

1 **Zidovudine multi-combos with last-line fosfomycin, ceftazidime-**
2 **avibactam, colistin and tigecycline against Multi-Drug Resistant**
3 ***Klebsiella pneumoniae***

4
5 Marta Gómara-Lomero^{1*}, Ana Isabel López-Calleja², Antonio Rezusta², José Antonio
6 Aínsa^{1,4}, Santiago Ramón-García^{1, 3, 4*}

7 ¹Department of Microbiology. Faculty of Medicine. University of Zaragoza, Spain

8 ²Servicio de Microbiología, Hospital Universitario Miguel Servet, Zaragoza, Spain

9 ³Research & Development Agency of Aragon (ARAID) Foundation, Spain

10 ⁴CIBER Respiratory Diseases, Carlos III Health Institute, Madrid, Spain

11

12

13

14

15

16

17

18

19

20 *Corresponding author. Mailing addresses:

21 Department of Microbiology. Faculty of Medicine. University of Zaragoza. C/ Domingo Miral s/n. 50009.
22 Zaragoza, Spain. Email: mgomara@unizar.es and santiramon@unizar.es

23

24

25 **Keywords:** antimicrobial resistance, MDR *Klebsiella pneumoniae*, synergy, fosfomycin,
26 zidovudine, drug repurposing

27 **Running title:** Synergistic combinations of zidovudine against MDR *K. pneumoniae*

28

29 **Abstract:**

30 Drug repurposing is a novel strategy for the development of new therapies against antibiotic-
31 resistant bacteria. Zidovudine, an antiviral largely used in the HIV-therapy, exerts antibacterial
32 activity against Gram-negative bacteria. Zidovudine was identified in a previous drug
33 repurposing synergy screening as fosfomycin enhancer against *Klebsiella pneumoniae* ATCC
34 13883. Our aim was to evaluate the antibacterial *in vitro* activity of zidovudine-based
35 combinations with last-line antibiotics against MDR/XDR *K. pneumoniae* isolates. We validated
36 the zidovudine/fosfomycin combination against a collection of 12 MDR *K. pneumoniae* isolates
37 by the checkerboard assay (CBA). In addition, we performed time-kill assays (TKA) to analyze
38 synergistic and bactericidal activities of zidovudine paired combinations with fosfomycin,
39 ceftazidime-avibactam, colistin and tigecycline. These were compared with frequent clinical
40 combinations in the treatment of MDR Enterobacteriaceae. The potential of the triple
41 zidovudine/fosfomycin/colistin was also assessed by TKA. CBA synergy confirmation rate
42 between zidovudine/fosfomycin was 83.33%. TKA yielded synergy confirmation rates of 83.3%
43 for zidovudine-ceftazidime-avibactam, 75% for zidovudine/fosfomycin, 75% for
44 zidovudine/colistin and 66.6% for zidovudine/tigecycline with potent killing activities. Frequent
45 clinical combinations displayed synergy rates of 41.6% for meropenem/ertapenem, 33.33% for
46 meropenem/colistin, 75% for fosfomycin/colistin and 66.6% for fosfomycin/tigecycline with lower
47 bactericidal efficacy than zidovudine-based combinations. The triple
48 zidovudine/fosfomycin/colistin combination exhibited activities similar to fosfomycin/colistin and
49 fosfomycin/zidovudine. As conclusion, zidovudine is an effective partner in *in vitro* combinations
50 with existing antibiotics against MDR *K. pneumoniae*, especially with ceftazidime-avibactam,
51 fosfomycin or colistin. Further studies are needed to elucidate the clinical potential of zidovudine
52 as a repurposed drug in the antibacterial therapy.

53

54 INTRODUCTION

55 The global prevalence and dissemination of MDR enterobacteria is facilitated by rapid
56 acquisition of plasmid-mediated resistance mechanisms, including ESBL and carbapenemases
57 that confer resistance to β -lactams, or the emergent *mcr-1* plasmid involved in colistin
58 resistance (1). *Klebsiella pneumoniae* is the most concerning pathogen, leading the
59 carbapenemase producing enterobacteria (CPE) and causing nosocomial infections with high
60 mortality rates (2). The latest ECDC surveillance reported 7.9% carbapenem resistance and
61 19.3% combined resistance to traditional first-line antibiotics against *K. pneumoniae* in the EU
62 (3), highlighting the complications in the therapeutic management of MDR-related infections.

63 Recommended treatments involve individualized combinatorial therapies including
64 carbapenem-saving strategies and combinations of last-line agents such as colistin, tigecycline,
65 aminoglycosides and fosfomycin (4,5). Few new antibiotics have been marketed lately. Novel
66 molecules (e.g. cefiderocol, eravacycline) and β -lactam/ β -lactamase inhibitor combinations (e.g.
67 ceftazidime-avibactam, meropenem-vaborbactam) show good activities against MDR
68 enterobacteria and are currently used in clinical practice (6–8). However, the emergence of
69 resistant strains has been already reported (9–11), which compromise the use of these new
70 agents that should be preserved for severe infections. New therapeutic strategies are thus
71 urgently needed to improve efficacy of MDR-treatments and preserve the antibiotic arsenal.

72 Drug repurposing is an attractive strategy that allows faster clinical implementation, as
73 pharmacokinetic and pharmacodynamic (PKPD) parameters and toxicity packages are already
74 defined in commercialized drugs (12). The search for synergistic interactions has also emerged
75 as a favorable approach to enhance the activity of drugs in combinatorial therapy. Moreover,
76 this strategy has the potential to minimize toxicity and resistance emergence derived from
77 monotherapy (13).

78 Zidovudine (3'-azido-3'-deoxythymidine), a thymidine analogue, was the first commercial
79 antiretroviral agent for HIV/AIDS treatment. The antibacterial activity of zidovudine against
80 Gram-negative bacteria is known since late 1980s (mainly due to the inhibition of bacterial DNA
81 replication by targeting thymidine kinase (14)) demonstrating also *in vivo* efficacy (15,16).
82 Toxicity and the emergence of resistant strains were the main drawbacks limiting the
83 development of zidovudine-based antibacterial therapies. More recently, *in vitro* studies
84 explored the synergistic activity of zidovudine in combination with known antibiotics (16–20).

85 In a previous work, we screened the FDA-library and identified zidovudine as a potent
86 synergistic partner of fosfomycin against *K. pneumoniae* (*unpublished*). Here, we evaluated the
87 synergistic and bactericidal *in vitro* activities of zidovudine in combination with fosfomycin,
88 ceftazidime-avibactam, colistin and tigecycline against antibiotic-resistant *K. pneumoniae*
89 isolates, and compared them with usual combinatorial treatments for MDR enterobacteria.

