

1 **ERnet: a tool for the semantic segmentation and quantitative analysis of endoplasmic
2 reticulum topology for video-rate super-resolution imaging**

3

4 Meng Lu^{1,2}, Charles N. Christensen^{2,3}, Jana M. Weber², Tasuku Konno⁴, Nino F. Läubli²,
5 Katharina M. Scherer², Edward Avezov⁴, Pietro Lio³, Alexei A. Lapkin², Gabriele S. Kaminski
6 Schierle^{1,2}, Clemens F. Kaminski^{1,2,4*}

7

8 ¹Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of
9 Cambridge, Cambridge CB3 0AS, UK.

10 ²Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.

11 ³University of Cambridge, Department of Computer Science and Technology, Artificial Intelligence Group, JJ
12 Thomson Ave, Cambridge, UK

13 ⁴UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences,
14 University of Cambridge, Cambridge CB2 0AH, United Kingdom.

15 *Corresponding author. Email: cfl23@cam.ac.uk

16

17

18 **Abstract**

19 The topology of endoplasmic reticulum (ER) network is highly regulated by various cellular
20 and environmental stimuli and affects major functions such as protein quality control and the
21 cell's response to metabolic changes. The ability to quantify the dynamical changes of the ER
22 structures in response to cellular perturbations is crucial for the development of novel
23 therapeutic approaches against ER associated diseases, such as hereditary spastic paraplegias
24 and Niemann Pick Disease type C. However, the rapid movement and small spatial dimension
25 of ER networks make this task challenging. Here, we combine video-rate super-resolution
26 imaging with a state-of-the-art semantic segmentation method capable of automatically
27 classifying sheet and tubular ER domains inside individual cells. Data are skeletonised and
28 represented by connectivity graphs to enable the precise and efficient quantification and
29 comparison of the network connectivity from different complex ER phenotypes. The method,
30 called ERnet, is powered by a Vision Transformer architecture, and integrates multi-head self-
31 attention and channel attention into the model for adaptive weighting of frames in the time
32 domain. We validated the performance of ERnet by measuring different ER morphology
33 changes in response to genetic or metabolic manipulations. Finally, as a means to test the
34 applicability and versatility of ERnet, we showed that ERnet can be applied to images from
35 different cell types and also taken from different imaging setups. Our method can be deployed
36 in an automatic, high-throughput, and unbiased fashion to identify subtle changes in cellular
37 phenotypes that can be used as potential diagnostics for propensity to ER mediated disease, for
38 disease progression, and for response to therapy.

39 **Introduction**

40
41 The endoplasmic reticulum (ER) is the largest membranous structure in eukaryotic cells and
42 acts as a platform for protein synthesis and quality control and for various organelle-
43 interactions (Schwartz and Blower 2016). The healthy function of the ER depends on its
44 dynamics and structure (Westrate et al., 2015), which are highly regulated by intra- and
45 extracellular stimuli. The ER consists of distinct domains including sheets and tubules, and
46 features growth tips and tubular connections, so called three-way junctions. Perturbations to
47 the ER structure and dynamics caused by genetic defects or metabolic stress have been
48 associated with a variety of diseases (Schöenthal 2012), such as spastic paraplegias (HSPs) and
49 Niemann Pick Disease type C (NPC). Hence, to understand the role of ER in diseases, it is
50 important and necessary to characterise ER morphology comprehensively, which may provide
51 powerful phenotypes to screen drugs against ER associated disorders. However, given the
52 extent of the ER network and its complexity, the precise and quantitative measurement of ER
53 topology and movement has remained challenging. The ER network in a single cell consists of
54 thousands of interconnected tubules that undergo constant rearrangements *via* processes
55 including continuous tubular elongation, contraction, and fusion. Furthermore, there are rapid
56 transitions between sheet and tubular domains with distinct putative functions (Lu et al., 2020).
57 Recently, capabilities have emerged to reveal such dynamic changes in ER topology in live
58 cells, at sub-wavelength resolution. Structured illumination microscopy (SIM), for example,
59 can be used to resolve details of ER topology and its rapid remodelling process (Nixon-Abell
60 et al, 2016; Guo et al., 2018). However, the data have only been interpreted qualitatively,
61 without attempts to quantify ER topology or its structural changes precisely. So far, no suitable
62 metrics exist, nor analysis tools, that can be used for such a purpose. Compared to other
63 organelles, such as mitochondria and lysosomes, which are structurally simpler organelles that
64 are often well separated from one another, the ER consists of highly convoluted and structurally
65 connected domains. The task is further complicated by the fact that the signal to noise ratio of
66 images obtained during live cell microscopy is often poor, while a clear differentiation of the
67 organelle from its background is required to ensure successful segmentation into tubular and
68 sheet domains. For moving structures, and time lapse imaging, this becomes a formidable task.
69

70 A number of machine-learning based methods have been developed for the segmentation of
71 cells (Stringer et al., 2021), mitochondria (Fischer et al., 2020; Lefebvre et al., 2021), and
72 nuclei (Hollandi et al., 2020), which provide robust and precise classification of cell structures.

73 However, to date, thresholding remains the standard method of use for ER segmentation
74 (English and Voeltz 2013; Pain et al., 2019; Garcia-Pardo et al., 2021), a method which lacks
75 both sensitivity and specificity and thus quantitative conclusions are hard to draw, especially
76 in situations where image quality is compromised by noise. Alternative methods are based on
77 labour intensive manual labelling of image data to generate specialised datasets for training of
78 machine learning algorithms. These approaches do not generalise well to work with changing
79 experimental setups or varying sample types (Extended Data Fig. 1) (Arganda-Carreras et al.,
80 2017). An additional challenge for ER segmentation can be seen in temporal consistency.
81 Conventional segmentation is performed on a frame-by-frame basis, and segmented structures
82 in sequential (time-lapse) images lose temporal continuity and thereby cause artefacts
83 (Belthangady and Royer 2019). Currently, there is no ER segmentation method capable of
84 taking dynamic, spatial and temporal topology changes into consideration. Hence, more
85 efficient and accurate classification schemes need to be developed for sequential imaging data,
86 to be able to study ER structural changes as they occur in live cells.

87
88 To address these difficulties, we developed ERnet, a deep learning-based software that
89 automatically segments ER, classifies its domains into tubules and sheets, and quantifies
90 structural and dynamic features in super-resolution image sequences obtained from live cells.
91 We provided ERnet with an intuitive user interface to make it a broadly accessible tool for
92 biologists (Extended Data Fig. 2) and to promote ER-related research in basic science and
93 clinical applications. While conventional segmentation methods based on thresholding classify
94 objects according to image intensity, ERnet is trained with large image datasets to model the
95 domain knowledge of ER structures, *i.e.*, the shapes of tubules and sheets. As a result, it enables
96 feature specific segmentation with enhanced robustness, specificity, and sensitivity regardless
97 of the pixel intensity in the images. After segmentation, ERnet quantifies topological features
98 of the ER and recognises subtle changes in the ER structure and dynamics for various stress
99 conditions, including gene knockout /knockdown, ATP depletion and Calcium depletion etc.
100 To validate the method, we tested the segmentation accuracy of ERnet on *in vitro* models
101 subjected to different genetic and metabolic manipulations, including cells mimicking
102 phenotypes of HSP and NPC. Two phenotypes were identified as sensitive readouts of the ER
103 response in these models, namely the degree of fragmentation of ER networks and the
104 heterogeneity in tubule connections. Both are indicators for the functional state of the ER
105 network, and can be used, *e.g.*, to quantify the degree of disorganisation, shrinkage, and

106 collapse of ER structures in models of disease. In summary, ERnet enables automated
107 segmentation of ER structures and parametric analysis of ER topology in models used for
108 genetic or therapeutic screening.

109

110

111 **Results**

112 **The ERnet model architecture is optimised to segment and capture network information 113 obtained from video-rate super-resolution imaging data.**

114

115 The general design of ERnet is schematised in Fig. 1a. First, the reconstructed sequential
116 images of the ER were segmented in ERnet, followed by the classification of ER structures
117 into tubules and sheets. The tubular structure was further skeletonised using a surface axis
118 thinning algorithm (Lee et al., 1994). After this, the nodes and edges of the skeletonised ER
119 were identified to plot a topology graph *via* a graph theory-based module (Peixoto, 2014).
120 Instead of relying on the commonly applied convolution neural networks (CNN), our model
121 builds upon a Vision Transformer architecture (Dosovitskiy et al., 2020) which outperforms a
122 comparable state-of-the-art CNN with higher classification accuracy and four times fewer
123 computational resources. Key to our method is that, rather than paying attention to the physical
124 locations of the nodes, it focuses on the ER's network features, *e.g.* the connectivity between
125 nodes. For instance, metrics such as number of fragments and clustering coefficients can be
126 extracted to determine the ER topology.

127

128 The core component in our workflow is a Vision Transformer based model ERnet that performs
129 the segmentation of the super-resolution images recorded at video rates (Fig. 1b). ERnet is
130 designed to have a temporal window of five adjacent frames as input which permits the model
131 to process sequentially correlated ER structures. By introducing a set of sequential frames with
132 temporally overlapping structures, moving objects demonstrate a higher correlation than
133 random background noise which improves the recognition of ER structures and allows the
134 model to obtain more comprehensive domain knowledge that is critical to assess the structural
135 integrity of the ER network correctly. To reduce the computational cost associated with the
136 large data volumes generated by time sequenced imaging data, ERnet makes use of a so called
137 3D shifted window (Liu et al. 2021) that not only applies self-attention to information within
138 specific individual images themselves but also to features that persist between different frames

139 in the sequence. We also combine the multi-head self-attention (MSA) mechanism (Vaswani
140 et al, 2017) with a channel attention mechanism (Christensen et al., 2022) in the ERnet, a design
141 which makes the method more adaptive to different ER phenotypes.

142

143 **ERnet performs precise segmentation and topological analysis of the ER structures in**
144 **sequential SIM images.**

145

146 The ER is a highly dynamic structure and at any instance thousands of tubules move and change
147 position, direction, and network connections. The purpose of ERnet is to obtain quantitative
148 information from the above ER structural changes which are closely linked to disease
149 phenotypes. To quantify these intracellular changes, we first tested performance of ERnet using
150 SIM images of COS-7 cells. Fig. 2a shows a single frame of the ER (grey) from a set of
151 sequential images captured from a COS-7 cell expressing mEmerald-Sec61b (Nixon-Abell et
152 al., 2016). The performed segmentation successfully identified the whole ER structure,
153 differentiated it from the cytosol background and further classified it into tubular (cyan) and
154 sheet domains (yellow) (Fig. 2a). Then, the tubular ER was skeletonised from the whole
155 structure and the nodes (tubule junctions, shown in red) and edges (tubules, green) were
156 identified as two key topological components to map the network connectivity *via* the Python
157 package Graph-tool (Peixoto 2014).

158

159 SIM provide high spatial-temporal resolution of ER structures thus suitable for live cell
160 imaging (Extended Data Fig. 3). A single pixel on the camera frame has a length scale of 42
161 nm in real space, almost a quarter of the average width of an ER tubule (~160 nm, measured
162 as the average width on SIM images taken). This means that misclassification of a few, or even
163 just one, image pixels can mean the difference between identification of a tubule as connected,
164 or as disrupted. This leads to errors in the classification of network features, and *vice versa* to
165 a bias when quantifying the network connectivity. In disease models, this could lead to
166 erroneous phenotypes. The semantic segmentation of individual pixels from SIM images
167 ensures the structural integrity of networks identified and prevents information loss, an
168 improvement of traditional algorithms used in the past. Figs. 2a and b show how the method
169 performs. A clear segmentation of ER structure (Fig. 2b) is achieved in regions containing
170 dense ER tubule networks, as can be seen from the enlarged region indicated by the white box
171 in Fig. 2a. This permits the distinction of tubules and their junctions in confined regions,

172 measuring less than 300 nm across (highlighted by yellow dashed lines) with good structural
173 detail. The segmented ER was then skeletonised (middle panel of Fig. 2a and b) and classified
174 into edges (green tubules, right panel, Figs. 2a and b) and nodes (red spots, right panel, Figs.
175 2a and b). Finally, ERnet quantified the number of edges and nodes (top plot, Fig. 2c) and the
176 percentage of areas covered by tubules and sheets (bottom plot, Fig. 2c), respectively, across
177 the whole ER. Here, ER tubules were defined as linear branched structures and sheets as flat
178 membrane cisternae as shown in Fig. 2a and d. Morphological features, such as the percentage
179 of tubules/sheets among the whole ER, reflect ER status (Lu et al., 2020) and provide
180 indications for possible ER defects. ER stress induced by an absence of the GTPase Rab7,
181 which is known to modulate lysosome-ER contact sites, leads to the enlargement of ER sheets
182 and the reduction of tubular domains in the cell periphery (Mateus et al., 2018). On the other
183 hand, a depletion of protrudin, an ER reshaping protein, induces HSP associated ER
184 dysfunctions by disrupting the sheet-to-tubule balance (Chang et al, 2013). Therefore, and as
185 investigated in more detail in the subsequent sections, it is expected that the topological
186 features of the ER, such as its connectivity, assortativity, or clustering coefficients, change for
187 different phenotypes and with disease progression. It is worth highlighting that, although the
188 ER tubular network underwent stark morphology changes (Movie 1) and demonstrated
189 fluctuations in the numbers of nodes and edges (top panel, Fig. 2c) within individual recordings,
190 its tubule and sheet percentage among the whole ER remained stable (bottom panel, Fig. 2c),
191 which suggests that the overall connections do not change in the absence of a stimuli.

