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Abstract: Single particle tracking (SPT) is an indispensable tool for scientific studies. 
However, SPT for datasets with a high density of particles is still challenging, especially for 
the study of particle interactions where the point spread functions (PSFs) are overlapping. In 
this study, we present spt-PRIS, a new SPT solution where we apply compressive sensing to 
SPT by integrating the progressive refinement method on sparse recovery (PRIS) into the 
framework of the state-of-the-art SPT algorithm (uTrack). We systematically characterized and 
validated spt-PRIS performance using simulations, applied it to the experimental data of 
membrane-bound KRAS4b proteins in either 2-lipid or 8-lipid membrane supported lipid 
bilayers (SLB), and compared the results to the conventional method (uTrack). Our results 
show that spt-PRIS is effective for SPT when the data contains overlapping PSFs and provides 
unprecedented information about KRAS4b subpopulations. spt-PRIS is helpful for a broad 
range of scientific studies where precise and fast high-density localization is beneficial. spt-
PRIS is also flexible for extensions for multi-species, multi-multi-channel, and multi-
dimensional SPT methods with the generalization of PRIS reconstruction schemes. 
 

 
1. Introduction 
Single particle tracking (SPT) is a key component in the analysis pipeline in many scientific 
studies, such as biology and material characterizations [1,2]. For example, SPT is important for 
the understanding of dynamic protein interactions, where proteins are labeled using 
fluorophores [1,2] or scattering-based probes [3], and the resulting samples are imaged using 
optical microscopes to produce thousands of consecutive images, recording the observations of 
the particle movements over time. The properties of probes (such as locations and brightness) 
are extracted with single molecule localization methods at each frame and linked across time 
to produce particle trajectories [4,5]. These trajectories are further analyzed to yield the 
dynamic information of the labeled particles [2].  

In particular, SPT is essential for cancer research, for example, in the study of dynamics of 
membrane tethered-KRAS4b proteins. Recent studies using SPT have shown heterogeneous 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2022. ; https://doi.org/10.1101/2022.05.13.491828doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491828
http://creativecommons.org/licenses/by/4.0/


   
 

 2 

and complex diffusion of KRAS4b, which may be associated with dynamic interactions 
between the protein and lipid microdomains of varying lipid compositions in the plasma 
memebrane [6,7]. Murakoshi et al. [8] observed transient entrapment of RAS on the cell 
membrane with increases in the entrapment rate upon stimulation from epidermal growth 
factor. Lommerse et al. [9] also find similar confinement of RAS within 200 nm. Several 
studies [10–12] suggest that RAS molecules signal as nanoclusters of 5 to 8 monomers. A 
recent study by Nan et al. [13] implicates that RAF-RAS-GTP dimerizes in RAF-MAPK 
activation. The contrasting results about the RAS signaling mechanism as dimers, monomeric 
GTPase, or clusters consisting of 5 to 8 monomers motivate the need for a detailed 
understanding of the RAS signaling process and the RAS clustering dynamics in membrane. 
To address this conundrum, direct tracking of multimer interactions is essential, yet not 
available. In most of the existing studies, the concentrations of bright molecules are maintained 
at the single molecule level to assure robustness of downstream SPT analysis. For example, 
this is done by using a low fraction of labeled KRAS4b proteins [6] or using photoactivation to 
ensure only a small fraction of the probes are bright at any given moment [14]. Consequently, 
the fraction of trajectories that directly represent multimer interactions is vanishingly small. 

While improving the abundance of multimer-interaction events is not trivial without 
altering the sample conditions, one could improve the performance of SPT analysis to resolve 
more trajectories that directly represent multimer interactions. To achieve this goal, three 
essential methods are required: (1) a fitting method to perform robust localization of particles 
with high local densities that can resolve overlapping point spread functions (PSFs); (2) a 
linking method to produce precise tracking trajectories from the results of the fitting method 
that may contain rich merging and splitting events; and (3) a classification method to 
distinguish the trajectories enclosing multimer interactions at different scales into different 
categories.  

In this study, we improve SPT by refining the fitting method of the SPT analysis pipeline. 
We apply compressive sensing to the SPT analysis using the recently developed method called 
the “progressive refinement method on sparse recovery (PRIS)” [15] and demonstrate its ability 
to provide high-density SPT analysis. We implement the SPT method using PRIS fitting by 
embedding PRIS results inside the framework of a state-of-the-art SPT package, uTrack [16], 
and we call the resultant method spt-PRIS. Next, we combine spt-PRIS with a recently 
developed classification method that uses tracking graph (TG) analysis [17] to classify the 
trajectories into different subpopulations to enable statistical analysis. Sparse recovery (i.e., 
compressive sensing) is highly effective for precise localization at high densities [15,18]. We 
utilize PRIS because of its low computational demand, which is suitable for analyzing large-
scale datasets for SPT (each contains multiple movies of thousands of frames) while retaining 
the flexibility for future extensions. uTrack accounts for rich merging and splitting events, and 
the open-source code package for uTrack allows for fast prototyping and characterization of 
spt-PRIS by embedding PRIS results inside uTrack. TG analysis [17] is used to mitigate the 
linking artifacts and to classify trajectories into subpopulations to detailed analysis.  