90

91 **MATERIALS AND METHODS**

92 **Bacterial strains, clinical characterization and growth conditions.**

93 A well-characterized set of 12 MDR/XDR (21) *K. pneumoniae* isolates (eight from clinical
94 samples and four from quality assessment exercises) was provided by the Miguel Servet
95 University Hospital (Zaragoza, Spain), including representative resistance mechanisms (**Table**
96 **S1**). Bacterial identification was performed by MALDI-TOF mass spectrometry (Bruker Daltonik
97 GmbH, Germany) and antimicrobial susceptibility by an automated broth microdilution method
98 (Microscan Walkaway®, Beckman Coulter, Spain). Phenotypic detection of ESBL, AmpC,
99 carbapenemases and colistin resistance was done according to EUCAST guidelines (22).
100 Genotypic characterization of resistance mechanisms was performed in clinical samples at the
101 National Microbiology Centre (Majadahonda, Spain). Bacterial LB stocks (15% glycerol) were
102 preserved at -20°C. Freeze stocks were thawed and sub-cultured on Mueller Hinton broth for 24
103 hours at 37°C before each assay.

104 **Drugs susceptibility testing and media conditions.**

105 Zidovudine, fosfomycin disodium salt, glucose-6-phosphate, colistin sulfate, (Sigma–Aldrich,
106 Darmstadt, Germany), tigecycline, ceftazidime (European Pharmacopoeia, Strasbourg, France),
107 meropenem (Fresenius Kabi), ertapenem (MSD) and avibactam (AdooQ BioScience, Irvine,
108 USA) were reconstituted in DMSO or water according to their solubilities. Stock solutions were
109 prepared fresh on the same day of plate inoculation.

110 Drug susceptibility testing, checkerboard (CBA) and time-kill assays (TKA) were performed in
111 CAMHB. MIC determinations were performed by broth microdilution in CAMHB following CLSI
112 guidelines (23) linked to the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide]
113 assay (24,25). Briefly, two-fold serial dilutions of drugs were inoculated with a bacterial
114 suspension of 5×10^5 CFU/mL in 96-well plates ($V_F = 150 \mu\text{L}$) and incubated at 37°C for 18-20
115 hours. For fosfomycin and ceftazidime-avibactam susceptibility tests, CAMHB was

116 supplemented with 25 mg/L of glucose-6-phosphate and 4 mg/L of avibactam, respectively (26).
117 After incubation, 30 μ L/well of a solution mix (MTT/Tween 80; 5 mg/mL/20%) were added and
118 plates further incubated for 3 hours at 37°C. MIC values were defined as the lowest
119 concentration of drug that inhibited 90% of the OD₅₈₀ MTT colour conversion (IC₉₀) compared to
120 growth control wells with no drug added.

121 MBC was also determined in order to discern bacteriostatic or bactericidal activities. Before
122 MTT addition, 10 μ L/well were transferred to 96-well plates containing LB agar and further
123 incubated at 37°C for 24 hours before addition of 30 μ L/well of resazurin; a change from blue to
124 pink indicated bacterial growth. The MBC was defined as the lowest concentration of drug that
125 prevented this colour change. A compound was considered bactericidal when MBC/MIC \leq 4
126 (24).

127 **Synergy validation assays.**

128 (i) *Checkerboard assays.* Pairwise combinations of zidovudine and fosfomycin were assayed in
129 96-well plates using freshly prepared CAMHB. Each well was inoculated with 100 μ L of a freshly
130 grown bacterial suspension containing 5×10^5 CFU/mL ($V_F = 200 \mu$ L). Plates were incubated for
131 24 hours at 37°C and bacterial growth was measured using the MTT assay (24,25), as
132 described above. Fractional Inhibitory Concentration Indexes (FICI) were calculated as the sum
133 of FIC_{ZDV} plus FIC_{FOF}; where FIC_{ZDV} is the MIC of zidovudine in the presence of fosfomycin
134 divided by the MIC of zidovudine alone and, conversely, for FIC_{FOF}. Synergy was defined as
135 FICI \leq 0.5, antagonism as FICI $>$ 4.0, and no interaction as FICI = 0.5 to 4.0 (27). The Fractional
136 Bactericidal Concentration Index (FBCI) was similarly calculated based on MBC values, as
137 described above.

138 (ii) *Time-kill assays.* Exponentially growing cultures of *K. pneumoniae* clinical strains were
139 inoculated in duplicates in CAMHB 96-well plates ($V_F = 280 \mu$ L/well; 5×10^5 CFU/mL) containing
140 increasing concentrations (0.1x, 0.25x, 1x, 4x, 10xMIC values) of compounds alone, and

141 incubated at 37°C. Drug-free wells were used as growth controls and MIC assays were
142 performed in parallel with the same inoculum to ensure compound activity. Samples were taken
143 at 0, 2, 5, 8, 24 and 48 hours, and bacterial population was quantified by spot-plating 10-fold
144 serial dilutions onto MHA plates. Plates were incubated overnight at 37°C and CFU/mL
145 calculated. The lower limit of detection was 50 CFU/mL. To assess the activity of the
146 combinations, generated dose-response curves of compounds alone were analyzed to select
147 appropriate test combo concentrations (up to 300 mg/L if compound was inactive) and TKA
148 equally performed as described above. Zidovudine combinations were also tested at
149 concentrations of 1 mg/L for the twelve clinical strains, including those showing high-level
150 zidovudine resistance, to assess physiological relevant concentrations, i.e. C_{max} of zidovudine
151 observed in human plasma after intravenously administration (1.1 to 1.8 mg/L) (28).

152 The activity of the four novel zidovudine-based combinations described in this work
153 (fosfomycin/zidovudine, ceftazidime-avibactam/zidovudine, colistin/zidovudine and
154 tigecycline/zidovudine) was compared with that of four usual MDR-treatments
155 (meropenem/ertapenem, meropenem/colistin, fosfomycin/colistin and fosfomycin/tigecycline).
156 The triple fosfomycin/colistin/zidovudine combination was also tested against eight strains and
157 compared with the activity of the three drugs alone and in pairwise combinations at matching
158 concentration (0.25-1xMIC). Synergistic and bactericidal activities were evaluated after 8, 24
159 and 48 hours of incubation. In TKA, synergy was defined when there was a ≥2 log₁₀ CFU/mL
160 decrease in bacterial count compared to the most active single agent in the combination at any
161 time point (8, 24 and 48 hours). Antagonism was defined as a ≥2 log₁₀ increase in CFU/mL
162 between the combination and the most active single agent. All other degrees of interaction were
163 defined as indifferent. Bactericidal activity was defined as a ≥3 log₁₀ CFU/mL reduction at 8, 24
164 and 48 hours compared to the initial inoculum (29).

165

166 **RESULTS**

167 We followed a stepwise approach in order to characterize the potential of zidovudine in the
168 treatment of infections caused by MDR *K. pneumoniae*: first, the activity of test compound was
169 determined by drug susceptibility assays; second, pairwise and triple combinations were tested
170 by CBA and TKA to identify those most promising synergistic combinations. All these
171 experiments were performed against a panel of twelve MDR/XDR *K. pneumoniae* isolates with
172 representative mechanisms of resistance.

173 **Drug susceptibility characterization.**

174 Zidovudine MIC values ranged from 0.25 to ≥ 64 mg/L, with nine strains showing low MIC_{ZDV}
175 values (0.25 to 2 mg/L) and three other strains showing MIC values ≥ 16 mg/L; in consequence,
176 2 mg/L could be a possible cut-off for zidovudine resistance. The number of multidrug-resistant
177 determinants appeared not to be related with the MIC_{ZDV} values. The susceptibility profiles
178 obtained for the drugs tested among the twelve MDR/XDR *K. pneumoniae* isolates according to
179 EUCAST breakpoints (26) are also shown **Table S1**.

