

1 **Single molecule analyses of *Salmonella* translocated effector proteins reveal
2 targeting to and dynamics in host cell endomembranes**

3

4 Vera Göser ¹, Marc Schulte ^{1*}, Felix Scharte ^{1*}, Rico Franzkoch ^{1,2*}, Viktoria Liss ¹, Olympia E.
5 Psathaki ^{2,3}, and Michael Hensel ^{1,3}

6

7 ¹ Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany, ² iBiOs – Integrated
8 Bioimaging Facility Osnabrück, and ³ CellNanOs – Center of Cellular Nanoanalytics Osnabrück

9 * equal contribution

10 ORCID: VG: 0000-0002-4592-064X, MS: 0000-0003-4308-2002, FS: 0000-0002-6710-9524, RF:
11 0000-0002-8447-518X, VL: 0000-0002-1304-2512, OEP: 0000-0002-4035-6840, MH: 0000-
12 0001-6604-6253

13

14 Running title: Effector targeting and dynamics

15 Keywords: type III secretion system, intracellular pathogen, endosomal system, single molecule
16 analyses, super-resolution microscopy

17 *Address for correspondence:*

18 Michael Hensel

19 Abteilung Mikrobiologie

20 Fachbereich Biologie/Chemie, Universität Osnabrück

21 Barbarastr. 11

22 49076 Osnabrück, Germany

23 Tel: ++ 49 (0)541 969 3940

24 E-mail: Michael.Hensel@uni-osnabrueck.de

25

26 **Abstract**

27 Bacterial pathogens deliver proteins in temporal and spatial coordinated manner to manipulate
28 mammalian host cells. The facultative intracellular pathogen *Salmonella enterica* remodels the host
29 endosomal system for survival and proliferation inside host cells. The pathogen resides in a
30 membrane-bound compartment termed *Salmonella*-containing vacuole (SCV). By *Salmonella*-
31 induced fusions of host endomembranes, the SCV is connected with extensive tubular structures
32 termed *Salmonella*-induced filaments (SIF). The intracellular lifestyle of *Salmonella* critically
33 depends on effector molecules translocated by the SPI2-encoded type III secretion system (SPI2-
34 T3SS) into host cells. A subset of these effectors is associated with, or integral in SCV and SIF
35 membranes. It remained to be determined how SPI2-T3SS effectors reach their subcellular
36 destination, and how these effectors interact with endomembranes remodeled by *Salmonella*. We
37 deployed self-labeling enzyme (SLE) tags as novel approach to label translocated effector proteins
38 in living host cells, and analyzed their dynamics on single molecule level. We found that SPI2-
39 T3SS effector proteins diffuse in membranes of SIF with mobility comparable to membrane-
40 integral host proteins in endomembranes. Dynamics differed between various effector proteins
41 investigated and was dependent on membrane architecture of SIF. In the early infection, we
42 observed host endosomal vesicles associated with *Salmonella* effector proteins. Effector-positive
43 vesicles continuously fused with SCV and SIF membranes, providing a route of effector delivery
44 by SPI2-T3SS translocation, interaction with endosomal vesicles, and ultimately fusion with the
45 continuum of SCV/SIF membranes. This novel mechanism controls membrane deformation and
46 vesicular fusion to generate the specific intracellular niche for bacterial survival and proliferation.

47

48 **Introduction**

49 Various intracellular pathogens are confined to membrane-bound compartments. Within these
50 organelles, pathogens are able to adopt specific intracellular lifestyles. Biogenesis of specialized
51 pathogen-containing vacuoles depends on recruitment of subsets of host cell endosomes in order
52 to establish nutritional supply, and to evade the host immune defense. For this purpose, pathogens
53 translocate, by different secretion systems, specific effector proteins that manipulate the host cell
54 endocytic system (Weber & Faris, 2018).

55 *Salmonella enterica* is a Gram-negative, foodborne bacterial pathogen, causing diseases ranging
56 from severe typhoid fever to self-limiting gastrointestinal infections in various hosts. *S. enterica*
57 serovar Typhimurium (STM) is commonly used to investigated the intracellular lifestyle of
58 *Salmonella*. After invasion or phagocytic uptake, STM initiates a complex intracellular lifestyle
59 enabling survival and proliferation within host cells. STM resides in a membrane-bound
60 compartment termed *Salmonella*-containing vacuole (SCV), which acquires late endosomal
61 markers, but does not mature to a bactericidal compartment (LaRock et al., 2015). Characteristic
62 for infected cells is the formation of tubular structures connected to the SCV. Such *Salmonella*-
63 induced tubules (SIT) comprise various tubular structures composed of recruited host
64 endomembranes of various organellar origin (Schroeder et al., 2011). The best characterized SIT
65 are *Salmonella*-induced filaments (SIF), marked by lysosomal membrane glycoproteins such as
66 LAMP1 (Garcia-del Portillo et al., 1993). SIF are highly dynamic in the initial phase of intracellular
67 lifestyle. If fully developed, SIF comprise double membranes built up during development where
68 initial SIF are single-membrane tubular compartments (leading SIF), which over time, convert into
69 double-membrane (trailing SIF) tubular structures (Krieger et al., 2014). The molecular
70 mechanisms of these pathogen-driven events of vesicle fusion and membrane deformation remain
71 to be determined.

Effector targeting and dynamics

72 SIF formation and systemic virulence of STM are dependent on functions of genes within
73 *Salmonella* pathogenicity island 2 (SPI2). SPI2 encodes a type III secretion system (T3SS) which
74 enables the translocation of various effector proteins inside the host cell (Figueira & Holden, 2012).
75 Mutant strains deficient in SPI2-T3SS are highly attenuated in systemic virulence in the mouse
76 model of systemic infection, and show reduced intracellular replication in cell-based models
77 (Hensel et al., 1995; Hensel et al., 1998). We recently reported that SIF biogenesis supports
78 intracellular lifestyle by bypassing nutritional restriction in SCV-SIF continuum by recruiting
79 nutrients from the host endosomal system and is therefore crucial for bacterial proliferation and
80 survival (Liss et al., 2017).
81 Despite the large number of effector proteins translocated by the SPI2-T3SS, only a subset of these
82 manipulates the host endosomal system and induces vesicle fusion for SCV and SIF biogenesis.
83 These are SifA, SseF, SseG, PipB2, SseJ and SopD2 (Figueira & Holden, 2012). The most severe
84 phenotype is mediated by SifA, as mutant strains defective in *sifA* fail to induce SIF and show loss
85 of SCV integrity leading to bacterial release into host cytosol, and attenuation in intracellular
86 proliferation and systemic virulence (Beuzon et al., 2000). SseF, SseG and PipB2 contribute to SIF
87 formation, as mutant strains lacking the effectors show aberrant SIF biogenesis. Infection with
88 *sseF*-deficient STM leads to the formation of only single-membrane SIF, and infection with *pipB2*-
89 deficient strains results in the induction of enlarged bulky SIF (Krieger et al., 2014; Rajashekhar et
90 al., 2014).
91 A subsets of SPI2-T3SS effectors is recruited to *Salmonella*-modified membranes (SMM) after
92 translocation that are prominently associated with membranes of the SCV and SIF network (Kuhle
93 & Hensel, 2002). This subcellular localization appears to be prerequisite for effector and host
94 protein interactions that mediate vesicle fusion and SIF elongation (Fang & Meresse, 2022).
95 However, the molecular mechanisms of effector targeting to SMM are poorly understood. In STM-

Effector targeting and dynamics

96 infected cells, a dynamic extension of SIF network was observed, raising the question how SPI2-
97 T3SS effector integrate into SMM. For example, highly hydrophobic effectors like SseF appear
98 exclusively associated with SIF membranes (Abrahams et al., 2006; Müller et al., 2012). As T3SS
99 translocation delivers effector proteins into host cell cytosol, specific mechanisms of targeting to
100 and integration into host endosomal membranes are required, and we here applied novel imaging
101 approaches to unravel these mechanisms.

102 We recently established an imaging approach utilizing self-labeling enzyme (SLE) tags fused to
103 STM effector proteins to enable super-resolution microscopy (SRM), and single molecule imaging
104 of effector dynamics in living cells (Göser et al., 2019). Here we applied these approaches to
105 investigate the delivery of SPI2-T3SS effectors to SMM, their localization and dynamics in SMM.
106 This study provides new insights in the delivery mechanism of effector proteins to the SCV-SIF
107 continuum.

108

109 **Results**

110 *Continuous interactions of SCV, SIF and host cell endosomal compartments*

111 We analyzed interactions of intracellular STM with the host cell endosomal system. Pulse/chase
112 experiments with fluorochrome-conjugated gold nanoparticles (nanogold) allowed to label the
113 lumen of endosomes (Zhang & Hensel, 2013). A subset of these endosomes was in contact with
114 dynamic SIF and events of fusion between nanogold-labeled endosomes and SIF were detected
115 (**Movie 1**). Due to the transient nature, fusions between host cell endosomes and membranes of
116 SCV or SIF were rarely determined, and **Movie 1** shows a representative event. In contrast to other
117 fluid tracers that become rapidly diluted after fusion between endosomes and SIF, the aggregation
118 of nanogold led to formation of distinct foci that were readily detectable after fusion events.
119 Using live-cell correlative light and electron microscopy (CLEM), infected cells were imaged
120 during the formation of dynamically extending SIF (**Fig. 1**). Correlation identified LAMP1-
121 positive tubular vesicles in connection with SCV harboring STM. The investigated cell showed
122 double-membrane (dm) SIF distal to the SCV (**Fig. 1E**), or in connection to SCV (**Fig. 1F, G**). In
123 few occasions, the contact of single-membrane (sm) vesicles of spherical appearance with dm SIF
124 was observed (**Fig. 1H, I, J**). Although the temporal resolution of our live-cell imaging (LCI)
125 approach did not allow to distinguish fusion from fission events for the vesicle, our data would be
126 in line with fusion of a host cell endosome with a dm SIF and release of luminal content in the
127 outer lumen of SIF.

128 *Distribution of SPI2-T3SS effector proteins on SCV and SIF membranes*

129 The previous data revealed the fusogenic properties of the SCV/SIF continuum, and indicated how
130 the SIF network is dynamically expanding. Prior work demonstrated that formation of the SIF
131 network is dependent on translocated SPI2-T3SS effector proteins, and that subsets of these

Effector targeting and dynamics

132 effector proteins are closely associated with SIF membranes (Knodler et al., 2003; Miao & Miller,
133 2000; Müller et al., 2012). Thus, we next followed the distribution of PipB2 as representative SPI2-
134 T3SS effector protein over the course of STM infection (**Fig. 2A**). In the early phase (4 h p.i.), the
135 signal intensity for PipB2 immunostaining was low, and most of the signals were associated with
136 small spherical vesicles. At 8 h p.i., a SIF network was developed and PipB2 signals were mostly
137 associated with SIF and SCV membranes. At the end of observation, i.e. 16 h p.i., PipB2 signal
138 was strongly increased and was almost exclusively colocalized to membranes of SIF and SCV. A
139 similar subcellular distribution over time of infection was observed for other membrane-associated
140 SPI2-T3SS effectors such as SseF and SseJ (**Fig. S 1**).

141 To investigate if translocated effector proteins are present in membranes of endosomal
142 compartments prior to integration of these membranes into the SCV/SIF continuum, we applied
143 immunogold labeling for TEM analyses. A triple HA-tagged allele of *sseF* was used as
144 representative membrane-integral SPI2-T3SS effector protein. SseF-3xHA was synthesized,
145 translocated and subcellular localized as observed for SseF-HA (**Fig. S 2**). For highest preservation
146 of endosomal membranes and epitopes for immunolabeling, the Tokuyasu technique (Tokuyasu,
147 1973) was applied. In infected HeLa cells, immunogold-labeled SseF-3xHA was associated with
148 SCV membranes (**Fig. 2**). We also detected labeling for SseF associated with spherical membranes
149 compartments distal to the SCV. In ultrathin sections, such signal could result from cross-sections
150 of small spherical vesicles, or of extended tubular compartments such as SIF. To distinguish these
151 forms, consecutive ultrathin sections were inspected, indicating labeling a single section rather than
152 in compartments extended through several sections (**Fig. S 2**).

153 These ultrastructural observations support a model that effector proteins associate with and
154 integrate in host cell endosomal membranes prior to incorporation into the SCV/SIF continuum.

155 *Models for SPI2-T3SS effector targeting to endomembranes*

Effector targeting and dynamics

156 It is not known how hydrophobic effector proteins insert into host cell endomembranes. We built
157 several hypotheses for the route of SPI2-T3SS effector proteins from translocation to their final
158 destination (Fig. 3). In model A, effector proteins are directly integrated into SCV membranes after
159 translocation. In model B, effector proteins are translocated into the host cell cytosol, and a fast
160 interaction with unknown bacterial or host cell proteins enables insertion into host endomembranes.
161 In model C, direct delivery of effector proteins into host vesicular membranes is mediated by the
162 SPI2-T3SS itself, and no cytosolic effector intermediates are present. In model A, peripheral
163 distribution of effector proteins is mediated by tubulation of SCV membranes containing effector
164 proteins. In models B and C, effector proteins are first inserted into endosomal membranes that
165 subsequently fuse with developing SIF. We would also consider combinations of the models, and
166 distinct modes of delivery for different effector proteins. We set out to test these models by
167 applying a recently developed LCI approach for translocated effector proteins on single molecule
168 level (Göser et al., 2019).

169 *SPI2-T3SS effector proteins are highly dynamic on SIF membranes*

170 To follow the dynamics of SPI2-T3SS effector proteins on or in SIF membranes, we deployed
171 single molecule localization and tracking microscopy (TALM) (Appelhans et al., 2018). As host
172 cells, HeLa cells were used that constitutively express LAMP1-monomeric enhanced green
173 fluorescent protein (LAMP1-GFP) to allow visualization of SCV and SIF. Host cells were infected
174 with STM mutant strains deficient in genes for specific effectors. The strains harbored plasmids
175 encoding effector proteins fused to HaloTag, a self-labeling enzyme (SLE) tag, and infected cells
176 were labeled with HaloTag ligand coupled to the fluorescent dye tetramethylrhodamine (HTL-
177 TMR). As previously shown (Göser et al., 2019), the effector proteins SseF, SifA and PipB2 fused
178 to HaloTag can be localized in infected host cells 8 h p.i. and a complete colocalization with

179 LAMP1-GFP-positive SCV and SIF membranes was observed (**Fig. 4A, Fig. S 3, Movie 2, Movie**
180 **4, Movie 5**).

181 We tracked the movement of the key STM effector proteins SseF, SifA and PipB2 fused to HaloTag
182 on *Salmonella*-modified membranes. By analyzing comprehensive data sets of single molecule
183 trajectories, the mobility of effector proteins using pooled trajectories resulting in two-dimensional
184 diffusion coefficient (DC), extracted from mean square displacements (MSD), was demonstrated
185 (Göser et al., 2019). As control, the host membrane protein LAMP1 was used and visualized after
186 transient transfection of HeLa LAMP1-GFP cells for expression of LAMP1-HaloTag (**Movie 3**).
187 For non-moving particles, tracking of PipB2-HaloTag on SIF tubules was performed in fixed host
188 cells (**Movie 6**).

189 The DC of fixed PipB2-HaloTag was quantified as $0.009 \pm 0.0008 \mu\text{m}^2 \times \text{s}^{-1}$. For LAMP1-
190 HaloTag, a DC of $0.11 \pm 0.01 \mu\text{m}^2 \times \text{s}^{-1}$ was determined. The effector proteins SifA, SseF, and
191 PipB2 fused to HaloTag varied in their mobility with DC of 0.058 ± 0.009 , 0.088 ± 0.01 and
192 $0.11 \pm 0.01 \mu\text{m}^2 \times \text{s}^{-1}$, respectively (**Fig. 4B**, and **Movie 2, Movie 4, Movie 5**). In all cases, the
193 trajectories developed bidirectional, without preferential movement of molecules towards SCV-
194 proximal or SCV-peripheral portions of SIF.

195 Infection with STM mutant strain $\Delta sseF$ leads to increased formation of sm SIF which are smaller
196 in diameter and volume. Fully developed SIF in STM WT-infected cells are predominantly dm SIF
197 (Krieger et al., 2014; Rajashekhar et al., 2014). We analyzed SPI2-T3SS effector mobility on sm
198 SIF to investigate potential effects of SIF architecture on distribution and diffusion of effector
199 proteins. HeLa LAMP1-GFP cells with STM $\Delta sifA \Delta sseF$ strain expressing *sifA*::HaloTag and
200 dynamics of SifA-HaloTag molecules on sm SIF were analyzed (**Fig. 5AB, Movie 7, Movie 8**).
201 The reduced diameters of sm SIF were verified by intensity profile analyses of accumulated SifA-
202 HaloTag trajectories on SIF induced by STM WT and $\Delta sseF$ strains (**Fig. 5D**). When calculating

Effector targeting and dynamics

203 DCs for LAMP1-HaloTag and SifA-HaloTag on sm SIF induced in cells infected by STN Δ sseF,
204 a reduction of mobility with DC values of 0.028 ± 0.008 and $0.035 \pm 0.004 \mu\text{m}^2 \times \text{s}^{-1}$,
205 respectively was observed (Fig. 5C).

206 Taken together, these single molecule analyses demonstrate that SPI2-T3SS effector proteins are
207 highly dynamic on SIF. PipB2 showed distinct higher mobility in comparison to host membrane
208 integral protein LAMP1. The mobility of SifA and LAMP1 was reduced on sm SIF in comparison
209 to dm SIF.

210 *SPI2-T3SS effectors accumulate on leading SIF during transition to trailing SIF*

211 After succeeding in imaging effectors on sm SIF, we analyzed the transition of leading to trailing
212 SIF. Thinner leading SIF consist of single-membrane tubules and the connected trailing SIF consist
213 of double-membrane structures, i.e. fully developed SIF. It was proposed that this transition is
214 facilitated by a lateral extension of membranes of leading SIF, engulfment of host cell cytosol and
215 cytoskeletal filaments, and finally membrane fusion to form double-membrane trailing SIF
216 (Krieger et al., 2014). To image the transition from leading to trailing SIF, translocated SseF-
217 HaloTag was analyzed by LCI at 6 h p.i. In Fig. 5E and Movie 9, a thin SIF with a weak GFP
218 signal was imaged, and a wider trailing SIF with strong GFP signal was developing alongside the
219 thinner structure. By collecting and localizing all signals of SseF-HaloTag between the frames of
220 the growing LAMP1-positive SIF tubule, increased concentration of effector proteins on the
221 leading SIF before transition to trailing SIF became apparent. This was also shown for SifA-
222 HaloTag and PipB2-HaloTag (Fig. S 4AB, Movie 10, Movie 11). These effector proteins were
223 also localized at leading SIF when transforming to trailing SIF, however the local concentration
224 was less pronounced.

Effector targeting and dynamics

225 These findings indicate that SPI2-T3SS effector proteins are already present on leading SIF, and
226 in particular SseF appears to be involved in the transformation to trailing dm SIF, as an
227 accumulation of effector protein can be detected directly before transition.

228 *Effector proteins target endosomal vesicles in the early phase of infection*

229 The presence and concentration of effector proteins on leading SIF suggest a delivery mechanism
230 of effectors to the tips of growing sm SIF tubules. To address the question how SPI2-T3SS effector
231 proteins reach their subcellular destination in an infected host cell, we applied LCI by confocal
232 laser-scanning microscopy (CLSM) of infected HeLa LAMP1-GFP cells at 4 h p.i. In the early
233 stage of infection, the SCV is already formed, while SIF biogenesis initiates. We found that after
234 labeling of effector proteins, also bacteria were heavily stained, indicating large amounts of effector
235 proteins stored in bacteria. By monitoring the HaloTag-fused PipB2, SseF, SseJ and SteC,
236 localization of effector proteins in a punctate, vesicle-like manner was observed in infected cells.
237 These structures showed most frequently colocalization with LAMP1-GFP signal, but also labeled
238 endomembrane compartments lacking the late endosomal marker were observed (**Fig. S 5**).

