
 1 

De Novo Protein Fold Design Through Sequence-Independent 

Fragment Assembly Simulations 

Robin Pearcea, Xiaoqiang Huanga, Gilbert S. Omenna,c, and Yang Zhanga,b* 

aDepartment of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 

48109 USA; bDepartment of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; 
cDepartments of Internal Medicine and Human Genetics and School of Public Health, University of 

Michigan, Ann Arbor, MI 48109, USA. 

 

*To whom correspondence should be addressed. E-mail: zhng@umich.edu 

 

 

Abstract 

 
De novo protein design generally consists of two steps, including structure and sequence design. However, 

many protein design studies have focused on sequence design with scaffolds adapted from native structures 

in the PDB, which renders novel areas of protein structure and function space unexplored. Here we 

developed FoldDesign to create novel protein folds from specific secondary structure (SS) assignments 

through sequence-independent replica-exchange Monte Carlo (REMC) simulations. The method was tested 

on 354 non-redundant topologies, where FoldDesign consistently created stable structural folds, while 

recapitulating on average 87.7% of the SS elements. Meanwhile, the FoldDesign scaffolds had well-formed 

structures with buried residues and solvent exposed areas that closely matched their native counterparts. 

Despite the high fidelity to the input SS restraints and local structural characteristics of native proteins, a 

large portion of the designed scaffolds possessed global folds that were completely different from natural 

proteins in the PDB, highlighting the ability of FoldDesign to explore novel areas of protein fold space. 

Detailed data analyses demonstrated that the major contributions to the successful fold design lay in the 

optimal energy force field, which contains a balanced set of fragment and secondary structure packing terms, 

and the REMC simulations, which utilize multiple auxiliary movements to efficiently search the 

conformational space. These results demonstrate FoldDesign’s strong potential to explore both structural 

and functional space through computational design simulations that natural proteins have not reached 

through evolution. 

 

 

Significance 

 
Natural proteins were generated following billions of years of evolution and therefore possess limited 

structural folds and biological functions. There is considerable interest in de novo protein design to generate 

artificial proteins with novel structures and functions beyond those created by nature. However, the success 

rate of computational de novo protein design remains low, where extensive user-intervention and large-

scale experimental optimization are typically required to achieve successful designs. To address this issue, 

we developed a new automated open-source program, FoldDesign, for de novo protein fold design which 

shows improved performance in creating high fidelity stable folds compared to other state-of-the-art 

methods. The success of FoldDesign should enable the creation of desired protein structures with promising 

clinical and industrial potential. 
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Introduction 
Proteins are important biological molecules that perform the majority of cellular functions in living 

organisms. Their unique and varied functions are made possible by the diverse structural folds adopted by 

different protein molecules. However, despite the enormous conformational space available, only a tiny 

portion appears in nature following billions of years of evolution (1). For example, there have been just 

under 1,500 protein folds classified in the SCOPe database (2) and studies have indicated that the current 

PDB is nearly complete, representing the vast majority of natural folds (3, 4). Given the vital importance 

of proteins to living organisms, there has been growing interest in designing artificial proteins with 

enhanced functionality beyond the native counterparts. However, many attempts have focused on 

generating new protein sequences starting from the structures of experimentally solved proteins (5-8). 

While this may be effective in certain cases, protein design starting from solved structures is severely 

limited as nature has essentially sampled from an insignificant portion of the structure and function space.  

De novo protein design, which aims to create not only artificial protein sequences but also novel 

structures tailored to specific design applications, e.g., with specific fold types or binding pockets, has 

gained considerable traction in recent years, where approaches such as Rosetta have been applied to design 

proteins with promising therapeutic potential (9-11), novel ligand-binding activity (12, 13), and complex 

logical interactions (14). Despite the successes, the approach remains somewhat of an art form, where large-

scale experimental optimization is typically required to generate successful designs (9, 11). In particular, 

extensive user-intervention during scaffold creation and selection is often required during the design 

simulations (12, 15). Nevertheless, automated fold design tailored to specific applications is highly non-

trivial because traditional homologous structure assembly programs often create folds that are similar to the 

template structures even when distracted with strong external spatial restraints (16, 17). Although ab initio 

structure assembly approaches, such as QUARK (18) and Rosetta (19), can create template-free models, 

they need to start from specific natural sequences and often create conformations that either converge to 

specific folding clusters or are not protein-like (20). Anishechenko et al. recently performed an interesting 

study that combined deep neural-network training with structural refinement simulations to ‘hallucinate’ 

proteins; the method could create novel protein sequences but the structural folds were generally close to 

PDB structures (with an average TM-score=0.78) (21). Meanwhile, the resulting protein folds were largely 

randomized depending on the stochastic process of the design iterations. Thus, development of automated 

algorithms capable of precisely designing any required fold type with limited human intervention is critical 

to improve the efficiency and success rate of de novo protein design. 