180 **Zidovudine/fosfomycin combinations displayed wide coverage synergy against
181 MDR/XDR *K. pneumoniae* isolates.**

182 Synergy between fosfomycin and zidovudine was confirmed in 75% (9/12) and 66.6% (8/12) of
183 the strains by FICI and FBCI, respectively. Interestingly, effective fosfomycin concentrations in
184 the presence of zidovudine were reduced 2-16-fold, restoring fosfomycin susceptibility below the
185 EUCAST breakpoint ($\text{MIC} \leq 32$ mg/L) in all strains. Antimicrobial zidovudine concentrations were
186 also significantly lower in presence of fosfomycin, with reductions ranging from 2- to 128-fold,
187 and ≥ 4 -fold reduction in 75% (9/12) and 90.9% (10/11) of the strains by FICI and FBCI,
188 respectively. No antagonisms were observed. (**Table 1**).

189 **Zidovudine-based combinations are more potent *in vitro* than current clinically used
190 combinations against MDR/XDR *K. pneumoniae* isolates.**

191 The use of CBA allows screening of a number of antibiotic combinations in search of synergy,
192 although it is limited to single-time point read-outs. In order to give robustness to the interaction
193 analysis of zidovudine-based combinations, we performed TKA that provide more detailed
194 synergistic information, including bactericidal and sterilizing activities of the combinations over
195 time (**Figure 1**). At any time point (8, 24 and 48 hours), synergy rates among currently used
196 combinations for MDR treatment was observed in several isolates: 41.6% for
197 meropenem/ertapenem (5/12), 33.33% for meropenem/colistin (4/12), 75% for
198 fosfomycin/colistin (9/12) and 66.6% for fosfomycin/tigecycline (8/12) (**Figure S1**). Interestingly,
199 among all isolates, the highest number of synergistic interactions were obtained with
200 zidovudine-based combinations, at zidovudine concentrations ranging from 0.004x to 2xMIC
201 (**Figure S2**). The combination of ceftazidime-avibactam plus zidovudine was the most active,
202 showing a synergy rate among the isolates of 83.3% (10/12). In 8 out of 12 strains the killing
203 activity was below the limit of detection after 24 hours of incubation, preventing bacterial
204 regrowth (a proxy for sterilizing activity) (**Figure S2a**). The combination of fosfomycin plus
205 zidovudine was synergistic in 9 out of 12 strains, showing a potent and rapid initial decrease in
206 bacterial counts after 8 hours in five strains (E-5, A-6, C-7, CSE-9, CE-10) and bactericidal
207 activity down to the limit of detection in six strains (E-5, A-6, C-7, CSE-9, CEE-11 and CS-8)
208 (**Figure S2b**). The combination of zidovudine plus colistin had 75% (9/12) synergy rates and
209 33.3% (4/12) killing rates down to the limit of detection (**Figure S2c**). Finally, the combination of
210 zidovudine plus tigecycline was the less potent one showing late synergy (48 hours) in 66.6%
211 (8/12) of the strains with bactericidal activity only against C-7 (**Figure S2d**).
212 Notably, the synergistic killing effects of zidovudine-based combinations were observed even at
213 low zidovudine concentrations (≤ 1 mg/L), which are below pharmacological serum
214 concentrations at standard zidovudine oral doses. This effect was observed regardless the
215 zidovudine susceptibility profile of the strains (A-6, CSE-9 and CE-10 are zidovudine-resistant)
216 (**Figure 3**).

217 **Triple zidovudine-based combination offers limited advantages over already synergistic**
218 **pairwise combinations.**

219 We identified that while carbapenem-based combinations had little synergistic interaction
220 profiles, the combination of two last-line antibiotics (fosfomycin/colistin) had an overall synergy
221 rate of 75%. Interestingly, zidovudine displayed strong synergy with both drugs. We thus aimed
222 to characterize whether the addition of zidovudine to the fosfomycin/colistin combination could
223 further potentiate the synergistic interaction, as previously described (24,30,31). The triple
224 combination was highly active showing bactericidal activity to the limit of detection in 4 out of 8
225 strains tested. However, compared to the fosfomycin/zidovudine, colistin/zidovudine and
226 fosfomycin/colistin combinations, fosfomycin/colistin/zidovudine was more effective at bacterial
227 eradication than colistin/zidovudine, but added little efficacy when compared to
228 fosfomycin/zidovudine or fosfomycin/colistin (**Figures 2 & 4**).

229

230 **DISCUSSION**

231 We evaluated the *in vitro* efficacy of zidovudine in combination with antibiotics currently
232 used for the treatment of infections caused by MDR/XDR *K. pneumoniae* with common
233 resistance patterns, such as ceftazidime-avibactam, colistin, fosfomycin and tigecycline. For this,
234 we used a panel of 12 MDR/XDR *K. pneumoniae* isolates and tested zidovudine at clinically
235 achievable concentrations. Our TKA data showed high rates of synergistic and killing activities
236 of zidovudine-based combinations even against strains with concurrent resistance mechanisms
237 to these and other antimicrobials, suggesting a potential role of zidovudine in combinatorial
238 therapy (**Figures 1, S1 & S2**).

239 We performed extensive TKA and obtained readouts after up to 48 hours of incubation.
240 We first characterized the activity of the compounds alone in a dose-response manner against
241 all isolates. Then, we selected subinhibitory/static concentrations that were matched for the
242 combination assays to allow for a wider dynamic range; using higher/effective concentrations of
243 the compounds alone would mask the effect of any potential interaction. Our efficacy analysis
244 then takes into consideration, not only the increased bactericidal activity of the combination
245 compared to the drugs alone, but also the ability of the combination to completely eradicate
246 bacteria down to the limit of detection of the assay (a proxy for sterilization of the culture).
247 Based on these criteria, we tested several zidovudine-based combinations and compared them
248 with current combinations clinically used to treat MDR/XDR *K. pneumoniae* infections (**Figure 1**).

249 (i) *Zidovudine plus ceftazidime-avibactam*. This combination showed the highest efficacy
250 with potent killing activity in all except two strains (CSE-9 and CSEE-12) even at low
251 concentrations of ceftazidime-avibactam (ranging from 0.125x to 1xMIC) (**Figures 1 & S2a**).
252 CSE-9 displayed high MIC values to ceftazidime-avibactam (>64 mg/l) and zidovudine (\geq 64
253 mg/L), while for CSEE-12 these were low ($\text{MIC}_{\text{CAZ-AVI}} = 0.5 \text{ mg/L}$, $\text{MIC}_{\text{ZDV}} = 1 \text{ mg/L}$); further
254 studies are needed to elucidate whether acquired resistance mechanisms might explain this
255 lack of activity.

256 Safety and efficacy of ceftazidime-avibactam against MDR enterobacteria facilitated its
257 inclusion as first-line therapeutic option for infections caused by CPE. It is administered in
258 monotherapy against OXA-48 (class D) and KPC (class A) producers or associated to
259 aztreonam against class B enzymes (β -lactamases refractory to inhibition by avibactam) (32).
260 Although the potential for resistance selection appears to be low (33), the extensive use of
261 ceftazidime-avibactam as a savage therapy will contribute to the emergence of resistance. In
262 fact, resistance linked to mutations in plasmid-borne KPC-3 were reported during ceftazidime-
263 avibactam treatment (34,35), and development of resistance to ceftazidime-avibactam is more
264 likely after previous exposure with meropenem-vaborbactam (36,37).