239 SifA-HaloTag was not detected decorating vesicles in the early stage of infection. The low level of
240 SifA-HaloTag translocation could hamper visualization. These findings are in line with the
241 observation made by SRM localization with SifA-HaloTag showing lowest effector concentration,
242 while PipB2-HaloTag showed the highest labeling intensity on SIF tubules. Accordingly, vesicles
243 marked with PipB2-HaloTag could be easily imaged in the early stage of infection, and PipB2-
244 protein was chosen for further analyses. We set out to determine different phenotypes of PipB2-
245 HaloTag localization and therefore studied 100 cells containing PipB2-HaloTag-positive vesicles.
246 Of note, at 4 h p.i. effector-positive vesicles were found in a subset of infected cells. We conclude
247 that due to heterogeneity in SPI2 induction, infected cells with bacteria with low levels of effector
248 secretion showed no detectable HaloTag signal. In line with this observation, PipB2-HaloTag

Effector targeting and dynamics

249 fluorescence intensity on SIF at 16 h p.i. also varied between infected cells (**Fig. S 6**). In the early
250 phase of infection, distinct phenotypes of PipB2-HaloTag localization can be distinguished for
251 effector-positive vesicular structures. Moreover, the infected cells either showed no SIT, or already
252 developing first SIT structures. The tubular structures were either LAMP1-GFP-positive, or
253 lacking the endosomal marker, and in one population of cells these structures had already acquired
254 PipB2-HaloTag, and others were still lacking the effector (**Fig. 6A**). At 4 h p.i., in total 62% of the
255 infected cells still did not show SIF formation, yet were positive for vesicles decorated with PipB2-
256 HaloTag. All other cells also displayed vesicles positive for PipB2-HaloTag and already formed
257 SIT (**Fig. 6B**). To test the characteristics of effector-decorated vesicles in infected cells, we
258 performed tracking analyses of vesicles. Single LAMP1-GFP-positive or PipB2-HaloTag-positive
259 vesicles were tracked in 3D in infected cells. In co-motion tracking analyses, we observed that
260 vesicles positive for LAMP1-GFP and PipB2-HaloTag were tracked in parallel, and the patterns of
261 movement were identical (**Fig. 6AB, Movie 12**). When studying individual vesicle tracks, as
262 control conditions LAMP1-GFP-decorated vesicles in non-infected cells, either nocodazole-treated
263 or non-treated were tracked (**Fig. S 6, Movie 13, Movie 14**).
264 We quantified the mean track displacement length (MTDL) and the mean track speed (MTS) of
265 pooled trajectories. In infected cells, PipB2-HaloTag-marked and LAMP1-GFP-marked vesicles
266 did not differ in MTDL and MTS and therefore showed normal characteristics of vesicle
267 movement. In cells treated with nocodazole, both values were significantly decreased due to
268 inhibition of vesicle trafficking after microtubule disruption. Interestingly, late endosomal vesicles
269 tracked in non-infected and non-treated cells showed a more rapid movement, and MTDL and MTS
270 values were significantly increased (**Fig. 7C**).

Effector targeting and dynamics

271 These data demonstrate that SPI2-T3SS effectors are recruited to endomembrane compartments,
272 and as analyzed in detail for PipB2-HaloTag, in infected cells in the early phase of infection PipB2-
273 HaloTag-positive vesicles behave similar to LAMP1-positive vesicles.

274 *PipB2-HaloTag-positive vesicles continuously integrate into the SIF network*

275 After establishing that SPI2-T3SS effector proteins are recruited to vesicles in the early infection
276 during SIF biogenesis, we hypothesized that delivery to SCV and SIF tubules may occur by fusion
277 of endosomal vesicles with membrane-integrated effector proteins. We set out to study PipB2-
278 HaloTag localization from early to late stage of infection and applied long-term LCI of infected
279 cells. Over time, we observed a reduction of effector-decorated vesicles and extension of effector-
280 positive SIF network (Fig. 8A, Movie 15). Rendering the PipB2-HaloTag-labeled
281 endomembranes, 29 effector-positive vesicle-like objects were detected 5 h p.i. while only six
282 objects remained at 12 h p.i. Concurrent with the decreasing number of PipB2-HaloTag-decorated
283 objects, PipB2-HaloTag-positive SIF developed (Fig. 8C), suggesting that effector-positive SIF
284 membranes emerge from vesicles. We speculate that STM mutant strains without the ability to
285 induce tubulation of SIF but still possessing a functional SCV should accumulate effector-positive
286 vesicles over time. We used STM deficient in *sifA* and *sseJ*, previously reported to maintain SCV
287 membrane but lacking SIF formation (Ruiz-Albert *et al.*, 2002). In infected HeLa LAMP1-GFP
288 cells at 16 h p.i. an accumulation of PipB2-HaloTag-positive vesicles was observed, as well as lack
289 of SIF network formation (Fig. S 5). These findings indicate that STM SPI2-T3SS effector proteins
290 are integrated into the SCV-SIF continuum via fusion of effector-positive endomembrane
291 compartments.

292 *Effector recruitment to endomembrane compartments is dependent on vesicle movement*

Effector targeting and dynamics

293 To investigate if presence of effector-decorated vesicles is dependent on dynamics of endosomal
294 compartments, we monitored localization of PipB2-HaloTag over time in infected cells after
295 inhibition of vesicle trafficking. For this purpose, infected cells were treated with nocodazole 2 h
296 p.i., a time point where STM resides in SCV and activates expression of SPI2-T3SS genes
297 (Hapfelmeier et al., 2005). Addition of nocodazole abrogates vesicle movement due to interference
298 with microtubule integrity. We did not observe PipB2-HaloTag-positive vesicles in nocodazole-
299 treated cells, implicating that vesicle movement is required for effector recruitment **Fig. 8B, Movie**
300 **16**).

301 To address reversibility of inhibition, we imaged infected cells for 8 h after removing nocodazole
302 by washing cells twice at 4 h p.i. A slow initiation of vesicle movement was monitored over time.
303 Starting 11 h p.i., the first PipB2-HaloTag-decorated LAMP1-GFP-positive vesicles were imaged
304 (**Fig. 8B**). Association of effector proteins with endosomal compartments was dependent on vesicle
305 movement on microtubules, but did not require SIF formation.

306

307 **Discussion**

308 In this study, we demonstrated that SPI2-T3SS effector proteins, as well as the host cell protein
309 LAMP1 can be tracked, on single molecule level, on SIF and show a rapid, bidirectional movement.
310 The ability of integral membrane proteins to rapidly interchange in SIF membranes has already
311 been demonstrated by FRAP experiments and that revealed recovery of LAMP1 after
312 photobleaching on distal SIF (Liss et al., 2017). Using the split-GFP approach, PipB2 recovery on
313 tubules was detected upon photobleaching, indicating a rapid distribution of PipB2 (Van
314 Engelenburg & Palmer, 2010). The diffusion coefficients (DC) are similar to values determined
315 for mitochondrial proteins and for cytokine receptors on the plasma membrane (Appelhans &
316 Busch, 2017; Richter et al., 2017).

317 Interestingly, the mobility of effectors differs with PipB2 being the most mobile effector protein.
318 Mobility of membrane proteins depends on membrane integration, membrane composition and
319 interaction with other proteins. The association of PipB2 to lipid rafts has been demonstrated
320 (Knodler et al., 2003). These dense membrane patches would presume an impaired mobility for
321 membrane integral proteins. Contrary, it is established that raft association is not the dominant
322 factor in determining the overall mobility of a particular protein as different lipid raft associated
323 proteins showed diverse DC (Kenworthy et al., 2004). Besides this, our experiments did not reveal
324 a specific localization of PipB2 to distinct regions of SIF membranes.

325 Correlation of different forms of protein association with membranes to the corresponding
326 diffusion mobility revealed that DC of prenylated proteins were higher than DC of transmembrane
327 proteins (Kenworthy et al., 2004). We did not observe such a correlation for STM effector proteins,
328 with SifA being the only prenylated effector protein tested (Reinicke et al., 2005), and propose that
329 mobility of effectors might be influenced to a large extend by their interaction with host proteins.
330 SseF interacts with STM effector SseG and in combination with the Golgi network-associated

Effector targeting and dynamics

331 protein ACBD3, forming a complex tethering the SCV to the Golgi (Yu et al., 2016). SifA has
332 various interaction partners inside the host cell, such as PLEKHM2 (also called SKIP) and
333 PLEKHM1 (Boucrot et al., 2005; McEwan et al., 2015). The SifA complex is able to activate
334 kinesin-1 upon binding, resulting in budding and anterograde tubulation of SIF membranes along
335 microtubules (Dumont et al., 2010; Schroeder et al., 2011; Yip et al., 2016). PipB2 is responsible
336 of the recruitment of auto-inhibited kinesin-1 to the vacuole membrane (Henry et al., 2006). The
337 distinct DC of effector proteins SifA, SseF and PipB2 likely indicates the form of interaction with
338 cognate host cell molecules. Both, SifA and SseF, take part in tethering SCV and SIF to host
339 structures, possibly resulting in reduced mobility. Hence, the molecular mechanisms behind
340 effector mobility on SIF membrane remain to be elucidated.

341 We demonstrate here that effector motilities are affected by SIF architecture. The reduced DC of
342 STM effector protein SifA, as well as host protein LAMP1 reveals slower movement on sm SIF.
343 This indicates an overall impediment of mobility of membrane proteins in the membrane of sm
344 SIF. The smaller diameter of sm SIF compared to dm SIF leads to higher membrane curvature of
345 sm SIF, and this may affect motility of membrane proteins. Furthermore, host cell proteins sensing
346 membrane curvature will be recruited differentially to sm SIF and dm SIF depending on their
347 curvature, and these proteins could have distinct effects on motilities of the proteins analyzed.

348 When monitoring growing SIF, we found thinner leading SIF at the extending tips, followed by
349 development of thicker trailing SIF. Prior ultrastructural analysis revealed that leading SIF are
350 single-membrane tubules, while trailing SIF comprise double-membrane structure, representing
351 the fully developed SIF. It was proposed that effector protein SseF together with its interaction
352 partner SseG are involved in conversion of sm SIF to dm SIF (Krieger et al., 2014). Here we
353 present, to our knowledge first, microscopy-based evidence that effector protein SseF is present on
354 the membranes of leading sm SIF and that the effector accumulates before engulfment to trailing

Effector targeting and dynamics

355 dm SIF. As this is also true for SifA and PipB2, more effector proteins might be involved in the
356 process of sm SIF to dm SIF conversion.

357 The concentration of effectors on the tips of growing SIF led to the question how STM effectors
358 are able to accumulate and how they are recruited after secretion into the host cytosol. Especially
359 SseF which is characterized by large hydrophobic domains (Abrahams et al., 2006), could be
360 mistargeted to cytoplasmic membranes or be prone to aggregation in host cytosol. To test models
361 for the delivery of effector proteins to SCV-SIF continuum introduced in **Fig. 3**, we performed LCI
362 with labeled effectors in the early infection. We found that various SPI2-T3SS effectors decorate
363 host endomembranes in infected cells. The association of PipB2 with vesicles in the periphery of
364 infected host cells has already been demonstrated (Knodler et al., 2003). Over time, the presence
365 of PipB2-positive vesicles declined, corresponding with the formation of PipB2-positive SIF.
366 These findings strengthen the hypothesis of delivery of effector proteins to SCV and SIF via fusion
367 of effector-containing endomembranes as depicted in models B and C of **Fig. 3**.

368 The targeting of bacterial effector proteins to phagosomes and various organelles in infected host
369 cells has been widely demonstrated (Popa et al., 2016), but only few studies observed effector
370 protein presence on host endomembranes and connected a trafficking mechanism of effector
371 proteins to these phenomena. The *Shigella* effector protein IpgB1 was found to localize to
372 endocytic vesicles in mammalian cells expressing eGFP-tagged IpgB1. Vesicles decorated with
373 IpgB1 were found to be functional in host cell trafficking and a relocation of effector proteins from
374 endocytic vesicles to membrane ruffles produced by *Shigella* was observed, indicating a delivery
375 of effector via vesicle fusion (Weigle et al., 2017). Another study uses the split GFP approach to
376 monitor the delivery of effector AvrB by *Pseudomonas* via the T3SS to infected plant cells. In
377 infected host cells, AvrB localizes to the plasma membrane, but at different time points after
378 inoculation the localization changed to unknown vesicles, suggesting a potential trafficking of

Effector targeting and dynamics

379 AvrB on vesicles (Park et al., 2017). Relocation of bacterial effector proteins on host endocytic
380 vesicles to the required site of action in infected host cells might represent a universal delivery
381 mechanism.

382 To further address the question how effector proteins reach their subcellular destination on host
383 endomembranes, we analyzed effector protein localization in infected cells with inhibited vesicle
384 movement. We found that endomembranes did not acquire PipB2 when vesicle movement was
385 inhibited. This finding supports an insertion route of effector proteins to membranes that requires
386 vesicle movement. In this case, effector proteins which do not require a modification by host
387 proteins are inserted into vesicle membranes in close proximity to the T3SS, either by host
388 chaperones, or solely determined by the sequence of membrane integral effectors (**Fig. 3**, model
389 C).

390 However, these hypotheses can only be applied to effector proteins without requirement for host
391 cell modification. SPI2-T3SS effector proteins can gain membrane association either by defined
392 trans-membrane domains within their sequence, or by host cell modifications. The effector proteins
393 SseF and SseG are examples for the former, as these proteins contain identified trans-membrane
394 domains (Hansen-Wester et al., 2002; Hensel et al., 1998; Krampen et al., 2018). Various other
395 SPI2-T3SS effector proteins acquire membrane association by host cell modifications. These
396 modifications comprise different mechanisms to increase the overall hydrophobicity of effector
397 proteins. SifA is targeted by host modifications, resulting in S-prenylation of the effector protein
398 (Reinicke et al., 2005). Additionally, the effector proteins SspH2 and SseI of STM have been
399 shown to be palmitoylated to gain membrane association (Hicks et al., 2011). As the mentioned
400 models do not include effectors requiring post-translational modification by the host, other
401 mechanisms must contribute to effector relocation (**Fig. 2**, model D). Accordingly, we did not
402 detect SifA on host endomembranes in infected cells.

Effector targeting and dynamics

403 Our data lead to various new questions. i) During the intracellular life of STM, host endosomal
404 compartments are gradually depleted due to fusion to SCV-SIF continuum (Rajashekhar et al.,
405 2008). Does this terminate the delivery of effector proteins and end intracellular proliferation? ii)
406 By which mechanism are post-translationally-modified effector proteins relocated? iii) Are
407 endomembranes specifically targeted to the T3SS, or is insertion simply dependent on proximity?
408 Further LCI and single molecule-based analyses of STM effectors will likely contribute to answer
409 these questions.

410

411 *Acknowledgements*

412 This work was supported by the DFG through grants HE 1964/18-2 and SFB 944 project Z to M.H.
413 We like to thank Jacob Piehler (Div. Biophysics), Christian Richter (Div. Biophysics) and Rainer
414 Kurre (iBiOs) for continuous support and fruitful discussions.

415

416 Materials and Methods

417 *Bacterial strains and culture*

418 Infection experiments were performed using *Salmonella enterica* serovar Typhimurium (STM)
419 NCTC 12023 strain as WT and isogenic mutant strains (Table 1). Mutagenesis was carried out as
420 described elsewhere (Popp et al., 2015). In short, strains were constructed using λ Red-mediated
421 mutagenesis and resistance cassette was removed using FLP-mediated recombination. Mutant
422 strains deficient in effector genes harboring plasmids encoding the corresponding effector fused to
423 HaloTag (Table 2) were used for microscopic analysis. Plasmids were constructed as described
424 previously (Göser et al., 2019) using oligonucleotides listed in Table S 1. Bacterial strains were
425 cultured in Luria-Bertani broth (LB) containing 50 μ g x ml⁻¹ Carbenicillin.

426 For generation of a plasmid encoding triple HA-tagged SseF, p2643 (*sscB sseF::HA*) was used and
427 *sseF::HA* on p2643 was replaced by *sseF::3HA* using Gibson assembly GA. Primers for generation
428 of vector fragment, check primers and sequence of synthetic *sseF::3xHA* (gBlocks, IDT) are listed
429 in Table S 1.

430 *Culture of eukaryotic cells*

431 The non-polarized epithelial HeLa cell line (ATCC no. CCL-2) stably transfected with LAMP1-
432 GFP (Krieger et al., 2014) was cultured in Dulbecco's modified Eagle's medium (DMEM)
433 containing 4.5 g x l⁻¹, glucose, 4 mM stable glutamine and sodium pyruvate (Biochrome) and
434 supplemented with 10% inactivated fetal calf serum (Sigma-Aldrich). Cells were maintained in a
435 cell culture incubator (37 °C, 5% CO₂).

436 *Host cell infection*

437 HeLa LAMP1-GFP cells were seeded in surface-treated 8-well plates (ibidi) or on 24 mm diameter
438 coverslips (VWR) in 6-well plates (Faust). For infection experiments cells were grown to 80%

Effector targeting and dynamics

439 confluence (8 well: $\sim 8 \times 10^4$, 6 well: $\sim 6 \times 10^5$). STM strains were grown over night in LB and
440 subcultured 1:31 in fresh LB for 3.5 h. Cells were infected at MOI 50 or 75 for 25 min, washed
441 thrice with phosphate-buffered saline (PBS) and incubated with DMEM containing $100 \mu\text{g} \times \text{ml}^{-1}$
442 gentamicin (Applichem) to kill non-internalized bacteria. Subsequently, medium was replaced by
443 DMEM containing $10 \mu\text{g} \times \text{ml}^{-1}$ gentamicin for the rest of the experiment.

444 *Pulse-chase with gold nanoparticles*

445 Pulse-chase labeling of the endosomal system with rhodamine conjugated gold nanoparticles was
446 performed as previously described (Zhang & Hensel, 2013).

447 *Correlative light and electron microscopy (CLEM)*

448 CLEM of HeLa LAMP1-GFP cells infected by STM WT was performed as previously described
449 (Krieger et al., 2014). Briefly, HeLa LAMP1-GFP cells were grown on MatTek dishes with a
450 gridded coverslip and infected with the respective STM strains at MOI 75. Cells were fixed with
451 2% paraformaldehyde (PFA) and 0.2% glutaraldehyde (GA) in 0.2 M HEPES for 30 min. prior to
452 LM. After rinsing the cells for three times with 0.2 M HEPES buffer, unreacted aldehydes were
453 blocked by incubation with 50 mM glycine in buffer for 15 min, followed by rinses in buffer.
454 CLSM was performed and ROIs were chosen. Afterwards cells were fixed with 2.5%
455 glutaraldehyde and 5 mM CaCl₂ in 0.2 M HEPES in preparation for TEM. Further steps including
456 post-fixation, dehydration, sectioning and imaging in the TEM were conducted as previously
457 described (Krieger et al., 2014).

458 *Live-cell super-resolution localization and tracking microscopy*

459 Localization and tracking of single molecules were done as previously described (Göser et al.,
460 2019). Briefly, infected HeLa LAMP1-GFP cells were labeled with the HaloTag ligand coupled to
461 tetramethylrhodamine (HTL-TMR, Promega) in a concentration of 20 nM for 15 min at 37 °C.

