

1 **Foxe1 orchestrates thyroid and lung cell lineage divergence in mouse stem cell-
2 derived organoids.**

3 Barbara F. Fonseca¹, Cindy Barbée¹, Mirian Romitti¹, Sema Elif Eski¹, Pierre Gillotay¹,
4 Daniel Monteyne², David Perez Morga², Samuel Refetoff³, Sumeet Pal Singh¹, Sabine
5 Costagliola^{1*}

6

7 1-Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire,
8 Université Libre de Bruxelles, Brussels, Belgium

9 2-Laboratory of Molecular Parasitology, IBMM & Center for Microscopy and Molecular
10 Imaging, Université Libre de Bruxelles, Brussels, Belgium

11 3-Departments of Medicine, Pediatrics and Committee on Genetics, The University of
12 Chicago, Chicago, IL, USA

13 * **Corresponding author** : sabine.costagliola@ulb.be

14

15 **Keywords:** thyroid, lung, Foxe1, embryonic stem cells

16

17 **Highlights**

18 - Forward programming of mESCs with transient Nkx2-1 and Pax8 overexpression,
19 followed by c-AMP treatment, leads to differentiation of functional thyroid follicles *in*
20 *vitro*;

21 - In absence of Foxe1, thyroid follicle-like structures, derived from mESCs, are scarce
22 and non-functional;

23 - Concomitantly, a subset of Nkx2-1-expressing cells generated from Foxe1KO
24 mESCs spontaneously form lung organoids containing multiple differentiated lung cell
25 types;

26 - ATACseq analyses show higher chromatin remodeling in Nkx2-1-expressing cells in
27 control compared to Foxe1KO cells, especially for genes involved in thyroid maturation
28 and maintenance of the 3D structure of the follicle.

29

30 **Summary**

31 Patterning of endoderm into lung and thyroid lineages depends upon a correct early
32 expression of a homeobox domain-containing transcription factor, Nkx2-1. However,
33 the gene networks distinguishing the differentiation of those lineages remain largely
34 unknown. In the present work, by using mouse embryonic stem cell lines, single-cell

35 RNA sequencing, and transcriptomic and chromatin accessibility profiling, we show
36 that knockout of Foxe1 drastically impairs Nkx2-1+ cells differentiation and maturation
37 into thyroid follicular-like cells. Concomitantly, a subset of Foxe1 null/Nkx2-1+ cells
38 have a remarkable ability *in vitro* to undergo a lung epithelial differentiation program
39 and form lung-like organoids harboring cells transcriptionally similar with mouse fetal
40 airway and alveolar cell types. These results demonstrate, for the first time, lung
41 lineage derivation at the expense of thyroid lineage, by a simple removal of a
42 transcription factor, and provide insights into the intricated mechanisms of fate
43 decisions of endodermal cell types.

44

45 **Introduction**

46 Embryonic development comprises a stepwise progression towards restriction
47 of cell potentiality and acquisition of a differentiated cellular state. There are various
48 molecular mechanisms controlling cell fate commitment, involving cellular response to
49 extracellular cues, chromatin remodeling and transcription factors activation of
50 lineage-related cis-regulatory regions. Unveiling the molecular events triggering
51 lineage decisions is not only crucial to understand the biology behind those
52 phenomena but also to allow *in vitro* cell engineering, which is a potential avenue for
53 disease modeling and regenerative applications in medicine.

54 During endoderm organogenesis, the space and time coordinated expression
55 of transcription factors such as Sox2, Cdx, Foxa2, Hhex, Pdx1, among others, patterns
56 the endoderm layer into more specific cell lineages (Kraus and Grapin-Botton, 2012;
57 Zorn and Wells, 2009). For thyroid and lung derivation, for example, it is broadly known
58 that the homeodomain-containing factor *Nkx2-1* (also called thyroid transcription factor
59 1; *Ttf-1*), is the first gene for which expression is detected in specific domains of the
60 ventral anterior foregut endoderm, where the thyroid and lung primordia arise around
61 embryonic days 8-9 during mouse embryogenesis (Cardoso and Lu, 2006; Lazzaro et
62 al., 1991). In addition, *Nkx2-1* expression is observed throughout lung and thyroid
63 embryonic and adult life. Therefore, it is not surprising that NKX2-1 gene mutations, in
64 humans and mice, engender a variety of thyroid and pulmonary abnormalities, as well
65 as neurological defects (Butt et al., 2008; Herriges and Morrisey, 2014; Willemse et
66 al., 2005).

67 Besides the requirement of *Nkx2-1* signaling for both thyroid and lung lineages,
68 the molecular pathways leading to their specification are still poorly understood. For

69 this reason, in early directed differentiation protocols to derive thyroid/lung lineages
70 from mouse embryonic stem cells (mESC), a dual generation of thyroid/lung Nkx2-1
71 progenitor cells was obtained (Longmire et al., 2012). The better understanding of the
72 different requirements for Fgf and Wnt pathways activation was key to separately drive
73 each lineage in mESCs, after an *in vitro* step of anterior foregut specification (Dame
74 et al., 2017; Kurmann et al., 2015; Mou et al., 2012; Serra et al., 2017). More recent
75 reports are helping to shed light on the early stages of thyroid and lung organogenesis
76 (Haerlingen et al., 2019; Ikonomou et al., 2020; Rankin et al., 2021; Vandernoot et al.,
77 2021). Overall, those data indicate an intricate relationship among thyroid/lung
78 lineages, at early stages of mammalian development.

79 At the time of thyroid specification, besides Nkx2-1, cells from thyroid anlage
80 are identified by the restricted expression of three other transcription factors: Pax8,
81 Hhex and Foxe1 (López-Márquez et al., 2021). According to proposed mechanisms
82 for thyroid specification (Parlato et al., 2004), the onset of Foxe1 expression is
83 downstream to those cited players and Foxe1 (also called thyroid transcription factor
84 2; Ttf-2) is key to the induction of more thyroid-restricted markers, such as
85 *Thyroglobulin* and *Thyroperoxidase* (*Tpo*) (Aza-Blanc et al., 1993; Francis-Lang et al.,
86 1992; López-Márquez et al., 2019; Santisteban et al., 1992). Foxe1 is a member of
87 the Forkhead family, a group of transcription factors classically involved in endoderm
88 lineage decisions, acting directly to induce the transcription program of a particular cell
89 lineage but also potentially repressing alternative cell fates (Golson and Kaestner,
90 2016; Li et al., 2016; Sekiya and Suzuki, 2011; Zaret and Carroll, 2011). Interestingly,
91 at the stage of thyroid/lung lineages commitment in the anterior foregut endoderm,
92 *Foxe1* is expressed throughout the anterior foregut domain but it is specifically absent
93 in the lung primordium (De Felice and Di Lauro, 2004; Kuwahara et al., 2020),
94 suggesting that *Foxe1* expression in this region is not compatible with the correct lung
95 lineage establishment.

96 In the present work, we investigated the role of Foxe1 in the differentiation of
97 thyroid lineage and asked whether Foxe1 absence can influence lineage decision of
98 Nkx2-1+ progenitors *in vitro*. For this, we used our mESC-based model, in which
99 thyroid differentiation is induced by Nkx2-1 and Pax8 transient overexpression and
100 formation of functional thyroid follicle-like structures is obtained by recombinant TSH
101 treatment (Antonica et al., 2012; Romitti et al., 2021). Here we show that, without
102 Foxe1, Nkx2-1+ precursors fail to form polarized and mature thyroid follicular cells

103 whereas a large subset of Nkx2-1+ cells are able to diverge to an alternative lineage
104 pathway, giving rise to multiple lung cell types *in vitro*.

105

106 **Results**

107

108 **Foxe1 is required for thyroid development *in vitro***

109 Seminal works have previously shown that Foxe1 depletion/misfunction in the
110 thyroid gland results in various thyroid defects, from the deregulation of key players
111 involved in thyroid hormone production pathway up to the agenesis of the gland
112 (Clifton-Bligh et al., 1998; De Felice et al., 1998; Fernández et al., 2013). To further
113 investigate the role of Foxe1 in thyroid follicular cells and to validate our mESC-derived
114 thyroid organoid model to study genes causing hypothyroidism, we mutated Foxe1
115 loci in mESCs derived from our previously established transgenic line (A2lox-Nkx2-1-
116 Pax8 line). In this line, transient overexpression of Nkx2-1 and Pax8, followed by 2-
117 weeks treatment with hTSH/ or c-AMP analogues, yields self-organized thyroid
118 follicles that secrete T4 hormone *in vitro* with high efficiency (Antonica et al., 2012)
119 (Figure 1A-B). In addition, differentiation efficiency can be visually assessed using an
120 EGFP transgene inserted into the hypoxanthine phosphoribosyltransferase (HPRT)
121 locus of mESC lines under the control of a bovine-responsive thyroglobulin (Tg)
122 promoter (Romitti et al., 2021).

123 To obtain Foxe1 knockout (KO) lines, Foxe1 loci were edited using TALEN
124 technology and clones selected contained mutations that resulted in a premature stop
125 codon (Figure S1A). After validation of the Foxe1KO lines with respect to maintenance
126 of mESC pluripotency and responsiveness to the Nkx2-1/Pax8 tetracycline-inducible
127 cassette (Figure S1B-C), control and Foxe1KO lines were subjected to the
128 differentiation protocol (Figure 1B). Three days after doxycycline treatment (day 7 of
129 differentiation protocol), control and Foxe1KO lines are similarly efficient to activate
130 exogenous expression of the artificial Nkx2-1/Pax8 transgenes (Figure S2A). This
131 exogenous transgene expression leads to the activation of endogenous Nkx2-1 and
132 Pax8 loci (Antonica et al., 2012). All lines successfully achieved overexpression of the
133 endogenous loci of Nkx2-1 and Pax8. In contrast, the expression of Hhex and Foxe1
134 was drastically decreased in Foxe1KO cells (Figure S2A).

135 At the end of the differentiation protocol (Figure 1B), the effect of Foxe1
136 depletion during thyroid formation *in vitro* was clearly observed. First, we detected, by

137 RT-qPCR, a strong reduction in mRNA levels of many thyroid-related genes (Figure
138 S2B). Moreover, the number of thyroid follicles formed in the absence of Foxe1 was
139 greatly reduced compared with the control line (Figure 1C). Although the formation of
140 scarce one-cell layer follicular structures could still be detected, protein expression of
141 transporters essential for thyroid maturation and function, such as the sodium/iodide
142 symporter Nis (Slc5a5), was drastically reduced (Figure 1D). Finally, thyroid follicles
143 from the control line displayed proper iodination of Tg (Figure 1E) and high uptake of
144 radioactive iodide and iodide binding to Tg, whereas these processes were absent in
145 Foxe1-depleted cells (Figure 1F). Because Tshr mRNA levels were drastically low in
146 the absence of Foxe1 (Figure S2B), we replaced the 2-weeks recombinant hTSH
147 treatment with a c-AMP analogue, as TSH ligands signal through the cAMP pathway
148 (Kimura, 2001). The cAMP treatment produced similar results regarding thyroid-
149 related gene expression and iodide organification *in vitro* (Figure 1F and S2B). Overall,
150 these results demonstrate the drastic effect of Foxe1 knockout on thyroid lineage
151 derivation *in vitro* and validate our mESC-model to investigate genes involved in
152 thyroid dysgenesis.

153

154 **Absence of Foxe1 promotes lung differentiation *in vitro***

155 Besides the impairment of thyroid generation in Foxe1KO mESCs, we observed
156 an additional, albeit striking, phenotype: the self-assembly of Nkx2-1-expressing cells
157 into epithelial structures with a morphology clearly different from thyroid follicles, in all
158 culture wells of Foxe1KO samples (Figure 2A). Because Nkx2-1 is involved in the
159 specification of another ventral foregut derivative, the lung (Cardoso and Lu, 2006;
160 Lazzaro et al., 1991), we wondered whether the appearance of these 3D structures
161 might indicate spontaneous generation of lung tissue in culture. By immunostaining
162 analyses at day 22, we observed that these Nkx2-1+ organoids indeed expressed
163 typical lung-related markers, such as Trp63/Krt5 (basal cells), Hopx (alveolar cells),
164 Muc5ac (goblet cells) and Scgb3a2 (club cells) (Figure 2B-E). In addition, upregulation
165 of lung-related transcripts was observed in Foxe1KO cells, as detected by RT-qPCR
166 (Figure S3A). Ultrastructural microscopy of these Foxe1KO-derived organoids
167 revealed the presence of bronchiole-like structures and cells exhibiting the morphology
168 of typical lung cell types, such as multiciliated cells, mucus-secreting cells (goblet
169 cells), and type 1 and 2 alveolar cells (Figure 2F and S3B-M). Altogether, these results

170 suggest that branched lung structures are formed from Foxe1-depleted mESCs,
171 extending from airway components to the alveolar-like cells.

172

173 **Characterization of Foxe1KO-derived thyroid and lung cell populations at the**
174 **single-cell resolution**

175 The observation that Foxe1 depletion in mESCs results in a decreased thyroid
176 cells generation and the appearance of multiple lung-related cell types, prompted us
177 to better characterize the cell population derived from Foxe1KO cells, by scRNASeq.
178 For this, we first designed Nkx2-1 reporter lines, allowing easier identification and
179 isolation of thyroid and lung cell types. A mKO2 fluorescent tag was inserted into the
180 3' end of the endogenous Nkx2-1 loci of the control A2lox-Nkx2-1-Pax8 line (Figure
181 S4A-C). The reporter fluorescence could be visualized by microscopy and flow
182 cytometry (Figure S4D-E). Foxe1KO/Nkx2-1 reporter lines were created and
183 differentiated using our differentiation protocol (Figure S4F-I). The same Foxe1KO
184 phenotype (i.e., disruption of thyroid function and appearance of lung-like organoids)
185 was observed in these new lines (Figure S5).

186 For the single cell profiling of Foxe1KO cells, we enriched by FACS three cell
187 populations: Nkx2-1/mKO2+/bv Tg prom/EGFP+ (15%), Nkx2-1/mKO2+/bv Tg
188 prom/EGFP- (50 %) and Nkx2-1/mKO2- (35%) (Figure 3A and S6A). A total of 12000
189 cells were profiled for scRNA-seq using the droplet-based assay from 10xGenomics
190 system. After quality control, we obtained 7523 cells. The profiled cells could be
191 divided into 12 clusters composed of Nkx2-1+ cells (i.e. Thyroid1, Thyroid2, Lung1,
192 Lung2, Nkx2-1+Pax8- 1, Nkx2-1+Pax8- 2) and Nkx2-1 negative cells (i.e. Epithelial
193 cells, Prolif. epithelial cells, Basal Epithelium, Pluripotent cells, Mesenchymal cells)
194 (Figure 3B). Gene Ontology and literature mining were used to characterize the
195 clusters based on top differentially expressed genes (Figure S6B-C). Among Nkx2-1
196 negative cells, epithelial-like cells are found in three clusters (702 broad Epithelial
197 cells, 244 Prolif. Epithelial cells and 123 Basal epithelial cells). 1411 pan-
198 mesenchymal cells (Mesenchymal cells cluster), 280 cells expressing endoderm
199 markers (Endoderm cluster) and a remaining pluripotent cell population were also
200 found (Pluripotent cells cluster, 520 cells).

201

202 **Single cell RNA-seq analysis reveals that Foxe1KO cells lack functional thyroid**
203 **transcripts and evidences aberrant Nkx2-1+ cells**

204 Six clusters in Foxe1KO sample consist of cells expressing Nkx2-1. Thyroid 1
205 (722 cells) and Thyroid 2 (947 cells) clusters exhibit a typical thyroid signature
206 characterized by the expression of *Pax8*, *Hhex*, and *Tg* (Figure 3B-C and SB-D). Note
207 that expression of mature markers such as *Tpo*, *Slc5a5*, and *Duox2* is completely
208 absent, while *Tshr* levels are low, supporting our previous results (Figure 3D and S6B-
209 D). Among those thyroid clusters, the normalized average expression of *Pax8*, *Hhex*
210 and *Tg* appears to be lower in Thyroid 2 than in Thyroid 1 group. In addition, Thyroid
211 2 cell group lacks expression of *Epcam* and *Cdh1* (Figure 3E and S6B-D). Since E-
212 cadherin expression is maintained throughout thyroid morphogenesis *in vivo* (Fagman
213 et al., 2003), this finding suggests that Thyroid 2 cells are abnormal *in vitro*-derived
214 thyrocytes not organized into follicular units.

