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Abstract 1 

The gut microbiota is essential for host health and survival. Here, using samples 2 

from animals living in the Qinghai-Tibetan Plateau, we recovered 119,568 3 

metagenome-assembled genomes (MAGs) that were clustered into 19,251 4 

species-level genome bins (SGBs) of which most represent novel species. We 5 

present a novel mechanism shaping mammalian gut microbiomes using ancestral 6 

founder bacteria (AFB) as a core skeleton and recurring lineage-specific gains of 7 

microbial species that are transferred frequently among multiple hosts, not 8 

strictly limited by host phylogeny. Such lineage specific gains are responsible for 9 

increasing gut microbial diversity, maintaining functional stability, and 10 

endowing specific functions for host adaptions. Our analyses did not support the 11 

existence of co-phylogeny or co-speciation events between mammal hosts and 12 

their individual gut symbionts. The results presented in this study not only reveal 13 

novel unique gut microbial species and offer insight of value for understanding 14 

the diversity, stability, functionality of the mammalian gut microbiomes, and the 15 

co-evolution with their hosts, but also emphasize that animals living in extreme 16 

environments are a promising resource for the discovery of novel biological 17 

functions. 18 

The gut microbiota constitutes an essential functional unit of the mammalian body 19 

involved in nutrient utilization, immune development, and host survival in extreme 20 

environments (1-5). However, except for the gut microbiota of humans (6, 7), the 21 

diversity, stability, and functional traits of mammalian gut microbiomes and the 22 
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co-evolution with their hosts are poorly understood in part due to lack of 23 

comprehensive microbial reference genomes. Recently, 1,209 species-level genome 24 

bins (SGBs) were identified by analysis of the gut microbiota from 184 unique 25 

species representing five main groups of animals (8). Of these SGBs, 75% represented 26 

novel microbial species testifying to the still huge uncharted domains of the gut 27 

microbiota. Thus, in-depth investigation of the gut microbiota of diverse non-human 28 

mammals, including animals  living in extreme environments such as mammals 29 

living on the Qinghai-Tibetan Plateau is likely to uncover novel gut microbial species. 30 

The Qinghai-Tibetan Plateau, also termed “the third pole”(9), represents a natural 31 

laboratory for studying evolution and environmental changes (10) and can be 32 

considered as an evolutionary junction for the history of modern biodiversity (11) and 33 

ice age megaherbivores(12).  34 

Numerous studies have demonstrated the influence of host genetics on the gut 35 

microbiome (13), and vertical maternal-to-offspring transmission is key to maintain 36 

host-population-level stability of the gut microbiota (14-16). Further observations 37 

suggest that microbial community relationships parallel the phylogeny of their hosts, 38 

coined phylosymbiosis (17). Phylosymbiosis represents a simple ecological modeling 39 

of host filtering (18), with consequences that we can observe now, but phylosymbiosis 40 

is unable to explain the long-term co-evolutionary mechanisms and dynamics of the 41 

gut microbiota and their mammalian hosts (19). Few phylogenetic analyses have 42 

reported that co-speciation plays a predominant role in the co-evolution between 43 

mammals and their gut commensals, but the conclusions are tenuous, because 44 
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frequent horizontal gene transfer (HGT) events across prokaryotes cause an inaccurate 45 

estimation of their phylogenies that cannot be conquered by the limited phylogenetic 46 

information provided by analysis of partial 16S rRNA gene sequences or single-copy 47 

genes (20-24). Accordingly, whole microbial genome information is needed to 48 

improve analyses (25) and will be required to unravel the evolutionary dynamics of 49 

the gut microbiome’s function during host evolution. 50 

Here, we report results from metagenomic deep sequencing of fecal samples 51 

obtained from 1,412 individuals of six high-altitude herbivorous mammals belonging 52 

to the two sister orders Perissodactyla and Artiodactyla freely living on the 53 

Qinghai-Tibet Plateau. 54 

Results 55 

Recovering 119,568 microbial genomes from six non-human mammals 56 

A total of 1,412 fresh fecal samples were collected from six non-human mammals 57 

including Yak (388), Tibetan antelope (255), Tibetan cattle (196), Tibetan sheep (446), 58 

