

1 **Female factors are important for the seminal Sex Peptide's association with sperm in**
2 **mated *D. melanogaster*.**

3 Snigdha Misra^{1,2}, Akanksha Singh^{1,2}, Mariana F. Wolfner^{1*}

4 5: Department of Molecular Biology and Genetics, Cornell University, Ithaca NY-14853, USA

7
8
9 *Corresponding author
10 Email: mfw5@cornell.edu

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 Keywords: seminal proteins, female reproductive tract, sperm binding, sperm storage,
33 fertility, male-female interaction, *Drosophila*

34
35
36 ²Present addresses:

37 SM: School of Health Sciences and Technology, University of Petroleum and Energy Studies,
38 Dehradun, UK India

39 AS: Laboratory of Systems Genetics, National Heart Lung and Blood Institute, Bethesda, MD
40 USA

43 **Abstract**

44 **Background:** Male-derived seminal fluid proteins (SFPs) enter and induce a myriad of
45 physiological and behavioral changes in mated female flies optimizing fertility. Many post-
46 mating changes in female *Drosophila melanogaster* persist for ~10-14 days, because the
47 seminal protein that induces them, Sex Peptide (SP), is retained long-term in females by
48 binding to sperm, with gradual release of its active domain from sperm. Several other
49 “long-term response SFPs” (LTR-SFPs) “prime” sperm to bind SP. Whether female factors
50 play a role in this process is unknown, though it is important to study both sexes for a
51 comprehensive physiological understanding of this reproductive process and for
52 consideration in models of sexual conflict.

53 **Results:** We report here that sperm in male ejaculates bind SP more weakly than sperm
54 that have entered females, and that the amount of SP and other SFPs bound to sperm
55 increases with time and transit of individual seminal proteins within the female
56 reproductive tract. Thus, female contributions are needed for maximal and appropriate
57 binding of SP, and other SFPs, to sperm. Towards understanding the molecular roles of the
58 female, we found no dramatic change in pH of the female reproductive tract after mating
59 and that initial binding of SP to sperm is normal in females with ablated or defective
60 spermathecal secretory cells and/or parovaria, but that higher levels of SP (and sperm) are
61 retained in the latter females.

62 **Conclusion:** This study reveals that the SP pathway is not entirely male-biased and that
63 females also contribute to regulating it.

64

65

66

67

68 **Background**

69 Molecular interactions between the male's seminal proteins (SFPs), sperm, and the female's
70 reproductive tract (FRT) are fundamental to successful reproduction [1–4]. For example, in
71 *Drosophila melanogaster*, SFPs derived from glandular tissues of the male's reproductive tract
72 induce ovulation (ovulin [5]) or participate in the formation of the mating plug (Acp36DE, pEBme,
73 pEBII; [6–8]) within the reproductive tract, as well having a variety of other systemic effects [9–13].

74 In addition, several *Drosophila* SFPs associate with sperm [4,14,15]. One sperm-associated SFP, Sex
75 Peptide (SP), is retained in the female long-term due to its association with sperm [16]. SP's active
76 C-terminal region is gradually released from sperm by trypsin cleavage, and induces long-term
77 post-mating responses such as increased egg production and decreased receptivity to remating
78 [17–20].

79 Previous studies have shown that SP's binding to sperm requires several other SFPs, acting in a
80 network (the “long-term response (LTR) network” [3,4]). Two SFPs in this network (Seminase,
81 CG17575; [21,22]) facilitate the binding of other SFPs to sperm, but do not themselves bind sperm.

82 Other SFPs in the network (CG1656 [lectin-46Ca], CG1652 [lectin-46Cb], CG9997, Antares;
83 [14,15,23]) bind to sperm transiently; their action is thought to “prime” sperm to retain SP.
84 However, thus far all molecules known to promote SP binding to sperm have been male-derived
85 SFPs. Although some female proteins, such as Fra mauro, Hadley, Esp, and Sex Peptide Receptor
86 (SPR) are known to be necessary for SP-induced post-mating responses, their action is downstream
87 of the binding of SP to sperm [24–28].

88 It was unknown whether the female also contributes to the binding of SP to sperm, but several
89 recent findings suggest the importance of testing this possibility. First, the molecular composition

90 of sperm changes within the mated female, by the association of multiple female-derived proteins
91 with sperm ([29–32]); such female proteins would be in a position to affect SP's binding to sperm.
92 Second, female molecules play roles in modification (cleavage) of some SFPs in *D. melanogaster*
93 [33], and in the proteolytic dissolution of the mating plug in cabbage-white butterflies [34], again
94 indicating that FRT proteins can have direct effects on SFPs and their molecular milieu. Third,
95 active involvement by females in relative paternity proportions following mating with two males
96 suggests that female molecules or cells can interact with ejaculate components (at least, sperm)
97 [35–37].

98 Therefore, here we tested whether female contributions affect the binding of SP, and other
99 SFPs, to sperm. We found that levels of sperm-bound SFPs are weak or undetectable in the
100 male ejaculate, but sperm-binding by SFPs, including SP, becomes detectable (or increases)
101 after ejaculate enters the female. The pattern and the signal intensity of binding of
102 individual SFPs to sperm differ temporally and spatially within the FRT. This increase in
103 their signal intensity level indicates that female components must play a role in priming
104 sperm to bind SP. Our investigations took two different approaches to identify the nature
105 or source of female molecules that facilitate SFP-sperm binding. First, we found no
106 dramatic change in the pH of the female reproductive tract after mating, in contrast to the
107 situation in humans, but similar to what has been reported for other non-human
108 mammalian models such as mice [38]. Second, upon disabling two secretory tissues in the
109 FRT (spermathecal secretory cells (SSCs) and parovaria; [39–41]) we observed no dramatic
110 effects on initial binding of SP to sperm. However, loss of secretions from SSCs resulted in
111 the retention of sperm-associated SP, long term (4d after the start of mating (ASM)).

112 Our finding that females, as well as males, contribute molecules needed to bind SFPs to
113 sperm and to cleave SP's active region from sperm has implications for understanding the
114 molecular cooperation between the sexes that leads to optimal fertility, as well as for
115 models of sexual conflict, and motivates future studies to identify these female players.

116

117 **Results:**

118 **1. Sex Peptide binds sperm weakly in the male ejaculate but its binding increases within**
119 **the female bursa and seminal receptacle**

120 To test whether female factor(s) (molecule(s) or environment) affect the binding of SP to
121 sperm, we compared the signal intensity of anti-SP staining on sperm before (in male
122 ejaculate) and after mating (in female bursa [uterus] and seminal receptacle). We
123 reasoned that if the signal intensity in the male ejaculate did not change after mating, this
124 would mean that components of the male ejaculate are sufficient to fully facilitate SP-
125 sperm binding without requiring female factor(s).

126 We isolated sperm from ejaculates exuded by males (Eja; 0 min), sperm in the mated
127 female's bursa (35 min after the start of mating; ASM) or stored in her seminal receptacle
128 (SR; 2 hrs ASM). The amount of SP bound to sperm was determined by quantifying the
129 signal intensity of the immunofluorescence of anti-SP along the sperm tail in all three
130 samples. The signal intensity for SP detected on sperm was weakest in male ejaculates
131 (Fig. 1A-A' and I; Mean \pm SE=2.1 \pm 0.71 AU (AU=arbitrary units)). It was higher in sperm
132 isolated from mated female bursae. Sperm isolated from mated female bursae (35 min
133 ASM) had a "spotty" pattern of anti-SP staining, with anti-SP immunofluorescence
134 appearing in bright and dim specks all along sperm (Fig. 1C-C' and I, Mean \pm SE=4.67 \pm 0.71

135 AU; compare to Fig. 1A-A'). This suggested that although the quantity of SP bound to
136 sperm increased in the female's bursa, sperm were not uniformly saturated with SP.
137 Sperm isolated from the seminal receptacles (2 hrs ASM) had the highest signal intensity
138 of SP, suggesting that the amount of SP detected on sperm was greatest in the sperm
139 storage organ. Staining for SP on sperm isolated from seminal receptacles was consistent
140 and uniform along the sperm (Fig. 1E-E' and I; Mean \pm SE=13.15 \pm 0.71 AU), similar to what
141 has been reported previously [14–16]. Since the amount of SP detected on sperm
142 gradually increases after they enter the FRT, our results suggest a possible role of female
143 factor(s) in assisting SP binding to sperm.

144 Several SFPs (proteases, prohormones, and others) either mediate or undergo post-
145 mating modifications en route to or after transfer to the FRT [5,33,42], some of which are
146 crucial for inducing or maintaining post-mating responses in mated females. We thus
147 wondered whether the gradual increase in amount of SP detected on sperm within the
148 FRT is because of a need for time for the male molecules to undergo requisite
149 modifications.

150 The intensity of SP signals on sperm was observed to be highest in sperm isolated from
151 the seminal receptacle at 2 hrs ASM, suggesting that this is the maximum time that would
152 be required by the male molecules to act (or to undergo any necessary modifications). To
153 test if time alone is sufficient to maximize SP's binding to sperm, we collected ejaculates
154 exuded from males and incubated them for 2hrs in 1X PBS before processing them for
155 anti-SP staining. We did not observe any change in the signal intensity or distribution of
156 anti-SP on sperm (Fig. 1G-G' and I, Mean \pm SE=1.84 \pm 0.71 AU) in incubated ejaculates
157 relative to signals on sperm isolated from un-incubated ejaculates (Fig. 1A-A', Eja 0 min).

158 This suggested that time alone is not sufficient to maximize SP's binding to sperm. Thus,
159 female factor(s) likely contribute to, or facilitate, SP-sperm binding.

160

161 **2. LTR-SFPs bind to sperm in the male's ejaculate or mated females with patterns or**
162 **timing different from those of SP**

163 Given LTR-SFPs' role in SP's sperm-binding, we wondered whether the pattern of sperm-
164 associated CG1656, CG1652, CG9997, and Antares (Antr) in sperm isolated from three different
165 sites/times used above paralleled that of SP. We examined the presence of bound LTR-SFPs to
166 sperm by experiments analogous to those shown in Fig. 1 for SP, using sperm isolated from the
167 male's ejaculate (0 min after exudation), mated female's bursa (35 min ASM), and seminal
168 receptacle (2 hrs ASM).

169 We observed a lower signal intensity for CG1656 (Fig. 2A and Fig. 2C'; Mean \pm SE=6.87 \pm 0.79 AU)
170 and Antr (Fig. 2D and Fig. 2F'; Mean \pm SE=6.97 \pm 0.122 AU) on sperm in ejaculate compared to
171 that on sperm inside the female (Figs. 2B (11.74 \pm 0.79 AU), C (11.83 \pm 0.77 AU) and C' for
172 CG1656 and Figs. E (14.67 \pm 1.26 AU), F (15.22 \pm 1.34 AU) and F' for Antr). However, the signal
173 intensity of sperm-bound CG1656 and Antr did not differ between sperm isolated from the
174 bursa (Fig. 2B, E) vs. those from the seminal receptacles (Fig. 2C, F). This suggests that although
175 the amount of these LTR-SFPs bound to sperm increases post-mating, their maximal binding
176 had already occurred in the bursa of the mated female, in contrast to SP whose sperm-binding
177 reached its highest levels in the female's seminal receptacle.