Toward this goal, we developed a new automated pipeline, FoldDesign, to create desired protein folds 

starting from user-specified restraints, such as the secondary structure (SS) topology and/or inter-residue 

contact and distance maps, through sequence-independent replica-exchange Monte Carlo (REMC) 

simulations. Since the designed folds do not necessarily have experimental counterparts, we designed 

several objective assessment criteria based on the satisfaction rate of the input requirements and the folding 

stability of the designs (see Fig. S1 in the Supporting Information (SI)). The results showed that FoldDesign 

is capable of producing protein-like structural folds that closely recapitulate the input features with 

enhanced folding stability, significantly outperforming other start-of-the-art approaches on the large-scale 

benchmark tests. The online server and standalone package for FoldDesign are freely available to the 

community at https://zhanggroup.org/FoldDesign/ and https://github.com/robpearc/FoldDesign, 

respectively. 

 

Results and Discussion 
FoldDesign is an automated algorithm for sequence-independent, de novo protein fold design, where the 

flowchart is outlined in Fig. 1. The program takes as input the SS topology for a designed structure scaffold, 

which includes the length, order, and composition of the SS elements. A set of structural fragments with 
lengths between 1-20 residues is then collected from the PDB library by scoring the similarity between the 

input SS and the SS of the PDB fragments. These fragments are finally assembled together by REMC 

folding simulations to generate protein-like structural scaffolds that satisfy the input constraints, where the 
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lowest free-energy structure selected by conformational clustering (22) is subjected to further atomic-level 

refinement to produce the final structural design (see Methods). 

 

Auxiliary movements improve the folding simulation efficiency and ability to identify low energy 

states. Fragment substitution is the predominant movement used by FoldDesign, which involves the 

replacement of a selected region of a decoy structure with the structure from one of the identified fragments 

collected from the PDB. However, fragment substitution may cause large conformational changes that 

prevent the movement from being accepted. To improve the simulation efficiency, FoldDesign introduces 

10 additional auxiliary movements, including bond length and angle perturbations, segment rotations, 

torsion angle substitutions, and those that form packing interactions between specific secondary structure 

elements (see Supplementary Text S1 and Fig. S4).  

Fig. 2A displays the FoldDesign energies of the best structures produced for each of the 354 test SS 

topologies (see Methods), either using the full set of 11 conformational movements or only using fragment 

substitution. It can be observed that the auxiliary movements enable the simulations to find structures with 

significantly lower energies than those found using fragment substitution alone. Overall, the average 

FoldDesign energy of the best structures produced using the full movement set was -529.5 𝑘𝐵𝑇 compared 

to -449.7 𝑘𝐵𝑇  when using only fragment substitution, where the difference was highly statistically 

significant with a p-value of 2.1E-66 as determined by a paired two-sided Student’s t-test. In addition to 

the improved ability to sample low energy states, the auxiliary movements reduced the simulation times 

required to fold the proteins. Fig. 2B plots the simulation time versus the protein length for each of the test 

topologies. From the figure, a clear reduction in the simulation time required can be seen across all protein 

lengths, where the average time for the simulations with the full movement set was 9.6 hours compared to 

22.8 hours for the simulations that used only fragment substitution. This reduction in simulation time is due 

to the fact that fragment substitution is computationally expensive and requires additional loop closure to 

ensure that it does not cause large downstream perturbations, while the auxiliary movements are 

comparatively fast.  

In Figs. 2C-D, we further present a representative case study for the topology from the PDB protein 

1ec6A, which adopts an α/β fold. Fig. 2C shows the conformational dynamics of the decoys produced 

during the lowest-temperature replica of the simulations using only the fragment substitution movement, 

while Fig. 2D uses the full movement set, by plotting the TM-score between the decoy at REMC cycle i 

compared to cycle i-1 from cycles 50-100. In Fig. 2C, there are several plateaus where no movement could 

be accepted, leading to identical conformations between a number of the cycles, where the most notable 

plateau lasted for 11 cycles (cycles 59 through 70). On the other hand, with the full movement set in Fig. 

2D, no such plateaus were observed. Although several cycles had very similar structures, which may be 

caused by subtle conformational refinements such as bond length perturbation, none of the cycles had 

identical structures. As a result, the simulations using the full movement set generated a structure with an 

energy of -346.2 𝑘𝐵𝑇 in 4.7 hours compared to a structure with an energy of -224.3 𝑘𝐵𝑇 in 14.2 hours using 

only fragment substitution. 

