

Title: A Unified Catalog of 19,251 Non-human Reference Species Genomes Provides New Insights into the Mammalian Gut Microbiomes

Authors: Xiaoping Li^{1,2,3†}, Chen Tian^{1,†}, Daohua Zhuang^{1,†}, Liu Tian^{2†}, Xingwei Shi², Yanli Bai¹, Han Gao¹, Hong Zhou¹, Fangfang Zhao¹, Min Dai², Lei Zhu¹, Qunfu Wu¹, Xiaotong Liu¹, Tao Zhang¹, Jianan Sang¹, Sunil Kumar Sahu², Xun Xu², Huijue Jia², Huan Liu^{2,3}, Liang Xiao², Karsten Kristiansen^{2,3,4}, Zhigang Zhang^{1*}

Affiliations:

¹State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China

²BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China

³Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark

⁴Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, Shangdong 166555, P. R. China

[†]These authors contributed equally to this work.

^{*}Correspondence: Zhigang Zhang (Z.Z.), State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, No. 2 North Cuihu Road, Kunming, Yunnan 650091, P.R. China. Email: zhangzhigang@ynu.edu.cn

1 **Abstract**

2 **The gut microbiota is essential for host health and survival. Here, using samples**
3 **from animals living in the Qinghai-Tibetan Plateau, we recovered 119,568**
4 **metagenome-assembled genomes (MAGs) that were clustered into 19,251**
5 **species-level genome bins (SGBs) of which most represent novel species. We**
6 **present a novel mechanism shaping mammalian gut microbiomes using ancestral**
7 **founder bacteria (AFB) as a core skeleton and recurring lineage-specific gains of**
8 **microbial species that are transferred frequently among multiple hosts, not**
9 **strictly limited by host phylogeny. Such lineage specific gains are responsible for**
10 **increasing gut microbial diversity, maintaining functional stability, and**
11 **endowing specific functions for host adaptions. Our analyses did not support the**
12 **existence of co-phylogeny or co-speciation events between mammal hosts and**
13 **their individual gut symbionts. The results presented in this study not only reveal**
14 **novel unique gut microbial species and offer insight of value for understanding**
15 **the diversity, stability, functionality of the mammalian gut microbiomes, and the**
16 **co-evolution with their hosts, but also emphasize that animals living in extreme**
17 **environments are a promising resource for the discovery of novel biological**
18 **functions.**

19 The gut microbiota constitutes an essential functional unit of the mammalian body
20 involved in nutrient utilization, immune development, and host survival in extreme
21 environments (1-5). However, except for the gut microbiota of humans (6, 7), the
22 diversity, stability, and functional traits of mammalian gut microbiomes and the

23 co-evolution with their hosts are poorly understood in part due to lack of
24 comprehensive microbial reference genomes. Recently, 1,209 species-level genome
25 bins (SGBs) were identified by analysis of the gut microbiota from 184 unique
26 species representing five main groups of animals (8). Of these SGBs, 75% represented
27 novel microbial species testifying to the still huge uncharted domains of the gut
28 microbiota. Thus, in-depth investigation of the gut microbiota of diverse non-human
29 mammals, including animals living in extreme environments such as mammals
30 living on the Qinghai-Tibetan Plateau is likely to uncover novel gut microbial species.
31 The Qinghai-Tibetan Plateau, also termed “the third pole”(9), represents a natural
32 laboratory for studying evolution and environmental changes (10) and can be
33 considered as an evolutionary junction for the history of modern biodiversity (11) and
34 ice age megaherbivores(12).

35 Numerous studies have demonstrated the influence of host genetics on the gut
36 microbiome (13), and vertical maternal-to-offspring transmission is key to maintain
37 host-population-level stability of the gut microbiota (14-16). Further observations
38 suggest that microbial community relationships parallel the phylogeny of their hosts,
39 coined phylosymbiosis (17). Phylosymbiosis represents a simple ecological modeling
40 of host filtering (18), with consequences that we can observe now, but phylosymbiosis
41 is unable to explain the long-term co-evolutionary mechanisms and dynamics of the
42 gut microbiota and their mammalian hosts (19). Few phylogenetic analyses have
43 reported that co-speciation plays a predominant role in the co-evolution between
44 mammals and their gut commensals, but the conclusions are tenuous, because

45 frequent horizontal gene transfer (HGT) events across prokaryotes cause an inaccurate
46 estimation of their phylogenies that cannot be conquered by the limited phylogenetic
47 information provided by analysis of partial 16S rRNA gene sequences or single-copy
48 genes (20-24). Accordingly, whole microbial genome information is needed to
49 improve analyses (25) and will be required to unravel the evolutionary dynamics of
50 the gut microbiome's function during host evolution.

51 Here, we report results from metagenomic deep sequencing of fecal samples
52 obtained from 1,412 individuals of six high-altitude herbivorous mammals belonging
53 to the two sister orders Perissodactyla and Artiodactyla freely living on the
54 Qinghai-Tibet Plateau.

55 **Results**

56 **Recovering 119,568 microbial genomes from six non-human mammals**

57 A total of 1,412 fresh fecal samples were collected from six non-human mammals
58 including Yak (388), Tibetan antelope (255), Tibetan cattle (196), Tibetan sheep (446),
59 Tibetan horse (79) and Tibetan Ass (48) from the Qinghai-Tibet plateau (Fig. 1A and
60 Supplementary Table 1). The animal hosts have a divergence time of ~ 78 Mya
61 (million years ago) representing the divergence of the Perissodactyla and the
62 Artiodactyla orders based on genome inferences (26-29). The integrated pipeline for
63 constructing the bacterial genomes and gene catalogs is shown in Fig. 1B. After DNA
64 extraction and whole genome sequencing, more than 2.23×10^{11} 150 bp paired end
65 reads were produced corresponding to a total of 33.55 Tb raw data (23.74 ± 7.22 Gb per
66 sample) (Supplementary Text; Supplementary Table 2). To maximize assembly of

67 MAGs, we employed a co-binning strategy to reconstruct bacterial and archaeal
68 genomes from microbial communities according to tetranucleotide frequency, and
69 abundance correlations of contigs in multiple samples (Supplementary Methods). We
70 evaluated this strategy on the 79 Tibetan horse samples with different multiple sample
71 size settings (Supplementary Text; Supplementary Fig. 1). To standardize the genome
72 quality across other sets, MAGs were retained with >50% genome completeness and
73 <10% contamination, combined with an estimated quality score (QS) (= completeness
74 -5 × contamination) > 50(30). Finally, we recalled a total of 119,568 MAGs from the
75 six animal species, representing 39,278 MAGs from Sheep, 28,125 MAGs from Yak,
76 10,630 MAGs from Cattle, 8,144 MAGs from Horse, 6,684 MAGs from Ass, and
77 26,607 MAGs from Tibetan antelope. On average more than 90 MAGs were
78 recovered per sample except for cattle (54) and yak (72). Of these MAGs, 34,977
79 (29.25%) matched the high-quality genome criterion of >90% completeness and <5%
80 contamination (Supplementary Table 3 and Supplementary Text).

81 **Reconstructing a catalog of species-level microbial reference genomes from
82 non-human mammals**

83 According to a threshold of $\geq 95\%$ ANI (30) (Supplementary Methods), we clustered
84 all the MAGs obtaining a total of 19,251 SGBs (Supplementary Table 4). Among
85 these, 7,652 (39.75%) met the criterion for a high-quality genome with the genome
86 sizes ranging from 0.53Mb to 6.14Mb (Supplementary Fig. 2, A to C). About 60.13%
87 of SGBs were supported by at least two conspecific genomes (non-singleton SGBs)
88 (Supplementary Fig. 2D). Rarefaction analysis (Fig. 2A) indicated that the

89 non-singleton species were close to saturation, suggesting that most common
90 microbes in the samples were recalled. We performed SGBs profiling of all 1,412
91 samples (Supplementary Table 5) based on the relative abundances of species
92 genomes in each sample (Supplementary Methods). A non-redundant gene catalog
93 (26,093,065) was constructed based on the predicted 34,469,579 full length genes
94 (Supplementary Methods, Supplementary Table 6).

95 The Genome Taxonomy Database (GTDB release95)(31) was used to perform
96 taxonomic annotations (Supplementary Methods). In total, 19,068 bacterial SGBs
97 were identified, but only 142 (0.74%) SGBs were classified as known species,
98 suggesting that our database represented a large number of unknown microbial
99 species. Firmicute A (70.85%) and Bacteroidota (13.59%) were the dominant taxa of
100 our SGBs (Supplementary Fig. 3A). We assembled 183 archaea genomes, all being
101 clearly assigned to three phyla, Methanobacteriota, Thermoplasmatota and
102 Halobacteriota (Supplementary Fig. 3B) and of these archaea genomes 172 (94%)
103 represented novel archaea species.

104 The average mapping rates of our samples to three databases including the GTDB
105 (31), the Hungate collection (32), and Earth's Microbiomes catalog (GEM)(33) were
106 only 15.80%, 30.23% and 36.44%, respectively (Fig. 2B) (Supplementary Methods).
107 These results pointed a remarkable large number of unknown species, also supported
108 by the mash distance analysis (Fig. 2C). Using our database, the average mapping rate
109 substantially increased by nearly 2-fold, reaching 76.58%, indicating that the
110 sequencing depth of our samples was sufficient to cover the majority of the microbial

111 diversity in our samples.