To demonstrate the applicability of the method, we apply spt-PRIS to analyze KRAS4b 
protein dynamics in supported lipid bilayers with 2-lipids and 8-lipids membrane SLBs, which 
exhibit low and high clustering effects, respectively [19]. We demonstrate that spt-PRIS results 
are consistent with prior diffusion-state-based studies and allow access to richer statistics for 
trajectories showing clustering behavior, providing a significant contribution in achieving SPT 
for multi-particle interactions. spt-PRIS is broadly applicable to the study of membrane-protein 
interactions as well as other more general applications of SPT. It can be extended to support 
3D particle localization and has the potential for further extensions with multi-channel, multi-
species, and multi-dimensional imaging and tracking when integrated with PSF engineering 
and spectroscopy methods. The ability to directly represent multimer interaction trajectories 
also motivates further development on trajectory linking and classification for conditions with 
high-density features. 
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The rest of the manuscript is organized as follows. Section 2 describes the spt-PRIS 
methodology, implementation, and the associated TG analysis. Section 3 provides simulation 
characterizations of spt-PRIS. Section 4 describes spt-PRIS application on experimental data 
where different KRAS4b clustering dynamics are expected and combined with TG analysis to 
access subpopulation statistics. Section 5 summarize the method and the results, and discusses 
directions for future studies. 

2. Method 
2.1 spt-PRIS implementation 

PRIS is an algorithm for compressive sensing reconstructions (i.e., sparse recovery). 
Compressive sensing can be used to achieve precise localization of particles when the PSFs of 
the particles are overlapping due to the benefits of sparsity constraints [15,18]. In PRIS, the 
solution space for compressive sensing reconstruction is progressively refined to mitigate the 
computational cost involved with high-resolution reconstructions while retaining the flexibility 
for various types of generalization options [15].  

The spt-PRIS incorporates PRIS in the SPT analysis pipeline by replacing the localization 
step in the uTrack software [16] with PRIS. In our experiments, PRIS fitting was performed 
starting on full grids with the original pixel width of 160 nm in 2D to match the experimental 
pixel size. The fitting was then progressively refined on subsets of pixels with 2-fold refinement 
for four repetitions to reach a final grid width of 10 nm and, finally, reduced to a list of location 
coordinates and brightness information using density-based classification [20]. The localized 
features were further screened to favor SPT datasets with more emphasis on the fitting precision 
as compared to the recovered fitting density (details are discussed in Section 3.1). The results 
of PRIS localization were imported into the uTrack software and refined with a least-square 
fitting routine within the range of 40 nm, slightly above the upper bound of the localization 
precision for PRIS fitting as shown in Figure 3(a) and discussed in Section 3.1).  

The subsequent analyses were performed with the functionality available in uTrack to 
produce the SPT trajectories. For a fair comparison of localization results, the relevant 
parameters in spt-PRIS and uTrack analysis were set to be the same. The detected features with 
location fitting uncertainties more significant than 36 nm (approximately the upper bound of 
the fitting precision shown in Figure 3(b)) were rejected for both methods to ensure robustness. 
The SPT trajectories from both spt-PRIS and uTrack on the experimental data were further 
analyzed with tracking graph analysis (explained in 2.2) to support the relevant statistics 
analysis on subpopulations.  

2.2 Tracking graph analysis 

Each set of linked SPT trajectories, along with merging and splitting events, form a tracking 
graph (TG), which is a graph that represents correlations between particles across time. In a 
TG, nodes represent localized features at given time steps, and the edges between nodes 
represent links between two or more particles at consecutive timesteps.  

In our TG analysis, two post-processing operations are involved. First, we identify loops in 
the TG where a node at a given timestep t has two outgoing edges to the next timestep that 
merge back together at time step t+k, where k characterizes the size of the loops. In this study, 
the loops with k<3 are considered to be motion effects and are removed by adopting average 
particle positions to produce a single continuous track. Given a processed TG, the next step is 
to compute the size bound (Sb) on the number of particles present in any given particle track. 
We use the method proposed by McDonald et al. [17] to identify a size bound for the number 
of particles in the observed tracks through analysis of the TG. Note that Sb describes the lower 
bound on the number of particles in the observed tracks due to the presence of unlabeled 
particles, and a higher bound on the number of bright molecules in each observed feature due 
to potential bleaching and particle dissociation events. In this way, each feature is associated 
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with a size bound (Sb) that classifies the tracks into subpopulations to provide detailed analyses 
on the properties of the SPT data. The tools are pending approval for open-source release. 