 

FoldDesign scaffolds closely match the input constraints. To assess the ability to perform structural fold 

design, we list in Table 1 a summary of the FoldDesign results in terms of the average Q3 scores on the 

354 test topologies. As a comparison, we list the results from the state-of-the-art Rosetta method (23), which 

also starts from the desired secondary structure of a designed scaffold, where a detailed description of the 

procedures used to run Rosetta is given in Supplementary Text S3. Here, the Q3 score is defined as the 

fraction of positions with secondary structures that are identical to that of the input topology. Following 

fold generation, the secondary structures of the designed scaffolds for both FoldDesign and Rosetta were 

assigned using DSSP (24) and compared to the input for each protein. 

Overall, FoldDesign achieved an average Q3 score of 0.877 compared to 0.833 for Rosetta with a p-

value of 1.7E-08. When considering the Q3 scores for α-proteins, β-proteins, and α/β-proteins separately, 
FoldDesign achieved Q3 scores of 0.934, 0.863, and 0.875, compared to 0.828, 0.829, and 0.835, 

respectively, for Rosetta. Thus, across all fold types, FoldDesign was able to generate structures that more 
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closely matched the input topologies than Rosetta. This partially reflects the advanced dynamics of the 

folding simulations as well as the effectiveness of the optimized energy function in FoldDesign. 

Although no user-defined distance restraints were included in the above tests, these are still important 

in many design cases where recapitulation of specific folds is desired. In Table S1, we extracted the pairwise 

Cα distances from the native structures in the test set and used them as restraints during the design 

simulations. From the table, it can be seen that FoldDesign was able to generate designs that closely 

matched the native structures with average TM-scores/RMSDs of 0.993/0.31Å, 0.993/0.27Å, 0.992/0.32Å, 

and 0.994/0.31Å for all, α, β, and α/β topologies, respectively. Here, TM-score (25) is a structure 

comparison metric that takes a value in the range (0, 1], where a value of 1 indicates an identical match 

between two structures and a value ≥0.5 signifies that two proteins share the same global fold (26). 

Therefore, the FoldDesign structures nearly perfectly recapitulated the desired folds when guided by user-

defined distance restraints. Additionally, the mean absolute errors (MAEs) between the Cα distance maps 

extracted from the designed folds and native structures were 0.148, 0.115, 0.130, and 0.154 Å for all, α, β, 

and α/β topologies, respectively, confirming that the generated structures closely satisfied the given distance 

restraints. 

 

FoldDesign generates low energy, native-like protein structures. While an important metric, the Q3 

score is unable to provide a complete picture of the physical quality of the designs. In theory, a method 

could produce trivial or even unfavorable folds that satisfy the desired secondary structures. Thus, a more 

detailed analysis of the energetics and physical characteristics of the produced structures had to be 

performed (Fig. S1). As the designed scaffolds for FoldDesign and Rosetta are both sequence-independent 

and many of the traditional scoring and assessment tools are sequence-specific, the sequence for each 

scaffold had to be designed before further quantitative analysis could be conducted. To design the sequences 

for each scaffold, two sequence design methods were used, EvoEF2 (27) and RosettaFixBB (28), where the 

backbone structures of the designed scaffolds were kept fixed during the sequence design to ensure a fair 

comparison of the scaffolds that were directly output by FoldDesign and Rosetta. Here, RosettaFixBB and 

EvoEF2 are sequence design methods that perform Monte Carlo sampling in sequence space guided by 

combined physics- and knowledge-based energy functions. 100 sequences were designed for each scaffold, 

where the average results from the 10 lowest energy sequences were reported for both FoldDesign and 

Rosetta in the following analyses.  

First, Fig. 3A shows that the percent of buried residues for the FoldDesign scaffolds closely resembled 

the native protein structures from which the input secondary structures were extracted. For example, in the 

native structures, 19.2% of the residues were buried in the hydrophobic core, compared to 20.2% and 17.2% 

for the FoldDesign scaffolds whose sequences were designed by EvoEF2 and RosettaFixBB, respectively. 

However, for Rosetta, only 9.8% and 7.5% of the residues were buried in the hydrophobic core. 

Additionally, the solvent accessible surface area (SASA) for the native proteins was 7081.8 Å2 compared 

to 6964.9 Å2 and 7376.3 Å2 for the FoldDesign scaffolds whose sequences were designed by EvoEF2 and 

RosettaFixBB, while the average SASA for the corresponding Rosetta scaffolds was 8721.2 Å2 and 8944.2 

Å2, respectively. These results indicate that the FoldDesign scaffolds possessed more compact hydrophobic 

cores and less solvent exposed area than the Rosetta scaffolds and shared a higher similarity to the native 

structures for these characteristics. The difference is in part due to the fact that FoldDesign includes a 

number of energy terms that promote the formation of well-packed structures; these include specific 

fragment-derived distance and solvation potentials, generic backbone atom distance energy terms, and 

detailed secondary structure packing terms (see Supplementary Text S2). In addition, the energy weights 

were carefully optimized using the results of the design simulations to ensure the formation of well-folded 

globular proteins (see Methods). 