192
193 In the canonical model of ER structures, ER tubules radiate from sheets towards the cell
194 periphery (Westrate et al., 2015), and the two structures are thought not to overlap. However,
195 we observed that tubular structures also reside on the ER sheets themselves (Fig. 2d and Movie
196 2), which was distinguished by ERnet as seen in Fig. 2d and Movie 3. Like freestanding tubules,
197 they undergo rapid elongation and contractions, which can either lead to new tubular
198 connections (blue arrows), or separations (grey arrows). A subsequent 3D reconstruction of
199 SIM image sections further validated that such tubules are directly attached to the sheets, and
200 are not the result of a projection view artefact (Fig. 2e and Movie 4). Analysis of over 500 cells
201 showed that this phenomenon is a common feature of the ER network (Fig. 2f). Furthermore,
202 we saw that sheet-based tubules form potential contact points for lysosomes. In Extended Data
203 Fig. 4, it is shown that lysosomes play a role to actively guide a tubular structure on sheet

204 domain similar to what has been observed to standard ER-lysosome contact points reported by
205 us recently (Lu et a., 2020).

206

207 **ERnet analysis reveals the complex connectivity of the ER tubular network.**

208

209 ERnet can be used to quantify the connectivity of edges and nodes before plotting a
210 corresponding connectivity graph (Fig. 3a). The connectivity graph highlights that the network
211 of the ER largely constitutes of three-way junctions (red nodes, Fig. 3a) while the ER edges
212 are capped with growth ends (green nodes, Fig. 3a).

213

214 To assess the integrity of the ER, we defined each disconnected ER region as a fragment. As
215 the ER is constantly reshaping, the total number of fragments fluctuates during each recording
216 (Fig. 3b). However, despite these ongoing structural modifications, ERnet reveals that in a
217 typical healthy cell, a single large fragment comprises the majority of all edges and nodes at
218 all times (over 92% of all the 3000 nodes and 95% of all the 2500 edges in the shown example).

219 As quantitative parameters, we defined node and edge ratios (the number of nodes or edges in
220 the largest fragment divided by the total number of nodes or edges, respectively), see Fig. 3c.

221 Per definition, these values range from close to 0 (fully fragmented ER) to 1 (fully connected).

222 Additionally, ERnet quantified the degrees of the ER nodes, *i.e.*, how many edges (tubules)
223 connect to each node (junction). As shown in Fig. 3d, three-way junctions are the most
224 abundant and represent 78% of all junction types in this example. Despite the prevailing model
225 of ER morphology, where three-way junctions interconnect to form the whole ER tubular
226 network, ERnet also identified nodes connected with more than three edges (tubules), *i.e.*,
227 multi-way junctions. The presence of multi-way junctions indicates the heterogeneous
228 connectivity of ER tubules that are organised in a higher order of complexity than previously
229 assumed.

230

231 Next, the assortativity and clustering coefficients (Fig. 3e and f), that describe connectivity
232 patterns of nodes, were calculated based on the above metrics. The assortativity coefficient
233 measures the tendency of nodes to connect with others of the same degree (Newman 2002)
234 while the clustering coefficient reflects the tendency of nodes to cluster together. Assortativity
235 coefficients range from -1 (fully heterogeneous connectivity, *i.e.* nodes only connect with those
236 of different degrees) to +1 (fully homogeneous connectivity, *i.e.* nodes only connect with those

237 of same degree). Clustering coefficients describe another aspect of a node's connectivity: they
238 measure if the neighbouring nodes of a given node tend to connect to each other, i.e. to cluster.
239 Similarly, for clustering coefficients, 1 describes a perfectly clustered network while 0 refers to
240 no clustering. Fig. 3e shows the ER as a weak assortative network, which suggests a slight
241 tendency of nodes to connect with nodes of the same degree. Additionally, the low clustering
242 coefficients (Fig. 3f) demonstrate a lack of aggregation of nodes and edges in the whole ER of
243 this cell.

244

245 To further investigate the structural dynamics of the ER, we tracked the lifetime of multi-way
246 junctions and their transitions from multi-way to three-way junctions. Fig. 3g and h show the
247 rapid transitions between three-way (yellow arrows) and multi-way junctions (blue arrows)
248 driven by ER tubule reshaping. As shown in these cases, the formation of four or five-way
249 junctions need simultaneous connections of more than three tubules at the same junction, which
250 occurs with a lower chance than the formation of a three-way junction that only requires the
251 connection of three tubules. Additionally, any movement of a tubule away from its multi-way
252 junction can lead to the collapse of this junction and the generation of at least two three-way
253 junctions. Therefore, as shown in Fig. 3i, the average lifetime of a multi-way junction is much
254 shorter, *i.e.*, less than a third (10.1 s *vs* 30.8 s) of that of a three-way junction.

255

256 **Quantitative analysis of ER structures reveals phenotypic characteristics of the ER in 257 stress models.**

258

259 ER morphological defects caused by mutations in genes encoding ER-reshaping proteins or by
260 metabolic perturbations have been linked to a variety of human diseases (Westrate et al., 2015).
261 However, the exact phenotypical ER disruption under these conditions has not yet been
262 sufficiently characterised. Using ERnet, we first analysed the ER morphological defects in
263 stress models mimicking the ER phenotypes in two neurodegenerative diseases, namely
264 Hereditary Spastic Paraplegias (HSPs) and Niemann-Pick disease type C (NPC). The inherited
265 neurological disorder HSPs can be characterised by progressive lower-limb weakness and
266 muscle stiffness, which are caused by mutations in genes encoding ER reshaping proteins such
267 as atlastin (ATL) (Zhao et al., 2001) and protrudin (Mannan et al., 2006). We used ERnet to
268 examine the ER morphology defects in individual cells of different models by measuring two
269 topological features, *i.e.*, the degree of ER tubule fragmentation and the heterogeneity in in

270 these tubular connections. Compared with control cells, an ATL knock-out (KO) leads to a
271 collapse of the ER network integrity. Such ER fragmentation was clearly revealed in ATL KO
272 cells by the increasing number of fragments and a 20-fold reduction of the node ratio (99% in
273 control *vs.* 5.4% in ATL KO) (Fig. 4a and Movie 5 and 6). ERnet also highlighted that the lack
274 of ATL significantly altered the connectivity in ER tubular network, as witnessed by a reduced
275 percentage of three-way junctions among all the nodes (26% *vs.* 78% in control) and by the
276 disorganised connectivity (-0.25 in assortativity). These measurements provided quantitative
277 rather than descriptive evidence of ATL's role in ER tubular network formation, which was
278 previously reported to be crucial for the fusion of ER membranes and, thus, to form continuous
279 networks (Zhao et al., 2001). With these quantitative analyses, we can compare morphological
280 defects caused by different treatments. In another model of HSPs, depletion of protrudin
281 (Extended Data Fig. 5) resulted similarly in ER tubular network fragmentation (305 fragments)
282 (Movie 7) and in disorganised connectivity, however, to a lesser extent. A further metric
283 suitable for the comparison of ER health under different treatments is the size of the ER, which
284 is revealed by the connectivity graph. An ATL KO cell that was more fragmented than a
285 protrudin KD cell suffered from a more severe shrinkage of the ER with a smaller number of
286 nodes and edges (Fig. 4a), indicating that ER membranes may be degraded or recycled in
287 response to stresses. The similar phenotypes observed in both genetic models suggest the
288 connectivity defect in the ER may be a general cause of HSPs.

289

290 Next, we induced cholesterol accumulation in lysosomes by U18666A administration to the
291 cell, which induces a blockage of the cholesterol transfer from lysosomes to the ER in NPC
292 (Ko et al., 2001). The accumulation of cholesterol in lysosomes leads to lysosome deposition
293 in perinuclear regions and, therefore, affects the ER structure and distribution (Lu et al., 2020).
294 However, the exact ER morphological defects have not yet been characterised. ERnet revealed
295 that the ER of U18666A-treated cells features a disassortative network (-0.34) and its low node
296 ratio (3.4%) suggests a highly fragmented structure (Fig. 4a and b, Movie 8), which highlights
297 that lysosomal defects can strongly affect the ER and thus provides us with a useful tool to
298 improve our understanding of organelle dysfunction in NPC.

299

300 Finally, we tested performance of ERnet in cells upon ER collapse under metabolic
301 manipulations that significantly affect the overall homeostasis inside the cell. The sequential
302 SIM images showed that the ER largely loses its dynamic reshaping capabilities upon the

303 administration of store-operated calcium entry (SOCE) inhibitor SKF96365 (Merritt et al.,
304 1990) (Movie 9). In the connectivity graph, the ER was largely fragmented and featured as a
305 disassortative network (Fig. 4a and b). Compared with SKF96365, NaN₃ depletes ATP
306 (McAbee et al., 1987) that supports all the energy consuming processes inside the cell including
307 ER tubule elongation, retraction, and membrane fusion. Therefore, ATP depletion by NaN₃
308 was expected to significantly inhibit the structural dynamics of the ER. ERnet successfully
309 revealed the level of fragmentation of the ER tubular network which resulted from the lack of
310 ATP (Fig. 4a and b, Movie 10); however, such phenotypes were not equivalent to the severe
311 ER defects caused by the depletion of ER reshaping proteins, as the node ratio of ER in ATP
312 depleted cells is nearly 4-fold of that in ATL KO cells (0.19 vs 0.05).

313

314 Overall, these evaluations highlight the advantages of ERnet to provide quantitative
315 assessments while being sensitive enough to detect the subtle ER morphology changes,
316 especially when it comes to network connectivity, that is required for the investigation of ER-
317 related disease phenotypes.

318

319 **Versatility test demonstrates robust performance of ERnet in different cell lines and**
320 **microscopy techniques.**

321

322 While ERnet has been demonstrated to be suitable for the quantification of ER dynamics in
323 different cell models related to ER stress and diseases, the validation of its robustness and
324 versatility is crucial to ensure its successful application for a wide range of research. Fig. 5
325 presents the analysis of images obtained using different microscopy techniques including
326 widefield, confocal, and Airyscan microscopy. Even though ERnet's precision may depend on
327 the spatial resolution of the corresponding images, it performed reasonably well for all imaging
328 techniques with all the tubules and sheets clearly classified and quantified (Source Data Fig.
329 5). Furthermore, we also performed validation tests for varying cell types commonly used in
330 cell biology research, such as HEK, CHO, SH-SY5Y cells, and primary cultures of
331 hippocampal neurons and glial cells derived from embryonic rats. Although the specific ER
332 phenotypes varied among the cell types, ERnet was able to robustly identify the corresponding
333 tubular and sheet domains and performed subsequent quantitative analyses based on the
334 segmentation (Source Data Fig. 5). The presented reliable segmentations performed on various
335 cell lines and imaging setups further highlight ERnet's robustness and its precision for the

336 structural analysis of ER networks while providing key metrics suitable to quantify the subtle
337 changes in ER fragmentation and the heterogeneity in tubule connections, crucial for the
338 evaluation of cell healthiness and disease progression.

339

340 **Discussion**

341

342 Quantitative cell biology that measures the cellular organelle properties such as shape, position,
343 and mobility provides the basis of analysing the structure and function of organelles in both
344 fundamental and therapeutic research. Here, we introduce ERnet, a versatile tool that performs
345 robust and precise segmentations and permits the quantitative analysis of ER structures in a
346 variety of conditions, including different cell models, cell types and images taken with different
347 microscope techniques. ERnet generates multiple metrics informing on the connectivity of the
348 ER network and permits the quantitative comparisons of ER integrity and structural defects
349 among different stress models. ERnet clearly highlights the fragmented structures and reduced
350 connections of ER networks in stress conditions, which becomes particularly evident in models
351 mimicking phenotypes of HSPs and NPC. While it is difficult and tedious to manually identify
352 and quantify whole ER structures or the fragmented ER pieces of the above models, ERnet
353 provides an automatic and rapid analysis of various phenotypes, which may be used to evaluate
354 disease severity in diagnosis or treatment effects during drug screening.