2.3 Simulations 

All simulations used in this study were performed to replicate the common imaging conditions 
in the study of membrane-bound proteins with the simulation tool used in our previous 
studies [15,21–25]. The simulations were performed with a grid size of 16 nm in space and 1 
ms in time, followed by 10-fold binning to reach a final grid size of 160 nm (to match the pixel 
size in experiments) and a camera frame rate of 100 Hz. The PSF was simulated with Gibson 
& Lanni’s 3D PSF model [26] with a full-width half-maximum of 291.1 nm. As shown in 
Figure 1, the simulations that involve diffusing particles are generated on 10.24 µm wide and 
64 nm thick square patches. The Total internal reflection fluorescence (TIRF) field was 
simulated as an excitation field exhibiting exponential decay from the surface of the coverslip 
with a penetration depth of 150 nm, and the focal plane was defined to be 16 nm above the 
coverslip surface to allow for imperfect intensity fluctuation due to particle position changes in 
the TIRF field. The diffusion trajectories were simulated with Monte Carlo simulation using 
random walk with time intervals of 1 millisecond. For confined diffusion, the edges of the 
domains are treated as mirror boundaries. For the full field of view, periodic boundary 
conditions are used in the lateral directions, and mirror boundaries were used in the axial 
dimension.  

The imaging processes are simulated with each photon propagated through the imaging 
system with arrival positions in the detection plane following the probability distribution 
described by the PSF. Each fluorophore emits a budget of photons weighted by the local TIRF 
intensity, wherein the brightest condition (at the surface of the coverslip), 500 photons are 
emitted per millisecond for each fluorophore. Such dependence of the photon budget on the 
field intensity accounts for the brightness fluctuations due to the changes in the axial positions 
of the fluorophores. The background photons are simulated as a steady flux of uniformly 
distributed photons with 20 photons per millisecond per pixel area on average (unless specified 
otherwise), mimicking the relevant experimental observations. All the noise upon acquisition 
were simulated as shot noise with Poisson statistics. Note that the simulated protein dynamics 
do not represent the precise molecular dynamics of KRAS4b protein. Instead, the focus of our 
simulations is on producing realistic microscopy simulations to represent the imaging 
imperfections that impedes on the robustness of the localization step in SPT. 

 

Fig. 1. Simulation configuration. The total internal reflection fluorescence (TIRF) field was 
simulated as an excitation field with exponential decay from the coverslip's surface with 
penetration depth (Dp) of 150 nm. Proteins are distributed in a 10.48 µm wide and 64 nm thick 
square patch. The focal plane was set at 16 nm above the coverslip. Proteins can have free 
diffusion in most of the region and confined diffusion in the confinement domains. Merging, 
splitting, and dissociation events are simulated within the confinement domains. 

2.4 Experiments 

We prepared two types of supported bilipid layers for single particle tracking of KRAS4b, 
either 2-lipid or 8-lipid membrane SLBs, and compared the performance of spt-PRIS analysis 
to the conventional method (uTrack). Supported lipid bilayers (SLB) were prepared as 
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described in the previous study [19,27]. Briefly, small unilamellar vesicles were deposited on 
a plasma cleaned #1.5, 40 mm borosilicate coverslip and incubated at room temperature for 30 
minutes, followed by washing with 20 mM HEPES, 200 mM NaCl buffer. 1 µM of untagged 
fully processed recombinant KRAS4b proteins mixed with 50 nM Janelia Fluor (JF) 646 [28] 
labeled KRAS4b S106C was added to the SLB and incubated for an hour at room temperature. 
The excess unbound proteins were removed by flowing through the imaging buffer (20 mM 
HEPES, 300 mM NaCl, 5 mM MgCl2 and 5 mM beta-mercaptoethanol (BME)). BME is 
essential to avoid protein crosslinking via photosensitized oxidation  [29]. Detailed protocols 
can be found in the prior study [27]. 

Single-particle tracking (SPT) experiments were performed on a Nikon NStorm Ti-81 
inverted microscope using 100× oil immersion TIRF objective with numerical aperture of 1.49 
N.A. 1.49 (Nikon, Japan). Images were captured with an Andor iXon EMCCD camera (Andor, 
USA) with 647 continuous wave excitations (Agilent laser module). The samples were briefly 
photobleached with high laser power to photobleach the fluorophores adhered to the coverslip 
surface that may skew the diffusion results and immediately imaged at the 20% power setting 
for 5000 frames for each dataset. 

3. Validation and characterization of spt-PRIS using simulated data 
Seven sets of simulation data were used to validate and characterize the performance of spt-
PRIS. The results are compared with those from the conventional method (uTrack) and the 
ground truth analyzed directly on the input particle trajectories retrieved from the diffusion 
simulations.  