178 CG1652 and CG9997 differed in their sperm-binding pattern from CG1656 and Antr. We could
179 not detect binding by either CG1652 or CG9997 to sperm in the ejaculate (Fig. 2G, 2J
180 respectively) or in the bursa of the mated female (Fig. 2H, 2K respectively). However, we saw a
181 strong signal for both proteins in sperm isolated from seminal receptacles of mated females
182 (Fig. 2I, 2L respectively), consistent with our previous report that these proteins are bound to

183 sperm in seminal receptacles [4,14,21]. The regions of association and distribution that we
184 observed for these SFPs (SP, CG9997, and Antr on the head and tail of stored sperm; CG1652
185 and CG1656 detectable only on the tail of stored sperm) were also consistent with previous
186 reports [14,21].

187 We also assessed the two LTR-SFPs, Seminase and CG17575, that had previously been reported
188 to not bind to stored sperm [21,22]; in addition to confirming that finding, our experiments
189 showed that these two SFPs exhibit no sperm-binding in the ejaculate either (ejaculate: Fig. 2S
190 A and D; mated female's bursa: Fig. 2S B and E; seminal receptacle: Fig. 2S C and F).

191

192 Thus, the binding patterns/timing of LTR-SFPs differed from those of SP, and fall into three
193 groups: (1) CG1656 and Antr, which bind to sperm in the ejaculate, increase their binding once
194 inside the female, but do not show the additional increase in binding in the seminal receptacle,
195 as was seen for SP; (2) CG1652 and CG9997 show no detectable binding to sperm until they are
196 inside the female's seminal receptacle; (3) Seminase and CG17575 show no detectable binding
197 to sperm.

198

199 **3. Membrane-associated pH sensors indicate that the pH of the virgin or mated female
200 reproductive tract falls in the range of 6-7.4**

201 The extracellular environment in the FRT can have important effects on sperm (reviewed in
202 [31]). For example, factors such as the pH and viscosity of FRT fluids regulate the storage,
203 viability, and/or motility of mammalian sperm [38,43]. The small size and convoluted shape of
204 the *D. melanogaster* FRT made it impossible to measure its pH by conventional means, so we
205 used genetically encoded pH sensors to estimate whether there are any major changes in FRT
206 pH following mating, with the caveat that our results are limited to the sensitivity of these
207 sensors. To monitor potential pH changes within the FRT before and after mating, we expressed

208 membrane-associated pH sensors (MApHS; [44,45]) in particular regions of the FRT. We first
209 expressed an ecliptic pHluorin sensor (pHluorinE) fused to an extracellular domain. The fusion
210 protein also contains tdTomato (tdTom) in its intracellular domain. pHluorinE is brightest at pH
211 7.4 under 475nm excitation but gets dimmer as the pH drops, and loses fluorescence at pHs
212 below 6. Thus, for example, if tissues of the virgin FRT had a pH in the acidic range (e.g. pH<6;
213 as observed in humans) but spiked up in pH to pH≥7.4 following mating, we would expect that
214 pHluorinE should exhibit no green fluorescence in FRTs of unmated females (pH<6) while still
215 retaining red fluorescence of tdTom, whereas in newly mated FRTs (pH≥7.4) that same sensor
216 would fluoresce both green (pHluorinE) and red (tdTom).
217 Because ubiquitous expression of pHluorinE was lethal, we drove its expression in tissues of the
218 FRT using tissue-specific Gal4 drivers. We used Oamb-Gal4 [46] and Send1-Gal4 [39] to drive
219 the expression of pHluorinE in the oviduct and spermathecal secretory cells (SSCs) of the FRT,
220 respectively. The Oamb>pHluorinE and Send1>pHluorinE females were dissected and their
221 reproductive tracts were imaged for pHluorin signals, before and after mating (35min ASM).
222 We observed overlapping pHluorinE (green) and tdTom (red) signals in the oviduct (yellow) of
223 Oamb>pHluorinE virgin females (Fig. 3A). The signals were also observed in the parovaria (aka
224 female accessory glands) of these females, though the fluorescence of pHluorinE was lower than
225 observed in the oviduct. Mated Oamb>pHluorinE females dissected at 35min ASM showed a
226 similar pattern of pHluorinE and tdTom signals in their oviducts and parovaria (Fig. 3B).
227 Control females (Oamb>CyO) did not show red or green fluorescence in their reproductive
228 tracts, as expected (Fig. 3C and D).
229 We also observed overlapping pHluorinE (green) and tdTom (red) signals in the spermathecal
230 secretory cells (SSCs; yellow) surrounding the spermathecal cap in Send1> pHluorinE virgin
231 females (Fig 3E), and no difference in the pattern of expression or strength of the signal in
232 mated Send1>pHluorinE females (Fig 3F). Control females (Send1>CyO) did not give any

233 fluorescence signals in SSCs, as expected (Fig. 3G and H). Our data indicate that different sites or
234 tissues within the female reproductive tract have pHs between 6.0 to 7.4 and that there is no
235 change in the pH of the female reproductive tract outside of this range post-mating.
236 We also used a pH-sensitive ratiometric derivative of GFP, pHluorinR, to further examine the pH
237 in virgin and mated FRTs. This indicator is a fusion of pHluorin and the myosin actin-binding
238 domain (pHMA; [44,47]). It fluoresces at 470 nm (green) at neutral pH (7.4), but upon
239 acidification (pH<6), pHluorinR exhibits a spectral shift and fluoresces at 415 nm (red). We
240 drove the expression of pHluorinR in different tissues of the female reproductive tract.
241 Ubiquitous expression of pHluorinR was lethal, so we again used Oamb-Gal4 and Send1-Gal4 to
242 drive the expression of pHluorinR in the female reproductive tract.
243 We observed pHluorinR signals (green) in the oviduct of Oamb>pHluorinR virgin females (Fig.
244 3I). We did not observe any spectral shift from green to red in the oviducts of mated
245 Oamb>pHluorinR females: at 35min ASM, the intensity of the green signal was the same as
246 observed in virgins (Fig 3J). Control females (virgin or mated) did not give any fluorescence
247 signals in the reproductive tract (Fig. 3K and L). Similarly, we observed a green signal in the
248 spermathecal secretory cells (SSCs) surrounding the spermathecal cap in Send1>pHluorinR
249 virgin females (Fig 3M) and no shift in fluorescence from green to red in mated females (Fig
250 3N). Control females gave no fluorescence signals in SSCs, as expected (Fig. 3O and P). These
251 results confirmed the pH of female reproductive tissues to be in the range of 6.0 to 7.4 and also
252 confirmed that, to the limit of sensitivity of available sensors, there is no detectable shift in the
253 pH outside of this range, post-mating.

254
255 **4. Ablation of spermathecal secretory cells (SSCs) in the female reproductive tract does not**
256 **affect the initial binding of SP or LTR-SFPs to sperm**

257 To test whether the increase in the signal intensity of SFPs bound to sperm once inside the FRT
258 is the consequence of secretions from FRT tissues, we examined the effect of loss of female
259 reproductive tract secretions on the intensity and timing of SFP binding to sperm. The
260 secretions from SSCs are known to regulate the storage and motility of sperm in sperm storage
261 organs [39–41]. We ablated the SSCs that line the spermathecal cap by driving the expression of
262 misfolded protein Rh^{1G69D} [48,49] in these cells (Fig. 4A-D) or by using Hr39 mutants (Please
263 see supplementary material: Text (1) and Fig. 5S1). Hr39 is needed for the formation of
264 secretory units in the female reproductive tract; Hr39 mutants have been reported to exhibit
265 defective (ablated) SSCs and parovaria [40,41]. Although we were not able to completely ablate
266 all SSCs by either method, we examined if SP-sperm binding was abnormal in these SSC
267 deficient mutant females.

268 Five day old Send1>CyO (control) and Send1>Rh1^{1G69D} (experimental) females were mated to 3-
269 day-old control (CS) males and the mated females were frozen at 2 hrs ASM. Sperm, dissected
270 from seminal receptacles of the mated females, were assessed for the presence of SP by western
271 blotting. We did not observe any striking difference in the levels of sperm-associated SP in
272 experimental females relative to control females at 2hrs ASM (Fig. 4E lanes 3, 4). Similarly,
273 there was no difference in amounts of LTR-SFPs CG1656, CG1652, Antr, or CG9997 associated
274 with sperm isolated from experimental vs. control females at 2hr ASM (Fig 4E. lanes 3, 4). We
275 also performed immunofluorescence on sperm dissected from the seminal receptacles of
276 Send1>CyO (control) and Send1>Rh1^{1G69D} (experimental) females to probe for the presence of
277 SP. Consistent with the results of our western blots, we did not observe any striking difference
278 in the intensity of anti-SP staining on sperm stored in experimental females (Fig. 4S B-B' and E;
279 Mean \pm SE=6.326 \pm 0.48 AU; p=0.8027) relative to those stored in control females (Fig. 4S A-A'
280 and E; 6.175 \pm 0.35 AU) at 2hrs ASM.

281 Likewise, five day old Hr39 mutant and control females were mated to 3 day old control (CS)
282 males, and mated females were frozen at 2 hrs ASM. Genetically-matched controls were
283 available for only one of the five available Hr39 mutant lines. We dissected sperm from seminal
284 receptacles of genetically matched control (C; BL64285/CyO) and mutant (Exp) females from
285 this line (BL64285 {Hr39[C105]}) [50] at 2hrs ASM and probed the samples for SP by western
286 blotting and immunofluorescence. As we saw with *Send1>Rh1^{G69D}* vs. control females, we did
287 not observe any striking difference in the levels of SP associated with sperm probed through
288 western blotting (Fig. 5A lanes 3, 4; Fig. 5S3 A) or the signal intensity of anti-SP staining along
289 the entire sperm performed through immunofluorescence in matched-control females (Fig. 5B
290 and D; Mean \pm SE=15.21 \pm 0.8613 AU) when compared to mutant females at 2hrs ASM (Fig. 5C
291 and D; 16.65 \pm 1.47 AU; p=0.4051). The other four available Hr39 mutant lines (BL38620
292 {Hr39[MI06174]} [51], BL43358 {Hr39[C277]} [52] and BL20152 {Hr39[EY04579]} [53]) did
293 not have genetically-matched controls, or produced so few controls (BL64305/CyO
294 {Hr39[c739]} [54]) that we could not perform experiments using them, so we used CS females
295 as their controls. As we saw with BL64285 females and their controls, we detected similar
296 levels of SP bound to sperm dissected from CS and these Hr39 mutant females (Fig. 5S2 A, lane
297 3, lanes 4-8; Fig. 5S2 B) at 2hrs ASM. We also detected signals for the LTR-SFPs CG1656,
298 CG1652, Antr, and CG9997 in Hr39 mutant females at levels similar to those in CS females, at
299 2hr ASM (Fig. 5S3 C, lane 3 and lanes 4-8). The level of anti-SP staining visualized along the
300 entire sperm through immunofluorescence also did not show any relative difference between
301 CS females (control) (Fig. 5S2 C & H) and mutant females from the other four Hr39 lines (Fig.
302 5S2 D-H), consistent with what we observed in our western blots. Thus, loss of SSCs (and
303 parovaria, in the case of Hr39 mutants) did not have an evident effect on the initial binding of
304 SP or LTR-SFPs to sperm.