112 Many clades including some common phyla in the gut microbiome were largely
113 expanded by our catalog. Compared with the most representative databases
114 GTDB(31), 19,098 species (99.10% bacteria) were identified as novel species. The
115 Firmicutes A, the dominant gut bacterial phylum, includes 2,636 species in the GTDB,
116 compared to 13,509 assembled SGBs belonging to this phylum in our database.
117 Except for 34 known bacterial species, our catalog harbors 13,475 novel species
118 representing a more than 500% increase in annotation alone in this phylum.
119 Interestingly, the order Oscillospirales, reported to be enriched in the herbivore gut
120 microbiome (34, 35), contributed with 8,408 species reference genomes in our catalog,
121 representing a 10-fold increasing compare to the reference genomes of this order in
122 the GTDB. For two rare phyla, Elusimicrobiota and Verrucomicrobiota, the assembled
123 SGBs also added a significant number of species in these two phyla (Fig. 2D and
124 Supplementary Table 7). Finally, 18,607 SGBs covering more than 80 marker genes
125 are displayed in the phylogenetic tree (Fig. 2E).

126 **Features and evolutionary dynamics of the gut microbiomes in the six host
127 species**

128 The results (Supplementary Text; Fig. 3A-3C; Supplementary Fig. 4) from both
129 alpha-diversity and beta-diversity measures consistently demonstrated that microbial
130 communities largely recapitulate host phylogeny (Fig. 3D; Supplementary Fig. 5),
131 which is compatible with the "Phylosymbiosis" hypothesis (17, 20). To further
132 investigate how the gut microbial species co-evolve with their hosts, we performed an

133 ancestral microbiome reconstruction based on the core microbiome of the six animal
134 hosts using the asymmetrical Wagner parsimony approach in the Count software
135 (v.10.04)(36) as used previously (37). Our results clearly demonstrated the
136 evolutionary dynamics of gut microbiomes along the host phylogeny, including the
137 appearance of “ancestral” founder bacteria (AFB), the gain or loss of host-specific
138 gained (HSG) SGBs, and host shared (HS) SGBs among the host species (Fig. 4A).

139 Our predicted six AFBs belong to the bacterial phyla Firmicutes A, Bacteroidota,
140 and Verrucomicrobiota at the last common ancestor node (N5) (~78 Mya) of the six
141 host species. The lineage-specific gained SGBs were largely allocated to the three
142 phyla indicated above, implying that these three phyla are representative phyla of the
143 six animal hosts' gut microbiomes. Using the AFBs as the core scaffold, we found that
144 a stable core gut microbiome of each host was finally formed by a recurring
145 lineage-specific gain of the microbial species, which was further supported by the
146 phylogenetic trees of SGBs from the three representative bacterial phyla
147 (Supplementary Fig. 6). The HS SGBs definitely played a supportive role in the
148 common ancestor node (N1, N2, N3, N4), and the HSG SGBs were acquired and
149 retained in the same branch. For instance, *CAG-110* from the Firmicutes A, *RC9* from
150 the Bacteroidota and *Akkermansia* from the Verrucomicrobiota. Notably, the
151 prevalence of HS SGBs was significantly higher than that of HSG SGBs (Fig. 4B),
152 which may be related to the role of HS SGBs, indicating different co-evolution
153 patterns between the two types of SGBs and their hosts. The HS SGBs might be
154 selected by their hosts sharing a similar conserved impact from environmental sources

155 (i.e., food, water, and habitat) or the close relatives of the hosts. The co-evolution or
156 co-speciation between the HS SGBs and their hosts is impossible because the
157 divergence times of the six animal species ranged from 2 to 78 Mya while the HS
158 SGBs showed no host species-level divergence.

159 Unlike the HS SGBs, we hypothesized that the HSG SGBs might show
160 co-evolution or co-speciation with their current six host species. To test this, we
161 reconstructed the phylogenetic trees of the HSG SGBs representing eight genera
162 belonging to the three representative phyla and present in at least four animal hosts
163 (Supplementary Table 8) (Fig. 4C and Supplementary Fig. 7). We found that the
164 phylogenetic relationships among the SGBs of each bacterial genus were inconsistent
165 with their host phylogeny, and events of swaps occurred frequently between the hosts
166 of different species, genera, subfamilies, and even at the order level. Transfer events
167 were quite obvious in *Ruminococcus* and *Acetatifactor* from Firmicutes A, and
168 UBA1067 from Verrucomicrobiota (Supplementary Fig. 7B, D and H). Thus,
169 topological relationships inferred from the SGB trees of eight bacterial genera did not
170 support co-speciation patterns between mammalian species and their individual gut
171 symbionts. Conversely, the gut microbial species can span host restrictions even
172 beyond sister order levels. We built the phylogenetic trees of strains from two
173 bacterial species (See Supplementary Methods) showing that strain selection was not
174 restricted between the hosts of different subfamilies (Bovinae and Caprinae)
175 (Supplementary Fig. 8 and Supplementary Table 9). However, this conclusion needs
176 to be confirmed by adding more bacterial species in future studies.

177 **Functional dynamics of the core gut microbiomes across six non-human
178 mammals**

179 We performed a comprehensive investigation of the metabolic capacities of the 6
180 AFBs based on annotation using CAZy and KEGG databases (Methods)
181 (Supplementary Table 10). We found that the AFBs had the ability to utilize 12
182 common types of carbohydrates, including cellulose, hemicelluloses. The AFBs also
183 have the potential for synthesizing acetate, propanoate, butanoate, lactate, 19 essential
184 amino acids (AA) (except histidine), and 7 vitamins, A, B1, B2, B3, B5, B6 and B9
185 (Fig. 5A and Supplementary Fig. 9). These results suggest that the six AFBs core
186 founder may play a role for host survival.

187 To examine the evolutionary functional dynamics along host phylogeny, the functions
188 of the HS and HSG SGBs in relation to these five core functional classes including
189 carbohydrate utilization, energy production, amino acid biosynthesis, vitamin
190 biosynthesis, and detoxification were surveyed. We found that the functions donated
191 by most of the HS and HSG SGBs to a large extent overlapped with those of the
192 AFBs (Fig. 5B and Supplementary Fig. 10). A few new functions were present at
193 other host nodes including the biosynthesis of histidine (N4), four vitamins (E, K, B7
194 and B12), and the potential degradation of styrene possibly derived from plant. Only
195 in one case, HSG SGBs at the N4 node (the common ancestor of Bovinae and
196 Caprinae) lost the ability to synthesize tryptophan exhibiting a decreasing trend along
197 this branch. Furthermore, our enrichment analyses revealed that there was no
198 significant difference in functional enrichment between AFBs and HSG SGBs in most

199 terms of biosynthetic ability. Overall, our results suggested that the HSG SGBs maybe
200 contributed to maintaining the stability of the functions of the AFBs on these core
201 functional classes.

202 Our results (Fig. 6) also revealed that the HSG SGBs exhibited significant
203 functional divergences in relation to carbohydrate utilization and main metabolic
204 pathways between N1 vs. N4 (~78 Mya), N2 vs. N3 (~20 Mya), or the comparisons
205 among related host species (TA vs. TH, TAN vs. TS and Yak vs. TC). With four
206 exceptions, tyrosine metabolism, aminobenzoate degradation, bispenol degradation,
207 and furfural degradation, significant functional divergences were observed among
208 carbohydrate utilization and metabolic pathways in four KEGG functional categories
209 that may be related to the evolutionary adaptation of each host (Fig. 6; Supplementary
210 Fig. 11; Supplementary Table 12).

211 We investigated the differences at the functional level between
212 long-term-adaptation and short-term-adaptation of the host species and pathway
213 enrichment (Fig. 6B). These analyses revealed that multiple metabolic pathways were
214 consistently enriched in the two indigenous plateau artiodactyla mammals, such as the
215 ‘multiple polysaccharides’ in carbohydrate utilization, ‘propanoate metabolism’,
216 ‘histidine metabolism’ and ‘nitrotoluence degradation’ pathways. In addition,
217 convergent enrichments of pathways were also observed in two short-term adapted
218 artiodactyla mammals, such as five pathways involved in metabolism of cofactors and
219 vitamins, and the caprolactam degradation pathway. We also found host-specific
220 enrichment of metabolic pathways provided by the HSG SGBs. For example, the

221 pathways involved in arginine biosynthesis were only enriched in yak. The pathway
222 ‘vitamin B6 metabolism only appeared in Tibetan Ass. Similarly, lysine biosynthesis,
223 cysteine and methionine metabolism, and phenylalanine metabolism were unique for
224 Tibetan Antelope.

225 **Discussion**

226 We present a large *de novo* microbial genome assembly from metagenomic data
227 providing 19,251 gut microbial species-level reference genomes derived from six
228 non-human mammals of the Qinghai-Tibet Plateau. Of these species > 99% are
229 unknown, thus expanding the known phylogenetic diversity of bacteria and archaea
230 by 62.40% and 10.29%, respectively, compared with the GTDB database (31). Over
231 the past two decades, large-scale studies of the human gut microbiome have provided
232 a comprehensive catalog of human gut microbial species reference genomes
233 comprising 204,938 non-redundant genomes from 4,644 gut prokaryotes of which
234 more than 70% lack cultured representatives (7). The Earth’s microbiomes project
235 (EMP) discovered 52,515 MAGs representing 12,556 novel candidate species
236 spanning 135 phyla expanding the known phylogenetic diversity of bacteria and
237 archaea (33). Even though 1,209 SGBs (75% unknown) was recently unveiled from
238 406 fecal samples from 184 animal species (8), we discovered unexpectedly a large
239 number of novel bacterial and archaeal genomes ornamenting the first blueprint of gut
240 microbiomes of native mammals at the *third pole*(9), implying that previous global
241 research greatly has underestimated the (gut) microbial diversity in non-human
242 mammals, and a considerable number of unknown microbial species still need to be

243 uncovered by global efforts to elucidate their biological roles in various
244 environmental niches.