Tibetan horse (79) and Tibetan Ass (48) from the Qinghai-Tibet plateau (Fig. 1A and 59 

Supplementary Table 1). The animal hosts have a divergence time of ~ 78 Mya 60 

(million years ago) representing the divergence of the Perissodactyla and the 61 

Artiodactyla orders based on genome inferences (26-29). The integrated pipeline for 62 

constructing the bacterial genomes and gene catalogs is shown in Fig. 1B. After DNA 63 

extraction and whole genome sequencing, more than 2.23×1011 150 bp paired end 64 

reads were produced corresponding to a total of 33.55 Tb raw data (23.74±7.22Gb per 65 

sample) (Supplementary Text; Supplementary Table 2). To maximize assembly of 66 
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MAGs, we employed a co-binning strategy to reconstruct bacterial and archaeal 67 

genomes from microbial communities according to tetranucleotide frequency, and 68 

abundance correlations of contigs in multiple samples (Supplementary Methods). We 69 

evaluated this strategy on the 79 Tibetan horse samples with different multiple sample 70 

size settings (Supplementary Text; Supplementary Fig. 1). To standardize the genome 71 

quality across other sets, MAGs were retained with >50% genome completeness and 72 

<10% contamination, combined with an estimated quality score (QS) (= completeness 73 

-5 × contamination) > 50(30). Finally, we recalled a total of 119,568 MAGs from the 74 

six animal species, representing 39,278 MAGs from Sheep, 28,125 MAGs from Yak, 75 

10,630 MAGs from Cattle, 8,144 MAGs from Horse, 6,684 MAGs from Ass, and 76 

26,607 MAGs from Tibetan antelope. On average more than 90 MAGs were 77 

recovered per sample except for cattle (54) and yak (72). Of these MAGs, 34,977 78 

(29.25%) matched the high-quality genome criterion of >90% completeness and <5% 79 

contamination ( Supplementary Table 3 and Supplementary Text). 80 

Reconstructing a catalog of species-level microbial reference genomes from 81 

non-human mammalians 82 

According to a threshold of ≥ 95% ANI (30) (Supplementary Methods), we clustered 83 

all the MAGs obtaining a total of 19,251 SGBs (Supplementary Table 4). Among 84 

these, 7,652 (39.75%) met the criterion for a high-quality genome with the genome 85 

sizes ranging from 0.53Mb to 6.14Mb (Supplementary Fig. 2, A to C). About 60.13% 86 

of SGBs were supported by at least two conspecific genomes (non-singleton SGBs) 87 

(Supplementary Fig. 2D). Rarefaction analysis (Fig. 2A) indicated that the 88 
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non-singleton species were close to saturation, suggesting that most common 89 

microbes in the samples were recalled. We performed SGBs profiling of all 1,412 90 

samples (Supplementary Table 5) based on the relative abundances of species 91 

genomes in each sample (Supplementary Methods). A non-redundant gene catalog 92 

(26,093,065) was constructed based on the predicted 34,469,579 full length genes 93 

(Supplementary Methods, Supplementary Table 6). 94 

The Genome Taxonomy Database (GTDB release95)(31) was used to perform 95 

taxonomic annotations (Supplementary Methods). In total, 19,068 bacterial SGBs 96 

were identified, but only 142 (0.74%) SGBs were classified as known species, 97 

suggesting that our database represented a large number of unknown microbial 98 

species. Firmicute A (70.85%) and Bacteroidota (13.59%) were the dominant taxa of 99 

our SGBs (Supplementary Fig. 3A). We assembled 183 archaea genomes, all being 100 

clearly assigned to three phyla, Methanobacteriota, Thermoplasmatota and 101 

Halobacteriota (Supplementary Fig. 3B) and of these archaea genomes 172 (94%) 102 

represented novel archaea species. 103 

The average mapping rates of our samples to three databases including the GTDB 104 