462 After ten washing steps, the cells were imaged with an imaging medium consisting of Minimal
463 Essential Medium (MEM) with Earle's salts, without NaHCO₃, without L-Glutamine, without
464 phenol red (Biochrom) and supplemented with 30 mM HEPES (Sigma-Aldrich), pH 7.4. TIRF
465 microscopy was performed using an inverted microscope Olympus IX-81, equipped with an
466 incubation chamber maintaining 37 °C and humidity, a motorized 4-line TIRF condenser, a 150 x
467 objective (UAPON 150x TIRF, NA 1.45), a TIRF quadband polychroic mirror
468 (zt405/488/561/640rpc), a 488 nm laser (150 mW, Olympus), and a 561 nm laser (150 mW,
469 Olympus). Localization as well as tracking of single molecules were carried out with the help of a
470 self-written user interface in MatLab 2013a (Appelhans et al., 2018; Barlag et al., 2016; Hess et
471 al., 2006; Jaqaman et al., 2008; Serge et al., 2008; Wilmes et al., 2012).

472 *Live cell fluorescence microscopy*

473 Infected HeLa LAMP1-GFP cells were labeled with HTL-TMR with a final concentration of 1 µM
474 for 30 min directly before LCI. Cells were washed thrice with PBS and the media was replaced
475 with imaging media as described above. For inhibition of vesicle movement cells were incubated
476 with 5 µg x ml⁻¹ nocodazole (Sigma-Aldrich) 2 h p.i. Directly before LCI, cells were washed twice
477 to remove nocodazole and labeled as described above. Imaging was done using either the confocal
478 laser scanning microscope Leica SP5 (Leica) equipped with an incubation chamber, a 100 x
479 objective (HCX PL APO CS, NA 1.4-0.7) and a polychroic mirror (TD 488/543/633) or the Cell
480 Observer Spinning Disk microscope (SDM, Zeiss) equipped with a Yokogawa Spinning Disc Unit
481 CSU-X1a 5000, an incubation chamber, 63 x objective (α-Plan-Apochromat, NA 1.4), two
482 EMCCD cameras (Evolve, Photometrics) and the filter combination GFP with BP 525/50 and RFP
483 with BP 593/46 for dual cam imaging. Images were acquired and processed using the
484 corresponding software LAS AF (Leica) and ZEN (Zeiss).

Effector targeting and dynamics

485 *Image analysis by Imaris*

486 Vesicle tracking and surface analysis were analyzed by Imaris 9.2.1 software package (Bitplane).
487 Surface analysis was done to determine the amounts of effector-positive vesicles inside an infected
488 cell. By the surface tool, data acquired by live cell imaging were analyzed in the red (PipB2-
489 HaloTag-TMR) channel. Vesicle volume was adjusted using auto-threshold and smoothing of 0.1,
490 and SIF volume was adjusted using auto-threshold and smoothing of 0.3. For vesicle tracking the
491 spot tool was used. Spot detection was performed with the following parameters XY diameter: 0.75
492 μm , active model PSF elongation: 1.5 μm and background subtraction. For tracking the
493 autoregressive motion algorithm was chosen with a maximum gap size of 3.

494 *Image analysis by Fiji*

495 The Fiji package (Schindelin et al., 2012) was used to determine intensity profiles of accumulated
496 SifA-HaloTag trajectories on SIF. Using the line tool and subsequently the plot profile tool, the
497 intensity profile of the trajectories labeling the SIF was calculated and the relative distances in pixel
498 were compared.

499

500 **References**

501

502 Abrahams, G. L., Müller, P., & Hensel, M. (2006). Functional dissection of SseF, a type III effector
503 protein involved in positioning the *Salmonella*-containing vacuole. *Traffic*, 7(8), 950-965.
504 16800847
505 <http://onlinelibrary.wiley.com/store/10.1111/j.1600-0854.2006.00454.x/asset/j.1600-0854.2006.00454.x.pdf?v=1&t=gikbh3t4&s=15fc3050a21c24744f6614b7f9ebe5c08ef2fd6>
506
507

508 Appelhans, T., Beinlich, F. R. M., Richter, C. P., Kurre, R., & Busch, K. B. (2018). Multi-color
509 localization microscopy of single membrane proteins in organelles of live mammalian cells.
510 *Journal of visualized experiments : JoVE*(136). <https://doi.org/10.3791/57690>

511 Appelhans, T., & Busch, K. B. (2017). Dynamic imaging of mitochondrial membrane proteins in
512 specific sub-organelle membrane locations. *Biophys Rev*, 9(4), 345-352.
513 <https://doi.org/10.1007/s12551-017-0287-1>

514 Barlag, B., Beutel, O., Janning, D., Czarniak, F., Richter, C. P., Kommnick, C., Goser, V., Kurre,
515 R., Fabiani, F., Erhardt, M., Piehler, J., & Hensel, M. (2016). Single molecule super-
516 resolution imaging of proteins in living *Salmonella enterica* using self-labelling enzymes.
517 *Scientific reports*, 6, 31601. <https://doi.org/10.1038/srep31601>

518 Beuzon, C. R., Meresse, S., Unsworth, K. E., Ruiz-Albert, J., Garvis, S., Waterman, S. R., Ryder,
519 T. A., Boucrot, E., & Holden, D. W. (2000). *Salmonella* maintains the integrity of its
520 intracellular vacuole through the action of SifA. *EMBO J*, 19(13), 3235-3249.
521 <https://doi.org/10.1093/emboj/19.13.3235>

522 Boucrot, E., Henry, T., Borg, J. P., Gorvel, J. P., & Meresse, S. (2005). The intracellular fate of
523 *Salmonella* depends on the recruitment of kinesin. *Science*, 308(5725), 1174-1178.
524 15905402
525 <http://www.sciencemag.org/cgi/reprint/308/5725/1174.pdf>

526 Chakravortty, D., Hansen-Wester, I., & Hensel, M. (2002). *Salmonella* pathogenicity island 2
527 mediates protection of intracellular *Salmonella* from reactive nitrogen intermediates. *J Exp
528 Med*, 195(9), 1155-1166. <https://doi.org/10.1084/jem.20011547>

529 Dumont, A., Boucrot, E., Drevensek, S., Daire, V., Gorvel, J. P., Pous, C., Holden, D. W., &
530 Meresse, S. (2010). SKIP, the host target of the *Salmonella* virulence factor SifA, promotes
531 kinesin-1-dependent vacuolar membrane exchanges. *Traffic*, 11(7), 899-911.
532 <https://doi.org/10.1111/j.1600-0854.2010.01069.x>
533 [10.1111/j.1600-0854.2010.01069.x](https://doi.org/10.1111/j.1600-0854.2010.01069.x)

534 Fang, Z., & Meresse, S. (2022). Endomembrane remodeling and dynamics in *Salmonella* infection.
535 *Microb Cell*, 9(2), 24-41. <https://doi.org/10.15698/mic2022.02.769>

536 Figueira, R., & Holden, D. W. (2012). Functions of the *Salmonella* pathogenicity island 2 (SPI-2)
537 type III secretion system effectors. *Microbiology (Reading)*, 158(Pt 5), 1147-1161.
538 <https://doi.org/10.1099/mic.0.058115-0>

539 Garcia-del Portillo, F., Zwick, M. B., Leung, K. Y., & Finlay, B. B. (1993). *Salmonella* induces
540 the formation of filamentous structures containing lysosomal membrane glycoproteins in
541 epithelial cells. *Proc. Natl. Acad. Sci. U S A*, 90(22), 10544-10548.
542 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Text&list_uids=8248143

Effector targeting and dynamics

544 Gerlach, R. G., Claudio, N., Rohde, M., Jäckel, D., Wagner, C., & Hensel, M. (2008). Cooperation
545 of *Salmonella* pathogenicity islands 1 and 4 is required to breach epithelial barriers. *Cell.*
546 *Microbiol.*, 10(11), 2364-2376.
547 <http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati>
548 [on&list_uids=18671822](#)

549 Göser, V., Kommnick, C., Liss, V., & Hensel, M. (2019). Self-labeling enzyme tags for analyses
550 of translocation of type III secretion system effector proteins. *mBio*, 10(3).
551 <https://doi.org/10.1128/mBio.00769-19>

552 Hansen-Wester, I., Stecher, B., & Hensel, M. (2002). Type III secretion of *Salmonella enterica*
553 serovar Typhimurium translocated effectors and SseFG. *Infect. Immun.*, 70(3), 1403-1409.
554 11854226
555 <http://pubmedcentralcanada.ca/picrender.cgi?artid=226898&blobtype=pdf>

556 Hapfelmeier, S., Stecher, B., Barthel, M., Kremer, M., Muller, A. J., Heikenwalder, M., Stallmach,
557 T., Hensel, M., Pfeffer, K., Akira, S., & Hardt, W. D. (2005). The *Salmonella* pathogenicity
558 island (SPI)-2 and SPI-1 type III secretion systems allow *Salmonella* serovar *typhimurium*
559 to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. *J Immunol*,
560 174(3), 1675-1685. <https://doi.org/10.4049/jimmunol.174.3.1675>

561 Henry, T., Couillault, C., Rockenfeller, P., Boucrot, E., Dumont, A., Schroeder, N., Hermant, A.,
562 Knodler, L. A., Lecine, P., Steele-Mortimer, O., Borg, J. P., Gorvel, J. P., & Meresse, S.
563 (2006). The *Salmonella* effector protein PipB2 is a linker for kinesin-1. *Proc. Natl. Acad.*
564 *Sci. U S A*, 103(36), 13497-13502. 16938850
565 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1569191/pdf/zpq13497.pdf>

566 Hensel, M., Shea, J. E., Gleeson, C., Jones, M. D., Dalton, E., & Holden, D. W. (1995).
567 Simultaneous identification of bacterial virulence genes by negative selection. *Science*,
568 269(5222), 400-403. <https://doi.org/10.1126/science.7618105>

569 Hensel, M., Shea, J. E., Waterman, S. R., Mundy, R., Nikolaus, T., Banks, G., Vazquez-Torres, A.,
570 Gleeson, C., Fang, F. C., & Holden, D. W. (1998). Genes encoding putative effector
571 proteins of the type III secretion system of *Salmonella* pathogenicity island 2 are required
572 for bacterial virulence and proliferation in macrophages. *Mol Microbiol*, 30(1), 163-174.
573 <https://doi.org/10.1046/j.1365-2958.1998.01047.x>

574 Hess, S. T., Girirajan, T. P., & Mason, M. D. (2006). Ultra-high resolution imaging by fluorescence
575 photoactivation localization microscopy. *Biophys J*, 91(11), 4258-4272.
576 <https://doi.org/10.1529/biophysj.106.091116>

577 Hicks, S. W., Charron, G., Hang, H. C., & Galan, J. E. (2011). Subcellular targeting of *Salmonella*
578 virulence proteins by host-mediated S-palmitoylation. *Cell Host Microbe*, 10(1), 9-20.
579 <https://doi.org/10.1016/j.chom.2011.06.003>

580 Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S. L., & Danuser, G.
581 (2008). Robust single-particle tracking in live-cell time-lapse sequences. *Nat Methods*,
582 5(8), 695-702. <https://doi.org/10.1038/nmeth.1237>

583 Kenworthy, A. K., Nichols, B. J., Remmert, C. L., Hendrix, G. M., Kumar, M., Zimmerberg, J., &
584 Lippincott-Schwartz, J. (2004). Dynamics of putative raft-associated proteins at the cell
585 surface. *J Cell Biol*, 165(5), 735-746. <https://doi.org/10.1083/jcb.200312170>

586 Knodler, L. A., Vallance, B. A., Hensel, M., Jäckel, D., Finlay, B. B., & Steele-Mortimer, O.
587 (2003). *Salmonella* type III effectors PipB and PipB2 are targeted to detergent-resistant
588 microdomains on internal host cell membranes. *Mol. Microbiol*, 49(3), 685-704. 12864852

589 <http://onlinelibrary.wiley.com/store/10.1046/j.1365-2958.2003.03598.x/asset/j.1365-2958.2003.03598.x.pdf?v=1&t=gikbb063&s=414c3629ee7d680835e815ce73790b3cd0124c24>

590 Krampen, L., Malmshimer, S., Grin, I., Trunk, T., Luhrmann, A., de Gier, J. W., & Wagner, S.

591 (2018). Revealing the mechanisms of membrane protein export by virulence-associated

592 bacterial secretion systems. *Nature communications*, 9(1), 3467.

593 <https://doi.org/10.1038/s41467-018-05969-w>

594 Krieger, V., Liebl, D., Zhang, Y., Rajashekhar, R., Chlonda, P., Giesker, K., Chikkaballi, D., &

595 Hensel, M. (2014). Reorganization of the endosomal system in *Salmonella*-infected cells: the ultrastructure of *Salmonella*-induced tubular compartments. *PLoS Pathog*, 10(9), e1004374. <https://doi.org/10.1371/journal.ppat.1004374>

596 Kuhle, V., & Hensel, M. (2002). SseF and SseG are translocated effectors of the type III secretion

597 system of *Salmonella* pathogenicity island 2 that modulate aggregation of endosomal

598 compartments. *Cell. Microbiol.*, 4(12), 813-824. 12464012

599 Kuhle, V., Jäckel, D., & Hensel, M. (2004). Effector proteins encoded by *Salmonella* pathogenicity

600 island 2 interfere with the microtubule cytoskeleton after translocation into host cells.

601 *Traffic*, 5(5), 356-370. 15086785

602 <http://onlinelibrary.wiley.com/store/10.1111/j.1398-9219.2004.00179.x/asset/j.1398-9219.2004.00179.x.pdf?v=1&t=gikbbrtu&s=eb85475b6d3c605572396dbb521dcdc51f55a6f2>

603 LaRock, D. L., Chaudhary, A., & Miller, S. I. (2015). Salmonellae interactions with host processes.

604 *Nat Rev Microbiol*, 13(4), 191-205. <https://doi.org/10.1038/nrmicro3420>

605 Liss, V., Swart, A. L., Kehl, A., Hermanns, N., Zhang, Y., Chikkaballi, D., Bohles, N., Deiwick,

606 J., & Hensel, M. (2017). *Salmonella enterica* remodels the host cell endosomal system for

607 efficient intravacuolar nutrition. *Cell Host Microbe*, 21(3), 390-402.

608 <https://doi.org/10.1016/j.chom.2017.02.005>

609 McEwan, D. G., Richter, B., Claudi, B., Wigge, C., Wild, P., Farhan, H., McGourty, K., Coxon, F.

610 P., Franz-Wachtel, M., Perdu, B., Akutsu, M., Habermann, A., Kirchof, A., Helfrich, M.

611 H., Odgren, P. R., Van Hul, W., Frangakis, A. S., Rajalingam, K., Macek, B., . . . Dikic, I.

612 (2015). PLEKHM1 regulates *Salmonella*-containing vacuole biogenesis and infection. *Cell Host Microbe*, 17(1), 58-71. <https://doi.org/10.1016/j.chom.2014.11.011>

613 Miao, E. A., & Miller, S. I. (2000). A conserved amino acid sequence directing intracellular type

614 III secretion by *Salmonella typhimurium*. *Proc. Natl. Acad. Sci. U S A*, 97(13), 7539-7544.

615 0010861017

616 Müller, P., Chikkaballi, D., & Hensel, M. (2012). Functional dissection of SseF, a membrane-

617 integral effector protein of intracellular *Salmonella enterica*. *PLoS ONE*, 7(4), e35004.

618 <https://doi.org/10.1371/journal.pone.0035004>

619 Obert, S., O'Connor, R. J., Schmid, S., & Hearing, P. (1994). The adenovirus E4-6/7 protein

620 transactivates the E2 promoter by inducing dimerization of a heteromeric E2F complex.

621 *Mol. Cell Biol.*, 14(2), 1333-1346. 8289811

622 Park, E., Lee, H. Y., Woo, J., Choi, D., & Dinesh-Kumar, S. P. (2017). Spatiotemporal Monitoring

623 of *Pseudomonas syringae* Effectors via Type III Secretion Using Split Fluorescent Protein

624 Fragments. *Plant Cell*, 29(7), 1571-1584. <https://doi.org/10.1105/tpc.17.00047>

625 Popa, C. M., Tabuchi, M., & Valls, M. (2016). Modification of Bacterial Effector Proteins Inside

626 Eukaryotic Host Cells. *Front Cell Infect Microbiol*, 6, 73.

627 <https://doi.org/10.3389/fcimb.2016.00073>

Effector targeting and dynamics

635 Popp, J., Noster, J., Busch, K., Kehl, A., Zur Hellen, G., & Hensel, M. (2015). Role of host cell-
636 derived amino acids in nutrition of intracellular *Salmonella enterica*. *Infect Immun*, 83(12),
637 4466-4475. <https://doi.org/10.1128/IAI.00624-15>

638 Rajashekhar, R., Liebl, D., Chikkaballi, D., Liss, V., & Hensel, M. (2014). Live cell imaging reveals
639 novel functions of *Salmonella enterica* SPI2-T3SS effector proteins in remodeling of the
640 host cell endosomal system. *PLoS ONE*, 9(12), e115423.
641 <https://doi.org/10.1371/journal.pone.0115423>

642 Rajashekhar, R., Liebl, D., Seitz, A., & Hensel, M. (2008). Dynamic remodeling of the endosomal
643 system during formation of *Salmonella*-induced filaments by intracellular *Salmonella*
644 *enterica*. *Traffic*, 9(12), 2100-2116. <https://doi.org/10.1111/j.1600-0854.2008.00821.x>

645 Reinicke, A. T., Hutchinson, J. L., Magee, A. I., Mastroeni, P., Trowsdale, J., & Kelly, A. P. (2005).
646 A *Salmonella typhimurium* effector protein SifA is modified by host cell prenylation and
647 S-acylation machinery. *J Biol Chem*, 280(15), 14620-14627.
648 <http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati>
649 [on&list_uids=15710609](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati&list_uids=15710609)

650 Richter, D., Moraga, I., Winkelmann, H., Birkholz, O., Wilmes, S., Schulte, M., Kraich, M.,
651 Kenneweg, H., Beutel, O., Selenschik, P., Paterok, D., Gavutis, M., Schmidt, T., Garcia, K.
652 C., Muller, T. D., & Piehler, J. (2017). Ligand-induced type II interleukin-4 receptor dimers
653 are sustained by rapid re-association within plasma membrane microcompartments. *Nature*
654 *communications*, 8, 15976. <https://doi.org/10.1038/ncomms15976>

655 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,
656 Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri,
657 K., Tomancak, P., & Cardona, A. (2012). Fiji: an open-source platform for biological-
658 image analysis. *Nat Methods*, 9(7), 676-682. <https://doi.org/10.1038/nmeth.2019>

659 Schroeder, N., Mota, L. J., & Meresse, S. (2011). *Salmonella*-induced tubular networks [Research
660 Support, Non-U.S. Gov't
661 Review]. *Trends Microbiol*, 19(6), 268-277. <https://doi.org/10.1016/j.tim.2011.01.006>

662 Serge, A., Bertaux, N., Rigneault, H., & Marguet, D. (2008). Dynamic multiple-target tracing to
663 probe spatiotemporal cartography of cell membranes. *Nat Methods*, 5(8), 687-694.
664 <https://doi.org/10.1038/nmeth.1233>

665 Tokuyasu, K. T. (1973). A technique for ultracryotomy of cell suspensions and tissues. *J Cell Biol*,
666 57(2), 551-565. <https://doi.org/10.1083/jcb.57.2.551>