355

356 The high accuracy of ERnet's semantic segmentation is based on the model design. In contrast
357 to state-of-the-art CNN models commonly used in image segmentation, ERnet is constructed
358 in a Vision Transformer architecture that outperforms CNNs with higher accuracy in image
359 classification tasks but with four times fewer computational resources (Dosovitskiy et al., 2020;
360 Paul and Chen 2021). Another advantage of our design is its capability for temporal domain
361 analyses of objects from sequential images. We also integrated two attention mechanisms:
362 multi-head self-attention and channel attention into the Transformer architecture. These
363 mechanisms greatly enhance the learning ability of ERnet in classifying ER structures in the
364 spatio-temporal domain. While machine learning methods have previously been implemented
365 to reconstruct ER structures based on electro-microscopy images (Liu et al., 2019) and to
366 identify ER stress marker-whorls (Guo et al., 2022), ERnet can be applied for video-rate image
367 segmentation and the analysis of live cells, thus, further extending the deep learning toolbox
368 for biomedical research.

369 By applying ERnet, we characterised the structural features of the dynamic ER network. First,
370 we found that the dominance of three-way junctions is a necessity to produce a continuous ER
371 network which can spread throughout the cell and, in addition to the prevalence of three-way
372 junctions, it has been observed that a healthy ER contains approximately 20% of multi-way
373 junctions (degree > 3). In contrast, all the stress manipulations of ER morphology, including
374 models of HSPs and NPC, resulted in the fragmentation of ER structures to varying extents
375 (Fig. 4). Although the ER fragmentation may be easily visualised in images, it is difficult to
376 evaluate the severity of fragmentation caused by different treatments and even harder to
377 compare based on descriptive imaging data. ERnet not only demonstrates the degree of
378 fragmentation, but also analysed this morphological defect from different angles with a list of
379 metrics. Therefore, we can have a quantitative and comprehensive understanding of the ER
380 phenotype and a reliable comparison of treatments by plotting the numerical data informing us
381 on the level of ER fragmentation and connectivity in a same framework (Fig. 4b). We showed
382 an example of multi-parameter analysis of ER in single cells in sequential frames,
383 demonstrating the consistency of the phenotype during the recording (Fig. 4b). This
384 consistency is more prominent in the population level, as the data point to different cells under
385 the same condition grouped together and separated from the data from other conditions
386 (Extended Data Fig. 6). This demonstrates that ERnet is suitable to detect and measure
387 phenotypic characteristics of the ER in different cell populations. All these provide a powerful
388 tool to investigate potential therapies for ER associated diseases.

389 Another key advantage of deep learning-based image processing is their ability to drive novel
390 biological observations. Since ERnet is sensitive to structural features, our model was able to
391 identify sheet-based tubules. These ER components share similar structures and dynamics with
392 the tubules that radiate from the sheet domains towards the periphery of the cell, however, their
393 position in the sheet domain greatly extends the coverage of the tubular ER towards the cell
394 centre and even close to the nucleus. Finally, the observed sheet-based tubules' close contact
395 with lysosomes might permit beneficial material exchange and structure regulation as
396 lysosomes are one of the cell's sensing hubs. How the sheet-based tubules are regulated in both
397 physiological and pathological conditions will be an important question for future studies.

398 We believe our work demonstrates an efficient tool for precise structure segmentation and
399 multi-parameter analysis of ER phenotypes. Its user-friendly graphical interface and automatic
400 batch processing can save a significant amount of manual curation in imaging annotation and,

401 therefore, speed up ER associated disease research and therapeutic screenings. In the future,
402 the integration of ERnet with other organelle analysis tools, such as methods for lysosomes
403 and mitochondria characterisations, will open the door to quantitative and comprehensive
404 investigations of multi-organelle interactions and their roles in the development, degeneration,
405 and ageing of cells.

406 **Acknowledgments**

407 We thank Dr Ana Isabel Fernández Villegas and Yuqing Feng for helping with the cell culture.
408 We thank Dr Edward Ward for helping with the image processing. We thank Prof. Junjie Hu
409 (Chinese Academy of Sciences, China) for giving us the ATL KO cell line.

410

411 **Funding**

412 This research was funded by Infinitus (China) Company Ltd (supporting M.L., C.F.K. and
413 G.S.K.S.); a Wellcome Trust Programme Grant (085314/Z/08/Z, to G.S.K.S. and C.F.K.); a
414 Swiss National Science Foundation Career Grant (P2EZP2_199843, to N.F.L.); a research
415 fellowship from the Deutsche Forschungsgemeinschaft (DFG; SCHE 1672/2-1, to K.S.) and
416 pump-prime funding from the Integrated Biological Imaging Network (IBIN; G106925, to
417 K.S.); the UK Dementia Research Institute which receives its funding from UK DRI Ltd,
418 funded by the UK Medical Research Council, Alzheimer's Society and Alzheimer's Research
419 UK (supporting T.K., E.A. and C.F.K.). J.W.'s PhD scholarship was funded by the Department
420 of Chemical Engineering and Biotechnology, University of Cambridge.

421

422 **Author contributions**

423 ML designed, conducted, and interpreted experiments, and wrote the article. ML and C.N.C.
424 developed the whole pipeline of ERnet. C.N.C. developed the core model of ERnet. J.W.
425 provided the graph-theory based analysis of ERnet. T.K. supported the versatility test. NL, KS,
426 E.A., P.L., A.L. and G.S.K.S. gave advice and edited the article. C.F.K. supervised the research,
427 coordinated the study, and wrote the article.

428

429 **Competing interests**

430 The authors declare no conflict of interest.

431

432 **Data availability**

433 All data needed to evaluate the conclusions in the paper are present in the Source Data files.
434 Additional data related to this paper may be requested from the corresponding authors.

435

436 **Code Availability**

437 The ERnet model is written in Python. The software and Colab versions of ERnet are also
438 freely available online through GitHub at <https://github.com/charlesnchr/ERnet-v2>.

439

440 **References**

441 Albert, R. Scale-free networks in cell biology. *J Cell Sci* 118(21): 4947–4957 (2005).

442

443 Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J., Cardona, A., & Sebastian Seung, H.
444 Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. *Bioinformatics*, 33(15),
445 2424–2426 (2017).

446

447 Avezov, E., Konno, T., Zyryanova, A., Chen, W., Laine, R., Crespillo-Casado, A., Melo, E.P., Ushioda, R.,
448 Nagata, K., Kaminski, C.F. and Harding, H.P. Retarded PDI diffusion and a reductive shift in poise of the calcium
449 depleted endoplasmic reticulum. *BMC biology*, 13(1), pp.1-15 (2015).

450

451 Belthangady, C., & Royer, L. A. Applications, promises, and pitfalls of deep learning for fluorescence image
452 reconstruction. *Nature methods*, 16(12), 1215-1225 (2019).

453

454 Boccaletti S., Latora V., Moreno Y., Chavez M., Hwang D.U. Complex networks: structure and dynamics. *Phys
455 Rep.* ; 424(4–5): 175–308 (2006)..

456

457 Chang, J., Lee, S. and Blackstone, C. Protrudin binds atlastins and endoplasmic reticulum-shaping proteins and
458 regulates network formation. *Proceedings of the National Academy of Sciences*, 110(37), pp.14954-14959 (2013).

459

460 Christensen, C.N., Lu, M., Ward, E.N., Lio, P. and Kaminski, C.F. Spatio-temporal Vision Transformer for Super-
461 resolution Microscopy. *arXiv preprint arXiv:2203.00030* (2022).

462

463 Cimini G., Squartini T., Saracco F., Garlaschelli D., Gabrielli A., Caldarelli G. The statistical physics of real-
464 world networks. *Nat Rev Phys.* 1(January): 58–71(2019).

465

466 Costa L. da F., Rodrigues F.A., Travieso G., Villas Boas P.R. Characterization of complex networks: A survey of
467 measurements. *Am J Enol Vitic.* 38(4): 293–297 (1987).

468

469 Culley, S., Albrecht, D., Jacobs, C., Pereira, P.M., Leterrier, C., Mercer, J. and Henriques, R. Quantitative
470 mapping and minimization of super-resolution optical imaging artifacts. *Nature methods*, 15(4), pp.263-266
471 (2018).

472

473 Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
474 M., Heigold, G., Gelly, S. and Uszkoreit, J. An image is worth 16x16 words: Transformers for image recognition
475 at scale. *arXiv preprint arXiv:2010.11929* (2020).

476

477 English, A.R. and Voeltz, G.K. Endoplasmic reticulum structure and interconnections with other organelles. *Cold
478 Spring Harbor perspectives in biology*, 5(4), p.a013227 (2013).

479

480 Fischer, C. A., Besora-Casals, L., Rolland, S. G., Haeussler, S., Singh, K., Duchen, M., ... & Marr, C. (2020).
481 MitoSegNet: easy-to-use deep learning segmentation for analyzing mitochondrial morphology. *Iscience*, 23(10),
482 101601.

483

484 Garcia-Pardo, M.E., Simpson, J.C. and O'Sullivan, N.C. A novel automated image analysis pipeline for
485 quantifying morphological changes to the endoplasmic reticulum in cultured human cells. *BMC
486 bioinformatics*, 22(1), pp.1-17 (2021).

487

488 Guell, C., Zhu, P.P., Leonardis, L., Papić, L., Zidar, J., Schabmüller, M., Strohmaier, H., Weis, J., Strom, T.M.,
489 Baets, J. and Willems, J. Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of
490 hereditary sensory neuropathy type I. *The American Journal of Human Genetics*, 88(1), pp.99-105 (2011).

491

492 Guo, Y., Li, D., Zhang, S., Yang, Y., Liu, J.J., Wang, X., Liu, C., Milkie, D.E., Moore, R.P., Tulu, U.S. and
493 Kiehart, D.P. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on
494 millisecond timescales. *Cell*, 175(5), pp.1430-1442 (2018).

495

496 Guo, Y., Shen, D., Zhou, Y., Yang, Y., Liang, J., Zhou, Y., Li, N., Liu, Y., Yang, G. and Li, W. Deep Learning-
497 Based Morphological Classification of Endoplasmic Reticulum Under Stress. *Frontiers in cell and developmental
498 biology*, p.3975 (2022).

499

500 Hagberg, A., Swart, P. and S Chult, D. *Exploring network structure, dynamics, and function using NetworkX*(No.
501 LA-UR-08-05495; LA-UR-08-5495 (2008).

502

503 Heinrich, L., Bennett, D., Ackerman, D., Park, W., Bogovic, J., Eckstein, N., ... & Weigel, A. Automatic whole
504 cell organelle segmentation in volumetric electron microscopy. *bioRxiv* (2020).

505

506 Hollandi, R., Szkalisity, A., Toth, T., Tasnadi, E., Molnar, C., Mathe, B., ... & Horvath, P. nucleAIzer: a
507 parameter-free deep learning framework for nucleus segmentation using image style transfer. *Cell Systems*, 10(5),
508 453-458 (2020).

509

510 Ko, D.C., Gordon, M.D., Jin, J.Y. and Scott, M.P. Dynamic movements of organelles containing Niemann-Pick
511 C1 protein: NPC1 involvement in late endocytic events. *Molecular biology of the cell*, 12(3), pp.601-614 (2001).

512

513 Lee, T.C., Kashyap, R.L. and Chu, C.N. Building skeleton models via 3-D medial surface axis thinning algorithms.
514 *CVGIP: Graphical Models and Image Processing*, 56(6), pp.462-478 (1994).

515

516 Lefebvre, A.E., Ma, D., Kessenbrock, K., Lawson, D.A. and Digman, M.A. Automated segmentation and tracking
517 of mitochondria in live-cell time-lapse images. *Nature Methods*, 18(9), pp.1091-1102 (2021).

518

519 Liu, J., Li, L., Yang, Y., Hong, B., Chen, X., Xie, Q., & Han, H. Automatic reconstruction of mitochondria and
520 endoplasmic reticulum in electron microscopy volumes by deep learning. *Frontiers in neuroscience*, 14, 599
521 (2020).

522

523 Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J., Cao, Y., Zhang, Z., Dong, L. and Wei, F. Swin
524 Transformer V2: Scaling Up Capacity and Resolution. *arXiv preprint arXiv:2111.09883* (2021).

