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Abstract

Selective differentiation of CD4+ T helper (Th) cells into specialized subsets such as Thl and Th2
cells is a key element of the adaptive immune system driving appropriate immune responses. Besides
those canonical Th cell lineages, hybrid phenotypes such as Thl/2 cells arise in vivo, and their
generation could be reproduced in vitro. While master-regulator transcription factors like T-bet for Thl
and GATA-3 for Th2 cells drive and maintain differentiation into the canonical lineages, the
transcriptional architecture of hybrid phenotypes is less well understood. In particular, it has remained
unclear whether a hybrid phenotype implies a mixture of the effects of several canonical lineages for
each gene, or rather a bimodal behavior across genes. Th cell differentiation is a dynamic process in
which the regulatory factors are modulated over time, but longitudinal studies of Th cell differentiation
are sparse. Here, we present a dynamic transcriptome analysis following Th cell differentiation into
Th1, Th2 and Th1/2 hybrid cells. We identified an early bifurcation point in gene expression programs,
and we found that only a minority of ~20% of Th cell-specific genes showed mixed effects from both
Thl and Th2 cells on Th1/2 hybrid cells. While most genes followed either Thl or Th2 cell gene
expression, another fraction of ~20% of genes followed a Th1 and Th2 cell-independent transcriptional
program under control of the transcription factors STAT1 and STAT4. Overall, our results emphasize
the key role of high-resolution longitudinal data for the characterization of cellular phenotypes.
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Introduction

The differentiation of CD4+ T helper (Th) cells into effector cell lineages associated with specific
immunological functions is a critical event at the onset of an immune response. Individual Th cell
lineages such as Thl and Th2 cells can be discriminated by expression of the master-regulator
transcription factors T-bet and GATA-3, and by production of signature cytokines such as IFN-y and
IL-4, respectively (1,2). The differentiation process from naive Th cells into the various effector cell
lineages spans multiple days, and the underlying transcriptional network governing the decision
processes changes dynamically throughout differentiation (3,4). The gene-regulatory networks for Th
cell subset-specific differentiation are quite complex and can be modulated by cell-cell interactions
(5). Th cell phenotypes are not limited to the canonical Thx phenotypes (Thl, Th2, Th1l7,amongst
others), but also include stable hybrid forms such as Th1/2 cells, which co-express T-bet and GATA-
3 as well as IFN-y and IL-4 (6-8).

In previous studies, combining experimental work with mathematical methods has been a successful
approach to gain quantitative insights into Th cell dynamics and decision-making (9-15). Notably, it
was found that although signal integration via cytokines is transient and stochastic (16,17), the
resulting decisions regarding the generation of T cell phenotypes, including selective cytokine
secretion, are remarkably stable even in quantitative terms at the single-cell level (10). Nevertheless,
assessing the complex interplay of different regulatory elements shaping the phenotypic Th cell
landscape has been exacerbated by the limited availability of kinetic data, which are difficult to obtain
experimentally because of small cell numbers occurring in vivo especially at early time points. Indeed,
experimental and theoretical studies have underlined the value of time-course information for the

gquantitative understanding of dynamic processes such as T cell differentiation (4,18-25).

A still unresolved question in Th cell differentiation is the lineage identity of mixed cell phenotypes
such as Th1/2 hybrid cells. Those cells stably co-producing T-bet and GATA-3 have initially been
discovered to arise in mouse models of parasite infections (7), their development was successfully
recapitulated in vitro (7,17), and they are a common observation in recently available single-cell
phenotyping data sets (8,26). Other non-conventional Th cells comprise Tfh-like PD-1"CXCR5,
‘peripheral helper’ T cells in rheumatoid arthritis (27), and Th17 cells in a ‘poised type 2 state’ in the
context of tissue injury (28). How do hybrid Th cell lineages relate to the conventional Thx lineages?
In particular, do hybrid cells result from mixed or superimposed gene expression programs of two or
more conventional lineages, for instance as a combination of genes driven by T-bet and GATA-3
transcription factors in the case of Th1/2 hybrid cells? Or, do they rather evolve toward independent

gene expression programs during differentiation?
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To address such questions, and to derive a comprehensive picture of transcriptional dynamics during
Th cell differentiation, we performed a high-resolution kinetic analysis of gene expression changes
with a 3 hr time interval for the very first time points. We followed Th cell differentiation into Th1 and
Th2 cells, complemented by ThO conditions and a Th1/2 hybrid phenotype, each in two independent
kinetic transcriptomics experiments. We developed a quantitative workflow to carefully characterize
the temporal expression patterns of kinetic genes, and to analyze differences between cell types
arising in the kinetic transcriptional program. We found a critical lineage bifurcation point at ~24 hrs
after antigen stimulation. Notably, we identified a set of genes that show independent behavior in the
Th1/2 hybrid cells and are under direct control of STAT1/4 rather than following T-bet— or GATA-3—

dependent transcriptional programs.