(31), the Hungate collection (32), and Earth’s Microbiomes catalog (GEM)(33) were 105 

only 15.80%, 30.23% and 36.44%, respectively (Fig. 2B) (Supplementary Methods). 106 

These results pointed a remarkable large number of unknown species, also supported 107 

by the mash distance analysis (Fig. 2C). Using our database, the average mapping rate 108 

substantially increased by nearly 2-fold, reaching 76.58%, indicating that the 109 

sequencing depth of our samples was sufficient to cover the majority of the microbial 110 
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diversity in our samples. 111 

Many clades including some common phyla in the gut microbiome were largely 112 

expanded by our catalog. Compared with the most representative databases 113 

GTDB(31), 19,098 species (99.10% bacteria) were identified as novel species. The 114 

Firmicutes A, the dominant gut bacterial phylum, includes 2,636 species in the GTDB, 115 

compared to 13,509 assembled SGBs belonging to this phylum in our database. 116 

Except for 34 known bacterial species, our catalog harbors 13,475 novel species 117 

representing a more than 500% increase in annotation alone in this phylum. 118 

Interestingly, the order Oscillospirales, reported to be enriched in the herbivore gut 119 

microbiome (34, 35), contributed with 8,408 species reference genomes in our catalog, 120 

representing a 10-fold increasing compare to the reference genomes of this order in 121 

the GTDB. For two rare phyla, Elusimicrobiota and Verrucomicrobiota, the assembled 122 

SGBs also added a significant number of species in these two phyla (Fig. 2D and 123 

Supplementary Table 7). Finally, 18,607 SGBs covering more than 80 marker genes 124 

are displayed in the phylogenetic tree (Fig. 2E). 125 

Features and evolutionary dynamics of the gut microbiomes in the six host 126 

species 127 

The results (Supplementary Text; Fig. 3A-3C; Supplementary Fig. 4) from both 128 

alpha-diversity and beta-diversity measures consistently demonstrated that microbial 129 

communities largely recapitulate host phylogeny (Fig. 3D; Supplementary Fig. 5), 130 

which is compatible with the "Phylosymbiosis" hypothesis (17, 20). To further 131 

investigate how the gut microbial species co-evolve with their hosts, we performed an 132 
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ancestral microbiome reconstruction based on the core microbiome of the six animal 133 

hosts using the asymmetrical Wagner parsimony approach in the Count software 134 

(v.10.04)(36) as used previously (37). Our results clearly demonstrated the 135 

evolutionary dynamics of gut microbiomes along the host phylogeny, including the 136 

appearance of “ancestral” founder bacteria (AFB), the gain or loss of host-specific 137 

gained (HSG) SGBs, and host shared (HS) SGBs among the host species (Fig. 4A). 138 

Our predicted six AFBs belong to the bacterial phyla Firmicutes A, Bacteroidota, 139 

and Verrucomicrobiota at the last common ancestor node (N5) (~78 Mya) of the six 140 

host species. The lineage-specific gained SGBs were largely allocated to the three 141 

phyla indicated above, implying that these three phyla are representative phyla of the 142 

six animal hosts' gut microbiomes. Using the AFBs as the core skaffold, we found that 143 

a stable core gut microbiome of each host was finally formed by a recuring 144 

lineage-specific gain of the microbial species, which was further supported by the 145 

phylogenetic trees of SGBs from the three representative bacterial phyla 146 

(Supplementary Fig. 6). The HS SGBs definitely played a supportive role in the 147 

common ancestor node (N1, N2, N3, N4), and the HSG SGBs were acquired and 148 

retained in the same branch. For instance, CAG-110 from the Firmicutes A, RC9 from 149 

the Bacteroidota and Akkermansia from the Verrucomicrobiota. Notably, the 150 

prevalence of HS SGBs was significantly higher than that of HSG SGBs (Fig. 4B), 151 

which may be related to the role of HS SGBs, indicating different co-evolution 152 

patterns between the two types of SGBs and their hosts. The HS SGBs might be 153 

selected by their hosts sharing a similar conserved impact from environmental sources 154 
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(i.e., food, water, and habitat) or the close relatives of the hosts. The co-evolution or 155 

co-speciation between the HS SGBs and their hosts is impossible because the 156 

divergence times of the six animal species ranged from 2 to 78 Mya while the HS 157 