245 Despite our findings to a certain extent supported the notion that gut microbial
246 community relationships parallel the phylogeny of their hosts, coined
247 phylosymbiosis(19, 38), our whole-genome-level phylogenetic analyses revealed that
248 lineage-specifically gained microbial species were frequently transferred across host
249 species, genus, subfamily, and even order levels. These findings, like previous studies,
250 did not support the existence of co-phylogeny or co-speciation events between
251 mammal hosts and their gut individual symbionts (13-16). This discrepancy is
252 probably mainly due to the low resolution and likely lateral transfers of partial 16S
253 rRNA genes (20) or single-copy marker genes(21) compared with the whole-genome
254 phylogenetic analysis for accurately obtaining phylogenetic relationships among gut
255 microbial species. Similarly, many previous theoretical and experimental studies
256 demonstrated that short-term dynamics can foster parasite specialization, but that
257 these events can occur following host shifts and do not necessarily involve
258 co-speciation, as well as coevolutionary dynamics of hosts and parasites do not favor
259 long-term cospeciation (38).

260 Our study enables a glimpse into diverse functional traits of mammalian gut
261 microbiomes. We obtained a huge non-redundant gene catalog containing 26,093,065
262 genes, among which 82.53% and 66.43% were annotated by the Nr database and
263 KEGG database, respectively. Additionally, from 3888 (69.34%) of 5607 SGBs of the
264 three core bacterial phyla (Firmicute A, Bacteroidota, and Verrucomicrobiota), we

265 identified a total of 9,221 biosynthetic gene clusters (BGCs) (consisting of 130,098
266 intact CDSs or genes), 9,218 of which could be assigned into 60 known BGC types
267 (Supplementary Fig. 12 and Supplementary Table 13), mostly involved in the
268 biosynthesis of many secondary metabolites like carotenoid affecting host physiology
269 or health. These findings suggest our assembled SGBs also represent a large natural
270 gene pool which requires further exploration.

271 Lineage-specific gained microbial species might endow host adaptation to
272 hypoxia environment. Tibetan ass, Tibetan antelope, and yak that have long-term
273 adaptation to hypoxia (39, 40) and some of the enriched metabolic pathway may assist.
274 Thus, vitamins B6, B12, folate, and choline are reported to elicit combined
275 neuroprotective effects on the brain against hypoxia (41). Riboflavin requirement is
276 increased under acute hypoxic conditions and its supplementation can improve energy
277 metabolism (42). Cysteine supplementation allows the body to respond to and adapt
278 to hypoxic situations more quickly (43). Overall, these findings provided indirect
279 support for the hypothesis that the distinct gut microbiomes found in high-altitude
280 mammals may be linked to high-altitude hypoxia adaption. More research will be
281 needed to better understand the biological significance of these discoveries.

282 **REFERENCES**

283 1. Z. Zhang *et al.*, Convergent Evolution of Rumen Microbiomes in
284 High-Altitude Mammals. *Current Biology* **26**, 1873-1879 (2016).

285 2. P. Rosshart Stephan *et al.*, Laboratory mice born to wild mice have natural
286 microbiota and model human immune responses. *Science* **365**, eaaw4361

287 (2019).

288 3. C. Campbell *et al.*, Bacterial metabolism of bile acids promotes generation of
289 peripheral regulatory T cells. *Nature* **581**, 475-479 (2020).

290 4. S. K. Gill, M. Rossi, B. Bajka, K. Whelan, Dietary fibre in gastrointestinal
291 health and disease. *Nature Reviews Gastroenterology & Hepatology* **18**,
292 101-116 (2021).

293 5. P. Kundu, E. Blacher, E. Elinav, S. Pettersson, Our Gut Microbiome: The
294 Evolving Inner Self. *Cell* **171**, 1481-1493 (2017).

295 6. E. Pasolli *et al.*, Extensive Unexplored Human Microbiome Diversity
296 Revealed by Over 150,000 Genomes from Metagenomes Spanning Age,
297 Geography, and Lifestyle. *Cell* **176**, 649-662.e620 (2019).

298 7. A. Almeida *et al.*, A unified catalog of 204,938 reference genomes from the
299 human gut microbiome. *Nature Biotechnology* **39**, 105-114 (2021).

300 8. D. Levin *et al.*, Diversity and functional landscapes in the microbiota of
301 animals in the wild. *Science* **372**, eabb5352 (2021).

302 9. J. Qiu, China: The third pole. *Nature* **454**, 393-396 (2008).

303 10. Z. Zhou, T. Deng, The Tibetan Plateau is a natural laboratory for studying
304 organic evolution and environmental change. *Science China Earth Sciences* **63**,
305 169-171 (2020).

306 11. T. Deng, F. Wu, Z. Zhou, T. Su, Tibetan Plateau: An evolutionary junction for
307 the history of modern biodiversity. *Science China Earth Sciences* **63**, 172-187
308 (2020).

309 12. T. Deng *et al.*, Out of Tibet: Pliocene Woolly Rhino Suggests High-Plateau
310 Origin of Ice Age Megaherbivores. *Science* **333**, 1285-1288 (2011).

311 13. L. Cortes-Ortiz, K. R. Amato, Host genetics influence the gut microbiome.
312 *Science* **373**, 159-160 (2021).

313 14. A. H. Moeller, T. A. Suzuki, M. Phifer-Rixey, M. W. Nachman, Transmission
314 modes of the mammalian gut microbiota. *Science* **362**, 453-457 (2018).

315 15. L. Grieneisen *et al.*, Gut microbiome heritability is nearly universal but
316 environmentally contingent. *Science* **373**, 181-186 (2021).

317 16. P. Ferretti *et al.*, Mother-to-Infant Microbial Transmission from Different
318 Body Sites Shapes the Developing Infant Gut Microbiome. *Cell Host &*
319 *Microbe* **24**, 133-145.e135 (2018).

320 17. R. M. Brucker, S. R. Bordenstein, The roles of host evolutionary relationships
321 (genus: *Nasonia*) and development in structuring microbial communities.
322 *Evolution* **66**, 349-362 (2012).

323 18. M. Groussin, F. Mazel, E. J. Alm, Co-evolution and Co-speciation of Host-Gut
324 Bacteria Systems. *Cell Host & Microbe* **28**, 12-22 (2020).

325 19. F. Mazel *et al.*, Is Host Filtering the Main Driver of Phylosymbiosis across the
326 Tree of Life? *mSystems* **3**, e00097-00018 (2018).

327 20. M. Groussin *et al.*, Unraveling the processes shaping mammalian gut
328 microbiomes over evolutionary time. *Nature Communications* **8**, 14319
329 (2017).

330 21. H. Moeller Andrew *et al.*, Cospeciation of gut microbiota with hominids.

331 *Science* **353**, 380-382 (2016).

332 22. A. Gaulke Christopher *et al.*, Ecophylogenetics Clarifies the Evolutionary
333 Association between Mammals and Their Gut Microbiota. *mBio* **9**,
334 e01348-01318 (2018).

335 23. N. D. Youngblut *et al.*, Host diet and evolutionary history explain different
336 aspects of gut microbiome diversity among vertebrate clades. *Nature
337 Communications* **10**, 2200 (2019).

338 24. J. R. Brown, C. J. Douady, M. J. Italia, W. E. Marshall, M. J. Stanhope,
339 Universal trees based on large combined protein sequence data sets. *Nat Genet*
340 **28**, 281-285 (2001).

341 25. F. Delsuc, H. Brinkmann, H. Philippe, Phylogenomics and the reconstruction
342 of the tree of life. *Nature Reviews Genetics* **6**, 361-375 (2005).

343 26. H. Jonsson *et al.*, Speciation with gene flow in equids despite extensive
344 chromosomal plasticity. *Proc Natl Acad Sci U S A* **111**, 18655-18660 (2014).

345 27. Y. Jiang *et al.*, The sheep genome illuminates biology of the rumen and lipid
346 metabolism. *Science* **344**, 1168-1173 (2014).

347 28. L. Chen *et al.*, Large-scale ruminant genome sequencing provides insights into
348 their evolution and distinct traits. *Science* **364**, eaav6202 (2019).

349 29. A. M. Humphreys, T. G. Barraclough, The evolutionary reality of higher taxa
350 in mammals. *Proceedings. Biological sciences* **281**, 20132750 (2014).

351 30. D. H. Parks *et al.*, Recovery of nearly 8,000 metagenome-assembled genomes
352 substantially expands the tree of life. *Nature Microbiology* **2**, 1533-1542

353 (2017).

354 31. D. H. Parks *et al.*, GTDB: an ongoing census of bacterial and archaeal
355 diversity through a phylogenetically consistent, rank normalized and complete
356 genome-based taxonomy. *Nucleic acids research* **50**, D785-D794 (2022).

357 32. R. D. Stewart *et al.*, Compendium of 4,941 rumen metagenome-assembled
358 genomes for rumen microbiome biology and enzyme discovery. *Nature
359 Biotechnology* **37**, 953-961 (2019).

360 33. S. Nayfach *et al.*, A genomic catalog of Earth's microbiomes. *Nature
361 Biotechnology* **39**, 499-509 (2021).

362 34. L. Glendinning, B. Genç, R. J. Wallace, M. Watson, Metagenomic analysis of
363 the cow, sheep, reindeer and red deer rumen. *Scientific Reports* **11**, 1990
364 (2021).