305

306 5. **Loss of SSCs and parovaria in females affects the release of SP from stored sperm.**

307 Our Western blots, however consistently showed higher levels of sperm-associated SP
308 at 4days ASM in Hr39 mutant females (BL 64285; Fig. 5A lane 6) relative to the levels in
309 genetically matched-control females (Fig. 5A lane 5); this was particularly clear when
310 SP levels were normalized with tubulin levels on the same blot (Fig. 5S3 B). We
311 obtained analogous results showing higher levels of sperm-associated SP at 4 days ASM
312 in the other four Hr39 mutant females (for which genetically matched control females
313 were unavailable), relative to sperm-bound SP levels in CS females (Fig. 5G lanes, 3-8),
314 following normalization of SP levels with tubulin (Fig. 5S4A).

315 Binding of SP to sperm or SP's gradual cleavage from sperm are both essential for the
316 efficient release of sperm from storage within the mated female [55]. To test whether
317 the elevated levels of sperm-bound SP in Hr39 mutant females at 4d ASM was
318 associated with increased retention of sperm in these females, we performed sperm
319 counts. Control and Hr39 mutant females from the BL64285 stock were mated to
320 ProtB-eGFP [56] males, and sperm stored in their seminal receptacle were counted at 8
321 days ASM. Mutant females (Fig. 5H, Exp) exhibited significantly higher sperm numbers
322 relative to their genetically-matched controls (Fig. 5H, C; $p^{**}=<0.01$). Consistently,
323 mated Hr39 mutant females from the other four lines also showed significantly higher
324 sperm counts, indicating poor release of stored sperm when compared to CS females
325 (Fig. 5S3 D; $p^{**}=<0.01$).

326 To distinguish whether the higher amounts of sperm-associated SP measured on Western blots
327 was due to this higher retention of sperm or to impaired release of SP from sperm, we used
328 immunofluorescence to examine levels of SP bound to sperm. We observed higher levels of

329 sperm-bound SP in BL64285 Hr39 mutant females (Fig. 5F) than in matched control females
330 (Fig. 5E); the latter's SP levels at 4d ASM were below our detection limits. Similarly, anti-SP
331 immunofluorescence was higher in females for the four other Hr39 mutants (Fig. 5S4 C-F)
332 relative to levels in CS controls (Fig. 5S4 B); the latter again had SP levels at 4d ASM below our
333 detection limits. We used *Send1>Rh1^{G69D}* flies, in an attempt to determine whether SSCs alone
334 were responsible for effects on SP release. We saw no difference in SP levels bound to sperm
335 dissected from *Send1>CyO* (control) and *Send1>Rh1^{G69D}* (experimental; SSCs ablated) females
336 mated to CS (control) males (Fig. 4F, lane 3, 4 for 4 days ASM and 5, 6 for 8 days ASM), although
337 signals were low in these experiments. Our results suggest that loss of some or all SSCs may not
338 be sufficient to impair the release of SP from sperm

339 Our results indicate that the absence of SSCs and parovaria impairs the release of SP from
340 sperm. Since the release of sperm from storage requires release of SP's active region, by
341 cleavage, from sperm, the lack of SP release in the absence of SSCs and parovaria result in more
342 sperm being retained in females (and each of these sperm contains more bound SP than would
343 normally be seen at those times). These data suggest that the protease responsible for cleaving
344 SP's active region from sperm [16] is provided by the parovaria and/or SSCs.

345

346 **Discussion**

347 In addition to their crucial role in fertilization, sperm can have functions that modulate
348 other aspects of reproduction. For example, *Drosophila* sperm can bind SP (and several
349 other SFPs), causing SP's retention in the female and allowing it to induce physiological
350 and behavioral changes long-term [3,4,14,16]. Given that sperm thus can potentiate the
351 effect of this male-derived protein, it is of interest to know whether the male, female, or
352 both facilitate this binding. Previous studies showed that several SFPS are needed to

353 bind SP to sperm, indicating male contributions to this phenomenon. Though several
354 female proteins, to name a few, Fra mauro, Hadley, Esp, and Sex Peptide Receptor (SPR)
355 have been identified that are needed for SP activity [24,28,29,31], none of these affected
356 SP binding to sperm. Here, we show that female-derived factors are also necessary for
357 SFPs, including SP, to bind to sperm. We report that levels of sperm-bound SFPs and SP
358 are weak to undetectable in the male's ejaculate, but increase once the ejaculate is
359 within the FRT. Incubation experiments show that this increase is not simply due to
360 time, but requires that the ejaculate be within the female, pointing to the need for
361 female contributions to the SFP-sperm binding. We show that the FRT does not undergo
362 drastic changes in pH following mating, and that secretions of SSCs and parovaria are
363 also unlikely to be the critical female agents mediating initial SFP-sperm binding; we do
364 however find a role for the latter in releasing SP from sperm. Our results suggest a
365 molecular cooperation between male and female to bind SFPs to sperm.

366 **Levels of sperm-bound SP and LTR-SFPs increase within the mated female,**
367 **though not all exhibit the same pattern (or kinetics).**

368 SPs association with sperm is tightly regulated by a cascade of "LTR-SFPs" that prime
369 sperm to bind SP [21,55]. Two LTR-SFPs, the CRISP CG17575, and the protease
370 Seminase, do not themselves bind to sperm; instead, they facilitate the localization of
371 other LTR-SFPs, and SP, to sperm and sperm storage organs [21,22]. Four other LTR-
372 SFPs, the lectins CG1652, CG1656, the proteases CG9997, and the CRISP Antares (Antr)
373 bind sperm transiently [14]. Like SP, CG9997 and Antr bind to both the head and tail of
374 sperm, whereas CG1652 and CG1656 are detected only on the sperm tail [4,21].

375 Interestingly, we observed differences in the timing with which SP and individual LTR-
376 SFPs associated with sperm. SP and two LTR-SFPs (CG1656 and Antr) were detected at
377 low levels on sperm in ejaculate; the other LTR-SFPs were not detectable on sperm in
378 ejaculate. Once ejaculate entered the female's bursa, levels of SP, Antr, and CG1656
379 increased on sperm, but the other LTR-SFPs remained undetectable on sperm. Anti-SP
380 staining on sperm in the bursa was spotty, rather than at higher and uniform staining
381 seen in the seminal receptacle, indicating that its binding increased further once within
382 the SR. In contrast, staining for Antr and CG1656 was already at maximal levels in the
383 bursa and showed no further increase in the SR. Of the four remaining LTR-SFPs,
384 sperm-binding by CG1652 and CG9997 was first detected in the SR (and seminase and
385 CG17575 were undetectable on sperm even in the SR, consistent with previous reports
386 [21,22]).

387 Several not-mutually-exclusive mechanisms could explain why different SFPs showed
388 different kinetics of associating with sperm. First, it could be that some LTR-SFPs
389 catalyze each other's binding, and thus that some need to bind earlier than others. The
390 earliest-binding LTR-SFPs may facilitate some SP binding, but full binding requires the
391 full complement of LTR-SFPs on sperm. At least one LTR-SFP (CG9997) is post-
392 translationally modified (cleaved) within the female. The role of this cleavage is
393 unknown, but one could imagine that modifications of this sort could also affect a
394 protein's binding to sperm, or its ability to catalyze another protein's sperm-binding.
395 Second, recently Wainwright et al., [57] showed that SP (at least) is transferred to
396 females on large, neutral lipid-containing "microcarriers" that dissemble after entering
397 the female reproductive tract, releasing their contents. It may be that the slow

398 appearance of SP on sperm reflects its release by disassembly of these microcarriers;
399 the timing that we observe is consistent with the timing of microcarrier dissociation
400 reported by Wainright et al., [57]. A similar explanation could underlie the differences
401 in sperm-binding kinetics of the LTR-SFPs, but it is not yet known whether they are
402 transferred on microcarriers.

403 Third, recent results [32] show that as sperm transit through and remain in the FRT,
404 female-derived proteins become associated with them. It is possible that some of these
405 female proteins facilitate the binding of particular SFPs to sperm, and that the kinetics
406 of each SFP's association reflects the association of particular female proteins with
407 sperm.

408 **The pH of the female reproductive tract is in the range of 6.0-7.4 and remains within this
409 range in response to mating.**

410 The pH of the human FRT undergoes drastic change immediately after the deposition of semen.
411 The low pH (4.3) of the vagina in humans is inhospitable to mammalian sperm. After mating,
412 the vaginal pH rises to 7.2, creating an environment favorable for the viability and motility of
413 sperm [43]. Given this finding, we tested whether similarly dramatic changes in FRT pH
414 occurred in *Drosophila* post-mating, as this could potentially also be a factor promoting SFP-
415 sperm binding. Using two sensors to examine the pH of the female reproductive tract before
416 and after mating, we observed that the pH of the FRT was in the range of 6.0 to 7.4 and did not
417 exhibit any drastic change outside of this range, post-mating. This is similar to reports in
418 rodents (mice) which maintain their near-neutral vaginal pH after mating [38]. Because the
419 available sensors (pHluorin R (ratiometric; [47]) and pHluorin E (ecliptic; [44,45])) do not have
420 the sensitivity to determine the pH more precisely than 6.0-7.4, we cannot determine whether

421 mating shifts FRT pH within this range. Investigation of this will be an interesting area for
422 future study, once new pH sensors with greater precision within this range become available.