265 To the best of our knowledge, this is the first time that the zidovudine-ceftazidime-
266 avibactam combination is evaluated against MDR *K. pneumoniae*. Our promising results might
267 lay the foundations of further studies to support a potential clinical implementation.

268 (ii) *Zidovudine plus fosfomycin*. We identified zidovudine/fosfomycin synergy in a
269 previous screening (*unpublished*). Our data were in agreement with Antonello *et al.* describing
270 such synergy by CBA in 69.4% of Enterobacteriaceae strains, including fosfomycin-resistant
271 strains, and characterized its killing effects by TKA at 24 hours (17). In our work, we further
272 validate this synergism (**Figure 1**); fosfomycin alone showed a fast bactericidal activity followed
273 by a sharp growth rebound and, although strains in our collection displayed high MIC_{FOF} values
274 (from 8 to ≥ 64 mg/L), the combination with zidovudine was able to restore fosfomycin activity,
275 preventing this bacterial regrowth (**Figure S2b**).

276 (iii) *Zidovudine plus colistin*. Our interaction data is also in agreement with previously
277 reported (16,19), including *K. pneumoniae* colistin-resistant strains (20). However, TKA against
278 our colistin-resistant strains revealed both synergy against CS-8 (MIC_{CST}= 16 mg/L) (but a lack
279 of bactericidal activity) and lack of interaction against CSE-9 and CSEE-12 (MIC_{CST}= 16 and 4
280 mg/L, respectively) with concurrent alternative resistance mechanisms (**Figure S2c**).

281 (iv) *Zidovudine plus tigecycline*. This was the least effective combination (similar to
282 fosfomycin/tigecycline) with just late synergy and bacteriostatic profile at 48 hours. The activities
283 were also tigecycline dose-dependent for most strains (**Figures S1d and S2d**). Nevertheless,
284 TKA were able to revealed important interactions confronting data generated by CBA (18). The
285 fact that zidovudine/tigecycline showed a lower degree of interaction could be explained
286 because both drugs have to reach their intracellular targets; however, in other combos, when
287 zidovudine is used along with extracellular targeting compounds such as fosfomycin,
288 ceftazidime-avibactam and colistin, the action of the latter drugs could result in an increased
289 permeability of zidovudine, hence resulting in a higher effectivity (16,19,20,38). Adding to this
290 hypothesis, the use of glucose-6-phosphate (added in *in vitro* experiments to mimic
291 physiological conditions and promote intracellular transport of fosfomycin) might also facilitate
292 zidovudine entrance to the bacterial cell (17).

293 (v) *Zidovudine plus fosfomycin/colistin*. The synergism between two last-line antibiotics
294 fosfomycin/colistin against MDR *K. pneumoniae* was previously reported by TKA and hollow-
295 fiber infection model (39,40), and clinical studies (41,42). We also identified such a positive
296 interaction between fosfomycin/colistin, two drugs that displayed independently potent activities
297 in combination with zidovudine (**Figure 1**). Given that our studies demonstrated that zidovudine-
298 based combinations are more potent than currently clinically used for the treatment of infections
299 caused by MDR/XDR *K. pneumoniae* strains, we performed TKA to characterize the potential
300 impact of zidovudine in a triple combination with fosfomycin and colistin. In mycobacteria, triple
301 combinations perform better than the sum of the pairwise combinations (24,30,31); however,
302 this was not the case and the triple combination added little value to fosfomycin/colistin (**Figure**
303 **2**).

304 For HIV treatment, zidovudine is dosed at 500-600 mg daily oral and 1.5 mg/kg/6h
305 intravenously. After standard dosage regimens, C_{max} ranging from 1.1 to 1.8 mg/L are achieved
306 (28,43). Previous *in vitro* and *in vivo* studies suggested that clinically achievable zidovudine

307 concentrations could be effective against MDR enterobacteria when in combination therapy
308 (16,17,20). Zidovudine toxicity is associated to the dose, disease stage and prolonged HIV-
309 therapy. Safety profiles observed in HIV-patients together with a short plasma half-life (1.1–2.3
310 hours) (28,43,44) suggest that appearance of zidovudine toxicities are unlikely. Most reported
311 side effects include headaches, myalgia, nausea and vomiting. Major toxicities (anemia and
312 neutropenia) are more frequently described at high doses (1.200-1.500 mg/day) after more than
313 4 weeks of treatment (45,46). A few case reports described oral zidovudine overdoses up to 36
314 g/daily without abnormalities or with slight and transient side-effects such as lethargy (47).

315 In our study, MICs of zidovudine ranged from 0.25 to \geq 64 mg/L, which are in accordance
316 with similar studies (16,17,19,20). We observed potent bactericidal activities of the combinations
317 against most strains at zidovudine concentrations below 1 mg/L with the exception of A-6 strain
318 for which the effective zidovudine concentration in combinations was 4 mg/ml (**Figure S2**),
319 which still would be below C_{max} expected at daily doses of 600 mg (17). Pharmacokinetics and
320 safety of zidovudine plus colistin combination antimicrobial therapy was evaluated in a clinical
321 trial (48,49). It was found that doses of both synergistic partners, zidovudine and colistin (which
322 has toxicity issues), could be reduced while retaining their therapeutic efficacy (16). Our data
323 thus suggests that current zidovudine dosing strategies might suffice to treat bacterial infections
324 in humans and that zidovudine associated side effects are unlikely to occur during short-term
325 regimens, as in the context of acute bacterial infections. In addition, zidovudine reduces
326 transmission of ESBL and carbapenemase containing plasmids, hence supporting zidovudine
327 use in the prevention of the spread of resistant enterobacteria (50).

328 Future directions will include: (i) expanding such studies to a larger panel of clinical
329 isolates from several locations; (ii) identifying additional resistance mechanisms (i.e. porin loss
330 or efflux pumps) besides the genotypic characterization of our strain panel that included
331 standard β -lactam enzymatic resistance; and (iii) investigating for deficiency in thymidine kinase

332 genes (which normally phosphorylate inactive zidovudine into the active form (51,52)) in those
333 strains exhibiting high MIC_{ZDV} values, since it remains unknown whether the selection of
334 resistant mutants is responsible for the bacterial rebound observed by TKA in some
335 combinations (**Figure S2**).

336 In conclusion, zidovudine in combination with other antimicrobial drugs is a repurposing option
337 for MDR/XDR *K. pneumoniae*; similar repurposing approaches that employ other nucleoside
338 analogues in combination with antifungals are already in clinical use (53). Based on our studies,
339 we propose the following priority list of pairwise combinations: zidovudine/ceftazidime-
340 avibactam > zidovudine/fosfomycin > fosfomycin/colistin > zidovudine/colistin >
341 fosfomycin/tigecycline = zidovudine/tigecycline > meropenem/colistin > meropenem/ertapenem.
342 Finally, further dynamic PKPD studies would be needed to fully discern the potential of
343 zidovudine-based combinations in the clinical practice, and future clinical trials would clarify the
344 impact of zidovudine combination therapy on clinical outcomes. If these studies result in clinical
345 improvement, future expectations could include individualised therapy in those patients with
346 severe infections. As part of routine laboratory workflow, synergy testing with zidovudine in
347 clinical isolates would allow to infer the success of combination therapy.