365 35. F. Xie *et al.*, An integrated gene catalog and over 10,000
366 metagenome-assembled genomes from the gastrointestinal microbiome of
367 ruminants. *Microbiome* **9**, 137 (2021).

368 36. M. Csurös, Count: evolutionary analysis of phylogenetic profiles with
369 parsimony and likelihood. *Bioinformatics (Oxford, England)* **26**, 1910-1912
370 (2010).

371 37. K. Kwong Waldan *et al.*, Dynamic microbiome evolution in social bees.
372 *Science Advances* **3**, e1600513 (2017).

373 38. D. M. de Vienne *et al.*, Cospeciation vs host-shift speciation: methods for
374 testing, evidence from natural associations and relation to coevolution. *New*

375 *Phytologist* **198**, 347-385 (2013).

376 39. Q. Qiu *et al.*, The yak genome and adaptation to life at high altitude. *Nat Genet* **44**, 946-949 (2012).

378 40. R.-L. Ge *et al.*, Draft genome sequence of the Tibetan antelope. *Nat Commun* **4**, 1858 (2013).

380 41. L. Yu, Y. Chen, W. Wang, Z. Xiao, Y. Hong, Multi-Vitamin B Supplementation Reverses Hypoxia-Induced Tau Hyperphosphorylation and Improves Memory Function in Adult Mice. *Journal of Alzheimer's Disease* **54**, 297-306 (2016).

383 42. Y. P. Wang *et al.*, Riboflavin supplementation improves energy metabolism in mice exposed to acute hypoxia. *Physiol Res* **63**, 341-350 (2014).

385 43. S. C. Nunes *et al.*, Cysteine boosters the evolutionary adaptation to CoCl₂ mimicked hypoxia conditions, favouring carboplatin resistance in ovarian cancer. *BMC Evolutionary Biology* **18**, 97 (2018).

388 **Acknowledgements**

389 Thanks for supports for sample collections by Zewang Jiangcun, Dunzhu Silang, Zerowang Taba, Ding Deng, and staff members from the Qiangtang National Nature Reserve, Tibet, China, the Science and Technology Department of Tibet. Lhasa, Tibet, China, as well as the Hoh Xil Nature Reserve, Qinghai, China, the Sanjiangyuan National Park, Qinghai, China, and the Science and Technology Department of Qinghai, Qinghai, China. Thanks to Zhang Cheng-Hao and Zewang Jiangcun for the animal pictures. Thanks for suggestions for the assembly of MAGs from Zhuye Jie and Tao Zhang. We gratefully acknowledge colleagues at BGI-Shenzhen for

397 discussions. This study was supported by the Second Tibetan Plateau Scientific
398 Expedition and Research (STEP) program (no. 2019QZKK0503), the Chinese
399 National Natural Science Foundation (no. U2002206 and 31970571), and the Major
400 Science and Technology Project in Yunnan Province of China (no.
401 202001BB050001).

402 **Author contributions**

403 Z.Z. conceived, designed, and supervised the study. Z.Z., W.Q., T.C., Z.D., Z.F.,
404 L.X.T, Z.T., and S.J. collected samples. L.X., L.T., T.C., Z.D., B.Y., G.H., X.S. and
405 Z.H. processed and analyzed the raw sequencing data. Z.Z. and L.X. interpreted the
406 data. L.X., Z.Z., T.C., Z.D, B.Y., G.H., X.S., M.D and Z.H. generated the figures. L.X.,
407 Z.Z., T.C. and Z.D. wrote the manuscript. Z.Z., L.X., S.K.S. and K.K. contributed to
408 critical revision. All authors contributed to the final manuscript.

409 **Competing interest declaration**

410 The authors declare no competing interests.

411 **Data Availability**

412 All the clean data, recovered genomes, SGBs and SGBs profiles, the GenBank format
413 annotations and CDS sequences of 9221 BGCs of this study have been deposited into
414 CNGB Sequence Archive (CNSA) of China National GeneBank DataBase (CNGBdb)
415 with accession number CNP0001390
416 (<https://db.cngb.org/search/project/CNP0001390/>). The raw sequencing data of the
417 1,412 samples are also available in <https://db.cngb.org/qtp/>.

418 **Code Availability**

419 A repository containing instructions to reproduce the analyses is available at
420 <https://github.com/QT-Team>. Freely available software and package was excluded
421 from this repository.

422 **Figure Legends**

423 **Figure 1. Sample collection and the pipeline for data retrieval.** (A) The
424 phylogenetic tree of six host animal species living in the Qinghai-Tibet Plateau and
425 geographical distribution of collected fecal samples. (B) The pipeline for constructing
426 the non-redundant genome catalog and gene catalog of the non-human mammalian
427 gut microbiomes.

428 **Figure 2. The characteristics and phylogenetic tree of our non-human**
429 **mammals microbial reference genomes dataset** (A) Rarefaction curve depicting
430 the species diversity assessment of 19,251 SGBs obtained from all 1,412 samples.
431 The curves for all SGBs (red line) and the non-singleton SGBs (blue line) were
432 created by randomly re-sampling the pool of 1,412 samples 10 times with 100
433 sampling intervals. (B) The mapping rate of metagenomic reads from the six host
434 animals against our genome database and other three public reference databases. (C)
435 The distribution of mash distances among our identified species and other known
436 species released by the Genome Taxonomy database (GTDB 05-RS95) and Earth
437 Microbiome Project (33). The number of SGB for which mash distance is less than
438 0.05 and 0.15 is listed in the brackets. (D) The expansion of microbial species
439 diversity at the phylum level using the GTDB database (31) as the reference. (E) The
440 phylogenetic tree of our SGBs was built based on alignment of more than 80

441 microbial marker genes using the PhyloPhlAn software (See Supplementary Methods)
442 using the default parameters. The 18,607 SGBs containing more than 80 marker genes
443 are shown in the tree. The color of the branches indicates the classification
444 information (See the detailed classification information in Supplementary Table 7).
445 The inner strip shows whether an SGB is unknown (novel identified) or known. The
446 next six strip charts display those SGBs appearing in each of the six host animal gut
447 microbiomes. The outer strip chart shows the MAGs number that supports the SGBs.

448 **Figure 3. Gut microbial diversity features of the six animals host species. (A)**
449 Alpha diversity differences are shown by the microbial richness and Shannon index of
450 the gut microbiomes of the six host animals. **(B)** Statistical comparison of pairwise
451 Bray-Curtis dissimilarity of paired samples within the different taxonomic ranks for
452 the six host animals. **(C)** PCoA plotting based on Bray-Curtis dissimilarity shows a
453 distinct separation of gut microbial community structures among the six host animals.
454 **(D)** The microbial community tree constructed by the Bray-Curtis dissimilarity shows
455 the phylosymbiosis pattern with the host tree.

456 **Figure 4. Evolutionary dynamics of gut core microbiomes. (A)** Parsimony-inferred
457 shifts of core gut microbiomes based on the phylogenetic relationships of host animals.
458 The numbers on the branch stand for the SGB number of the node. The pie figure
459 shows the microbial species composition of the node at the phylum level. Inner is for
460 the gained SGBs and outer is for the present SGBs. The right microbial community
461 tree was built based on specifically-gained microbial species by the six hosts, which
462 indicates the evolutionary dynamics of gut microbial communities. HSG:

463 Host-specific gained; HS: Host shared. **(B)** The difference of occurrence frequency by
464 samples between host-shared and host-specific gained SGBs. **(C)** Circos
465 representation of microbial species swapped among the six hosts. The left shows the
466 SGBs from the eight core genera, and their phyla classifications are marked in the
467 outer ring. The length of the ring indicates the number of the SGBs. All SGBs are
468 sorted according to the leaf order of the SGB trees described in Supplementary Fig.7.
469 The right is the host information. The lines in the center connect the SGBs and hosts,
470 indicating microbial swaps among hosts shown in Supplementary Fig.7. The counts of
471 genera with host swaps are shown in parentheses.

472 **Figure 5. Functional profiling of six founder bacteria.** **(A)** The major metabolic
473 capacity of the six AFBs in relation to carbohydrate utilization, energy production &
474 key precursors, amino acid biosynthesis, and vitamin biosynthesis. If the enzymes
475 from the six AFBs can form at least one complete reaction chain, the product can
476 theoretically be synthesized by the AFBs. **(B)** Heatmap for presence/absence and
477 enrichment of gained SGBs of nodes compared with AFBs. Different colors indicate
478 functional categories such as amino acid biosynthesis, vitamin biosynthesis, energy
479 production, carbohydrate utilization, and detoxification, respectively (Supplementary
480 Fig.9A, 9B, and 10).

481 **Figure 6. The functional divergence of gained SGBs among key evolutionary**
482 **nodes.** **(A)** Functional enrichment analysis among internal evolution nodes, including
483 those between Perissodactyla (N1) and Artiodactyla (N4), Bovinae (N3) and Caprinae
484 (N2). The size of the circle represents the number of genes in the substrate utilization

485 capacities or the metabolic pathways. The solid circle represents the enriched node.