SGBs showed no host species-level divergence. 158 

Unlike the HS SGBs, we hypothesized that the HSG SGBs might show 159 

co-evolution or co-speciation with their current six host species. To test this, we 160 

reconstructed the phylogenetic trees of the HSG SGBs representing eight genera 161 

belonging to the three representative phyla and present in at least four animal hosts 162 

(Supplementary Table 8) (Fig. 4C and Supplementary Fig. 7). We found that the 163 

phylogenetic relationships among the SGBs of each bacterial genus were inconsistent 164 

with their host phylogeny, and events of swaps occurred frequently between the hosts 165 

of different species, genera, subfamilies, and even at the order level. Transfer events 166 

were quite obvious in Ruminococcus and Acetatifactor from Firmicutes A, and 167 

UBA1067 from Verrucomicrobiota (Supplementary Fig. 7B, D and H). Thus, 168 

topological relationships inferred from the SGB trees of eight bacterial genera did not 169 

support co-speciation patterns between mammalian species and their individual gut 170 

symbionts. Conversely, the gut microbial species can span host restrictions even 171 

beyond sister order levels. We built the phylogenetic trees of strains from two 172 

bacterial species (See Supplementary Methods) showing that strain selection was not 173 

restricted between the hosts of different subfamilies (Bovinae and Caprinae) 174 

(Supplementary Fig. 8 and Supplementary Table 9). However, this conclusion needs 175 

to be confirmed by adding more bacterial species in future studies. 176 
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Functional dynamics of the core gut microbiomes across six non-human 177 

mammals 178 

We performed a comprehensive investigation of the metabolic capacities of the 6 179 

AFBs based on annotation using CAZy and KEGG databases (Methods) 180 

(Supplementary Table 10). We found that the AFBs had the ability to utilize 12 181 

common types of carbohydrates, including cellulose, hemicelluloses. The AFBs also 182 

have the potential for synthesizing acetate, propanoate, butanoate, lactate, 19 essential 183 

amino acids (AA) (except histidine), and 7 vitamins, A, B1, B2, B3, B5, B6 and B9 184 

(Fig. 5A and Supplementary Fig. 9). These results suggest that the six AFBs core 185 

founder may play a role for host survival. 186 

To examine the evolutionary functional dynamics along host phylogeny, the functions 187 

of the HS and HSG SGBs in relation to these five core functional classes including 188 

carbohydrate utilization, energy production, amino acid biosynthesis, vitamin 189 

biosynthesis, and detoxification were surveyed. We found that the functions donated 190 

by most of the HS and HSG SGBs to a large extent overlapped with those of the 191 

AFBs (Fig. 5B and Supplementary Fig. 10). A few new functions were present at 192 

other host nodes including the biosynthesis of histidine (N4), four vitamins (E, K, B7 193 

and B12), and the potential degradation of styrene possibly derived from plant. Only 194 

in one case, HSG SGBs at the N4 node (the common ancestor of Bovinae and 195 

Caprinae) lost the ability to synthesize tryptophan exhibiting a decreasing trend along 196 

this branch.  Furthermore, our enrichment analyses revealed that there was no 197 

significant difference in functional enrichment between AFBs and HSG SGBs in most 198 
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terms of biosynthetic ability. Overall, our results suggested that the HSG SGBs maybe 199 

contributed to maintaining the stability of the functions of the AFBs on these core 200 

functional classes.  201 

Our results (Fig. 6) also revealed that the HSG SGBs exhibited significant 202 

functional divergences in relation to carbohydrate utilization and main metabolic 203 

pathways between N1 vs. N4 (~78 Mya), N2 vs. N3 (~20 Mya), or the comparisons 204 

among related host species (TA vs. TH, TAN vs. TS and Yak vs. TC). With four 205 

exceptions, tyrosine metabolism, aminobenzoate degradation, bispenol degradation, 206 

and furfural degradation, significant functional divergences were observed among 207 

carbohydrate utilization and metabolic pathways in four KEGG functional categories 208 

that may be related to the evolutionary adaptation of each host (Fig. 6; Supplementary 209 