348

349 **Disclosure of interest**

350 Authors declare no conflicts of interest.

351 **Data availability statement**

352 All data pertaining to this work is within the main manuscript or supplementary information.

353 **Funding.** This research was funded by a fellowship from the Government of Aragon (Gobierno
354 de Aragón y Fondos FEDER de la Unión Europea “Construyendo Europa desde Aragón”) to
355 M.G-L., and a grant from the Government of Aragon, Spain (Ref. LMP132_18) (Gobierno de
356 Aragón y Fondos Feder de la Unión Europea “Construyendo Europa desde Aragón”) to S.R.-G.

358 **REFERENCES**

359 1. Chew KL, Lin RTP, Teo JWP. *Klebsiella pneumoniae* in Singapore: Hypervirulent
360 infections and the carbapenemase threat. *Front Cell Infect Microbiol.* 2017;7:515.

361 2. Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of
362 carbapenemase-producing *Klebsiella pneumoniae*: Epidemiology, genetic context,
363 treatment options, and detection methods. *Front Microbiol.* 2016;7:895.

364 3. European Centre for Disease Prevention and Control. Antimicrobial resistance in the
365 EU/EEA (EARS-Net), Annual Epidemiological Report for 2019. ECDC. Stockholm; 2020.

366 4. Bassetti M, Peghin M, Pecori D. The management of multidrug-resistant
367 Enterobacteriaceae. *Curr Opin Infect Dis.* 2016 Dec;29(6):583–94.

368 5. Karaïskos I, Antoniadou A, Giamarellou H. Combination therapy for extensively-drug
369 resistant gram-negative bacteria. *Expert Rev Anti Infect Ther.* 2017;15(12):1123–40.

370 6. Pogue JM, Bonomo RA, Kaye KS. Ceftazidime/Avibactam, Meropenem/Vaborbactam, or
371 Both? Clinical and Formulary Considerations. *Clin Infect Dis.* 2019 Jan 18;68(3):519–24.

372 7. Wu JY, Srinivas P, Pogue JM. Cefiderocol: A Novel Agent for the Management of
373 Multidrug-Resistant Gram-Negative Organisms. *Infect Dis Ther.* 2020 Mar;9(1):17–40.

374 8. Johnston BD, Thuras P, Porter SB, Anacker M, VonBank B, Vagnone PS, et al. Activity of
375 cefiderocol, ceftazidime-avibactam, and eravacycline against carbapenem-resistant
376 *Escherichia coli* isolates from the United States and International sites in relation to clonal
377 background, resistance genes, coresistance, and region. *Antimicrob Agents Chemother.*
378 2020 Sep 21;64(10):e00797-20.

379 9. Zhong H, Zhao XY, Zhang ZL, Gu ZC, Zhang C, Gao Y, et al. Evaluation of the efficacy
380 and safety of ceftazidime/avibactam in the treatment of Gram-negative bacterial
381 infections: a systematic review and meta-analysis. *Int J Antimicrob Agents.*

382 2018;52(4):443–50.

383 10. Wang L, Liu D, Lv Y, Cui L, Li Y, Li T, et al. Novel Plasmid-Mediated *tet(X5)* Gene
384 Conferring Resistance to Tigecycline, Eravacycline, and Omadacycline in a Clinical
385 *Acinetobacter baumannii* Isolate. *Antimicrob Agents Chemother.* 2020 Dec
386 20;64(1):e01326-19.

387 11. Dulyayangkul P, Ismah WAKWN, Douglas EJA, Avison MB. Mutation of *kvrA* causes
388 *OmpK35* and *OmpK36* porin downregulation and reduced meropenem-vaborbactam
389 susceptibility in KPC-Producing *Klebsiella pneumoniae*. *Antimicrob Agents Chemother.*
390 2020 Jun 23;64(7):e02208-19.

391 12. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing:
392 progress, challenges and recommendations. *Nat Rev Drug Discov.* 2019;18(1):41–58.

393 13. Sun W, Sanderson PE, Zheng W. Drug combination therapy increases successful drug
394 repositioning. *Drug Discov Today.* 2016 Jul;21(7):1189–95.

395 14. Lewin CS, Amyes SG. Conditions required for the antibacterial activity of zidovudine. *Eur*
396 *J Clin Microbiol Infect Dis.* 1989;8(8):737–41.

397 15. Keith BR, White G, Wilson HR. In vivo efficacy of zidovudine (3'-azido-3'-deoxythymidine)
398 in experimental gram-negative-bacterial infections. *Antimicrob Agents Chemother.*
399 1989;33(4):479–83.

400 16. Hu Y, Liu Y, Coates A. Azidothymidine produces synergistic activity in combination with
401 colistin against antibiotic-resistant Enterobacteriaceae. *Antimicrob Agents Chemother.*
402 2018;63(1):e01630-18.

403 17. Antonello RM, Di Bella S, Betts J, La Ragione R, Bressan R, Principe L, et al. Zidovudine
404 in synergistic combination with fosfomycin: an in vitro and in vivo evaluation against
405 multidrug-resistant Enterobacteriales. *Int J Antimicrob Agents.* 2021;58(1):106362.

406 18. Ng SMS, Sioson JSP, Yap JM, Ng FM, Ching HSV, Teo JWP, et al. Repurposing
407 Zidovudine in combination with Tigecycline for treating carbapenem-resistant
408 Enterobacteriaceae infections. *Eur J Clin Microbiol Infect Dis.* 2018 Jan;37(1):141–8.

409 19. Lin YW, Rahim NA, Zhao J, Han ML, Yu HH, Wickremasinghe H, et al. Novel polymyxin
410 combination with the antiretroviral zidovudine exerts synergistic killing against NDM-
411 producing multidrug-resistant *Klebsiella pneumoniae*. *Antimicrob Agents Chemother.*
412 2019 Mar 27;63(4):e02176-18.

413 20. Falagas ME, Voulgaris GL, Tryfinopoulou K, Giakkoupi P, Kyriakidou M, Vatopoulos A, et
414 al. Synergistic activity of colistin with azidothymidine against colistin-resistant *Klebsiella*
415 *pneumoniae* clinical isolates collected from inpatients in Greek hospitals. *Int J Antimicrob
416 Agents.* 2019 Jun;53(6):855–8.

417 21. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al.
418 Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an
419 international expert proposal for interim standard definitions for acquired resistance. *Clin
420 Microbiol Infect.* 2012 Mar;18(3):268–81.

421 22. EUCAST. The European Committee on Antimicrobial Susceptibility Testing. EUCAST
422 guidelines for detection of resistance mechanisms and specific resistances of clinical and
423 / or epidemiological importance. Version 2.0. 2017.

424 23. CLSI. Performance Standards for Antimicrobial Susceptibility Testing: 27th edition. CLSI
425 supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.