525

526 Lu, M., van Tartaik, F.W., Lin, J.Q., Nijenhuis, W., Parutto, P., Fantham, M., Christensen, C.N., Avezov, E.,
527 Holt, C.E., Tunnacliffe, A. and Holcman, D. The structure and global distribution of the endoplasmic reticulum
528 network are actively regulated by lysosomes. *Science advances*, 6(51), p.eabc7209 (2020).

529

530 Lu, M., Williamson, N., Mishra, A., Michel, C.H., Kaminski, C.F., Tunnacliffe, A. and Schierle, G.S.K. Structural
531 progression of amyloid- β Arctic mutant aggregation in cells revealed by multiparametric imaging. *Journal of
532 Biological Chemistry*, 294(5), pp.1478-1487 (2019).

533

534 Machado, S., Mercier, V., & Chiaruttini, N. LimeSeg: a coarse-grained lipid membrane simulation for 3D image
535 segmentation. *BMC bioinformatics*, 20(1), 1-12(2019).

536

537 Mannan, A.U., Krawen, P., Sauter, S.M., Boehm, J., Chronowska, A., Paulus, W., Neesen, J. and Engel, W.
538 ZFYVE27 (SPG33), a novel spastin-binding protein, is mutated in hereditary spastic paraplegia. *The American
539 Journal of Human Genetics*, 79(2), pp.351-357 (2006).

540

541 Mateus, D., Marini, E.S., Progida, C. and Bakke, O. Rab7a modulates ER stress and ER morphology. *Biochimica
542 et Biophysica Acta (BBA)-Molecular Cell Research*, 1865(5), pp.781-793 (2018).

543

544 McAbee, D.D. and Weigel, P.H. ATP depletion causes a reversible redistribution and inactivation of a
545 subpopulation of galactosyl receptors in isolated rat hepatocytes. *Journal of Biological Chemistry*, 262(5),
546 pp.1942-1945 (1987).

547

548 Merritt, J.E., Armstrong, W.P., Benham, C.D., Hallam, T.J., Jacob, R., Jaxa-Chamiec, A., Leigh, B.K., McCarthy,
549 S.A., Moores, K.E. and Rink, T.J. SK&F 96365, a novel inhibitor of receptor-mediated calcium
550 entry. *Biochemical Journal*, 271(2), pp.515-522 (1990).

551

552 Michel, C.H., Kumar, S., Pinotsi, D., Tunnacliffe, A., George-Hyslop, P.S., Mandelkow, E., Mandelkow, E.M.,
553 Kaminski, C.F. and Schierle, G.S.K. Extracellular monomeric tau protein is sufficient to initiate the spread of tau
554 protein pathology. *Journal of Biological Chemistry*, 289(2), pp.956-967 (2014).

555

556 Müller, M., Mönkemöller, V., Hennig, S., Hübner, W. and Huser, T. Open-source image reconstruction of super-
557 resolution structured illumination microscopy data in ImageJ. *Nature communications*, 7(1), pp.1-6 (2016).

558

559 Newman, M.E.J. Assortative mixing in networks. *Physical review letters*, 89(20), p.208701 (2002).

560

561 Newman, M.E.J. The structure and function of complex networks. *SIAM Rev.* 45(2): 167–256 (2003).

562

563 Nixon-Abell, J., Obara, C. J., Weigel, A. V., Li, D., Legant, W. R., Xu, C. S., ... & Lippincott-Schwartz, J.
564 Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral
565 ER. *Science*, 354(6311) (2016).

566
567 Pain, C., Kriegbaumer, V., Kittelmann, M., Hawes, C. and Fricker, M. Quantitative analysis of plant ER
568 architecture and dynamics. *Nature communications*, 10(1), pp.1-15 (2019).

569
570 Paul, S. and Chen, P.Y. Vision transformers are robust learners. *arXiv preprint arXiv:2105.07581* (2021).

571
572 Peixoto, P. T. The graph-tool python library. *figshare*. Software (2014).

573
574 Phillips, M.J. and Voeltz, G.K. Structure and function of ER membrane contact sites with other organelles. *Nature reviews Molecular cell biology*, 17(2), pp.69-82 (2016).

575
576 Ronneberger, O., Fischer, P. and Brox, T. October. U-net: Convolutional networks for biomedical image
577 segmentation. In *International Conference on Medical image computing and computer-assisted intervention* (pp.
578 234-241). Springer, Cham (2015).

579
580 Schönthal, A. H. Endoplasmic reticulum stress: its role in disease and novel prospects for
581 therapy. *Scientifica* (2012).

582
583 Schwarz, D. S., & Blower, M. D. The endoplasmic reticulum: structure, function and response to cellular
584 signaling. *Cellular and Molecular Life Sciences*, 73(1), 79-94 (2016).

585
586 Stringer, C., Wang, T., Michaelos, M., & Pachitariu, M. Cellpose: a generalist algorithm for cellular
587 segmentation. *Nature Methods*, 18(1), 100-106 (2021).

588
589 Strogatz, S.H. Exploring complex networks. *nature*, 410(6825), pp.268-276 (2001).

590
591 Westrate, L. M., Lee, J. E., Prinz, W. A., & Voeltz, G. K. Form follows function: the importance of endoplasmic
592 reticulum shape. *Annual review of biochemistry*, 84, 791-811(2015).

593
594 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I.
595 Attention is all you need. *Advances in neural information processing systems*, 30 (2017).

596
597 Zhao, X., Alvarado, D., Rainier, S., Lemons, R., Hedera, P., Weber, C.H., Tukel, T., Apak, M., Heiman-Patterson,
598 T., Ming, L. and Bui, M. Mutations in a newly identified GTPase gene cause autosomal dominant hereditary
599 600 spastic paraplegia. *Nature genetics*, 29(3), pp.326-331 (2001).

601
602

603 **Methods**

604 **Cell culture**

605 COS-7 cells were purchased from the American Type Culture Collection (ATCC). COS-7 cells
606 were grown in T75 or T25 flasks or six-well plates by incubation at 37°C in a 5% CO₂
607 atmosphere. Complete medium for normal cell growth consisted of 90% Dulbecco's modified
608 Eagle's medium (DMEM), 10% fetal bovine serum (FBS) and 1% streptomycin. Cells were
609 kept in logarithmic phase growth and passaged on reaching 70 to 80% confluence
610 (approximately every 3 to 4 days). Medium was changed every 2 or 3 days. For structured
611 illumination microscopy (SIM) imaging experiments, COS-7 cells were plated onto Nunc Lab-
612 Tek II Chambered Coverglass (Thermo Fisher Scientific, 12-565-335) to achieve ~70%
613 confluence before transfection.

614

615 COS-7 cells were transfected with mEmerald-Sec61b-C1 (Addgene #90992, gifted by Jennifer
616 Lippincott-Schwartz, Janelia Research Campus) as indicated with Lipofectamine 2000
617 according to the manufacturer's protocol 24 to 48 hours before imaging. Cells were stained
618 with SiR-Lysosome at 1 μ M for 4 hours before imaging. Cells were imaged in a microscope
619 stage top micro-incubator (OKO Lab) with continuous air supply (37°C and 5% CO₂). Cells
620 were treated with U18666A (662015, Sigma) at 10 μ M for 24 hr to block cholesterol transfer
621 from lysosomes to ER before imaging. Cells were treated with SKF-96365 (S7809, Sigma) at
622 100 μ M for 3 hr to deplete Calcium before imaging. Cells were treated with NaN₃ (0.05% w/v)
623 and 2-deoxy-glucose (20 mM) for 2 hr to deplete ATP before imaging. SH-SY5Y cells were
624 cultured and images as previously described (Michel et al., 2014). HEK cells were cultured
625 and imaged as previous described (Lu et al., 2019). ATL KO model was gifted by Prof. Junjie
626 Hu, Chinese Academy of Sciences, China. CHO-K1 cells were purchased from ATCC and
627 were cultured in Ham's F-12 Nutrient Mixture medium supplemented with 10% FBS, 2 mM
628 L-Glutamine and 100 U/mL Penicillin-Streptomycin (Pen/Strep). Cells were transfected with
629 pFLAG_ER mCherry (Avezov et al., 2015). U2OS cells were purchased from ATCC and were
630 cultured in DMEM supplemented with 10% FBS, 2 mM L-Glutamine and 100 U/mL Pen/Strep.
631 Cells were transfected with pFLAG_ER mCherry (Avezov et al., 2015).

632

633 **siRNA transfection and Western**

634

635 blotProtrudin were depleted using SMARTpool: ON-TARGETplus, Dharmacon. Negative
636 siRNA control (MISSION siRNA Universal negative control) was purchased from Sigma-
637 Aldrich. COS-7 cells were plated in both glass-bottom Petri dishes (for imaging) and six-well
638 plates (for Western blot validation). Cells were transfected with 20 nM siRNA oligonucleotides
639 and 20 nM negative control siRNA using Lipofectamine RNAiMax (Thermo Fisher Scientific)
640 according to the manufacturer's protocol. After 6 hours of siRNA transfection, the cells were
641 washed and the medium was replaced with complete culture medium. Twenty-four hours after
642 the siRNA transfection, cells were transfected with plasmid DNA indicated in Results using
643 Lipofectamine 2000 (Invitrogen). On the day of imaging, cells were stained with Sir-Lysosome.
644 Cells in glass Petri dishes were imaged 24 hours after DNA transfection.

645

646 Cells in six-well plates were harvested for Western blot validation 72 hours after siRNA
647 transfection. Protein concentration was measured using a bicinchoninic acid (BCA) protein
648 assay kit. Immunoblotting was performed by standard SDS-polyacrylamide gel
649 electrophoresis/Western protocols. Primary antibody concentrations were as follows: anti-
650 Protrudin at 1:5000; GAPDH (glyceraldehyde-3-phosphate dehydrogenase) at 1:30,000;
651 tubulin at 1:5000. Secondary antibodies (Sigma-Aldrich) were used at 1:3000 for all rabbit
652 antibodies and for all mouse antibodies. The signal was detected with SuperSignal West Pico
653 Chemiluminescent Substrate.

654 **Widefield and Structured illumination microscopy**

655 SIM imaging was performed using a custom three-color system built around an Olympus IX71
656 microscope stage, which we have previously described (Young et al., 2016). Laser wavelengths
657 of 488 nm (iBEAM-SMART-488, Toptica), 561 nm (OBIS 561, Coherent), and 640 nm (MLD
658 640, Cobolt) were used to excite fluorescence in the samples. The laser beam was expanded to
659 fill the display of a ferroelectric binary Spatial Light Modulator (SLM) (SXGA-3DM, Forth
660 Dimension Displays) to pattern the light with a grating structure. The polarization of the light
661 was controlled with a Pockels cell (M350-80-01, Conoptics). A 60 \times /1.2 numerical aperture
662 (NA) water immersion lens (UPLSAPO 60XW, Olympus) focused the structured illumination

663 pattern onto the sample. This lens also captured the samples' fluorescent emission light before
664 imaging onto an sCMOS camera (C11440, Hamamatsu). The maximum laser intensity at the
665 sample was 20 W/cm². Raw images were acquired with the HCImage software (Hamamatsu)
666 to record image data to disk and a custom LabView program (freely available upon request) to
667 synchronize the acquisition hardware. Multicolour images were registered by characterising
668 channel displacement using a matrix generated with TetraSpeck beads (Life Technologies)
669 imaged in the same experiment as the cells. COS-7 cells expressing mEmerald-Sec61b-C1 (ER
670 marker) and stained with SiR-Lysosome (lysosome marker) were imaged by SIM every 1.5 s
671 (including imaging exposure time of both channels) for 60 frames.

672

673 **Reconstruction of the SIM images with LAG SIM**

674

675 Resolution-enhanced images were reconstructed from the raw SIM data with LAG SIM, a
676 custom plugin for Fiji/ImageJ available in the Fiji Updater. LAG SIM provides an interface to
677 the Java functions provided by fairSIM (Müller et al., 2016). LAG SIM allows users of our
678 custom microscope to quickly iterate through various algorithm input parameters to reproduce
679 SIM images with minimal artifacts; integration with Squirrel (Culley et al., 2018) provides
680 numerical assessment of such reconstruction artifacts. Furthermore, once appropriate
681 reconstruction parameters have been calculated, LAG SIM provides batch reconstruction of
682 data so that a folder of multicolour, multi-frame SIM data can be reconstructed overnight with
683 no user input.