423 **Partial or greater loss of spermathecal secretory cells or parovaria does not affect**
424 **the initial association of SFPs with sperm, but affects the release of SP from**
425 **sperm.**

426 When we disabled SSCs by driving expression of Rh1^{G69D} [48,49], or obtained full or
427 partial loss of parovaria and SSCs with Hr39 mutants [41], we did not observe
428 detectable differences in the initial amount (or distribution) of SFP-sperm association
429 relative to controls, indicating that secretions from SSCs and/or parovaria do not play a
430 major role in facilitating the initial binding of SFPs to sperm. However, Hr39 mutants
431 differed from controls in the rate of release of SP from sperm; at 4d ASM, we observed
432 higher retention of SP on sperm stored in Hr39 mutant females relative to levels seen in
433 controls. The impaired release of SP from sperm that we observed in Hr39 females is
434 expected to impair the rate by which these female release sperm from storage, as SP
435 activity is needed for sperm release [55]. Consistent with this expectation, we observed
436 that Hr39 mutant females from all five mutant lines showed significantly higher sperm
437 counts in their SR at 8d ASM, verifying that they had poor release of stored sperm
438 relative to control females. Our results may provide a mechanism for the observations
439 in two previous studies [39,40] that secretions of the SSCs, or SSC and parovaria, are
440 necessary for stored sperm to be efficiently used for fertilization.

441 The release of SP's C-terminal active region from sperm occurs by proteolysis [16], but
442 the source of the protease that accomplishes this has been a mystery. Our results
443 suggest that this protease may be derived from the female, and specifically from her

444 reproductive glands (or that its expression is regulated by the Hr39 transcription
445 factor). That the female would provide the protease to release SP to sperm makes sense
446 physiologically, in that SFPs (other than SP) do not persist in the female for more than
447 one day post-mating, making it likely that a male-derived protease that could cleave SP
448 would not remain in the female long enough to regulate SP cleavage (unless the
449 protease is a sperm-protein). It also raises interesting evolutionary implications that
450 the female would provide the activity that permits the active portion of SP to be
451 released and function.

452 **Conclusion:** Our findings, thus highlight that molecular contributions from both males
453 and females are needed to facilitate association and/or dissociation of SFPs/SP to
454 sperm and encourage future studies to identify the female candidates that mediate
455 these molecular interactions between sexes.

456

457 **Methods**

458 **Fly strains and crossing scheme.** Flies used for ejaculate collections were derived
459 from a cross between UAS-dTrpAI [58] and UAS-mCD8-Gfp; fru-GAL4(B)/MKRS [59].
460 The flies were a generous gift from the Baker lab (Janelia). Fru-GAL4>UAS-dTrpAI expel
461 ejaculate after exposure to heat (29°) due to activation of the temperature-sensitive
462 cation channel dTrpAI. Canton S (CS) females mated to CS males were used to collect
463 sperm from bursa (35 min after the start of mating, ASM) and seminal receptacle (2hrs
464 ASM). Ecliptic pHluorinE (UAS-MApHS; [45]) flies were a generous gift from the Han lab
465 (Cornell University). Ratiometric pHluorinR, w[1118]; P{w[+mC]=UAS-pHMA}1.4,
466 P{w[+mC]=UAS-pHMA}1.5A/CyO; TM2/TM6B, Tb[1] (BL44593; [47]) were obtained

467 from the Bloomington Drosophila Stock Center (BDSC). All stocks not otherwise
468 indicated were obtained from the BDSC. To disrupt/abolish the secretory units of the
469 female reproductive tract, UAS-Rh1^{G69D} (flies were a generous gift from Dr. H.D. Ryoo;
470 [48]) were crossed to Send1-GAL4; Gla/CyO (specific to spermathecae; kind gift of Dr.
471 M. Siegal) and Oamb-GAL4 (specific to oviduct; kind gift of Dr. K. Han) flies to induce
472 tissue specific generation of ER stress, and the ablation of secretory units (paraovaria
473 and SSCs lining the spermathecal cap). We also used five-publicly available Hr39
474 mutant lines, y[1] w[*]; Mi{y[+mDint2]=MIC}Hr39[MI06174] (BL38620; [51]), w[*];
475 P{w[+mGS]=GSV1}Hr39[C277] (BL 43358; [52]), y[1] w[67c23]; P{y[+mDint2]
476 w[+mC]=EPgy2}Hr39[EY04579] (BL20152; [53]), y[1] w[67c23]; Hr39[C105]
477 (BL64285; [50]) and y[1] w[67c23]; P{w[+mW.hs]=GawB}Hr39[c739] P{w[+mC]=UAS-
478 mCD8::GFP.L}LL5 (BL64305; [54]). Because genetically matched controls were either
479 unavailable or sub-viable for 4/5 of the Hr39 mutant lines, we used CS females as
480 relative controls. ProtB-eGFP males with Protamine B-eGFP tagged sperm heads were
481 kindly gifted by the Pitnik lab [56]. All flies were reared under a 12:12h light-dark cycle
482 at 22±1°C on standard yeast-glucose medium. Mating experiments were carried out by
483 single-pair mating 3-5 day old unmated control males to 3-5 day old virgin females of
484 the genotypes indicated in the text.

485 **Immunofluorescence.** Immunostaining was performed to detect SP and LTR-SFPs
486 binding to sperm as in [14,15]. Sperm isolated before (in male ejaculate) or after mating
487 (in female bursa and seminal receptacle) were attached to poly-L-Lysine (Sigma) coated
488 slides. Sperm isolated from male ejaculate were processed either immediately after
489 exudation, or were incubated in 1X PBS for 2hrs after exudation from males. All the

490 samples were processed according to the protocol of Ravi Ram and Wolfner [4] with
491 minor modifications. Samples were blocked with 5% bovine serum albumin, BSA in 1X
492 PBS for 30min. Subsequently, samples were incubated overnight in rabbit anti-
493 SP(1:200), CG1656(1:100), CG1652(1:50), CG9997(1:50) [4,22,60] in 0.1% BSA at 4°C
494 overnight. Samples were then washed in 1X PBS and incubated at room temperature for
495 2h in mouse anti-rabbit IgG coupled to Alexa fluor 488 (green; Invitrogen) at a
496 concentration of 1:300 in 1x PBS at room temperature in the dark. Samples were then
497 washed in PBS, incubated in 0.01% DAPI for 3 min at room temperature in the dark,
498 rewashed and mounted using antifade (CitiFluor mountant solution; EMS). The
499 fluorescence was visualized under an Echo-Revolve fluorescence microscope at a
500 magnification of 20X. The intensity of anti-SFP immunofluorescence on sperm tails was
501 quantified using Image J software (National Institute of Health, Bethesda, USA). The
502 difference in the fluorescence intensity of anti-SFP on sperm tails between ejaculate,
503 bursa and SR samples were statistically analyzed using one-way analysis of variance
504 (ANOVA), followed by Dunnet's multiple comparison tests. A minimum of three
505 independent immunostaining batches, each with a minimum sample size of 10, were
506 analyzed for each group.

507 **Visualizing the pH in the female reproductive tract.** Ten virgin females per batch
508 expressing ecliptic pHluorin- Oamb>MApHS, Send1>MApHS and ratiometric pHluorin-
509 Oamb>pHMA, Send1>pHMA were dissected to detect the presence of pHluorin signals.
510 Another ten of these females were mated to CS males and dissected at 35 minutes ASM
511 to detect and analyze the pHluorin signals (relative to virgin females). Whole female
512 reproductive tracts were dissected in 1X PBS on a slide. The tissues were fixed with 4%

513 paraformaldehyde (PFA) for 15 min. Samples were then washed in 1X PBS, incubated in
514 0.01% DAPI for 3 min at room temperature in the dark, rewashed and mounted using
515 antifade (CitiFluor mountant solution; EMS). Images were captured through an Echo-
516 Revolve fluorescence microscope at a magnification of 20X. A minimum of three
517 independent batches, with a minimum sample size of 10 per batch, were analyzed for
518 each group.

519 **Efficacy of ablation of SSCs.** The reproductive tracts from *Send1>Rh1^{G69D}* and *Hr39*
520 mutant females were dissected and analyzed to detect the presence of ablated SSCs, if
521 any. Whole female reproductive tracts were dissected in 1X PBS on a slide. The tissues
522 were fixed with 4% PFA, further processed, mounted and imaged the same way as
523 described above for pH change visualization in the female reproductive tracts. A
524 minimum of two independent batches, with a minimum sample size of five per batch,
525 were analyzed for each group.

526 **Sample preparation and Western blotting.** To determine the binding of SP and LTR-
527 SFPs to sperm and persistence of sperm bound SP long-term, sperm stored (SS) in the
528 seminal receptacle of females (of the indicated genotype) mated to control males were
529 dissected. The dissected tissues (SS, n=30) were suspended in 5 μ l of homogenization
530 buffer (5% 1M Tris; pH 6.8, 2% 0.5M EDTA) and processed further according to the
531 protocol of Ravi Ram and Wolfner [4]. Proteins from stored sperm were then resolved
532 on 12% polyacrylamide SDS gel and processed further for western blotting. Affinity
533 purified rabbit antibodies against SP(1:2000), CG1656(1:1000), CG1652(1:500),
534 antares(1:500), CG9997(1:1000), CG17575(1:1000), seminase(1:1000) [4,14,22] and
535 mouse antibody against tubulin (as a loading control; 1:3500) were used as primary

536 antibodies. HRP conjugated secondary anti-rabbit and anti-mouse antibodies (Jackson
537 Research) were used for detection of SFPs at a concentration of 1:2000. The levels of SP
538 were normalized with tubulin of respective lanes using Quantity One software.

539 **Sperm release from sperm storage organs in females.** To study the sperm utilization
540 and release, Hr39 mutant females mated to ProtB-eGFP (control) males were frozen at
541 8d ASM for sperm counts. Subsequently, seminal receptacles of mated females were
542 dissected and eGFP sperm were counted (at a total magnification of 20X, with FITC
543 filter on an Echo-Revolve microscope). Mature sperm in the seminal receptacles of
544 mated females were counted twice and groups were blinded to ensure reproducibility
545 and avoid bias [61]. The percent repeatability was 88-92%. Assays were repeated twice,
546 with two technical replicates. Differences in the sperm counts between groups were
547 analyzed statistically through one-way ANOVA followed by Tukey's multiple
548 comparison tests. Each group contained a minimum sample size of 15-25.

549

550 **List of abbreviations**

551 SFP: seminal fluid protein; SP: Sex Peptide; LTR-SFPs: long-term response SFPs; FRT:
552 female reproductive tract; SSC: spermathecal secretory cell; ASM: after the start of
553 mating; MApHS: membrane-associated pH sensor; AU: arbitrary unit

554

555 **Declarations**

556

557 Ethics approval and consent: Not applicable: there were no human subjects or
558 vertebrate animals used in this research.

559

560 Data availability: All data generated or analysed during this study are included in this
561 manuscript and its supplementary information files.

