: N, and edges: E, within the system. The number
772  of edges attached to one node is called the nodes degree: k, and the distribution of the degrees
773 is one of the most fundamental parts of the analysis of network structures.

774

775  To quantify the structural arrangements of the ER, we focus on primary network connectivity
776  metrics. Firstly, we measure the network density, d, between nodes and edges (see Eq. (2)).
777  Other metrics that describe the network connectivity are the global clustering coefficient (see
778  Eq. (2)) and the network assortativity (see Eq.(3)). The global clustering coefficient describes
779  the tendency of the network to build triangles, by relating triplets to each other. Three nodes
780  connected to each other through three edges are a closed triplet, while three nodes connected
781  to each other through two edges are called an open triplet (Newman 2003). The network
782  assortativity describes the likelihood of nodes connecting with nodes of similar properties; here
783  specifically, as is common, a node degree. Assortative mixing is contrasted to disassortative
784  mixing where nodes tend to connect to others of dissimilar properties (Cimini et al., 2019). The
785  assortativity coefficient, r, is described in Eq.(3), where e;; is the fraction of edges linking a
786  node with type i to nodes of type j, a; is the sum over e;; for all j and b; is the sum over e;;
787  forall i. An assortativity coefficient of r = 0 indicates no mixing preference, whereas positive
788  wvalues indicate assortative and negative values disassortative tendencies.

789

q=—2E (1
N(N—-1)
number of closed triplets 2)
"~ number of all triplets
= 2i€ii — 2i aib; 3)

1-Y;a;b;
790  Additionally, we include macroscopic network arrangements by counting the number of
791  network components. Networks may be entirely connected or composed of many distinct
792 components (Albert 2005). For networks evolving over time, network components outline
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793  merging or splitting behaviour. In networks with many components, the most characteristic
794  topological features are often exhibited in the largest component (Storgatz 2001).

795  Data visualization

796  Videos of time-lapse imaging and analysis were performed using Fiji (NIH). The connectivity
797  graphs in the figures are re-plotted by a Python module named “connectivity graph.py”.
798  Instructions of using this module is provided inside the file.

799  Statistical analysis

800  Statistical significance between two values was determined using a two-tailed, unpaired
801  Student’s ¢ test (GraphPad Prism). Statistical analysis of three or more values was performed
802 by one-way analysis of variance with Tukey’s post hoc test (GraphPad Prism). All data are
803  presented as the mean + SEM; *P < 0.05, **P < (.01, ***P <0.001, and ****P < 0.0001.
804  Statistical parameters including the exact value of n, the mean, median, dispersion and
805  precision measures (mean + SEM), and statistical significance are reported in the figures and
806  figure legends. Data are judged to be statistically significant when P < 0.05 by two-tailed
807  Student’s ¢ test. In the figures, asterisks denote statistical significance as calculated by
808  Student’s # test (*P < 0.05, **P < 0.01, ***P <0.001, and ****P <0.0001).
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Fig. 1: Workflow of ER structure segmentation and ERnet construction.
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Inside each WCAB, there is a sequence of Swin Transformer Layers (STLs).

The processing pipeline of ER segmentation and analysis. Time-lapse SIM images were
first segmented by ERnet to classify the tubules and sheets. The tubular network of ER
after segmentation was further skeletonised and the nodes and edges were identified to
plot the connectivity graph. Using graph theory-based methods, we quantified the

The Transformer based architecture of ERnet. A moving window loads adjacent frames
(X2 to Xy,) as inputs from the time-lapse images into ERnet. A shallow feature
extraction module then projects the input into a feature map which is followed by a
sequence of residual blocks denoted with Window Channel Attention Block (WCAB).



899  Fig. 2: Semantic segmentation of ER and classification of tubules and sheets.
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933 a. An example of a segmentation result from video-rate SIM images of the ER. From left
934 to right: 1) SIM image, 2) segmentation of ER tubular (cyan), sheet (yellow) and sheet-
935 based tubule (magenta) region, 3) skeletonisation of the tubular domain, and 4)
936 identification of nodes (red spots) and edges (green lines) based on the skeleton
937 structure. Scale bar: 5 pm.
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938 b. Zoomed-in regions of the above panel. The yellow dashed circles indicate nodes that
939 are closely positioned but can still be identified by ERnet. Scale bar: 2 pm.

940 c. Quantitative analysis of the ER shown in (a). Top panel: quantification of edges and
941 nodes of the ER tubules of the time-lapse frames. Bottom panel: percentage of the ER
942 tubules (cyan) and sheet (yellow) of the time-lapse frames. See Source Data Fig. 2c.

943 d. A representative frame from time-lapse images shows the structure of sheet-based
944 tubules. Top left panel: a SIM image of the ER structure. Top right panel: segmentation
945 of the three ER structures: sheet-based tubules (magenta), sheet (yellow), tubules (cyan).



Bottom panel: three sequential frames showing the dynamic reshaping of sheet-based
tubules from the above green boxed region. Blue arrows indicate a continuously
elongating sheet-based tubule and grey arrows indicate a retraction. Scale bars: 5 um
(top) and 2 um (bottom). See Source Data Fig. 2d for quantitative analysis.

. Volumetric view of 3D reconstruction of the sectioning SIM showing that the sheet-

based tubules (magenta) are embedded in sheet domains (yellow). Scale bar: 2 um
(bottom).