215 We also identified two additional cell clusters characterized by strong *Nkx2-1*
216 but absent *Pax8* expression (Nkx2-1+/Pax8- 1 and Nkx2-1+/Pax8- 2 clusters, with 843
217 and 489 cells, respectively). Their transcriptomic signature suggest that they are
218 distinctly different from the thyroid and lung clusters. For example, they lack *Epcam*
219 and *Cdh1* expression but are instead enriched in mesenchymal-like markers such as
220 *Vim*, *Acta2* and *Col3a1* (Figure 3E). Gene Ontology analysis for these clusters show
221 enrichment in the "extracellular matrix/epithelial to mesenchymal transition" and
222 "glycolysis/hypoxia pathways", respectively (Figure S6C). Since mesenchymal-like
223 cells expressing Nkx2-1+ are not described during development, these cells likely
224 reflect part of an *in vitro* Foxe1KO phenotype, along with the appearance of lung tissue
225 *in vitro*. Interestingly, these cells do not express neural markers such as *Ascl1*, *Tubb3*,
226 *Pax6* and *Six3*, making it unlikely that they possess a Nkx2-1+ neural signature.
227 Finally, thyroid C cells also express *Nkx2-1* (Nilsson and Williams, 2016), but no co-
228 expression of *Calca*, *Foxa1* and *Foxa2* was observed in these cells (data not shown).
229

230 **Foxe1KO mESCs differentiate into multiple lung cell types harboring
231 transcriptomic signatures encountered in E17.5 embryonic mouse lung tissue**

232 Lung-related cells originated from Foxe1KO cells are present in the Lung 1 and
233 Lung 2 clusters (668 and 574 cells, respectively). To better define specific lung cell
234 types, and avoid contamination with thyrocytes, we computationally selected cells
235 expressing *Nkx2-1* and *Epcam*, but lacking *Tg* and *Pax8*, from the Foxe1KO dataset.
236 After re-clustering and assigning the cell populations, we identified eight different lung
237 subsets (Figure 4A). Cell types were identified using a signature score index based on

238 the top 20 marker genes expressed by several lung epithelial cell types found in the
239 scRNAseq dataset of E17.5 mouse lung tissue (Frank et al., 2019). Since this dataset
240 includes lung epithelial cells derived from murine alveolar and terminal bronchioles, a
241 literature mining was performed to define the signature score of basal cells found
242 mainly in the upper airways (Table S1). As a result, we identified cell populations with
243 a strong signature of secretory cells (cluster c), basal cells (cluster a), multiciliated
244 cells (cluster h), and a small group with a slightly enriched signature for alveolar type
245 1 (AT1) cells (cluster g). In addition, we identified a cluster enriched in both basal and
246 secretory markers (cluster d), representing cells transitioning from basal to secretory
247 cell fate (Figure 4A-B). Finally, we detected two clusters, b and f, that were highly
248 enriched in Sox9 and Igf1 transcripts, respectively (Figure 4B). These factors are
249 highly expressed in early lung development, with Sox9 specifically present in distal
250 bud cells (Nikolić et al., 2018).

251 With the purpose to better characterize Foxe1KO-derived lung cell types and
252 to test the degree of similarity with *in vivo* encountered lung cells, we performed
253 scRNAseq comparative analyses between the above cited E17.5 mouse lung dataset
254 and Foxe1KO-derived lung cells (Frank et al., 2019; Stuart et al., 2019) (Figure 4C-
255 D). To do this, we integrated *Nkx2-1+/Epcam+/Tg-/Pax8-* cells from the Foxe1KO
256 dataset with *Nkx2-1+/Epcam+* cells from the *in vivo* data. The analysis revealed a high
257 overlap among cells from the two datasets (Figure 4C). Furthermore, when we tested
258 for enriched signatures of multiple lung cell types based on the normalized average
259 expression of marker genes, we detected the presence of alveolar cells (AT1, AT2,
260 and AT2 precursors) in groups 0, 3 and 1, respectively, in both datasets (Figure 4D).
261 Ciliated and secretory cells were also identified, as shown in Figure 4B. Of note,
262 because the mouse fetal lung dataset is devoid of basal cells (Frank et al., 2019), this
263 particular lung cell type could not be addressed with this integrated analysis.

264 In summary, Foxe1 depletion abrogates the proper differentiation of thyrocytes
265 and instead allows the development of different lung cell types. In addition, the
266 Foxe1KO-derived lung cells are remarkably similar to the cells encountered *in vivo* in
267 terms of the transcriptomic signature of the major lung cell type markers.

268

269 **Chromatin accessibility analysis of Nkx2-1 expressing cells**

270 Our results show that depletion of Foxe1 abrogates proper differentiation of
271 Nkx2-1 cells into thyrocytes *in vitro* while leading to the appearance of lung cell types.

272 To identify potential molecular players involved in *Foxe1* action, we performed a
273 temporal analysis of the global chromatin accessibility of *Nkx2-1*-expressing cells,
274 using bulk ATACseq. To develop an optimal experimental procedure, we first
275 examined the kinetics of thyroid-related gene expression (e.g., *Nkx2-1*, *Foxe1* and *Tg*)
276 at key points of the protocol in control and *Foxe1*KO cells (Figure 5A-D). After induction
277 of the artificial *Nkx2-1*/Pax8 cassette between days 4 and 7, exogenous *Nkx2-1* mRNA
278 levels are dramatically reduced on day 8 and it is virtually abolished around day 11
279 (Figure 5A). Conversely, endogenous expression of *Nkx2-1* increases rapidly as of
280 day 7 and reaches a maximum at day 14 (Figure 5B). *Foxe1* is firstly induced by the
281 direct action of exogenous *Nkx2-1* and Pax8 at day 7, following a down-regulation on
282 days 7 and 9 (Figure 5C). A second wave of induction occurs from day 9 onwards,
283 likely due to the endogenous expression of *Nkx2-1*/Pax8, in conjunction with treatment
284 with c-AMP (Antonica et al., 2012; Ortiz et al., 1997). As expected, *Tg* mRNA levels
285 are very low in early stages of culture, but increase steadily after day 11, reaching the
286 highest level at the end of the protocol (Figure 5D). The temporal expression of these
287 thyroid markers is consistent with the expected pattern of thyroid differentiation genes
288 (Fernández et al., 2015; Romitti et al., 2021). These results suggest that events
289 important for thyroid specification *in vitro* occur before day 10, as high *Tg* levels are
290 observed after this time point. Coincidentally, the increase in *Foxe1* expression occurs
291 approximately one day before *Tg* expression.

292 Based on the kinetics of expression of lineage-specific genes, we decided to
293 isolate *Nkx2-1*+ cells in the control and *Foxe1*KO samples by FACS at day 10 to
294 identify early progenitors of the thyroid and lung lineages, and more differentiated cell
295 types at days 17 and 22. In addition, cells from day 4 and day 7, time points before
296 and after doxycycline treatment, respectively, were also profiled (Figure 5E). In total,
297 approximately 90,000 ATAC-seq peaks were obtained per sample, which were
298 distributed in different open genomic regions (Figure 5F). PCA analysis suggests a
299 gradual change in global chromatin accessibility that correlates with the timing of the
300 differentiation protocol (Figure 5G). Day 4 and day 7 samples are relatively more
301 similar to each other than the other late time points. In addition, no clear difference
302 between the control and *Foxe1*KO is observed at day 7. Since the time point at day 7
303 corresponds to the end of doxycycline treatment, this implies that exogenous induction
304 of *Nkx2-1* and Pax8 results in a similar open chromatin landscape in both lines.
305 ATACseq peaks originating from *Nkx2-1*+ cells (day 10, day 17 and day 22) show a

306 gradual chromatin remodeling after day 10, which becomes more evident at days 17
307 and 22 (Figure 5G-I).

308

309 **Enrichment in thyroid maturation markers in control Nkx2-1+ cells and the**
310 **identification of predicted Foxe1 target genes**

311 Our results suggest that the most striking differences in chromatin accessibility
312 between control and Foxe1KO are seen towards the end of the protocol (Figure 5G-
313 I). Using the Diffbind package for differential binding analyses between control and
314 Foxe1KO conditions, we identified more than 23547 genomic regions that are
315 differentially accessible at day 17 (19112 are up-regulated in control in comparison
316 with Foxe1KO and 4435 up in Foxe1KO versus control) (Figure 5H) and 14293 peaks
317 at day 22 (13500 up-regulated in control in comparison with Foxe1KO and 793 up in
318 Foxe1KO versus control) (Figure 5I). The number of opened chromatin regions in
319 control cells is 17-fold greater than in Foxe1KO cells at day 22, indicating an important
320 role for Foxe1 in opening specific chromatin domains that are otherwise silenced. Of
321 note, more than 60% of the up-regulated transcripts found in bulk RNAseq analyses
322 of the control line were associated with significant chromatin opening compared with
323 Foxe1KO (Figure 6A). Among them are most of the genes associated with the thyroid
324 gland, including essential genes for gland maturation and function, such as *Tshr*, *Tpo*
325 and *Duox2* (Figure 6B).

326 To reveal putative chromatin regions regulated by Foxe1, we applied a HOMER
327 custom motif search based on the human Foxe1 binding motif, from the Jaspar
328 database, on total peaks of day 22 control ATAC-seq datasets (Figure 6C-D). We
329 identified 107 genes, containing predicted Foxe1 binding motif, which are highly
330 transcribed and located in the neighborhood of significantly up-regulated ATAC-seq
331 peaks in the control condition (Figure 6C; Table S1). These included genes related to
332 thyroid hormone synthesis and Tsh regulation, such as *Tg*, *Pax8*, *Dusp2*, *Timp3* and
333 *Asgr1*, as well as various molecular players involved in endoderm development,
334 thyroid cell polarization, and follicle organization (Figure 6D). Overall, our ATAC-seq
335 results once again demonstrate the essential role of Foxe1 during thyroid
336 morphogenesis and function and, additionally, provided the identification of a number
337 of potential Foxe1 targets.

338

339 ***Cis-regulatory regions around lung-related genes are equally accessible in***
340 ***control and Foxe1KO Nkx2-1+ cells***

341 To investigate the gene regulatory networks enriched in Foxe1KO cells that
342 may drive lung fate, we performed motif enrichment analysis for peaks enriched in
343 Foxe1KO compared to control samples at day 22. We identified 793 peaks that were
344 upregulated in Foxe1KO compared with control samples. Analysis of the HOMER -
345 motif search revealed enrichment with Fos, AP-1 and Bach2 motifs, factors involved
346 in apoptotic cell death, hypoxia and oxidative stress (Figure 6E) (Machado et al., 2021;
347 Shaulian and Karin, 2002; Zhou et al., 2016). These results suggest that Foxe1 may
348 have a broad survival function for thyroid cells in addition to inducing thyroid
349 maturation genes.

350 A notable finding, however, was that none of the Foxe1KO upregulated peaks
351 found on ATACseq analysis were directly associated with classical markers of
352 differentiated lung cells. Indeed, the IGV plots in Figure 6F show that many cis-
353 regulatory regions of various lung markers are equally open between control and
354 Foxe1KO cells. Although we did not detect differences in chromatin accessibility for
355 these genes, RNA-seq analyses of sorted Nkx2-1 cells show that they are upregulated
356 at the level of mRNA expression in Foxe1KO, corroborating previous findings on lung
357 formation in Foxe1 depleted cells (Figure 6G).

358

359 **Discussion**

360 In the present study, we use our stem cell-based thyroid organoid model to
361 show that Foxe1 is required for the proper formation of thyroid follicular structures *in*
362 *vitro* and critically affects the number of thyroid follicular cells differentiated from
363 mESCs. Furthermore, in normal thyrocytes, we identified upregulated open chromatin
364 regions containing Foxe1 binding motifs that might be key players driving Foxe1
365 function. In addition to affecting thyroid differentiation, we show that a group of mESCs
366 in a Foxe1KO context is able to maintain Nkx2-1 expression and deviate to other
367 lineage possibilities, differentiating into lung cell types, *in vitro*.

368

369 **Foxe1 role in thyroid generation *in vitro***

370 Early thyroid development depends on the correct expression of the four major
371 transcription factors, Nkx2-1, Pax8, Hhex and Foxe1, in the thyroid primordium. Their
372 expression is responsible for the activation of the gene regulatory network leading to

373 thyroid differentiation and maintenance of the differentiation status in adulthood (De
374 Felice and Di Lauro, 2004; López-Márquez et al., 2021). Regarding Foxe1, Di Lauro
375 and coworkers have shown that although thyroid anlage is specified in the absence of
376 Foxe1, Foxe1-null embryos exhibit severe defects in thyroid morphogenesis as early
377 as E9.5, leading to complete disappearance of thyroid tissue around E11.5 or
378 persistence of a small, misplaced gland (De Felice et al., 1998). In humans,
379 homozygous mutations in Foxe1 loci lead to congenital hypothyroidism, due to severe
380 hypoplasia or complete agenesis of the thyroid gland (Clifton-Bligh et al., 1998). Our
381 results in the present work support the intrinsic role of Foxe1 in early thyroid
382 development, because in the absence of Foxe1, the number of polarized thyroid
383 follicles formed *in vitro* is drastically impaired. Moreover, the few thyroid follicular cells
384 that differentiate in the absence of Foxe1 are abnormal and lack signs of proper thyroid
385 maturation, as evidenced, for example, by the lack of *Nis* expression and Tg iodination.
386 Foxe1 is thought to act downstream of Nkx2-1, Pax8 and Hhex during thyroid
387 development, as the onset of Foxe1 expression occurs through the direct action of
388 Pax8, suggesting a hierarchy among thyroid transcription factors (López-Márquez et
389 al., 2021; Parlato et al., 2004). Indeed, we have shown that transient induction of
390 mESCs with Nkx2-1/Pax8 is sufficient to induce Foxe1 expression *in vitro* (Antonica
391 et al., 2012). The fact that Foxe1 is downstream in the gene regulatory network for
392 thyroid specification might explain why follicle-like cells are still present in the absence
393 of Foxe1, even if they are scarce and non-functional.

394 One of the proposed mechanisms of Foxe1 action on thyroid morphogenesis is
395 the direct regulation of genes critical for thyroid maturation and function. In
396 differentiated thyroid follicular cells, Foxe1 is involved in TSH-mediated regulation of
397 *Tg* and *Tpo* expression and Foxe1 binding sites have been described in the promoters
398 of these genes (Aza-Blanc et al., 1993; Francis-Lang et al., 1992; López-Márquez et
399 al., 2019; Santisteban et al., 1992). Foxe1 can also bind directly to cis-regulatory
400 regions of *Nis/Slc5a5* and *Duox2* (Fernández et al., 2013). In the present work, we
401 show that the expression of many thyroid functional genes is impaired in the absence
402 of Foxe1, confirming these previous reports. No cells expressing *Nis*, *Tpo* and *Duox2*
403 were identified by scRNASeq analyses of Foxe1KO cells. Integrated bulk ATAC/RNA-
404 seq analyses showed that reduction in expression of genes involved in thyroid
405 maturation might be associated with silencing of many cis-regulatory regions, including
406 at their promoters. Interestingly, there are 17-fold more opened chromatin regions in

407 Nkx2-1+ control cells compared with Foxe1KO/Nkx2-1+ cells, indirectly supporting the
408 view that Foxe1 has an impact on chromatin remodeling in thyrocytes. Although our
409 experiments were not designed to explore this aspect, the function of Foxe1 as a
410 pioneer factor, well described for other members of the Forkhead family of
411 transcription factors (Zaret and Carroll, 2011), has previously been suggested in
412 relation to its ability to bind the compacted chromatin around the inactive *Tpo* promoter
413 (Cuesta et al., 2007).

414 In addition, we identified novel genomic targets of Foxe1 by direct comparison
415 analyses between Foxe1-depleted and control Nkx2-1-expressing cells. *In silico*
416 prediction of Foxe1 binding motifs in up-regulated genes at the level of RNA
417 expression and chromatin accessibility revealed 107 potential targets of Foxe1,
418 including *Pax8* and *Tg* (Francis-Lang et al., 1992). Other targets identified included
419 genes involved in proper thyroid function and TSH receptor activity or deregulated in
420 thyroid cancer, such as *Lrp2/Megalin* (Marinò and McCluskey, 2000), *DREAM/Kcnip3*
421 (Andrea et al., 2005), *Timp3* (Zarkesh et al., 2018), *Slc26a7* (Dom et al., 2021) and
422 *Bcl-2* (Fagman et al., 2011; Porreca et al., 2012). Moreover, Foxe1 binding motifs were
423 also found in genes related to the maintenance of follicle structure, the expression of
424 various membrane-bound transporters, and the regulation of cell-matrix adhesion. In
425 summary, the present study sheds light on novel molecular players essential for
426 thyroid development and homeostasis. Ultimately, our thyroid stem cell-derived
427 organoid system proved to be a powerful model for such analyses because 1, it is an
428 *in vitro* model, so obtaining an adequate amount of cells is not as limited as *in vivo*; 2,
429 growing differentiated thyrocytes in 3D, to generate polarized follicular structures,
430 allows the correct localization and signaling of factors involved in the thyroid hormone
431 synthesis machinery, and therefore the screening of new modulators of thyroid
432 function may be more representative.

433

434 **Lung generation *in vitro*, in the absence of Foxe1**

435 Besides the disruption of thyroid lineage formation in Foxe1KO cells, we
436 additionally observed the formation of Nkx2-1+ organoids that lack Pax8 expression
437 and are morphologically distinct from our stem cell-derived thyroid follicles.
438 Considering that Nkx2-1, in endoderm-derived tissues, is also present in embryonic
439 and adult lung cells (Herriges and Morrisey, 2014; Lazzaro et al., 1991; Nikolić et al.,
440 2018), we hypothesize that permissive signals for lung differentiation occurred in the

441 context of Foxe1 depletion. Indeed, these Nkx2-1+ organoids possess numerous
442 markers of airway cell types. Basal lung cells, for example, could be identified in
443 Krt5+/Sox2+/Trp63+/Nkx2-1+ cystic organoids. Other airway-like organoids are
444 organized as branched structures and consist of a Sox2+ single-layered epithelium
445 containing goblet-like cells that secrete mucus in the luminal space. Finally,
446 characterization of lung organoids by scRNAseq revealed the presence of alveolar-
447 like cells, which confirmed our ultrastructural microscopic analyses. Overall, in the
448 absence of Foxe1 and using the same protocol to induce thyroid lineage, a large
449 subset of mESCs can diverge to a lung fate and differentiate into a mixture of alveolar
450 and airway-derived cell types, with the latter being more prevalent.