3.1 PRIS yields better fitting on clusters 

We first simulated clusters of 2 to 8 bright emitters uniformly positioned along the 
circumference of a circle with a radius ranging from 1.6 µm to zero with intervals of 16 nm, 
representing a series of increasingly challenging localization tasks for clusters (simulation set 
1). Results from PRIS and the localization routine embedded in uTrack are compared. Figure 2 
demonstrates the representative results for each cluster size, where PRIS demonstrates faithful 
localization results in all demonstrated cases, while for the uTrack embedded fitting results, a 
cluster of emitters is fitted either into a single emitter or into multiple emitters but with larger 
errors. The complete set of results are shown in visualization 1, which shows both PRIS and 
the uTrack embedded fitting perform well in the less challenging conditions while PRIS 
performs better in the more challenging conditions. 

 

Fig. 2. Localization performance on clusters (simulation set 1). Various particles located with 
different mutual distances are simulated with a background photon count of 40 per pixel area 
per millisecond. The top row shows the results of localization fitting embedded in uTrack, and 
the bottom row shows the result from PRIS. Pixel width is 160 nm. The complete set of results 
are shown in visualization 1. 

Next, we characterize the localization performance of PRIS at various particle densities 
(simulation set 2). The PRIS fitting parameters are configured to suit SPT, where performance 
on localization precision and false-positive rates are favored over recovered density. We 
characterized the fitting performance based on three metrics: (1) the localization error, which 
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is the standard deviation of the localization errors; (2) the recovered density, which is the 
density of the ground truth particles that are identified by the localization method; and (3) the 
false positive ratio, which is the fraction of localized particles that do not have a ground truth 
particle located within 200 nm radius of its position. As shown in Figure 3, PRIS demonstrates 
a better performance than the results from the localization routine embedded in uTrack with 
lower localization error and higher recovered density. Both methods exhibit a negligible false-
positive ratio. 

 

Fig. 3. Characterization of localization performance with different particle densities (simulation 
set 2). Fifty images with emitters randomly distributed in a patch of size 10.24 × 10.24 µm2 were 
analyzed to produce each data point for both PRIS and the localization method embedded in 
uTrack (uTrack embedded). Three different noise conditions were used for comparison, where 
the average count of background photons per pixel per millisecond (bg) was set as 10, 40, and 
100, respectively as annotated. 

3.2 PRIS improves linking via improved fitting  

Next, we demonstrate that the enhanced localization performance in PRIS further improves the 
tracking. We simulate four pairs of diffusing particles (simulation set 3), which diffuse at 0.5 
µm2/s when far apart initially. When they come close, they are locked in at 200 nm with a 
shared diffusion constant of 0.05 µm2/s. As shown in Figure 4, when the two particles are close 
to each other (Figure 4(a-c)), the fitting routine embedded in uTrack identifies the cluster as a 
single particle, whereas PRIS recognizes two particles. Additionally, when the subframe 
motion effect exists for fast diffusion trajectories (Figure 4(d-f)) where the positions of the 
particle could spread over more than one pixel over the camera exposure time, uTrack returns 
the average particle position, whereas PRIS fitting results are presented with awareness of such 
motion effect. 

 

Fig. 4. Localization (simulation set 3) comparison. PRIS can identify separate particles and 
motion effects even at low resolution where uTrack either fails to resolve the particles or fail to 
recognize the motion effect. Top row: localization with particles with overlapping PSFs. (a) 
shows a single frame, (b) shows the result from uTrack, and (c) shows the result from PRIS. 
Bottom row: localization with fast-moving particles with motion effect. (d) shows a single frame, 
(e) shows the result from uTrack, and (f) shows the result from PRIS. Pixel size is 160 nm. The 
complete set of results are shown in visualization 2. 
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Here, we note that the motion effect is not accounted for in the standard linking algorithms 
(uTrack). Such events would be identified as separate particles and cause the linking algorithm 
to assign separate trajectories to the corresponding movement, resulting in trajectory artifacts. 
Although it is conceivable that the motion effect can be identified based on the time duration 
of the particles and the transient changes in the particle intensities, and an improved linking 
algorithm could be developed with an awareness of the motion effect, it is beyond the scope of 
this study. Here, we handle the motion effect using the trajectory cleaning method discussed in 
Section 2.2. 

 

 

 
Fig. 5. The plot of the fitted location demonstrating the diffusion traces (simulation set 3). (a) 
shows the input particle positions used to generate the microscopy observations. (b) shows the 
recovered position using PRIS fitting. (c) shows the recovered position using the fitting routine 
embedded in uTrack.  

Figure 5 shows the localization results over the full time-range (250 frames) for simulation 
set 3, where the close-range interactions of the particles exist from the 100th to 150th frame, as 
can be seen in the ground truth particle position plot (Figure 5(a)). We note that spt-RPIS 
(Figure 5(b)) identifies two individual particles in these clusters that match the ground truth 
closely, whereas uTrack embedded fitting results (Figure 5(c)) identifies the clusters as single 
particles. Such a condition is critical when one needs to study the diffusion statistics of the 
subpopulation of clusters with different sizes, and our result suggests that PRIS provides the 
localization that more faithfully represents the particle trajectories under such conditions. 