Results

High-resolution kinetic gene expression analysis reveals a critical bifurcation point early
during differentiation

Previous experiments have shown that Th cells can exhibit distinct and mixed phenotypes based on
the combination of polarizing cytokine signals. Here, we used an established in vitro protocol
combining T cell receptor (TCR) stimulation and polarizing cytokines, to induce Th cell differentiation
towards Thl, Th2 and Th1/2 hybrid cells, supplemented by a ThO condition with TCR stimulation and
blocking antibodies for IFN-y, IL-12 and IL-4 (Figure 1A)(7). The obtained Th cell lineages were
analyzed by flow cytometry, indicating lineage-specific expression profiles of key cytokines and
transcription factors, as expected (Figure 1B, Figure S1). In particular, Thl cells showed a dominant
T-bet and IFN-y expression profile, Th2 cells showed GATA-3 and IL-4 expression, and Th1/2 hybrid
cells showed a mixed phenotype. Th cell transcriptomes were obtained at 10 time points over a time-
course of 120 hours, the first three time points in 3 hrs intervals. Two independent experiments were
performed, with very similar overall data quality and gene expression kinetics. For many genes that
are known to have an important role in Th cell differentiation, we observed strong up- or down-
regulation within the time window of the experiment in a cell-type specific manner (Figure 1C, Figure
S1A). As expected, genes of the well-known Thl and Th2 signature cytokines and transcription
factors, Tbx21, Gata3, Ifng, IL4, showed a cell-type specific early response in the corresponding
polarizing conditions (Figure 1D). Further, the hybrid Th1/2 phenotype featured elevated expression
levels of both Tbhx21 and Gata3, while ThO cells showed Thx21 dynamics similar to Th2 cells and

Gata3 dynamics similar to Th1l cells.

To derive a first overview on general characteristics of the obtained data, we performed principal

component analysis (PCA) and hierarchical clustering (Figure 1E, Figure S2B and C). Differences
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between the analyzed cell types increased gradually, and time was the variable accounting for most
of the variance (Figure 1E). That is in line with our result of 3.944 kinetic genes out of 12.479
expressed genes obtained by a combination of statistical tests (cf. Methods) (Figure 1F). Next, to
analyze the kinetics of cell differentiation, we removed genes that were highly correlated across all 4
subsets from the data set (Figure S2D). In a PCA on that reduced data set, differences between cell
fates were far more pronounced than in the original data set (Figure 1G). The differences between
cell fates started increasing after approximately 24 hours and reached a stable maximum at ~day 3,
which was consistent across all first four principle components (Figure S2E). Intriguingly, the Th1/2
hybrid cell type showed a deviating transient behavior in higher-order principle components (Figure
S2E), already pointing to qualitative differences in the regulation of a fraction of genes that we shall

explore in more detail below.

In summary, our explorative analysis of kinetic gene expression during Th cell differentiation revealed
a bifurcation between individual cell types between day 1 and day 3, suggesting a critical time window
for Th cell differentiation around day 1 after TCR stimulation.

Early Th cell differentiation features three major patterns of kinetic gene expression

Having obtained an overview about the global transcriptomic changes during Th cell differentiation,
we next analyzed the genes with significant changes over time in more detail. For this purpose, we
first used the established MasigPro (29) software package to cluster the kinetic genes of each subset
(Figure 2A, cf. Methods). We identified three dominating temporal patterns or kinetic clusters (Figure
2B-D, Figure S3A-D): fast and transient up-regulation (C1), delayed and stable up-regulation (C2),
and stable down-regulation (C3). The three kinetic clusters occurred in comparable abundance across
all cell types, cluster C1 occurring with slightly lower frequency compared to clusters C2 and C3
(Figure 2C). Many well-known Thl and Th2 cell fate-inducing genes were identified as kinetic, and
were associated with kinetic clusters in a cell-type specific manner (Figure 2D). In contrast, genes
associated with other Th cell lineages such as Rorc and II17a (Th17) or Pdcdl (Tfth) did not show a
significant kinetic response according to our criteria. Finally, we performed pathway
overrepresentation analysis for the kinetic genes associated to each cluster (Figure 2E, Table S1).
We found that the stably up-regulated dynamics of cluster C2 were strongly associated with cell-cycle
activity and metabolism, while the transient dynamics of cluster C1 showed enrichment for regulation
of transcription and translation. Moreover, we identified early responses for type | interferons and IL-
2 signaling in cluster C2, while other immune cell-related signaling activity was found throughout all

clusters including the down-regulated genes in cluster C3.

