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Summary 

 

Internal tandem duplications (ITDs) in the FLT3 gene are frequently identified and confer a 

poor prognosis in patient affected by acute myeloid leukemia (AML). The insertion site of the 

ITDs in FLT3 significantly impacts the sensitivity to tyrosine kinase inhibitors (TKIs) therapy, 

affecting patient’s clinical outcome. To decipher the molecular mechanisms driving the 

different sensitivity to TKIs therapy of FLT3-ITD mutation, we used high-sensitive mass 

spectrometry-based (phospho)proteomics and deep sequencing. Here, we present a novel 

generally-applicable strategy that supports the integration of unbiased large-scale datasets with 

literature-derived signaling networks. The approach produced FLT3-ITDs specific predictive 

models and revealed a crucial and conserved role of the WEE1-CDK1 axis in TKIs resistance. 

Remarkably, we found that pharmacological inhibition of the WEE1 kinase synergizes and 

strengthens the pro-apoptotic effect of TKIs therapy in cell lines and patient-derived primary 

blasts. In conclusion, this work proposes a new molecular mechanism of TKIs resistance in 

AML and suggests a combination therapy as option to improve therapeutic efficacy.  

 

 

 

Introduction 

 

Internal tandem duplications (ITDs) of the FLT3 gene are observed in about 25% of young 

adults with newly diagnosed acute myeloid leukemia (AML) 1,2. The FLT3 gene encodes a 

receptor tyrosine kinase, consisting of an extracellular immunolike-domain, a transmembrane 

region, a cytoplasmic juxtamembrane domain (JMD) followed by two tyrosine kinase domains 

(TKD1 and TKD2) 3. Upon ligand binding, FLT3 switches from an inactive to a catalytically 

active conformation, leading to the phosphorylation of its downstream effectors that regulate 

self-renewal and differentiation of hematopoietic stem and progenitor cells. FLT3-ITD 

mutations always occur in exons 15 and 16, encoding the JMD and TKD1 regions, and cause 

its constitutive activation 4. In 2017, the CALGB 10603/RATIFY trial demonstrated a 

significantly improved outcome in a cohort of 717 patients carrying genetic alterations in the 

FLT3 gene when treated with the multikinase inhibitor midostaurin (PKC412) combined to 

standard frontline chemotherapy 5. At the beginning of 2022, a retrospective analysis of the 

same trial evaluated the prognostic value of the insertion sites of ITD mutations in the response 

to midostaurin treatment. Interestingly, the analysis revealed that midostaurin treatment 
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exerted a significant beneficial effect only in patients carrying the ITDs in the JMD domain, 

whereas no beneficial effect was observed in patients carrying ITDs in the TKD region. In 

addition, multivariate analysis showed that the ITD-TKD localization is an unfavourable 

prognostic factor for overall survival and incidence of relapse 6. 

In accord with this clinical observations, previous in vitro studies showed that ITDs-TKD 

confer resistance to chemotherapy and are associated to a significantly inferior outcome. 

Briefly, ITD-TKD positive cell lines and primary mouse bone marrow cells showed reduced 

apoptosis when compared to ITDs-JMD, upon exposure to FLT3 inhibitors, namely 

midostaurin and quizartinib (a highly-specific second-generation FLT3 inhibitor) 7–9. 

Although ITD-TKD and ITD-JMD expressing cell models show two clearly distinct 

phenotypes, at the biochemical level, the enzymatic activity of these FLT3 mutants is equally 

suppressed by kinase inhibitors. In addition, downstream FLT3 canonical targets are also 

equally inhibited upon drug administration 7, suggesting that the two differential phenotypic 

outcomes are the result of a systems-wide response to inhibitor treatment.  

To date, the molecular mechanisms underlying such different sensitivity remain unclear, 

leaving patients carrying ITDs in the TKD region in still unmet medical needs. 

Here, we speculate that the diverse insertion site of ITDs in FLT3 may cause an extensive 

rewiring of cell signaling network resulting in a different sensitivity to TKIs therapy. A variety 

of systems biology and network-based approaches have been recently developed to generate 

predictive cell specific models 10. In principle cell specific signaling models describing how 

the different ITD localization impacts the signaling network may offer the opportunity to 

identify novel promising therapeutic targets reverting the TKI-therapy resistance 11,12. We, 

therefore, performed a system-level analysis of the state of FLT3-ITD cells caused by TKIs 

treatment. Global and unbiased transcriptome, proteome and phosphoproteome analyses 

enabled us to identify TKIs-induced changes at transcriptional, translational and post-

translational levels. Next, to obtain FLT3-ITD cell-specific models describing the TKI 

signaling response, we developed “Signaling Profiler”, a novel, generally applicable, 

computational strategy supporting the integration of these large “omic” datasets with literature-

derived causal networks. This strategy highlighted the novel and crucial role of the WEE1-

CDK1 axis in TKI therapy failure in FLT3ITD-TKD patients. Remarkably, pharmacological 

inhibition of WEE1 completely rescued the ability of patient-derived primary blasts, carrying 

the ITD-TKD mutation, to undergo apoptosis in response to midostaurin treatment. Thus, our 

strategy and resource enable investigation of drug-resistance mechanisms and identification of 

therapeutic targets. 
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Results 

An unbiased approach to identify therapeutic target reverting TKI resistance 

In our experimental strategy we aim to dissect the molecular mechanisms underlying the 

different impact of the location of ITDs on sensitivity to FLT3 inhibitor treatment, with the 

ultimate goal of designing effective patient-specific therapeutic strategies.  

To this aim, we set out a multi-step strategy that combines system-level and unbiased multi-

omic analyses (Fig.1A panel a and b) with literature-derived causal networks to generate cell-

specific models (Fig.1A panel c). We demonstrate that these models have a translational 

impact and can be used as a framework to identify and test novel drug targets reverting TKI 

resistance (Fig.1A panel d). 

 

The experimental system 

Specifically, as an experimentally easy-to-manipulate system, we used Ba/F3 cells stably 

expressing the FLT3 gene with ITD insertions in the JMD (aa 598) or in the TKD1 (aa 613) 

region, from now on “FLT3ITD-JMD” and “FLT3ITD-TKD” cells (Fig. 1A panel a). Among 

validated FLT3 inhibitors, we tested midostaurin (PKC412), gilteritinib (ASP122, recently 

approved by FDA) and quizartinib (AC220) 13 14.  

As anticipated, nanomolar concentrations (20–100 nM) of midostaurin (PKC412), quizartinib 

(AC220) or gilteritinib (ASP122) induced apoptosis in BaF3-cells harboring ITD-JMD 

mutation, whereas ITD-TKD cells showed significantly decreased sensitivity to the three 

inhibitors (Fig. 1B). A dose-dependent assay confirmed this observation: increasing 

concentrations of quizartinib, the more selective and potent FLT3-inhibitor 15, correlate with a 

stronger response in ITD-JMD cells (Fig. 1C). Confirming previously published data 7,8, these 

results demonstrate differential sensitivity of FLT3-ITDs to TKI-therapy depending on the 

location of the FLT3-ITD. 

 

Deep transcriptome, proteome and phosphoproteome analysis of quizartinib treated 

FLT3-ITD cells. 

To investigate the molecular basis of the observed different sensitivities to treatment with FLT3 

inhibitors in ITD-TKD and ITD-JMD expressing cells, we set out to apply an unbiased strategy 

to monitor the transcriptional, translational, and post-translational changes induced by FLT3 

inhibition. In these large-scale experiments, FLT3-ITD cells were exposed to short (1.5h) or 
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long (24h)-term treatments with 20nM quizartinib (AC220) (Fig. 1A panel b). Among the 

FLT3 inhibitors, we selected quizartinib, because of its high specificity and we treated cells 

with 20nM, a non-toxic concentration whereby the quizartinib-induced apoptotic response is 

significantly different between FLT3-ITD cells (Fig. 1C). 

We quantified the modulation of the transcription profiles induced by TKI in FLT3-ITD cells. 

A deep sequencing approach enabled the quantification of the expression of more than 11,000 

genes (Table S1). Protein levels and peptide phosphorylation were obtained by state-of-the-

art, high-sensitive, mass spectrometry (MS)-based (phospho)proteomics. This allowed the 

quantification of more than 5,000 proteins (Table S2) and 16,000 phosphorylation events (class 

I sites, Table S3). Overall, by this strategy we quantified more than 10,000 transcripts, 4,000 

proteins and 10,000 phosphosites in each experimental condition (Fig. S1 A-B-C). The 

biological triplicates or quadruplicates were highly correlated with Pearson correlation 

coefficients ranging between 0.85 (for phospho measurements) and 0.97 (for transcriptome and 

proteome measurements) (Fig. S1 D-E-F). 

The experimental system appeared to be efficient: for nearly all the quantified proteins (97%), 

we also obtained the levels of the corresponding transcripts (Fig. 1D top panel); similarly, for 

approximately 83% of the quantified phosphorylation sites, we also measured protein 

abundance (Fig. 1D bottom panel); also, quizartinib-induced changes at the transcript level 

tend to correlate with those at the proteome level in FLT3ITD-JMD and FLT3ITD-TKD cells 

(PC=0.6-0.7) (Fig. S2 A-B); finally, when normalizing by the protein levels, more than 70% 

of phosphosites were still significantly regulated by quizartinib treatment (Fig. S2 C-D). 

Next, we applied a statistical t-test to narrow-down the species that are regulated by the FLT3 

inhibitor. Briefly, about one third of the transcriptome, proteome and phosphoproteome 

displayed a significant (FDR<0.1) change in the abundance upon quizartinib treatment (Fig. 