486 The color scale from light to dark corresponds to the negative logarithm of false

487 discovery rate (FDR)-adjusted P values (<0.05) from low to high. **(B)** Comparison of

488 the enrichment of gut microbial functions between plateau indigenous species and

489 late-migratory species. The size of the circle represents the number of genes in the

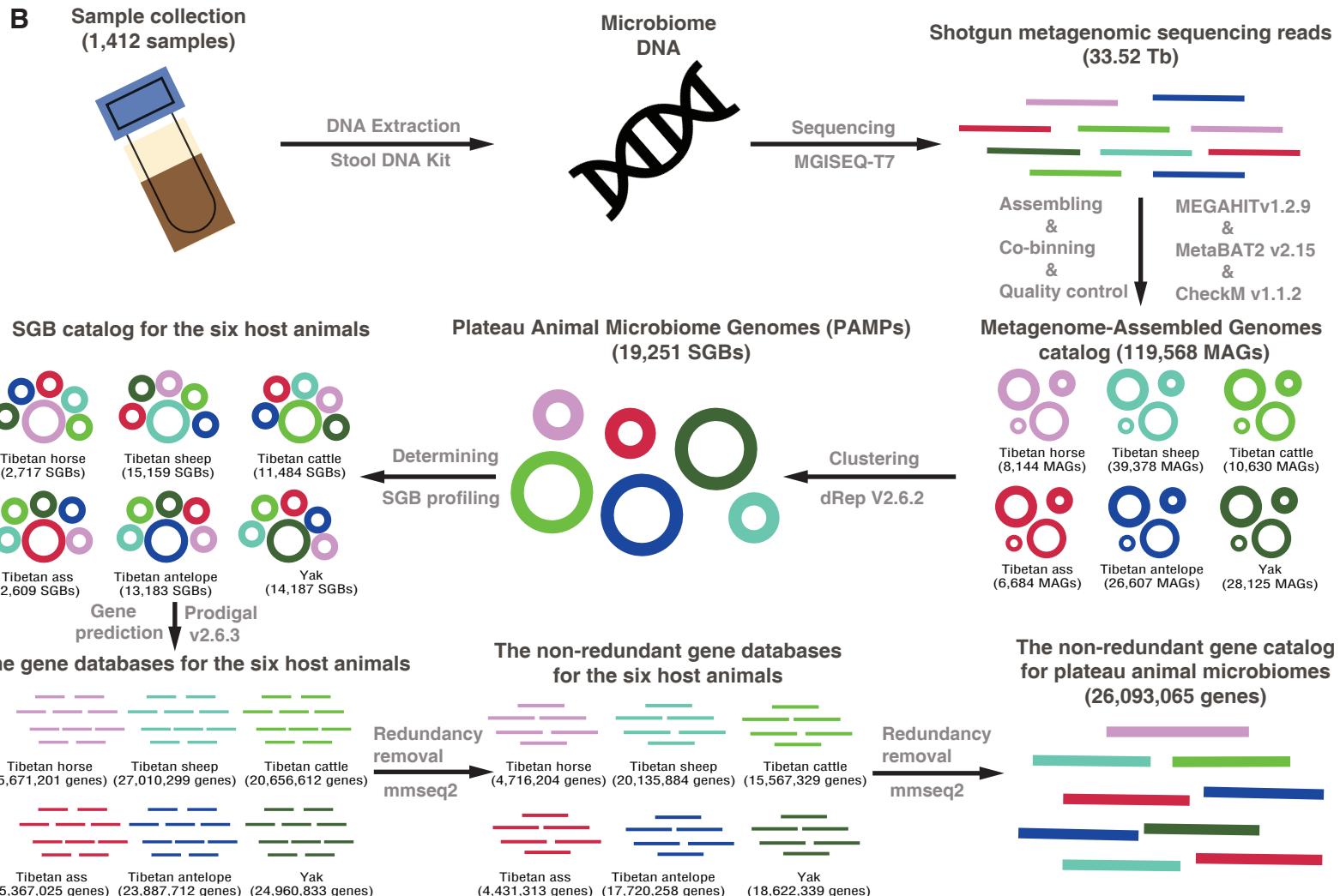
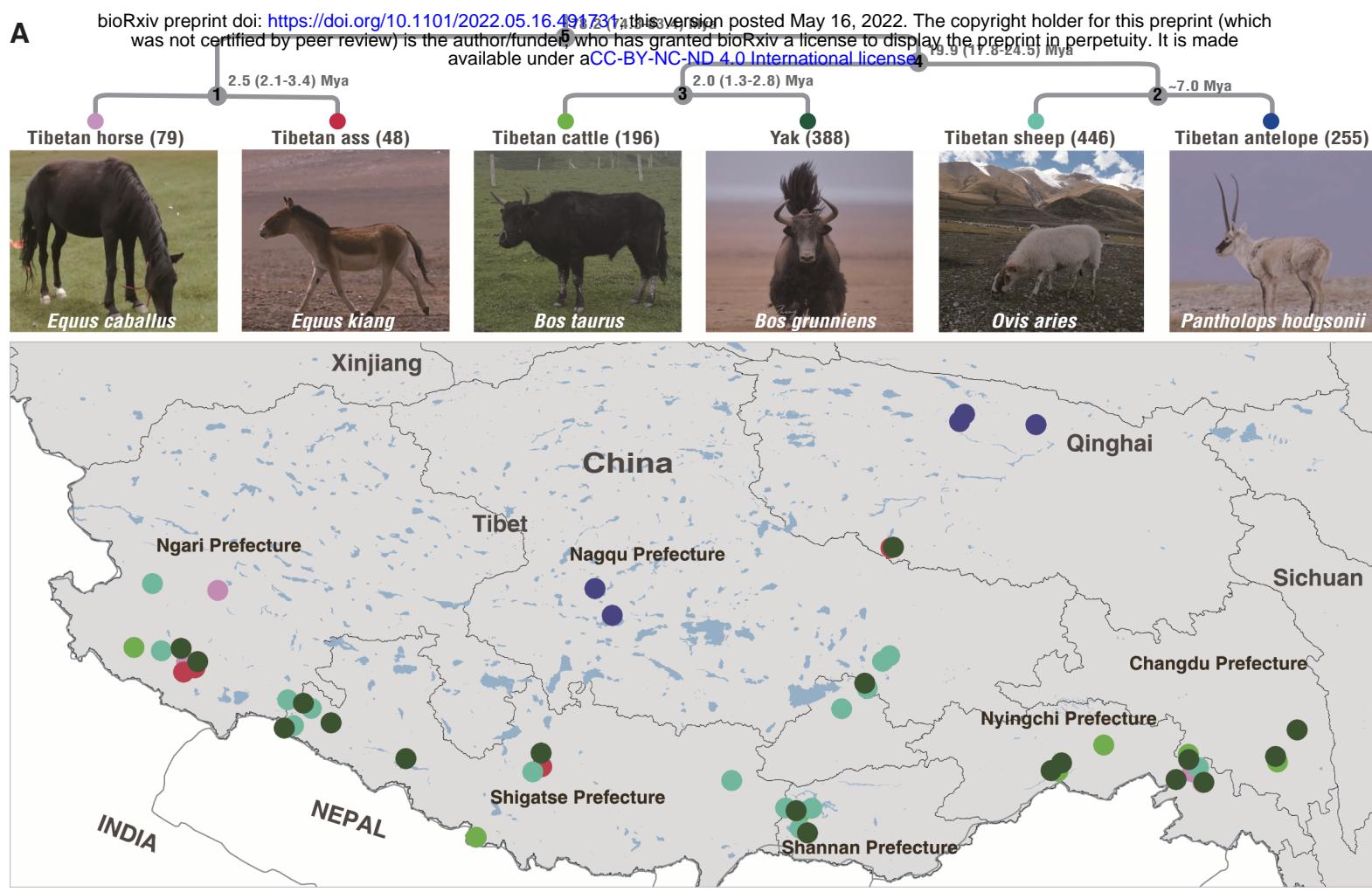
490 substrate utilization capacities or the metabolic. The solid circle represents the