426 24. Ramón-García S, Ng C, Anderson H, Chao JD, Zheng X, Pfeifer T, et al. Synergistic drug
427 combinations for tuberculosis therapy identified by a novel high-throughput screen.
428 *Antimicrob Agents Chemother.* 2011;55(8):3861–9.

429 25. Montoro E, Lemus D, Echemendia M, Martin A, Portaels F, Palomino JC. Comparative

430 evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay
431 for drug susceptibility testing of clinical isolates of *Mycobacterium tuberculosis*. *J*
432 *Antimicrob Chemother*. 2005 Apr;55(4):500–5.

433 26. EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint
434 tables for interpretation of MICs and zone diameters. Version 11.0. 2021.

435 27. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. *J*
436 *Antimicrob Chemother*. 2003;52(1):1.

437 28. Wei L, Mansoor N, Khan RA, Czejka M, Ahmad T, Ahmed M, et al. WB-PBPK approach
438 in predicting zidovudine pharmacokinetics in preterm neonates. *Biopharm Drug Dispos*.
439 2019;40(9):341–9.

440 29. Eliopoulos GM, Moellering RC. Antimicrobial combinations. In: Lorian V, editor.
441 *Antibiotics in laboratory medicine*. 4th ed. Baltimore, MD: The Williams & Wilkins Co.,;
442 1996. p. 330–96.

443 30. Arenaz-Callao MP, González del Río R, Lucía Quintana A, Thompson CJ, Mendoza-
444 Losana A, Ramón-García S. Triple oral beta-lactam containing therapy for Buruli ulcer
445 treatment shortening. *PLoS Negl Trop Dis*. 2019;13(1):e0007126.

446 31. Ramón-García S, González Del Río R, Villarejo AS, Sweet GD, Cunningham F, Barros D,
447 et al. Repurposing clinically approved cephalosporins for tuberculosis therapy. *Sci Rep*.
448 2016;6:34293.

449 32. Tammaro PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious
450 Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-
451 lactamase Producing Enterobacteriales (ESBL-E), Carbapenem-Resistant
452 Enterobacteriales (CRE), and *Pseudomonas aeruginosa* with Difficult-to-Treat Resistance
453 (DTR-*P. aerug*. *Clin Infect Dis*. 2021;72(7):e169–83.

454 33. Shirley M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative
455 Bacterial Infections. *Drugs*. 2018 Apr;78(6):675–92.

456 34. Haidar G, Clancy CJ, Shields RK, Hao B, Cheng S, Nguyen MH. Mutations in blaKPC-3
457 That Confer Ceftazidime-Avibactam Resistance Encode Novel KPC-3 Variants That
458 Function as Extended-Spectrum β -Lactamases. *Antimicrob Agents Chemother*. 2017
459 Apr;61(5):e02534-16.

460 35. Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, et al. Emergence of
461 Ceftazidime-Avibactam Resistance Due to Plasmid-Borne blaKPC-3 Mutations during
462 Treatment of Carbapenem-Resistant *Klebsiella pneumoniae* Infections. *Antimicrob
463 Agents Chemother*. 2017 Feb;61(3):e02097-16.

464 36. Ackley R, Roshdy D, Meredith J, Minor S, Anderson WE, Capraro GA, et al. Meropenem-
465 Vaborbactam versus Ceftazidime-Avibactam for Treatment of Carbapenem-Resistant
466 Enterobacteriaceae Infections. *Antimicrob Agents Chemother*. 2020 Apr
467 21;64(5):e02313-19.

468 37. Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, et al. Emergence of
469 Ceftazidime-Avibactam Resistance Due to Plasmid-Borne bla KPC-3 Mutations during
470 Treatment of Carbapenem-Resistant *Klebsiella pneumoniae* Infections. *Antimicrob
471 Agents Chemother*. 2017 Mar;61(3):e02097-16.

472 38. Antonello RM, Principe L, Maraolo AE, Viaggi V, Pol R, Fabbiani M, et al. Fosfomycin as
473 partner drug for systemic infection management. A systematic review of its synergistic
474 properties from in vitro and in vivo studies. *Antibiotics*. 2020;9(8):500.

475 39. Zhao M, Bulman ZP, Lenhard JR, Satlin MJ, Kreiswirth BN, Walsh TJ, et al.
476 Pharmacodynamics of colistin and fosfomycin: A “treasure trove” combination combats
477 KPC-producing *Klebsiella pneumoniae*. *J Antimicrob Chemother*. 2017;72(7):1985–90.

478 40. Wang J, He JT, Bai Y, Wang R, Cai Y. Synergistic activity of colistin/fosfomycin
479 combination against carbapenemase-producing *Klebsiella pneumoniae* in an in vitro
480 pharmacokinetic/pharmacodynamic model. *Biomed Res Int.* 2018 Apr 23;2018:5720417.

481 41. Michalopoulos A, Virtzili S, Rafailidis P, Chalevelakis G, Damala M, Falagas ME.
482 Intravenous fosfomycin for the treatment of nosocomial infections caused by
483 carbapenem-resistant *Klebsiella pneumoniae* in critically ill patients: a prospective
484 evaluation. *Clin Microbiol Infect.* 2010 Feb;16(2):184–6.

485 42. Pontikis K, Karaiskos I, Bastani S, Dimopoulos G, Kalogirou M, Katsiari M, et al.
486 Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections
487 due to pandrug-resistant and extensively drug-resistant carbapenemase-producing
488 Gram-negative bacteria. *Int J Antimicrob Agents.* 2014 Jan;43(1):52–9.

489 43. Fillekes Q, Kendall L, Kitaka S, Mugenyi P, Musoke P, Ndigendawani M, et al.
490 Pharmacokinetics of zidovudine dosed twice daily according to World Health
491 Organization weight bands in Ugandan HIV-infected children. *Pediatr Infect Dis J.*
492 2014;33(5):495–8.

493 44. Moore KHP, Raasch RH, Brouwer KLR, Opheim K, Cheeseman SH, Eyster E, et al.
494 Pharmacokinetics and bioavailability of zidovudine and its glucuronidated metabolite in
495 patients with human immunodeficiency virus infection and hepatic disease (AIDS clinical
496 trials group protocol 062). *Antimicrob Agents Chemother.* 1995;39(12):2732–7.

497 45. Rachlis A, Fanning MM. Zidovudine Toxicity: Clinical Features and Management. *Drug*
498 *Saf.* 1993;8(4):312–20.

499 46. McLeod GX, Hammer SM. Zidovudine: Five Years Later. *Ann Intern Med.* 1992 Sep
500 15;117(6):487–501.

501 47. Kroon S, Worm AM. Zidovudine overdose. *Int J STD AIDS.* 1991;2(1):56–7.

502 48. Loose M, Naber KG, Hu Y, Coates A, Wagenlehner FME. Serum bactericidal activity of
503 colistin and azidothymidine combinations against mcr-1-positive colistin-resistant
504 Escherichia coli. *Int J Antimicrob Agents*. 2018 Dec 1;52(6):783–9.

505 49. Loose M, Naber KG, Hu Y, Coates A, Wagenlehner FME. Urinary bactericidal activity of
506 colistin and azidothymidine combinations against mcr-1-positive colistin-resistant
507 Escherichia coli. *Int J Antimicrob Agents*. 2019 Jul;54(1):55–61.