S3 A-B-C). Comparative analysis of significantly modulated genes, proteins or phosphosites, 

revealed a common core (14% in the transcriptomics, 7% in the proteomics and 5% in the 

phosphoproteomics) of canonical FLT3-ITD targets significantly altered by 24h quizartinib 

treatment, regardless of the ITD insertion site (Fig. S3 A-B-C). Interestingly, our data suggest 

that the two different ITD localization impacts the quizartinib-dependent remodeling of the 

phosphoproteome profile to a greater extent as compared to the transcriptome and proteome 

profile (R phosphoproteome= 0.58) (Fig. S3 D-F).  

Consistently, principal component analysis (PCA) clearly showed that exclusively the 

phosphoproteome could stratify cells according to both FLT3 activation status (component 1) 

and ITD insertion site (component 2) (Fig. 1 E-G). Unsupervised hierarchical clustering of our 
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large-scale datasets confirmed that the phosphoproteomic profile best discriminates FLT3 cells 

according to their quizartinib sensitivity (Fig. S3 G-I). These observations indicate that the 

different localization of the ITD mutations mostly impact the cell regulatory network at the 

post-translational level. The FLT3-ITD-dependent modulation of the phosphoproteome profile 

may drive the different sensitivity to TKI-therapy.  

 

Pathway modulation in response to quizartinib treatment 

We next assessed the effect of quizartinib treatment on previously identified FLT3 downstream 

signaling pathways. We took advantage of the signaling database SIGNOR 16 to retrieve the 

subnetwork recapitulating well-characterized phosphorylation events directly or indirectly 

modulated by the FLT3 receptor. We, next, overlaid our phosphoproteomic results onto the 

FLT3 subnetwork. As shown in Figure 2A, the MAPK and AKT-mTOR pathways are equally 

inhibited by either short-term and long-term exposure to quizartinib in both cell lines. These 

results are in line with literature-derived prior knowledge and support the robustness of our 

experimental model. Consistently, the phosphorylation level of the FLT3-ITD mutants as well 

as their down-stream canonical targets are equally decreased by TKIs treatments (Fig. 2B).  

One step further, we checked for biological processes altered in treated cells by employing a 

gene ontology term enrichment analysis and by taking advantage of the 2D annotation 

enrichment analysis algorithm, based on nonparametric Mann-Whitney test (FDR < 0.05). We 

detected a significant overexpression of proteins involved in mitochondrial metabolic 

processes, such as TCA cycle and OxPhos, as well as in lipid oxidation (Fig. 2C and Fig. S4A-

E). 

Consistently with the different sensitivity of FLT3ITD-JMD and FLT3ITD-TKD cells to quizartinib 

treatment we found that proteins involved in apoptosis were significantly hyperphosphorylated 

in FLT3ITD-JMD cells, but not in FLT3ITD-TKD cells (Fig. 2D). Interestingly, we observed that the 

quizartinib-dependent phosphorylation of DNA replication proteins is significantly decreased 

only in quizartinib treated FLT3ITD-JMD cells, but not in cells with the ITD mutation in the TKD 

region (Fig. 2E).  

Kinase substrate motifs analysis showed that pro-proliferative kinases, ERK1/2, AKT and 

p70S6K are significantly downregulated (FDR < 0.05), in line with the anti-proliferative effect 

of quizartinib in FLT3-ITD cells (Fig. S4 F).  

These observations provide a global picture of the main changes induced by quizartinib 

treatment at the transcriptome, proteome, and phosphoproteome level in both FLT3-ITD cells. 

The molecular mechanisms underlying the different sensitivity to quizartinib treatment of 
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FLT3-ITD cells is still an open question that we aim to address by complementary and more 

granular approaches. 

 

From FLT3 to transcription factors through Signaling Profiler 

Here we implemented a generally applicable modelling strategy that combines transcriptomics 

and phosphoproteomics datasets with prior knowledge annotated in public databases such as 

SIGNOR 17 and PhosphoSitePlus 18 (Fig. 1A, panel c). The strategy, dubbed “Signaling 

Profiler”, takes advantage of previously developed computational approaches 19, and 

complements them with novel additional features that allow a more exhaustive integration of 

phosphoproteomic data and in silico validation of the results (Fig. 3A and Fig. S5). Briefly: 

1. We used footprint-based analysis 19 to infer the activity of key proteins: transcription factors 

(from the transcriptome data) and kinases and phosphatases (from phosphoproteomics data). 

In addition, we implemented a novel approach to infer the activity of phosphoproteins being 

target of (de)phosphorylation modifications (PhosphoSCORE) by combining the regulatory 

role and experimental fold-change of phosphosites.  

2. We used the causal relations annotated in SIGNOR and PhosphoSitePlus, to build a naïve 

network connecting (i) FLT3, (ii) inferred kinases and phosphatases, (iii) their substrates and 

(iv) inferred transcription factors.  

3. We exploited the CARNIVAL software 20 to derive FLT3ITD-JMD and FLT3ITD-TKD specific 

mechanistic models.  

4. To in silico validate the results, we inferred the activity of key apoptotic markers as a proxy 

of the behavior of the two models. 

 

The first step of the Signaling Profiler pipeline allowed us to compute the activity of 101 

kinases, 22 phosphatases and 70 transcription factors (Fig. 3 B-C and Fig. S6). As displayed 

in Figure 3 C, there is a high correlation between protein activities predicted in the two cell 

lines (R = 0.85 – 0.87), with a few exceptions: WEE1, WEE2 and PKMYT1 kinases are 

predicted to be inactive in the FLT3ITD-JMD and active in the FLT3ITD-TKD cells. 

Protein activities of key signaling proteins are then used to feed the CARNIVAL tool together 

with causal networks (Fig. 3A step 2 and 3), to obtain two cell-specific models (Fig. S7-S8).  

These two graphs are static representations of the remodeling of the signal transduction cascade 

induced by 24 hours of quizartinib treatment. The comparison between sensitive and resistance 

signaling networks has the potential to reveal potential mechanisms of drug resistance and new 

therapeutic targets.  
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We next decided to monitor differences of the two FLT3-ITD specific signaling network 

models at a more granular level (Fig. 3A, step 4). Briefly, we checked whether the two models 

display differential modulation of pro-apoptotic and pro-survival proteins, in agreement with 

the phenotypes observed in the two experimental systems. As shown in Supplementary 

Figure 9, FLT3ITD-TKD cells display a stronger activation of pro-survival proteins (especially, 

MCL1 and BCL2) and inhibition of apoptotic proteins (in particular, BAD and BIM/BCL2L11) 

compared to FLT3ITD-JMD cells. Interestingly, CDK1 appears as a key upstream regulator of 

four out of five pro-apoptotic and anti-apoptotic proteins (Fig. S9).  

 

FLT3-ITD insertion site impacts the WEE1-CDK1 axis impairing cell cycle progression 

and apoptosis in TKIs treated cells.  

Given the promising role of CDK1 in mediating TKI resistance in our FLT3-TKD model, we 

extracted the sub-cascade that leads to its deregulation (Fig. 4A). As displayed in the diagram 

in Figure 4A, CDK1 is more inhibited in FLT3ITD-TKD cells rather than FLT3ITD-JMD cells and 

its regulation, downstream of FLT3, involves p27/CDKN1B, the kinase WEE1 and the 

phosphatase CDC25B. Interestingly, the activity of WEE1 is oppositely regulated in the two 

cell lines (Fig. 3C and Fig. 4A) and the inhibitory interaction between WEE1 and CDK1 is 

FLT3ITD-TKD specific (Fig. S7 and Fig. S8). We, therefore, speculate that the WEE1-CDK1 

path might play a pivotal role in inducing survival in quizartinib resistant FLT3ITD-TKD cells 

(Fig. 4B). 

WEE1 is a tyrosine kinase that is a crucial component of the G2-M cell cycle checkpoint that 

prevents entry into mitosis in response to cellular DNA damage by negatively regulating the 

activity of CDK1, the key switch responsible for M-phase initiation 21. 

Our experiments demonstrated that TKIs treatment differently changes the abundance of 

WEE1 in FLT3-ITD cells (Fig. 4C), without affecting its transcript level (Fig. S10A). 

Consistently, in our MS-based phosphoproteomic approach, the phosphorylation level of the 

serine 139, which has been demonstrated to correlate with its degradation 22, is lower in 

FLT3ITD-TKD cells as compared to FLT3ITD-JMD cells (Fig. S10B and Table S3). In FLT3ITD-

TKD cells, the increased WEE1 protein level is associated with the enhanced phosphorylation of 

CDK1 (at tyrosine 15) and consequently with its negative enzymatic regulation (Fig. 4C). 

Altogether, our results provide evidence that TKI treatment, especially midostaurin (PKC412), 

triggers CDK1 activity in FLT3ITD-JMD cells, but not in FLT3ITD-TKD cells. 
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Thus, we tested whether the different modulation of CDK1 affects the distribution of the 

different phases of the cell cycle upon 24h of TKIs treatment. The cell cycle analysis revealed 

that the TKI-treated FLT3ITD-JMD cells show a reduction of the percentage of cells in the S and 

G2/M phases. After exposure to TKIs, especially midostaurin (PKC412), FLT3ITD-TKD cells 

show a higher percentage of S-phase and G2-M phase cells as compared to FLT3ITD-JMD cells 

(Fig. 4D). Consistently, we observed that midostaurin significantly reduces cell proliferation 

only in FLT3ITD-JMD cells, as revealed by the EdU assay (Fig. 4E). Accordingly, phosphoH3 

staining revealed that the percentage of mitotic cells is significantly lower in FLT3ITD-JMD as 

compared to FLT3ITD-TKD cells upon midostaurin exposure (Fig. 4F).  

Finally, our observations indicate that the different locations of the ITD in the FLT3 receptor 

impact crucial kinases determining distinct modulations of cell cycle progression. 

 

WEE1 kinase inhibition reverts the TKI-therapy resistance of FLT3ITD-TKD cells 

As we have demonstrated that FLT3-ITD resistant cells are characterized by an increased 

stability of the WEE1 kinase, we next investigated whether pharmacological inhibition of 

WEE1 would potentiate the pro-apoptotic effect of TKIs in FLT3ITD-TKD cells. 