In Figs. 3C and 3D, we further display the energies of the designed scaffolds by FoldDesign and 

Rosetta, as assessed by the two leading atomic-level statistical energy functions, GOAP (29) and ROTAS 

(30). For the sequences designed by EvoEF2 and RosettaFixBB, the FoldDesign scaffolds had average 

GOAP energies of -9736.9 and -10166.7, respectively, which were significantly lower than the GOAP 

energies of -8174.5 and -8838.8 for the Rosetta scaffolds, with p-values of 3.4E-13 and 4.3E-10, 
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respectively. Similar trends were observed for ROTAS. For the sequences designed by EvoEF2 and 

RosettaFixBB, the FoldDesign scaffolds had average ROTAS energies of -6110.3 and -4446.5 compared 

to -4360.8 and -3281.5 for the corresponding Rosetta designs; the differences were statistically significant 

with p-values of 6.8E-27 and 1.3E-15. Overall, the FoldDesign scaffolds possessed more tightly packed 

hydrophobic cores and were energetically more favorable than the Rosetta scaffolds, with GOAP energies 

that were 19.1% and 15.0% lower than the Rosetta scaffolds and ROTAS energies that were 40.1% and 

35.5% lower than the Rosetta scaffolds depending on the sequence design method that was used, although 

both folding simulations did not use any of the third-party energy functions for optimization. 

 

FoldDesign generates stable structures with novel folds. To further assess the stability of the designed 

structures, molecular dynamic (MD) simulations were run starting from the designed scaffolds by 

FoldDesign and Rosetta. MD is a useful tool as it allows for the study of protein motion and stability beyond 

static measurements such as energy calculations, where 20 ns unconstrained MD simulations were carried 

out using GROMACS (31) with the CHARMM36 force field (see Methods). To determine the stability of 

the structures, the TM-scores (25) between the initial designed scaffolds and the final MD structures were 

calculated, where the results are depicted in Figs. 4A-B for the structures whose sequences were designed 

by EvoEF2 and RosettaFixBB, respectively.  

From the figures, it can be seen that the TM-scores between the initial FoldDesign scaffolds and the 

final MD structures were higher than those for the Rosetta scaffolds, indicating a closer match and thus 

more stable conformations for the FoldDesign scaffolds. For instance, the average TM-score between the 

FoldDesign scaffolds and final MD structures for the EvoEF2 sequence designs was 0.645 compared to 

0.584 for the corresponding Rosetta scaffolds (Fig. 4A), where the difference was statistically significant 

with a p-value of 7.4E-19. A similar trend was observed for the scaffolds whose sequences were designed 

by RosettaFixBB, where the average TM-score between the initial FoldDesign structures and the final MD 

structures was 0.602 compared to 0.525 for the Rosetta scaffolds, corresponding to a p-value of 4.6E-26 

(Fig. 4B). Furthermore, when considering a cutoff TM-score of 0.5, 93.7% and 87.9% of the FoldDesign 

scaffolds whose sequences were designed by EvoEF2 and RosettaFixBB, respectively, shared the same 

global folds as their final MD structures, compared to 77.1% and 54.8% of the corresponding Rosetta 

structures. Fig. 5A shows three examples selected from among the most stable FoldDesign scaffolds, where 

the TM-scores were all greater than 0.8 and the RMSDs were less than 2 Å, indicating a close atomic match 

between the designed scaffolds and the final MD structures. Overall, the vast majority of the FoldDesign 

scaffolds possessed stable global folds, outperforming the state-of-the-art Rosetta protocol across the test 

set. 

Interestingly, despite the high fold stability with local structural features that were highly similar to the 

native proteins, a large portion of the FoldDesign scaffolds adopted novel folds that were different from 

what exists in the PDB. Fig. 4E presents the histogram distribution of TM-scores between the FoldDesign 

scaffolds and the closest structures identified by TM-align (32) from the PDB, where the average TM-score 

of 0.551 was relatively low given the searching power of TM-align and the near completeness of the PDB 

(3, 32). Of the 354 designs, 79 had a TM-score below 0.5 to any structure in the PDB, indicating they 

possessed novel folds. Furthermore, 74 of the 79 novel structures whose sequences were designed by 

EvoEF2 had stable global folds with TM-scores >0.5 to their final structures output by the MD simulations. 