Fig. 11; Supplementary Table 12).  210 

We investigated the differences at the functional level between 211 

long-term-adaptation and short-term-adaptation of the host species and pathway 212 

enrichment (Fig. 6B). These analyses revealed that multiple metabolic pathways were 213 

consistently enriched in the two indigenous plateau artiodactyla mammals, such as the 214 

‘multiple polysaccharides’ in carbohydrate utilization, ‘propanoate metabolism’, 215 

‘histidine metabolism’ and ‘nitrotoluence degradation’ pathways. In addition, 216 

convergent enrichments of pathways were also observed in two short-term adapted 217 

artiodactyla mammals, such as five pathways involved in metabolism of cofactors and 218 

vitamins,  and the caprolactam degradation pathway. We also found host-specific 219 

enrichment of metabolic pathways provided by the HSG SGBs. For example, the 220 
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pathways involved in arginine biosynthesis were only enriched in yak. The pathway 221 

‘vitamin B6 metabolism only appeared in Tibetan Ass. Similarly, lysine biosynthesis, 222 

cysteine and methionine metabolism, and phenylalanine metabolism were unique for 223 

Tibetan Antelope.  224 

Discussion 225 

We present a large de novo microbial genome assembly from metagenomic data 226 

providing 19,251 gut microbial species-level reference genomes derived from six 227 

non-human mammals of the Qinghai-Tibet Plateau. Of these species > 99% are 228 

unknown, thus expanding the known phylogenetic diversity of bacteria and archaea 229 

by 62.40% and 10.29%, respectively, compared with the GTDB database (31). Over 230 

the past two decades, large-scale studies of the human gut microbiome have provided 231 

a comprehensive catalog of human gut microbial species reference genomes 232 

comprising 204,938 non-redundant genomes from 4,644 gut prokaryotes of which 233 

more than 70% lack cultured representatives (7). The Earth’s microbiomes project 234 

(EMP) discovered 52,515 MAGs representing 12,556 novel candidate species 235 

spanning 135 phyla expanding the known phylogenetic diversity of bacteria and 236 

archaea (33). Even though 1,209 SGBs (75% unknown) was recently unveiled from 237 

406 fecal samples from 184 animal species (8), we discovered unexpectedly a large 238 

number of novel bacterial and archaeal genomes ornamenting the first blueprint of gut 239 

microbiomes of native mammals at the third pole(9), implying that previous global 240 

research greatly has underestimated the (gut) microbial diversity in non-human 241 

mammals, and a considerable number of unknown microbial species still need to be 242 
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uncovered by global efforts to elucidate their biological roles in various 243 

environmental niches. 244 

Despite our findings to a certain extent supported the notion that gut microbial 245 

community relationships parallel the phylogeny of their hosts, coined 246 

phylosymbiosis(19, 38), our whole-genome-level phylogenetic analyses revealed that 247 

lineage-specifically gained microbial species were frequently transferred across host 248 

species, genus, subfamily, and even order levels. These findings, like previous studies, 249 

did not support the existence of co-phylogeny or co-speciation events between 250 

mammal hosts and their gut individual symbionts (13-16). This discrepancy is 251 

probably mainly due to the low resolution and likely lateral transfers of partial 16S 252 

rRNA genes (20) or single-copy marker genes(21) compared with the whole-genome 253 

phylogenetic analysis for accurately obtaining phylogenetic relationships among gut 254 

microbial species. Similarly, many previous theoretical and experimental studies 255 