 
Fig. 6. Diffusion trajectories characterization (simulation set 4). (a) shows the result for spt-
PRIS, and (b) shows the result for uTrack. Diffusion trajectories for 20 frames are shown, with 
the particle positions in the last frame annotated as the fitted positions. The ground truth 
positions contain the motion effect of the 10 subframe positions in the last frame. Scale bars: 16 
µm. Pixel size: 160 nm. The complete set of results are shown in visualization 3. 
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We further increased the complexity of the simulation to involve mixtures of individual 
diffusing particles and pairs of particles with random, close-range interactions (without 
merging) to confirm the robustness of spt-PRIS (Simulation set 4, Figure 6). The simulated 
sample contains 30 particles with diffusion constants of 0.01 µm2/s, 0.03 µm2/s, and 0.09 µm2/s 
(10 particles each), and an additional ten pairs of particles (located 200 nm apart for each pair) 
with 0.01 µm2/s translational diffusion and 0.0152 rad2/s rotational diffusion (the root mean 
square angular displacement per 10 ms is 1 degree). SPT analyses were performed using both 
spt-PRIS and uTrack. Our results show that with better fitting precision on the clusters, PRIS 
results yield more robust trajectories after passing through the identical linking step provided 
in uTrack. Specifically, as compared to the ground truth, uTrack tends to fit the clusters as one 
particle. The trajectories exhibit little dispersion due to the averaging effect on the locations 
over all the particles within the cluster. Such bias could influence the follow-up analysis on the 
diffusion behavior and domain size estimation. On the other hand, spt-PRIS yields separated 
single particles in the clusters (see zoomed panels in Figure 6) and successfully yields separate 
trajectories for different particles within the cluster with less dispersion than uTrack results. 

3.3 spt-PRIS yields more robust analysis on diffusion 

For SPT, further analysis is required on the tracking trajectories to study the diffusion behavior 
of the molecule of interest. In particular, we validate that the improved fitting and tracking in 
spt-PRIS is sufficient to improve the robustness of downstream analysis on diffusion states 
when the particles diffuse in membrane domains. Here, we simulate particles diffusing in 
membrane domains with a diameter of 200 nm and compare the results of spt-PRIS and uTrack 
by comparing the global mean square displacement (MSD) as a function of delay times (MSD-
∆t plots). Each simulation contains 25 compartments with a radius of 200 nm and a given 
number of particles randomly spawned into the compartments with specified diffusion 
constants with confined diffusion.  

We first examine the performance with various diffusion constant (0.3 µm2/s, 0.1 µm2/s, 
0.07 µm2/s, and 0.03 µm2/s) relevant to the reported KRAS4b diffusion states with confinement 
(Simulation Set 5) [6]. Figure 7 shows the MSD-∆t curves for spt-PRIS, uTrack, and the ground 
truth. For the medium and fast diffusion speeds (D = 0.07 µm2/s, 0.1 µm2/s, and 0.3 µm2/s), 
spt-PRIS results are closer to the ground truth than the uTrack results. In the case of D = 0.03 
um2/s, the spt-PRIS result exhibit more bias than uTrack. Note here that there is bias in the form 
of more-prominent confinement in all cases with larger ∆t, suggesting that error cancelation 
could exist in the case with D = 0.03 µm2/s in the uTrack results where the diffusion constant 
were initially biased to be faster than the ground truth with lower ∆t values, and the universal 
reduction of MSD values at higher ∆t values could cancel the initial bias and drive the MSD 
closer to the ground truth. 

 
Fig. 7. Simulation validation on confined diffusion with different diffusion speeds (simulation 
set 5). The spt-PRIS results are closer to the ground truth in the medium diffusion speeds, as 
shown in (b) and (c). Both methods demonstrate biased confinement in the fast diffusion speed 
shown in (a) and (d). 

We then study the influence of cluster size on the extracted diffusion statistics (simulation 
set 6). In this case, the instantaneous counts of particles (N) were maintained constant (with N 
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= 20, 40, 60, or 80) but still randomly spawned into 25 compartments with a radius of 200 nm. 
Additional particles were spawned at random when particles dissociate from the membrane 
(end of the trajectories) to maintain a constant N. This way, the number of particles within each 
compartment still fluctuates but maintains the nonuniform and uncontrolled distribution of 
clustering dynamics expected in actual experiments. We can see from Figure 8 that the 
performance of spt-PRIS is better than that of uTrack in all simulated cases. 

 
Fig. 8. Simulation validation on confined diffusion with different cluster size (simulation set 6). 
MSD-dT plots are shown for spt-PRIS, uTrack, and the ground truth. In all cases simulated in 
this set of simulations, the spt-PRIS results are closer to the ground truth than the uTrack results. 