Briefly, we treated FLT3ITD-JMD  and FLT3ITD-TKD cells with adavosertib (MK1775), a highly 

selective WEE1 inhibitor 23, separately or in combination with midostaurin. As displayed in 

Figure 5A, adavosertib treatment efficiently reduces the level of CDK1 phosphorylation at 

Tyr15, showing efficient target engagement. Apoptotic and cell survival assays showed that 

WEE1 inhibitor synergises with midostaurin to trigger cell death of FLT3ITD-TKD cells and to a 

lesser extent of FLT3ITD-JMD cells (Fig. 5B-C). 

Pharmacological inhibition of WEE1 kinase activity and the consequent removal of the G2–M 

checkpoint through the CDK1 hyperactivation represents an attractive strategy to drive cancer 

cells to enter into unscheduled mitosis and, arguably, to undergo cell death via alternative 

mechanisms such as the mitotic catastrophe 24. In line with this hypothesis, the combined 

treatment of midostaurin and adavosertib, exclusively, triggers mitotic cell death in FLT3ITD-

TKD cells (Fig. 5D). 

We next investigated whether FLT3-ITD primary blasts, derived from 9 patients with de novo 

AML diagnosis, could benefit from the combined treatment of midostaurin and WEE1 

inhibitor. First, blasts were isolated from peripheral blood of ITD-positive AML patients (Fig. 

S11). As expected, the molecular landscape of FLT3-ITD mutation is heterogeneous (Fig. 5E). 

We excluded one patient carrying an atypical insertion sequence in the JMD domain. Then, we 

classified our cohort of FLT3-ITD patients in two main groups according to the ITD insertion 
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site (Fig. 5E and Fig. S12). This approach enabled us to obtain two subgroups: 4 FLT3ITD-TKD 

patients (carrying the ITD in the TKD domain), 4 FLT3ITD-JMD+ITD-TKD patients (carrying the 

ITD in both the JMD and TKD domain). We considered only patients with a single insertion, 

reaching three patient per subgroup. Unexpectedly, in our cohort, no patient carrying the ITD 

only in the JMD domain was found. Remarkably, genetic stratification based on the ITD 

localization reflected the drug-response phenotype (Fig. S12): midostaurin alone significantly 

triggers apoptosis in FLT3ITD-JMD+ITD-TKD blasts (Fig. 5F), while no beneficial effects were 

observed in FLT3ITD-TKD blasts (Fig. 5G). This result suggests that the pro-apoptotic effect of 

the ITD insertion within the JM domain is dominant over the ITD-TKD counterpart. 

Remarkably, both the pharmacological inhibition of WEE1 alone and the combined treatment 

with midostaurin trigger apoptosis of FLT3ITD-TKD positive blasts, restoring their sensitivity to 

TKI therapy (Fig. 5G). 

Our results provide novel evidence that the WEE1-CDK1 axis represents a promising 

therapeutic target to revert drug resistance in patients carrying the ITD mutation in the TKD of 

FLT3 that currently cannot benefit from midostaurin treatment.  

 

Discussion 

Internal tandem duplication (ITD) in the FLT3 receptor are genetic alterations occurring in 

about 30% of patients with a de novo AML diagnosis. These mutations result in increased and 

uncontrolled kinase activity and are generally associated with poor prognostic outcomes. 

Although the molecular landscape of ITD mutation has been shown to be highly complex and 

heterogeneous, FLT3-ITD positive patients receive the same treatment consisting of standard 

chemotherapy combined with the multikinase inhibitor midostaurin (Richard M. Stone et al., 

2018). Very recently, a retrospective explorative analysis revealed the negative prognostic 

impact of the ITD insertion in the tyrosine kinase domain compared to the ITD located in the 

juxtamembrane domain 6. We and others showed that the insertion site of the ITD mutations 

significantly impacts the ability of FLT3 inhibitors, including midostaurin, to trigger cell death 

in both cell lines and primary blasts 7,9,26–28. Consistently with previous observations, here we 

show that the beneficial effect of TKIs is restricted to FLT3-ITDs located in the juxtamembrane 

domain (JMD), but not to FLT3-ITD in the TKD region. Indeed, ITDs in the TKD alone 

predispose to chemoresistance and relapse, demanding for more effective and targeted 

treatments. 

We have reported here the first unbiased, large-scale, multi-layered analysis aimed at 

describing the molecular mechanisms underlying the different sensitivity to TKI therapy of 
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cells carrying FLT3-ITD mutations in the TKD or JMD domains. The main objective of this 

study is the identification of new potential therapeutic targets increasing the efficacy of the 

TKI therapy in FLT3ITD-TKD patients. 

Our quantitative transcriptome, proteome and phosphoproteome analysis provide an integrated 

picture of the TKIs-dependent molecular events. We speculate that a complex rewiring of 

signaling pathways may be the cause of the different sensitivity of FLT3-ITD cells to TKIs 

treatments. To address this point, we implemented a computational pipeline dubbed Signaling 

Profiler, that integrates readouts of transcriptome and phosphoproteome studies, with prior 

evidence annotated in public repositories to produce cell-specific networks representing the 

remodeling of signal transduction cascade at the PTM-resolution level induced by quizartinib. 

The observed inhibition of canonical pathways immediately downstream of FLT3 29 as well as 

the presence of well-characterized gene products whose mutation are involved in AML 

progression or relapse (e.g. NPM1, CEBPA, KRAS, PTPN11) 30, confirm the clinical relevance 

of our models.  

Although grounding on previously developed tools such as CARNIVAL 20 and VIPER 31, 

Signaling Profiler incorporates novel features such as the PhosphoSCORE calculation method, 

enabling for a comprehensive integration of the phosphoproteomic data; and the simulation of 

phenotypic biomarker, which provide the in-silico validation of the results.  

This approach revealed a novel mechanism of resistance relying on the different regulation of 

the WEE1-CDK1 axis. In untreated FLT3-ITD cells, CDK1 was found to be at least partially 

inactivated by phosphorylation at Tyr15. Potential mechanisms upstream of CDK1 

phosphorylation include the hyper-activation of the kinases WEE1, WEE2 and PKMYT1 as 

well as the inhibition of the phosphatase CDC25C 32. TKIs treatment, especially midostaurin, 

reversed this process and activated CDK1 to a greater extent in cells carrying the “classical 

FLT3-ITDs”, which are also more sensitive to apoptosis. To date, several reports remarked that 

an unscheduled, premature or sustained CDK1 activation has been associated to cell death 

through mitotic catastrophe or apoptosis induction 32–35. By contrast, TKIs treated cells carrying 

the insertion in the TKD domain are characterized by a high expression of the WEE1 kinase, 

which in turn determines CDK1 inactivation. Consistently, increased level of WEE1 has been 

shown to correlate with tumor progression and poor disease-free survival 36. Here, we 

demonstrated that deregulation of the WEE1-CDK1 axis represents a crucial mechanism of 

resistance to TKI therapy in FLT3-ITD positive cells and patient-derived primary blasts. 

Remarkably, the ability of FLT3ITD-TKD cells to undergo apoptosis in response to TKI therapy 

was completely rescued by pharmacological inhibition of WEE1. This observation provides 
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support for WEE1 inhibitors to be used in combination therapies with TKIs to improve the 

clinical outcomes of FLT3ITD-TKD patients.  

Interestingly, although we analyzed a small cohort of FLT3-ITD patient-derived primary 

blasts, our analysis confirms that insertions in the TKD sole have a significantly inferior 

clinical outcomes compared to blasts with insertion sites in both the JM and the TK domains 

(Rucker et al., 2022).  

In conclusion, the results of this work endorse the discrepancies in the current practice toward 

the treatment of FLT3-ITD positive patients affected by AML and open-up opportunities for 

additional, more effective and patient-specific therapeutic strategies. Here, we speculate that 

these pre-clinical results create the basis of new trials that might change the clinical reality for 

AML patients. We suggest that FLT3-ITD patients, at diagnosis, should be stratified according 

to the ITD insertion site into prognostically relevant FLT3-ITD subgroups. Midostaurin 

maintenance therapy should be critically evaluated in case of FLT3-ITD located within the 

TKD1 domain and synergistic combination therapies should be used to rationally manipulate 

the WEE1-CDK1 axis, triggering cell death, through mechanisms that are yet to be defined. 

Finally, we’d like to stress the importance of unbiased, system-level studies to accelerate the 

investigation of more granular, patient-specific mechanisms of disease and chemoresistance 

toward the identification of more effective therapeutic targets. 
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Figure1
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Figure 1.  

(A) Overview of the experimental and bioinformatic strategy. BaF3 cells expressing FLT3ITD-

TKD (in orange) and FLT3ITD-JMD (in blue) were treated with 20nM quizartinib (AC220) for 24h 

(a). mRNAs were isolated for the transcriptome analysis and the protein extracts were digested 

and characterized at the proteome and phosphoproteome levels (b). Multi-omics profiles of 

FLT3-ITD cells were used in Signaling Profiler pipeline to obtain cell-specific models and to 

identify additional druggable genes (c). Proteins of interest were further investigated through 

complementary assays in patients-derived primary blasts (d). (B) Cell survival of BaF3 cells 

expressing FLT3ITD-JMD (in blue) and FLT3ITD-TKD (in orange) after FLT3 inhibitors treatment. 

Cells were treated for 24h with 20nM quizartinib (AC220), 100nM midostaurin (PKC412) and 

50nM gilteritinib (ASP2215). Cell viability was assessed by MTT assay. (C) Induction of 

apoptosis in BaF3 cells expressing FLT3ITD-JMD (in blue) and FLT3ITD-TKD (in orange) treated 

with increasing doses of AC220 for 24h. The percentage of apoptotic cells was determined by 

Annexin-V labelling. (D) Pie charts representing the percentage and the number of species 

characterized at the protein and the transcript levels (top) or at the protein and the phosphosite 

levels (bottom). (E, F, G) Principal Component Analysis (PCA) of the analytes quantified 

across the transcriptome (E), proteome (F) and phosphoproteome (G) replicates.  
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Figure 2 

 

 

 

Figure 2.  