451 Nkx2-1 is the earliest known marker of respiratory fate. As thyroid, future lung
452 progenitors are derived from the ventral anterior foregut endoderm, posterior to the
453 thyroid field, and the onset of lung differentiation can be detected by the expression of
454 Nkx2-1 (Cardoso and Lu, 2006; Lazzaro et al., 1991). We speculate that in our current
455 model system, since we directly overexpress Nkx2-1 (and Pax8) without stepwise
456 restriction of lineage commitment, a subset of mESCs are more prone to activate a
457 lung differentiation program that is quiescent under control conditions, but the absence
458 of a key gene for thyroid differentiation leads to a lineage shift in these cells. Our study
459 supports the hypothesis of a certain level of fate plasticity of early Nkx2-1 progenitors
460 generated *in vitro*. Interestingly, an elegant study has recently demonstrated that a
461 subset of NKX2-1+ progenitors, derived from human pluripotent stem cells, can
462 deviate to alternative, non-lung endodermal cell fates (Hurley et al., 2020).

463 It is important to point out that our bulk ATAC-seq analyses suggest that at the
464 level of chromatin accessibility, the main differences between Foxe1KO and control
465 Nkx2-1+ cells are mainly due to an enrichment of a thyroid differentiation program
466 towards the end of the differentiation protocol: cis-regulatory regions of genes such as
467 *Tg*, *Tshr*, *Tpo*, *Duox2*, *Duoxa2* are significantly more open in control versus Foxe1KO-
468 Nkx2-1+ cells. On the other hand, the chromatin state around genomic locations of
469 lung-typical genes, including promoter regions, appears to be equally open in both
470 conditions, even if these genes are more highly expressed in Foxe1KO Nkx2-1+ cells.
471 Two hypotheses can be inferred from these results: 1, Many known lung markers,
472 such as *Sftpb*, *Scgb1a1*, *Napsa*, *Ager*, *Aqp5*, and *Sox9*, are also expressed to some
473 extent in thyroid, so it makes sense that chromatin accessibility does not differ
474 substantially between these cells for these genes (Dame et al., 2017; Silberschmidt et

475 al., 2011; and our scRNAseq). Further differential analyses throughout mouse
476 development are needed to better understand the role of these genes in a thyroid
477 context (Ikonomou et al., 2020; Mou et al., 2012). 2, By default, mESC-derived Nkx2-
478 1 cells may have some potential to give rise to lung cells. Depletion in Foxe1
479 expression would allow this potential to be unleashed. It is interesting to see that, in
480 our results, the global chromatin accessibility of *in vitro* Nkx2-1 progenitor cells is very
481 similar at early stages (day 10), suggesting a direct role of transient overexpression of
482 Nkx2-1 and Pax8 in triggering both thyroid/lung programs. Such an event of
483 concomitant generation of two endodermal lineages has been demonstrated earlier in
484 the direct lineage conversion of fibroblasts to liver and large intestine cells, following
485 overexpression of Foxa1 (Morris et al., 2014).

486 Finally, we must emphasize that although Pax8 is also forcibly expressed by
487 doxycycline treatment, we do not assume that Pax8 directly mediates the induction of
488 lung fate in our model, which is supported by *in vivo* evidence showing that Pax8 is
489 not expressed in the lung during mouse embryogenesis (Kurmann et al., 2015; Mou
490 et al., 2012). Pax8 is rapidly downregulated in Foxe1KO cells, while Nkx2-1
491 expression, albeit less pronounced than under control conditions, is maintained
492 throughout the protocol. Moreover, no derivation of thyroid or lung is achieved in
493 Pax8KO mESC lines (data not shown). In other words, simple removal of another key
494 transcription factor for thyroid differentiation did not result in the appearance of a lung
495 instead of a thyroid, as is the case in Foxe1. Nevertheless, we speculate that in the
496 case of Pax8 loss of function in mESCs, activation of high endogenous Nkx2-1 levels
497 is less successful, suggesting that Pax8, in our model (Antonica et al., 2012), helps to
498 increase Nkx2-1 expression in the first days, and thus Pax8 might be indirectly
499 involved in the initiation of a lung program *in vitro*.

500 In conclusion, the present work improves our understanding of the crucial role
501 of Foxe1 in triggering correct thyroid tissue formation and function, and points to novel
502 molecular players for further research. On the other hand, this report also evidences
503 the intricate relationships among endodermal lineages, as it seems to be the case for
504 thyroid and lung, especially during differentiation. Whether transient thyroid/lung
505 bipotent progenitors do exist *in vivo*, in a similar phenomenon observed during liver
506 and pancreas lineage derivation for example (Deutsch et al., 2001; Xu et al., 2011),
507 would be an interesting avenue for further investigations. We speculate that Foxe1
508 could be one of the factors orchestrating this lineage choice.

509

510 **Limitations of the study**

511 From our knowledge, the present manuscript is the first to demonstrate lung
512 lineage derivation at the expense of thyroid lineage, due to the absence of a
513 transcription factor. However, additional work is required to fully explore those
514 interesting findings. Although our ATACseq analysis aided to unveil some aspects
515 towards thyroid biology, the same is not possible to conclude regarding lung
516 generation in the absence of Foxe1. The heterogeneity of Foxe1KO-derived cells,
517 associated with the low resolution of bulk ATAC-seq transcriptomics, may have
518 hampered the scrutiny of this aspect. The use of new tools such as scATACseq may
519 be necessary in the future. Moreover, the investigation of the developmental
520 competence of early progenitors expressing Nkx2-1, in the gut tube, regarding their
521 chromatin state (Wang et al., 2015), is an interesting avenue for future research. Early
522 Nkx2-1 cells in the thyroid anlage are still difficult to obtain *in vivo* (Ikonomou et al.,
523 2020), but future technologies may aid in this aspect. Finally, the present study was
524 made entirely *in vitro*, and as such, contains the limitations inherent of this strategy.

525

526 **Acknowledgements**

527 We acknowledge the ULB flow cytometry platform (Christine Dubois), the ULB
528 genomic core facility (F. Libert and A. Lefort), LiMIF platform for confocal microscopy
529 (J.-M. Vanderwinden) and Veronique Janssens for lab management and technical
530 help. M. Saiselet for help with 10X genomics assay, D. Frank (University of
531 Pennsylvania) for providing scRNAseq metadata of mouse lung samples, H. Lasolle
532 for RNA-seq discussions, Y.Song for help in ATACseq analysis. Work in S.P.S.'s lab
533 is supported by MISU (34772792) and MISU-PROL (40005588) funding from the
534 FNRS and from Fondation Jaumotte-Demoulin. This work was supported in part by
535 grant DK15070 from The National Institutes of Health. USA, to SR.

536

537 **Author contributions:**

538 B.F., C.B., S.C designed the experiments and analyzed the data. M.R., S.P.S and
539 S.E.E. performed additional data analysis. B.F., C.B., M.R. generated genetic tools.
540 C.B., M.R. performed *in vitro* organification and C.B., P.G. confocal microscopy. B.F.,
541 S.P.S, S.E.E. analyzed scRNAseq data. B.F., S.P.S performed ATACseq analysis.
542 D.M. performed electron microscopy, D.P.M analyzed EM data, S.C. and S.R.

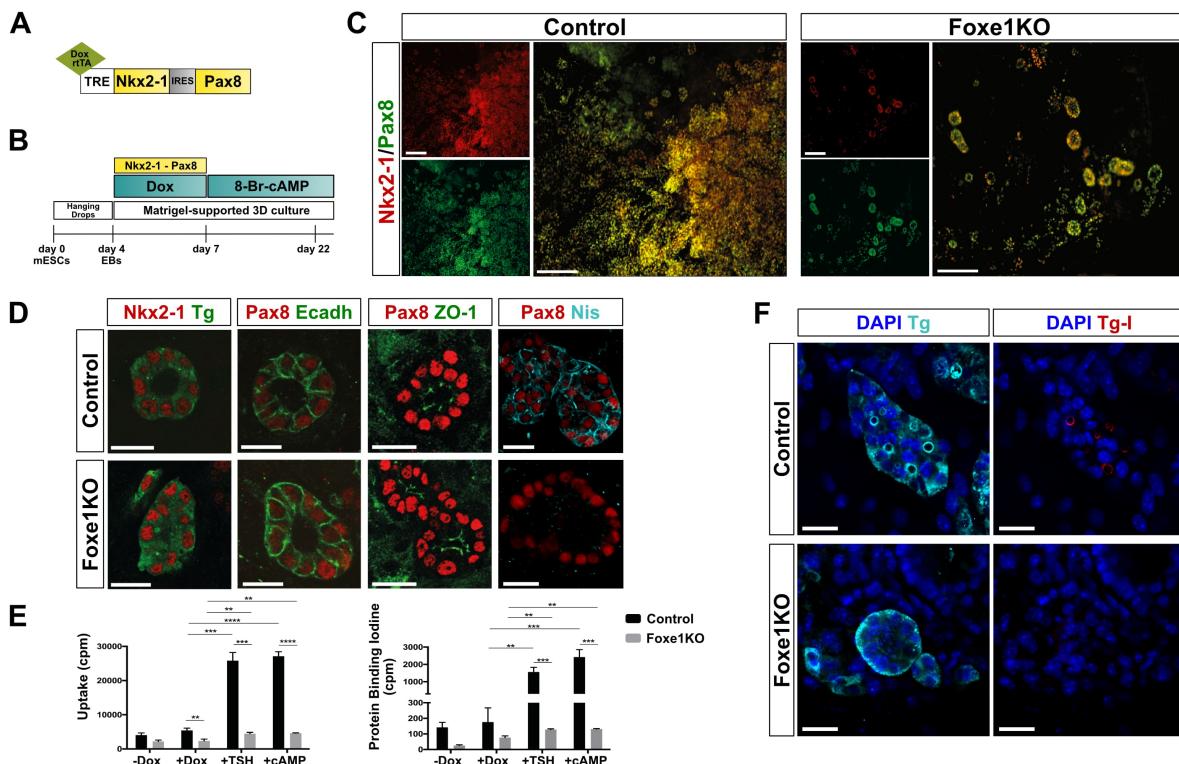
543 acquired funding for the project. B.F., S.C. wrote the manuscript and all authors read,
544 edited and approved the final manuscript.

545

546 **Funding**

547 This work was supported by grants from the Belgian National Fund for Scientific
548 Research (FNRS) (PDR T.0140.14; PDR T.0230.18), the Fonds d'Encouragement à
549 la Recherche de l'Université Libre de Bruxelles (FER-ULB), from Fondation Jaumotte-
550 Demoulin and it has received funding from the European Union's Horizon 2020
551 research and innovation programme under grant agreement No. 825745. B.F.F. and
552 S.R. were supported by grant DK15070 from The National Institutes of Health (USA).
553 C.B and S.E.E were supported by FNRS (Aspirant). M.R. was supported in part by the
554 Brazilian National Council for Scientific and Technological Development (CNPq);
555 Brazil, by FNRS (Chargé de Recherche) and grant agreement No.825745. P.G was
556 supported by FNRS (FRIA). Work in S.P.S.'s lab is supported by MISU (34772792)
557 and MISU-PROL (40005588) funding from the FNRS and from Fondation Jaumotte-
558 Demoulin. The Center for Microscopy and Molecular Imaging (CMMI) is supported by
559 the European Regional Development Fund and the Walloon Region S.C is Research
560 Director at FNRS.

561

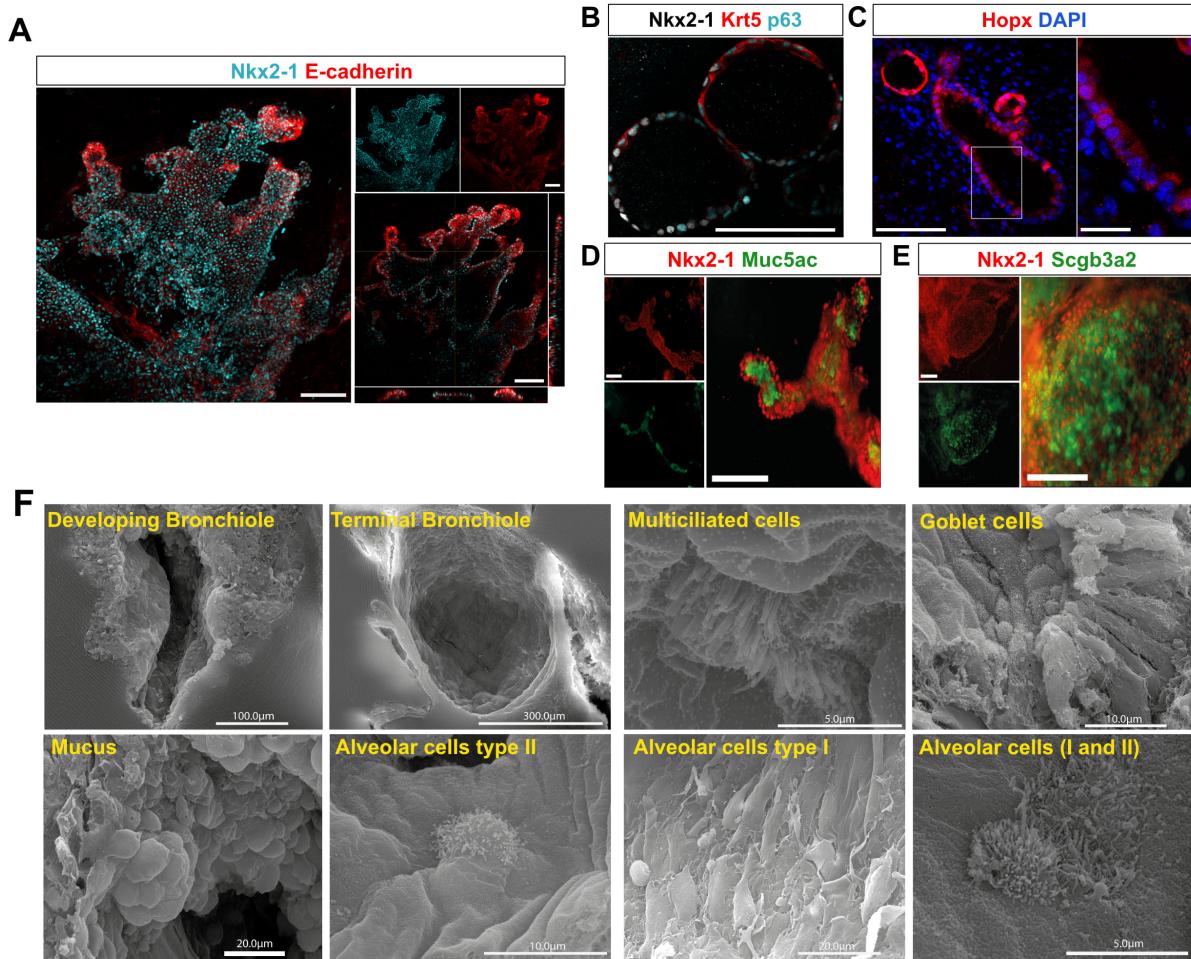

562 **Declaration of interests:** Authors declare that they have no competing interests.

563

564

565 Figure Titles and Legends

566

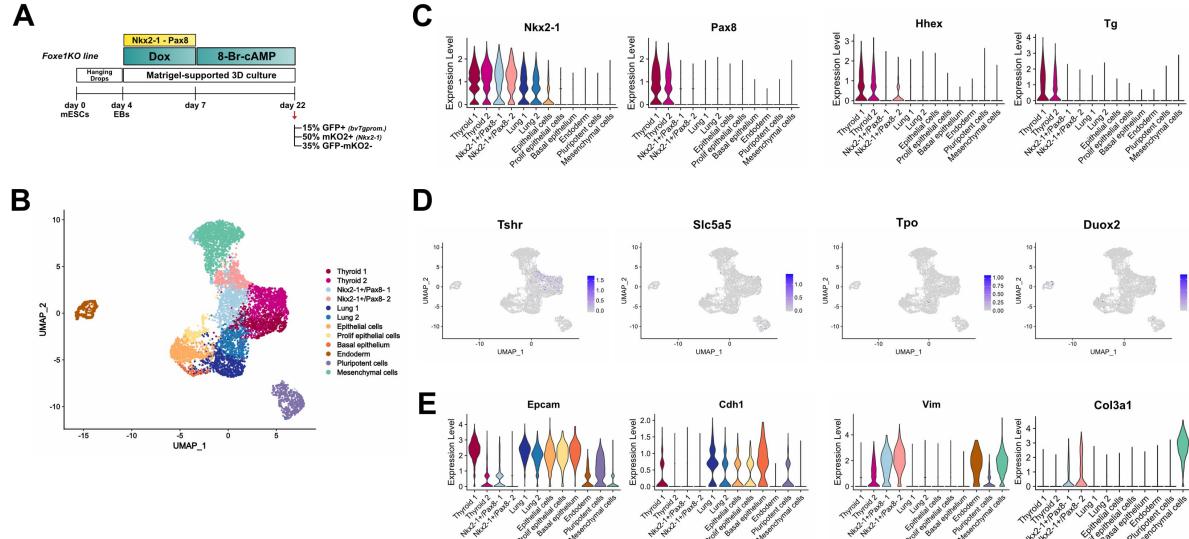


567

568 Figure 1. Foxe1 gene is required for efficient thyroid differentiation *in vitro*.

569 (A) Schematic representation of tetracycline-inducible cassette to drive co-expression
570 of Nkx2-1 and Pax8. (B), Diagram of the 22-days differentiation protocol for mESCs.
571 (C-F) Immunostaining and organification assays performed at day 22 of differentiation.
572 (C) Immunostaining of double positive Nkx2-1 and Pax8 thyroid follicles in control and
573 Foxe1KO cells. (D, E) Immunostaining of a panel of thyroid markers in control and
574 Foxe1KO cells (F) Iodide uptake and organification assays. Histograms represent the
575 radioactivity (Uptake-cpm) of the cell iodine-125 uptake (left) and the radioactivity of
576 protein-bound [¹²⁵I] (PBI-cpm) measured using a γ -counter (right). Unpaired t-test.
577 *P<0,05, **P<0,01, ***P<0,001. Scale bars: 150 μ m (C); 20 μ m (D, E). Tg:
578 thyroglobulin, Ecadh: Ecadherin, Tg-I: iodinated thyroglobulin.