684

685 **AiryScan imaging**

686

687 AiryScan imaging was performed using a LSM 880 confocal microscope (Zeiss). A Zeiss Plan-
688 Apochromat 63×/1.40 DIC M27 Oil objective was used. For visualisation of ER structure, ER
689 mCherry was excited by a diode-pumped solid-state (DPSS) 561 nm laser (1% intensity) and
690 detected using the AiryScan detector. Bit depth was set at 16 bits. Using the Fast-Airyscan
691 mode, live-cell time-lapse images were acquired every 1 second (60 frames) with an image
692 size of 1364 × 1244 pixels. Cells were kept in a controlled environment (37°C, 5% CO₂) during
693 imaging. Following acquisitions, images were deconvoluted using the Airyscan processing.
694 Image processing was performed in software ZEN 2.3 SP1 FP3 (black) (ver.14.0.25.201).

695

696 **Confocal Imaging**

697

698 A part of confocal imaging was performed using a STELLARIS 8 confocal microscope (Leica).
699 A HC PL APO CS2 63x/1.40 OIL objective was used. For visualisation of ER structure, ER
700 mCherry was excited by 587 nm of white light laser (WLL) with 3% intensity and detected
701 using the HyD S3 detector (detection range: 592-750 nm). Bit depth was set at 16 bits. Live-
702 cell time-lapse images were acquired every 1.5 seconds (90 frames) with an image size of 512
703 × 512 pixels. Cells were kept in a controlled environment (37°C, 5% CO₂) during imaging.

704

705 **ERnet construction**

706

707 For the segmentation of the sequential endoplasmic reticulum (ER) images, a spatio-temporal
708 shifted window vision transformer neural network is trained and used. The proposed model is
709 inspired by the previous models Vision Transformer (Dosovitskiy et al. 2020), its more
710 efficient shifted window variant Swin (Liu et al. 2021), with its extension for video
711 classification Video Swin (Liu et al. 2021a), and adaption to image restoration SwinIR (Liang
712 et al. 2021). Swin introduced the inductive bias to self-attention called shifted window multi-

713 head attention (SW-MSA) which can be compared to the inductive bias inherent in
714 convolutional networks. SwinIR introduced residual blocks to the Swin transformer to help
715 preserve high-frequency information for deep feature extraction. The Video Swin transformer
716 extended the SW-MSA to three dimensions, such that spatio-temporal data can be included in
717 the local attention for the self-attention calculation. Further to this, the success of the channel
718 attention mechanism (Zhang et al. 2018) inspired the inclusion of this other inductive bias in
719 addition to 3D local self-attention following the SW-MSA approach.

720 The inputs to the model have the dimension $T \times H \times W \times C$, where T is 5 for ERnet (5
721 adjacent temporal frames) and C is 1 (grayscale inputs). A shallow feature extraction module
722 in the beginning of the network architecture, shown in Fig. 1, projects the input into a feature
723 map, F_0 , of $T \times H \times W \times D$ dimension, where the embedding dimension, D , is a
724 hyperparameter. The feature map is passed through a sequence of residual blocks denoted
725 Window Channel Attention Block (WCAB)

726
$$F_i = H_{\text{WCAB}}(F_{i-1}), \quad i = 11, \dots, n$$

727 Inside each WCAB is a sequence of Swin Transformer Layers (STLs), in which multi-head
728 self-attention is calculated using local attention with shifted window mechanism. Inputs to STL
729 layer is partitioned into $\frac{T}{P} \times \frac{HW}{M^2}$ 3D tokens of $P \times M^2 \times D$ dimension. For a local window
730 feature, $x \in \mathbb{R}^{P \times M^2 \times D}$, query, key and value matrices, $\{Q, K, V\} \in \mathbb{R}^{PM^2 \times D}$, are computed by
731 multiplication with projection matrices following the original formulation of transformers.
732 Attention is then computed as

733
$$\text{Attention}(Q, K, V) = \text{SoftMax}(QK^T / \sqrt{d} + B)V,$$

734 where $B \in \mathbb{R}^{P^2 \times M^2 \times M^2}$ is a relative positional bias found to lead to significant improvements
735 in classification performance. STLs are joined in a way similar to the residual blocks, although
736 the use of SW-MSA is alternated with a version without shifted windows, W-MSA, ensuring
737 that attention is computed across window boundaries, which would not have been the case
738 without SW-MSA.

739 After the final STL, the m -th layer, in a WCAB, a transposed 3-dimensional convolutional
740 layer is used to project the 3D tokens back into a $T \times H \times W \times D$ feature map, $F_{i,m}$. A channel
741 attention module is then used on $F_{i,m}$ to determine the dependencies between channels
742 following the calculation of the channel attention statistic. The mechanism works by using
743 global adaptive average pooling to reduce the feature map to a vector which, after passing
744 through a 2D convolutional layer, becomes weights that are multiplied back onto $F_{i,m}$ such that
745 channels are adaptively weighed. A residual is then obtained by adding a skip connection from
746 the beginning of the i -th WCAB to prevent the loss of information, *i.e.*, low-frequency
747 information, and the vanishing gradient problem. A fusion layer combines the temporal
748 dimension and the channel dimensions. For the final upsampling module, we use the sub-pixel
749 convolutional filter to expand the image dimensions by aggregating the fused feature maps.

750 The model is trained by minimising a multi-class cross-entropy loss function

751
$$L_{CE}(\Theta; D) = \frac{1}{N} \sum_{i=1}^N \left(\frac{1}{WH} \sum_{x=1}^W \sum_{y=1}^H \sum_{k=1}^K -f_{i; x, y}^H(k) \log \left[\frac{\exp(F(\Theta; I_i^L)_{x, y; k})}{\sum_{j=1}^K \exp(F(\Theta; I_i^L)_{x, y; j})} \right] \right),$$

752 where k and j are iterators over a total of K unique classes, and $f_{i;x,y}^H(k)$ is a function equal to
753 1 if the target class for the pixel at (x, y) of the i^{th} image is k and equal to 0 otherwise. In this
754 paper, we study the segmentation of background, tubules, sheets, and sheet-based tubules and,
755 therefore, $K = 4$ in the equation above.

756 The training data is obtained by acquiring experimental data using structured illumination
757 microscopy (SIM). A total of 20 sequential stacks of different samples are acquired, where
758 each stack consists of 60 SIM images reconstructed with ML-SIM. The super-resolved SIM
759 outputs are then segmented by manually finetuning a random forest model in the Weka plugin
760 for ImageJ on an image-by-image basis.

761
762 **Network analysis methods**
763

764 To quantify the structural changes in the ER, methods from network analysis are applied
765 (Boccaletti et al., 2006; Costa et al., 1987). We represent the ER structure of tubules through
766 an undirected and unweighted graph. All tubule junctions are represented by nodes, and the
767 tubules by edges.

768 Networks are built in a python routine and their metrics are measured through the python
769 package *graph-tool* (Peixoto 2014) and *network x* (Hagberg et al., 2008). We measure the size
770 of the network through the number of nodes: N , and edges: E , within the system. The number
771 of edges attached to one node is called the nodes degree: k , and the distribution of the degrees
772 is one of the most fundamental parts of the analysis of network structures.

773
774 To quantify the structural arrangements of the ER, we focus on primary network connectivity
775 metrics. Firstly, we measure the network density, d , between nodes and edges (see Eq. (2)).
776 Other metrics that describe the network connectivity are the global clustering coefficient (see
777 Eq. (2)) and the network assortativity (see Eq.(3)). The global clustering coefficient describes
778 the tendency of the network to build triangles, by relating triplets to each other. Three nodes
779 connected to each other through three edges are a *closed triplet*, while three nodes connected
780 to each other through two edges are called an *open triplet* (Newman 2003). The network
781 assortativity describes the likelihood of nodes connecting with nodes of similar properties; here
782 specifically, as is common, a node degree. Assortative mixing is contrasted to disassortative
783 mixing where nodes tend to connect to others of dissimilar properties (Cimini et al., 2019). The
784 assortativity coefficient, r , is described in Eq.(3), where e_{ij} is the fraction of edges linking a
785 node with type i to nodes of type j , a_i is the sum over e_{ij} for all j and b_i is the sum over e_{ij}
786 for all i . An assortativity coefficient of $r = 0$ indicates no mixing preference, whereas positive
787 values indicate assortative and negative values disassortative tendencies.

788
789

$$d = \frac{2E}{N(N-1)} \quad (1)$$

$$Cl = \frac{\text{number of closed triplets}}{\text{number of all triplets}} \quad (2)$$

$$r = \frac{\sum_i e_{ii} - \sum_i a_i b_i}{1 - \sum_i a_i b_i} \quad (3)$$

790 Additionally, we include macroscopic network arrangements by counting the number of
791 network components. Networks may be entirely connected or composed of many distinct
792 components (Albert 2005). For networks evolving over time, network components outline

793 merging or splitting behaviour. In networks with many components, the most characteristic
794 topological features are often exhibited in the largest component (Strogatz 2001).

795 **Data visualization**

796 Videos of time-lapse imaging and analysis were performed using Fiji (NIH). The connectivity
797 graphs in the figures are re-plotted by a Python module named “connectivity graph.py”.
798 Instructions of using this module is provided inside the file.

799 **Statistical analysis**

800 Statistical significance between two values was determined using a two-tailed, unpaired
801 Student's *t* test (GraphPad Prism). Statistical analysis of three or more values was performed
802 by one-way analysis of variance with Tukey's post hoc test (GraphPad Prism). All data are
803 presented as the mean \pm SEM; **P* < 0.05, ***P* < 0.01, ****P* < 0.001, and *****P* < 0.0001.

804 Statistical parameters including the exact value of *n*, the mean, median, dispersion and
805 precision measures (mean \pm SEM), and statistical significance are reported in the figures and
806 figure legends. Data are judged to be statistically significant when *P* < 0.05 by two-tailed
807 Student's *t* test. In the figures, asterisks denote statistical significance as calculated by
808 Student's *t* test (**P* < 0.05, ***P* < 0.01, ****P* < 0.001, and *****P* < 0.0001).