Moreover, there was no obvious difference between the novel folds and other folds in terms of stability, as 

the TM-score distributions between the designs and the final MD structures were quite similar for them 

(Fig. S3), where their average TM-scores were 0.647 and 0.645, respectively. These results demonstrate 

that FoldDesign is capable of producing stable scaffolds, while allowing for the exploration of novel areas 

of protein fold space. 

 

Protein structure prediction indicates FoldDesign produces well-folded structures. As additional proof 

of the foldability of the designed structures, we examined the structural similarity between the designed 

scaffolds and the predicted models generated by the state-of-the-art AlphaFold2 structure prediction 

program (33) starting from the designed sequences for each scaffold. As protein structure prediction is 
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essentially the inverse problem of protein design, it would stand to reason that well-formed structure designs 

should be able to be recapitulated starting from their corresponding designed sequences. Given that 

AlphaFold2 is a deep learning-based modeling program, its performance largely depends on collecting 

meaningful MSAs (33). Thus, since de novo designed proteins almost always lack natural sequence 

homologs, to remove the bias in MSA collection, we constructed the input MSAs by taking the 100 

sequences designed by EvoEF2 and RosetaFixBB for each of the FoldDesign/Rosetta scaffolds. 

As shown in Table S2, when starting from the sequences designed by EvoEF2, the average TM-score 

between the AlphaFold2 models and the FoldDesign scaffolds was 0.714 compared to 0.663 for the Rosetta 

scaffolds, where the difference was statistically significant with a p-value of 4.6E-09. In Figure 3C, we 

present a head-to-head TM-score comparison, where the FoldDesign scaffolds had higher TM-scores than 

the corresponding Rosetta scaffolds for 211 cases, while Roseta did so for 133 of the 354 cases. If we 

consider the number of cases with TM-score ≥0.5, 324 (or 91.5%) of the FoldDesign scaffolds shared the 

same global folds as the AlphaFold2 models compared to 315 (or 90.0%) of the scaffolds by Rosetta. These 

results demonstrate that the FoldDesign scaffolds more closely resembled the AlphaFold2 models than the 

Rosetta scaffolds did, indicating their enhanced stability/foldability. Similar patterns were observed for the 

sequences designed by RosettaFixBB, where the average TM-score between the FoldDesign scaffolds and 

AlphaFold2 models was 0.696 compared to 0.670 for Rosetta with a p-value of 3.0E-04 (Table S2). 

Moreover, 208 of the 354 FoldDesign scaffolds had higher TM-scores than the Rosetta scaffolds and 315 

(or 89.0%) of the designs had TM-scores ≥0.5 (Fig. 4D). 

Fig. 5B presents three examples from some of the closest matches between the FoldDesign scaffolds 

and AlphaFold2 models, where each had a TM-score greater than or close to 0.9 and RMSDs below 2.25 

Å, indicating a close atomic match between the designed scaffold and the predicted models. From these 

results, it can be seen that the FoldDesign scaffolds more closely matched the predicted models than the 

Rosetta scaffolds did, and the overwhelming majority of the designs shared the same global folds as the 

AlphaFold2 models. This structural consistency may suggest that FoldDesign captures some structural 

characteristics that have been integrated in the AlphaFold2 learning process. 

 

Concluding Remarks 
Protein design generally consists of two steps, including structural fold design and sequence design. Many 

protein design efforts have focused on the second step of sequence design with input scaffolds taken from 

existing protein structures in the PDB. Despite the success, such experiments constrain design cases to the 

limited number of folds adopted by natural proteins, while curtailing the exploration of novel areas of 

protein structure and biological function. 

In this work, we developed a pipeline, FoldDesign, for de novo protein fold design. Unlike traditional 

protein folding simulations which start from native sequences and therefore, as expected, often result in 

folds that are similar to what exists in the PDB library, FoldDesign starts from structural restraints (e.g., 

secondary structure assignments and/or inter-residue distance restraints) and performs folding simulations 

under the guidance of an optimized sequence-independent energy function. Large-scale tests on a set of 354 

unique fold topologies demonstrated that FoldDesign could create protein-like folds with closer Q3 score 

similarity to the desired structural restraints than the state-of-the-art Rosetta design program. Meanwhile, 

the FoldDesign scaffolds had well-compacted core structures with buried residues and solvent exposed 

areas that closely resembled natural proteins, while MD simulations showed that the folds were more stable 

than those produced by Rosetta. Importantly, FoldDesign is capable of designing folds that are completely 

different from the native structures in the PDB, highlighting its ability to explore novel areas of protein 

structure space despite the high fidelity to the input restraints and the native local structural characteristics. 