562

563 Competing Interests: The authors declare that they have no competing interests.

564

565 Consent for publication: Not applicable.

566

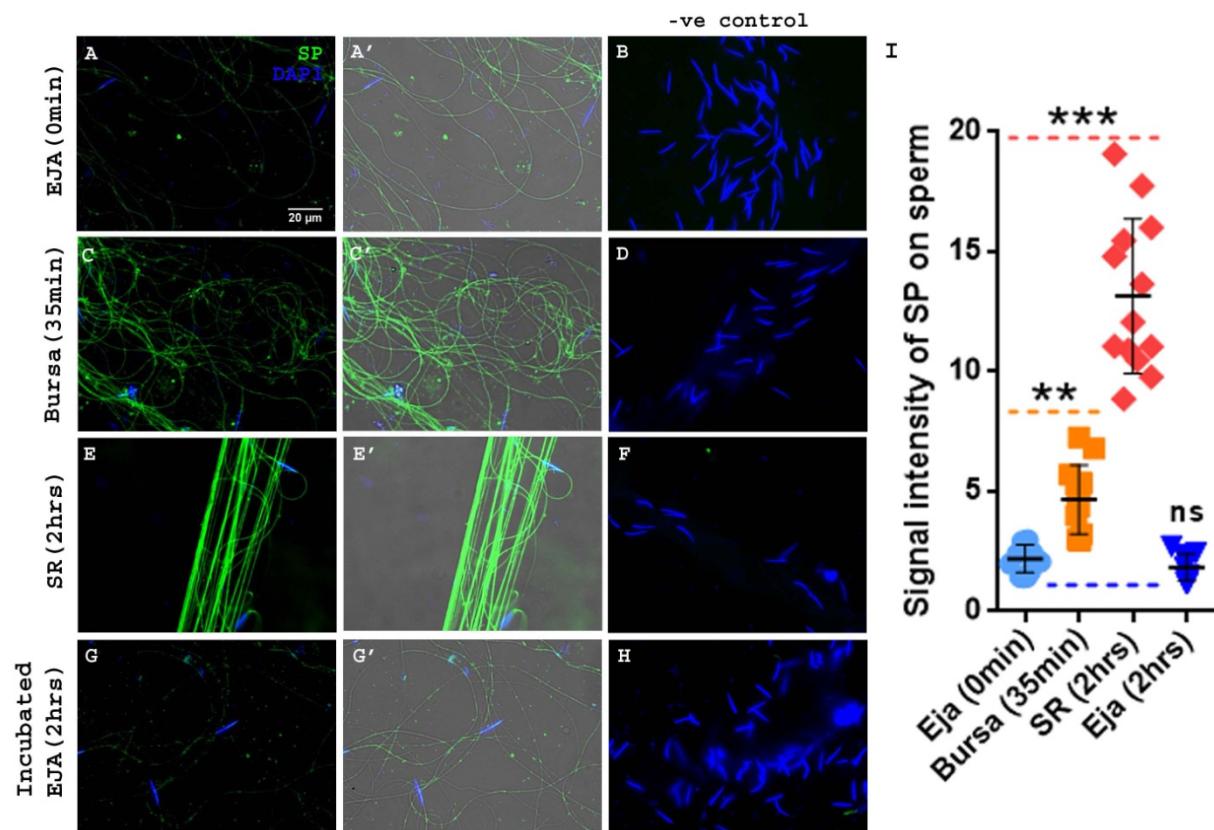
567 Funding: NIH grant R37-HD038921 funded this research.

568

569 Author contributions: S.M, A.S and M.F.W designed the experiments; S.M and A.S carried
570 out the experiments; S.M and M.F.W analyzed the results. S.M and M.F.W wrote and
571 revised the manuscript.

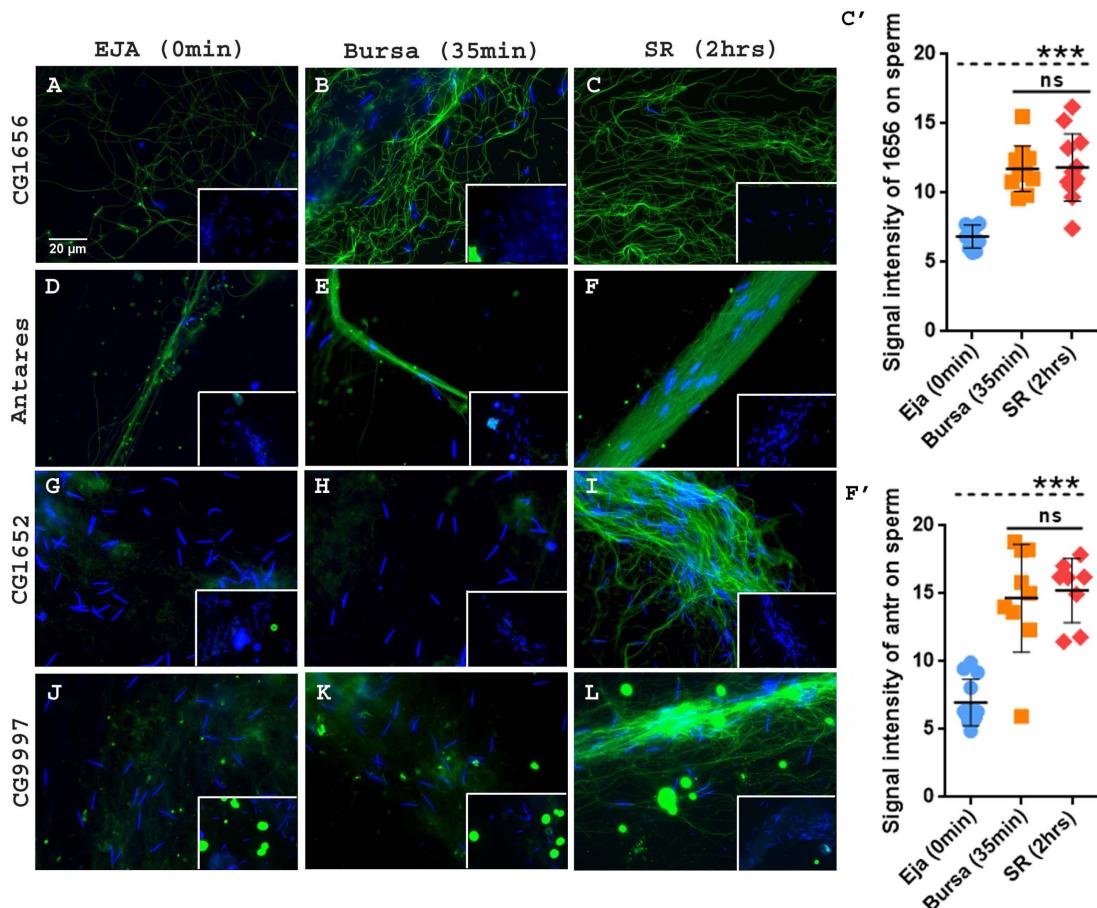
572

573 **Acknowledgements**


574 We are grateful to the NIH for grant R37-HD038921 (to MFW) for support. We thank
575 Dr. Chun Han for the pH-sensor stocks and suggestions, the Baker lab (Janelia) for UAS-
576 dTrpAI and UAS-mCD8-Gfp; fru-GAL4(B)/MKRS stocks, Dr. H.D Ryoo for the UAS
577 Rh1^{G69D} stocks and Bloomington Drosophila Stock Center for Hr39 mutant stocks. We
578 are grateful to I.A. Amaro, D.S. Chen, Y. Hafezi, J. Thomalla, S. Allen and M. Yang for
579 helpful suggestions or for comments on the manuscript.