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

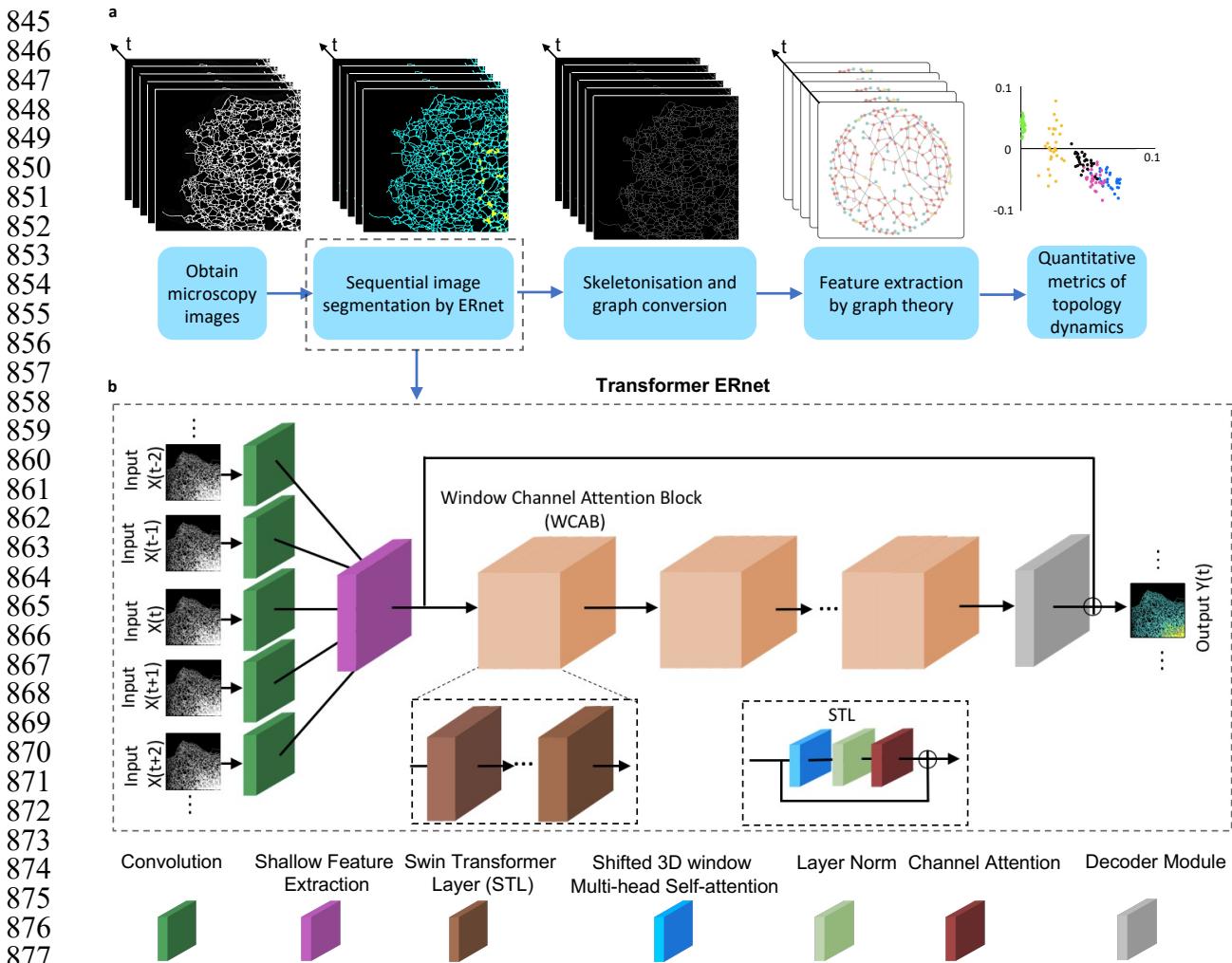
840

841

842

843

844 **Fig. 1: Workflow of ER structure segmentation and ERnet construction.**

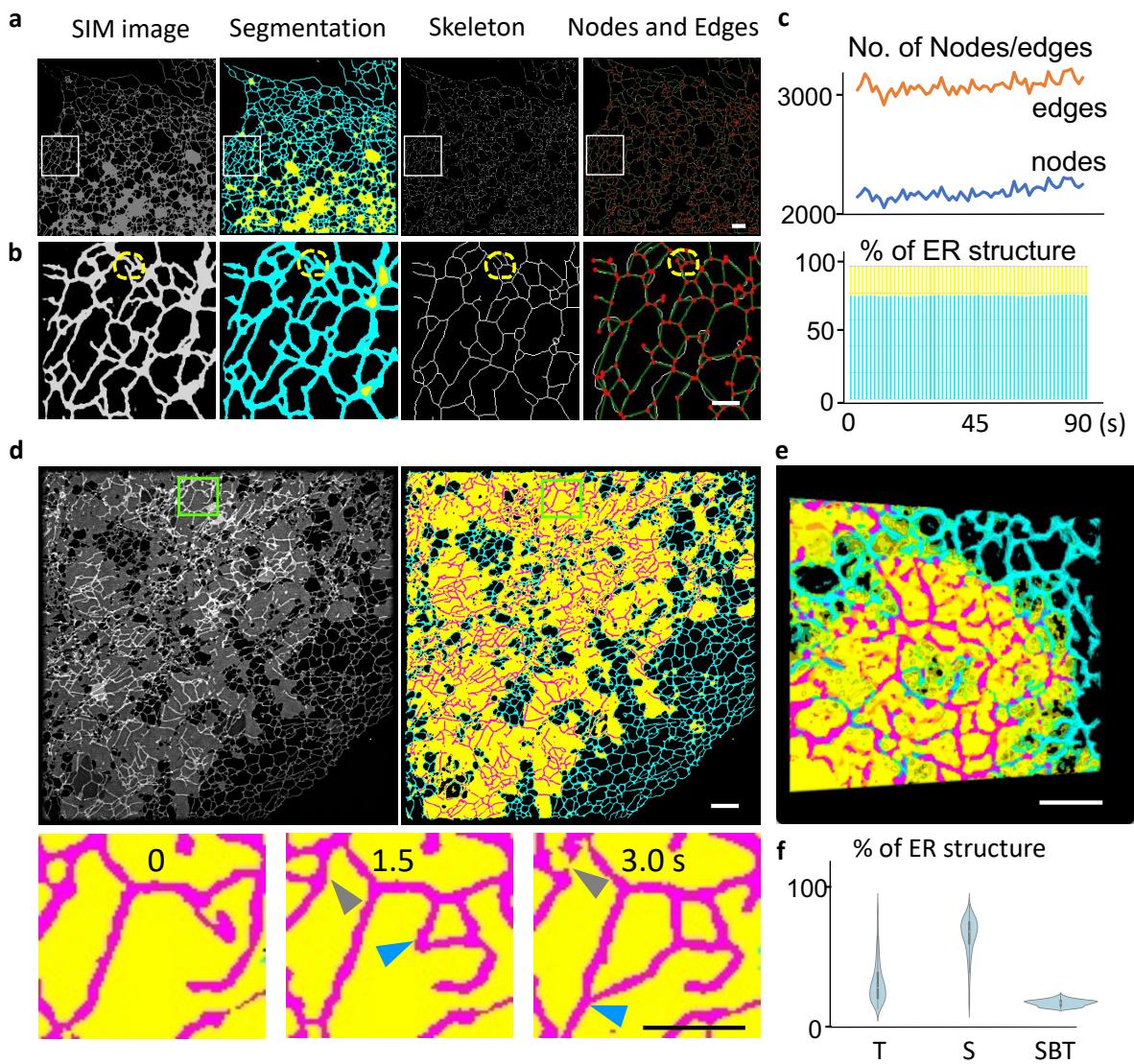


880 a. The processing pipeline of ER segmentation and analysis. Time-lapse SIM images were
881 first segmented by ERnet to classify the tubules and sheets. The tubular network of ER
882 after segmentation was further skeletonised and the nodes and edges were identified to
883 plot the connectivity graph. Using graph theory-based methods, we quantified the
884 metrics of the ER network features that describe the topology and dynamics.

885 b. The Transformer based architecture of ERnet. A moving window loads adjacent frames
886 (X_{t-2} to X_{t+2}) as inputs from the time-lapse images into ERnet. A shallow feature
887 extraction module then projects the input into a feature map which is followed by a
888 sequence of residual blocks denoted with Window Channel Attention Block (WCAB).
889 Inside each WCAB, there is a sequence of Swin Transformer Layers (STLs).

890
891
892
893
894
895
896
897
898

900
901 **Fig. 2: Semantic segmentation of ER and classification of tubules and sheets.**



- a. An example of a segmentation result from video-rate SIM images of the ER. From left to right: 1) SIM image, 2) segmentation of ER tubular (cyan), sheet (yellow) and sheet-based tubule (magenta) region, 3) skeletonisation of the tubular domain, and 4) identification of nodes (red spots) and edges (green lines) based on the skeleton structure. Scale bar: 5 μ m.
- b. Zoomed-in regions of the above panel. The yellow dashed circles indicate nodes that are closely positioned but can still be identified by ERnet. Scale bar: 2 μ m.
- c. Quantitative analysis of the ER shown in (a). Top panel: quantification of edges and nodes of the ER tubules of the time-lapse frames. Bottom panel: percentage of the ER tubules (cyan) and sheet (yellow) of the time-lapse frames. See Source Data Fig. 2c.
- d. A representative frame from time-lapse images shows the structure of sheet-based tubules. Top left panel: a SIM image of the ER structure. Top right panel: segmentation of the three ER structures: sheet-based tubules (magenta), sheet (yellow), tubules (cyan).

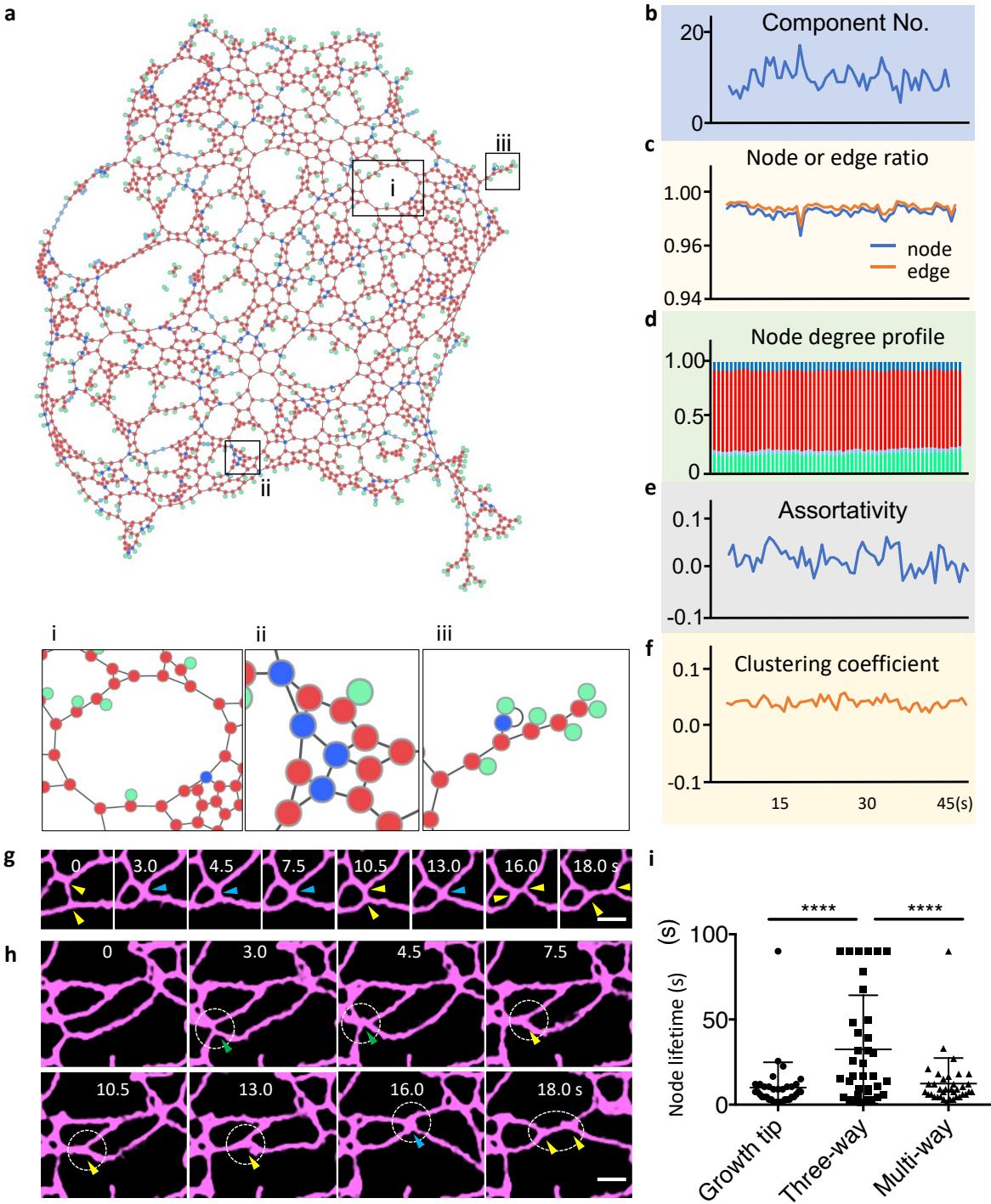
946 Bottom panel: three sequential frames showing the dynamic reshaping of sheet-based
947 tubules from the above green boxed region. Blue arrows indicate a continuously
948 elongating sheet-based tubule and grey arrows indicate a retraction. Scale bars: 5 μ m
949 (top) and 2 μ m (bottom). See Source Data Fig. 2d for quantitative analysis.

950 e. Volumetric view of 3D reconstruction of the sectioning SIM showing that the sheet-
951 based tubules (magenta) are embedded in sheet domains (yellow). Scale bar: 2 μ m
952 (bottom).

953 f. Violin plots of the percentages of tubules (T), sheets (S) and sheet-based tubules (SBT)
954 in COS-7 cells ($N=500$), showing that the presence of the sheet-based tubules is a
955 common feature of the ER network. See Source Data Fig. 2f.

956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998

999 **Fig. 3: Quantitative analysis by ERnet reveals the complex connectivity of ER tubular**
1000 **network.**



1049 a. The topology of an ER tubular network is represented by a connectivity graph. i: a
1050 polygonal structure organized by three-way junctions and tubules, ii: a representative
1051 region of multi-way junctions (dark blue spots), iii: a representative region of ER
1052 tubular growth tips (green spots).

1053 b-f. Quantitative analysis of the cell shown in (a) over a time window of 45 s. See Source
1054 Data Fig. 3b-f.

1055

1056

1057 b. Number of components (ER fragments) in time-lapse images.

1058

1059 c. Changes of the node or edge ratio over time.

1060

1061 d. Quantification of the nodes of different degrees, showing a dominance of third-degree

1062 nodes (three-way junctions). Same colour scheme as in (a).

1063

1064 e-f. Changes of assortativity and clustering coefficients in time-lapse images.

1065

1066 g-h. Examples of transitions between three-way (yellow arrows) and multi-way junctions

1067 (yellow arrows: three-way, blue arrows: four-way, green arrows: five-way) junctions.

1068 Scale bar: 1 μ m.

1069

1070 i. Quantification of the lifetime of junctions (nodes) with different degrees. $****P <$

1071 0.0001, Tukey's one-way ANOVA. $n \geq 20$ events per condition from three independent

1072 experiments. See Source Data Fig. 3i.