(A) FLT3 downstream causal interaction network. The effect of quizartinib (AC220) on the 

phosphoproteome and proteome profiles of FLT3ITD-JMD and FLT3ITD-TKD cells was mapped on 
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a literature curated signaling network, extracted from the SIGNOR resource 16. For 

comparative analysis, for each node, the activation state in both cell line is shown (down-left 

half for ITD-JMD, and top-right half for ITD-TKD). Activated proteins are marked in red, 

whereas inhibited ones in blue. Phosphosites are displayed as independent rectangles and are 

colored according to their phosphorylation state after quizartinib treatment, as indicated in the 

legend. (B) Representative western blot showing the inhibition of canonical FLT3 downstream 

targets, as revealed by their phosphorylation status: Tyr694 in STAT5 and Thr202 and Tyr204 

in ERK1/2. ITD-JMD and ITD-TKD BaF3 cells were treated for 1.5h with FLT3 inhibitors 

treatment (AC220: quizartinib, PKC412: midostaurin and ASP2215: gilteritinib). (C) Heatmap 

displaying the enrichment score of GO Biological processes and KEGG pathways significantly 

(FDR<0.05) over- (red color) or under- (blue color) represented in the relative dataset 

(transcripts, proteins and phosphosites in FLT3ITD-JMD (in blue) and FLT3ITD-TKD (in orange) 

BaF3 cells upon quizartinib (AC220) treatment. (D, E) Boxplots showing the relative 

abundance of significantly modulated transcripts, proteins and phosphoproteins involved in 

apoptosis (D) or DNA replication process (E) in BaF3 cells expressing FLT3ITD-JMD (in blue) 

and FLT3ITD-TKD (in orange) upon quizartinib (AC220) treatment. 
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Figure 3 

 

 

Figure 3.  

(A) Schematic representation of the Signaling Profiler workflow. Step 1. Protein activity of 

transcription factors, kinases and phosphatases was computed from experimental data using 

the footprint-based analysis and the ‘phosphoSCORE' method. When needed, the two scores 
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were averaged. Step 2. Proteins derived from step 1 were linked to FLT3 and to each other’s 

via paths of causal interactions extracted from PhosphoSitePlus and SIGNOR databases to 

build a naïve network. Step 3. CARNIVAL was used to search in the naïve network causal 

circuits coherent with protein activity. More specifically, in the first run we retrieved paths 

between FLT3 and kinases, phosphatases and substrates, whereas the second run connected all 

the proteins obtained from the first run with transcription factors. Eventually, the two networks 

were merged together. Step 4. The activity of protein markers of phenotypes (e.g. apoptosis) 

were predicted integrating the signal from upstream nodes in each cell-specific optimized 

network.  (B, C) Protein activity prediction results.  Scatterplots showing the comparison 

between protein activity predicted from FLT3ITD-JMD (x-axis) and FLT3ITD-TKD (y-axis) datasets 

for transcription factors (B) and kinases and phosphatases (C). Each dot represents a 

gene/protein, and the color indicates whether the prediction is statistically significant in both 

cell lines (green) or exclusively in one cell line: ITD-JMD (blue) or ITD-TKD (orange). R 

indicates Pearson correlation. 
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Figure 4 

 

 

 

Figure 4.  

(A) FLT3 - CDK1 signal cascade.  FLT3ITD-TKD specific mechanistic model highlighting the 

regulation of CDK1 downstream of FLT3. For comparative analysis, for each node, the 

activation state in both cell line is shown (down-left half for ITD-JMD, and top-right half for 

ITD-TKD). Activated proteins are marked in red, whereas inhibited ones in blue. (B) WEE1 – 
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CDK1 mechanistic model. Cartoon representing the potential molecular mechanism of 

chemoresistance suggested by the Signaling Profiler analysis. In FLT3ITD-TKD cell line, 

quizartinib (AC220) -triggered inhibition of FLT3 leads to the dephosphorylation of WEE1 at 

Ser139, this prevents WEE1 degradation, stabilizing the protein; as such, CDK1 is 

phosphorylated on its inhibitory residues Tyr15 and Thr14 becoming inactive 37. (C) 

Representative western blot showing the phosphorylation level of CDK1 on Tyr15 and the 

protein level of WEE1 kinase in FLT3ITD-JMD and FLT3ITD-TKD BaF3 cells treated for 24 hours 

with 20nM quizartinib (AC220), 100nM midostaurin (PKC412) and 50nM gilteritinib 

(ASP2215). (D) Cell cycle analysis. Boxplots displaying the percentage of FLT3ITD-JMD (in 

blue) and FLT3ITD-TKD (in orange) cells in the different phases of the cell cycle as determined 

by flow cytometry using DAPI labeling, after treatment for 24 hours with 20nM quizartinib 

(AC220), 100nM midostaurin (PKC412) and 50nM gilteritinib (ASP2215). (E) Effect of 

midostaurin on cell division. FLT3ITD-JMD (blue) and FLT3ITD-TKD (orange) BaF3 cells were 

treated with 100 nM midostaurin (PKC412) for 24 hours. Percentage of cells in division was 

assessed by EdU labelling and flow cytometry analysis. (F) Bar plot representing the 

percentage of cells in mitosis. FLT3ITD-JMD (blue) and FLT3ITD-TKD (orange) BaF3 cells were 

treated with 100 nM PKC412 for 24 hours. Cells expressing phospho-H3 (S10) were identified 

by flow cytometry analysis.  
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Figure 5 
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Figure 5.  

(A) Representative western blot showing the effect of the WEE1 inhibitor, adavosertib, on the 

phosphorylation levels of CDK1 on tyrosine 15. FLT3ITD-JMD and FLT3ITD-TKD BaF3 cells were 

treated with 100nM PKC412, 500nM adavosertib (MK1775) and the combination of both for 

24 hours. B) FLT3ITD-JMD (blue) and FLT3ITD-TKD (orange) BaF3 cells were treated with 100nM 

midostaurin (PKC412), 500nM adavosertib (MK1775) and the combination of both for 24 

hours. Percentage of apoptotic cells was assessed by Annexin-V labelling. (C) FLT3ITD-JMD 

(blue) and FLT3ITD-TKD (orange) BaF3 cells were treated with 100nM midostaurin (PKC412), 

500nM adavosertib (MK1775) and the combination of both for 24 hours. Cell survival relative 

to control after treatment was calculated by MTT assay. D) FLT3ITD-JMD (blue) and FLT3ITD-

TKD (orange) BaF3 cells were treated with 100nM midostaurin (PKC412), 500nM adavosertib 

(MK1775) and the combination of both for 24 hours. Percentage of mitotic catastrophe was 

assessed by DAPI labelling of nuclei. (E) Lollipop plot representing the location, amino acid 

sequence and length of FLT3-ITD mutations in the 9 patients analyzed. 4 patients have ITD 

located in TKD1 domain (#2, #4, #16, #19), 5 in both TKD1 and JMD domain (#1, #7, #10, 

#12, #17). Each lollipop length represents the number of patients having an ITD in that 

position.  All mutations were derived from Sanger sequencing from primary patient blasts. (F) 

Barplot showing the percentage of treatment-induced apoptosis (100 * (dead cells after 

treatment – death cells in control) / viable cells in control) in patient-derived blasts carrying 

FLT3-ITD in both the JM and the TK1 domains upon the indicated treatments (patients: #7, 

#10, #12). Percentage of apoptotic cells was assessed by Annexin-V labelling. (G) Barplot 

showing the percentage of treatment-induced apoptosis (100 * (dead cells after treatment – 

death cells in control) / viable cells in control) in patient-derived blasts carrying FLT3-ITD 

exclusively in the TK1 domain upon the indicated treatments (patients: #2, #4, #19). Percentage 

of apoptotic cells was assessed by Annexin-V labelling. 
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STAR Methods 

 

Cell culture  

Mouse Ba/F3 cells expressing ITD-JMD and ITD-TKD constructs were provided by courtesy 

of T. Fischer. The cells were cultured in RPMI 1640 medium (Hyclone, Thermo Scientific, 

Waltham, MA) supplemented with 10% heat-inactivated fetal bovine serum (Euroclone 

ECS0090D), 100 U/ml penicillin and 100 mg/ml streptomycin (Gibco 15140122), 1 mM 

sodium pyruvate (Sigma-Aldrich, St. Louis, Missouri, United States, S8636) and 10 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (Sigma H0887). Ba/F3 cells were 

maintained at a density of 300.000 cells/ml in T75 flasks with vented-filter cap (Sarsedt, 

50809261).  

 

Immunoblot analysis 

BaF3 cells were seeded at a concentration of 500.000 cells/ml and treated as indicated. After 

treatments cells were centrifuged and washed in PBS 1x.  Next, cells were lysed in ice-cold 

lysis buffer (150 mM NaCl, 50 mM Tris–HCl, pH 7.5, 1% Nonidet P-40, 1 mM EGTA, 5 mM 

MgCl2, and 0.1% SDS) supplemented with 1 mM PMSF, 1 mM ortovanadate, 1 mM NaF, 

protease inhibitor mixture 1×, inhibitor phosphatase mixture II 1×, and inhibitor phosphatase 

mixture III 1× and incubated for 30 min. Protein lysates were separated at 13,000g for 30 min. 