Detailed data analyses showed that one of the major contributions to the success of FoldDesign lies in the 

optimal energy force field, which contains a balanced set of energy terms accounting for fragment and 

secondary structure packing. In addition, the conformational space is effectively explored by REMC 

simulations assisted by a composite set of efficient movements. 
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Although the FoldDesign server outputs both the designed fold and the lowest energy sequence 

produced by the EvoDesign program, the validation of the designed sequences remains to be experimentally 

examined. Nevertheless, the studies presented have shown that FoldDesign can be used as a robust tool for 

generating high-quality, stable structural folds when applied to the very challenging task of completely de 

novo scaffold generation without human-expert interventions. This therefore suggests a strong potential for 

experimental protein design to effectively explore both structural and functional spaces which natural 

proteins have not reached through billions of years of evolution. 

 

Methods 
FoldDesign aims to automatically design desired protein structure folds starting from user-specified rules 

such as secondary structure composition and/or inter-residue contact and distance maps. The pipeline 

consists of three main steps, including fragment generation, REMC folding simulations, and main chain 

refinement and fold selection (see Fig. 1). 

 

Fragment generation. Starting from a user-specified secondary structure, high-scoring fragments are 

identified from a fragment library, which consists of fragments collected from a non-redundant set of 29,156 

high-resolution PDB structures. Gapless threading through the library is performed to generate 1-20 residue 

fragments, where the fragments are scored based on the compatibility of their torsion angles and secondary 

structure similarity to the desired secondary structure at each position. The top 200 fragments are generated 

for each overlapping 1-20 residue window. The information for each fragment includes the backbone bond 

lengths, bond angles, and torsion angles, as well as other useful data such as the position-specific solvent 

accessibility and Cα coordinates, which are later used to derive distance and solvation restraints. 

 

REMC folding simulations and refinement. Following fragment generation, REMC folding simulations 

are performed in order to assemble full-length structural models, where each simulation uses 40 replicas 

and runs 500 REMC cycles (see Text S1 for a full description of the REMC parameters and movements). 

The protein conformation in FoldDesign is represented with a course-grained model, which specifies the 

backbone N, Cα, C, H, and O atoms as well as the Cβ atoms and an atom that represents the side-chain 

center of mass (Fig. S2). To allow for a less biased exploration of structure space, the energy terms used by 

FoldDesign are sequence-independent, where the side-chain center of mass for Valine is used as the generic 

center of mass for each residue to minimize steric clashes. 

The initial conformations are produced by randomly assembling different high-scoring 9 residue 

fragments and then minimized using a set of 11 movements. Here, the major conformational movement is 

fragment substitution, which involves swapping a selected region of a decoy structure with the structure 

from one of the fragments randomly selected from the fragment library. Next, cyclical coordinate descent 

loop closure (34) is used to minimize the structural perturbations downstream. Since FoldDesign uses 1-20 

residues fragments, larger fragment insertions are typically attempted during the initial REMC cycles, while 

smaller ones are attempted during the later steps of the simulations to improve its acceptance rate when the 

protein is more globular and well-folded. In addition to fragment insertion, 10 other conformational 

movements are attempted throughout the course of the simulations, including perturbing the backbone bond 

lengths, angles or torsion angles, segment rotations, segment shifts, and movements that form specific 

interactions between different secondary structure elements, where these are described in Supplementary 

Text S1 and Fig. S4. 

The movements are accepted or rejected using the Metropolis criterion (35), where the energy for each 

conformation is assessed by the following energy function: 

𝐸DeepFold = 𝐸𝐻𝐵 +  𝐸𝑠𝑠_𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 + 𝐸𝑟𝑎𝑚𝑎 + 𝐸ℎℎ𝑝𝑎𝑐𝑘 + 𝐸𝑠𝑠𝑝𝑎𝑐𝑘 + 𝐸hspack + 𝐸𝑒𝑣 + 𝐸𝑔𝑒𝑛𝑒𝑟𝑖𝑐_𝑑𝑖𝑠𝑡

+ 𝐸𝑓𝑟𝑎𝑔_𝑑𝑖𝑠𝑡_𝑝𝑟𝑜𝑓𝑖𝑙𝑒 +  𝐸𝑓𝑟𝑎𝑔_𝑠𝑜𝑙𝑣 +  𝐸𝑟𝑔 +  𝐸𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑛𝑢𝑚                                                (1) 