A refined selection procedure identifies quantitative and qualitative differences in kinetic gene

expression between Th cell subtypes
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Based on the described set of kinetic genes, we next analyzed differences in the dynamics between
cell types. To this end, we used a combination of the kinetic differentially expressed genes (DEG) as
derived from the Masigpro workflow (quantitative DEG) and an additional filtering step to exclude
genes with strong pairwise correlation over time (qualitative DEG) (Figure 3A). The latter approach
allowed us to select for genes that not only show distinct expression levels over several time points,
but also show dissimilar trends over time (Figure 3B). This approach is analogous to a “Volcano plot”
representation, which is often employed for selection of genes with high fold-increase in static gene
expression analysis workflows. Finally, we added a category “cluster switch” based on whether a gene

was assigned to a different kinetic cluster (cf. Figure 2B) for each comparison of cell types.

The set of kinetic DEG derived from our data set contained 706 quantitative DEG, out of which 205
are also qualitative DEG, out of which 111 also are subject to cluster switch, as exemplified for the
Thl vs. Th2 comparison (Figure 3C, Table S2). Visual inspection of this set of genes showed clearly
distinguishable patterns between Thl and Th2 cells (Figure 3D). Apart from Thl vs. Th2 DEG, we
found the highest numbers of DEG in the Thl vs Th1/2 and Th2 vs ThO comparisons (Figure 3C), as
expected based on PCA analysis (cf. Figure 1E). Notably, we consistently identified DEG that were
shared between the Thl vs Th1/2 and Th2 vs Th1/2 comparisons, across quantitative, qualitative and
cluster-switching DEG (Figure 3E), suggesting that not all parts of the Th1/2 cell transcriptome directly
follow either the Thl or Th2 cell gene expression program. As in the kinetic cluster analysis above,
we found that many of the well-known Th1 and Th2 cell-associated genes such as Gata3, Ifng, Eomes
and 114 were identified as DEG, supplemented by other genes such as Nkg7 and Bst2 (Figure 3B,
Figure S3E, Table S2). Pathway overrepresentation analysis (Figure 3F, Table S1) revealed strong
enrichment of interferon-related pathways (IF) across all comparisons, except for the Thl vs. ThO
contrast, which did not contain any enrichment for the pathways we considered. T cell differentiation
(T) and most of the pathways accounting for chemokine signaling and generic inflammatory patterns
(1) were moderately enriched in the Thl vs. Th2 and Th2 vs. ThO comparisons only. The broader
“cytokine” category (C) contained highly enriched pathways across all comparisons, but also pathways

lacking significant hits for the ThlvsTh1/2 and Th2vsTh1/2 comparisons.

Overall, this high-resolution kinetic data set allowed for a fine-tuned approach to kinetic gene
expression analysis in terms of quantitative, qualitative and kinetic cluster-switching DEG, yielding a
guantifiable classification suitable for direct assessment of the role of each gene in lineage-specific

Th cell differentiation programs.

Hybrid Th1/2 cells are partly driven by a STAT1/4-dependent gene expression program that is

independent of Thl and Th2 cell specific gene regulation
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Our analysis consistently revealed an overlap of Thl vs. Th1/2 and Th2 vs. Th1/2 DEG (Figure 3D).
That suggests that the majority of the kinetic transcripts in Th1/2 hybrid cells follows either the Th1 or
the Th2 cell gene expression program, while a substantial fraction of the transcriptome differs from
that of both Th1l and Th2 cells. We reasoned that such transcriptional kinetics could result from either
“superposition”, that is a combined effect of Th1 and Th2 cell types of gene regulation, or from an
“independent” gene expression program, that is an expression pattern that cannot be attributed to Th1

or Th2 cells nor to their combination.