The total protein concentration was determined using the Bradford reagent. Protein extracts 

were denatured and heated at 95°C for 10 min in NuPAGE LDS Sample Buffer that contained 

DTT as a reducing agent (NuPAGE Sample Reducing Agent). Proteins were resolved using 4–

15% Bio-Rad Mini-PROTEAN TGX/CRITERION polyacrylamide gels. Proteins were 

transferred to Trans-Blot Turbo Mini Nitrocellulose Membranes using a Trans-Blot Turbo 

Transfer System (Bio-Rad), and the nonspecific binding membranes were saturated in blocking 

solution (5% skimmed milk powder, 0.1% Tween 20 in 1× TBS) at room temperature for 1 

hour. Saturated membranes were incubated overnight with primary antibodies diluted in BSA 

5% (anti-phospho FLT3 1:1000, CST 3464S; anti-phosphoSTAT5 1:1000, Abcam ab32364; 

anti-phosphoERK1/2 1:1000, CST 9101; anti-FLT3 1:1000, CST 3462; anti-STAT5 1:1000, 

Abcam ab16276; anti-ERK1/2 1:1000, CST 4695; anti-phospho CDK1 (Y15), CST 9111S; 

anti-CDK1/2 1:1000, Santa Cruz sc. 53219; anti-Wee1 1:1000, Abcam ab273016; anti-actin 

1:3000, Sigma A2066). HRP-conjugated secondary antibodies (Goat Anti-Mouse IgG (H+L)-

HRP Conjugate 1:3000, BIORAD 1721011) were diluted in blocking solution and used for the 
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detection of the primary antibodies. Chemiluminescence was detected using Clarity Western 

ECL Blotting Substrates (Bio-Rad) and the Las-3000 Imaging System (Fujifilm). Band 

densities were quantified using ImageJ and normalized to the loading control.  

 

Apoptosis assay 

Cells were plated at a concentration of 500.00 cells/ml and treated as indicated. After 

incubation for 24 hours, apoptotic cells were measured by flow cytometry using Ebioscience™ 

Annexin V Apoptosis Detection Kit APC according to the kit instruction (Cat. 88-8007-74, 

Thermo Fisher Scientific). Cells positive for annexin-V were counted as apoptotic cells.  

MTT assay 

Cell viability was measured using the Cell Proliferation Kit I (MTT) (Roche). Cells were 

treated as indicated for 20 hours. Then, MTT was added to the cells and incubated for 4 hours 

at 37 ◦C. Solubilization Solution was used to dissolve the formazan crystals during an overnight 

incubation. Finally, the plates were read at 590nm using a microplate reader (Bio-Rad).  

 

Sample preparation for proteomic and phosphoproteomic analysis 

Cell lysis was performed by adding SDC lysis buffer containing 4% (w/v) SDC, 100 mM Tris 

-HCl (pH 8.5). We used the inStageTip (iST) method for the proteome preparation 38. 

Phosphoproteome preparation was performed by the EasyPhos workflow as previously 

described 39. Briefly, per condition a total of 1 mg protein input material was lysed, alkylated 

and reduced in a single step. After the protein’s digestion, phosphopeptides were enriched 

using TiO2 beads.  

 

Mass spectrometry analyses 

The peptides and the phosphopeptides were desalted on StageTips and separated on a reverse 

phase column (50 cm, packed in-house with 1.9-mm C18- Reprosil-AQ Pur reversed-phase 

beads) (Dr Maisch GmbH) over 120 min or 140 min (single-run proteome and 

phosphoproteome analysis respectively). After elution, peptides were electrosprayed and 

analyzed by tandem mass spectrometry on a Orbitrap Exploris 480 (Thermo Fischer Scientific). 

The instrument was set to alternate between a full scan followed by multiple HCD based 

fragmentations scans for a total cycle time of up to 1 s. 

 

RNAseq analysis 
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BaF3 cells were cultured in growth medium at the density of 500.000 cell/ml. Next, AC220 

was added at a concentration of 20nM and incubated for 24 hours. Then, cells were centrifuged 

at a speed of 300 x g, washed in PBS and total RNA was isolated from the harvested cells using 

RNeasy micro kit (Qiagen, Hilden, Germany 74004) and was quantified using the Qubit 2.0 

fluorimetric Assay (Thermo Fisher Scientific). Libraries were prepared from 100 ng of total 

RNA using the QuantSeq 3' mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen GmbH, 

Vienna, Austria) and their qualities were assessed by using screen tape High sentisivity DNA 

D1000 (Agilent Technologies, Santa Clara, California, United States). Libraries were 

sequenced on a NovaSeq 6 000 sequencing system using an S1, 100 cycles flow cell (Illumina 

Inc., San Diego, California, United States). Illumina novaSeq base call (BCL) files were 

converted into fastq file by bcl2fastq (version v2.20.0.422). Sequence reads were trimmed 

using bbduk software (bbmap suite 37.31) in order to remove adapter sequences, poly-A tails 

and low-quality end bases (regions with average quality below 6). Alignment was performed 

with STAR 2.6.0a 40 on mm10 reference assembly obtained from cellRanger website (Ensembl 

assembly release 93). The expression levels of genes were determined with htseq-count 0.9.15 

(Ref. 29) by using mm10 Ensembl assembly (release 93) downloaded from cellRanger website.  

 

Proteome and Phosphoproteome Data processing 

Raw mass spectrometry data were analyzed in the MaxQuant environment 41, version 1.5.1.6, 

employing the Andromeda engine for database search. Proteome and phosphoproteome 

samples were analysed together by specifying two separate groups and setting group specific 

parameters for each sample type. MS/MS spectra were matched against the Mus musculus 

UniProtKB FASTA database (September 2014), with an FDR of < 1% at the level of proteins, 

peptides and modifications. Enzyme specificity was set to trypsin, allowing for cleavage N-

terminal to proline and between aspartic acid and proline. The search included cysteine 

carbamidomethylation as a fixed modification. Variable modifications were set to N-terminal 

protein acetylation and oxidation of methionine as well as phosphorylation of serine, threonine 

tyrosine residue (STY) for the phosphoprotemic samples. MaxQuants Label free 

Quantification method and a minimum ration count of two was used for the total proteome 

samples. For proteome and phosphoproteome analysis, where possible, the identity of peptides 

present but not sequenced in a given run was obtained by transferring identifications across 

liquid chromatography (LC)-MS runs (‘match between runs’). For phosphopeptide 

identification, an Andromeda minimum score and minimum delta score threshold of 40 and 17 

were used, respectively. Peptides had to be fully tryptic in both proteome or phosphoproteme 
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samples and up to two or four missed cleavages were allowed for protease digestion, 

respectively. 

 

Proteome and Phosphoproteome Bioinformatics Data Analysis 

Bioinformatic analysis was performed in the Perseus software environment 42. Statistical 

analysis of proteome and phosphoproteome were performed on logarithmized intensities for 

those values that were found to be quantified in any experimental condition. Phosphopeptides 

intensities were normalized by subtracting the median intensity of each sample. Student t-Test 

with a permutation-based FDR cutoff of 0.07 and S0 = 0.1 was performed to identify 

significantly modulated proteins and phosphopetides between two different conditions. 

Categorical annotation was added in Perseus in the form of GO biological process (GOBP), 

molecular function (GOMF), and cellular component (GOCC), KEGG pathways and kinase 

substrate motifs (extracted from HPRD). Concerning the kinase substrate motifs, we performed 

a 1D annotation enrichment analyses to identify statistically significant enriched kinase-

substrates motifs in AC220 treated cells 43. Multiple hypothesis testing was controlled by using 

a Benjamini-Hochberg FDR threshold of 0.05.  

 

EdU incorporation assay 

For the proliferation assay cells were seeded at the concentration of 500.000 cells/ml and 

treated for 24 hours with 100nM PKC412. During the last two hours of incubation 5-ethylnyl-

2′-deoxyuridine (EdU) was added at a concentration of 10 μM.  After incubation, 1x106 cells 

were centrifuged at 300g for 5 min and then washed in PBS1X.  The Click-iT® reaction to 

detect EdU positive cells was performed according to the manufacturer’s instructions. 

Percentage of cell in division was assessed by flow cytometry.  

Phospho-H3 labeling 

Celle were seeded at a concentration of 500.00 cells/ml and treated with 100nM PKC412 for 

24 hours. After treatment, 1x106 cells were centrifuged at 300g for 5 min and then washed once 

in PBS1X. Cells were fixed with 70% ethanol overnight at 4°C. Next, cells were centrifuged 

at 300xg for 10 min and washed once with PBS1X+2%BSA. 500µl of PBS1X+1% saponin 

was added and incubated for 15 min at room temperature to permeabilize cells. After a wash 

with PBS1X+2%BSA, cells were incubated with the anti-phospho-H3 antibody (Abcam 

AB267372) diluted 1:500 in PBS1X+1%BSA+0.5% saponin for 90 min at room temperature. 
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After a wash in PBS1X+1%BSA, cells were incubated with 100ul of an anti-rabbit Alexa Fluor 

455 diluted 1:200 in PBS1X+1%BSA+0.5%saponin for 1h at room temperature. After the 

incubation, cells were washed with PBS1X twice. The percentage of phosphor-H3 positive 

cells were quantified by flow cytometry.  

 

Primary patient blast analyses 

 

Peripheral blood (PB) samples from AML patients were obtained upon patient’s informed 

consent and in accordance with the declaration of Helsinki (ethics committee approval number: 

115/08). The integration site of the FLT3-ITD mutation was determined as previously 

described 44. Briefly, RNA was prepared from PBMCs using the RNeasy Mini Kit (Qiagen, 

Germany), reverse-transcribed to cDNA using the SuperScript reverse transcriptase system 

(ThermoFisher Scientific), and the FLT3-ITD region was amplified by PCR (fw-primer: 

GCAATTTAGGTATGAAAGCCAGC, rev-primer: CTTTCAGCATTTTGACGGCAACC). 

PCR products were re-purified using the QIAquick PCR purification kit (Qiagen) and subjected 

to Sanger sequencing (using the same fw-primer) by Eurofins (Luxembourg).  