579

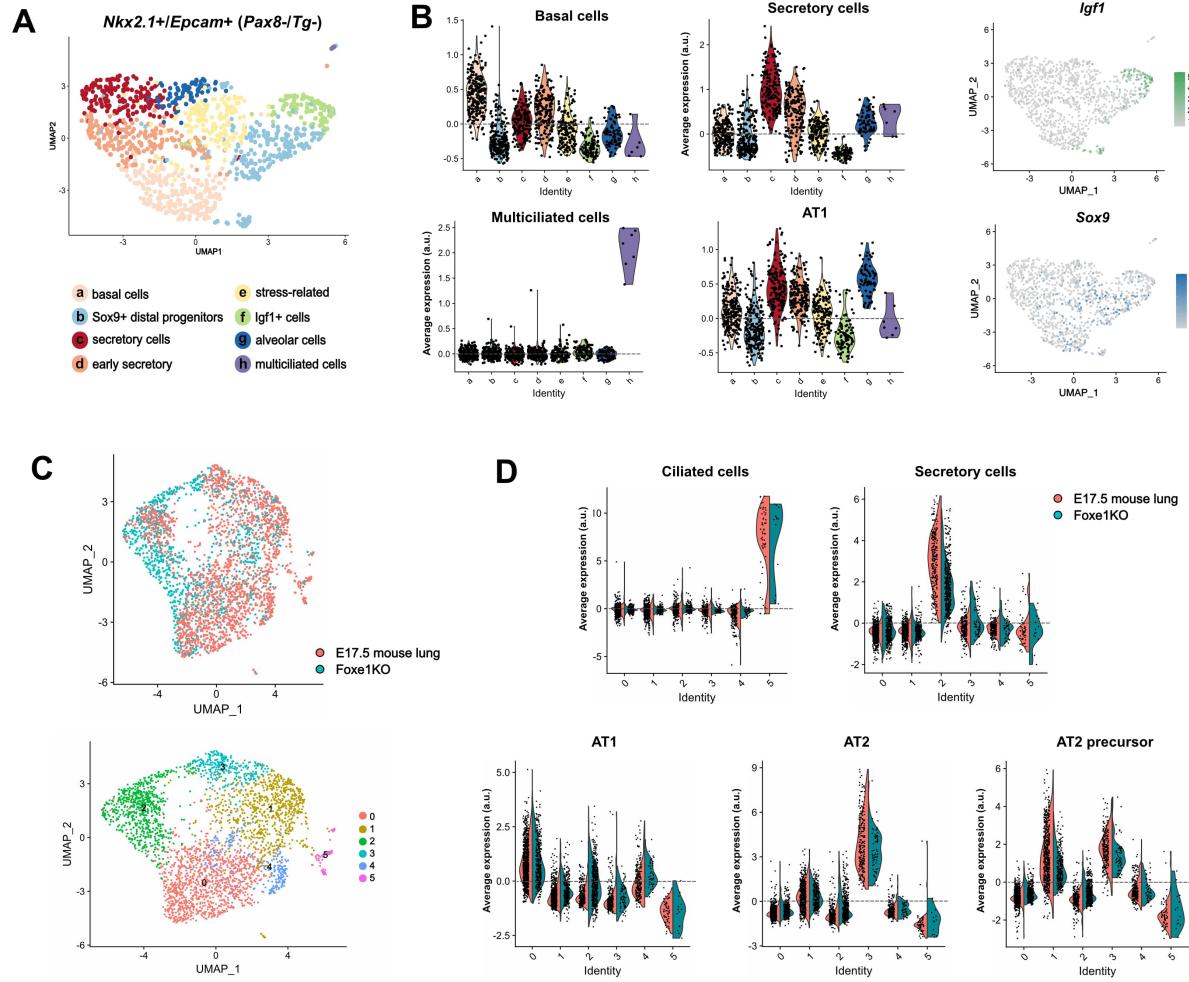


580

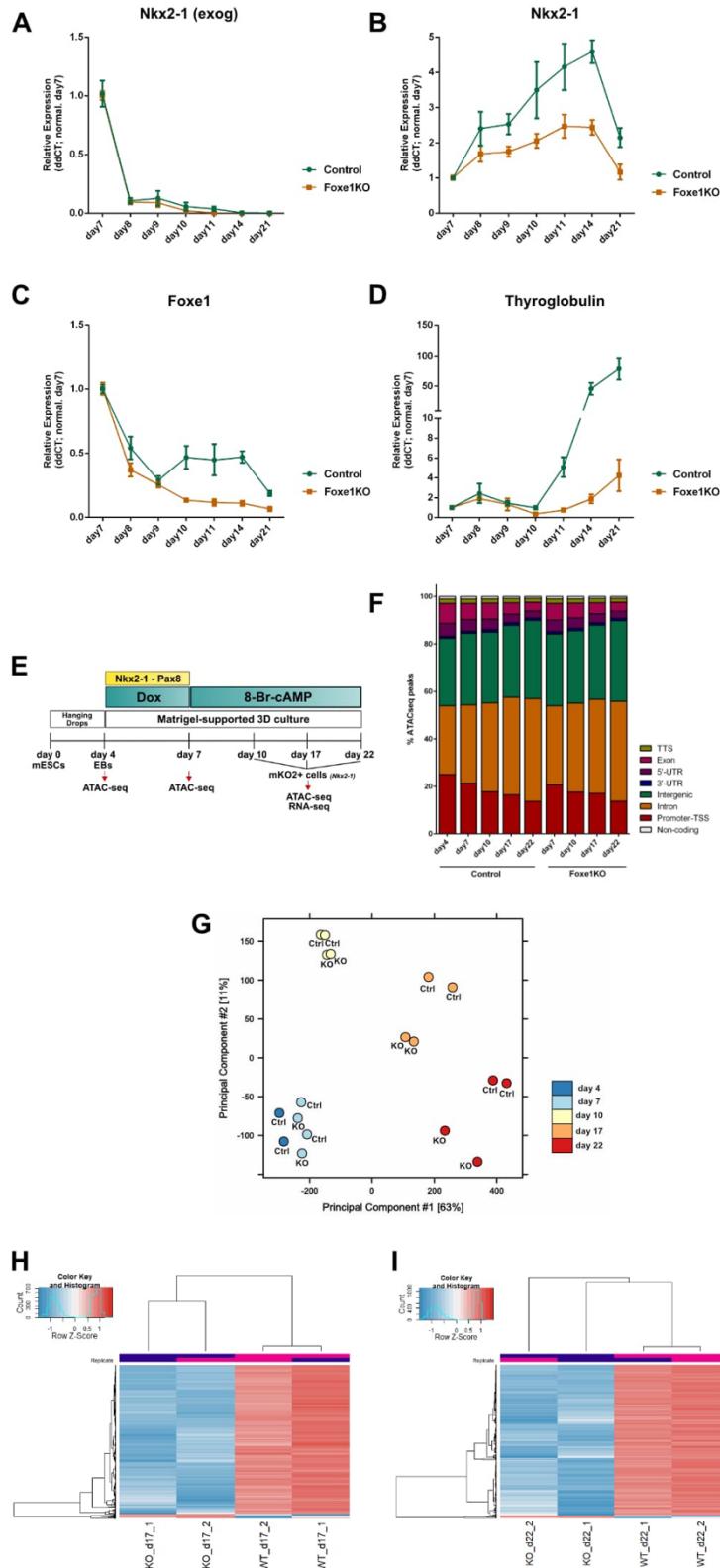
581 **Figure 2. Generation of pulmonary structures in absence of Foxe1.**

582 (A) Orthogonal view by confocal microscopy of *in vitro* lung-like structures identified
583 by immunostaining of Nkx2-1 and E-cadherin at day 22 of differentiation protocol. (B-
584 E) Immunostaining of Foxe1KO mESC-derived organoids with a panel of lung-related
585 markers: basal cells (Nkx2-1, Krt5 and Trp63); alveolar cells (Hopx); goblet cells
586 (Nkx2-1 and Muc5ac) and secretory (club) cells (Nkx2-1 and Scgb3a2). (F) Scanning
587 electron microscopy at day 22 Foxe1KO mESC-derived pulmonary structures: a large
588 panel of pulmonary cell lineages are evidenced, including airway and alveolar cells.
589 Scale bars : 100µm (A); 25µm (B); 100µm (C; left) and 25µm (C; right); 150µm (D,E).

590

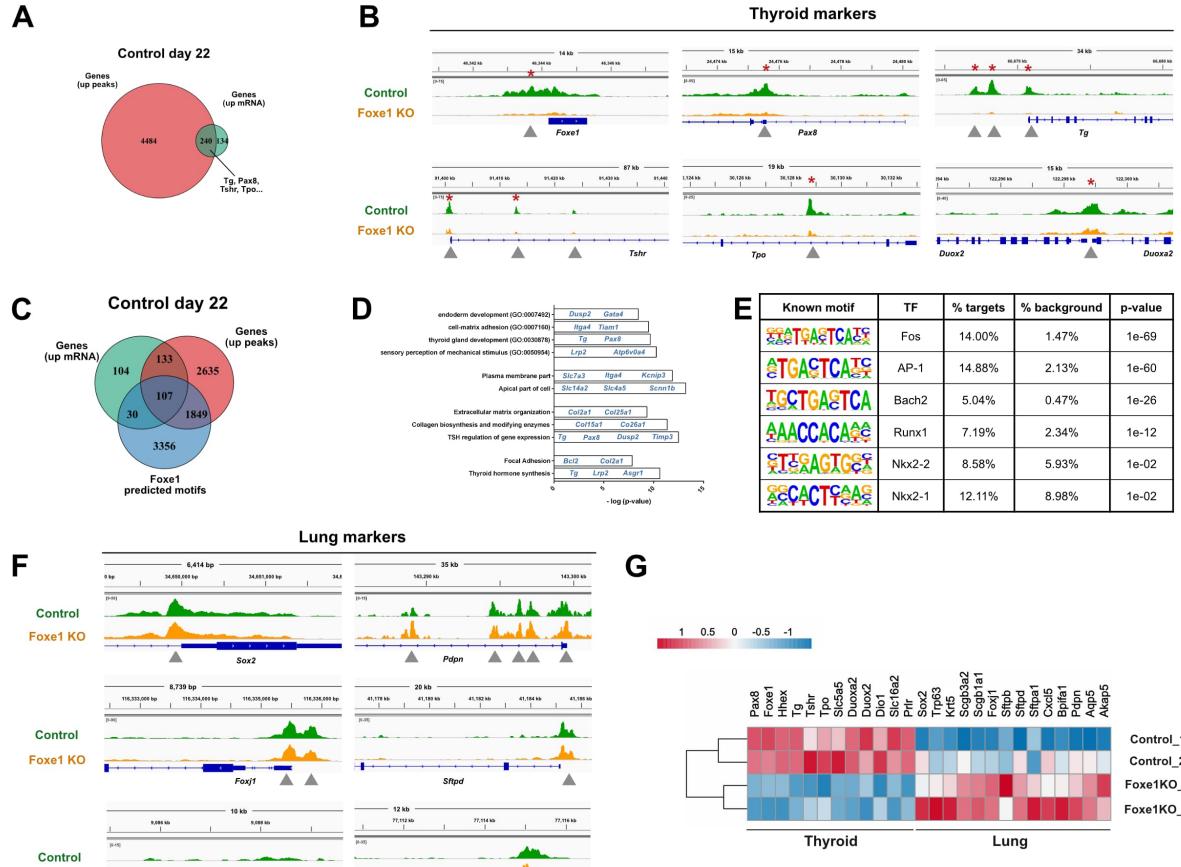


591


592 **Figure 3: Single-cell RNA-seq analysis of Foxe1KO-derived thyroid cells.**

593 (A) Schematic diagram of differentiation protocol and purification of distinct cell
594 populations at day 22 for scRNA-seq experiment. (B) Unsupervised clustering of 7523
595 single-cells profiled, colored by cluster assignment. (C) Violin plots featuring the
596 average expression per cluster of early thyroid markers. (D) UMAP expression plots
597 of markers for thyroid maturation (E) Violin plots featuring average expression per
598 cluster of selected epithelial and mesenchymal markers.

599



600
601 **Figure 4: Single-cell RNA-seq analysis of Foxe1KO-derived lung cells.**
602 (A) 1155 cells co-expressing Nkx2-1 and Epcam (but not expressing Pax8 and Tg)
603 were computationally isolated, re-clustered and cellular transcriptome heterogeneity
604 visualized using UMAP. (B) Average expression levels per cluster of indicated lung
605 cell type signatures and UMAP expression plot of Igf1 and Sox9 normalized
606 expression, defining two clusters of early lung progenitors. (C) UMAP plot of Foxe1KO
607 cells (1155) integrated with E17.5 mouse lung Nkx2-1+Epcam+ cells (2000 cells)
608 (upper graph). 6 identified clusters contain both in vitro and in vivo derived lung cells
609 (bottom graph). (D) Average expression levels of indicated lung cell type signatures
610 identified in both mouse lung (pink) and Foxe1KO cells (blue).
611

Figure 5: ATACseq profiling of control and Foxe1KO Nkx2-1 expressing cells at different stages of differentiation protocol.

(A-D) Relative mRNA expression of thyroid marker genes through different time points of culture. Relative expression of each transcript is presented as fold change compared to cells from the first time point (day 7) as Mean +/- SEM. Exog: exogenous. **(E)** Schematic representation of differentiation protocol and time points of cell sorting of Nkx2-1+ (mKO2+) cells for ATAC-seq and RNA-seq analysis. **(F)** Total ATAC-seq peaks distribution in diverse genomic regions. **(G)** Principal component analysis (PCA) to compare total ATACseq peaks among time points. **(H-I)** Heatmaps of differentially accessible peaks between control and Foxe1KO at day 17 (H) and day 22 (I).

645

646 **Figure 6: ATAC-seq profiling of Nkx2-1 expressing cells in control and Foxe1KO**
647 **at day 22.**

648 (A) Venn diagram between the genes in which the chromatin is significantly more open
649 and the transcripts are up-regulated in control versus Foxe1KO at day22. (B) (B)
650 Illustration of open chromatin regions at day 22 in thyroid marker genes. (C) Venn
651 diagram showing 107 genes containing Foxe1 motif also being more significantly open
652 in ATACseq and with transcripts up-regulated in control cells at day 22. (D) Gene
653 Ontology (GO) and pathway functional analysis performed with 107 genes shown in
654 D. Biological Process GO, Jensen compartments, Bioplanet and KEGG significant
655 terms are shown in the image. (E) Known motifs enriched in 793 peaks more open in
656 Foxe1KO versus control at day22; $\log_2\text{foldchange} \geq 0.58$, $\text{FDR} \leq 0.05$. (F) Illustration of
657 open chromatin regions at day 22 in lung marker genes. (G) Heatmap of log-2
658 transformed normalized counts from bulk RNA-seq of sorted Nkx2-1+ cells at day 22.
659 Relevant markers for thyroid and lung lineage are shown in control and Foxe1KO
660 samples.

661

662 **STAR Methods**

663

664 **KEY RESOURCES TABLE**

665

666 **RESOURCE AVAILABILITY**

667

668 **Lead contact**

669 Further information and requests for resources and reagents should be directed to and
670 will be fulfilled by the lead contact, Sabine Costagliola (sabine.costagliola@ulb.be)

671

672 **Materials availability**

673 The mESC lines and plasmids generated in the current study are available upon
674 request.

675

676 **Data and code availability**

677 Original data associated with this study is deposited in the NCBI Gene Expression
678 Omnibus under accession numbers GSE182337, GSE182480 and GSE182676.
679 Information regarding published datasets used in the present paper can be found in
680 Franck et al, 2019. Source data are provided with this manuscript. scRNAseq data
681 and gene expression profile (interactive tool) can be accessed at
682 <https://barbaraffonseca.shinyapps.io/Foxe1KO/>.