Here, 𝐸𝐻𝐵 , 𝐸𝑠𝑠_𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 , 𝐸𝑟𝑎𝑚𝑎 , 𝐸ℎℎ𝑝𝑎𝑐𝑘 , 𝐸𝑠𝑠𝑝𝑎𝑐𝑘 ,  𝐸hspack , 𝐸𝑒𝑣 , 𝐸𝑔𝑒𝑛𝑒𝑟𝑖𝑐_𝑑𝑖𝑠𝑡 , 𝐸𝑓𝑟𝑎𝑔_𝑑𝑖𝑠𝑡_𝑝𝑟𝑜𝑓𝑖𝑙𝑒 , 

𝐸𝑓𝑟𝑎𝑔_𝑠𝑜𝑙𝑣, 𝐸𝑟𝑔, and 𝐸𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑛𝑢𝑚 are terms that account for backbone hydrogen bonding, the satisfaction 
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rate of the input secondary structure, Ramachandran torsion angles, helix-helix packing, strand-strand 

packing, helix-strand packing, excluded volume, generic backbone atom distances, fragment-derived 

distance restraints, fragment-derived solvent accessibility, radius of gyration, and expected contact number, 

respectively. A more detailed explanation of these terms is given in Supplementary Text S2. After the 

REMC simulations are completed, the design with the lowest energy is selected for further atomic-level 

refinement, for which sequence design and structural refinement are performed iteratively using EvoDesign 

(5) and ModRefiner (36), respectively. 

 

Training and test dataset collection. To test FoldDesign’s ability to perform de novo protein fold design, 

we collected a non-redundant set of secondary structure sequences. This was accomplished by extracting 

the 3-state secondary structures from 76,166 protein domains in the I-TASSER template library (37, 38) 

using DSSP (24). All of the pairwise secondary structure alignments were obtained using Needleman-

Wunsch dynamic programming to align the 3-state secondary structure sequences. The target sequences 

were then clustered based on the distance matrix defined by their secondary structure identities, i.e., the 

number of identical secondary structures divided by the total alignment length, where an identity 

cutoff=70% was used to define the clusters. 

The identified clusters were further refined by eliminating atypical secondary structure topologies 

(clusters with less than 10 members) and by selecting only those clusters where a clear relationship existed 

between the secondary structure and the tertiary structure adopted by the cluster members. The latter 

requirement was accomplished by using TM-align (32) to perform structural alignment between each 

cluster member and the cluster center, where conserved clusters were required to have an average TM-score 

≥0.5 between the members and cluster center. Finally, we obtained 461 clusters; 107 and 354 secondary 

structure sequences were used for the training and test sets, respectively. The training set was composed of 

22 α, 25 β, and 60 α/β topologies, while the test set was composed of 24 α, 55 β, and 275 α/β topologies.  

 

FoldDesign energy function optimization. In order to ensure proper structure generation, each energy 

term must be carefully weighted in the FoldDesign energy function. This was done on the 107 training 

topologies. Briefly, a grid searching strategy was used to optimize the weights, where all weights were 

initially assigned as 0, except for the weight for the steric clash term, which was set to 1.0. Then the values 

for each weight were adjusted one-at-a-time around the grid values and the FoldDesign simulations were 

run to produce scaffold structures using the new weight set. After structure generation, the sequences for 

each scaffold were designed using EvoEF2 (27) and the designed structures were assessed based on: 

𝐸𝑎𝑐𝑐𝑒𝑝𝑡 = −Δ𝐸𝑣𝑜𝐸𝐹2 + 100 ∗ Δ𝐵𝑢𝑟𝑖𝑒𝑑𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠 + 100 ∗ Δ𝑄3𝑆𝑐𝑜𝑟𝑒                 (2) 

where, Δ𝐸𝑣𝑜𝐸𝐹2 , Δ𝐵𝑢𝑟𝑖𝑒𝑑𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠, and Δ𝑄3𝑆𝑐𝑜𝑟𝑒  are the changes in the average EvoEF2 energy, 

percent of buried residues, and secondary structure Q3 score, respectively, between the structures produced 

by the old and new weight sets. If the new weighting parameter increased the value of 𝐸𝑎𝑐𝑐𝑒𝑝𝑡 , the weights 

were accepted. Once the initial weights for each energy term were determined, many more iterations were 

conducted to precisely fine-tune their values based on Eq. (2) as well as by hand inspection of the structures. 

Although time-consuming, the process of directly optimizing the weights based on the results of the folding 

simulations resulted in high quality scaffolds with physical characteristics that resembled native proteins. 