 

To classify patients according to the ITD localization, we first translated the raw FASTA files  

obtained from Sanger sequencing using all the possible reading frames using R package 

“Biostrings” 45
. Using blastp 46, we then aligned all the translated sequences to the JMD and 

TKD domain sequences of canonical FLT3, as annotated in UniProtKB. Manual evaluation of 

the alignment allowed us to identify the insertion site and duplicated sequences, as displayed 

in Figure 5E.  

 

Mononuclear cells from the PB were obtained using Ficoll-Paque (GE Healthcare, Chicago, 

IL). Cryoconserved PBMCs from 12 patients were cultured at a density of 5x105 /mL in RPMI-

1640 (Sigma-Aldrich, St. Louis, MO) supplemented with 10% FCS (c.c.pro, Germany), 2 mM 

L-glutamine (Sigma-Aldrich), and 40 U/mL Penicillin-Streptomycin (ThermoFisher 

Scientific) for 24h in absence or presence of PKC412, MK1775 or a combination of both. 

 

Viability of the AML blasts was determined by flow cytometry using Annexin V – APC and 

7AAD together with the Annexin V staining buffer according to the manufacturers’ instruction 

(Biolegend, San Diego, CA). Prior to viability staining, samples were stained with 

fluorochrome-coupled antibodies after blocking with human IgG (Gamunex, Grifols, 
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Barcelona, Spain). Samples were recorded on a Cytek NL-3000 spectral flow cytometer. First, 

blasts were gated based on the CD45/SSC distribution and on FSC-A/FSC-H parameters  to 

identify single cells population. Then, blasts were gated according to the expression of typical 

blast markers (CD33, CD34, CD13, CD117). Data was analyzed using FlowJo V10 (Becton-

Dickinson, Franklin Lakes, NJ). 

 

 

Statistics 

All the experiments have been conducted in at least 3 independent replicates obtained from 3 

cell line batches (n = 3). Data are presented as means ± standard error of the mean (SEM). 

Multiple comparisons between three or more groups were performed using one-way or two-

way ANOVA. Statistical significance between two groups was estimated using the unpaired t 

test assuming a two-tailed distribution. Statistical significance is defined as *p < 0.05; **p < 

0.01; ***p < 0.001. All statistical analyses were performed using Prism 7 (GraphPad). 

 

 

SIGNALING PROFILER 

 

Causal interaction database download 

We downloaded all the causal interactions available for Mus musculus (TaxID = 10090) and 

Homo sapiens (TaxID = 9606) from the SIGNOR 16 and PhosphoSitePlus®  47 resources. 

SIGNOR 2.0 datasets were downloaded via rest API and refer to December 2021. Interactions 

in SIGNOR annotated with ‘down-regulates’, ‘up-regulates’ or ‘unknown’ were assigned 

values -1, 1 and 0, respectively. 

Causal phosphorylations were extracted from PhosphoSitePlus® 18 by manually downloading 

and combining two independent tables: (i) kinase-phosphosite interactions 

(‘Kinase_Substrate_Dataset.gz’), (ii) regulatory role of phosphosites on protein 

(‘Regulatory_sites.gz’). Tables were joined using, as key, the UNIPROT ID and the modified 

residue. We, next, manually mapped the content of the ‘ON_FUNCTION’ column 

(representing regulatory role of phosphosites) into 1, -1, 0 values. 

The so manipulated datasets were, then, combined together and filtered to retain interactions 

with a defined regulatory effect (-1 or 1).  

The results of this pipeline are two causal interactomes accounting for 19,310 and 25,948 

interactions in Mus musculus and Homo sapiens, respectively. 
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Protein activity prediction 

Footprint-based analysis 

Transcription Factors-target genes collection was retrieved from DoRothEA R Package (v. 

1.6.0, organism Mus musculus, confidence: A) 48 and from SIGNOR (filtering for 

transcriptional regulations). Kinase-substrates and phosphatase-substrate collections were 

retrieved from Omnipath 49. To estimate kinases and phosphatases’ activity from substrates 

and transcription factors’ activity from target genes, we used the VIPER algorithm 31. We used 

as phosphosite and gene level statistic (VIPER parameters) their experimental fold change. We 

set the eset.filter parameter to FALSE. We included proteins with at least 1 measured transcript 

(or phosphosite). We retained only proteins with enrichment p-value < 0.05 in at least one cell 

line. We obtained the inferred activity of 51 transcription factors, 94 kinases and 20 

phosphatases.  

Hypergeometric test implemented in RVenn package (v. 1.1.0) was used to derive the p-value 

that a protein can be significantly enriched by chance. For each protein, we used 

enrichment_test function with measured genes in each regulon as set1, significant genes in 

each regulon as set2 and all measured genes as univ. Log10(pvalue) scaled in [0,1] range was 

used to weight each protein VIPER score in order to give less importance to proteins with fewer 

significantly modulated targets in experimental data.  

 

PhosphoSCORE  

We derived the Quizartinib-induced activity modulation of proteins that are target of 

(de)phosphorylation from the relative phosphoproteomics data and from the regulatory role of 

phosphosites parsed from SIGNOR and PhosphoSitePlus (as described in the Causal 

interaction database section), using the formula:  

𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
1

𝑛
∑ 𝑠𝑖𝑔𝑛𝑖 ∗ FC𝑖

𝑛

𝑖=1

 

where: n is the number of phosphosites regulating a target, signi is the regulatory role of 

phosphosite (1 or -1) and FCi is the experimental fold change of phosphosites significantly 

modulated in at least one cell line.  

The regulatory role of phosphosites was inferred from the mouse and the human datasets and 

combined by orthology mapping, using the blastp software 46. 
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This process allowed us to predict the activity of 7 additional kinases, 19 transcription factors, 

2 phosphatases and 70 proteins with other molecular functions. For 3 transcription factors and 

11 kinases both VIPER weighted score and PhosphoSCORE were present, in this case we 

averaged the two scores.  

 

Cell – specific naïve causal network generation 

Murine causal interactions from SIGNOR and PhosphoSitePlus were converted in a graph 

using ‘igraph’ R package (v. 1.2.10). We, then, extracted a subnetwork containing: (i) all the 

shortest paths from FLT3 to kinases, phosphatases and substrates; (ii) kinase – substrate and 

phosphatase-substrates interactions; (iii) all the shortest paths from kinases, phosphatases and 

substrates to transcription factors. We, thus, obtained a naïve network containing 871 nodes 

and 3422 edges.  

 

CARNIVAL 

For each cell line, we optimized the naïve network on inferred protein activity values using 

CARNIVAL R package 20. CARNIVAL filters the naïve network retaining causal paths 

coherent with the activity of start and end nodes. The naïve network was pre-processed to: (i) 

remove incoming edges in FLT3 and (ii) remove feedback loops. We, then, performed two 

runs of CARNIVAL: The first run starting from the FLT3 to kinases, phosphatases and 

substrates; the second from all nodes present in the output of the previous run to transcription 

factors. FLT3 activity was assigned a -1 value, since quizartinib (AC220) inhibits its activity, 

whereas the activity of the remaining nodes was assigned as described in the Protein activity 

prediction section. 

The networks obtained from the two runs were merged to generate two final, cell-specific 

networks linking FLT3 to transcription factors, namely the FLT3ITD-JMD model (210 nodes and 

363 edges) and the FLT3ITD-TKD model ( 201 nodes and 322 edges). 

 

Text mining approach  

We used a text-mining approach to query the literature database, Europe PMC, to identify 

research articles characterizing pro-apoptotic and pro-survival proteins associated to FLT3-

ITD AML. The query is: ("pro-apoptotic" OR "anti-apoptotic" OR "pro-survival" OR "anti-

survival") AND (TITLE:"FLT3-ITD" AND (TITLE:"AML" OR TITLE:"Acute Myeloid 

Leukemia"))AND (OPEN_ACCESS:y) AND (PUB_TYPE:"Research-article" OR 

PUB_TYPE:"report"). We derived a list of eleven pro- or anti-apoptotic proteins (Table S5).   
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Phenotype marker prediction 

To in silico validate the results, we extracted from SIGNOR and PhosphoSitePlus direct (one 

step) connections between nodes in the optimized models and phenotype markers derived from 

the text mining approach. We were able to connect only five out of eleven proteins, since (i) 

some proteins were already in the network (e.g. MYC); (ii) some biomarkers didn’t have any 

direct link (e.g. PIM1, XIAP, BCL2L10); (iii) some proteins displayed contradictory literature 

evidence (e.g. PARP1, BIRC5).  

We integrated the signal on each marker to derive its activity modulation after quizartinib. The 

impact of each regulator over the apoptotic marker was computed multiplying its activation 

state, as inferred from the experimental data (as described in the Protein activity prediction 

section), by the sign of regulation, namely -1 for inhibitions and +1 for activations. Finally, all 

the effects on each marker were averaged to derive the activity score.  

 
 

References 

1. Yokota, S. et al. Internal tandem duplication of the FLT3 gene is preferentially seen in 

acute myeloid leukemia and myelodysplastic syndrome among various hematological 

malignancies. A study on a large series of patients and cell lines. Leukemia 11, 1605–

1609 (1997). 

2. Frohling, S. et al. Prognostic significance of activating FLT3 mutations in younger 

adults ( 16 to 60 years ) with acute myeloid leukemia and normal cytogenetics : a study 

of the AML Study Group Ulm. Blood 100, 4372–4380 (2002). 

3. Griffith, J. et al. The Structural Basis for Autoinhibition of FLT3 by the 

Juxtamembrane Domain JM and tyrosine kinase domains, respectively (Rosnet et al., 

1993). FLT3 is primarily expressed in immature hematopoi. Mol. Cell 13, 169–178 

(2004). 

4. Grafone, T., Palmisano, M., Nicci, C. & Storti, S. An overview on the role of FLT3-

tyrosine kinase receptor in acute myeloid leukemia: Biology and treatment. Oncol. 

Rev. 6, 64–74 (2012). 