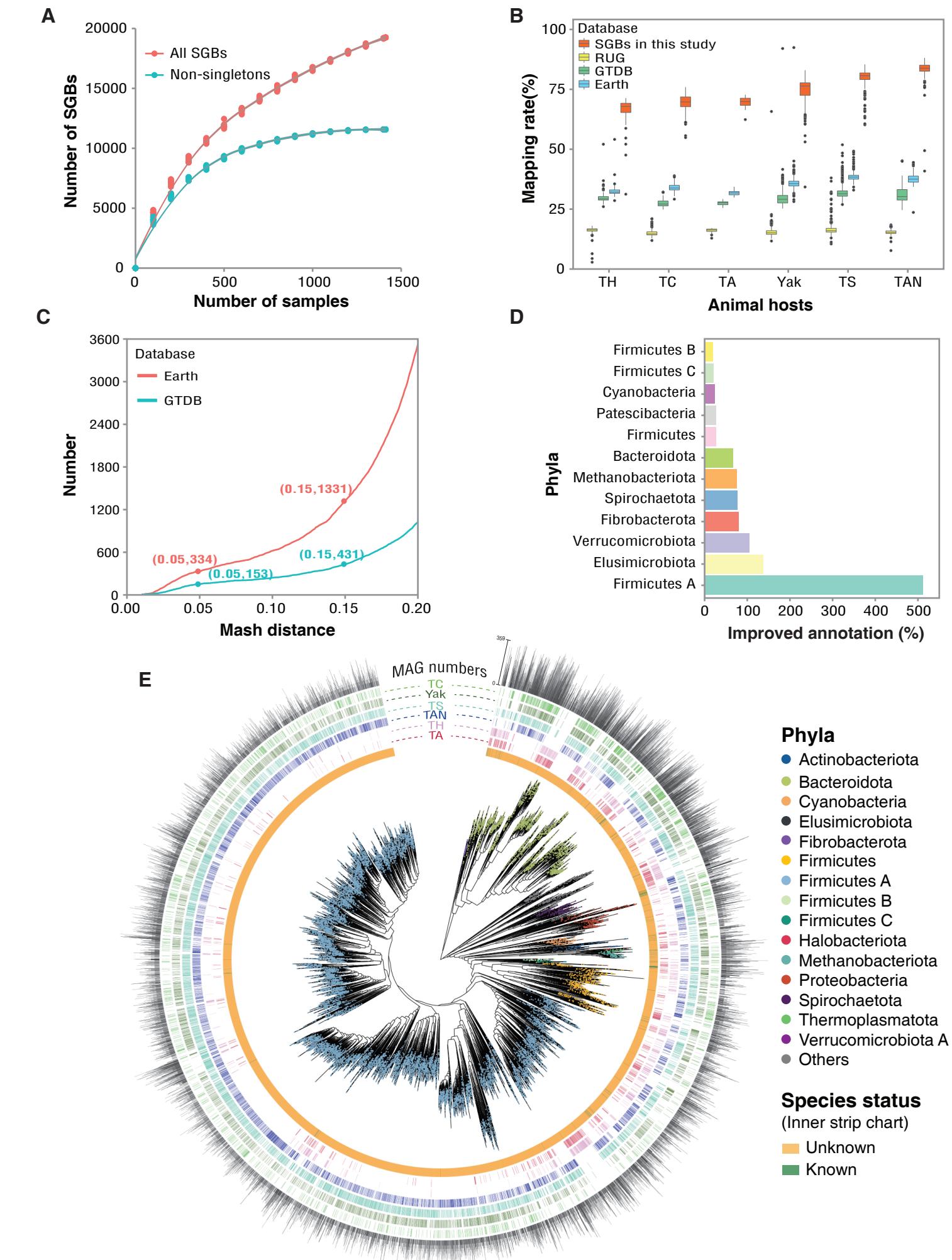
491 enriched animal host. The color scale from light to dark corresponds to the negative

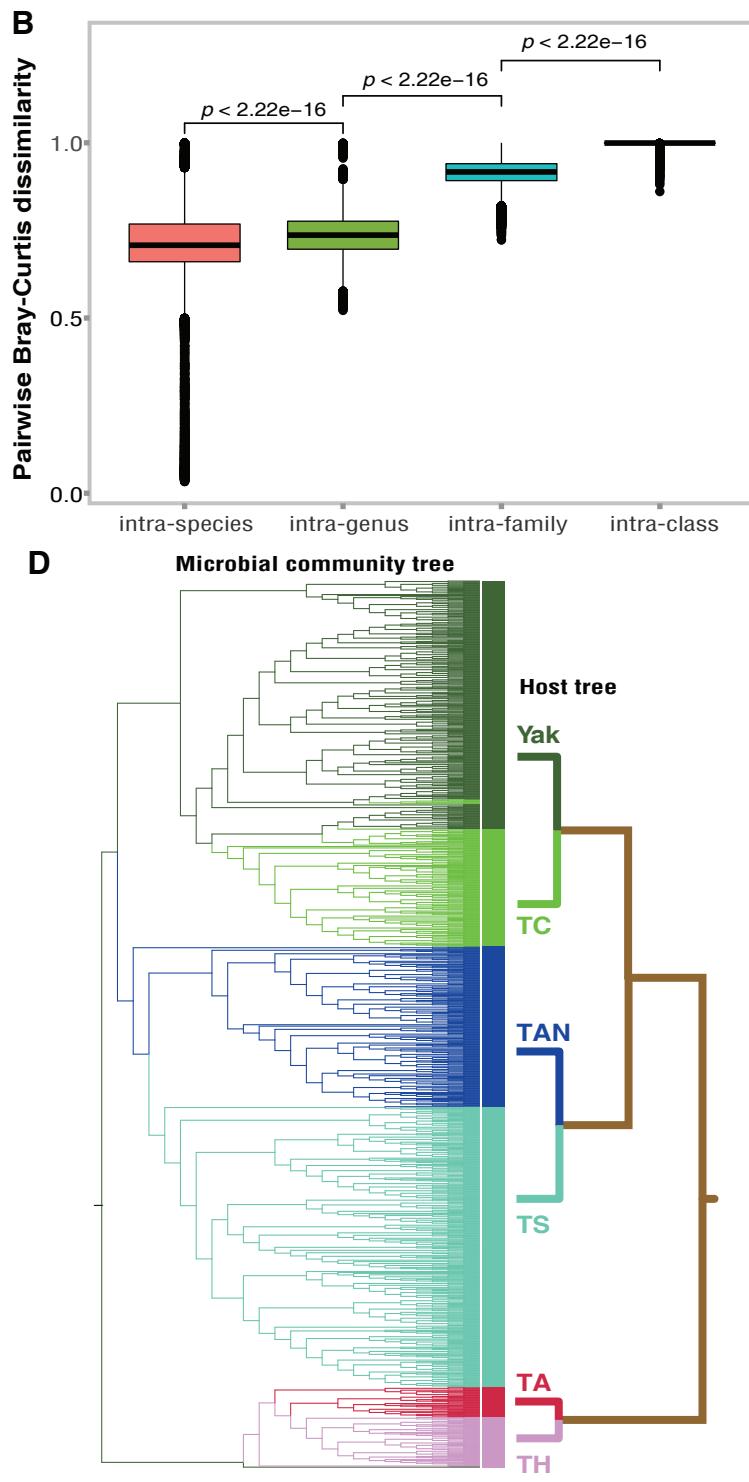
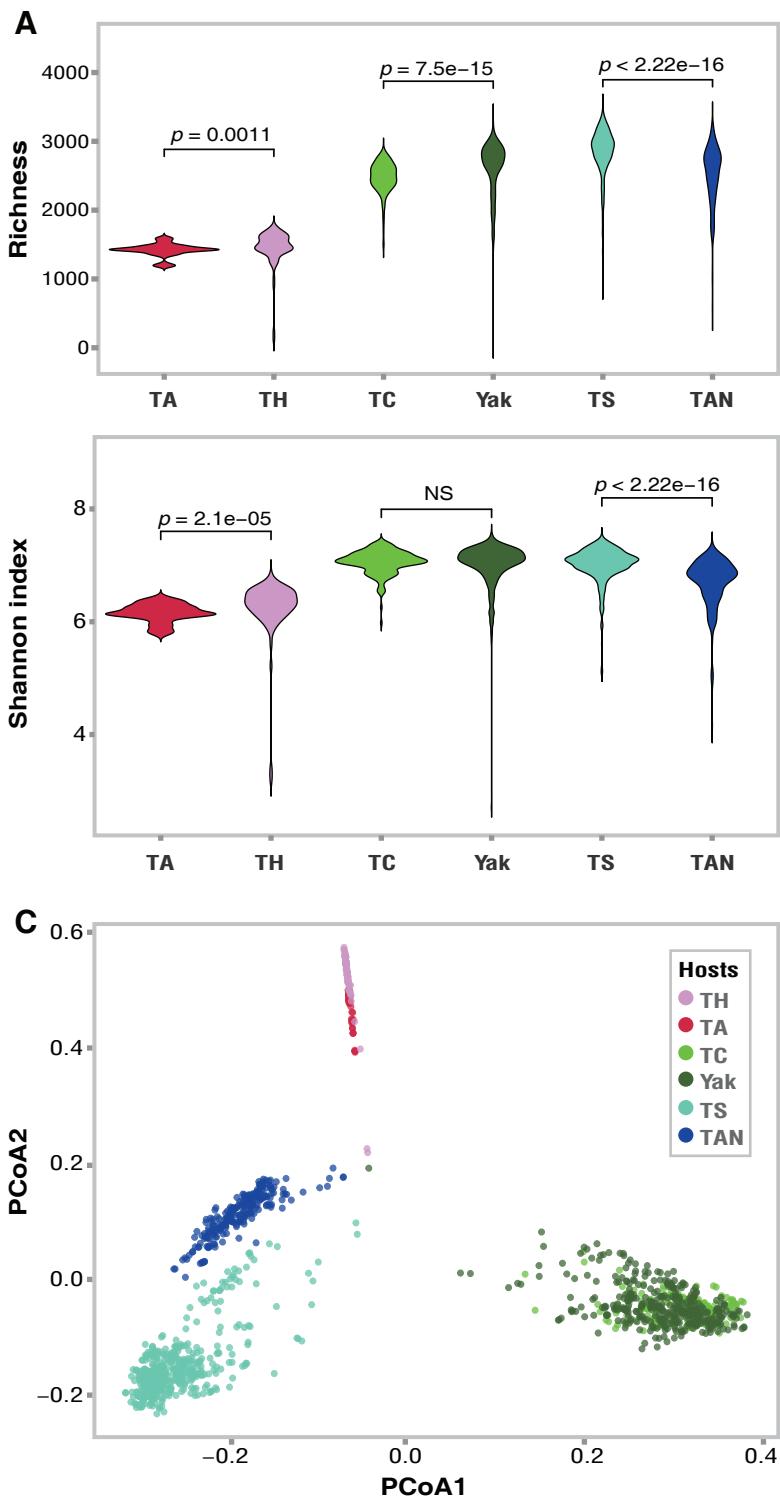
492 logarithm of FDR-adjusted P values (< 0.05) from low to high. The strips on the left

493 represent different functional pathway classifications. The pink strip indicates the