667 Van Engelenburg, S. B., & Palmer, A. E. (2010). Imaging type-III secretion reveals dynamics and
668 spatial segregation of *Salmonella* effectors [Research Support, N.I.H., Extramural
669 Research Support, Non-U.S. Gov't]. *Nat Methods*, 7(4), 325-330.
670 <https://doi.org/10.1038/nmeth.1437>

671 Vorwerk, S., Krieger, V., Deiwick, J., Hensel, M., & Hansmeier, N. (2015). Proteomes of host cell
672 membranes modified by intracellular activities of *Salmonella enterica*. *Molecular &*
673 *cellular proteomics : MCP*, 14(1), 81-92. <https://doi.org/10.1074/mcp.M114.041145>

674 Weber, M. M., & Faris, R. (2018). Subversion of the Endocytic and Secretory Pathways by
675 Bacterial Effector Proteins. *Front Cell Dev Biol*, 6, 1.
676 <https://doi.org/10.3389/fcell.2018.00001>

677 Weigle, B. A., Orchard, R. C., Jimenez, A., Cox, G. W., & Alto, N. M. (2017). A systematic
678 exploration of the interactions between bacterial effector proteins and host cell membranes.
679 *Nature communications*, 8(1), 532. <https://doi.org/10.1038/s41467-017-00700-7>

680 Wilmes, S., Staufenbiel, M., Lisse, D., Richter, C. P., Beutel, O., Busch, K. B., Hess, S. T., &
681 Piehler, J. (2012). Triple-color super-resolution imaging of live cells: resolving

Effector targeting and dynamics

682 submicroscopic receptor organization in the plasma membrane. *Angew Chem Int Ed Engl*,
683 51(20), 4868-4871. <https://doi.org/10.1002/anie.201200853>

684 Yip, Y. Y., Pernigo, S., Sanger, A., Xu, M., Parsons, M., Steiner, R. A., & Dodding, M. P. (2016).
685 The light chains of kinesin-1 are autoinhibited. *Proc Natl Acad Sci U S A*, 113(9), 2418-
686 2423. <https://doi.org/10.1073/pnas.1520817113>

687 Yu, X. J., Liu, M., & Holden, D. W. (2016). Salmonella Effectors SseF and SseG Interact with
688 Mammalian Protein ACBD3 (GCP60) To Anchor Salmonella-Containing Vacuoles at the
689 Golgi Network. *mBio*, 7(4). <https://doi.org/10.1128/mBio.00474-16>

690 Zhang, Y., & Hensel, M. (2013). Evaluation of nanoparticles as endocytic tracers in cellular
691 microbiology. *Nanoscale*, 5(19), 9296-9309. <https://doi.org/10.1039/c3nr01550e>

692

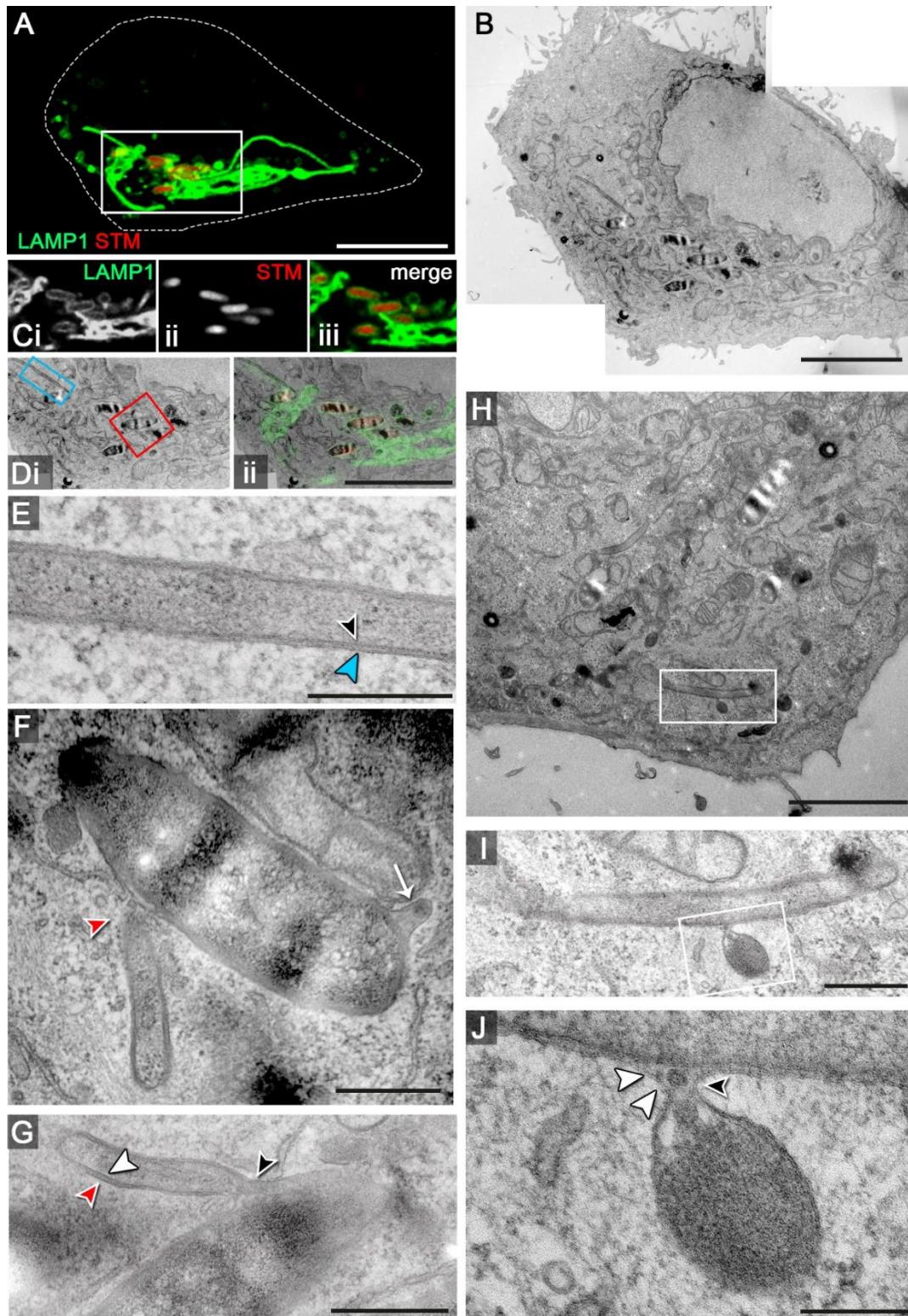
693 **Tables**

694 Table 1. *Salmonella enterica* serovar Typhimurium strains used in this study

695	<u>Designation</u>	<u>Relevant characteristics</u>	<u>Reference</u>
696	NCTC 12023	Wild type	Lab stock
697	MvP392	$\Delta sseJ::FRT$	(Chakravortty et al., 2002)
698	MvP503	$\Delta sifA::FRT$	(Gerlach et al., 2008)
699	MvP742	$\Delta steC::FRT$	This study
700	MvP1900	$\Delta sseJ::aph \Delta sifA::FRT$	(Popp et al., 2015)
701	MvP1944	$\Delta pipB2::FRT$	(Rajashekhar et al., 2008)
702	MvP1948	$\Delta sseF::aph \Delta sifA::FRT$	This study
703	MvP1980	$\Delta sseF::FRT$	(Vorwerk et al., 2015)

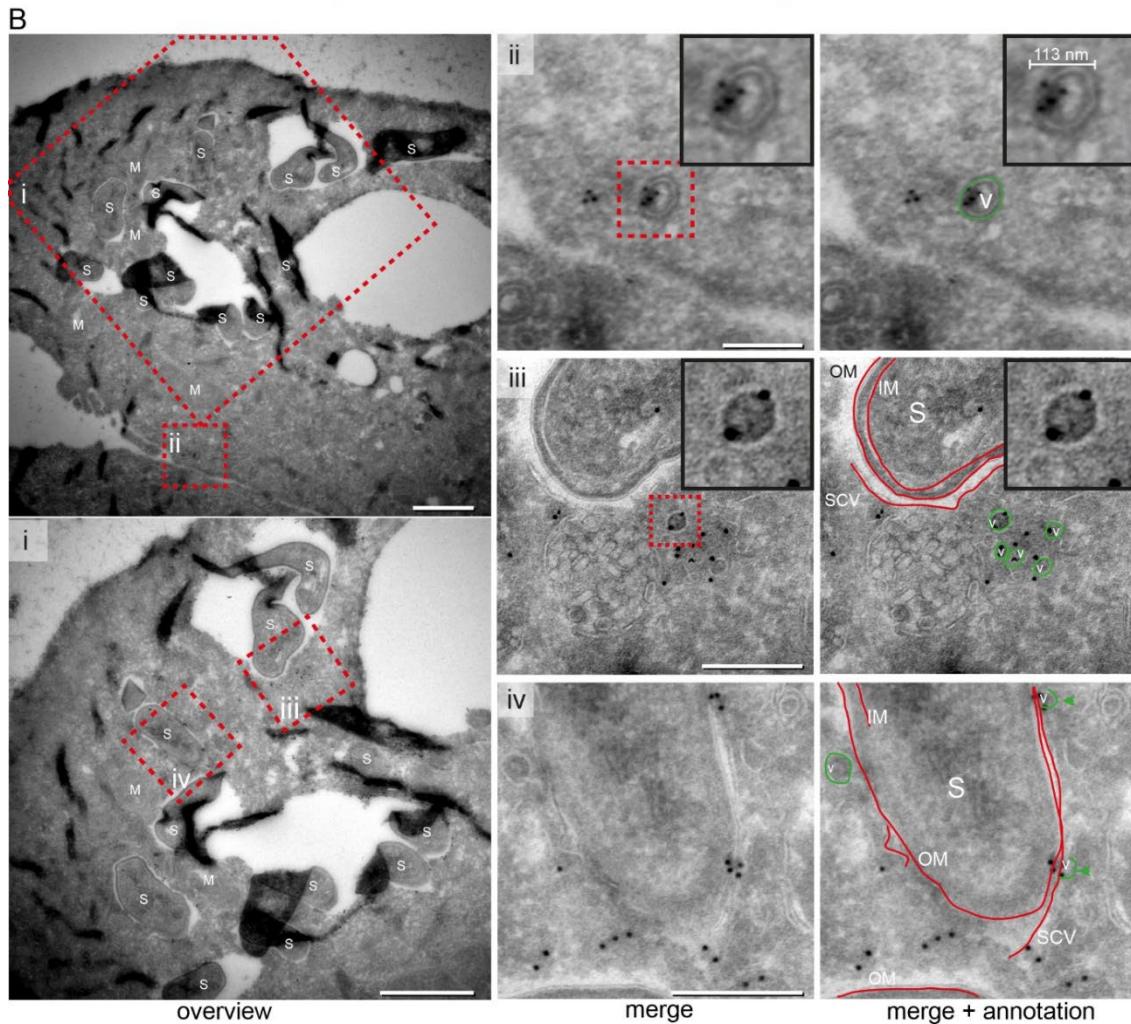
704

705 Table 2. **Plasmids used in this study**


706	<u>Designation</u>	<u>Relevant genotype</u>	<u>Source/Reference</u>
707	p2095	$P_{sseA::sscB} sseF::M45$	(Kuhle et al., 2004)
708	p2129	$P_{sseJ} sseJ::M45$	(Hansen-Wester et al., 2002)
709	p2621	$P_{pipB2} pipB2::M45$	(Knodler et al., 2003)
710	p2643	$P_{sseA::sscB} sseF::HA$	(Kuhle et al., 2004)
711	p3991	LAMP1::HaloTag::GFP	(Liss et al., 2017)
712	p4305	$P_{sifA} sifA::L16::HaloTag::HA$	(Göser et al., 2019)
713	p4118	$P_{sseA} sscB sseF::L16::HaloTag::HA$	(Göser et al., 2019)
714	p4286	$P_{sseJ} sseJ::L16::HaloTag::HA$	(Göser et al., 2019)

Effector targeting and dynamics

715	p4295	$P_{pipB2} pipB2::L16::\text{HaloTag}::\text{HA}$	(Göser et al., 2019)
716	p5059	$P_{steC} steC::L16::\text{HaloTag}::\text{HA}$	This study
717	p5065	$P_{sseA}::sscB sseF::3\text{HA}$	This study


718

719 **Figures and figure legends**

721 **Fig. 1. Interactions of host cell endosomal membranes in STM-infected cells.** HeLa cells stably
722 expressing LAMP1-GFP (green) were infected with STM WT expressing mCherry (red) and
723 CLSM was performed (**A, C**) to identify SIF-positive cells showing dynamic extension of SIF
724 networks. Cells were fixed 7 h p.i., coordinates registered and samples were processed for TEM
725 (**B**). Correlation of CLSM and TEM modalities allowed identification of STM in SCV and
726 extending SIF tubules (**D**). Regions of interest are indicated by boxes and details show a double-
727 membrane (dm) SIF tubule distal to SCV (blue, **E**), and in connection with the SCV (**F, G**). The
728 white box in panel **H** indicates an event of vesicle interaction with a dm SIF, and details are shown
729 in higher magnification (**I, J**). Arrowheads indicate interactions with double membrane
730 compartments, while single-membrane tubules are indicated by arrows. Scale bars: 10 μ m, 5 μ m
731 (**B, C**), 3 μ m (**H**), 500 nm (**E, F, I**), 300 nm (**G**), 200 nm (**J**).
732

Effector targeting and dynamics

734 **Fig. 2. Kinetics of distribution of SPI2-T3SS effector proteins and vesicular localization of**

735 **translocated SseF. A)** Distribution of translocated effector proteins over the course of infection.

736 HeLa cells stably expressing LAMP1-GFP (HeLa LAMP1-GFP) were infected with STM WT

737 expressing *pipB2::M45*. At various time points after infection, cells were fixed and immunolabeled

738 for STM (blue) and effector proteins (red). Details of SCV and SIF are shown. Scale bars: 10 and

739 2 μ m in overview and details, respectively. **B)** Vesicular localization of translocated SseF revealed

740 by immunogold EM. HeLa LAMP1-GFP cells were infected with STM WT expressing

741 *sseF::3xHA* and fixed 8 h p.i. The samples were processed for immunogold labeling for HA-tagged

742 SseF. (Details of overviews (B and i) of SseF immunogold-labeled sections are shown in ii-iv. **ii)**

743 A subset of triple HA-tagged SseF immunogold labeling is associated with the outer and inner side

744 of spherical vesicular membranes. See also color highlighted vesicle structure in green on the left.

745 Inserts strongly clarify localization of immunogold label inside the vesicle and on the vesicular

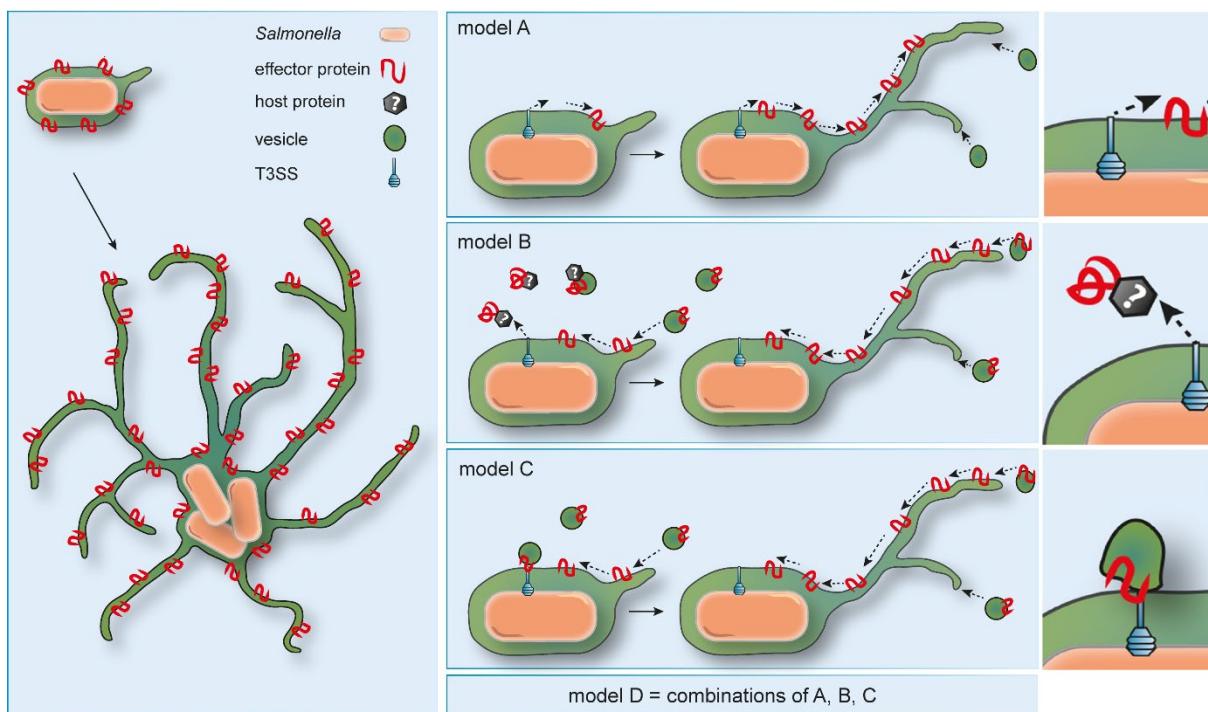
746 membrane. **iii)** Triple HA-tagged SseF immunogold labeling is also found on endomembranes

747 mostly in close proximity to vesicles. Color marking in green for vesicles and red for SCV, inner

748 (IM) and outer (OM) bacterial membrane is highlighting the distribution of gold labeling on

749 membrane structures. Inserts strongly clarify localization of immunogold label on the vesicular

750 membrane. **iv)** The majority of triple HA-tagged SseF immunogold labeling is distributed on

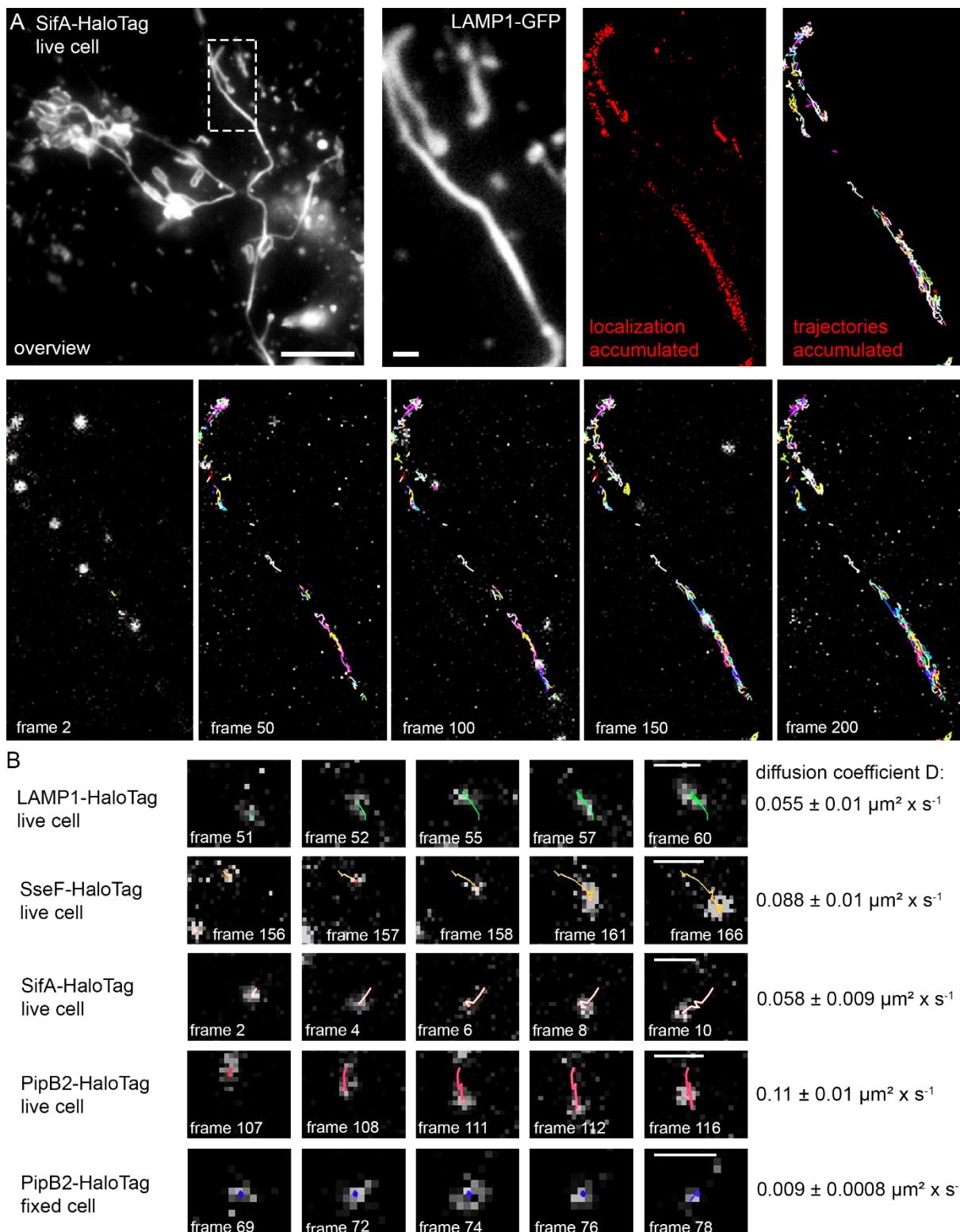

751 endomembranes, specifically on membranes closely associated with the SCV and directly on the

752 SCV. See also color marking in red indicating for SCV membrane, IM and OM. Scale bars: 1 μ m

753 in overviews (B, i); 250 nm in ii, iii, and iv.