5. Larson, R. A. et al. Midostaurin reduces relapse in FLT3-mutant acute myeloid 

leukemia: the Alliance CALGB 10603/RATIFY trial. Leukemia 35, 2539–2551 

(2021). 

6. Rücker, F. G. et al. Molecular landscape and prognostic impact of FLT3-ITD insertion 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.16.492070doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.492070
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

site in acute myeloid leukemia: RATIFY study results. Leukemia 36, 90–99 (2022). 

7. Arreba-Tutusaus, P. et al. Impact of FLT3-ITD location on sensitivity to TKI-therapy 

in vitro and in vivo. Leukemia 30, 1220–1225 (2016). 

8. Marhäll, A., Heidel, F., Fischer, T. & Rönnstrand, L. Internal tandem duplication 

mutations in the tyrosine kinase domain of FLT3 display a higher oncogenic potential 

than the activation loop D835Y mutation. Ann. Hematol. 97, 773–780 (2018). 

9. Breitenbuecher, F. et al. A novel molecular mechanism of primary resistance to FLT3-

kinase inhibitors in AML. Blood 113, 4063–4073 (2009). 

10. Macnamara, A., Henriques, D. & Saez-rodriguez, J. Modeling Signaling Networks 

with Different Formalisms: A Preview. 1021, (2013). 

11. Pugliese, G. M., Latini, S., Massacci, G., Perfetto, L. & Sacco, F. Combining mass 

spectrometry-based phosphoproteomics with a network-based approach to reveal flt3-

dependent mechanisms of chemoresistance. Proteomes 9, (2021). 

12. Palma, A. et al. Integrating patient-specific information into logic models of complex 

diseases: Application to acute myeloid leukemia. J. Pers. Med. 11, 1–15 (2021). 

13. Stone, R. M. et al.  Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with 

a FLT3 Mutation . N. Engl. J. Med. 377, 454–464 (2017). 

14. Smith, C. C. The growing landscape of FLT3 inhibition in AML. Hematol. (United 

States) 2019, 539–547 (2019). 

15. Zarrinkar, P. P. et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for 

the treatment of acute myeloid leukemia (AML). Blood 114, 2984–92 (2009). 

16. Licata, L. et al. SIGNOR 2.0, the SIGnaling Network Open Resource 2.0: 2019 

update. Nucleic Acids Res. 48, D504–D510 (2020). 

17. Perfetto, L. et al. SIGNOR: A database of causal relationships between biological 

entities. Nucleic Acids Res. 44, D548–D554 (2016). 

18. Hornbeck, P. V. et al. 15 years of PhosphoSitePlus ® : Integrating post-translationally 

modified sites, disease variants and isoforms. Nucleic Acids Res. 47, D433–D441 

(2019). 

19. Dugourd, A. et al. Causal integration of multi‐omics data with prior knowledge to 

generate mechanistic hypotheses. Mol. Syst. Biol. 17, 1–17 (2021). 

20. Liu, A. et al. From expression footprints to causal pathways: contextualizing large 

signaling networks with CARNIVAL. npj Syst. Biol. Appl. 5, 1–10 (2019). 

21. Nigg, E. A. MITOTIC KINASES AS REGULATORS OF CELL DIVISION AND 

ITS CHECKPOINTS. 2, (2001). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.16.492070doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.492070
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

22. Ovejero, S., Ayala, P., Bueno, A. & Sacristán, M. P. Human Cdc14A regulates Wee1 

stability by counteracting CDK-mediated phosphorylation. Mol. Biol. Cell 23, 4515–

4525 (2012). 

23. Hirai, H. et al. Small-molecule inhibition of Wee1 kinase by MK-1775 selectively 

sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol. Cancer Ther. 8, 

2992–3000 (2009). 

24. Aarts, M. et al. Forced mitotic entry of S-phase cells as a therapeutic strategy induced 

by inhibition of WEE1. Cancer Discov. 2, 524–539 (2012). 

25. Richard M. Stone, M.D., Sumithra J. Mandrekar, Ph.D., Ben L. Sanford, M.S., K. et 

al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 

Mutation. 377, 454–464 (2018). 

26. Kayser, S. et al. Insertion of FLT3 internal tandem duplication in the tyrosine kinase 

domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood 

114, 2386–2392 (2009). 

27. Schlenk, R. F. et al. Differential impact of allelic ratio and insertion site in FLT3-ITD-

positive AML with respect to allogeneic transplantation. Blood 124, 3441–3449 

(2014). 

28. Liu, S. B. et al. Pattern and prognostic value of FLT3-ITD mutations in Chinese de 

novo adult acute myeloid leukemia. Cancer Sci. 109, 3981–3992 (2018). 

29. Takahashi, S. Downstream molecular pathways of FLT3 in the pathogenesis of acute 

myeloid leukemia: Biology and therapeutic implications. J. Hematol. Oncol. 4, 13 

(2011). 

30. Schmalbrock, L. K. et al. Clonal evolution of acute myeloid leukemia with FLT3-ITD 

mutation under treatment with midostaurin. Blood 137, 3093–3104 (2021). 

31. Alvarez, M. J. et al. Network-based inference of protein activity helps functionalize 

the genetic landscape of cancer. 48, 838–847 (2016). 

32. Odgerel, T. et al. The FLT3 inhibitor PKC412 exerts differential cell cycle effects on 

leukemic cells depending on the presence of FLT3 mutations. Oncogene 27, 3102–

3110 (2008). 

33. Golsteyn, R. M. Cdk1 and Cdk2 complexes (cyclin dependent kinases) in apoptosis: A 

role beyond the cell cycle. Cancer Lett. 217, 129–138 (2005). 

34. Castedo, M., Perfettini, J. L., Roumier, T. & Kroemer, G. Cyclin-dependent kinase-1: 

Linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ. 9, 1287–

1293 (2002). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.16.492070doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.492070
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

35. Shi, L., Nishioka, W. K., Th’ng, J., Bradbury, E. M. & David W. Litchfield, A. H. G. 

Premature p34cdc2 Activation Required for Apoptosis. 263, 1143–1145 (1994). 

36. Matheson, C. J., Backos, D. S. & Reigan, P. Targeting WEE1 Kinase in Cancer. 

Trends Pharmacol. Sci. 37, 872–881 (2016). 

37. Parker, L. L., Atherton-Fessler, S. & Piwnica-Worms, A. P107Wee1 Is a Dual-

Specificity Kinase That Phosphorylates P34Cdc2 on Tyrosine 15. Proc. Natl. Acad. 

Sci. U. S. A. 89, 2917–2921 (1992). 

38. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated 

proteomic-sample processing applied to copy-number estimation in eukaryotic cells. 

Nat. Methods 11, 319–324 (2014). 

39. Humphrey, S. J., Karayel, O., James, D. E. & Mann, M. High-throughput and high-

sensitivity phosphoproteomics with the EasyPhos platform. 13, 1897–1916 (2018). 

40. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 

(2013). 

41. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, 

individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. 

Nat. Biotechnol. 26, 1367–1372 (2008). 

42. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of ( 

prote ) omics data. 13, (2016). 

43. Cox, J. & Mann, M. 1D and 2D annotation enrichment: a statistical method integrating 

quantitative proteomics with complementary high-throughput data. BMC 

Bioinformatics 13 Suppl 16, 1–11 (2012). 

44. Breitenbuecher, F. et al. Identification of a novel type of ITD mutations located in 

nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood 113, 4074–

4077 (2009). 

45. Pages, A. H., Aboyoun, P., Gentleman, R., Debroy, S. & Rmpi, E. Package ‘ 

Biostrings ’ R topics documented : (2015). 

46. Wang, Y. & Klemke, R. L. PhosphoBlast, a computational tool for comparing 

phosphoprotein signatures among large datasets. Mol. Cell. Proteomics 7, 145–162 

(2008). 

47. Hornbeck, P. V. et al. PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. 

Nucleic Acids Res. 43, D512–D520 (2015). 

48. Holland, C. H., Szalai, B. & Saez-Rodriguez, J. Transfer of regulatory knowledge 

from human to mouse for functional genomics analysis. Biochim. Biophys. Acta - Gene 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.16.492070doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.492070
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

Regul. Mech. 1863, 194431 (2020). 

49. Ceccarelli, F. et al. Bringing data from curated pathway resources to Cytoscape with 

OmniPath. Bioinformatics 36, 2632–2633 (2020). 

50. Alvarez, M. J. et al. Functional characterization of somatic mutations in cancer using 

network-based inference of protein activity. Nat. Genet. 48, 838–847 (2016). 

 

 

 

Supplementary material 

 

Figure S1 

 

 

Figure S1. High coverage and reproducibility of proteome and phosphoproteome data.  

(A-C) Number of quantified transcripts (A), proteins (B) and phosphosites (C) in biological 

replicates of the indicated experimental conditions. (D-F) Heatmap showing the Pearson 

correlation coefficients between the different biological replicates in the trascriptome (D), 

proteome (E) and phosphoproteome (F) datasets.  
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Figure S2 

 

Figure S2. Transcriptome, proteome and phosphoproteome comparative analysis. A-B) 

Correlation analysis between protein and mRNA levels in FLT3ITD-JMD cells (A) and FLT3ITD-

TKD cells (B). Proteins (dots) significantly modulated both at proteome and trascriptome level 

are marked in violet, whereas those modulated exclusively at the proteome level are indicated 

in blue. The pie chart details corresponding percentages.  C-D) Correlation analysis between 

protein and phosphorylation levels in FLT3ITD-JMD cells (C) and FLT3ITD-TKD cells (D). 
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Phosphosites (dots) modulated by quizartinib (AC220) treatment and belonging to proteins 

modulated in quantity (proteome level) are represented in purple, whereas those modulated 

only at the phosphorylation level are marked in green.    
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FigureS3. 

 

 

Figure S3. Comparative analysis of quizartinib-induced changes at the transcriptome, 

proteome and phosphoproteome levels in FLT3ITD-JMD and FLT3ITD-TKD cells.  