683

684 **METHOD DETAILS**

685 **mESCs culture and differentiation:** All mESC lines used in the present paper are
686 derived from the A2Lox.Cre_TRE-Nkx2-1/Pax8_Tg-EGFP mESCs line previously
687 generated by our group (Romitti et al., 2021). Maintenance and differentiation of
688 mESCs lines were performed as previously described (Antonica et al., 2012, 2017).
689 Briefly, mESCs were cultured on a feeder-layer of irradiated mouse embryonic
690 fibroblasts, in maintenance medium. For the differentiation protocol, mESCs were
691 isolated from feeder-layer cells, counted and cultured in hanging drops (1,000 cells
692 per drop) for generation of embryoid bodies (day 0). Four days later, embryoid bodies
693 were collected, embedded in growth factor-reduced Matrigel and 50µl Matrigel drops
694 re-plated into 12-well plates. Embryoid bodies were differentiated and cultured using

695 the differentiation medium supplemented with 1 mg/ml Doxycycline, for induction of
696 exogenous Nkx2-1 and Pax8 transgenes for three days (day4-day7), followed by two
697 weeks treatment (day7-day22) with 1mU/ml hrTSH or 300μM 8-br-cAMP, as indicated.
698

699 **Generation of mESC lines by TALEN technology:** TALEN technology was used to
700 edit the A2Lox.Cre_TRE-Nkx2-1/Pax8_Tg-EGFP mESC line to generate FoxE1KO
701 cells. TALENs synthesis was performed by using Golden Gate Technology (Weber et
702 al., 2011). mESCs were seeded into 10 cm petri dishes (150.000 cells/petri) and, in
703 the next day, transfected with 7 μg of each TALEN-encoding plasmid (designed to
704 target the Forkhead domain) and 7μg of a fluorescent surrogate reporter plasmid
705 allowing enrichment of cells with nuclease induced-mutations (GFP reporter Assay)
706 (Ma et al., 2013). Cell transfection was performed with Lipofectamine3000 according
707 to the manufacturer's instruction. 48h later, cells were trypsinized and resuspended in
708 PBS containing 2% of embryonic-stem-certified fetal bovine serum for cell sorting
709 (FACS Aria and FACSDiva Software). GFP+ cells were seeded in 96-well plates in
710 order to have 1 GFP+ cell per well. Individual colonies were expanded in 24-well, 12-
711 well or 6-well plates with maintenance medium during one week. A second cell sorting
712 procedure was performed in individual clones to obtain a fully pure population of
713 mESCs, devoid of feeder-layer cells, for genomic PCR analysis. Sequences of TALEN
714 constructs are depicted in Table S2.

715
716 **Generation of Nkx2-1 endogenous reporter mESC line by CRISPR/Cas9:** For
717 production of single-guide RNAs (sgRNAs) targeting the 3'-UTR region of Nkx2-1 loci,
718 a fragment of the desired genomic mouse sequence was obtained from NCBI and
719 used as input in the CRISPOR webtool (<http://crispor.tefor.net/> (Concordet and
720 Haeussler, 2018)). The most suitable sgRNA was chosen and checked for possible
721 off-targets (Table S2). Forward and reverse oligonucleotides, corresponding to the
722 sgRNA sequence, were designed for insertion into the pU-BbsI-T2A-Cas9-BFP
723 plasmid (Chu et al., 2015). To generate the pUC57-mNkx2-1-T2A-mKO2-pGK-Puro
724 targeting vector, approximately 1000bp of each left and right Nkx2-1 homology arms,
725 around predicted sgRNA cutting-site, were PCR amplified and inserted in a template
726 plasmid, containing the T2A-mKO2 and loxP-flanked pGK-Puro selection cassette.
727 Lipofectamine3000 was used to transfect mESCs, according to the manufacturer's
728 instruction. 48h later, cells were sorted based on BFP+ expression and seeded at the

729 clonal level in 96-well plates, as described above. Positive selection of puromycin-
730 resistant clones was performed by treatment with 1 μ g/ml puromycin for 72 hours.
731 Integration of desired cassette was confirmed by PCR of genomic DNA. Successful
732 targeting was achieved in 7 among 125 screened clones. The selected clones
733 integrated the donor template in both alleles. Excision of loxP-flanked pGK-Puro
734 fragment was achieved later by transfection with pSalk-Cre plasmid, followed by a
735 series of cell cloning, expansion and negative selection based on susceptibility to
736 puromycin treatment. Genomic removal of PuroR sequence was confirmed by PCR.
737 Finally, mKO2 reporter activation and compatibility with Nkx2-1 protein expression was
738 verified. For clarity, in the present paper, the novel line generated (i.e.
739 A2Lox.Cre_TRE-Nkx2-1/Pax8_Tg-EGFP_Nkx2-1-T2A-mKO2 mESCs line) is named
740 as “Nkx2-1 reporter line”.

741
742 **Generation of Foxe1KO/Nkx2-1 reporter mESC line:** SgRNAs targeting mouse
743 Foxe1 coding sequence were chosen based on suitable sgRNAs prediction from
744 CRISPOR website and insertion of sgRNAs sequences into the pU-BbsI-T2A-Cas9-
745 BFP plasmid was performed as cited above. Two sgRNAs were chosen (one targeting
746 the Forkhead domain, and the other outside) and two Foxe1KO lines, targeting distinct
747 genomic domains of Foxe1, were produced (Table S2). Nkx2-1 reporter mESC cells
748 were transfected, BFP sorted, clonal seeded and selected based on PCR and Sanger
749 sequencing to detect clones containing frameshift mutations in Foxe1 loci. A second
750 cell sorting procedure was performed in individual clones to obtain a fully pure
751 population of mESCs, devoid of feeder-layer cells, for genomic PCR analysis.
752 All cell lines here generated were validated, in at least two different clones, by
753 maintenance of pluripotency cell markers, ability to spontaneous differentiate into the
754 three germ layers, activation of tetracycline-inducible Nkx2-1-Pax8 transgene and
755 reproducibility regarding in vitro differentiation. Regarding Foxe1KO/Nkx2-1 reporter
756 lines, similar results were obtained in Foxe1KO lines derived from distinct designed.
757 Only one is shown in the present paper.

758
759 **PCR detection of mutated clones (TALEN/CRISPR-Cas9):** Genomic DNA was
760 extracted from individual mESCs clones, using a genomic DNA lysis buffer and
761 procedure as described (Verma et al., 2017). PCR was performed using Q5 High-
762 Fidelity Taq Polymerase according to the manufacturer’s instructions. 100 ng of

763 genomic DNA samples were used in all reactions. Primer sets were used to amplify
764 targeting and cutting site of designed TALENs/CRISPR-Cas9 guide RNAs. PCR
765 products were then directly cloned in a TOPO-Blunt plasmid by using Zero Blunt®
766 PCR Cloning Kit.

767

768 **RNA extraction and RT-qPCR :** For RNA preparation, cells were lysed in RNeasy
769 Lysis buffer + 1% β -mercaptoethanol, and total RNA was isolated using RNeasy
770 microRNA preparation kit according to the manufacturer's instructions. Reverse
771 transcription was done using Superscript II kit. RT-qPCR was performed in technical
772 triplicates using KAPA SYBR Fast qPCR kit and a CFX Connect Real-Time PCR
773 System. Results are presented as linearized values normalized to the housekeeping
774 gene β 2m-Globulin and the indicated reference value (2- $\Delta\Delta Ct$). Moreover, relative
775 expression of each target gene is presented as fold-change compared to untreated
776 cells (-dox condition). The gene-expression profile was confirmed in at least two
777 different clones of each cell line. Primers used are listed in Table S3.

778

779 **Scanning Electron microscopy:** Organoids embedded in Matrigel were fixed in
780 glutaraldehyde 2.5% overnight at 4°C, rinsed, and embedded in agarose 4%. Sections
781 of 300 μ m were produced in a Vibratome (Leica) and post-fixed in OsO4 (2%) for 1
782 hour. All treatments were done in 0.1M cacodylate buffer (pH 7.2). After serial
783 dehydration in ethanol, samples were dried at critical point and coated with platinum
784 by standard procedures. Observations were done in a Tecnai FEG ESEM QUANTA
785 200 at 30kV and images were acquired and processed by SIS iTEM software.

786

787 **Iodide organification assay:** The iodide organification assay was performed as
788 previously optimized for mouse thyroid organoids (Antonica et al., 2012). Briefly,
789 samples were rinsed with HBSS and incubated with 1ml per well of organification
790 medium (1,000,000 c.p.m. per ml of 125 I and 100nM sodium iodide in HBSS for 2h at
791 37°C. Next, 1ml of a TPO inhibitor (4mM methimazole) was added and cells were
792 dissociated with 0.1% Trypsin/1mM EDTA for 15min. Radioactivity, derived from
793 iodide uptake by thyrocytes, was measured with a γ -counter. To quantify the
794 radioactivity of protein-bound 125 I (PBI), proteins were precipitated in a solution
795 containing 1mg γ -globulins and 2ml of 20% TCA followed by centrifugation at
796 2000r.p.m. for 10min. Iodide organification was calculated as iodide uptake/PBI ratio.

797

798 **Immunofluorescence and immunohistochemistry:** Cells were fixed in 4%
799 formaldehyde solution for 30min and washed three times five minutes in PBS. Then,
800 cells were blocked in PBS containing 3% bovine serum albumin (BSA), 5% horse
801 serum and 0.3% Triton X-100 for 30min at room temperature. The primary and
802 secondary antibodies were diluted in PBS containing 3% BSA, 1% horse serum and
803 0.1% Triton X-100. Primary antibodies were incubated overnight at 4°C followed by
804 incubation with secondary antibodies for 1h30 at room temperature. Nuclei were
805 stained with 4',6-diamidino-2-phenylindole. Coverslips were mounted with Glycergel.
806

807 **Flow cytometry intracellular immunostaining:** Nkx2-1 reporter and unmodified
808 mESCs were treated up day 14 of thyroid differentiation protocol and prepared for flow
809 cytometry immunostaining as follows: Matrigel-drops were first digested with a HBSS
810 solution containing 10 U/ml dispase II and 125 U/ml of collagenase type 1A for 30
811 minutes at 37°C; then, cell dissociation was performed with TripLE Express for
812 maximum 15min, to obtain a single cell suspension. After centrifugation, samples were
813 PBS rinsed and fixed in 1.6% formaldehyde solution in PBS for 15min at room
814 temperature, followed by a step of permeabilization with 0.1% Triton in PBS for 1min
815 at 4°C. Before staining, permeabilized samples were blocked for 10 min in a solution
816 containing 4% horse serum and 0.5% Tween 20. Primary anti-rabbit Nkx2-1 antibody
817 was diluted at 1:100 ratio in a 0.5% Tween washing solution and added to samples for
818 30 min at 4°C. They were then rinsed three times with washing solution (0.5% Tween
819 in PBS) before incubation for 30min with Cy5-conjugated anti-rabbit antibody diluted
820 at 1:300 ratio in 0.5% Tween in PBS. Additional washes were performed with the
821 washing solution before addition of a live cell marker (Calcein Violet 1µM) and data
822 acquisition using a LSRFortessa X-20 flow cytometer and FACSDiva software. Flow
823 cytometry controls such as unstained cells, isotype controls and negative controls
824 (undifferentiated cells: “-dox control”) were included in all experiments.
825

826 **RNA isolation and RNA-seq analysis:** For preparation of bulk RNA-seq samples,
827 Foxe1KO and control cells from Nkx2-1 reporter line were cultured following the
828 differentiation protocol and cell suspension was obtained as above described (“Flow
829 cytometry intracellular immunostaining” section). Nkx2-1+ (mKO2+) cells were sorted
830 (FACS Aria; BD Bioscience) at day10 and day22. 10000 mKO2+ cells per condition

831 were collected directly into 700 μ l of Qiazol lysis reagent and RNA isolation performed
832 with miRNeasy micro kit following manufacturer's indications. The quality and quantity
833 of the resulting RNA was then tested using Bioanalyser 2100 (Agilent) and RNA 6000
834 Nano Kit. RNA integrity was preserved (RIN=8.5) and no genomic DNA contamination
835 was detected. Ovarion Solo RNA-seq Systems was employed, as indicated by the
836 manufacturer, to produce high quality indexed cDNA libraries, which were quantified
837 using Quant-iT PicoGreen kit and Infinite F200 Pro plate reader (Tecan); DNA
838 fragment size distribution was examined on 2100 Bioanalyser (Agilent) using DNA
839 1000 kit. Normalized and pooled indexed libraries (10pM) were loaded on flow cells
840 and sequenced on the HiSeq 1500 system (Illumina) in a high output mode using
841 HiSeq Cluster kit v4. Approximately 10 million of 125nt-long paired-end reads were
842 obtained for each library. After removal of low-quality bases and Illumina adapter
843 sequences using Trimmomatic software (Bolger et al., 2014), sequence reads were
844 aligned against mouse reference genome (Grcm38/mm10) using Hisat2 software with
845 default parameters (Kim et al., 2015). Raw counts were obtained using HTSeq
846 software (Anders et al., 2015) using Ensembl genome annotation GRCm38.87.
847 Normalization, differential expression and Gene Ontology analyses were performed
848 with at least two biological replicates per sample, using website iDEP version 0.92 (Ge
849 et al., 2018). Additional Gene Ontology analysis and identification of statistically
850 significant terms ($p < 0.05$) was performed with Enrichr (Kuleshov et al., 2016).

851

852 **Single cell RNA-seq preparation and sequencing:** At day22 of the differentiation
853 protocol, cell populations derived from Foxe1KO/Nkx2-1 reporter mESC lines were
854 isolated for scRNASeq profiling. Culturing and preparation of cell suspension for
855 FACS-sorting were performed as mentioned above for bulk RNA-seq. Different
856 proportions of EGFP+, mKO2+ and mKO2- cells were sorted to guarantee
857 representation of various cell types in the profiled sample (15%, 50%, 35%,
858 respectively). Sorted cells were collected in PBS at a density of 800cells/ μ l and diluted
859 accordingly to kit's instruction (10x Genomics Chromium Single Cell 3' v3). 12000 cells
860 were loaded onto a channel of the Chromium Single Cell 3' microfluidic chip and
861 barcoded with a 10X Chromium controller. Subsequently, RNA was reverse
862 transcribed and amplified according to manufacturer's recommendations. Library
863 preparation (e.g. fragmentation, dA tailing, adapter ligation, indexing PCR) was

864 performed based on 10x Genomics guidelines. Libraries were sequenced on a Illumina
865 NovaSeq 6000 system.

866

867 **Single cell transcriptomic data analysis:** Raw sequencing data was aligned and
868 annotated against the Grcm38/mm10 mouse reference genome, in which mKO2 and
869 EGFP sequences were added. Cell Ranger Software (v.2.1.0), provided by 10x
870 Genomics, was used for demultiplexing with default parameters. The raw counts
871 generated from 10x Chromium pipeline were clustered using R Seurat package
872 (version 3.2.0) (Stuart et al., 2019). Briefly, quality control pre-processing was
873 performed to keep cells passing the following criteria: had between 1500 and 58000
874 UMI counts, showed expression of at least 750 unique genes and had less than 10%
875 of UMI counts corresponding to mitochondrial genes. The remaining data was log-
876 normalized, regressed out to remove effects of library size and enrichment of
877 mitochondrial and cell cycle related genes, and scaled, using *SCTransform* function.
878 Principal component analysis (PCA) was calculated using the expression data of the
879 most variable genes and the first 10 principal components were used to graph-based
880 clustering and UMAP plot visualization. Different values in the resolution variable
881 (*FindClusters* function) were tested and resolution of 0.7 was used for clustering.
882 Differentially expressed genes were computed with the *FindAllMarkers* function and
883 used for heatmap visualizations. To better identify specifically lung cells, cells
884 expressing *Nkx2-1* and *Epcam*, but devoid of *Thyroglobulin* and *Pax8* expression,
885 were extracted from original dataset, re-clustered based on variable genes and new
886 UMAP visualization obtained. Signature scores based on expression of selected
887 genes were calculated using *AddModuleScore* function. Gene lists can be found on
888 Table S1.

889

890 **Integrative single-cell RNAseq analysis:** For better understanding of Foxe1KO
891 effect, we compared Nkx2-1+ cells derived from Foxe1KO line with a previous
892 scRNAseq dataset performed in a control mESC line (Romitti et al., 2021). For this,
893 we extracted Nkx2-1+ cells from both datasets, combined in an unique object and
894 calculated pairwise correspondences between individual cells using Integration
895 features from R toolkit (Stuart et al., 2019). After integration, downstream analyses
896 such as graph-based clustering and UMAP dimensionality reduction were performed
897 as described above. In addition, to identify shared cell populations among *in vivo*

898 mouse lung and Foxe1KO-derived lung organoids, *Nkx2-1+/Epcam+/Tg-/Pax8-* cells
899 from Foxe1KO dataset were compared to E17.5 mouse lung (Frank et al., 2019). For
900 this, Seurat object of E17.5 mouse lung scRNAseq dataset was updated and
901 subjected to the same normalization and scaling process described above
902 (*SCTransform* function). For better visualization purposes, the original dataset was
903 downsampled to 2000 cells before integration.