754

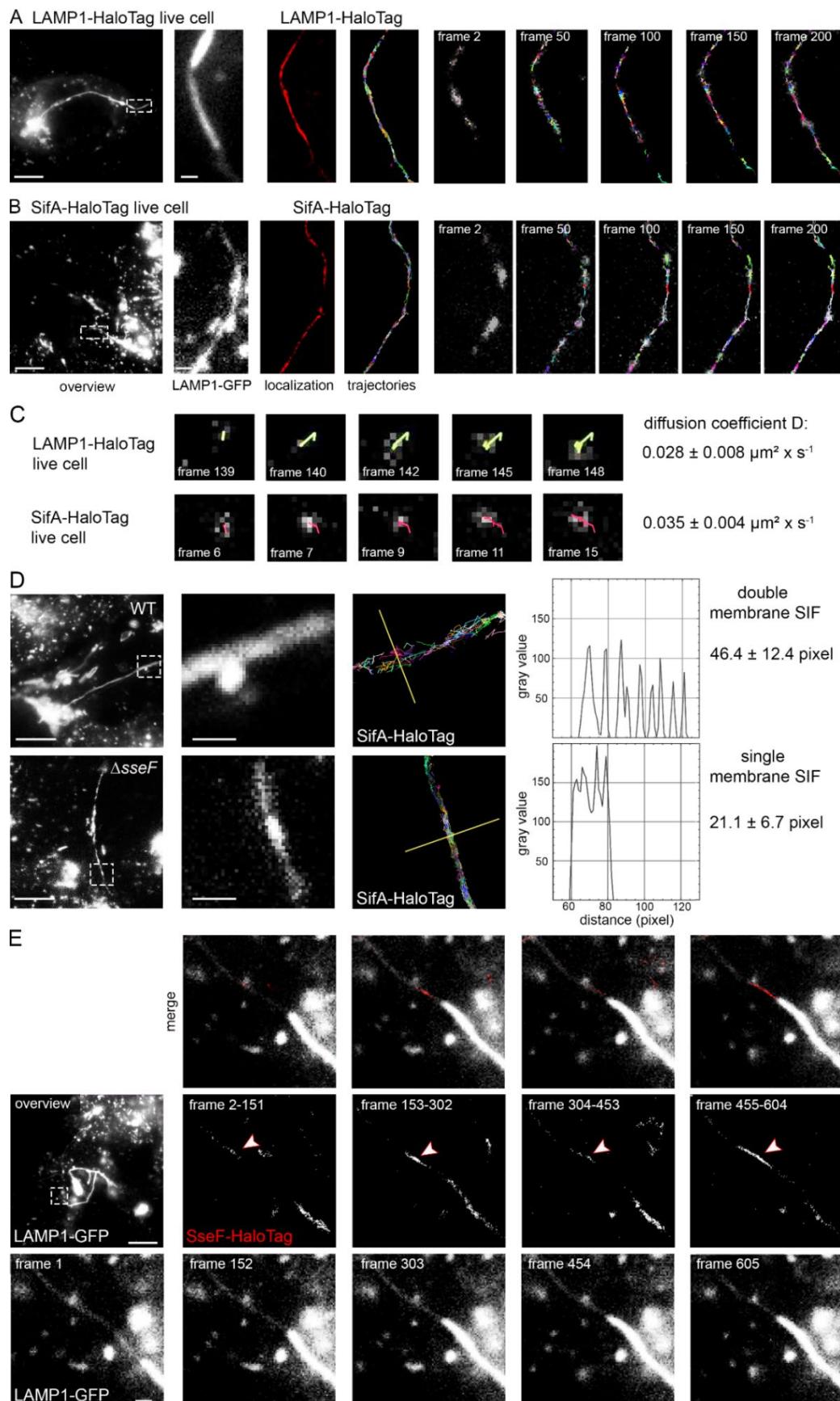
Effector targeting and dynamics



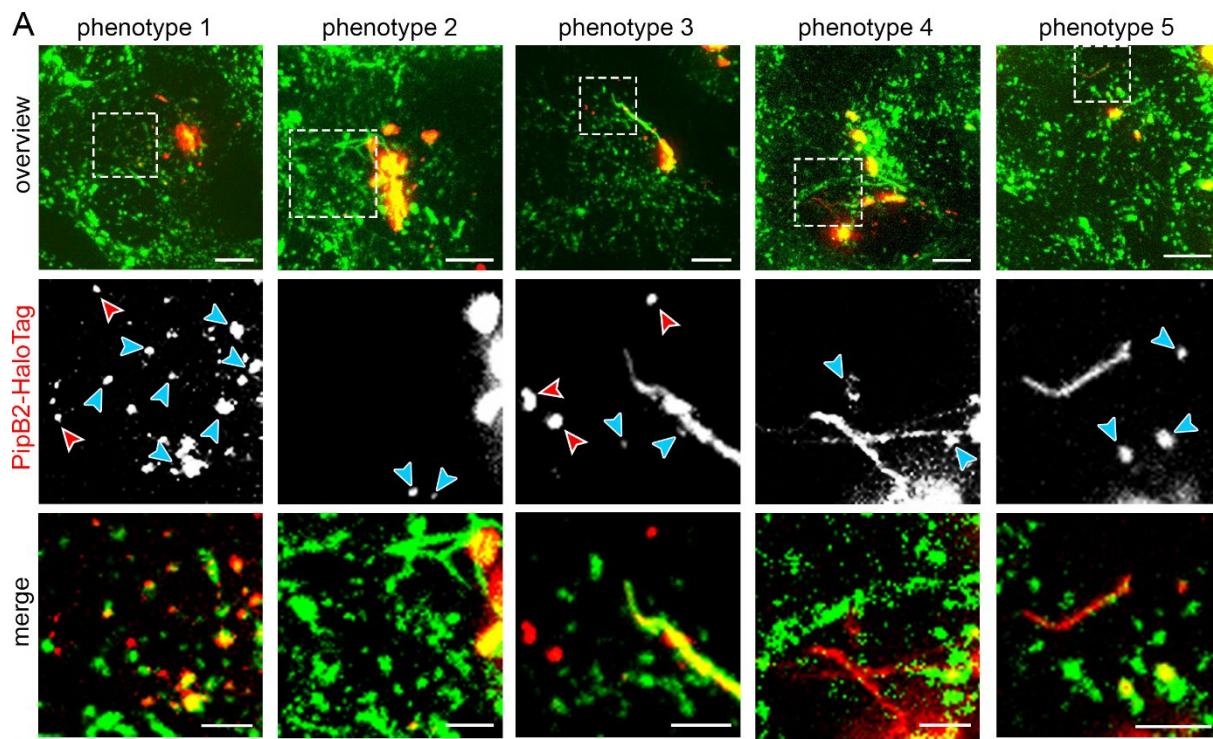
755

756 **Fig. 3. Models for targeting of SPI2-T3SS effector proteins to host cell endosomal**
757 **membranes.** Model A: Effector proteins are directly inserted into the SCV membrane after
758 translocation and diffuse from the SCV to the periphery of SIF. Model B: Effector proteins are
759 translocated into the cytosol, chaperoned and inserted into endomembranes by unknown host
760 factors. Effector proteins are delivered by fusion of host endocytic vesicles with SIF and SCV.
761 Model C: Endomembranes are recruited to SCV and T3SS where effector proteins are directly
762 delivered and inserted into endomembranes. After fusion of endocytic vesicles effector proteins
763 are delivered. Combinations of models A, B, and C may be considered.

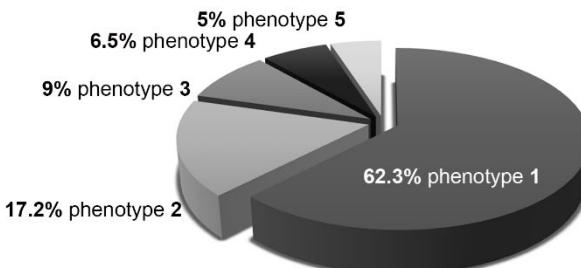
764


Effector targeting and dynamics

766 **Fig. 4. Single molecule localization and tracking of STM SPI2-T3SS effector proteins on**
767 **double-membrane SIF.** HeLa cells stably expressing LAMP1-GFP were infected with STM *sifA*
768 mutant strain expressing SifA-HaloTag with a multiplicity of infection (MOI) of 75. Following
769 incubation for 7 h under standard cell culture conditions, LCI was performed. Labeling reactions
770 were performed directly before imaging, using HTL-TMR with a final concentration of 20 nM for
771 15 min at 37 °C. **A)** Shown are representative SRM images acquired using 15% laser power at the
772 focal plane, rendered from single molecule localizations (SML) and tracking (SMT) within 200
773 consecutive frames. Selected frames (frame rate: 32 frames per s) of the TMR signal, localization
774 and tracking are presented (also showing elapsed trajectories). **B)** Selected frames of trajectories
775 from a single molecule. Using at least 2,800 pooled trajectories for proteins in at least 20 infected
776 cells in three biological replicates recorded under the same conditions, the diffusion coefficient D
777 was calculated using the Jaqaman algorithm. The indicated error represents the calculated error of
778 the resulting slope (with 95% confidence bounds). Scale bars: 10 and 1 μ m in overviews and
779 details, respectively. A sequence of 200 frames for SifA-HaloTag is shown in **Movie 2**.

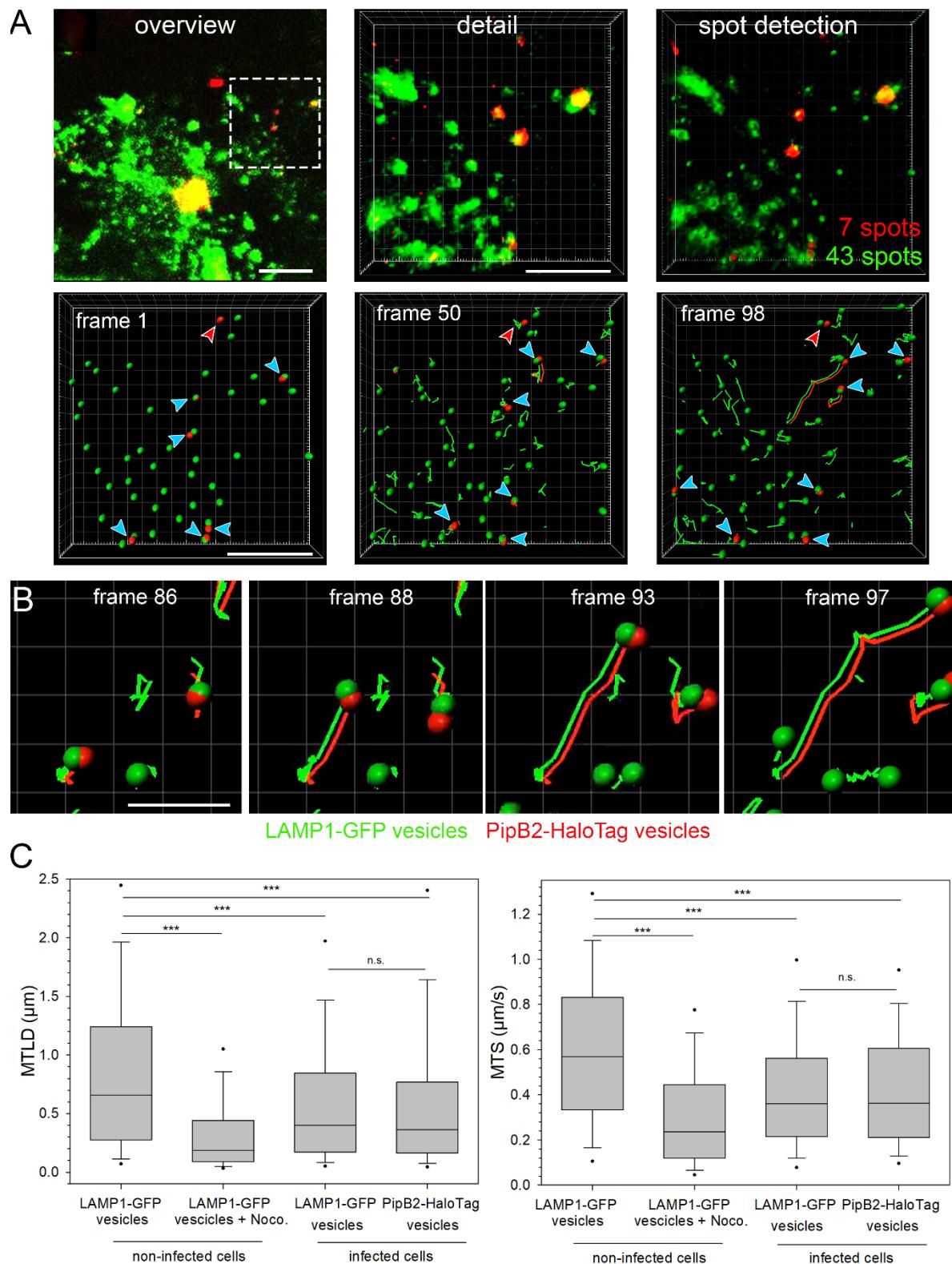

780

Effector targeting and dynamics


782 **Fig. 5. Single molecule localization and tracking of STM SPI2-T3SS effector proteins on**
783 **single-membrane SIF.** HeLa cells stably expressing LAMP1-GFP were infected with STM *sseF*,
784 *sifA* mutant strains expressing *sifA*::HaloTag::HA and labeled with HTL-TMR as described above.
785 For visualization of LAMP1-HaloTag, the cells were transfected with LAMP1::HaloTag::HA one
786 day before infection, and infected with STM *sseF* mutant strain. **A, B)** Representative SRM images
787 acquired using 15% laser power at the focal plane, rendered from single molecule localization and
788 tracking within 200 consecutive frames (frame rate: 32 frames per second) of the
789 TMR signal, localization and tracking are presented, (also showing elapsed trajectories). The
790 sequences of 200 frames of SifA-HaloTag and LAMP1-HaloTag are shown in **Movie 7** and **Movie**
791 **8.** **C)** Selected frames of trajectories from a single molecule. Using at least 2,800 pooled trajectories
792 for proteins in at least 20 infected cells in three biological replicates recorded under the same
793 conditions, the diffusion coefficient D was calculated applying the Jaqaman algorithm. The
794 indicated error is the calculated error of the resulting slope (with 95% confidence bounds). **D)**
795 Intensity profile analysis of SifA-HaloTag trajectories on sm and dm SIF. The intensity profiles of
796 trajectories tracked on SIF were analyzed using the Fiji plot profile tool. SIF from various infected
797 cells were processed and resulting pixel range of the profile was determined. **E)** HeLa cells stably
798 expressing LAMP1-GFP were infected with STM *sseF* mutant strain expressing
799 *sseF*::HaloTag::HA and labeled with HTL-TMR as described above. The transition of leading to
800 trailing SIF was imaged with 488 nm laser excitation for 1 frame (frame rate: 32 frames per second)
801 following 561 nm laser excitation for 150 frames in 4 cycles. Shown are representative SRM
802 images acquired using 15% laser power at the focal plane, rendered from SML within each of the
803 150 consecutive frames. High local concentration of effector protein on leading SIF is indicated by
804 arrowheads. The sequences of 5 frames of LAMP1-GFP are shown in. Scale bars: 10 and 1 μ m in
805 overviews and details, respectively.