(A-C) Donut charts indicating the percentage of quizartinib significantly modulated transcripts 

(A), proteins (B) and phosphosites (C) in FLT3ITD-JMD and/or FLT3ITD-TKD cells. For the 

analytes modulated in FLT3ITD-JMD and FLT3ITD-TKD, the comparison of transcript, protein and 

phosphosite level is shown in a scatterplot with Pearson Correlation.  

(E-G) Comparison of mRNA (E), protein (F) and phosphosites (G) fold change between 

quizartinib (AC220)-treated FLT3ITD-JMD (x-axis) and FLT3ITD-TKD (y-axis) cell lines. Each dot 

corresponds to a transcript, protein or phosphosite quantified in both cell lines. Analytes can 

be significantly modulated by quizartinib (AC220) in both cell lines (blue), or exclusively in 

one cell line: FLT3ITD-JMD (light blue) or FLT3ITD-TKD (orange). Global Pearson correlation is 

shown. 

(G-H-I) Unsupervised hierarchical clustering (Pearson correlation distance) of the log2 

intensity of more than 11,000 transcripts (G), 5,000 proteins (H) and 16,000 phosphosites (I), 

as indicated.  
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Figure S4 

 

 

 

 

Figure S4. Global pathways modulation in quizartinib treated FLT3ITD cells. Two-

dimensional annotation enrichment analysis. Pathways modulated in quizartinib treated 

FLT3ITD-TKD cells (y-axis) at the transcriptome (A), proteome (B), phosphoproteome (C-D) 

level in comparison with quizartinib treated FLT3ITD-JMD cells (x-axis) (Benjamin Hochberg 

FDR < 0.05). Each dot represents a specific KEGG pathway or GO-Biological Process (GO-

BP) term. Groups of related pathways or GO-BP are labeled with the same color, as described 

in the inset. Position scores of the pathways at the transcriptome and proteome level are 

indicated in the x and y axes, respectively 43. Negative values indicate downregulation, whereas 

positive values upregulation. (E) Schematic representation of the fatty acids oxidation; for each 

enzyme the corresponding quizartinib-induced change in mRNA and protein concentration in 

FLT3ITD-JMD and FLT3ITD-TKD cells is shown. (F) Kinase overrepresented in significantly 

modulated phosphosites identified in FLT3ITD-JMD (blue) and FLT3ITD-TKD (orange) cells. 
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Figure S5
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Figure S5. Mechanistic cell – specific causal model construction workflow.  

Detailed description of the Signaling Profiler pipeline described in Figure 4. Step 1. Protein 

activity of transcription factors (purple triangle), kinases and phosphatases (green circles) was 

inferred from experimental data combining the footprint-based analysis and the 

‘phosphoSCORE' technique. In the first case, protein activity is derived from the modulation 

of its downstream targets using the VIPER statistical tool 31 transcription factors’ activity is 

calculated from transcriptomic data whereas kinases and phosphatases’ activity from 

phosphoproteomic data. VIPER output is corrected through a hypergeometric test. In the 

second case, our de novo developed PhosphoSCORE technique exploits the modulated 

phosphosites of a protein and their regulatory role (as extracted from SIGNOR 16 and 

PhosphoSitePlus repositories47 to compute its activity (PhosphoSCORE). When a protein is 

assigned to both scores, they are averaged to obtain a final protein activity score.  

Step 2. Assembly of a network of causal interactions linking FLT3 and proteins characterized 

in step 1, to build a naïve network. Briefly, we exploited causal interactions annotated in the 

SIGNOR and PhosphoSitePlus resources to extract all the shortest paths from FLT3 receptor 

(purple diamond) to kinases and phosphatases (dark green-bordered diamonds). Similarly, we 

retrieved direct relationships between kinases/phosphatases and their substrates (light green-

bordered hexagon). Finally, we searched for the shortest paths from kinases, phosphatases and 

substrates to transcription factors (purple-bordered triangle). In step 2 we considered 

exclusively directionality and distance and not the regulatory role of each interaction (up/down 

regulation).   

Step 3. CARNIVAL 20 was used to search in the naïve network circuits coherent with protein 

activity inferred in Step 1 (bold black edges): mint green nodes are predicted up-regulated after 

quizartinib (AC220) treatment, whereas red nodes are down-regulated. Because quizartinib 

(AC220) causes FLT3 inhibition, the receptor activity was set to -1 (repressed). We executed 

two runs of CARNIVAL: run 1 retrieved coherent paths linking FLT3 to kinases, phosphatases 

and substrates, run 2 linking proteins derived from run 1 with transcription factors. The two 

networks were, eventually, joint to obtain, for each cell line, a final mechanistic model 

recapitulating the signal cascade downstream of FLT3, rewired by quizartinib (AC220). Step 

4. To functionally interpret the two cell – specific causal networks, we searched in SIGNOR 

and PhosphoSitePlus the direct connections between final network nodes and markers of 

phenotypes of interest (e.g., BCL2, BAD, etc. were considered markers of apoptosis). Finally, 

we computed the activity of each marker averaging all the activation state (xi) of input nodes 

multiplied for their regulation sign (signi).  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.16.492070doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.492070
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43 

Figure S6 

 

 

Figure S6. Protein activity prediction from experimental data in quizartinib treated 

FLT3ITD cells. (A) Scatterplot shows the comparison between protein activity predicted from 

FLT3ITD-JMD (x-axis) and FLT3ITD-TKD (y-axis) datasets for proteins with molecular function 

different from TF, kinase or phosphatase.  Each dot represents a protein, and the color indicates 

whether the prediction is statistically significant in both cell lines (green) or exclusively in one 

cell line: FLT3ITD-JMD (blue) or FLT3ITD-TKD (orange). R indicates Pearson correlation. (B-C) 

Volcano plots show the modulation of all STAT5A target genes that were used, by the VIPER 

tool 50, to infer its activity, after quizartinib (AC220) treatment in FLT3ITD-JMD (B) and FLT3ITD-

TKD cells (C). X-axis represents log2 fold change of regulated transcripts multiplied by the sign 
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of regulation (-1 for inhibition, 1 for activation of transcription). Y-axis represents the 

significance of the log fold change (-log10 pvalue). In each grey panel is shown the regulation 

of significant transcripts by STAT5A.  

 

 

Figure S7 

 

Figure S7. FLT3ITD-JMD specific causal network. Causal network representing the 

quizartinib-induced signal rewiring in FLT3ITD-JMD cell line. Color of nodes represents 

activated (red) or inhibited (blue) proteins after the treatment. Shape of nodes reflects 

molecular function: parallelograms are phosphatases, rectangles are transcription factors, 

circles are kinases and hexagons are other phosphorylated proteins. Target arrow shape 

represents activatory (arrow) or inhibitory (T shape) interactions. Black edges represent 

(de)phosphorylations occurring at phosphosites measured in the experimental data. Additional 

details are further described in the inset. 
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Figure S8 

 

Figure S8. FLT3ITD-TKD specific causal network. Causal network representing the 

quizartinib-induced signal rewiring in FLT3ITD-TKD cell line. Color of nodes represents 

activated (red) or inhibited (blue) proteins after the treatment. Shape of nodes reflects 

molecular function: parallelograms are phosphatases, rectangles are transcription factors, 

circles are kinases and hexagons are other phosphorylated proteins. Target arrow shape 

represents activatory (arrow) or inhibitory (T shape) interactions. Black edges represent 

(de)phosphorylations occurring at phosphosites measured in the experimental data. Additional 

details are further described in the inset. 
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Figure S9. 

 

 

Fig. S9. Activity inference of apoptosis markers and activation state of their regulators. 

Barplot showing the activity score predicted for pro-survival proteins (purple) and pro-

apoptotic proteins (green) in FLT3ITD-JMD (blue) and FLT3ITD-TKD (orange) cell lines. In each 

grey panel, heatmaps show the activation state of upstream regulators of each apoptosis marker. 

Positive and negative regulators are displayed in green and red, respectively. For each 

regulator, the barplot on the right reflects the absolute value of the difference in activity 

between FLT3ITD-JMD and FLT3ITD-TKD models. 
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Figure S10. 

 

 

Figure S10. (A) Bar plot showing the Log2 expression level of Wee1 mRNA quantified in the 

transcriptome analysis in FLT3ITD-JMD (blue) and FLT3ITD-TKD (orange) cells after quizartinib 

(AC220) treatment. (B) Bar plot showing the Log2 intensity values of the Wee1 

phosphorylation on Serine 139 quantified in the phosphoproteomic analysis after 1.5 hour and 

24 hours of quizartinib (AC220) treatment in FLT3ITD-JMD (blue) and FLT3ITD-TKD (orange) 

cells.  
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Figure S11 

 

 

 

Figure S11. Gating strategy used for the viability assay analysis of primary blasts samples. 

Blasts were gated based on the CD45/SSC distribution (“blast gate”), for single cells (by FSC-

A/FSC-H) and for typical blast markers heterogeneously expressed between patients (CD33, 

CD34, CD13, CD117). Gates were set according to an unstained/CD45-single stained control. 

Data was analyzed using FlowJo V10 (Becton-Dickinson, Franklin Lakes, NJ). 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.16.492070doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.492070
http://creativecommons.org/licenses/by-nc-nd/4.0/


 49 

Figure S12 

 

 

Figure S12. (A) Barplots showing blasts treatment specific cell death (100 * (dead cells after 

treatment – death cells in control) / viable cells in control) in each FLT3ITD-TKD patient after 

100 nM midostaurin (PRC412), 500 nM Wee1 inhibitor (MK1775) and combination of both. 

(B) Barplots showing blasts treatment specific cell death (100 * (dead cells after treatment – 

death cells in control) / viable cells in control) in each FLT3 ITD-JMD+ITD-TKD patient after 100 

nM midostaurin (PRC412), 500 nM Wee1 inhibitor (MK1775) and combination of both. 
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