904

905 **ATAC sequencing:** Biological replicates were obtained from control and Foxe1KO
906 cells (*Nkx2-1* reporter line), at different points of our differentiation protocol. 50000
907 *Nkx2-1(mKO2+)* cells were sorted from both lines at day 10 and immediately proceed
908 to sample preparation, based on Omni-ATAC protocol (Corces et al., 2017). Cells
909 derived from embryoid bodies before (day 4) and after doxycycline treatment (day7)
910 were also collected to distinguish open chromatin regions related with tetracycline-
911 induced exogenous transgene activation. After centrifugation, cell pellets were
912 resuspended in 50 μ l of an ice-cold cell lysis buffer (0.1% Igepal, 0.1% Tween20 and
913 0.01% Digitonin in Omni-ATAC Resuspension buffer). After 3 min, samples were
914 centrifuged for 15min at 800g and subsequently, nuclei were resuspended in 50 μ l of
915 reaction buffer (2.5 μ l Tn5 transposase, 22.5 μ l TD buffer, both from Nextera DNA
916 sample preparation kit; 16.5 μ l PBS, 0.5 μ l 1%Digitonin, 0.5 μ l 10% Tween20 and 5 μ l
917 H2O). Tagmentation reaction was performed for 30min at 37°C in a rocking plate (1000
918 rpm). DNA was purified using the MiniElute purification kit following the manufacturer's
919 indications. DNA libraries were PCR amplified, DNA quality verified on 2100
920 Bioanalyser (Agilent) using DNA 1000 kit and size selected from 200 to 800 bp,
921 following the manufacturer's recommendations.

922

923 **ATAC-seq analysis:** For main steps of pre-processing and mapping of ATACseq
924 data, a local installation of Galaxy platform was used (use.galaxu.eu; (Afgan et al.,
925 2018)). Briefly, adapter sequences were removed with Trim Galore, using default
926 parameters. ATACseq paired-end reads were aligned to mouse genome
927 Grcm38/mm10 with Bowtie 2, modifying default parameters to include fragments of up
928 1000bp, allowing dovetailing and using “very sensitive option” preset. Subsequently,
929 mitochondrial genes, bad quality mapped sequences and PCR duplicates were
930 removed. Peak calling was performed for each sample using MACS2, with parameters
931 setting of -q 0.05 and -- shift 0. Peaks from all samples were merged for downstream

932 analysis. Scaling of bam files generated by MACS2 were performed and used for
933 visualization of data tracks with Integrative Genomics Viewer (IGV). Moreover, files
934 derived from MACS2 peak calling were used as input for Differential Binding Analysis
935 using DiffBind package in R (Stark and Brown, 2011). Annotation of nearest genes
936 associated with differentially regulated genomic regions was performed using HOMER
937 (Heinz et al., 2010). Two biological replicates were used for sample and significant
938 differential peaks are were filtered according to these criteria: log2 fold change ≥ 0.58
939 and false discovery rate (FDR) ≤ 0.05 . De novo motif search was performed using
940 findMotifs.pl from HOMER package with default parameters. To obtain Foxe1 enriched
941 motifs in total ATACseq peaks, the human Foxe1 motif (MA1487.1) obtained on
942 Jasper database (Castro-Mondragon et al., 2021), was used as a query in findMotifs.pl
943 command.

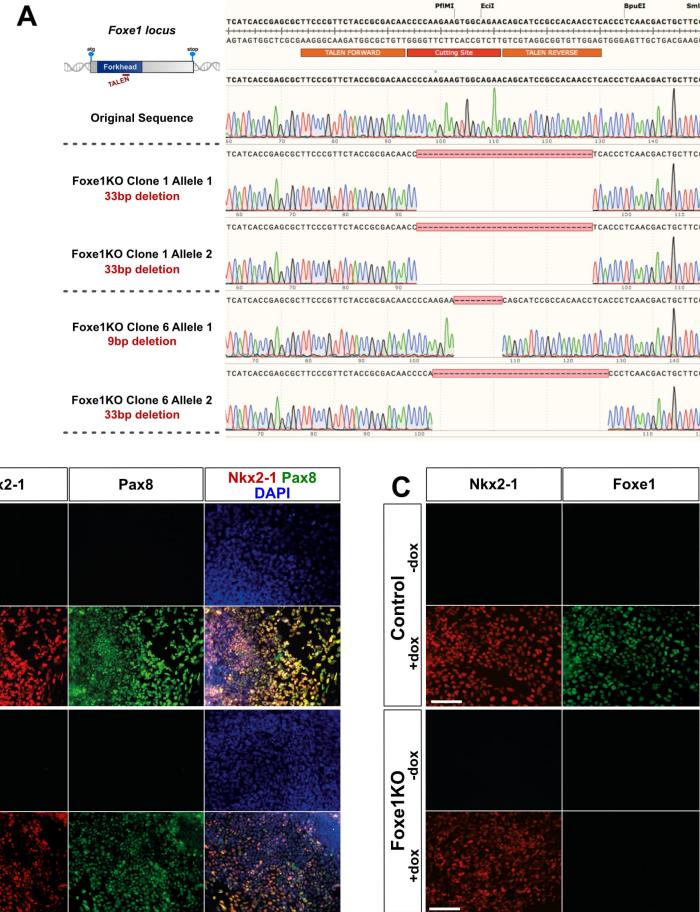
944

945 **Statistical analysis:** For most experiments (RT-qPCR, iodide organification,
946 immunofluorescence and flow cytometry), at least two different wells per condition
947 were used in each differentiation experiment. Furthermore, at least three independent
948 experiments were performed. Statistical significance was tested as follows: two-group
949 comparison by unpaired t-test and multiple-group comparison by the one-way analysis
950 of variance test with a post-hoc Tukey's comparison test. * $P<0,05$, ** $P<0,01$,
951 *** $P<0,001$. Bar plots show mean \pm s.e.m., unless otherwise indicated. GraphPad
952 Prism version 6 was used for most analyses. Shapiro-Wilk normality test and Mann-
953 Whitney unpaired rank test were used in R to test significance of signature score
954 enrichment in scRNAseq datasets comparisons.

955

956 **Imaging:** Fluorescence imaging was performed on a Leica DMI6000 with DFC365FX
957 camera and a ZeissLSM510 META confocal microscope. Affinity Designer and ImageJ
958 software (Schindelin et al., 2012) were used to adjust brightness, contrast and picture
959 size.

960


961

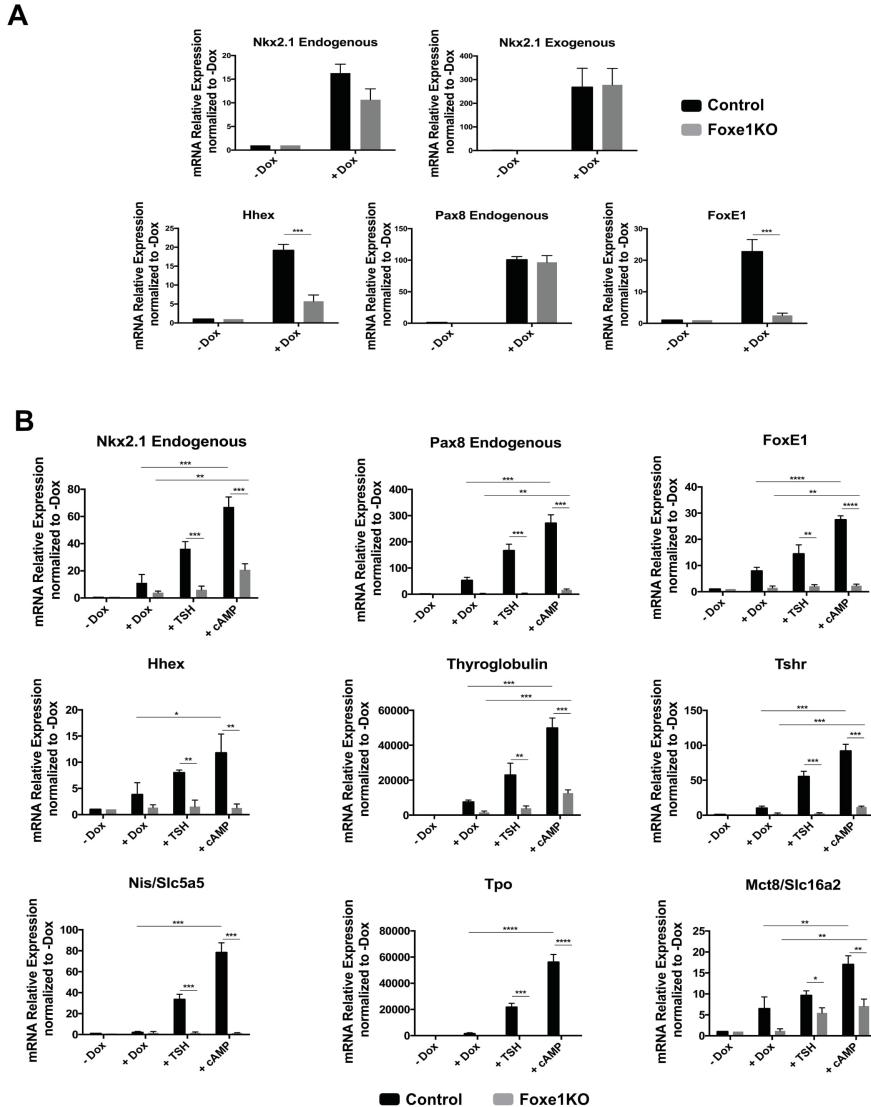
962 SUPPLEMENTAL INFORMATION

963

964 Supplementary Figures titles and legends

965

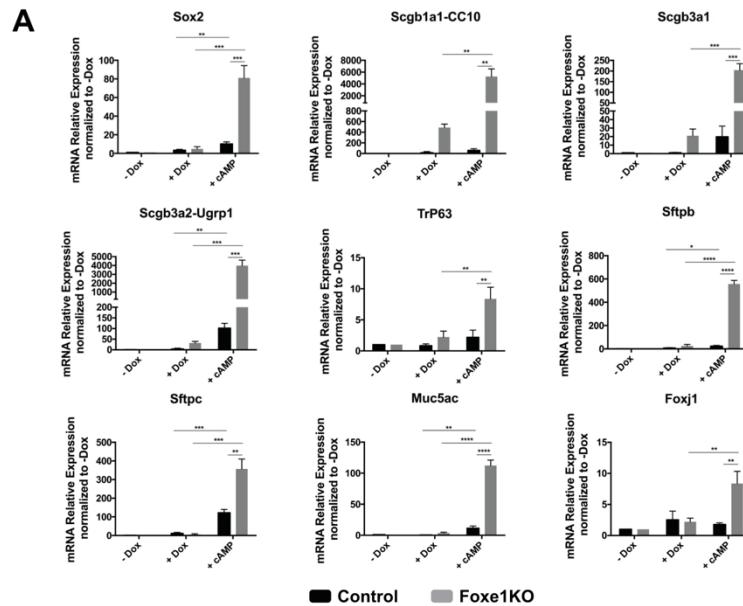
966


967 Figure S1. Generation and validation of Foxe1 KO mESC lines.

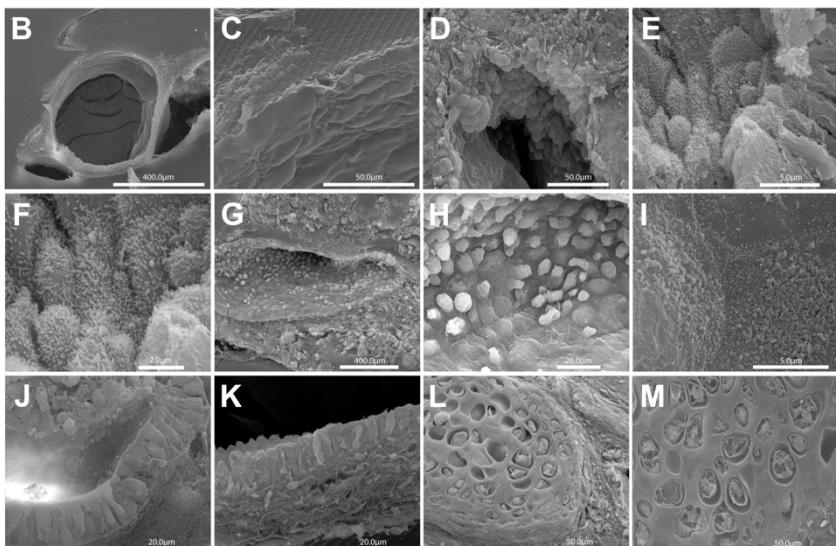
968 (A) Genomic profiling of two Foxe1 KO mESC clones. One clone presents an
969 homologous deletion of 33 bp and the second one possess an heterozygous deletion
970 of 9 and 33 bp at Foxe1 loci, respectively. (B-C) Immunostaining of control and
971 Foxe1KO mESCs after Dox-mediated induction of Nkx2.1-Pax8 during 3 days (d4-d7).
972 (B) The Dox-inducible co-expression of NKX2.1 and PAX8 is not altered by genome
973 editing manipulations in mutated clones. (C) Foxe1KO mESCs express NKX2.1 while
974 Foxe1 protein expression is abolished. Scale bars : 150 µm.

975

976


977

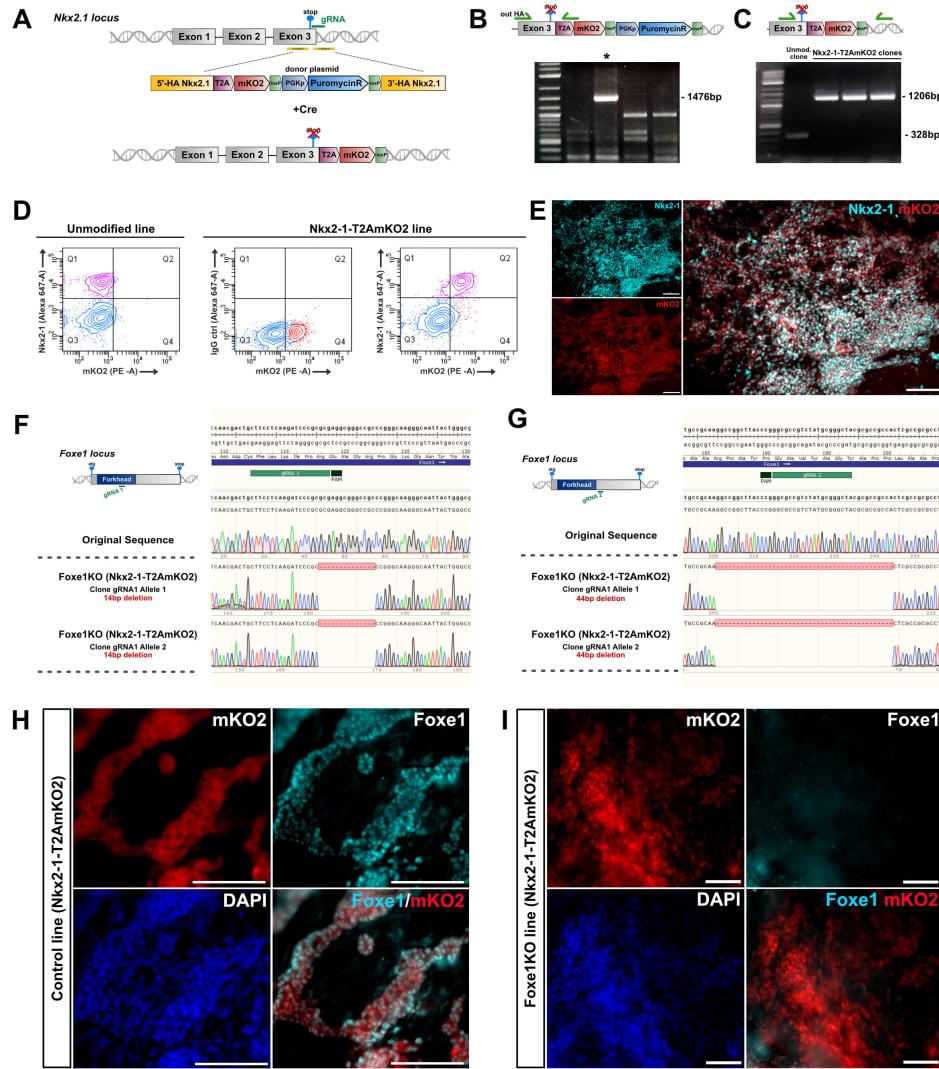
978


979 **Figure S2. Foxe1 depletion in mESCs abolishes thyroid follicle differentiation.**

980 RT-qPCR analyses of thyroid-expressed genes in control and Foxe1KO cells at day 7
981 (A) and day 22 (B) after Dox-mediated induction (day4-day7) followed by TSH (+TSH)
982 or 8-br-cAMP (+cAMP) treatment until day 22. (A) At day 7 of differentiation,
983 downregulation of some thyroid genes such as Hhex and Foxe1 is already observed
984 in Foxe1KO cells, whereas Nkx2-1 and Pax8 endogenous expression is not affected.
985 Observe that Dox-mediated induction of Nkx2-1/Pax8 was successful since
986 exogenous expression of Nkx2-1 is not affected in both lineages. (B) Expression of
987 endogenous thyroid genes at day 22 are drastically reduced in Foxe1KO cells (+TSH
988 and +cAMP conditions) in comparison with the control line. Relative expression of
989 each transcript is presented as fold change compared to untreated cells (-Dox) as
990 mean +/-sem. Unpaired t-test was used for statistical analysis. *P<0,05, **P<0,01,
991 ***P<0,001. Dox: doxycycline.

Figure S3. *In vitro* generation of pulmonary structures.