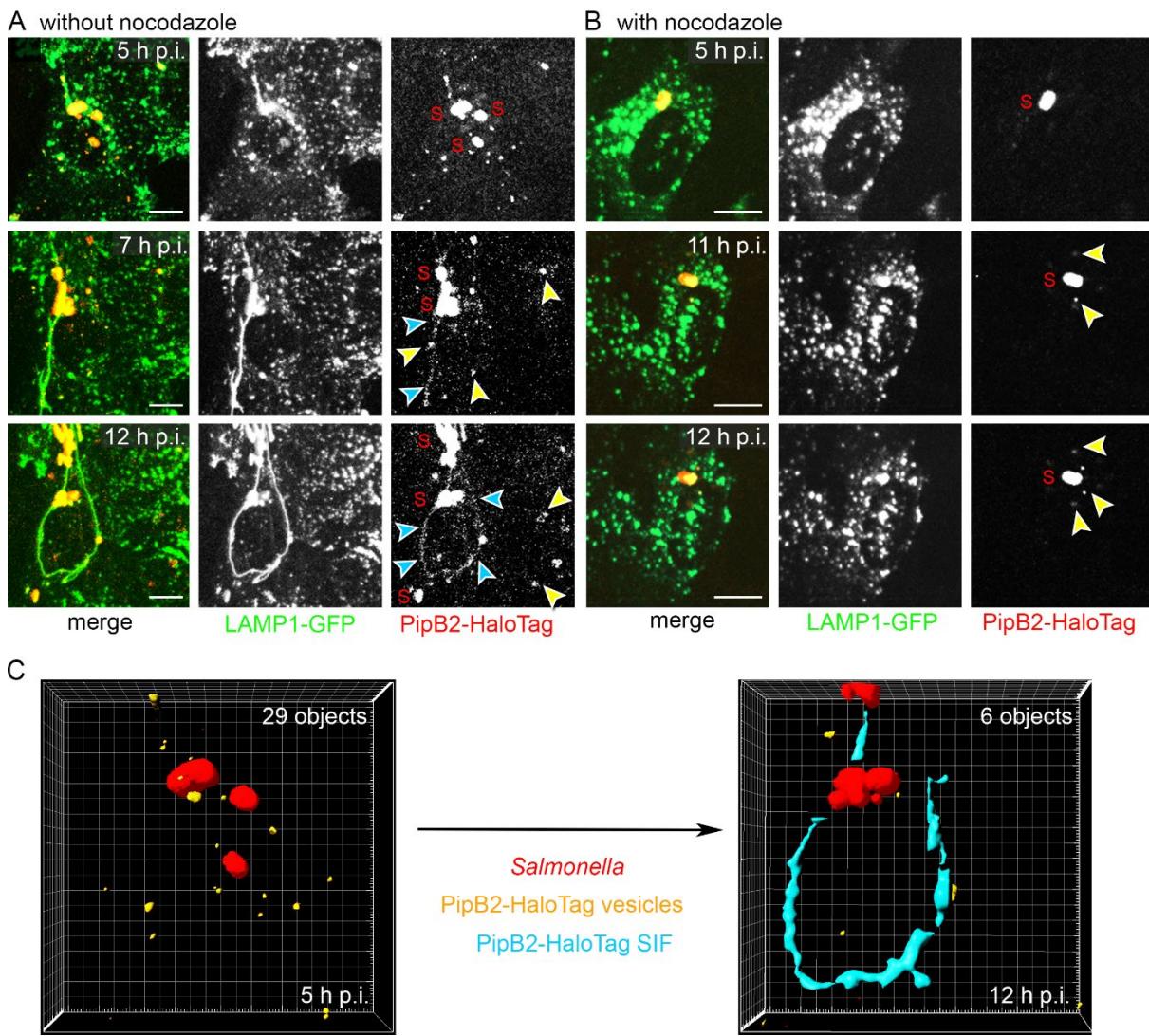
Effector targeting and dynamics

B


Phenotype	SIT	Vesicles
1	No	PipB2-HaloTag-positive
2	LAMP1-positive, PipB2-positive	PipB2-HaloTag-positive
3	PipB2-positive with no connection to SCV	PipB2-HaloTag-positive
4	LAMP1-positive, PipB2-negative	PipB2-HaloTag-positive
5	LAMP1-negative, PipB2-positive	PipB2-HaloTag-positive

806

Fig. 6. Distribution of PipB2-HaloTag in the early phase of infection. HeLa LAMP1-GFP cells were infected with STM *pipB2* mutant strain expressing *pipB2*::HaloTag::HA. **A)** LCI was performed directly after cells were stained with 1 μ M HTL-TMR at 3.5 h p.i. for 30 min. For at least 100 infected cells with PipB2-HaloTag-positive vesicles, the phenotypes of PipB2-HaloTag localization on vesicles and SIT were determined. Blue arrowheads indicate vesicles double-positive for LAMP1-GFP and HTL-TMR-labeled PipB2-HaloTag. Red arrowheads indicate vesicles negative for LAMP1-GFP and positive for PipB2-HaloTag. Scale bars: 10 and 2 μ m in overviews and details, respectively. **B)** Quantification of distinct PipB2-HaloTag distributions in infected HeLa LAMP1-GFP cells.


Effector targeting and dynamics

817 **Fig. 7. Tracking of vesicles positive for LAMP1-GFP and PipB2-HaloTag.** HeLa LAMP1-GFP
818 cells were either not treated, treated with nocodazole to inhibit vesicle movement, or infected with
819 STM Δ *pipB2* strain expressing *pipB2*::HaloTag::HA. **A)** An infected HeLa LAMP1-GFP cell with
820 LAMP1-GFP (green) and PipB2-HaloTag-TMR (red) was imaged for 200 frames (0.39
821 frames/sec) by SDM in dual camera streaming mode. Vesicle tracking analysis was done with the
822 Imaris spot detection tool and co-motion analysis is shown at different time points (**Movie 12**).
823 Blue arrowheads indicate vesicles positive for LAMP1-GFP and effector protein fused to HaloTag
824 and labeled with TMR. Red arrowheads indicate vesicles negative for LAMP1-GFP and positive
825 for effector protein. **B)** Trajectories of single vesicles labeled with LAMP-GFP and PipB2-
826 HaloTag. Scale bars: 10 and 5 μ m in overviews and details, respectively in **A**, 2 μ m in **B**. **C)**
827 Quantification of at least 858 trajectories from five individual cells per condition. Box plot analysis
828 of mean track displacement length (MTDL) and mean track speed (MTS) of vesicles under various
829 conditions. Statistical analyses were performed by Rank Sum test and significances are indicated
830 as follows: n.s., not significant, ***, $p < 0.001$.

831

Effector targeting and dynamics

832 **Fig. 8. Conversion of vesicular to tubular distribution of translocated effector proteins.** HeLa
833 LAMP1-GFP cells were infected with STM Δ *pipB2* strain expressing *pipB2*::HaloTag::HA. Cells
834 were either not treated (**A**), or treated with nocodazole ($5 \mu\text{g} \times \text{ml}^{-1}$) 2 h p.i. (**B**). The inhibitor was
835 removed after HaloTag staining and cells were washed twice. LCI was performed using SDM
836 directly after cells were stained with $1 \mu\text{M}$ HTL-TMR for 30 min. The cells were imaged over a
837 period of 8 h every 30 min (**Movie 15**, **Movie 16**). Representative STM are labelled (S), and PipB2-
838 HaloTag-positive vesicles or SIF are indicated by yellow or blue arrowheads, respectively. Scale
839 bars: $5 \mu\text{m}$. **C**) The Imaris surface analysis tool was used to determine in an infected cell at 5 h and

Effector targeting and dynamics

841 12 h p.i. the amounts of either vesicles (orange), or SIF tubular structures (blue) positive for PipB2-
842 HaloTag.

843 **Suppl. Materials and Methods**

844 *Western blot analysis*

845 STM strains were cultured overnight (o/n) in PCN, 1 mM Pi, pH 7.4 medium, diluted 1:31 in fresh
846 PCN, 0.4 mM Pi, pH 5.8 medium and subcultured for 6 h. Subsequently, the optical density at 600
847 nm (OD₆₀₀) was measured and 300 µl of bacterial suspension was transferred to a 1.5 ml tube.
848 Bacteria were pelleted by centrifugation (22,000 x g, 2 min, 4 °C), resuspended in 1 x SDS sample
849 buffer adjusted to 1 unit of OD₆₀₀ per 100 µl and lysed by incubation at 100 °C for 5 min. Samples
850 of 10 µl were subjected SDS-PAGE at 150 V for 75 min. Semi-dry blotting onto 0.45 µm
851 nitrocellulose membranes was performed at 10 V constant for 45 min. Blocking of membranes was
852 performed with 5% milk powder in TBS/T (0.1% Tween 20 in TBS) for 60 min at RT.
853 Subsequently, primary antibody against HA tag was incubated (1:10,000 in TBS/T) for 1 h at RT,
854 followed by incubation of secondary HRP-coupled antibody (1:10,000 in TBS/T) for 1 h at RT.
855 Antibodies used in this study are listed in Table S 2. Between incubation with antibodies,
856 membranes were washed thrice with TBS/T for at least 10 min each. Signals were recording using
857 the ChemiDoc system from BioRad and its corresponding software ImageLab.

858 *Cryo sample preparation for Tokuyasu immunogold labeling and TEM*

859 Two days prior to infection HeLa LAMP1-GFP cells (1.5 x 10⁶) were seeded into a 60.1 cm² Petri
860 dish. cells were pre-fixed at 8 h p.i. for 10 min. with pre-warmed double-concentrated fixative (4%
861 (w/v) PFA, 0.2% (v/v) GA) in 0.1 M PHEM buffer which was added to the culture dish 1:1 mixed
862 with the culture medium. Subsequently, fixative was replaced by fresh fixative (2% (w/v) PFA,
863 0.1% (v/v) GA) and cells were fixed for 2 h at RT and stored o/n in 1% formaldehyde (w/v). Next,
864 cells were washed twice with 0.1% glycine in 0.1 M PHEM, several times with 0.1 M PHEM
865 buffer, scraped in PHEM containing 1% (w/v) gelatin from the culture plates and were pelleted by

Effector targeting and dynamics

866 centrifugation (300 x g, 3 min). The cell pellet was infiltrated at 37 °C stepwise in 2% (w/v), 5%
867 (v/w) and finally in 10% (w/v) gelatin in 0.1 M PHEM buffer. After gelation at 4 °C, 1 mm³ cubes
868 were dissected and infiltrated in 2.3 M sucrose o/n at 4 °C in rotating vials. Gelatin cubes were
869 mounted on specific aluminum specimen holders and plunge-frozen in liquid nitrogen. Specimen
870 holders were placed into the cryo-chamber of a cryo-ultramicrotome UC7 (Leica Microsystems,
871 Wetzlar), precooled to -110 °C and trimmed to suitable block size. Ultrathin sections of 60 nm
872 were cut at -110 °C with a dry cryo-immuno diamond knife (Diatome, Switzerland). Ribbons of
873 sections were picked up with a wire loop filled with a 1+1 mixture of 1% (w/v) methyl cellulose
874 and 2.3 M sucrose in PHEM buffer. Sections were thawed on the pick-up solution and transferred
875 downwards to Formvar carbon-coated 100-mesh copper grids.
876 For immunolabeling sections were placed 30 min on 37 °C warm water to diffuse pick-up solution
877 and gelatin. Subsequently, grids were rinsed over a series of droplets: washed in 0.1% glycine in
878 PBS, blocked 3 min in 1% BSA in PBS, incubated 60 min. in primary antibody diluted in 1% BSA,
879 0.2% fish skin gelatin in PBS, washed in 0.1% BSA in PBS, incubated 30 min in bridging antibody,
880 diluted in 1% BSA, 0.2% fish skin gelatin in PBS, washed in 0.1% BSA in PBS, incubated 20
881 min in 10 nm protein A-gold diluted in 1% BSA in PBS, washed in PBS, fixed 5 min in 1% (v/v)
882 glutaraldehyde in PBS and washed in distilled water. Sections were stained 5 min on drops of 2%
883 uranyl oxalate (pH 7.0), shortly rinsed in distilled water and incubated 10 min on drops of a mixture
884 of 1.8% (v/w) methyl cellulose/0.4% uranyl acetate (pH 4.0) on ice. Finally, grids were looped out,
885 most of the viscous staining solution drained away and sections dried in the residual thin film which
886 covers the grid.
887 The sections were analyzed using a JEM 2100Plus at 200 keV (JEOL, Japan) and a Zeiss TEM 902
888 at 80 keV. Labeling were controlled and imaged at same regions on three following sections on
889 each grid.

890 **Suppl. Tables**

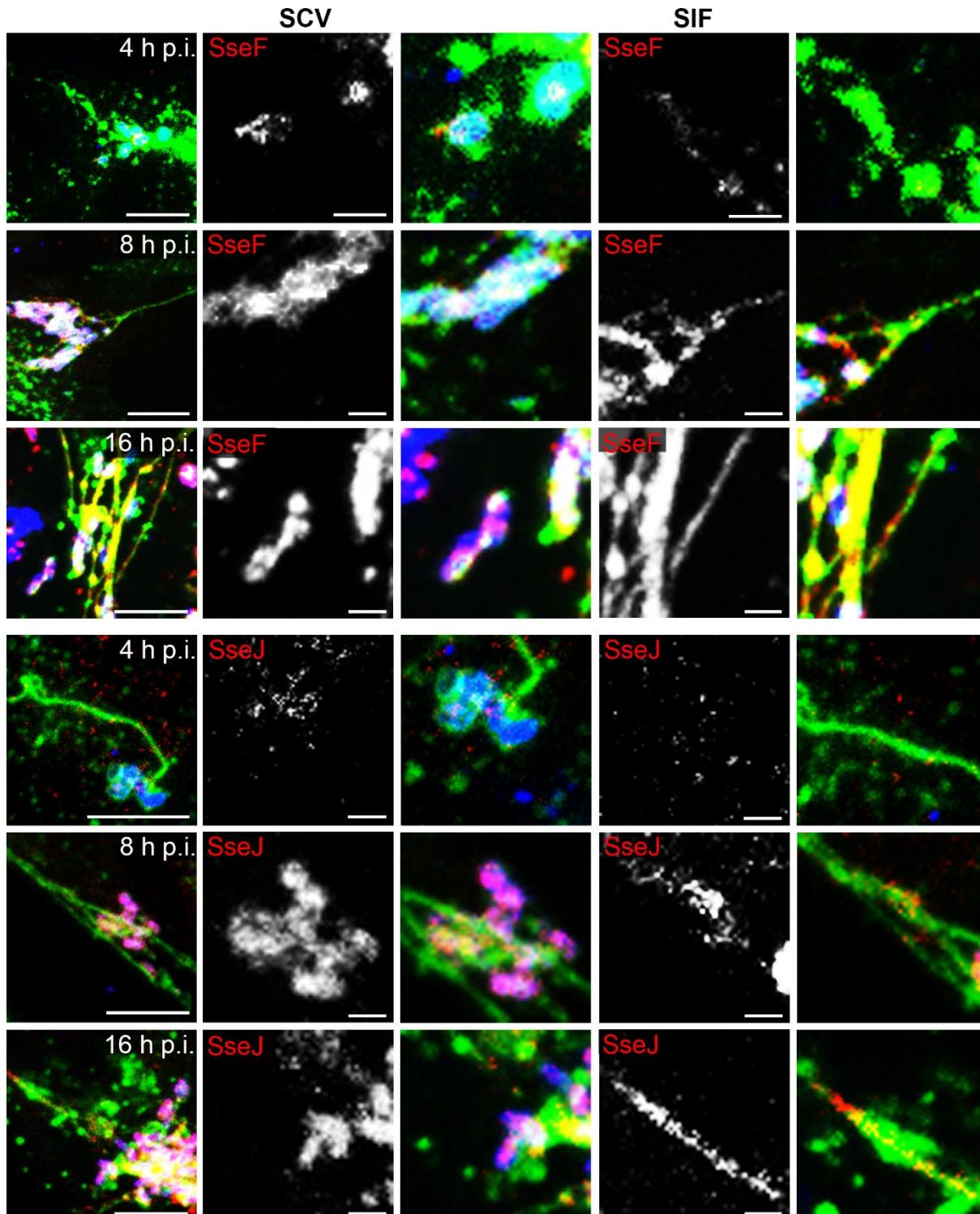
891 Table S 1. Oligonucleotides and synthetic DNA used in this study.

892	<u>Designation</u>	<u>Sequence (5'-3')</u>
893	Vf-HA	TACCCATACGACGTCCCAGA
894	Vr-pWSK29-2	GGTACCCAATTGCCCTATAGTGAGTCGTATTAC
895	1f pWSK29-PstE C	TATAGGGCGAATTGGGTACCGGATAGCAAGTACGATAGCG
896	1r-HaloTag-HA	TGGGACGTCGTATGGGTACCGGAAATCTCCAGAGTAGACAGC
897	Vf-SseF-3HA	CGCGCTTGGCGTAATCATGG
898	Vr-SseF3HA	CTTGCCGCTGACGGAATATG
899	SseF253-For	AGTTCTGATCATACATCTGGGA
900	Seq-Rev	AGCGGATAACAATTACACACAGGA
901		
902	sseF-3xHA	
903		ATAACAGAACGAAATATGAAAATTCAATTCCGTCAGCGGCAAGTAATATAGTCGAT
904		GGTAATAGTCCTCCTCCGATATACAAGCGAAGGAGGTATCGTTCTCCCCCTGAA
905		ATTCCAGCGCTGGCACCCCCGCAGCCCTGTGCTGCTTACGCCTGAACAAATAAGG
906		CAGCAGAGGGATTATGCGATACATTATGCAATACACTATTCTGCGCTGGTGCG
907		ACAGTCGTGTTGGTTATCGGTTGCTGCAGCGTAATTCTGGCGGGCAGGATTA
908		CCCATTGCTATTCTGCGGGGGCGCGCTCGTATTGCTATTGGGATGCTGCTGTG
909		CGTATCATAATTCAATCGATATGTCAGCAAAAGGAGCCATTACAAACGCCAGTG
910		ATAGCGTTGCTCTGTGGTCAGTGCCTGGCCTAAAATGTGGGCAAGTCTTAAC
911		GCGCTAACACCCTTGCTAATTGTCTTCTTATTAATACGTTAGGAATCGCTATTCT
912		ATGTTGGTTTACCCCTACAGTTCCACTGCCCGGGCTGAAAATATTGGCCTCTT

Effector targeting and dynamics

913 TGGACATGGGGAGTGTAATTACCTCCGTTAGCCTGACGGCGATAGGTGCGGTACTGG
914 ATTATTGCCTTGCCGCCCTCTGGCGACGATCAGGAAAATTCTGTTGATGAACTTCA
915 TGCCGATCCCAGTGTGTTATTGGCGGAACAAATGGCAGCGCTCTGTCAATCTGCTAC
916 TACACCTGCATTAATGGACAGTTCTGATCATACTACATCTCGGGGAGAACCATACCCATA
917 CGACGTCCCAGACTACGCTGGCTATCCCTATGACGTCCCGACTATGCAGGATCCTA
918 TCCATATGACGTTCCAGATTACGCTTAATCTAGAGCGGCCACCGCGGTGGAGCT
919 CCAGCTTTGTTCCCTTAGTGAGGGTTAATTGCGCGCTGGCGTAATCATGGTCATA
920 GCTGTTCCCTGTGTGAAAT
921

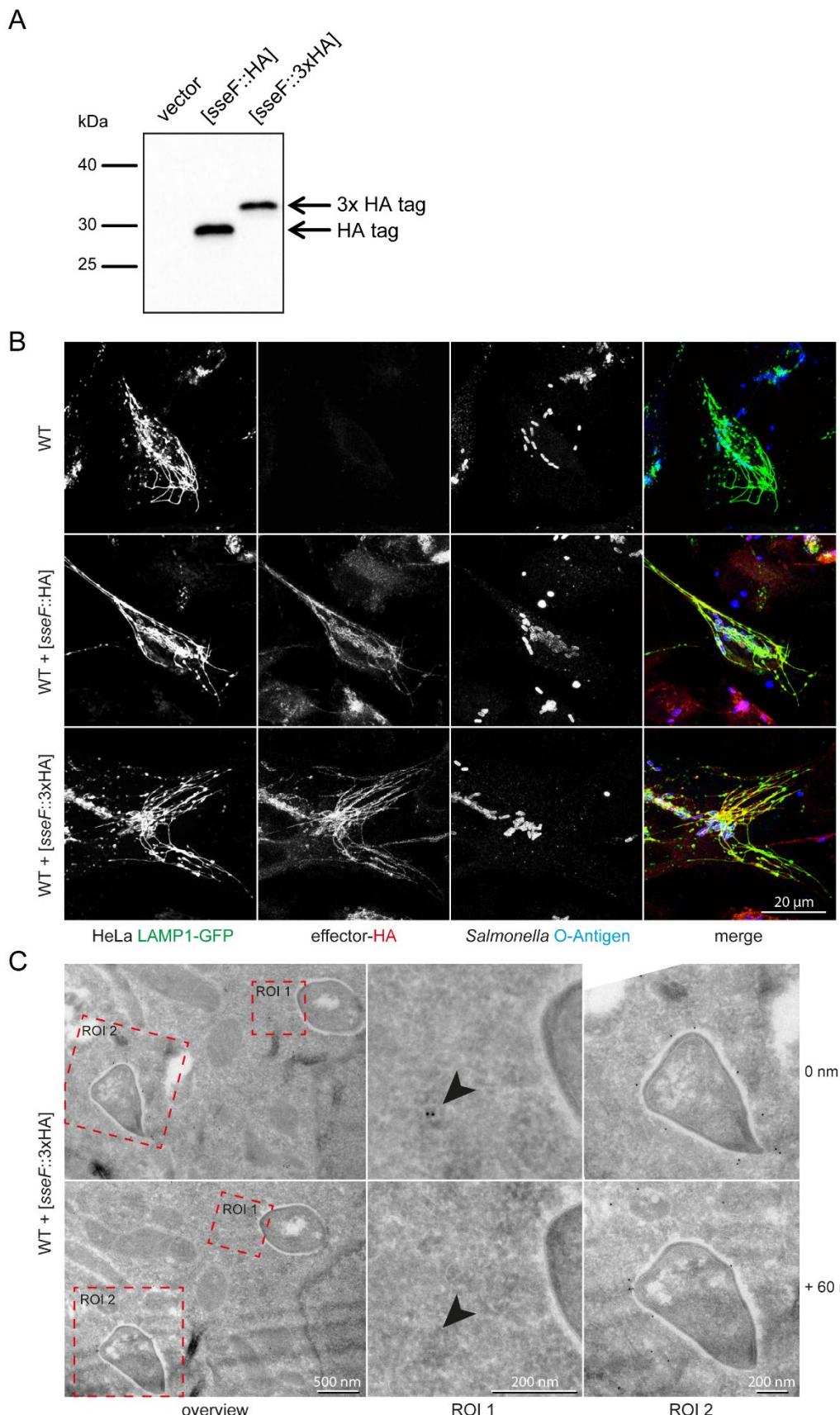
922 Table S 2. Antibodies and conjugates used in this study