 

Molecular dynamics simulations for examining fold stability. To examine the stability of the FoldDesign 

scaffolds, we performed MD simulations starting from the designed structures. For each simulation, a 

dodecahedron box was constructed with a distance of 10 Å from the solute and filled with TIP3P water 

molecules, where Na+ and Cl- ions were used to neutralize the charge of the system. Following this, energy 

minimization was carried out using steepest descent minimization with a maximum force of 10 kJ/mol. The 

system was then equilibrated at 300 K using 100 ps NVT simulations and 100 ps NPT simulations with 

position restraints (1000 kJ/mol) on the heavy atoms of the protein. After the two equilibration phases, the 

system was well-equilibrated at the desired temperature and pressure, and unconstrained MD simulations 

were performed at 300 K for 20 ns. During the simulations, non-bonded interactions were truncated at 12 
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Å and the Particle Mesh Ewald methods was used for long-range electrostatic interactions. Lastly, the 

velocity-rescaling thermostat and Parrinello-Rahman barostat were used to couple the temperature and 

pressure, respectively. 1000 structures were collected from the MD trajectories during the final nanosecond 

of the simulations. This ensemble was then clustered using the GROMOS method with an RMSD cutoff of 

2 Å, and the final MD structure for each simulation was collected from the cluster center.  
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Tables 
 

Table 1. Comparison of the Q3 scores for the structures produced by FoldDesign and Rosetta on 

the 354 test secondary structure topologies. Here, the Q3 score is defined as the fraction of 

positions in the designed structures whose secondary structures were identical to the input 

secondary structures. The results are further separated based on the fold type (α, β, and α/β) and 

the p-values were calculated using paired, two-sided Student’s t-tests. 

 

Method 
Q3 Score All 

(p-value) 

Q3 Score α-proteins 

(p-value) 

Q3 Score β-proteins 

(p-value) 

Q3 Score α/β-proteins 

(p-value) 

FoldDesign 0.877 (*) 0.934 (*) 0.863 (*) 0.875 (*) 

Rosetta 0.833 (1.7E-08) 0.828 (5.4E-05) 0.829 (0.10) 0.835 (4.5E-06) 
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Figures 
 

 
 

Figure 1. Overview of the FoldDesign pipeline. Starting from a user-defined secondary structure 

topology as well as any further design constraints such as inter-residue contacts or distances, 

FoldDesign identifies 1-20 residue structural fragments from the PDB with secondary structures 

that match the input constraints. These fragments are then assembled together along with 10 other 

conformational movements during the replica-exchange Monte Carlo folding simulations under 

the guidance of a sequence-independent energy function that accounts for the fundamental forces 

that underlie protein folding. The lowest energy structure produced during the folding simulations 

is selected for further atomic-level refinement by ModRefiner to produce the final designed 

structure. 
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Figure 2. Importance of the auxiliary conformational movements. A) Energy distributions for the 

designs produced by the FoldDesign simulations using the full movement set and using only 

fragment assembly. B) Simulation time required versus protein length for FoldDesign using the 

full movement set and fragment assembly alone. C-D) Two representative case studies that 

demonstrate the dynamics of the folding simulations without (C) and with (D) the auxiliary 

movements. The y-axis displays the TM-score between the decoy at REMC cycle i compared to 

the decoy at cycle i-1.  
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Figure 3. Comparison of the physical characteristics and energies for the designed folds by 

FoldDesign and Rosetta on the 354 test proteins, where the sequence for each scaffold was 

designed by EvoEF2 and RosettaFixBB, respectively. The native designation represents the 

proteins from which the secondary structures of the designed folds were derived. A) Proportion of 

buried residues is plotted for each protein, where a buried residue was defined as having a relevant 

solvent accessible surface area <5%. B) Solvent accessible surface area (SASA) for each protein 

in the test set and those generated by FoldDesign and Rosetta. C-D) Energies for each protein 

calculated by GOAP and ROTAS. 
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Figure 4. Analysis of the FoldDesign and Rosetta scaffolds using molecular dynamics (A-B) and 

protein structure prediction by AlphaFold2 (C-D). A-B) TM-scores of the FoldDesign and Rosetta 

scaffolds relative to their final structures following 20 ns MD folding simulations, where the 

sequence for each scaffold was designed by EvoEF2 (A) and RosettaFixBB (B). C-D) TM-scores 

of the FoldDesign and Rosetta scaffolds relative to the structures predicted by AlphaFold2 starting 

from the EvoEF2 (C) and RosettaFixBB (D) sequences designed for each scaffold. E) TM-score 

distribution between the FoldDesign structures and their closest native analogs obtained by 

searching the designed scaffolds through the PDB using TM-align. 
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Figure 5. Examples of stable, well-folded FoldDesign scaffolds as assessed by molecular 

dynamics (A) and AlphaFold2 (B), where the sequences for each scaffold were designed by 

EvoEF2. A) The initial FoldDesign structures (yellow) superposed with the final MD structures 

(blue). B) The FoldDesign scaffolds (yellow) superposed with the AlphaFold2 models (blue). 
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