We next examine a more complicated case with particle splitting and merging dynamics in 
the last set of simulations (simulation set 7). As shown in Figure 9(a), each pair of particles is 
initiated as two monomers that exhibit free diffusion with D=1 µm2/s. The monomer particles 
can enter the R=200 nm compartments of membrane domains and experience a reduced 
diffusion constant of 0.5 µm2/s, from which the pair of particles could escape and restore the 
faster diffusion constant of 1 µm2/s, or merge into dimers where both will share a diffusion 
trajectory with even slower diffusion constant (0.01 µm2/s), after which the dimers will 
dissociate from the membrane (simulating the loss of fluorescence signal). We compare the 
MSD-∆t curves for spt-PRIS results, uTrack results, and ground truth. Figure 9(b) shows that 
MSD-∆t curves from spt-PRIS analysis are closer to the ground truth than that from the uTrack 
analysis, suggesting spt-PRIS is more robust than uTrack. 

 

Fig. 9. Complex clustering dynamics simulation (simulation set 7). (a) shows the four-state 
transition of diffusing monomers with either free diffusion or confined diffusion, followed by 
dimerization and dissociation. (b) shows the MSD-∆t plot from spt-PRIS, uTrack, and the 
ground truth. We note that spt-PRIS results are closer to the ground truth in all five repetitions 
in the simulations. 

4. Application and comparison on in-vitro KRAS4b dynamics measurements 
Finally, we apply spt-PRIS to the study of KRAS4b protein dynamics in comparison with 
uTrack on supported lipid bilayers with two different lipid compositions: First, a simple 2-lipid 
SLB of zwitterionic POPC (87%) and negatively charged POPS (13%). Second, a more 
complex 8-lipid SLB composed of eight different lipid classes representing the most abundant 
lipid species found in the inner leaflet of the plasma membrane of mammalian cells [19,27]. 
More pronounced KRAS4b clustering effects are expected on the 8-lipid SLB than the simple 
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2-lipid SLB due to negatively charged lipids [19,27]. 4 movies for the sample with an 8-lipid 
SLB, and 13 movies for the sample with a 2-lipid SLB were analyzed. Tracking graph (TG) 
analysis was used to remove the linking imperfections in the trajectories and to classify features 
into subpopulations based on different TG size bounds (Sb), which estimates a lower bound on 
the number of particles of a particular feature [17]. Note here that the Sb is related but does not 
directly represent the number of labeled KRAS4b proteins. Instead, the total number of 
KRAS4b molecules for a cluster could be higher than the Sb because of the unlabeled fraction 
or the dark population, while the total number of bright KRAS4b molecules could be lower 
than the Sb due to undetected dissociation or bleaching events. The statistical analysis was 
performed on each subpopulation over all the analyzed movies.  

As shown in Figure 10(a)(b), in both 2-lipid and 8-lipid SLBs, spt-PRIS yields significantly 
more trajectories than the uTrack results, providing more statistics for the subsequent analyses, 
especially on the subpopulations of clusters with TG size bounds greater than 1. uTrack 
provided substantial trajectory counts for Sb=1 and Sb=2 for the 8-lipid SLB (Figure 10(b)) and 
very sparse counts for Sb=2 on the 2-lipid SLB (Figure 10(a)). The importance of the trajectory 
abundance is clearly demonstrated in the robustness of the MSD-∆t curves calculated for each 
subpopulation using both spt-PRIS and uTrack analysis, as shown in Figure 10(c).  

 
Fig. 10. MSD trajectory abundance and MSD-∆t plots for experimental data. (a) and (b) list out 
the number of trajectories for each condition as labeled in the tables. (c) shows the MSD-∆t plot 
for the annotated conditions. 

We further compared the performance of spt-PRIS to the uTrack by subjecting the 
trajectories to three types of statistical analysis: mean square displacement (MSD) distribution 
(see section 4.1), brightness distribution (see section 4.2), and Jumping Distance (JD) analysis 
for diffusion states (see section 4.3) [30–32]. In section 4.4, we also discuss the unexpected yet 
interesting result for KRAS4b on the 2-lipid SLB where two distinct subpopulations are 
identified from the spt-PRIS results followed by TG analysis while the diffusion states are the 
same. 

4.1 MSD distribution 

MSD distributions of the spt-PRIS and uTrack results are shown in Figure 11 for the Sb=1 and 
Sb=2 subpopulations for both lipid compositions. Here, the MSD values were calculated for 
each trajectory, and the distributions were calculated over all datasets. Both methods 
demonstrate robust distributions for the Sb=1 subpopulation; however, in the case of Sb=2, spt-
PRIS results showed significantly more robust distribution. 
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Fig. 11. MSD distributions for experimental data with TG size bounds of 1 and 2. The results 
for 2-lipid and 8-lipid SLB data from both uTrack and spt-PRIS analysis are shown as annotated. 
The probability distribution of MSD is normalized to have total probability of 1. The MSD 
values are calculated with time delay of 1 movie frame (∆t =10 ms).  