923	<u>Antibody</u>	<u>Dilution</u>	<u>Source</u>	
924	<u>Primary antibodies</u>			
925	Mouse anti M45	1:50	(Obert et al., 1994)	
926	Rat anti HA c3 F10 IgG	1:10,000 for WB	Roche	
927		1:500 for LM		
928	Mouse anti HA c16B12 IgG	1:50 for EM	EuroGenTec	
929	Rabbit anti <i>Salmonella</i> O, group B factors 1, 4, 5, 12	1:500 for LM	BD Difco	
930	<u>Secondary antibodies</u>			
932	Alexa Fluor 568 goat anti mouse	1:1,000 for LM	Invitrogen	
933	Goat anti rat IgG HRP	1:10,000 for WB	Jackson ImmunoResearch	
934	Goat anti rabbit IgG Cy5	1:1,000 for LM	Jackson ImmunoResearch	
935	Alexa Fluor 568 goat anti rat IgG (H+L)	1:1,000 for LM	Life Technologies	

Effector targeting and dynamics

936 Conjugates

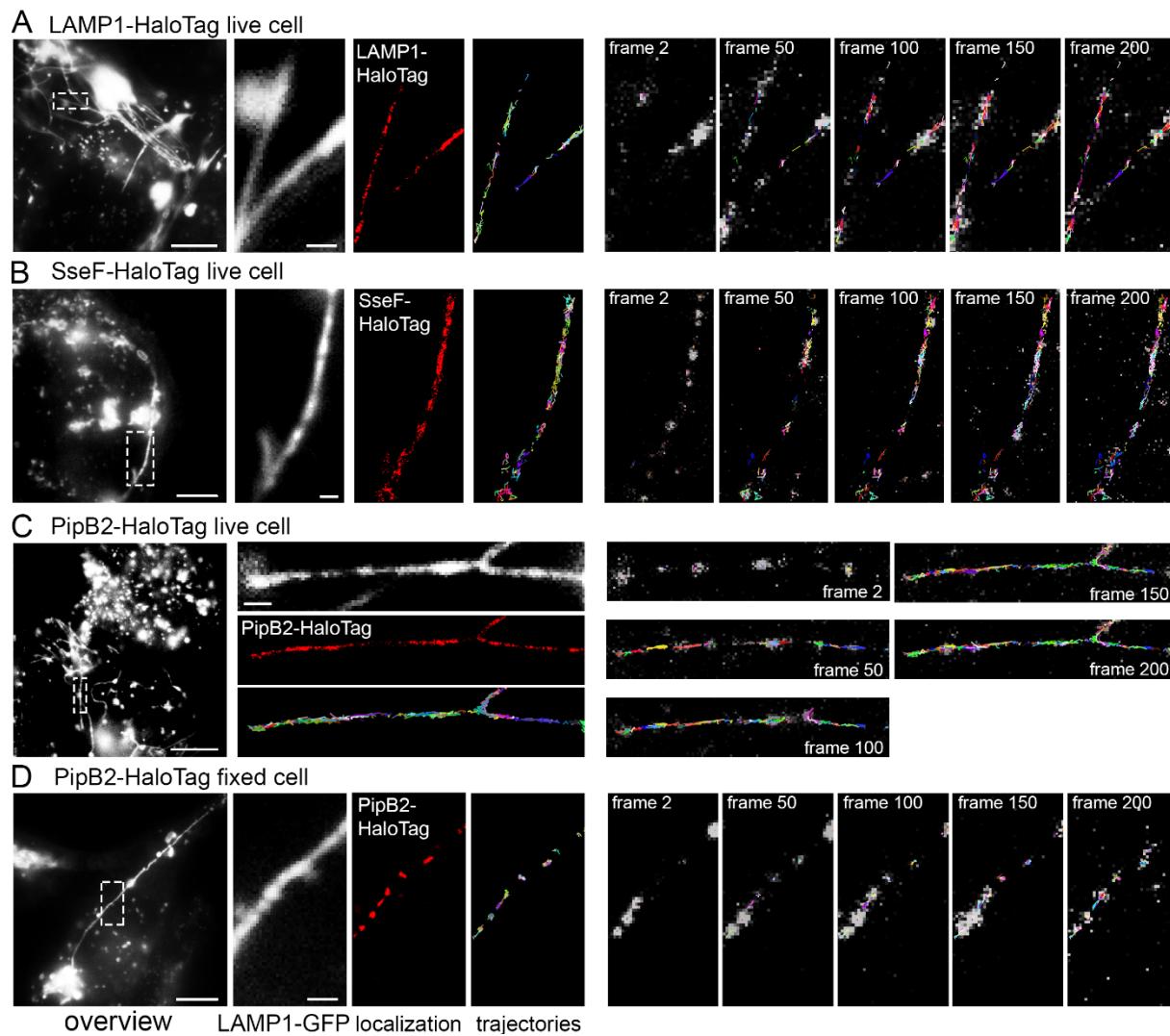
937 Protein A gold 10 nm 1:50 for EM Cell Microscopy Core,
938 University Medical Center,
939 Utrecht, NL
940


941 Suppl. Figure Legends

944 **Fig. S 1. Distribution of translocated *Salmonella* SPI2-T3SS effector proteins over the course**
945 **of infection.** HeLa cells stably expressing LAMP1-GFP (HeLa LAMP1-GFP) were infected with
946 STM WT expressing *sseF*::M45 or *sseJ*::M45 as indicated. At various time points after infection,
947 cells were fixed and immunolabeled for STM (blue) and effector proteins (red). Details of SCV
948 and SIF are shown. Scale bars: 10 and 2 μ m in overview and details, respectively.

949

Effector targeting and dynamics


951

952 **Fig. S 2. Analysis of synthesis and translocation of triple-HA-tagged effector protein SseF. A)**

953 Protein synthesis of triple-HA-tagged SseF after 6 h growth of subcultures in PCN (0.4) pH 5.8
954 medium. All plasmids were investigated in *Salmonella* wild-type background. Separation was
955 performed by SDS-PAGE, protein was transferred onto nitrocellulose membranes and epitope-
956 tagged proteins were detected using a primary antibody against HA tag and a secondary HRP-
957 coupled antibody. **B)** Translocation of triple-HA-tagged SseF into stably transfected HeLa
958 LAMP1-GFP cells. Host cells were infected, fixed 8 h p.i. and immune-stained against HA epitope
959 tag and O-antigen. Representative cells are shown. Scale bar: 20 μ m. **C)** Consecutive ultrathin
960 sections of immunogold-labeled infected HeLa cells with STM WT expressing triple-HA-tagged
961 SseF. Scale bars: 500 nm, 200 nm and 200 nm for overview, ROI 1 and ROI 2, respectively. Details
962 (inserts ROI 1 and 2 in overviews) of HA-tagged SseF immunogold labeling are shown on two
963 consecutive 60 nm thick sections. On first section (0 nm, ROI1) immunogold is located inside a
964 vesicle (s. arrowhead), clearly indicating for a vesicular structure also proven by the following
965 section (+60 nm, ROI 1) missing the immunogold labeling at identical region (s. arrowhead) which
966 proves for a non-tubular structure. HA-tagged SseF immunogold labeling shown in ROI 2 on first
967 (0 nm) and consecutive section (+60 nm) support our specific immunogold labeling for SseF.

968

Effector targeting and dynamics

969

970

971

972

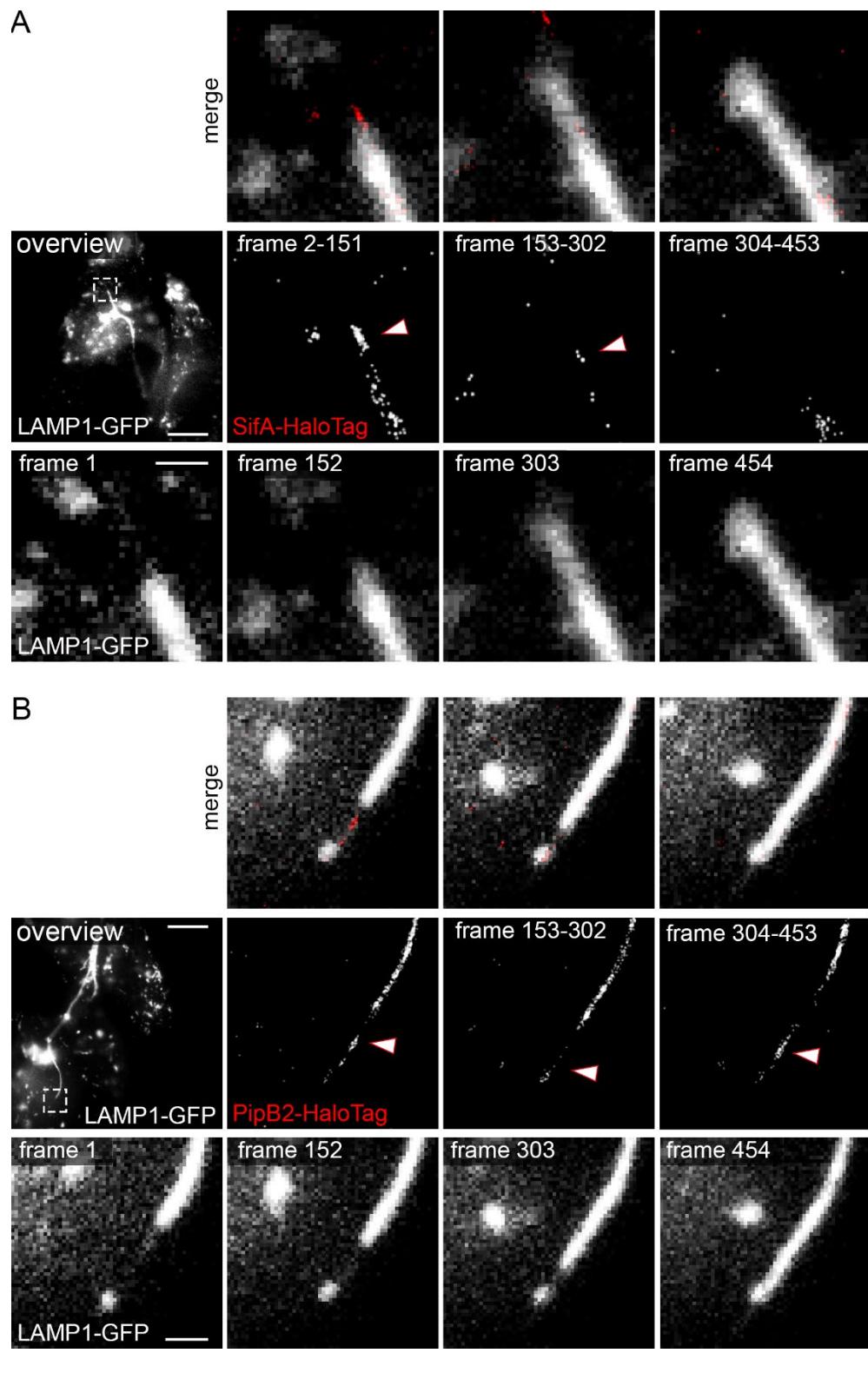
973

974

975

976

977

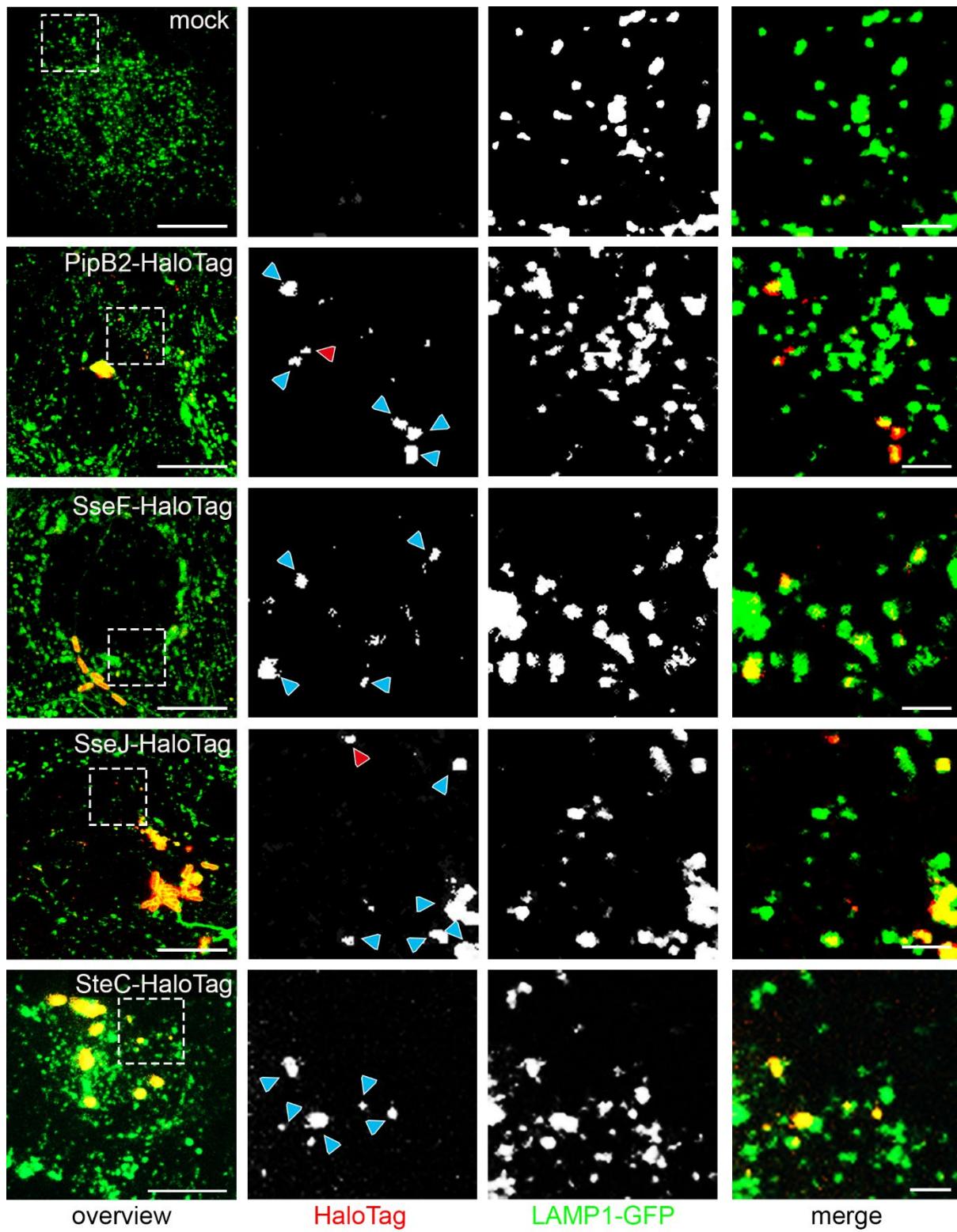

Fig. S 3. Single molecule localization (SML) and single molecule tracking (STM) of effector proteins on double-membrane SIF. HeLa LAMP1-GFP cells were infected with *Salmonella* WT or mutant strains expressing various SPI2-T3SS effector proteins fused to the HaloTag at a multiplicity of infection (MOI) of 75. For visualization of LAMP1-HaloTag, cells were transfected for expression of LAMP1::HaloTag::HA one day before infection. Following incubation for 7 h under standard cell culture conditions, live cell imaging (LCI) was performed. Labeling reactions were performed directly before imaging using HTL-TMR with a final concentration of 20 nM for 15 min at 37 °C. Representative SML images are shown for LAMP1-HaloTag (A), SseF-HaloTag

Effector targeting and dynamics

978 (B), PipB2-HaloTag (C) in living cells, and PipB2-HaloTag in fixed cells as control (D).
979 Microscopy was performed using 15% laser power at the focal plane, at 32 frames per second,
980 SML and SMT was rendered within 200 consecutive frames. Selected frames of the TMR signal,
981 localization and tracking are presented, also showing elapsed trajectories. Sequences of 200 frames
982 of effector proteins or LAMP1 fused to HaloTag are shown in **Movie 3**, **Movie 4**, **Movie 5**, and
983 **Movie 6**, corresponding to panels **A**, **B**, **C**, and **D**, respectively. Scale bars: 10 and 1 μ m in
984 overviews and details, respectively.