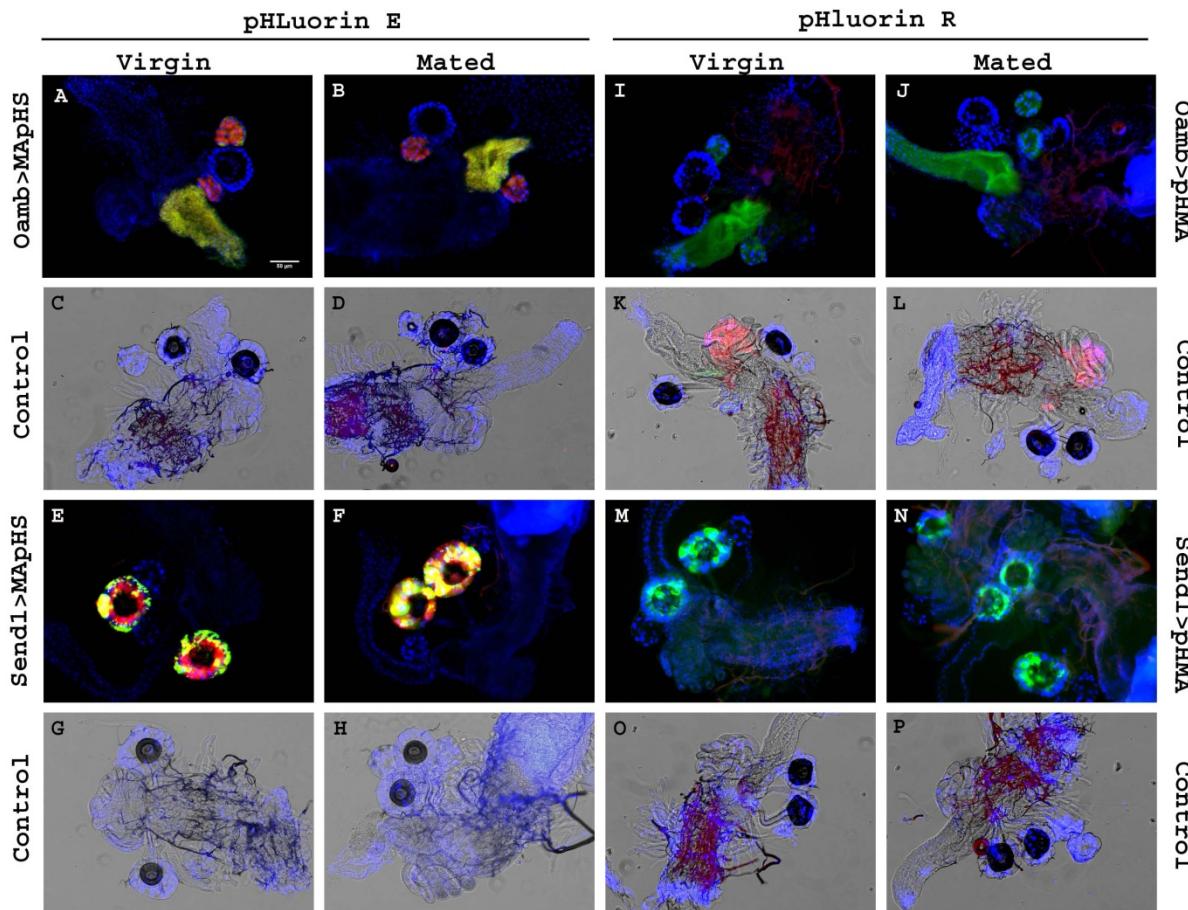
580

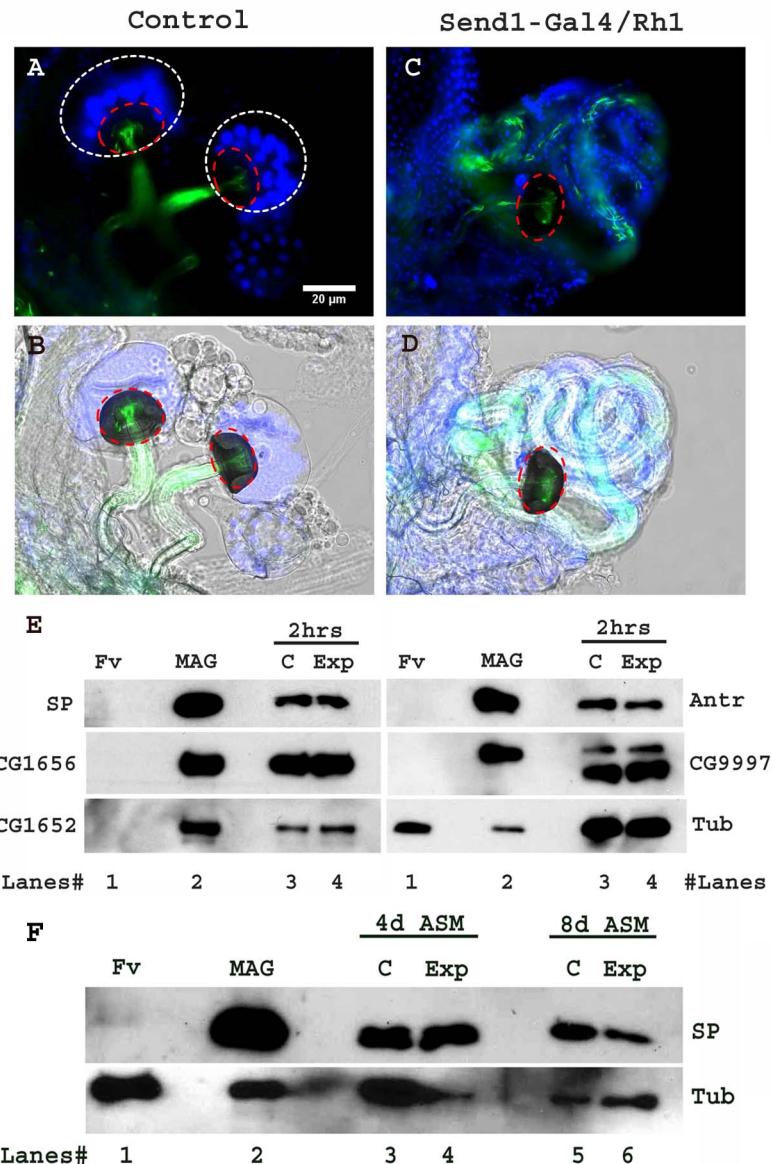
581


582

583

584
585

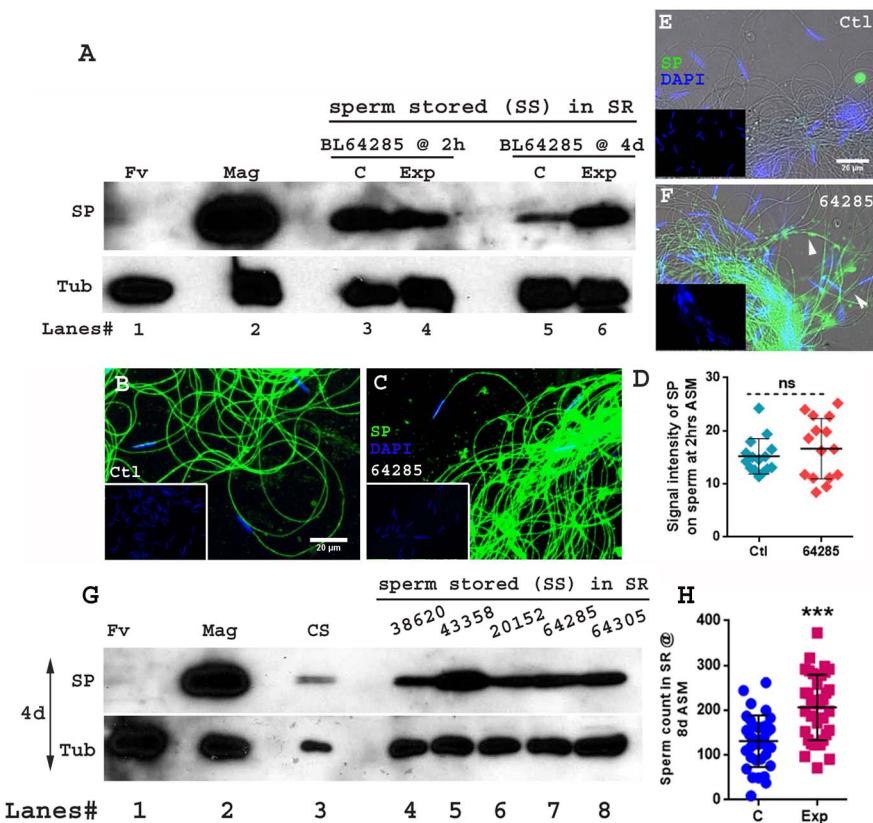

586 **Figure 1. Amount of SP detected on sperm gradually increases from male ejaculate to**
587 **female bursa, and is highest in seminal receptacles.** Pre-mating ejaculate samples were
588 collected from Fru>dTRPA1 males exposed to high temperature [33]. Post mating sperm
589 samples were isolated from wild type (CS) females that had mated to wildtype (CS) males
590 and were frozen at 35 min and 2 hrs ASM. Sperm heads were stained with DAPI (blue) and
591 anti-SP staining was visualized with Alexa fluor 488, staining the sperm tail (green) and
592 sperm head (cyan; overlapping blue/green). **(A-A')** Sperm isolated from ejaculate exuded
593 by Fru>dTRPA1 males. **(C-C')** Sperm isolated from bursa of the wildtype mated female,
594 frozen at 35 min ASM. **(E-E')** Sperm isolated from the seminal receptacle of the wildtype
595 mated female, frozen at 2hrs ASM. **(G-G')** Sperm isolated from Fru>dTRPA1 male's
596 ejaculate that was kept incubated for 2 hrs in 1X PBS, after exudation. **B, D, F and H** are
597 negative controls for A, C, E, and G panels, with only secondary antibody (anti-rabbit, Alexa
598 fluor 488) and no primary antibody (anti-SP) incubation. **A', C', E' and G'** panels have an
599 additional transmitted light channel overlay to highlight the outline of sperm tail
600 specifically in samples where the staining was very weak (ejaculate). **(I)** Relative signal
601 intensity of SP on sperm at three different stages and time points, $p^{***}<0.001$, $p^{**}<0.01$,
602 ns=not significant, error bars show Mean±SE AU (n=10; Bar = 20μm; AU stands for
603 arbitrary units).



604

605 **Figure 2. The levels of LTR-SFPs bound to sperm increase from male ejaculate to**
606 **sperm stored in female seminal receptacle, but the pattern differs from SP's.** Pre-
607 mating ejaculate samples were collected from Fru>dTRPA1 males exposed to high
608 temperature. Post mating sperm samples were isolated from wild type (CS) females that
609 had mated to wildtype (CS) males and frozen at 35 min and 2 hrs ASM. Sperm heads were
610 stained with DAPI (blue) and LTR-SFPs were visualized with Alexa fluor 488, staining the
611 sperm (green). Sperm isolated from male ejaculate immediately after exudation (**A, D, G**
612 **and J**) were probed for CG1656, Antares, CG1652 and CG9997, respectively. Sperm isolated
613 from mated female bursa, frozen at 35 min ASM (**B, E, H and K**) were probed for CG1656,
614 Antares, CG1652 and CG9997, respectively. Sperm isolated from mated female's seminal
615 receptacle, frozen at 2hrs ASM (**C, F, I and L**) were probed for CG1656, Antares, CG1652
616 and CG9997, respectively. The insets show the negative controls for their respective panels.
617 Sperm samples in negative controls were incubated with only secondary antibody (anti-
618 rabbit, Alexa fluor 488) but no primary antibody (anti-LTR-SFP) incubation, as mentioned
619 previously. (**C' and F'**) show relative signal intensity of CG1656 and Antares on sperm at
620 three different stages and time points, p***<0.001, ns=not significant, error bars show
621 Mean±SE AU (n=10; Bar = 20µm; AU stands for arbitrary units).
622
623

624



643
644

645 **Figure 4. Ablated SSCs in Send1> Rh1 females affects neither the binding of SP to**
646 **sperm (at 2hrs ASM) nor the long-term gradual cleavage of SP from sperm (at 4d or**
647 **8d ASM).** Expression of ER stress-inducing Rh1^{G69D} [48] by spermathecae-specific Send1-
648 Gal4 results in ablation of SSCs. **(A-B)** Control (Send1>CyO) females mated with ProtB-
649 eGFP males (eGFP-tagged sperm; green) show normal numbers of SSCs (stained with DAPI;
650 white dotted circle) lining the spermathecal cap (red dotted circle). **(C-D)** Experimental
651 (Send1>Rh1^{G69D}) females mated with ProtB-eGFP males show ablated SSCs (stained with
652 DAPI) lining the spermathecal cap (red dotted circle); n=10; Bar = 20 μ m. **(E)** Western blot
653 probed for SP and indicated LTR-SFPs at 2hrs ASM. **Lanes# 1: Fv**, reproductive tract (RT)
654 of 4 virgin females (negative control), **2: MAG**, 1 pair of male accessory glands (positive
655 control), **3: C**, sperm dissected from SR of 30 control (Send1>CyO) females mated to wild
656 type (CS) males at 2hr ASM, **4: Exp**, sperm dissected from SR of 30 experimental

657 (Send1>Rh1^{G69D}) females mated to wild type (CS) males at 2hr ASM. Lanes were probed for
658 SP and LTR-SFPs CG1656, CG1652, Antares and CG9997 as described in the text. **(F)**
659 Western blot probed for SP at 4 and 8 days ASM **Lanes# 1: Fv**, reproductive tract (RT) of 4
660 virgin females (negative control), **2: Mag**, 1 pair of male accessory glands (positive
661 control), **3: C**, sperm dissected from SR of 30 control (Send1>CyO) females mated to wild
662 type (CS) males at 4 days ASM, **4: Exp**, sperm dissected from SR of 30 experimental
663 (Send1>Rh1^{G69D}) females mated to wild type (CS) males at 4 days ASM, **5: C**, sperm
664 dissected from SR of 30 control (Send1>CyO) females mated to wild type (CS) males at 8
665 days ASM, **6: Exp**, sperm dissected from SR of 30 experimental (Send1>Rh1^{G69D}) females
666 mated to wild type (CS) males at 8 days ASM. Lanes were probed for SP. Tubulin served as
667 loading control.