For the 2-lipid SLB (Figure 11(a)(b)), the uTrack results demonstrate a dominant population of 
KRAS4b clusters with Sb=1, whereas the spt-PRIS results show two subpopulations for Sb=1 
and Sb=2, which share nearly identical distributions. The weak distinction between the two 
MSD distributions indicates homogeneous diffusion of KRAS4b on the 2-lipid SLB 
independent of the size bound. For the 8-lipid SLB (Figure 11(c)(d)), both methods yield 
significant subpopulations with Sb=1 and Sb=2. However, due to the more significant number 
of trajectories obtained from spt-PRIS, the MSD distribution exhibits reduced variation 
compared to uTrack. For both methods, the MSD distribution profiles for Sb=2 are skewed 
towards the smaller MSD values when compared to the Sb=1 case, suggesting the two 
subpopulations have different diffusion behavior. This observation agrees well with the prior 
studies where KRAS4b proteins exhibited more prominent clustering dynamics in 8-lipid SLB. 

4.2 Brightness distribution 

Figure 12 shows the analysis of brightness distributions for the Sb=1 and Sb=2 subpopulations 
for both lipid compositions. For the 2-lipid SLB, uTrack identifies one dominant population 
with Sb=1, whereas spt-PRIS identifies Sb=1 and Sb=2 as two distinct subpopulations. A small 
difference of the brightness distribution is presented. In the case of 8-lipid SLB data, which has 
a more pronounced KRAS4b clustering effect based on prior studies  [6], both methods 
demonstrate separation of 2 subpopulations while spt-PRIS demonstrates a more smooth 
distribution than uTrack. Both exhibit an up-shift of the brightness distribution in the Sb=2 
subpopulation when compared to the Sb=1 subpopulation, confirming the more prominent 
clustering dynamics in Sb=2 population.  

 
Fig. 12. Brightness distribution of features in spt-PRIS results and uTrack results. The results 
for 2-lipid and 8-lipid SLB data from both spt-PRIS and uTrack analysis are shown as annotated. 
Arbitrary units were used for brightness. 

4.3 Jump Distance (JD) analysis 

We further analyze the diffusion states of the subpopulations with different TG size bounds 
using jump distance analysis [30–32]. Least-square fitting was used to fit the cumulative 
probability density function of the square of the jumping distances (r2) to a mixed species model 
shown in Equation (1), 
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where r is the jump distance of the given time interval (∆t), n is the total number of species 
accounted in the fitting model, i is the species index, ci is the fraction coefficient for the ith 
species, p is the probability density of the square value of jump distances extracted from the 
global histogram of the jumping distances over all analyzed movies, and D is the diffusion 
constant. We performed the analysis for both uTrack and spt-PRIS results on all the 
subpopulations with Sb values of 1, 2, and 3 on both 2-lipid and 8-lipid SLBs. For each dataset, 
we performed fitting with n-species model shown in Equation (1) with n ranging from 1 to 6, 
and the best fit is determined by the highest R2 value characterizing the fitting quality. To avoid 
over-fitting, the results with species fractions lower than 1% or with species sharing identical 
diffusion constants are discarded.  

The best fit results are shown in Figure 13. For 2-lipid SLB data, the spt-PRIS results for 
all the subpopulations and the uTrack results for Sb=1 subpopulation identifies similar diffusion 
constants (1.83 to 1.88 µm2/s) with a 1-species model, consistent with the MSD distribution 
analyses shown in Section 4.1 and further confirming a single composition of diffusion state 
for KRAS4b on the 2-lipid SLB. However, uTrack results for Sb=2 identifies a single species 
with a diffusion constant of 2.57 µm2/s, which we assess as unreliable due to the lower R2 value, 
and the much larger range of fitting residuals when compared to the other fitting results. The 
uTrack result for the Sb=3 subpopulation is insufficient to support the JD analysis. For the 8-
lipid SLB data, the spt-PRIS results for all the subpopulations fit best to a 3-species model with 
slow, medium, and fast diffusion species. The diffusion coefficients for individual states 
remained similar across all the subpopulations with Sb ranges from 1 to 3. With increasing Sb, 
the composition of the subpopulation shifts toward the slower diffusion state, with either a 
slower diffusion constant for the slow and medium diffusion species (when Sb increases from 
1 to 2) or decreasing fractions of the fast-diffusing species and increasing fractions of the 
slower-diffusion species (when Sb increases from 2 to 3). However, the uTrack analysis results 
best fit a 2-species model for the Sb=1 subpopulation, and best fits a 1-species model for 
the Sb=2 and Sb=3 subpopulations, which is inconsistent with the 3-species model for 8-lipid 
SLB in the prior studies [6].  