demonstrated that short-term dynamics can foster parasite specialization, but that 256 

these events can occur following host shifts and do not necessarily involve 257 

co-speciation, as well as coevolutionary dynamics of hosts and parasites do not favor 258 

long-term cospeciation (38).  259 

Our study enables a glimpse into diverse functional traits of mammalian gut 260 

microbiomes. We obtained a huge non-redundant gene catalog containing 26,093,065 261 

genes, among which 82.53% and 66.43% were annotated by the Nr database and 262 

KEGG database, respectively. Additionally, from 3888 (69.34%) of 5607 SGBs of the 263 

three core bacterial phyla (Firmicute A, Bacteroidota, and Verrucomicrobiota), we 264 
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identified a total of 9,221 biosynthetic gene clusters (BGCs) (consisting of 130,098 265 

intact CDSs or genes), 9,218 of which could be assigned into 60 known BGC types 266 

(Supplementary Fig. 12 and Supplementary Table 13), mostly involved in the 267 

biosynthesis of many secondary metabolites like carotenoid affecting host physiology 268 

or health. These findings suggest our assembled SGBs also represent a large natural 269 

gene pool which requires further exploration. 270 

Lineage-specific gained microbial species might endow host adaptation to 271 

hypoxia environment. Tibetan ass, Tibetan antelope, and yak that have long-term 272 

adaptation to hypoxia (39, 40) and some of the enriched metabolic pathway may assist. 273 

Thus, vitamins B6, B12, folate, and choline are reported to elicit combined 274 

neuroprotective effects on the brain against hypoxia (41). Riboflavin requirement is 275 

increased under acute hypoxic conditions and its supplementation can improve energy 276 

metabolism (42). Cysteine supplementation allows the body to respond to and adapt 277 

to hypoxic situations more quickly (43). Overall, these findings provided indirect 278 

support for the hypothesis that the distinct gut microbiomes found in high-altitude 279 

mammals may be linked to high-altitude hypoxia adaption. More research will be 280 

needed to better understand the biological significance of these discoveries. 281 
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Figure Legends 422 

Figure 1. Sample collection and the pipeline for data retrieval. (A) The 423 

phylogenetic tree of six host animal species living in the Qinghai-Tibet Plateau and 424 

geographical distribution of collected fecal samples. (B) The pipeline for constructing 425 

the non-redundant genome catalog and gene catalog of the non-human mammalian 426 

gut microbiomes. 427 

Figure 2. The characteristics and phylogenetic tree of our non-human 428 

mammalians microbial reference genomes dataset (A) Rarefaction curve depicting 429 

the species diversity assessment of 19,251 SGBs obtained from all 1,412 samples. 430 

The curves for all SGBs (red line) and the non-singleton SGBs (blue line) were 431 

created by randomly re-sampling the pool of 1,412 samples 10 times with 100 432 

sampling intervals. (B) The mapping rate of metagenomic reads from the six host 433 

animals against our genome database and other three public reference databases. (C) 434 

The distribution of mash distances among our identified species and other known 435 

species released by the Genome Taxonomy database (GTDB 05-RS95) and Earth 436 

Microbiome Project (33). The number of SGB for which mash distance is less than 437 

0.05 and 0.15 is listed in the brackets. (D) The expansion of microbial species 438 

diversity at the phylum level using the GTDB database (31) as the reference. (E) The 439 

phylogenetic tree of our SGBs was built based on alignment of more than 80 440 
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microbial maker genes using the PhyloPhlAn software (See Supplementary Methods) 441 

using the default parameters. The 18,607 SGBs containing more than 80 marker genes 442 

are shown in the tree. The color of the branches indicates the classification 443 

information (See the detailed classification information in Supplementary Table 7). 444 

The inner strip shows whether an SGB is unknown (novel identified) or known. The 445 

next six strip charts display those SGBs appearing in each of the six host animal gut 446 

microbiomes. The outer strip chart shows the MAGs number that supports the SGBs. 447 