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

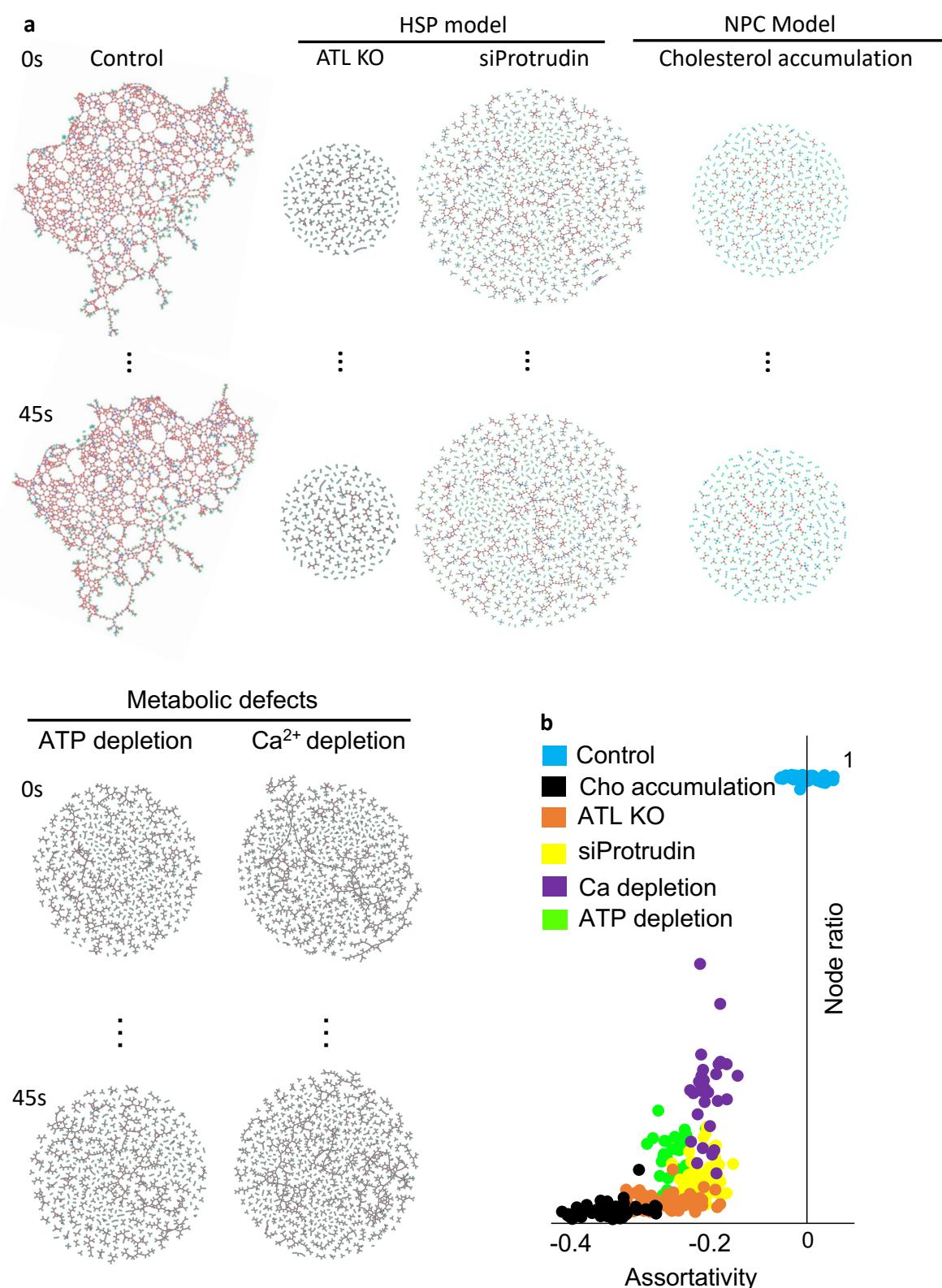
1109

1110

1111

1112

1113 **Fig. 4: Quantitative analysis of ER phenotypic characteristics in disease associated
1114 models.**

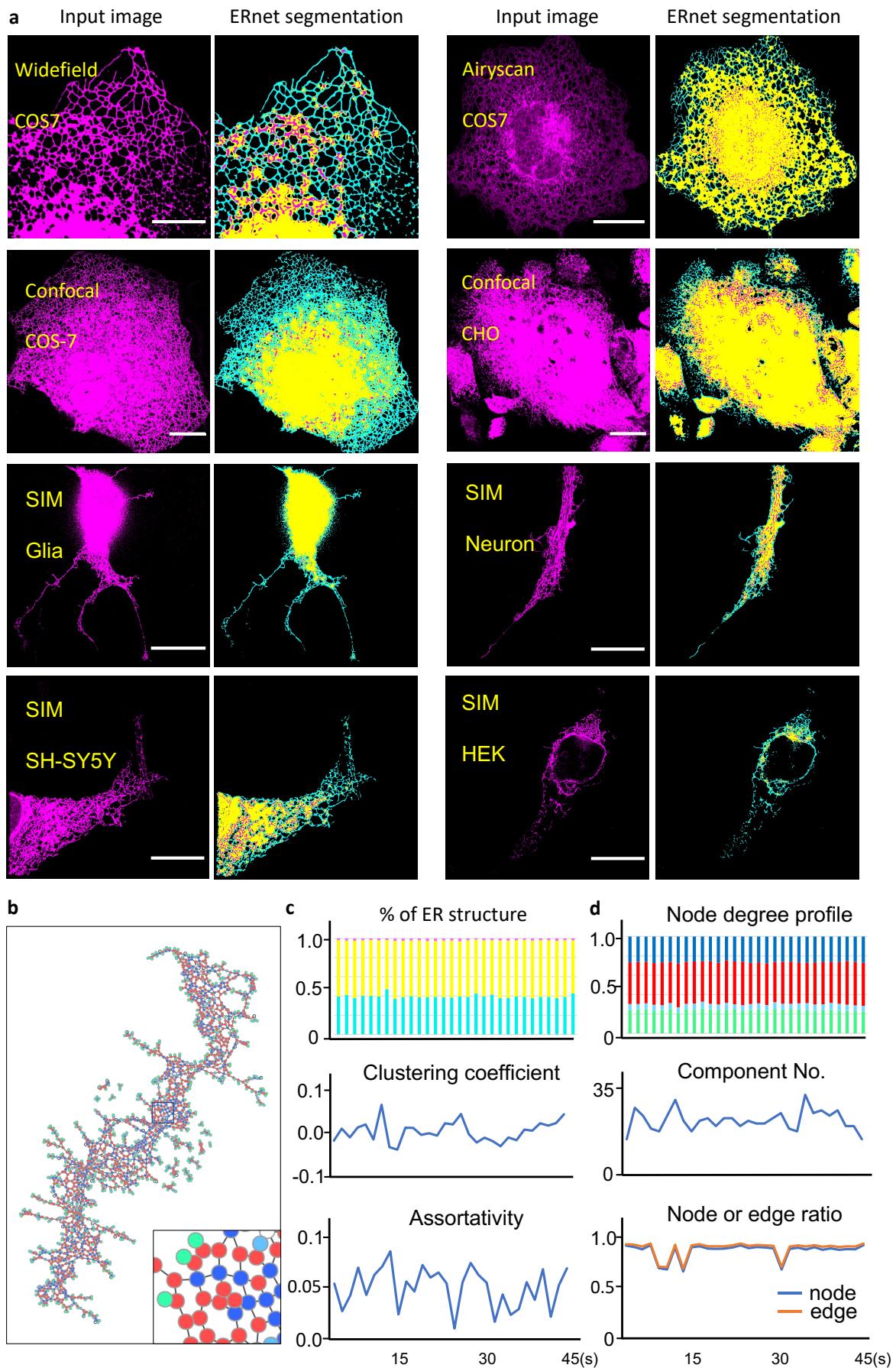


a. Connectivity graphs of ER structures in models mimicking phenotypes of HSPs and NPC and metabolic stress induced by calcium and ATP depletion. Nodes of different degrees are labeled with different colours: green (degree 1), light blue (degree 2), red (degree 3), dark blue (degree >3).

1172 b. Topological features of the ER tubular network in above conditions were quantitatively
1173 analysed by ERnet. The effects on ER structures from different treatments can be
1174 directly visualised and compared by plotting the distribution of node integrating ratio
1175 (y axis) and assortativity coefficient (x axis). The analysis of ER phenotype, such as
1176 that in ATL KO cells, demonstrated a severe fragmentation and altered connectivity in
1177 the numerical data plot. See Source Data Fig. 4b.

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229

1230 **Fig. 5: Robust performance of ERnet in versatility test.**
1231



1290 a. A variety of cell lines with different ER morphologies were imaged by different
1291 microscopy techniques to investigate the robustness and versatility of ERnet. ER
1292 structures of COS-7, HEK, CHO, SH-SY5Y, primary cultures of hippocampal neurons
1293 and glial cells were tested, as well as images acquired by widefield, confocal and
1294 Airyscan microscopy. Scale bars: 20 μ m.
1295

1296 b. The topology of an ER tubular network of the COS-7 cell from the confocal image
1297 shown in (a) is represented by a connectivity graph. Nodes of different degrees are
1298 labeled with different colours: green (degree 1), light blue (degree 2), red (degree 3),
1299 dark blue (degree >3). Bottom right: a zoomed-in region of the black boxed part in
1300 the connectivity, demonstrating the complex connectivity revealed by ERnet from
1301 confocal microscopy image. The following analysis of c-f is based on this image data.
1302

1303 c. Quantitative analysis of the ER structure of the above image data reveals the topology
1304 features of ER tubular network. Top: percentage of the ER tubules (cyan), sheet
1305 (yellow), and sheet-based tubules (magenta) of the time-lapse frames. Middle and
1306 bottom: changes of assortativity and clustering coefficients in time-lapse images. See
1307 Source Data Fig. 5 for c and d.
1308

1309 d. Quantitative analysis of the connectivity of the ER tubular network in the above cell.
1310 Top: quantification of the nodes of different degrees, showing a dominance of third-
1311 degree nodes (three-way junctions). Middle: number of components (ER fragments) in
1312 time-lapse images. Bottom: changes of the node/edge ratio over time.
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344

1345 **Extended Data Fig. 1: A test Weka trainable segmentation with different input data.**

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374 Top left: An input image was used to train a classifier of Weka Trainable Segmentation. Top

1375 right: The tubules (red) and sheet (green) can be clearly classified after segmentation. Bottom

1376 left: a new image was applied to the trained classifier shown above. Bottom right: segmentation

1377 result of the new input data. Scale bars 5 μ m.

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

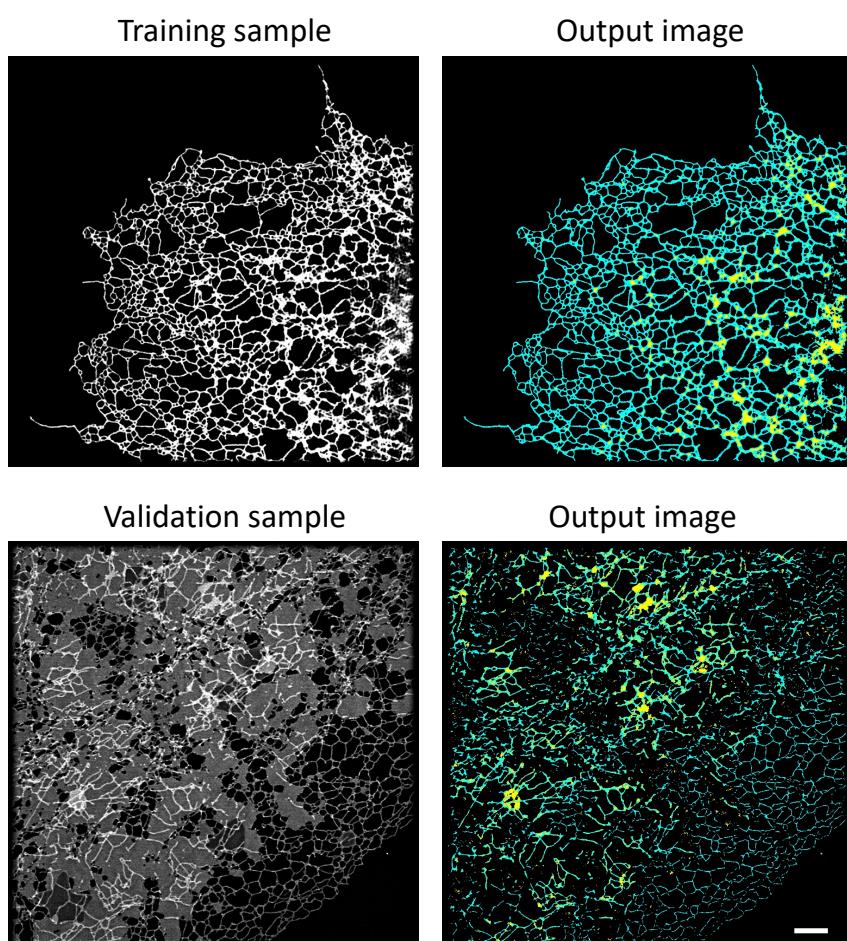
1390

1391

1392

1393

1394



Top left: An input image was used to train a classifier of Weka Trainable Segmentation. Top

right: The tubules (red) and sheet (green) can be clearly classified after segmentation. Bottom

left: a new image was applied to the trained classifier shown above. Bottom right: segmentation

result of the new input data. Scale bars 5 μ m.