Violin plots of the percentages of tubules (T), sheets (S) and sheet-based tubules (SBT)
in COS-7 cells (N=500), showing that the presence of the sheet-based tubules is a
common feature of the ER network. See Source Data Fig. 2f.
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Fig. 3: Quantitative analysis by ERnet reveals the complex connectivity of ER tubular
network.
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a. The topology of an ER tubular network is represented by a connectivity graph. i: a
polygonal structure organized by three-way junctions and tubules, ii: a representative
region of multi-way junctions (dark blue spots), iii: a representative region of ER
tubular growth tips (green spots).

b-f. Quantitative analysis of the cell shown in (a) over a time window of 45 s. See Source
Data Fig. 3b-f.



b. Number of components (ER fragments) in time-lapse images.
c. Changes of the node or edge ratio over time.

d. Quantification of the nodes of different degrees, showing a dominance of third-degree
nodes (three-way junctions). Same colour scheme as in (a).

e-f. Changes of assortativity and clustering coefficients in time-lapse images.

g-h. Examples of transitions between three-way (yellow arrows) and multi-way junctions
(yellow arrows: three-way, blue arrows: four-way, green arrows: five-way) junctions.
Scale bar: 1 um.

1. Quantification of the lifetime of junctions (nodes) with different degrees. ****P <
0.0001, Tukey’s one-way ANOVA. n =20 events per condition from three independent
experiments. See Source Data Fig. 3i.



Fig. 4: Quantitative analysis of ER phenotypic characteristics in disease associated
models.
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Connectivity graphs of ER structures in models mimicking phenotypes of HSPs and
NPC and metabolic stress induced by calcium and ATP depletion. Nodes of different
degrees are labeled with different colours: green (degree 1), light blue (degree 2), red
(degree 3), dark blue (degree >3).



b. Topological features of the ER tubular network in above conditions were quantitatively
analysed by ERnet. The effects on ER structures from different treatments can be
directly visualised and compared by plotting the distribution of node integrating ratio
(y axis) and assortativity coefficient (x axis). The analysis of ER phenotype, such as
that in ATL KO cells, demonstrated a severe fragmentation and altered connectivity in
the numerical data plot. See Source Data Fig. 4b.



Fig. 5: Robust performance of ERnet in versatility test.
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®

A variety of cell lines with different ER morphologies were imaged by different
microscopy techniques to investigate the robustness and versatility of ERnet. ER
structures of COS-7, HEK, CHO, SH-SYSY, primary cultures of hippocampal neurons
and glial cells were tested, as well as images acquired by widefield, confocal and
Airyscan microscopy. Scale bars: 20 pm.

. The topology of an ER tubular network of the COS-7 cell from the confocal image

shown in (a) is represented by a connectivity graph. Nodes of different degrees are
labeled with different colours: green (degree 1), light blue (degree 2), red (degree 3),
dark blue (degree >3). Bottom right: a zoomed-in region of of the black boxed part in
the connectivity, demonstrating the complex connectivity revealed by ERnet from
confocal microscopy image. The following analysis of c-f is based on this image data.

Quantitative analysis of the ER structure of the above image data reveals the topology
features of ER tubular network. Top: percentage of the ER tubules (cyan), sheet
(yellow), and sheet-based tubules (magenta) of the time-lapse frames. Middle and
bottom: changes of assortativity and clustering coefficients in time-lapse images. See
Source Data Fig. 5 for ¢ and d.

Quantitative analysis of the connectivity of the ER tubular network in the above cell.
Top: quantification of the nodes of different degrees, showing a dominance of third-
degree nodes (three-way junctions). Middle: number of components (ER fragments) in
time-lapse images. Bottom: changes of the node/edge ratio over time.
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Extended Data Fig. 1: A test Weka trainable segmentation with different input data.

Training sample Output image

Output image

Top left: An input image was used to train a classifier of Weka Trainable Segmentation. Top
right: The tubules (red) and sheet (green) can be clearly classified after segmentation. Bottom
left: a new image was applied to the trained classifier shown above. Bottom right: segmentation
result of the new input data. Scale bars 5 pm.
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Extended Data Fig. 2: ERnet graphical user interface.
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Left part of the interface shows the path of input and output images. Bottom left: options of the
analysis provided by ERnet. Right part of the interface shows the input images (magenta) and
segmented results.
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Extended Data Fig. 3: High spatial resolution and signal-to-noise-ratio in SIM image
compared with widefield image.

Widefield

Segmentation Segmentation

Connectivity graph Connectivity graph

Top panel: widefield and SIM images of an ER (red) in a COS-7 cell expressing mEmerald-
sec61b-C1. Middle panel: segmentation performed by ERnet of the above images. Bottom
panel: connectivity graph plotted based on the topology data quantified from the above
segmentation. Scale bar: 5 um
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Extended Data Fig. 4: Coupled motion of lysosome and sheet-based tubule indicating
inter-organelle contacts between them.

0

Time-lapse SIM images show a lysosome leading a tubule while sliding on a sheet, indicating
the motion of this sheet-based tubule is induced by the motile lysosome. The sliding sheet-
based tubules are highlighted by yellow dashed line. Scale bar: 2 pm.

Extended Data Fig. 5: Western blot validation of Protrudin depletion
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Extended Data Fig. 6: Analysis by ERnet revealing the phenotype consistency in the cell
population.
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Data from the same cell are plotted in the same colour. Time-lapsed SIM images (30 frames,
1.5s/frame for all the data points) of ER structure in each single cell were segmented and
analysed by ERnet. The light orange and blue backgrounds suggest the grouped distribution of
the data points from the same condition. See Source Data Extended Data Fig. 6.