Figure 3. Gut microbial diversity features of the six animals host species. (A) 448 

Alpha diversity differences are shown by the microbial richness and Shannon index of 449 

the gut microbiomes of the six host animals. (B) Statistical comparison of pairwise 450 

Bray-Curtis dissimilarity of paired samples within the different taxonomic ranks for 451 

the six host animals. (C) PCoA plotting based on Bray-Curtis dissimilarity shows a 452 

distinct separation of gut microbial community structures among the six host animals. 453 

(D) The microbial community tree constructed by the Bray-Curtis dissimilarity shows 454 

the phylosymbiosis pattern with the host tree. 455 

Figure 4. Evolutionary dynamics of gut core microbiomes. (A) Parsimony-inferred 456 

shifts of core gut microbiomes based on the phylogenetic relationships of host animals. 457 

The numbers on the branch stand for the SGB number of the node. The pie figure 458 

shows the microbial species composition of the node at the phylum level. Inner is for 459 

the gained SGBs and outer is for the present SGBs. The right microbial community 460 

tree was built based on specifically-gained microbial species by the six hosts, which 461 

indicates the evolutionary dynamics of gut microbial communities. HSG: 462 
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Host-specific gained; HS: Host shared. (B) The difference of occurrence frequency by 463 

samples between host-shared and host-specific gained SGBs. (C) Circos 464 

representation of microbial species swapped among the six hosts. The left shows the 465 

SGBs from the eight core genera, and their phyla classifications are marked in the 466 

outer ring. The length of the ring indicates the number of the SGBs. All SGBs are 467 

sorted according to the leaf order of the SGB trees described in Supplementary Fig.7. 468 

The right is the host information. The lines in the center connect the SGBs and hosts, 469 

indicating microbial swaps among hosts shown in Supplementary Fig.7. The counts of 470 

genera with host swaps are shown in parentheses. 471 

Figure 5. Functional profiling of six founder bacteria. (A) The major metabolic 472 

capacity of the six AFBs in relation to carbohydrate utilization, energy production & 473 

key precursors, amino acid biosynthesis, and vitamin biosynthesis. If the enzymes 474 

from the six AFBs can form at least one complete reaction chain, the product can 475 

theoretically be synthesized by the AFBs. (B) Heatmap for presence/absence and 476 

enrichment of gained SGBs of nodes compared with AFBs. Different colors indicate 477 

functional categories such as amino acid biosynthesis, vitamin biosynthesis, energy 478 

production, carbohydrate utilization, and detoxification, respectively (Supplementary 479 

Fig.9A, 9B, and 10). 480 

Figure 6. The functional divergence of gained SGBs among key evolutionary 481 

nodes. (A) Functional enrichment analysis among internal evolution nodes, including 482 

those between Perissodactyla (N1) and Artiodactyla (N4), Bovinae (N3) and Caprinae 483 

(N2). The size of the circle represents the number of genes in the substrate utilization 484 
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capacities or the metabolic pathways. The solid circle represents the enriched node. 485 

The color scale from light to dark corresponds to the negative logarithm of false 486 

discovery rate (FDR)-adjusted P values (<0.05) from low to high. (B) Comparison of 487 

the enrichment of gut microbial functions between plateau indigenous species and 488 

late-migratory species. The size of the circle represents the number of genes in the 489 

substrate utilization capacities or the metabolic. The solid circle represents the 490 

enriched animal host. The color scale from light to dark corresponds to the negative 491 

logarithm of FDR-adjusted P values (< 0.05) from low to high. The strips on the left 492 

represent different functional pathway classifications. The pink strip indicates the 493 

substrate utilization capacity based on the CAZy database annotation. The yellow 494 

strips indicate pathway classifications based on KEGG database. The y-axis labels in 495 

the middle of the figure indicate different substrate utilization capacities or pathways. 496 

Blue colors indicate enrichment in at least 2 indigenous species and green colors 497 

indicate enrichment in at least 2 late-migrated species. 498 
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