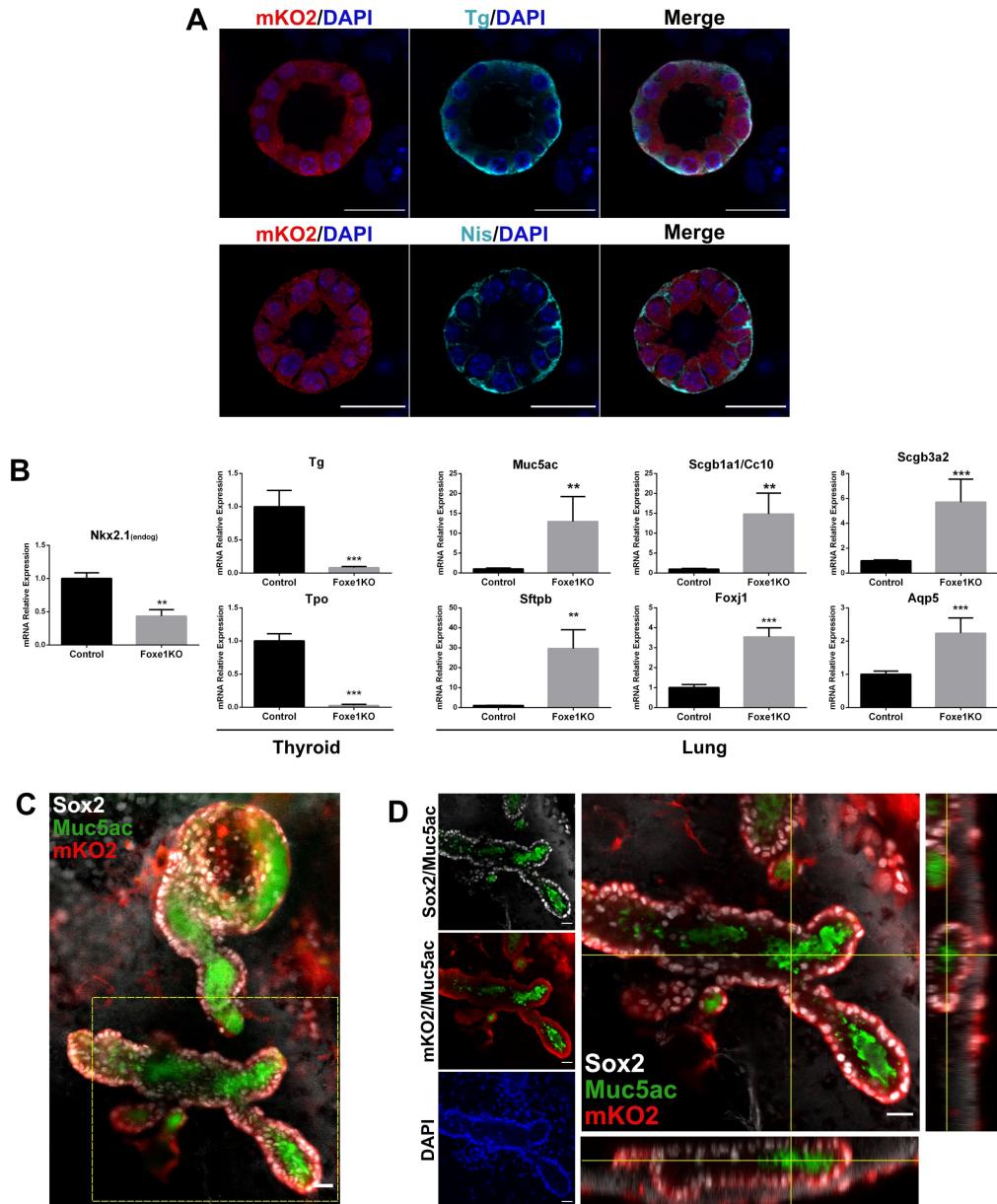
RT-qPCR and scanning electron microscopy of *in vitro*-generated Foxe1KO pulmonary structures after Dox-mediated induction of Nkx2.1-Pax8 followed by 8-br-cAMP treatment until day22. **(A)** mRNA expression of endogenous relevant pulmonary genes at day 22. Observe up-regulation of lung-related markers in the +cAMP condition compared with


1014 untreated cells (-Dox) and dox-induced only condition (+Dox). Relative expression of
1015 each transcript is presented as fold change compared to untreated cells (-Dox) as
1016 Mean +/-SEM. Unpaired t-test was used for statistical analysis. *P<0,05, **P<0,01,
1017 ***P<0,001. **(B-M)** Scanning electron microscopy shows the presence of a large panel
1018 of pulmonary structures and differentiated cell types: branched pulmonary structures
1019 (**B**) with a layer of pneumocytes type I (**C**), goblet cells secreting mucus (**D-F**),
1020 multiciliated cells (**G-I**), pyramidal pulmonary epithelium (**J-K**), chondrocytes and
1021 associated cartilage (**L-M**).

1022

1023

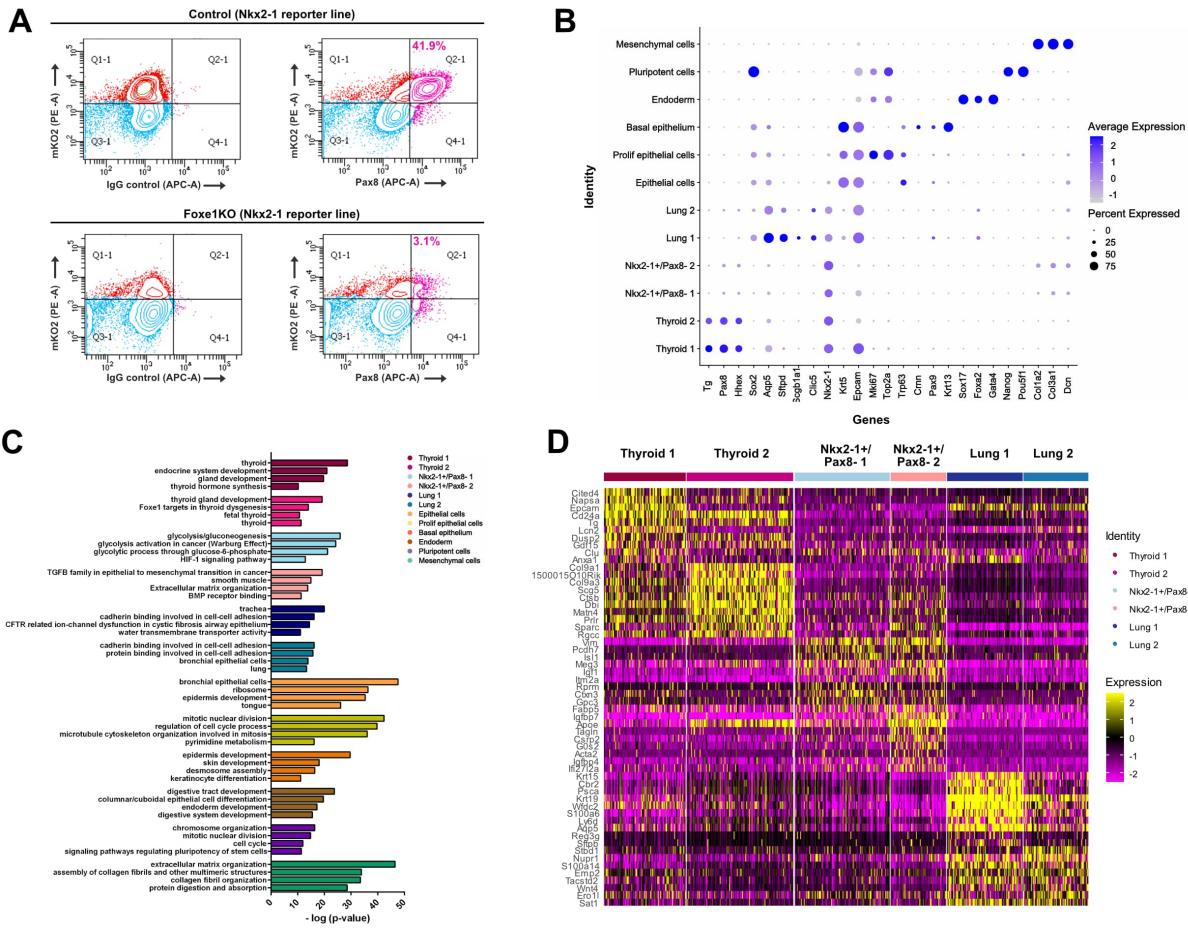
1024


1025

1026

1027 **Figure S4. Generation of endogenous Nkx2-1 reporter lines.**

1028 (A) Schematic representation of CRISPR-mediated knock-in strategy to insert
 1029 T2AmKO2 cassette in 3'-UTR region of Nkx2-1 loci. (B-C) PCR screening of knock-in
 1030 generated clones before (B) and after (C) PuroR gene excision. Asterisk (*) on image
 1031 in B indicates a correctly integrated clone. (D-E) Validation of the Nkx2-1-T2AmKO2
 1032 line. (D) Cells from day 14 of thyroid differentiation protocol were subjected to Nkx2-1
 1033 immunostaining followed by flow cytometry. Observe a double-positive stained
 1034 population in Q2, only in the cAMP treated cells derived from Nkx2-1-T2AmKO2 line.
 1035 (E) Images showing Nkx2-1 and mKO2 co-staining at day10 2D culture. (F-I)
 1036 Generation of Foxe1KO/Nkx2-1reporter line. (F-G) Genomic profiling of a
 1037 Foxe1KO/Nkx2-1 reporter clones obtained with guide RNAs targeting inside (F) or
 1038 outside (G) the Forkhead domain. (H-I) Foxe1 immunostaining of control and
 1039 Foxe1KO/Nkx2-1 reporter cells subjected to thyroid differentiation. Absence of Foxe1
 1040 protein expression is observed in Foxe1KO cells (I). Scale bars : 100 μ m.


1041

1042 **Figure S5. Thyroid and lung differentiation in control and Foxe1KO Nkx2-1**
1043 **reporter lines.**

1044 (A) Thyroid follicle formation in control Nkx2-1 reporter line observed by co-
1045 immunostaining of Tg/mKO2 and Nis/mKO2. (B) RT-qPCR analyses of thyroid and
1046 lung expressed genes in control and Foxe1KO lines. Observe the reduction of Tg and
1047 Tpo thyroid genes whereas lung markers are up-regulated in Foxe1KO cells. (C-D)
1048 Foxe1KO Nkx2-1 reporter cells differentiation into lung airway organoids. (C)
1049 Immunostaining for Sox2, mKO2 and Muc5ac. (D) Higher magnification and
1050 orthogonal views by confocal microscopy of lung organoid depicted in C. Scale bars :
1051 25 μ m.

1052

1053

1054

1055 Figure S6. scRNAseq profiling of Foxe1KO cells.

1056 **(A)** Pax8 immunostaining followed by flow cytometry analyses at day22. Numbers
 1057 shown in Q2-1 quadrant in images on the right correspond to percentage of double
 1058 positive Pax8 (APC) and mKO2 (PE) in control and Foxe1KO cells. Images on left:
 1059 isotype control. **(B)** Average expression per cluster of selected markers used to define
 1060 cluster identity. **(C)** Gene Ontology (GO) and pathway analysis performed with top50
 1061 differentially expressed genes in each cluster. **(D)** Heatmap of top 50 differentially
 1062 expressed genes in each cluster expressing Nkx2-1.

1063

1064

1065 **Supplementary Tables**

1066

1067 **Table S1. List of signature genes used in Module Score function and Foxe1**
1068 **predicted targets (.xlsx file)**

1069

1070 **Table S2. TALEN and single guide RNA sequences**

TALEN sequences	
Foxe1	Fwd: 5'-TTCCCGTTCTACCGCGACAA-3'
	Rev: 5'-TGAGGTTGTGGCGGATGCTG-3'
Single-guide RNA sequences	
Nkx2-1 3'-UTR guide	GGAAGCGTTGAGGTCGCGCG
Foxe1 guide 1	CTTCCTCAAGATCCCGCGCG
Foxe1 guide 2	TAGCCCGCATAGACGGCGCC

1071

1072 **Table S3. List of primers sequences used for qRT-PCR analysis.**

Gene Name	Primer Forward	Primer Reverse
β2m-Globulin	GCTTCAGTCGTCAAGCATGG	CAGTCAGTATGTCGGCTTCC
Nkx2-1 (ex.)	GGCGCCATGTCTTGTCT	ACACCGGCCTTATTCCAAG
Nkx2-1	GGCGCCATGTCTTGTCT	GGGCTCAAGCGCATCTCA
Pax8	CAGCCTGCTGAGTTCTCCAT	CTGTCTCAGGCCAAGTCCTC
Foxe1	GGCGGCATCTACAAGTTCAT	GGATCTTGAGGAAGCAGTCG
Hhex	AAGTGAGGTTCTCCAACGACC	CATTTAGCTCGCGATTCTGAA
Tg	GTCCAATGCCAAATGATGGTC	GAGAGCATCGGTGCTGTTAAT
Nis/Slc5a5	AGCTGCCAACACTTCCAGAG	GATGAGAGCACCACAAAGCA
Tshr	GTCTGCCAACATTTCCAGGATCTA	GCTCTGTCAAGGCATCAGGGT
Tpo	ACAGTCACAGTTCTCCACGGATG	ATCTCTATTGTTGCACGCC
Mct8/Slc16a2	GAGTTCCAAGCAGCATGGGT	ATAGGTGAAGTAGCGCAGGC
Sox2	CACAACTCGGAGATCAGCAA	CTCCGGGAAGCGTGTACTTA
Scgb1a1	ATCTGCTGCAGCTCAGCTTCTT	AAAGGCTTCAGGGATGCCACAT
Scgb3a1	GATGGCCAAGTGGCTTAATG	TCTGTGTGGCTCTGCTCAGT
Scgb3a2	ACAGGGAGACGGTTGATGAG	AGTCCCAGAACATCACAG
Trp63	AAACCAGAGATGGGCAAGTCCT	TTTGCCTGTCCGATACTTGCT
Sftpb	GAACCTGATCAAGCGGGTT	TGCGTCTAGCAGGAGAACTG
Sftpc	GAGAAACCTTACAAAATGGACA	AGCAGAGCCCCCTACAAT
Muc5ac	TGCCCGTCAATGGAAAGTTGT	TACAGACACAGGCACCAGCATT
Foxj1	ACAACTTCTGCTACTTCCGCCA	TTCTCCGAGGCACTTGATGA
Aqp5	TGCGCTCAGCAACACACAACA	TTCATGGAACAGCCGGTGAAGT

1073 *ex, exogenous.

1074

1075 **References**

1076 Afgan, E., Baker, D., Batut, B., Van Den Beek, M., Bouvier, D., Ech, M., Chilton, J.,

1077 Clements, D., Coraor, N., Grüning, B.A., et al. (2018). The Galaxy platform for
1078 accessible, reproducible and collaborative biomedical analyses: 2018 update.
1079 *Nucleic Acids Res.*

1080 Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq--a Python framework to work
1081 with high-throughput sequencing data. *Bioinformatics* 31, 166–169.

1082 Andrea, B.D., Palma, T. Di, Mascia, A., Motti, M.L., Viglietto, G., Nitsch, L., and
1083 Zannini, M. (2005). The transcriptional repressor DREAM is involved in thyroid gene
1084 expression. *Exp. Cell Res.* 305, 166–178.

1085 Antonica, F., Kasprzyk, D.F., Opitz, R., Iacovino, M., Liao, X.H., Dumitrescu, A.M.,
1086 Refetoff, S., Peremans, K., Manto, M., Kyba, M., et al. (2012). Generation of
1087 functional thyroid from embryonic stem cells. *Nature* 491, 66–71.

1088 Antonica, F., Kasprzyk, D.F., Schiavo, A.A., Romitti, M., and Costagliola, S. (2017).
1089 Generation of functional thyroid tissue using 3D-based culture of embryonic stem
1090 cells. In *Methods in Molecular Biology*, (Humana Press Inc.), pp. 85–95.

1091 Aza-Blanc, P., Di Lauro, R., and Santisteban, P. (1993). Identification of a cis-
1092 regulatory element and a thyroid-specific nuclear factor mediating the hormonal
1093 regulation of rat thyroid peroxidase promoter activity. *Mol. Endocrinol.* 7, 1297–1306.

1094 Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for
1095 Illumina sequence data. *Bioinformatics* 30, 2114–2120.

1096 Butt, S.J.B., Sousa, V.H., Fuccillo, M. V., Hjerling-Leffler, J., Miyoshi, G., Kimura, S.,
1097 and Fishell, G. (2008). The requirement of Nkx2-1 in the temporal specification of
1098 cortical interneuron subtypes. *Neuron* 59, 722–732.

1099 Cardoso, W. V., and Lu, J. (2006). Regulation of early lung morphogenesis:
1100 questions, facts and controversies. *Development* 133, 1611–1624.

1101 Castro-Mondragon, J.A., Riudavets-Puig, R., Rauluseviciute, I., Berhanu Lemma, R.,
1102 Turchi, L., Blanc-Mathieu, R., Lucas, J., Boddie, P., Khan, A., Manosalva Pérez, N.,
1103 et al. (2021). JASPAR 2022: the 9th release of the open-access database of
1104 transcription factor binding profiles. *Nucleic Acids Res.*

1105 Chu, V.T., Weber, T., Wefers, B., Wurst, W., Sander, S., Rajewsky, K., and Kühn, R.
1106 (2015). Increasing the efficiency of homology-directed repair for CRISPR-Cas9-
1107 induced precise gene editing in mammalian cells. *Nat. Biotechnol.* 33, 543–548.