508 50. Buckner MMC, Laura Ciusa M, Meek RW, Moorey AR, McCallum GE, Prentice EL, et al.
509 HIV drugs inhibit transfer of plasmids carrying extended-spectrum β -lactamase and
510 carbapenemase genes. *MBio*. 2020 Feb 25;11(1):e03355-19.

511 51. Peyclit L, Khedher M Ben, Zerrouki L, Diene SM, Baron SA, Rolain JM. Inactivation of
512 thymidine kinase as a cause of resistance to zidovudine in clinical isolates of Escherichia
513 coli: A phenotypic and genomic study. *J Antimicrob Chemother*. 2020;75(6):1410–4.

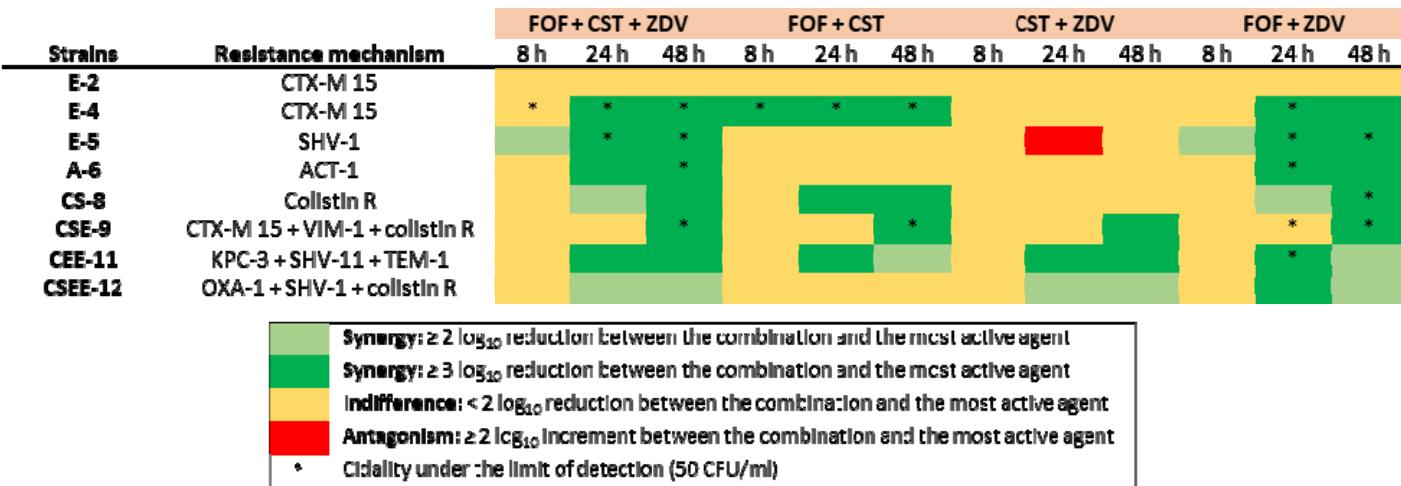
514 52. Doléans-Jordheim A, Bergeron E, Bereyziat F, Ben-Larbi S, Dumitrescu O, Mazoyer MA,
515 et al. Zidovudine (AZT) has a bactericidal effect on enterobacteria and induces genetic
516 modifications in resistant strains. *Eur J Clin Microbiol Infect Dis*. 2011;30(10):1249–56.

517 53. Maziarz EK, Perfect JR. Cryptococcosis. *Infect Dis Clin North Am*. 2016 Mar;30(1):179–
518 206.

519

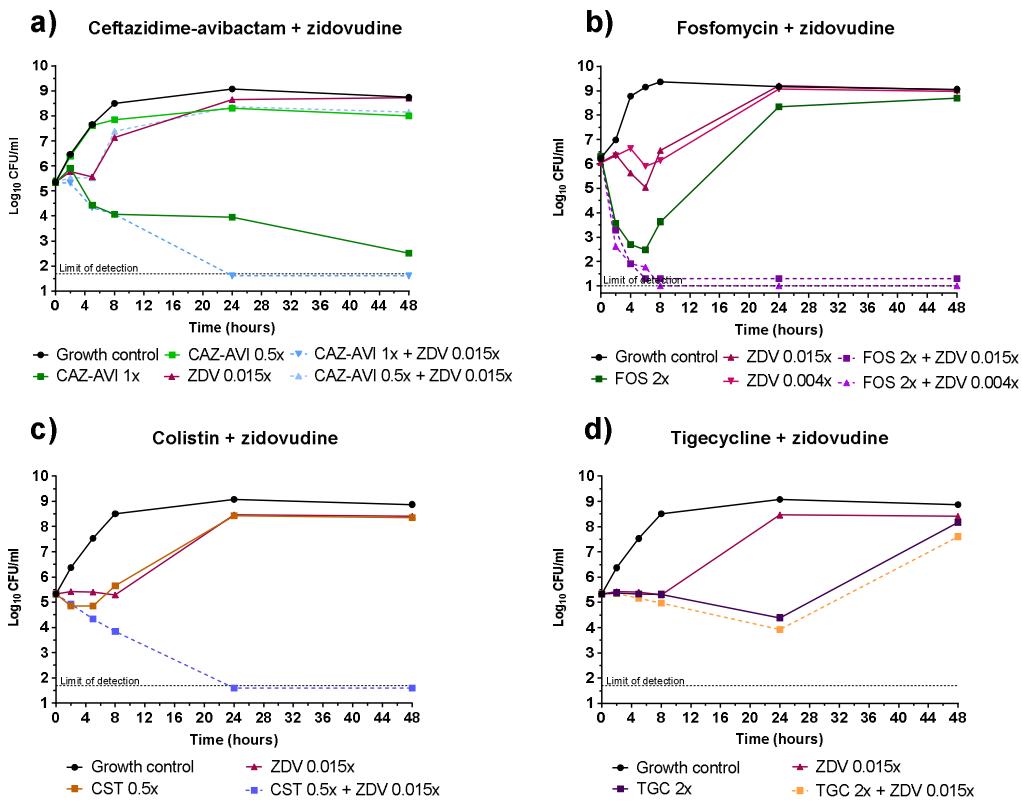

520 **FIGURES & TABLES**

521 **Table 1. Pairwise interactions of fosfomycin plus zidovudine against *K.***
522 ***pneumoniae* isolates.** The CBA was used to evaluate the degree of interaction. FICI,
523 Fractional Inhibitory Concentration Index; FBCI, Fractional Bactericidal Concentration
524 Index. Values in bold indicate synergy (FICI, FBCI ≤ 0.5), while values >0.5 indicate no
525 interaction. FOF, fosfomycin; ZDV, zidovudine.