985

Effector targeting and dynamics

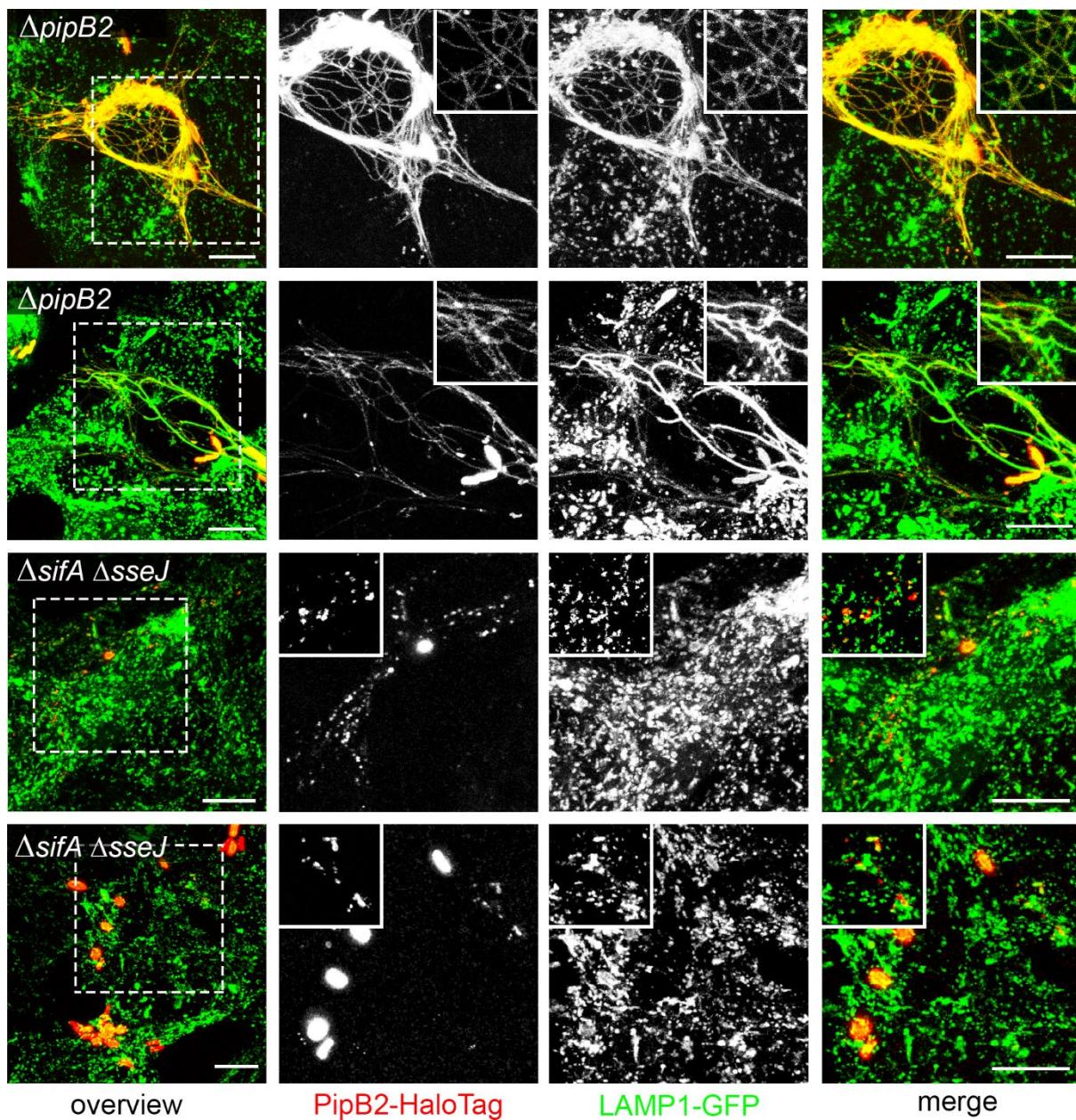

988 **Fig. S 4. SML of effector proteins on single-membrane leading SIF.** HeLa LAMP1-GFP cells
989 were infected with STM $\Delta sifA$ strain expressing $sifA$::HaloTag::HA (A), or STM $\Delta pipB2$ strain

Effector targeting and dynamics

990 expressing *pipB2::HaloTag::HA* (**B**), and labeled with HTL-TMR as described above. The
991 transition of leading to trailing SIF was imaged with 488 nm laser excitation for one frame (frame
992 rate: 32 frames per second) following 561 nm laser excitation for 150 frames in 4 cycles. Shown
993 are representative SRM images acquired using 15% laser power at the focal plane, rendered from
994 SML within each of the 150 consecutive frames. Scale bars: 10 and 1 μ m in overviews and details,
995 respectively. The sequences of 5 frames of LAMP1-GFP are shown in **Movie 10** (SifA-HaloTag)
996 and **Movie 11** (PipB2-HaloTag).

997

998


999
1000

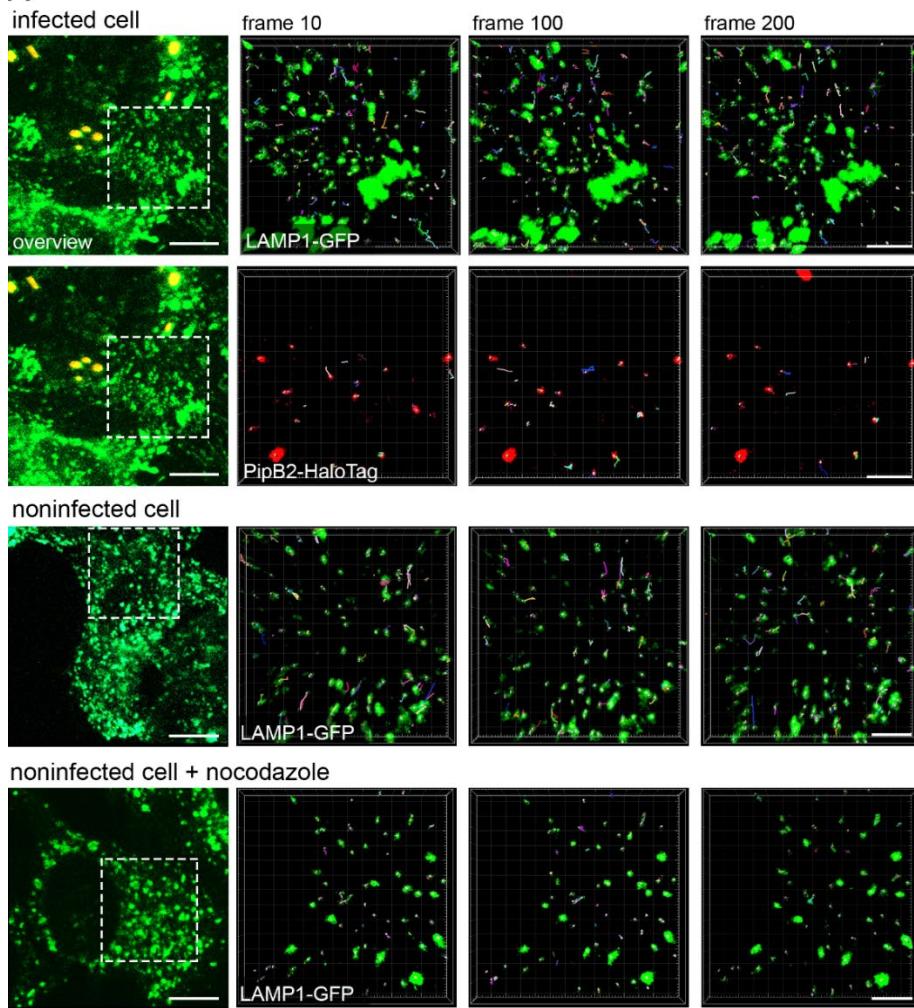
Effector targeting and dynamics

1001 **Fig. S 5. Effector protein-positive vesicles in infected HeLa LAMP1-GFP cells.** HeLa LAMP1-
1002 GFP cells were infected with STM mutant strains expressing *pipB2*::HaloTag::HA,
1003 *sseF*::HaloTag::HA, *sseJ*::HaloTag::HA, or *steC*::HaloTag::HA as indicated. LCI was performed
1004 directly after cells were stained at 3.5 h p.i. with 1 μ M HTL-TMR for 30 min. Shown are
1005 representative CLSM images. Blue arrowheads indicate vesicles positive for LAMP1-GFP and
1006 effector-HaloTag labeled with TMR. Red arrowheads indicate vesicles negative for LAMP1 and
1007 positive for effector-HaloTag labeled with TMR. Scale bars: 10 and 2 μ m in overview and details,
1008 respectively.

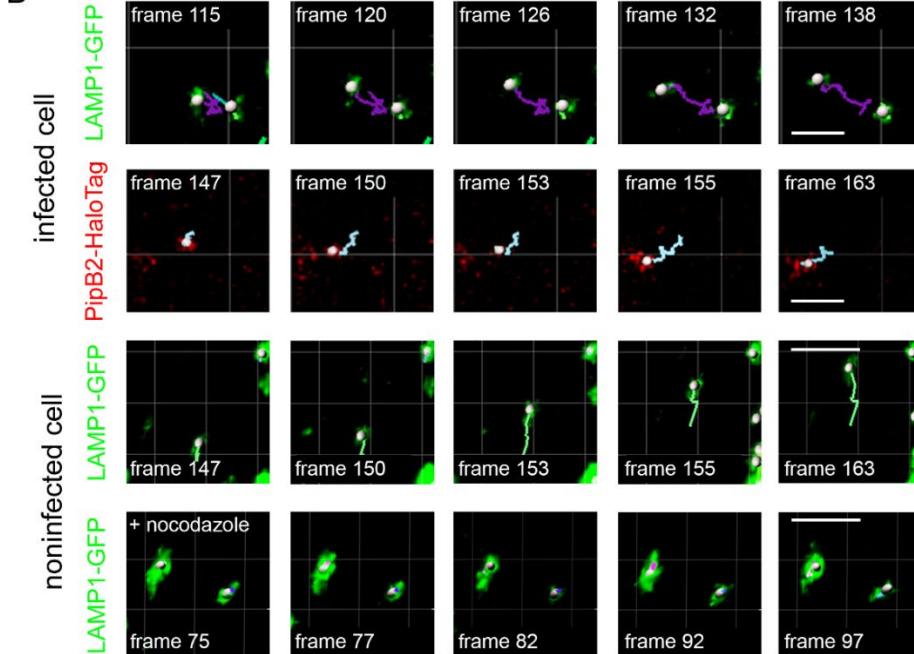
1009

Effector targeting and dynamics

1010
1011


1012 **Fig. S 6. Distribution of PipB2-HaloTag in host cells infected with strains deficient in *pipB2***

1013 **or *ΔsifA ΔsseJ*.** HeLa LAMP1-GFP cells were infected with STM Δ *pipB2*, or Δ *sifA ΔsseJ* strains
1014 expressing *pipB2*::HaloTag::HA for 16 h. LCI was performed directly after cells were stained with
1015 HTL-TMR at a concentration of 1 μ M for 30 min. Scale bars: 10 and 5 μ m in overview and details,
1016 respectively.


1017

Effector targeting and dynamics

A

B

1019

1020 **Fig. S 7. Tracking of vesicles labelled with LAMP1-GFP and PipB2-HaloTag.** HeLa LAMP1-
1021 GFP cells were either not treated, infected with STM $\Delta pipB2$ strain expressing
1022 $pipB2::\text{HaloTag::HA}$, or treated with nocodazole to inhibit vesicle movement. **A)** Cells were
1023 imaged for 200 frames (0.39 frames/sec) using the Zeiss SD microscope and dual camera imaging
1024 in streaming mode. At least 5 cells were imaged resulting in the analysis of at least 858
1025 trajectories/frame. Vesicle tracking analysis was done with the Imaris spot detecting tool. See
1026 corresponding **Movie 13** and **Movie 14**. **B)** Trajectories of single vesicles. Scale bars: 10 and 5
1027 μm in overview and details, respectively.

1028

1029 **Movie captions**

1030 **Movie 1. Vesicular fusion of nanogold-labelled endosomes with the SCV/SIF continuum.**

1031 HeLa cells stably expressing LAMP1-GFP (green) were infected with STM WT strain
1032 constitutively expressing GFP (green). STM cells appears as high fluorescent rods, LAMP1-GFP-
1033 positive membranes are weakly fluorescent. Gold nanoparticles were prepared by conjugating 10
1034 nm colloidal gold with BSA-rhodamine (red). Pulse/chase with Gold nanoparticles was performed
1035 1 h p.i. for 1 h. Live cell imaging (LCI) was performed 6 h p.i. 3D projections of image stacks were
1036 generated in Imaris. Arrows indicate fusion events nanogold-labeled endosomes to a dynamic
1037 SIF/SCV continuum.

1038 Download link: <https://myshare.uni-osnabrueck.de/f/6303fcdf52a4d42b381/>

1039

1040 **Movie 2. Single molecule tracking (SMT) of SifA-HaloTag on double-membrane SIF.** HeLa
1041 cells stably expressing LAMP1-GFP were infected with STM $\Delta sifA$ strain expressing
1042 *sifA*::HaloTag. LCI was performed directly after labeling with 20 nM HTL-TMR. Shown are TMR
1043 signal, localization and tracking within 200 consecutive frames (corresponding to **Fig. 3A**).

1044 Download link: <https://myshare.uni-osnabrueck.de/f/25e95b41fd0743a1ba69/>

1045

1046 **Movie 3. SMT of LAMP1-HaloTag on double-membrane SIF.** HeLa LAMP1-GFP cells were
1047 transfected with LAMP1-HaloTag one day prior infection. Cells were infected with STM WT strain
1048 and LCI was done directly after labeling with 20 nM HTL-TMR. Shown are TMR signal,
1049 localization and tracking within 200 consecutive frames (corresponding to **Fig. S 2A**).

Effector targeting and dynamics

1050 Download link: <https://myshare.uni-osnabrueck.de/f/2df9e8f60bb649fa9c82/>

1051

1052 **Movie 4. SMT of SseF-HaloTag on double-membrane SIF.** HeLa LAMP1-GFP cells were
1053 infected with STM $\Delta sseF$ strain expressing $sseF$::HaloTag. LCI was done directly after labeling
1054 with 20 nM HTL-TMR. Shown are TMR signals, localization, and tracking within 200 consecutive
1055 frames (corresponding to **Fig. S 2B**).

1056 Download link: <https://myshare.uni-osnabrueck.de/f/3d369acf70ed4dc3bcc5/>

1057

1058 **Movie 5. SMT of PipB2-HaloTag on double-membrane SIF.** HeLa LAMP1-GFP cells were
1059 infected with STM $\Delta pipB2$ strain expressing $pipB2$::HaloTag. LCI was done directly after labeling
1060 with 20 nM HTL-TMR. Shown are TMR signal, localization, and tracking within 200 consecutive
1061 frames (corresponding to **Fig. S 2C**).

1062 Download link: <https://myshare.uni-osnabrueck.de/f/f21d0afef4b543dca651/>

1063

1064 **Movie 6. SMT of PipB2-HaloTag on double-membrane SIF in fixed host cells.** HeLa LAMP1-
1065 GFP cells were infected with STM $\Delta pipB2$ strain expressing $pipB2$::HaloTag. Cells were labeled
1066 with 20 nM HTL-TMR. Imaging was done directly after cells were fixed with 3% PFA. Shown are
1067 TMR signal, localization and tracking, within 200 consecutive frames (corresponding to **Fig. S**
1068 **2D**).

1069 Download link: <https://myshare.uni-osnabrueck.de/f/570bade85d2c4868903c/>

1070

1071 **Movie 7. SMT of LAMP1-HaloTag on single-membrane SIF.** HeLa LAMP1-GFP cells were
1072 transfected with LAMP1-HaloTag one day prior infection. Cells were infected with STM $\Delta sseF$
1073 strain. LCI was done directly after labeling with 20 nM HTL-TMR. Shown are TMR signal,
1074 localization, and tracking within 200 consecutive frames (corresponding to Fig. 4A).

1075 Download link: <https://myshare.uni-osnabrueck.de/f/1c42b10e1f414ab0a3b3/>

1076

1077 **Movie 8. SMT of SifA-HaloTag on single-membrane SIF.** HeLa LAMP1-GFP cells were
1078 infected with STM $\Delta sseF \Delta sifA$ strain expressing *sifA*::HaloTag. LCI was performed directly after
1079 labeling with 20 nM HTL-TMR. Shown are TMR signal, localization, and tracking within 200
1080 consecutive frames (corresponding to Fig. 4B).

1081 Download link: <https://myshare.uni-osnabrueck.de/f/919d7993597e40948b9b/>

1082

1083 **Movie 9. Localization of SseF-HaloTag during transition of leading to trailing SIF.** HeLa
1084 LAMP1-GFP cells were infected with STM $\Delta sseF$ strain expressing *sseF*::HaloTag and labeled
1085 with HTL-TMR. The transition of leading to trailing SIF was imaged with 488 nm laser excitation
1086 for one frame, following 561 nm laser excitation for 150 frames in 4 cycles. Shown are 5 frames
1087 of 488 nm excitation (corresponding to Fig. 4E).

1088 Download link: <https://myshare.uni-osnabrueck.de/f/2cb53caa8c81451c89a4/>

1089

1090 **Movie 10. Localization of SifA-HaloTag during transition of leading to trailing SIF.** HeLa
1091 LAMP1-GFP cells were infected with STM $\Delta sifA$ strain expressing *sifA*::HaloTag and labeled with
1092 HTL-TMR. The transition of leading to trailing SIF was imaged with 488 nm laser excitation for
1093 one frame, following 561 nm laser excitation for 150 frames in 4 cycles. Shown are 5 frames of
1094 488 nm excitation (corresponding to **Fig. S 3A**).

1095 Download link: <https://myshare.uni-osnabrueck.de/f/4851e1aaa09b437aa0a4/>

1096
1097 **Movie 11. Localization of PipB2-HaloTag during transition of leading to trailing SIF.** HeLa
1098 LAMP1-GFP cells were infected with STM $\Delta pipB2$ strain expressing *pipB2*::HaloTag and labeled
1099 with HTL-TMR. The transition of leading to trailing SIF was imaged with 488 nm laser excitation
1100 for one frame, following 561 nm laser excitation for 150 frames in 4 cycles. Shown are 5 frames
1101 of 488 nm excitation (corresponding to **Fig. S 3A**).

1102 Download link: <https://myshare.uni-osnabrueck.de/f/777f93142ae7459ca5fc/>

1103
1104 **Movie 12. Co-tracking of LAMP1-GFP- and PipB2-HaloTag-positive vesicles in infected host**
1105 **cells.** HeLa LAMP1-GFP cells were infected with STM $\Delta pipB2$ strain expressing *pipB2*::HaloTag.
1106 LAMP1-positive- and PipB2-HaloTag-positive vesicles were imaged and vesicle tracking analysis
1107 was done with Imaris spot detection tool. Shown are 200 frames of co-tracking of vesicles positive
1108 for LAMP1 and PipB2 co-tracking (corresponding to Fig. 6A).

1109 Download link: <https://myshare.uni-osnabrueck.de/f/095efdca37b14916ad6a/>

1110

1111 **Movie 13. Tracking of LAMP1-GFP- and PipB2-HaloTag-positive vesicles in STM-infected**
1112 **host cells.** HeLa LAMP1-GFP cells were infected with STM Δ *pipB2* strain expressing
1113 *pipB2*::HaloTag. LAMP1-positive and PipB2-positive vesicles were tracked with the Imaris spot
1114 detection tool in individual cells over 200 frames (corresponding to Fig. 6A).

1115 Download link: <https://myshare.uni-osnabrueck.de/f/2bc6b6801d8240449e47/>

1116

1117 **Movie 14. Tracking of LAMP1-GFP-positive vesicles in non-infected and nocodazole-treated**
1118 **cells.** HeLa LAMP1-GFP cells either non-treated or treated with nocodazole. LAMP1-positive
1119 vesicles were tracked with the Imaris spot detection tool in individual cells over 200 frames
1120 (corresponding to Fig. 6A).

1121 Download link: <https://myshare.uni-osnabrueck.de/f/a633c24d92f24442a4a2/>

1122

1123 **Movie 15. PipB2-HaloTag distribution in STM-infected cells.** HeLa LAMP1-GFP cells were
1124 infected with STM Δ *pipB2* strain expressing *pipB2*::HaloTag. Time-lapse imaging was performed
1125 directly after cells were stained with HTL-TMR (1 μ M). Cells were imaged every 30 min starting
1126 5 h p.i. until 12 h p.i. (corresponding to Fig. 7A).

1127 Download link: <https://myshare.uni-osnabrueck.de/f/5e80ad49973a43e8a9d5/>

1128

1129 **Movie 16. Effect of nocodazole on PipB2-HaloTag distribution in STM-infected cells HeLa**

1130 LAMP1-GFP cells were infected with STM Δ *pipB2* strain expressing *pipB2*::HaloTag. Cells were
1131 treated with nocodazole (2 h p.i.). Time-lapse imaging was performed directly after cells were
1132 stained with HTL-TMR (1 μ M) and inhibitor was removed. Cells were imaged every 30 min
1133 starting 5 h p.i. until 12 h p.i. (corresponding to **Fig. 7AB**).

1134 Download link: <https://myshare.uni-osnabrueck.de/f/55645ebb2c4a4b89a1aa/>