668

669

670 **Figure 5. Loss of SSCs and/or parovaria in Hr39 mutant females does not inhibit the binding**
671 **of SP to sperm but leads to retention of sperm and therefore elevated SP levels long term. (A)**
672 **Western blot probed for SP. Lanes# 1: Fv**, reproductive tract (RT) of 4 virgin females (negative
673 control), **2: Mag**, 1 pair of male accessory glands (positive control), **3: B,C**, sperm dissected from SR
674 of 30 genetically matched control (BL64285) females mated to wild type (CS) males at 2 hrs ASM, **4:**
675 **Exp**, sperm dissected from SR of 30 mutant (BL64285) females mated to wild type (CS) males at 2
676 hrs ASM, **5: C**, sperm dissected from SR of 30 genetically matched control (BL64285) females mated
677 to wild type (CS) males at 4 days ASM **6: Exp**, sperm dissected from SR of 30 mutant (BL64285)
678 females mated to wild type (CS) males at 4 days ASM. Tubulin (Tub) served as loading control.
679 Sperm samples isolated from the seminal receptacle of **(B)** matched-control females, **(C)** BL64285,
680 Hr39 mutant females. The females were mated with CS males and frozen at 2 hrs ASM. **(D)** Relative
681 signal intensity of SP bound to stored sperm in matched control (ctl) and BL64285 females at 2hrs

682 ASM performed through immunofluorescence. Error bars show Mean±SE AU. Sperm samples
683 isolated from the seminal receptacle of matched-control females (**E**), BL64285, Hr39 mutant
684 females (**F**). The females were mated with CS males and frozen at 4 days ASM. In all the
685 immunofluorescence panels, sperm heads were stained with DAPI (blue) and anti-SP staining was
686 visualized with Alexa fluor 488, staining the sperm tail (green) and sperm head (cyan; overlapping
687 blue/green). The insets show the respective negative controls each panel. The bigger panels (E and
688 F) in 4 days samples have transmitted light filter added to show the outline of sperm tail in the
689 regions where SP was undetected (e.g, panel E). The white arrows indicate SP (green) on sperm tail.
690 n=10; Bar = 20 μ m. (**G**) Western blot probed for SP at 4 days ASM. **Lanes# 1: Fv**, reproductive tract
691 (RT) of 4 virgin females (negative control), **2: Mag**, 1 pair of male accessory glands (positive
692 control), **3: CS**, sperm dissected from SR of 30 control (CS) females mated to wild type (CS) males,
693 **4: 38620**, sperm dissected from SR of 30 Hr39 mutant (BL38620) females mated to wild type (CS)
694 males, **5: 43358**, sperm dissected from SR of 30 Hr39 mutant (BL43358) females mated to wild
695 type (CS) males, **6: 20152**, sperm dissected from SR of 30 Hr39 mutant (BL20152) females mated
696 to wild type (CS) males, **7: 64285**, sperm dissected from SR of 30 Hr39 mutant (BL64285) females
697 mated to wild type (CS) males, **8: 64305**, sperm dissected from SR of 30 Hr39 mutant (BL64305)
698 females mated to wild type (CS) males. Tubulin (Tub) served as the loading control. (**H**) Sperm
699 counts in SRs of genetically matched control (C; blue bar) and Hr39 mutant (Exp; pink bar) females
700 from BL64285 stocks mated to control ProtB-eGFP males (with eGFP tagged sperm; p***=<0.001;
701 n=15-20) and frozen at 8 days ASM. Error bars show Mean±SE AU (AU stands for arbitrary units).

702
703
704
705

706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721

722 **References**

723

724 1. Liu H, Kubli E. Sex-peptide is the molecular basis of the sperm effect in *Drosophila*
725 *melanogaster*. *Proc Natl Acad Sci U S A*. 2003;100: 9929–9933.
726 doi:10.1073/pnas.1631700100

727 2. Ravi Ram K, Ji S, Wolfner MF. Fates and targets of male accessory gland proteins in
728 mated female *Drosophila melanogaster*. *Insect Biochem Mol Biol*. 2005;35: 1059–
729 1071. doi:10.1016/j.ibmb.2005.05.001

730 3. Ram KR, Wolfner MF. Seminal influences: *Drosophila* Acps and the molecular
731 interplay between males and females during reproduction. *Integr Comp Biol*.
732 2007;47: 427–445. doi:10.1093/icb/icm046

733 4. Ravi Ram K, Wolfner MF. A network of interactions among seminal proteins
734 underlies the long-term postmating response in *Drosophila*. *Proc Natl Acad Sci U S A*.
735 2009;106: 15384–15389. doi:10.1073/pnas.0902923106

736 5. Rubinstein CD, Wolfner MF. *Drosophila* seminal protein ovulin mediates ovulation
737 through female octopamine neuronal signaling. *Proc Natl Acad Sci U S A*. 2013;110:
738 17420–17425. doi:10.1073/pnas.1220018110

739 6. Avila FW, Wolfner MF. Acp36DE is required for uterine conformational changes in
740 mated *Drosophila* females. *Proc Natl Acad Sci U S A*. 2009;106: 15796–15800.
741 doi:10.1073/pnas.0904029106

742 7. Bretman A, Lawniczak MKN, Boone J, Chapman T. A mating plug protein reduces
743 early female remating in *Drosophila melanogaster*. *J Insect Physiol*. 2010;56: 107–
744 113. doi:10.1016/J.JINSOPHYS.2009.09.010

745 8. Avila FW, Cohen AB, Ameerudeen FS, Duneau D, Suresh S, Mattei AL, et al. Retention
746 of ejaculate by *Drosophila melanogaster* females requires the male-derived mating
747 plug protein PEBme. *Genetics*. 2015;200: 1171–1179.
748 doi:10.1534/genetics.115.176669

749 9. Peng J, Zipperlen P, Kubli E. *Drosophila* sex-peptide stimulates female innate immune
750 system after mating via the toll and Imd pathways. *Curr Biol*. 2005;15: 1690–1694.
751 doi:10.1016/j.cub.2005.08.048

752 10. Carvalho GB, Kapahi P, Anderson DJ, Benzer S. Allocrine Modulation of Feeding
753 Behavior by the Sex Peptide of *Drosophila*. *Curr Biol*. 2006;16: 692–696.
754 doi:10.1016/j.cub.2006.02.064

755 11. Apger-McGlaughon J, Wolfner MF. Post-mating change in excretion by mated
756 *Drosophila melanogaster* females is a long-term response that depends on sex
757 peptide and sperm. *J Insect Physiol*. 2013;59: 1024–1030.
758 doi:10.1016/j.jinsphys.2013.07.001

759 12. Elwyn Isaac R, Li C, Leedale AE, Shirras AD. *Drosophila* male sex peptide inhibits
760 siesta sleep and promotes locomotor activity in the post-mated female. *Proc R Soc B*
761 *Biol Sci*. 2010;277: 65–70. doi:10.1098/rspb.2009.1236

762 13. Scheunemann L, Lampin-Saint-Amaux A, Schor J, Preat T. A sperm peptide enhances
763 long-term memory in female *drosophila*. *Sci Adv*. 2019;5.
764 doi:10.1126/sciadv.aax3432

765 14. Singh A, Buehner NA, Lin H, Baranowski KJ, Findlay GD, Wolfner MF. Long-term
766 interaction between *Drosophila* sperm and sex peptide is mediated by other seminal
767 proteins that bind only transiently to sperm. *Insect Biochem Mol Biol*. 2018;102: 43–

768 51. doi:10.1016/j.ibmb.2018.09.004

769 15. Misra S, Wolfner MF. *Drosophila* seminal sex peptide associates with rival as well as
770 own sperm, providing sp function in polyandrous females. *Elife*. 2020;9.
771 doi:10.7554/eLife.58322

772 16. Peng J, Chen S, Büsser S, Liu H, Honegger T, Kubli E. Gradual release of sperm bound
773 sex-peptide controls female postmating behavior in *Drosophila*. *Curr Biol*. 2005;15:
774 207–213. doi:10.1016/j.cub.2005.01.034

775 17. Chapman T, Bangham J, Vinti G, Seifried B, Lung O, Wolfner MF, et al. The sex peptide
776 of *Drosophila melanogaster*: Female post-mating responses analyzed by using RNA
777 interference. *Proc Natl Acad Sci U S A*. 2003;100: 9923–9928.
778 doi:10.1073/pnas.1631635100

779 18. Gioti A, Wigby S, Wertheim B, Schuster E, Martinez P, Pennington CJ, et al. Sex
780 peptide of *Drosophila melanogaster* males is a global regulator of reproductive
781 processes in females. *Proc R Soc B Biol Sci*. 2012;279: 4423–4432.
782 doi:10.1098/rspb.2012.1634

783 19. Neubaum DM, Wolfner MF. Mated *Drosophila melanogaster* females require a
784 seminal fluid protein, Acp36DE, to store sperm efficiently. *Genetics*. 1999;153: 845–
785 857.