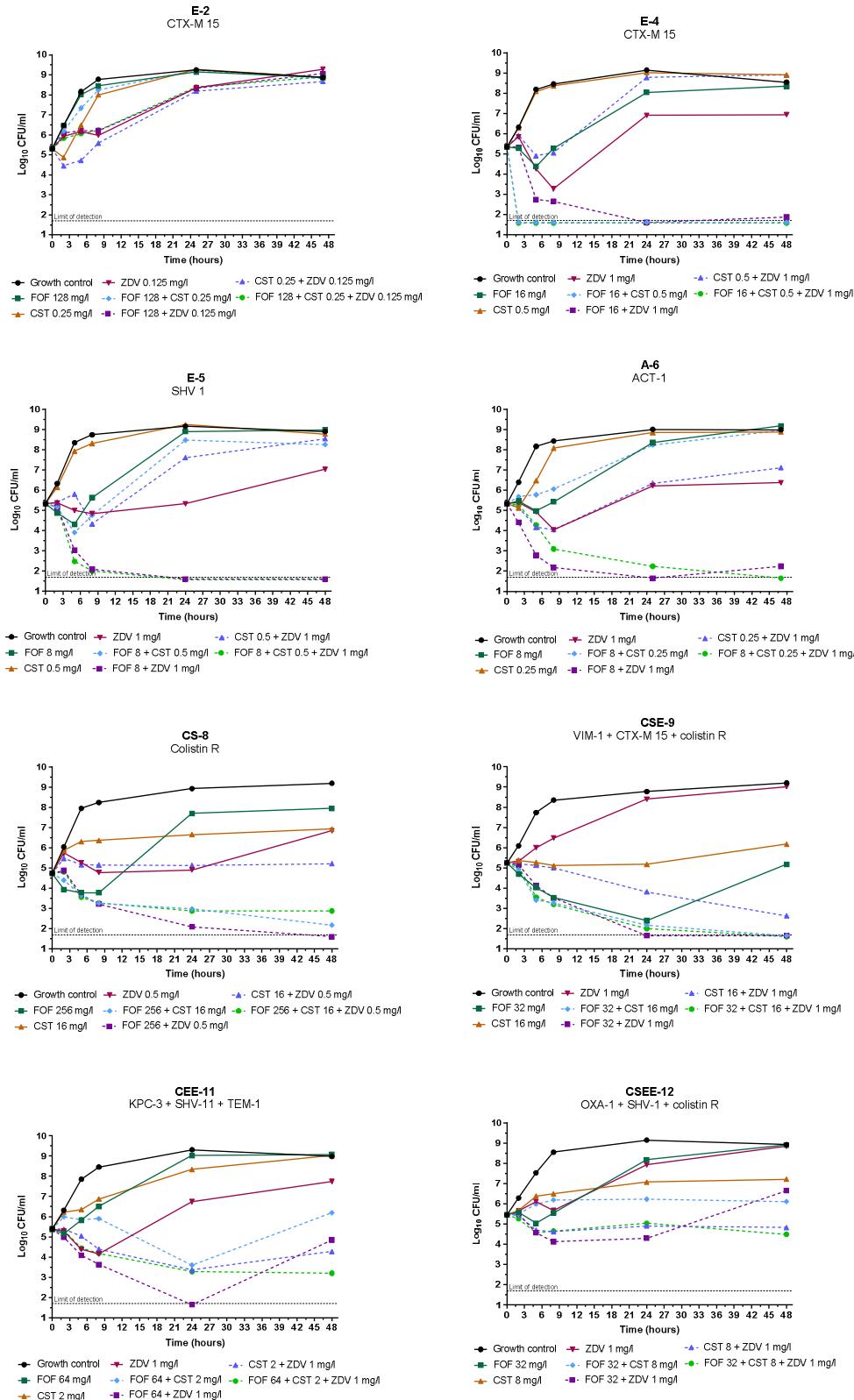

Isolate	MIC (mg/L) alone		MIC (mg/L) in combination		MBC (mg/L) alone		MBC (mg/L) in combination		FICI	FBCI
	FOF	ZDV	FOF	ZDV	FOF	ZDV	FOF	ZDV		
<i>E-1</i>	>64	0.5	16	0.0625	>64	2	32	0.5	0.38	0.75
<i>E-2</i>	>64	>4	8	1	>64	>4	8	1	0.19	0.19
<i>E-3</i>	>64	2	32	1	>64	2	32	1	0.75	0.75
<i>E-4</i>	64	1	16	0.25	64	>2	16	0.5	0.50	0.38
<i>E-5</i>	>16	2	4	0.25	>16	>2	4	0.25	0.25	0.19
<i>A-6</i>	>64	16	8	0.5	>64	16	8	1	0.09	0.13
<i>C-7</i>	>64	1	16	0.125	>64	2	16	0.125	0.25	0.19
CS-8	64	4	16	1	64	4	32	2	0.5	0.75
<i>CSE-9</i>	>64	≥ 64	16	1	>64	≥ 64	16	1	0.13	0.13
<i>CE-10</i>	>64	64	8	0.5	>64	>64	8	2	0.07	0.08
<i>CEE-11</i>	>64	1	16	0.5	>64	>4	16	2	0.63	0.38
<i>CSEE-12</i>	64	8	16	4	128	8	64	0.25	1	0.53

526

527 **Figure 1. Heat map representation of synergy and bactericidal activities in pairwise combinations at different time points obtained by**
 528 **time-kill assays against *K. pneumoniae* isolates.** When several concentrations were tested for the same drug, the most favourable outcome
 529 is displayed. ZDV-based combinations were tested at concentrations ≤ 1 mg/L, reflecting physiologically achieved concentrations. Data
 530 supporting this summary figure is displayed in Figure S1 and Figure S2. CAZ-AVI; ceftazidime-avibactam; CST, colistin; ETP, ertapenem; FOF,
 531 fosfomycin; MEM, meropenem; TGC, tigecycline; ZDV, zidovudine.


535 **Figure 2. Heat map representation of synergy and bactericidal activities in triple combination (fosfomycin/colistin/zidovudine)**
 536 **compared to those in pairwise combinations at different time points obtained by time-kill assays against eight *K. pneumoniae***
 537 **isolates.** Combo tested concentrations at 0.25-1x MIC. Data supporting this summary figure is displayed in Figure 4. CST, colistin; FOF,
 538 fosfomycin; ZDV, zidovudine.

539


540
 541
 542

543 **Figure 3. Time-kill assays characterization of zidovudine combinations with last-
544 line antibiotics in the treatment of MDR-*K. pneumoniae* infections.** The zidovudine
545 resistant clinical strain CE-10 ($bla_{OXA-48} + bla_{CTX-M15}$) was used for these studies.
546 Zidovudine enhanced the activities of ceftazidime-avibactam, fosfomycin and colistin
547 even at low sub-inhibitory concentrations (0.004-0.015x MIC), showing potent
548 synergistic and bactericidal effects with last-line antibiotics. ZDV concentrations were 1
549 mg/L, which is below C_{max} values (1.1 to 1.8 mg/L) achieve in human plasma after a
550 recommended ZDV oral dose. $MIC_{CAZ-AVI} = 0.25$ mg/L, $MIC_{CST} = 1$ mg/L, $MIC_{FOF} = 64$
551 mg/L, $MIC_{TGC} = 1$ mg/L, $MIC_{ZDV} = 64$ mg/L.

552
553

554 **Figure 4. Time-kill curves of zidovudine, colistin and fosfomycin alone, pairwise**
555 **and triple combination against eight *K. pneumoniae* isolates.**