1395 **Extended Data Fig. 2: ERnet graphical user interface.**

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422



1423 Left part of the interface shows the path of input and output images. Bottom left: options of the
1424 analysis provided by ERnet. Right part of the interface shows the input images (magenta) and
1425 segmented results.

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

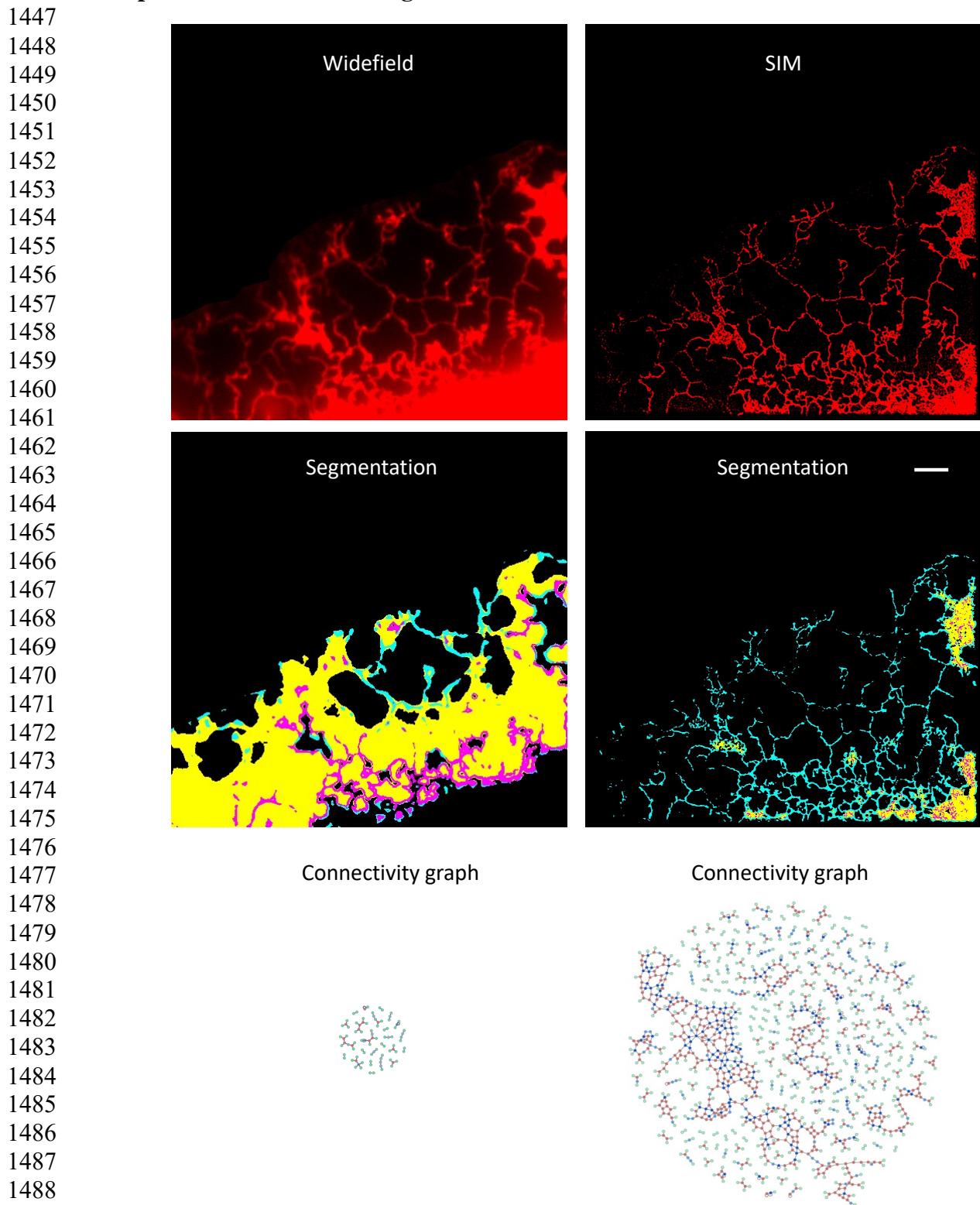
1441

1442

1443

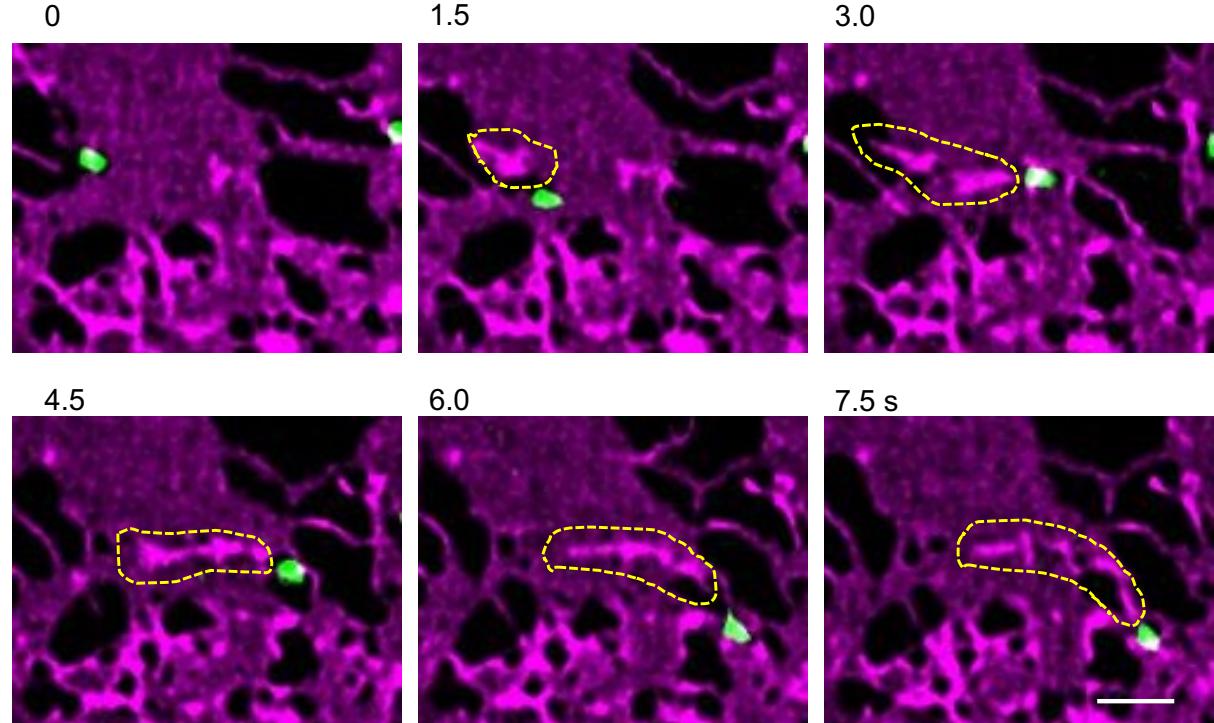
1444

1445 **Extended Data Fig. 3: High spatial resolution and signal-to-noise-ratio in SIM image**
1446 **compared with widefield image.**

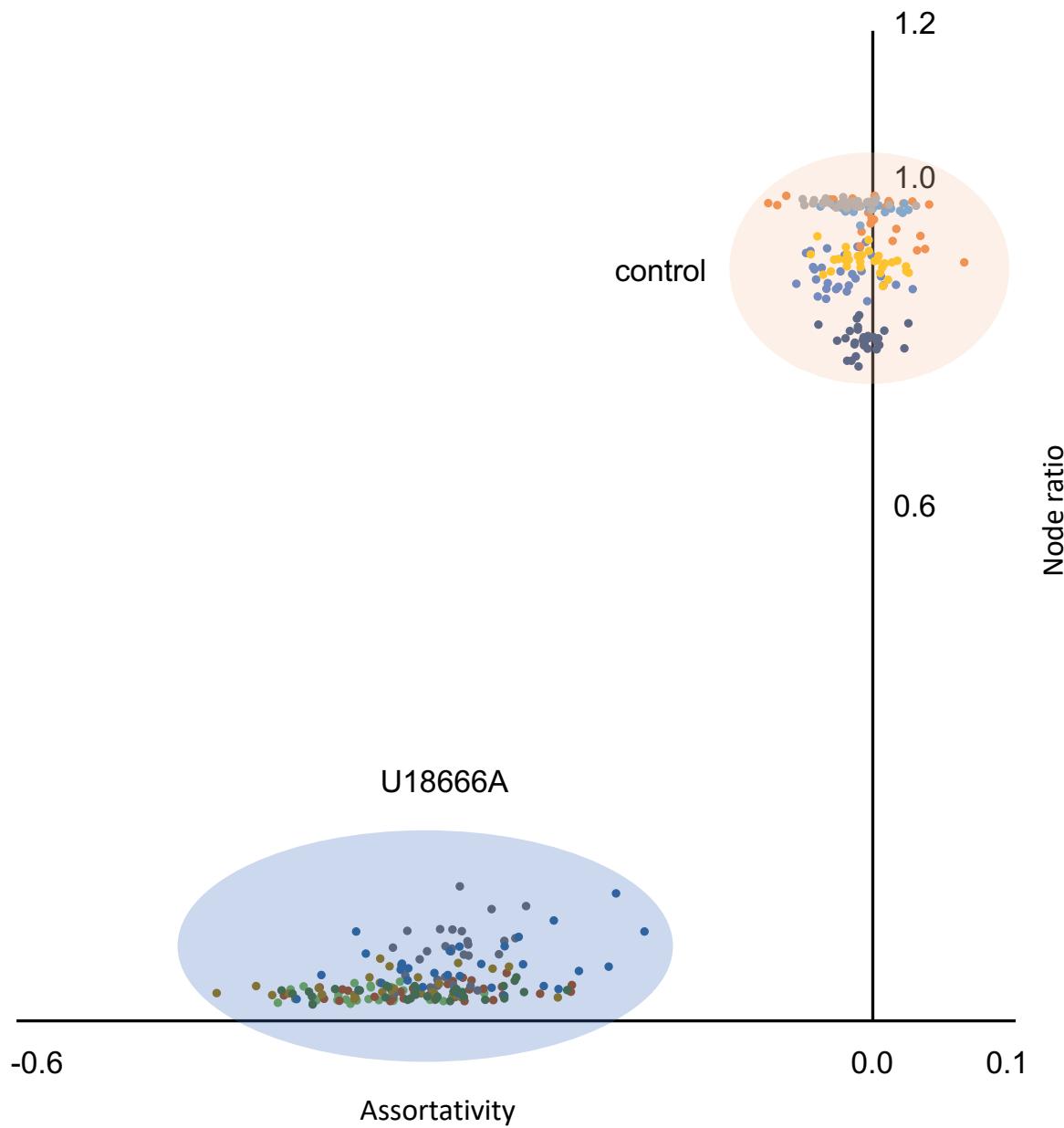


1491 Top panel: widefield and SIM images of an ER (red) in a COS-7 cell expressing mEmerald-
1492 sec61b-C1. Middle panel: segmentation performed by ERnet of the above images. Bottom
1493 panel: connectivity graph plotted based on the topology data quantified from the above
1494 segmentation. Scale bar: 5 μ m

1495 **Extended Data Fig. 4: Coupled motion of lysosome and sheet-based tubule indicating**
1496 **inter-organelle contacts between them.**



1544 **Extended Data Fig. 6: Analysis by ERnet revealing the phenotype consistency in the cell**
1545 **population.**



Data from the same cell are plotted in the same colour. Time-lapsed SIM images (30 frames, 1.5s/frame for all the data points) of ER structure in each single cell were segmented and analysed by ERnet. The light orange and blue backgrounds suggest the grouped distribution of the data points from the same condition. See Source Data Extended Data Fig. 6.