For all the cases, the spt-PRIS results yield more robust JD analysis fittings than the uTrack 
results, with lower amplitude of fitting residuals and higher R2 score. By providing access to 
the robust statistical analyses into the subpopulations with higher Sb values, spt-PRIS provides 
more information in understanding the KRAS4b dynamic properties.  
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Fig. 13. Diffusion state analysis on 8-lipid data. We attempted the fitting to Equation (1) with n-
species models (n ranges 1 to 6) for all the data. The best-fit results are shown with the nth species 
characterized by its fraction ci and diffusion constant Di, where i is the species index. The R2 
score of each fitting is displayed for each condition, and the fitting residuals for each method are 
shown in the last column. The unit for the diffusion constants is µm2/s. 

4.4 Distinct KRAS4b subpopulations in the 2-lipid supported lipid bilayer 

While we expect 2-lipid data to demonstrate less complex diffusion behavior as compared to 
the 8-lipid data due to the lack of countercharged lipids, the spt-PRIS results identify two 
distinct subpopulations with Sb=1 and Sb=2 respectively in the 2-lipid data, in contrast with the 
uTrack results, which identify a single dominant Sb=1 population from the dataset. No 
differences in diffusion states were found from the MSD distribution (Figure 11(b)) and the 
jump distance analysis (Figure 13). However, distinctions in the brightness distribution are 
shown in Figure 12(b), similar to that from the 8-lipid data (which could serve as a positive 
control) from both spt-PRIS and uTrack results shown in Figure 12(c)(d).  

Here we discuss the unexpected Sb=2 subpopulation from spt-PRIS (combined with TG 
analysis) results on the 2-lipid data. First, sufficient abundance of the trajectories is shown with 
larger ∆t values (Figure 10(a)), suggesting that it is not representing the crossing-over of 
independently diffusing bright particles where the PSFs would only overlap transiently. 
Second, the MSD-∆t plots shown in Figure 10(c) demonstrate significant long-range 
displacements with larger ∆t values, suggesting that it is less likely to be due to the nonspecific 
binding of labeled KRAS4b on the coverslip, which would appear more immobile with smaller 
MSD at greater ∆t. Third, slightly more prominent confinement of this population is shown 
when compared to the Sb=1 subpopulation (Figure 10(c), 2-lipid spt-PRIS), suggesting a weak 
clustering effect. We hypothesize that such an Sb=2 subpopulation in the 2-lipid SLB houses a 
distinct state. This state could be seen as ‘attempts’ of KRAS4b to cluster but without being 
able to form clusters due to the lack of countercharge lipids required for stabilization. The 
distances between the particles could have dropped below the resolution limit, which 
contributes to the increase of brightness when multiple particles are fitted as one and is only 
distinguishable with the higher resolution limit provided by PRIS than the conventional 
method. Nonetheless, we acknowledge that more in-depth theoretical analyses, modeling 
studies, and in-vitro experiments are required to confirm such a hypothesis and to gain 
additional biological insights. 

5. Discussion 
In this work, we developed “spt-PRIS” -- an enhanced SPT method with improved localization 
using compressive sensing. Our method adopts PRIS to solve the compressive sensing problem 
and integrates it into a state-of-the-art open-source tool, uTrack, to leverage its linking 
algorithm and enhance its ability to capture merging and splitting events. We performed 
systematic simulations to characterize and validate the improved SPT performance using spt-
PRIS, especially for datasets where resolving overlapping PSFs is critical. We applied spt-PRIS 
to experimental data with KRAS4b clustering dynamics on 2-lipid and 8-lipid membrane SLB 
and analyzed the tracking graph for trajectory cleaning and subpopulation classification prior 
to diffusion state analysis on each subpopulation. Our results demonstrate that spt-PRIS 
provides an unprecedented SPT capability to study particle interactions where close-range 
interactions are critical. spt-PRIS also provides previously inaccessible statistics for the 
subpopulation analysis when combined with tracking graph analysis, bringing in extra 
information into the study of the KRAS4b system.  

Further development of spt-PRIS includes adopting advanced algorithm architecture or 
computation platforms to improve efficiency, such as implementation in Halide, a domain-
specific language for image processing [33], implementation on field programmable gate array 
(FPGA), graphic processing unit (GPU), or integrating with cloud computing. The spt-PRIS 
method also requires improvement of the method accessibility through developing a user-
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friendly and open-source toolbox. Integration of spt-PRIS with state-of-the-art imaging 
modalities is also plausible, for example, with high-resolution light sheet microscopes such as 
lattice light sheet microscope (LLSM) [23] and other light sheet imaging systems [34,35], and 
point spread function engineering [36–39] to further engage the multi-channel, multi-species 
and multi-dimensional localization potential of PRIS reconstruction. Additionally, our work 
motivates further development of linking and classification algorithms for SPT with awareness 
of motion effect and features with dynamic close-range interactions. Our work also motivates 
using spt-PRIS in different subjects of study as an SPT tool to reach a broader range of interests 
in the scientific community.  
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