1108 Clifton-Bligh, R.J., Wentworth, J.M., Heinz, P., Crisp, M.S., John, R., Lazarus, J.H.,
1109 Ludgate, M., and Chatterjee, V.K. (1998). Mutation of the gene encoding human

1110 TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. *Nat. Genet.*
1111 1998 194 19, 399–401.

1112 Concordet, J.P., and Haeussler, M. (2018). CRISPOR: Intuitive guide selection for
1113 CRISPR/Cas9 genome editing experiments and screens. *Nucleic Acids Res.* 46,
1114 W242–W245.

1115 Corces, M.R., Trevino, A.E., Hamilton, E.G., Greenside, P.G., Sinnott-Armstrong,
1116 N.A., Vesuna, S., Satpathy, A.T., Rubin, A.J., Montine, K.S., Wu, B., et al. (2017). An
1117 improved ATAC-seq protocol reduces background and enables interrogation of
1118 frozen tissues. *Nat. Methods* 14, 959–962.

1119 Cuesta, I., Zaret, K.S., and Santisteban, P. (2007). The Forkhead Factor FoxE1
1120 Binds to the Thyroperoxidase Promoter during Thyroid Cell Differentiation and
1121 Modifies Compacted Chromatin Structure. *Mol. Cell. Biol.* 27, 7302–7314.

1122 Dame, K., Cincotta, S., Lang, A.H., Sanghrajka, R.M., Zhang, L., Choi, J., Kwok, L.,
1123 Wilson, T., Kańduła, M.M., Monti, S., et al. (2017). Thyroid progenitors are robustly
1124 derived from embryonic stem cells through transient, developmental stage-specific
1125 overexpression of Nkx2-1. *Stem Cell Reports* 8, 216–225.

1126 Deutsch, G., Jung, J., Zheng, M., Lóra, J., and Zaret, K.S. (2001). A bipotential
1127 precursor population for pancreas and liver within the embryonic endoderm.
1128 *Development* 128, 871–881.

1129 Dom, G., Dmitriev, P., Lambot, M., Vliet, G. Van, Glinoer, D., Libert, F., Lefort, A.,
1130 Dumont, J.E., Maenhaut, C., and Münsterberg, A.E. (2021). Transcriptomic
1131 Signature of Human Embryonic Thyroid Reveals Transition From Differentiation to
1132 Functional Maturation. 9, 1–19.

1133 Fagman, H., Grände, M., Edsbagge, J., Semb, H., and Nilsson, M. (2003).
1134 Expression of classical cadherins in thyroid development: Maintenance of an
1135 epithelial phenotype throughout organogenesis. *Endocrinology* 144, 3618–3624.

1136 Fagman, H., Amendola, E., Parrillo, L., Zoppoli, P., Marotta, P., Scarfò, M., de Luca,
1137 P., de Carvalho, D.P., Ceccarelli, M., de Felice, M., et al. (2011). Gene expression
1138 profiling at early organogenesis reveals both common and diverse mechanisms in
1139 foregut patterning. *Dev. Biol.* 359, 163–175.

1140 De Felice, M., and Di Lauro, R. (2004). Thyroid development and its disorders:
1141 Genetics and molecular mechanisms. *Endocr. Rev.* 25, 722–746.

1142 De Felice, M., Ovitt, C., Biffali, E., Rodriguez-Mallon, A., Arra, C., Anastassiadis, K.,

1143 Macchia, P.E., Mattei, M.G., Mariano, A., Schöler, H., et al. (1998). A mouse model
1144 for hereditary thyroid dysgenesis and cleft palate. *Nat. Genet.* **19**, 395–398.

1145 Fernández, L.P., López-Márquez, A., Martínez, Á.M., Gómez-López, G., and
1146 Santisteban, P. (2013). New Insights into FoxE1 Functions: Identification of Direct
1147 FoxE1 Targets in Thyroid Cells. *PLoS One* **8**.

1148 Fernández, L.P., López-Márquez, A., and Santisteban, P. (2015). Thyroid
1149 transcription factors in development, differentiation and disease. *Nat. Rev. Endocrinol.* **11**, 29–42.

1150 Francis-Lang, H., Price, M., Polycarpou-Schwarz, M., and Di Lauro, R. (1992). Cell-
1151 type-specific expression of the rat thyroperoxidase promoter indicates common
1152 mechanisms for thyroid-specific gene expression. *Mol. Cell. Biol.* **12**, 576–588.

1153 Frank, D.B., Penkala, I.J., Zepp, J.A., Sivakumar, A., Linares-saldana, R., Zacharias,
1154 W.J., Stolz, K.G., Pankin, J., Lu, M., Wang, Q., et al. (2019). Early lineage
1155 specification defines alveolar epithelial ontogeny in the murine lung. *Proc. Natl. Acad. Sci. U. S. A.*

1156 Ge, S.X., Son, E.W., and Yao, R. (2018). iDEP: an integrated web application for
1157 differential expression and pathway analysis of RNA-Seq data. *BMC Bioinformatics*
1158 **19**, 534.

1159 Golson, M.L., and Kaestner, K.H. (2016). Fox transcription factors: from
1160 development to disease. *Development* **143**, 4558–4570.

1161 Haerlingen, B., Opitz, R., Vandernoot, I., Trubiroha, A., Gillotay, P., Giusti, N., and
1162 Costagliola, S. (2019). Small-Molecule Screening in Zebrafish Embryos Identifies
1163 Signaling Pathways Regulating Early Thyroid Development. *Thyroid* **29**, 1683–1703.

1164 Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X.,
1165 Murre, C., Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-
1166 determining transcription factors prime cis-regulatory elements required for
1167 macrophage and B cell identities. *Mol. Cell* **38**, 576–589.

1168 Herriges, M., and Morrisey, E.E. (2014). Lung development: orchestrating the
1169 generation and regeneration of a complex organ. *Development* **141**, 502–513.

1170 Hurley, K., Ding, J., Villacorta-Martin, C., Herriges, M.J., Jacob, A., Vedaie, M.,
1171 Alyssandratos, K.D., Sun, Y.L., Lin, C., Werder, R.B., et al. (2020). Reconstructed
1172 Single-Cell Fate Trajectories Define Lineage Plasticity Windows during
1173 Differentiation of Human PSC-Derived Distal Lung Progenitors. *Cell Stem Cell* **26**, 1–

1176 16.

1177 Ikonomou, L., Herriges, M.J., Lewandowski, S.L., Marsland, R., Villacorta-Martin, C.,

1178 Caballero, I.S., Frank, D.B., Sanghrajka, R.M., Dame, K., Kańduła, M.M., et al.

1179 (2020). The in vivo genetic program of murine primordial lung epithelial progenitors.

1180 *Nat. Commun.* **11**, 635.

1181 Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with

1182 low memory requirements. *Nat. Methods* **12**, 357–360.

1183 Kimura, T. (2001). Regulation of Thyroid Cell Proliferation by TSH and Other

1184 Factors: A Critical Evaluation of in Vitro Models. *Endocr. Rev.* **22**, 631–656.

1185 Kraus, M.R.C., and Grapin-Botton, A. (2012). Patterning and shaping the endoderm

1186 in vivo and in culture. *Curr. Opin. Genet. Dev.* **22**, 347–353.

1187 Kuleshov, M. V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z.,

1188 Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al. (2016). Enrichr: a

1189 comprehensive gene set enrichment analysis web server 2016 update. *Nucleic Acids*

1190 *Res.*

1191 Kurmann, A.A., Serra, M., Hawkins, F., Rankin, S.A., Mori, M., Astapova, I., Ullas,

1192 S., Lin, S., Bilodeau, M., Rossant, J., et al. (2015). Regeneration of Thyroid Function

1193 by Transplantation of Differentiated Pluripotent Stem Cells. *Cell Stem Cell* **17**, 527–

1194 542.

1195 Kuwahara, A., Lewis, A.E., Coombes, C., Leung, F.-S., Percharde, M., and Bush,

1196 J.O. (2020). Delineating the early transcriptional specification of the mammalian

1197 trachea and esophagus. *Elife* **9**, 1–23.

1198 Lazzaro, D., Price, M., De Felice, M., and Di Lauro, R. (1991). The transcription

1199 factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in

1200 restricted regions of the foetal brain. *Development*.

1201 Li, S., Morley, M., Lu, M.M., Zhou, S., Stewart, K., French, C.A., Tucker, H.O.,

1202 Fisher, S.E., and Morrissey, E.E. (2016). Foxp transcription factors suppress a non-

1203 pulmonary gene expression program to permit proper lung development. *Dev. Biol.*

1204 **416**, 338–346.

1205 Longmire, T.A., Ikonomou, L., Hawkins, F., Christodoulou, C., Cao, Y., Jean, J.C.,

1206 Kwok, L.W., Mou, H., Rajagopal, J., Shen, S.S., et al. (2012). Efficient derivation of

1207 purified lung and thyroid progenitors from embryonic stem cells. *Cell Stem Cell* **10**,

1208 398–411.

1209 López-Márquez, A., Fernández-Méndez, C., Recacha, P., and Santisteban, P.
1210 (2019). Regulation of Foxe1 by Thyrotropin and Transforming Growth Factor Beta
1211 Depends on the Interplay Between Thyroid-Specific, CREB and SMAD Transcription
1212 Factors. *Thyroid* 29, 714–725.

1213 López-Márquez, A., Carrasco-López, C., Fernández-Méndez, C., and Santisteban,
1214 P. (2021). Unraveling the Complex Interplay Between Transcription Factors and
1215 Signaling Molecules in Thyroid Differentiation and Function, From Embryos to
1216 Adults. *Front. Endocrinol. (Lausanne)*. 12, 1–18.

1217 Ma, N., Liao, B., Zhang, H., Wang, L., Shan, Y., Xue, Y., Huang, K., Chen, S., Zhou,
1218 X., Chen, Y., et al. (2013). Transcription Activator-like Effector Nuclease (TALEN)-
1219 mediated Gene Correction in Integration-free β -Thalassemia Induced Pluripotent
1220 Stem Cells. *J. Biol. Chem.* 288, 34671–34679.

1221 Machado, L., Geara, P., Camps, J., Dos Santos, M., Teixeira-Clerc, F., Van Herck,
1222 J., Varet, H., Legendre, R., Pawlotsky, J.-M., Sampaoli, M., et al. (2021). Tissue
1223 damage induces a conserved stress response that initiates quiescent muscle stem
1224 cell activation. *Cell Stem Cell* 1–11.

1225 Marinò, M., and McCluskey, R.T. (2000). Megalin-mediated transcytosis of
1226 thyroglobulin by thyroid cells is a calmodulin-dependent process. *Thyroid* 10, 461–
1227 469.

1228 Morris, S.A., Cahan, P., Li, H., Zhao, A.M., San Roman, A.K., Shivdasani, R.A.,
1229 Collins, J.J., and Daley, G.Q. (2014). Dissecting engineered cell types and
1230 enhancing cell fate conversion via Cellnet. *Cell* 158, 889–902.

1231 Mou, H., Zhao, R., Sherwood, R., Ahfeldt, T., Lapey, A., Wain, J., Sicilian, L.,
1232 Izvolsky, K., Musunuru, K., Cowan, C., et al. (2012). Generation of multipotent lung
1233 and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs.
1234 *Cell Stem Cell* 10, 385–397.

1235 Nikolić, M.Z., Sun, D., and Rawlins, E.L. (2018). Human lung development: Recent
1236 progress and new challenges. *Dev.* 145.

1237 Nilsson, M., and Williams, D. (2016). On the Origin of Cells and Derivation of Thyroid
1238 Cancer : C Cell Story Revisited. *Eur. Thyroid J.* 5, 79–93.

1239 Parlato, R., Rosica, A., Rodriguez-Mallon, A., Affuso, A., Postiglione, M.P., Arra, C.,
1240 Mansouri, A., Kimura, S., Di Lauro, R., and De Felice, M. (2004). An integrated
1241 regulatory network controlling survival and migration in thyroid organogenesis. *Dev.*

1242 Biol. 276, 464–475.

1243 Porreca, I., De Felice, E., Fagman, H., Di Lauro, R., and Sordino, P. (2012).

1244 Zebrafish bcl2l is a survival factor in thyroid development. Dev. Biol. 366, 142–152.

1245 Rankin, S.A., Steimle, J.D., Yang, X.H., Rydeen, A.B., Agarwal, K., Chaturvedi, P.,

1246 Ikegami, K., Herriges, M.J., Moskowitz, I.P., and Zorn, A.M. (2021). Tbx5 drives

1247 aldh1a2 expression to regulate a RA-Hedgehog-Wnt gene regulatory network

1248 coordinating cardiopulmonary development. *Elife* 10.

1249 Romitti, M., Eski, S.E., Faria Fonseca, B., Pal Singh, S., and Costagliola, S. (2021).

1250 Single-cell trajectory inference guided enhancement of thyroid maturation in vitro

1251 using TGF-beta inhibition. *Front. Endocrinol. (Lausanne)*. 12, 613.

1252 Santisteban, P., Acebrón, A., Polycarpou-Schwarz, M., and Di Lauro, R. (1992).

1253 Insulin and insulin-like growth factor i regulate a thyroid-specific nuclear protein that

1254 binds to the thyroglobulin promoter. *Mol. Endocrinol.* 6, 1310–1317.

1255 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,

1256 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source

1257 platform for biological-image analysis. *Nat. Methods* 2012 97 9, 676–682.

1258 Sekiya, S., and Suzuki, A. (2011). Direct conversion of mouse fibroblasts to

1259 hepatocyte-like cells by defined factors. *Nature* 475, 390–393.

1260 Serra, M., Alyssandratos, K.-D., Hawkins, F., McCauley, K.B., Jacob, A., Choi, J.,

1261 Caballero, I.S., Vedaie, M., Kurmann, A.A., Ikonomou, L., et al. (2017). Pluripotent

1262 stem cell differentiation reveals distinct developmental pathways regulating lung

1263 versus thyroid lineage specification. *Development* 150193.

1264 Shaulian, E., and Karin, M. (2002). AP-1 as a regulator of cell life and death. *Nat.*

1265 *Cell Biol.* 4, E131–E136.

1266 Silberschmidt, D., Rodriguez-Mallon, A., Mithboakar, P., Cal, G., Amendola, E.,

1267 Sanges, R., Zannini, M., Scarf, M., De Luca, P., Nitsch, L., et al. (2011). In vivo role

1268 of different domains and of phosphorylation in the transcription factor Nkx2-1. *BMC*

1269 *Dev. Biol.* 11, 1–16.

1270 Stark, R., and Brown, G. (2011). DiffBind : differential binding analysis of ChIP-Seq

1271 peak data. *Bioconductor*.

1272 Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao,

1273 Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive Integration of

1274 Single-Cell Data. *Cell* 177, 1888-1902.e21.

1275 Vandernoot, I., Haerlingen, B., Gillotay, P., Trubiroha, A., Janssens, V., Opitz, R.,
1276 and Costagliola, S. (2021). Enhanced Canonical Wnt Signaling During Early
1277 Zebrafish Development Perturbs the Interaction of Cardiac Mesoderm and
1278 Pharyngeal Endoderm and Causes Thyroid Specification Defects. *Thyroid* 31, 420–
1279 438.

1280 Verma, N., Zhu, Z., and Huangfu, D. (2017). CRISPR/Cas-mediated knockin in
1281 human pluripotent stem cells. *Methods Mol. Biol.* 1513, 119–140.

1282 Wang, A., Yue, F., Li, Y., Xie, R., Harper, T., Patel, N.A., Muth, K., Palmer, J., Qiu,
1283 Y., Wang, J., et al. (2015). Epigenetic priming of enhancers predicts developmental
1284 competence of hESC-derived endodermal lineage intermediates. *Cell Stem Cell* 16,
1285 386–399.

1286 Weber, E., Gruetzner, R., Werner, S., Engler, C., and Marillonnet, S. (2011).
1287 Assembly of designer tal effectors by golden gate cloning. *PLoS One* 6, e19722.

1288 Willemsen, M.A.A.P., Breedveld, G.J., Wouda, S., Otten, B.J., Yntema, J.L.,
1289 Lammens, M., and De Vries, B.B.A. (2005). Brain-Thyroid-Lung syndrome: a patient
1290 with a severe multi-system disorder due to a de novo mutation in the thyroid
1291 transcription factor 1 gene. *Eur. J. Pediatr.* 164, 28–30.

1292 Xu, C.-R., Cole, P.A., Meyers, D.J., Kormish, J., Dent, S., and Zaret, K.S. (2011).
1293 Chromatin “Prepattern” and Histone Modifiers in a Fate Choice for Liver and
1294 Pancreas. *Science* (80-). 332, 963–966.

1295 Zaret, K.S., and Carroll, J.S. (2011). Pioneer transcription factors : establishing
1296 competence for gene expression. *Genes Dev.* 2227–2241.

1297 Zarkesh, M., Zadeh-Vakili, A., Azizi, F., Fanaei, S.A., Foroughi, F., and Hedayati, M.
1298 (2018). The association of BRAF V600E mutation with tissue inhibitor of
1299 metalloproteinase-3 expression and clinicopathological features in papillary thyroid
1300 cancer. *Int. J. Endocrinol. Metab.* 16.

1301 Zhou, Y., Wu, H., Zhao, M., Chang, C., and Lu, Q. (2016). The Bach Family of
1302 Transcription Factors: A Comprehensive Review. *Clin. Rev. Allergy Immunol.* 50,
1303 345–356.

1304 Zorn, A.M., and Wells, J.M. (2009). Vertebrate Endoderm Development and Organ
1305 Formation. *Annu. Rev. Cell Dev. Biol.* 25, 221.

1306