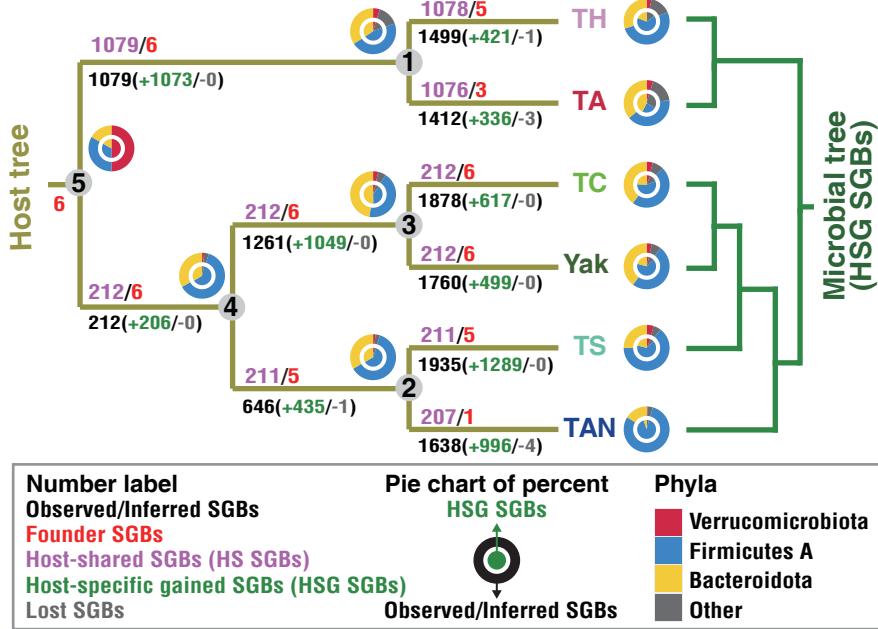
494 substrate utilization capacity based on the CAZy database annotation. The yellow



495 strips indicate pathway classifications based on KEGG database. The y-axis labels in


496 the middle of the figure indicate different substrate utilization capacities or pathways.



497 Blue colors indicate enrichment in at least 2 indigenous species and green colors

498 indicate enrichment in at least 2 late-migrated species.


Figure 1

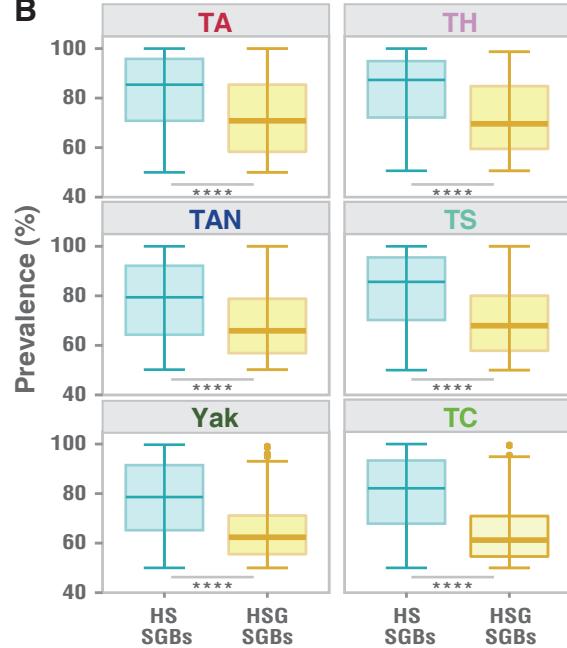
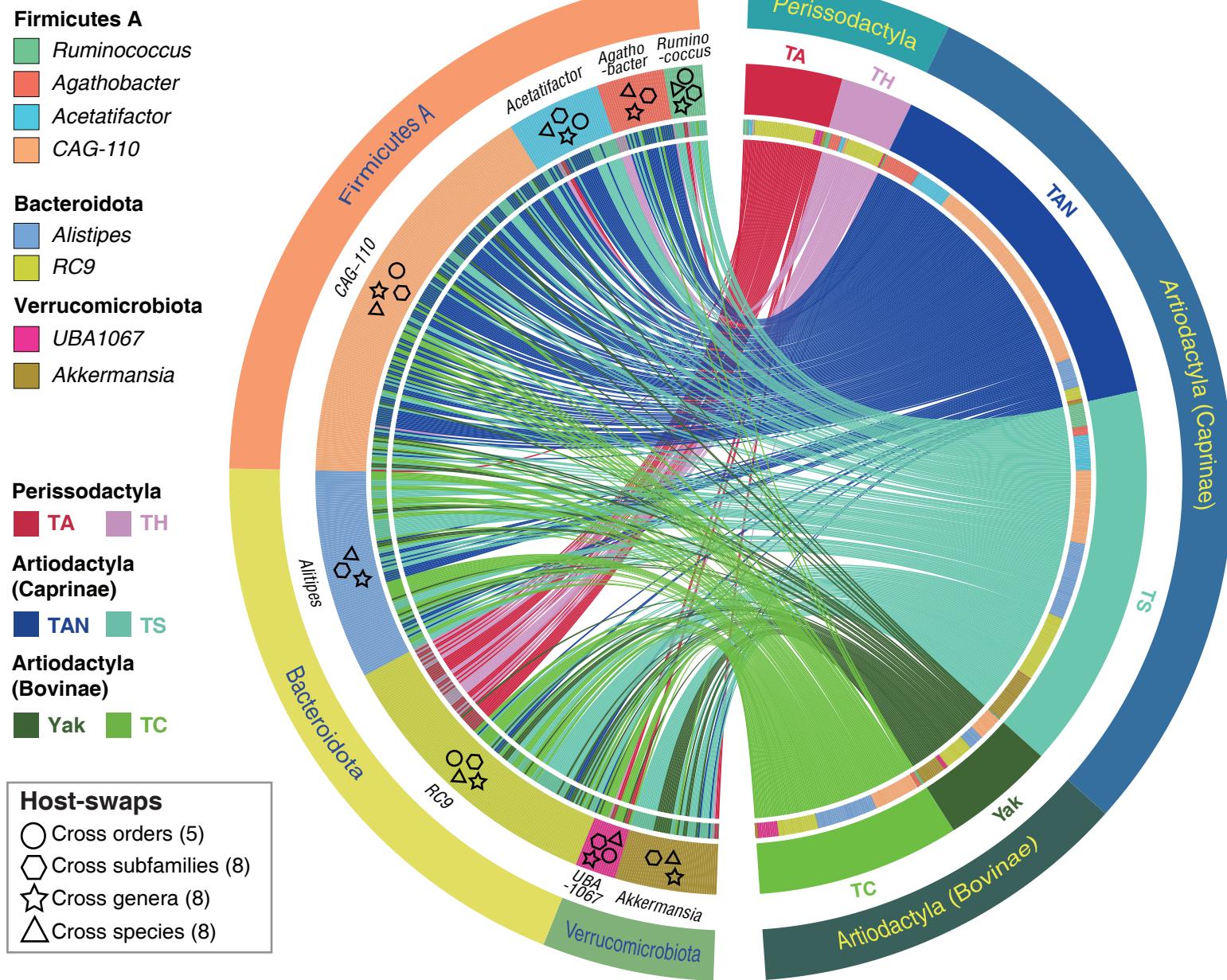
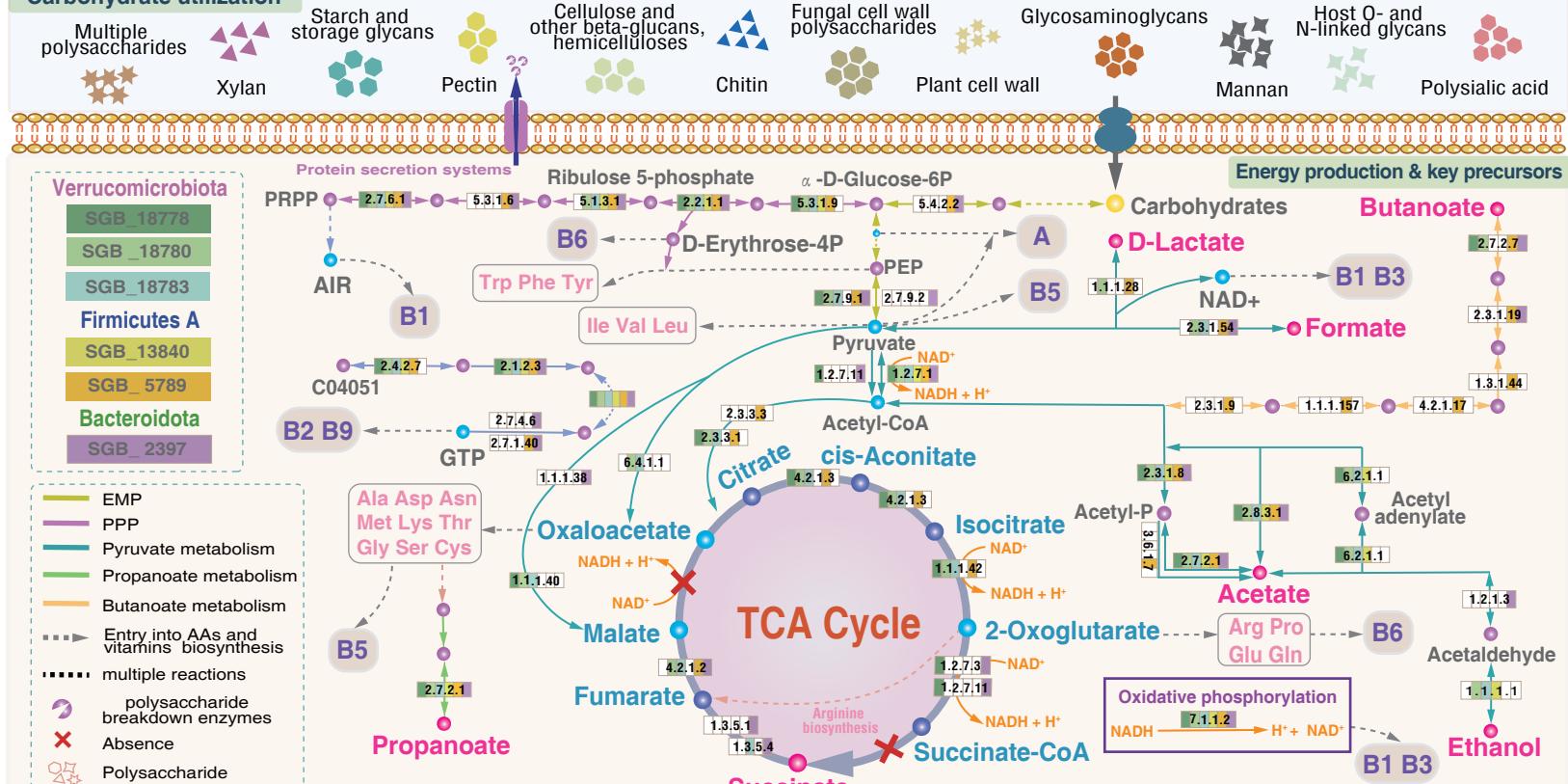