786 20. Shao L, Chung P, Wong A, Siwanowicz I, Kent CF, Long X, et al. A Neural Circuit
787 Encoding the Experience of Copulation in Female *Drosophila*. *Neuron*. 2019;102:
788 1025–1036.e6. doi:10.1016/j.neuron.2019.04.009

789 21. Ram KR, Wolfner MF. Sustained post-mating response in *Drosophila melanogaster*
790 requires multiple seminal fluid proteins. *PLoS Genet*. 2007;3: 2428–2438.
791 doi:10.1371/journal.pgen.0030238

792 22. LaFlamme BA, Ravi Ram K, Wolfner MF. The *Drosophila melanogaster* seminal fluid
793 protease “Seminase” regulates proteolytic and post-mating reproductive processes.
794 *PLoS Genet*. 2012;8: 30–32. doi:10.1371/journal.pgen.1002435

795 23. Wigby S, Brown NC, Allen SE, Misra S, Sitnik JL, Sepil I, et al. The *Drosophila* seminal
796 proteome and its role in postcopulatory sexual selection. *Philos Trans R Soc Lond B
797 Biol Sci*. 2020;375. doi:10.1098/rstb.2020.0072

798 24. Findlay GD, Sitnik JL, Wang W, Aquadro CF, Clark NL, Wolfner MF. Evolutionary Rate
799 Covariation Identifies New Members of a Protein Network Required for *Drosophila*
800 melanogaster Female Post-Mating Responses. *PLoS Genet*. 2014;10.
801 doi:10.1371/journal.pgen.1004108

802 25. Yapici N, Kim YJ, Ribeiro C, Dickson BJ. A receptor that mediates the post-mating
803 switch in *Drosophila* reproductive behaviour. *Nature*. 2008;451: 33–37.
804 doi:10.1038/NATURE06483

805 26. Garbe DS, Vigderman AS, Moscato E, Dove AE, Vecsey CG, Kayser MS, et al. Changes in
806 Female *Drosophila* Sleep following Mating Are Mediated by SPSN-SAG Neurons. *J Biol
807 Rhythms*. 2016;31: 551–567. doi:10.1177/0748730416668048

808 27. Avila FW, Sirot LK, LaFlamme BA, Rubinstein CD, Wolfner MF. Insect Seminal Fluid
809 Proteins: Identification and Function. *Annu Rev Entomol*. 2011;56: 21–40.
810 doi:10.1146/annurev-ento-120709-144823

811 28. Avila FW, Mattei AL, Wolfner MF. Sex peptide receptor is required for the release of
812 stored sperm by mated *Drosophila melanogaster* females. *J Insect Physiol*. 2015;76:
813 1–6. doi:10.1016/J.JINSPHYS.2015.03.006

814 29. McDonough-Goldstein CE, Borziak K, Pitnick S, Dorus S. *Drosophila* female
815 reproductive tract gene expression reveals coordinated mating responses and
816 rapidly evolving tissue-specific genes. *G3 (Bethesda)*. 2021;11.
817 doi:10.1093/G3JOURNAL/JKAB020

818 30. McDonough-Goldstein CE, Whittington E, McCullough EL, Buel SM, Erdman S, Pitnick
819 S, et al. Pronounced Postmating Response in the *Drosophila* Female Reproductive
820 Tract Fluid Proteome. *Mol Cell Proteomics*. 2021;20: 100156.
821 doi:10.1016/J.MCPRO.2021.100156

822 31. McCullough EL, McDonough CE, Pitnick S, Dorus S. Quantitative proteomics reveals
823 rapid divergence in the postmating response of female reproductive tracts among
824 sibling species. *Proc R Soc B Biol Sci*. 2020;287: 20201030.
825 doi:10.1098/RSPB.2020.1030

826 32. McCullough EL, Whittington E, Singh A, Pitnick S, Wolfner MF, Dorus S. The life
827 history of *Drosophila* sperm involves molecular continuity between male and female
828 reproductive tracts. *Proc Natl Acad Sci*. 2022;119. doi:10.1073/pnas.2119899119

829 33. LaFlamme BA, Avila FW, Michalski K, Wolfner MF. A *Drosophila* protease cascade
830 member, seminal metalloprotease-1, is activated stepwise by male factors and
831 requires female factors for full activity. *Genetics*. 2014;196: 1117–1129.
832 doi:10.1534/GENETICS.113.160101

833 34. Meslin C, Cherwin TS, Plakke MS, Small BS, Goetz BJ, Morehouse NI, et al. Structural
834 complexity and molecular heterogeneity of a butterfly ejaculate reflect a complex
835 history of selection. *Proc Natl Acad Sci U S A*. 2017;114: E5406–E5413.
836 doi:10.1073/PNAS.1707680114/-/DCSUPPLEMENTAL

837 35. Bangham J, Chapman T, Smith HK, Partridge L. Influence of female reproductive
838 anatomy on the outcome of sperm competition in *Drosophila melanogaster*.
839 *Proceedings Biol Sci*. 2003;270: 523–30. doi:10.1098/rspb.2002.2237

840 36. Chen DS, Delbare SYN, White SL, Sitnik J, Chatterjee M, DoBell E, et al. Female Genetic
841 Contributions to Sperm Competition in *Drosophila melanogaster*. *Genetics*.
842 2019;212: 789–800. doi:10.1534/GENETICS.119.302284

843 37. Hopkins BR, Sepil I, Wigby S. Structural variation in *Drosophila melanogaster*
844 spermathecal ducts and its association with sperm competition dynamics. *R Soc open
845 Sci*. 2020;7. doi:10.1098/RSOS.200130

846 38. Miller EA, Beasley DAE, Dunn RR, Archie EA. Lactobacilli Dominance and Vaginal pH:
847 Why Is the Human Vaginal Microbiome Unique? *Front Microbiol*. 2016;7.
848 doi:10.3389/FMICB.2016.01936

849 39. Schnakenberg SL, Matias WR, Siegal ML. Sperm-storage defects and live birth in
850 *Drosophila* females lacking spermathecal secretory cells. *PLoS Biol*. 2011;9.
851 doi:10.1371/JOURNAL.PBIO.1001192

852 40. Allen AK, Spradling AC. The Sf1-related nuclear hormone receptor Hr39 regulates
853 *Drosophila* female reproductive tract development and function. *Development*.
854 2008;135: 311–321. doi:10.1242/dev.015156

855 41. Sun J, Spradling AC. NR5A nuclear receptor Hr39 controls three-cell secretory unit
856 formation in *Drosophila* female reproductive glands. *Curr Biol*. 2012;22: 862–871.
857 doi:10.1016/J.CUB.2012.03.059

858 42. Avila FW, Wolfner MF. Cleavage of the *Drosophila* seminal protein Acp36DE in mated
859 females enhances its sperm storage activity. *J Insect Physiol*. 2017;101: 66–72.

860 doi:10.1016/j.jinsphys.2017.06.015

861 43. Ng KYB, Mingels R, Morgan H, Macklon N, Cheong Y. In vivo oxygen, temperature and
862 pH dynamics in the female reproductive tract and their importance in human
863 conception: a systematic review. *Hum Reprod Update*. 2018;24: 15–34.
864 doi:10.1093/HUMUPD/DMX028

865 44. Miesenböck G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic
866 transmission with pH-sensitive green fluorescent proteins. *Nature*. 1998;394: 192–
867 195. doi:10.1038/28190

868 45. Han C, Song Y, Xiao H, Wang D, Franc NC, Yeh Jan L, et al. Epidermal cells are the
869 primary phagocytes in the fragmentation and clearance of degenerating dendrites in
870 *Drosophila*. *Neuron*. 2014;81: 544–560. doi:10.1016/J.NEURON.2013.11.021

871 46. Lee HG, Rohila S, Han KA. The Octopamine Receptor OAMB Mediates Ovulation via
872 Ca²⁺/Calmodulin-Dependent Protein Kinase II in the *Drosophila* Oviduct Epithelium.
873 *PLoS One*. 2009;4: 4716. doi:10.1371/JOURNAL.PONE.0004716

874 47. Fishilevich E, Fitzpatrick JAJ, Minden JS. pHMA, a pH-sensitive GFP reporter for cell
875 engulfment, in *Drosophila* embryos, tissues, and cells. *Dev Dyn*. 2010;239: 559–573.
876 doi:10.1002/DVDY.22180

877 48. Ryoo HD, Domingos PM, Kang MJ, Steller H. Unfolded protein response in a
878 *Drosophila* model for retinal degeneration. *EMBO J*. 2007;26: 242–252.
879 doi:10.1038/SJ.EMBOJ.7601477

880 49. Chow CY, Avila FW, Clark AG, Wolfner MF. Induction of excessive endoplasmic
881 reticulum stress in the *Drosophila* male accessory gland results in infertility. *PLoS*
882 *One*. 2015;10. doi:10.1371/JOURNAL.PONE.0119386

883 50. Boulanger A, Clouet-Redt C, Farge M, Flandre A, Guignard T, Fernando C, et al. ftz-f1
884 and Hr39 opposing roles on EcR expression during *Drosophila* mushroom body
885 neuron remodeling. *Nat Neurosci*. 2011;14: 37–46. doi:10.1038/NN.2700

886 51. Nagarkar-Jaiswal S, Lee PT, Campbell ME, Chen K, Anguiano-Zarate S, Gutierrez MC,
887 et al. A library of MiMICs allows tagging of genes and reversible, spatial and temporal
888 knockdown of proteins in *Drosophila*. *Elife*. 2015;4. doi:10.7554/ELIFE.05338

889 52. Molnar C, López-Varea A, Hernández R, De Celis JF. A gain-of-function screen
890 identifying genes required for vein formation in the *Drosophila melanogaster* wing.
891 *Genetics*. 2006;174: 1635–1659. doi:10.1534/GENETICS.106.061283

892 53. Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, Tsang G, et al. The BDGP gene
893 disruption project: single transposon insertions associated with 40% of *Drosophila*
894 genes. *Genetics*. 2004;167: 761–781. doi:10.1534/GENETICS.104.026427

895 54. Lee T, Luo L. Mosaic analysis with a repressible cell marker for studies of gene
896 function in neuronal morphogenesis. *Neuron*. 1999;22: 451–461.
897 doi:10.1016/S0896-6273(00)80701-1

898 55. Avila FW, Ram KR, Bloch Qazi MC, Wolfner MF. Sex peptide is required for the
899 efficient release of stored sperm in mated *drosophila* females. *Genetics*. 2010;186:
900 595–600. doi:10.1534/genetics.110.119735

901 56. Manier MK, Belote JM, Berben KS, Novikov D, Stuart WT, Pitnick S. Resolving
902 mechanisms of competitive fertilization success in *drosophila* *Melanogaster*. *Science*
903 (80-). 2010;328: 354–357. doi:10.1126/science.1187096

904 57. Mark Wainwright S, Hopkins BR, Mendes CC, Sekar A, Kroeger B, Hellberg JEEU, et al.
905 *Drosophila* Sex Peptide controls the assembly of lipid microcarriers in seminal fluid.

906 Proc Natl Acad Sci U S A. 2021;118. doi:10.1073/PNAS.2019622118
907 58. Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, et al. An internal
908 thermal sensor controlling temperature preference in *Drosophila*. *Nature*. 2008;454:
909 217–220. doi:10.1038/NATURE07001
910 59. Manoli DS, Foss M, Villella A, Taylor BJ, Hall JC, Baker BS. Male-specific *fruitless*
911 specifies the neural substrates of *Drosophila* courtship behaviour. *Nature*. 2005;436:
912 395–400. doi:10.1038/NATURE03859
913 60. Ram KR, Sirot LK, Wolfner MF. Predicted seminal astacin-like protease is required for
914 processing of reproductive proteins in *Drosophila melanogaster*. *Proc Natl Acad Sci U*
915 *S A*. 2006;103: 18674–18679. doi:10.1073/pnas.0606228103
916 61. Misra S, Singh A, Ratnasekhar CH, Sharma V, Reddy Mudiam MK, Ram KR.
917 Identification of *Drosophila*-based endpoints for the assessment and understanding
918 of xenobiotic-mediated male reproductive adversities. *Toxicol Sci*. 2014;141: 278–
919 291. doi:10.1093/toxsci/kfu125
920