Figure 3

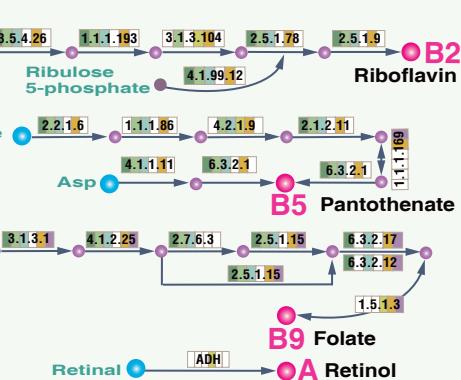

A

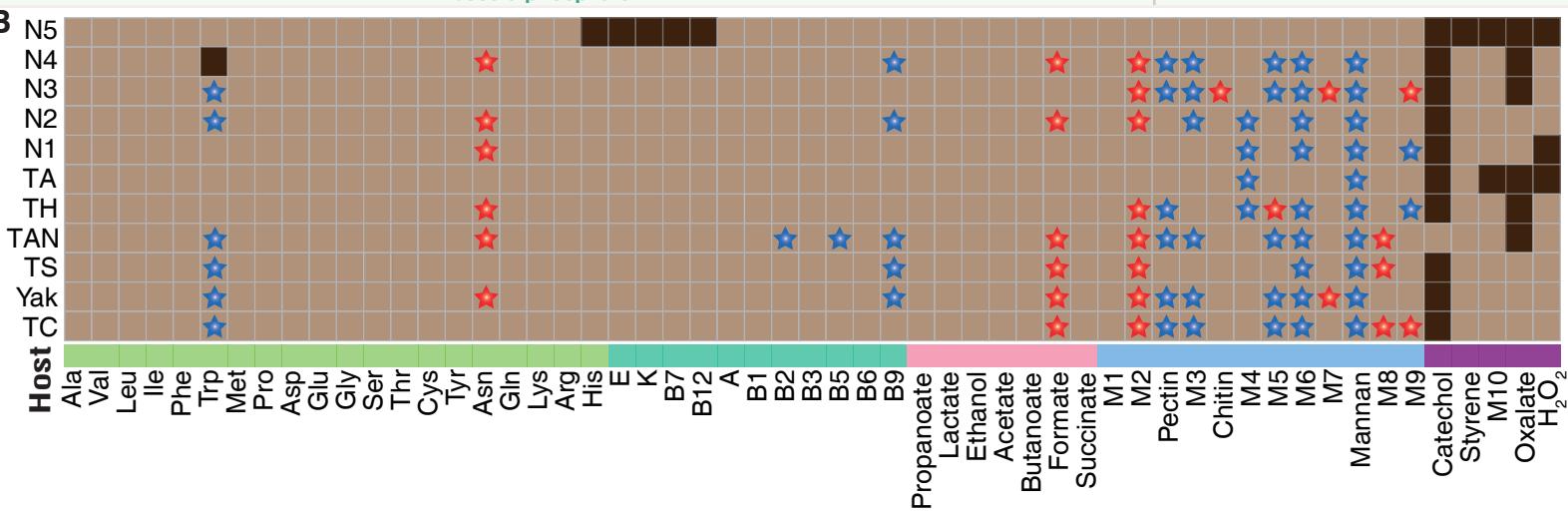
B

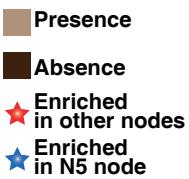


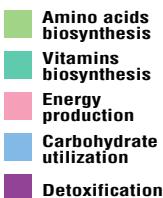
C

Figure 5 bioRxiv preprint doi: <https://doi.org/10.1101/2022.05.16.491731>; this version posted May 16, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).

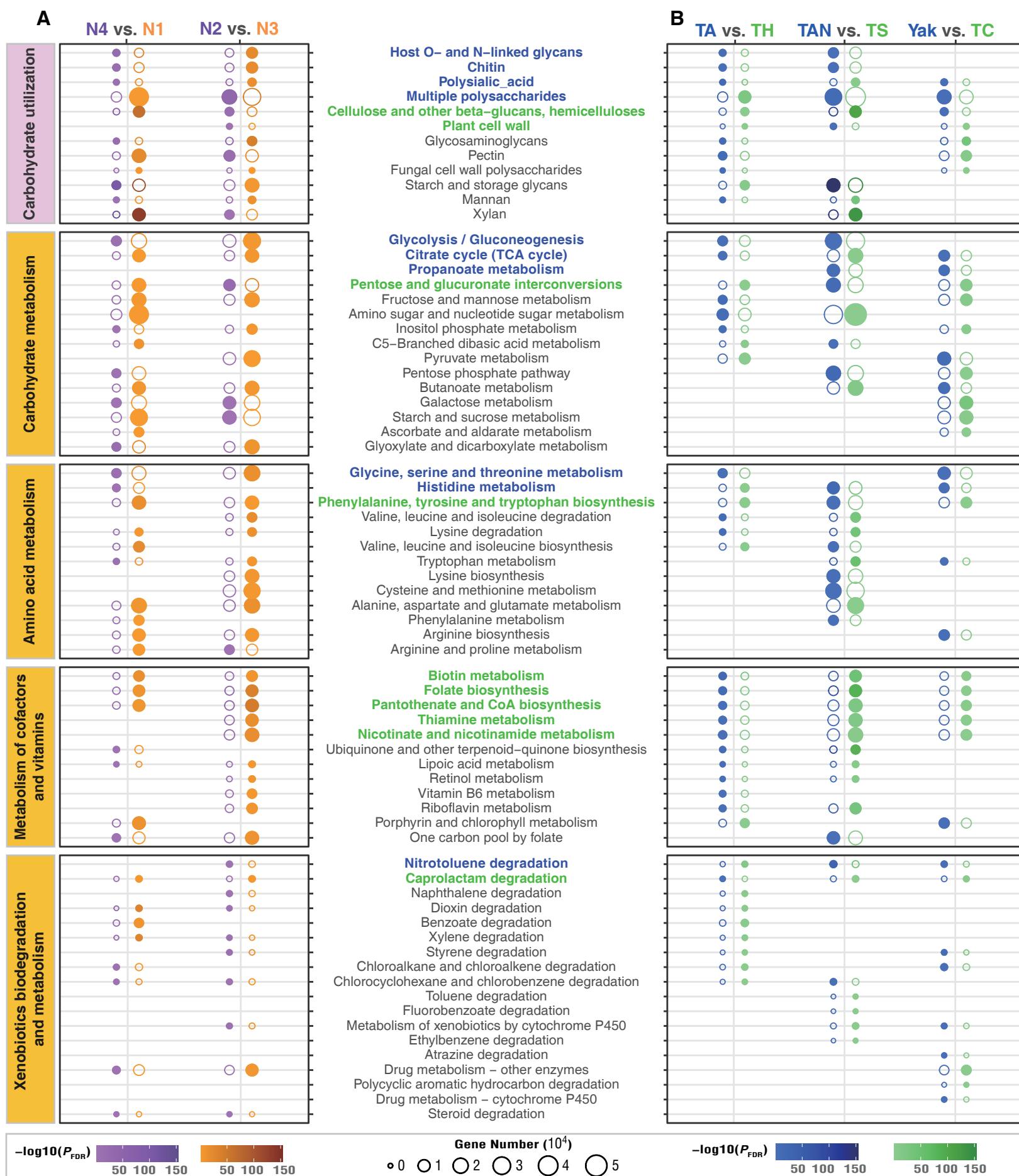

Carbohydrate utilization


Vitamin Biosynthesis


Amino Acids Biosynthesis


E

Host tree


Functional class

- M1:** Multiple polysaccharides
- M2:** Starch and storage glycans
- M3:** Xylan-xyloglucan
- M4:** Host O- and N-linked glycans
- M5:** Cellulose and other β -glucans, hemicelluloses

- M6:** Fungal cell wall polysaccharides
- M7:** Polysialic acid
- M8:** Plant cell wall
- M9:** Glycosaminoglycans
- M10:** Hydrogen cyanide

Figure 6