To further investigate the relation of Th1/2 hybrid cells to Th1l and Th2 cells, we restricted the analysis
to the set of Thl vs. Th2 DEG, thereby focusing on genes that are highly related to differential Th cell
fate-development (Figure 4A). Next, we set up a linear regression model to describe the transcriptional
program of Th1/2 hybrid cells as a function of Thl and Th2 cell gene expression. The resulting
regression coefficients Bt and B2 for each gene span a plane in which additive and subtractive
effects relating to Thl and Th2 cell gene expression are directly accessible (Figure S4A). We grouped
all considered Th1 vs. Th2 DEG into “Th1-like”, “Th2-like”, “Superposition” and “Independent”
categories, based on the significance of the Brn: and Brn2 regression fitting (Figure 4B and C)(cf.
Methods). As expected based on the PCA and DEG analysis results, a large fraction of genes in the
Th1/2 hybrid cell expression profile was classified as “Th2-like”, again indicating the overall similarity
of the Th1/2 hybrid phenotype to the Th2 cell type (Figure 4C). Another large fraction of genes was
classified as “Superposition” or “Independent”, and quite remarkably, we found those two categories

at almost the same frequency.

To further evaluate the described types of genes in context of the overall transcriptional program, we
performed enrichment analysis with regard to publicly available gene lists of transcription factor targets
as obtained from ChipSeq data (30-34). We focused on gene regulation by the transcription factors
GATA-3, T-bet, and STAT1/4/6, which are known to be key regulators of Th cell differentiation. As
expected, in the overall Thl vs. Th2 contrast, the Thl cell-related genes were enriched for T-bet,
STAT4 and Thl-cell specific GATA3 targets, while the Th2 cell-related genes were enriched for
STAT6 and Th2-cell specific GATA-3 and targets (Figure 4D, left panel). In the Thl-like and Th2-like
genes of the Th1/2 hybrid cells, we also found strong enrichment for T-bet and GATA-3 target genes,
respectively (Figure 4D, right panel). The superposition genes showed strong enrichment in the
GATA-3 target genes of Th1l cells. In contrast, in the Independent genes of the Th1/2 hybrid cells, we
identified a significant signature of STAT1 and STAT4 target genes that is absent in all other types of
Th1/2 hybrid cell genes. This pattern of a dominating STAT-dependent transcriptional program for
Independent genes and dominating GATA-3-dependent regulation for Superposition genes was
consistent for our two independent replicates and was robust to changes in the applied thresholds for

statistical analysis (Figure S4B-E).
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Taken together, we found that the majority of genes in the Th1/2 hybrid cells closely follow either the
Th1 or Th2 cell transcriptional programs, but about 20% of the remaining genes showed independent
behavior rather than being explained by a combination of Th1- and Th2-dependent effects. In contrast
to the expression profiles of Thl and Th2 cells, which were dominated by T-bet and GATA-3 control,
those independent genes in Th1/2 hybrid cells were primarily comprised of STAT1 and STAT4 target

genes.

Discussion

The commitment of Th cells to a specific effector state is one of the key decision-making processes
at the beginning of an immune reaction and has far-reaching consequences regarding the type and
strength of the response. That decision can have severe consequences in the context of diseases
including autoimmune disorders (35,36), cancer (37), or viral infections including SARS-CoV-2 (38).
Here, kinetic gene expression analysis at high temporal resolution especially in the very early phase
of cell differentiation allowed us to derive a full picture of the transcriptional landscape during Thl, Th2
and Th1/2 cell differentiation, and to achieve a detailed classification of the kinetically changing genes.
We could pinpoint a critical time window at ~24 hrs after TCR stimulation, where the lineages start to
show divergent behavior, and we provide detailed information regarding kinetic patterning of genes

within and between Th cell effector subtypes.

Recently, high-content single-cell technologies such as CyTOF and single-cell sequencing have
allowed deep insights into the rich and previously unforeseen diversity of the phenotypic space of
effector Th cells, which can cover the full spectrum between and around the conventional Thl, Th2,
Th17 etc. cells (8,26,39,40). Furthermore, non-conventional Th cell phenotypes have been discovered
for instance in the contexts of rheumatoid arthritis and tissue injury (27,28). Such findings have raised
the question whether immune cell phenotypes should be regarded as a continuous landscape rather
than a set of discrete states (40). Here, using kinetic transcriptome analysis after highly controlled
generation of Thl, Th2 and hybrid Th1/2 cells in vitro, we were able to follow the gene expression
dynamics in all three cell types simultaneously. In particular, we could directly compare the changes
of individual genes between the hybrid cells and the related conventional Thl and Th2 cells over the

full time-course of Th cell differentiation.

We found that despite the co-expression of T-bet and GATA-3 in the Th1/2 hybrid cells, the majority

of genes showed “bi-modal” behavior and closely followed either the Th1 or the Th2 cell type

dynamics. Only a fraction of ~20% of genes showed the expected “in-between” behavior, that is, a

superposition of the Thl- and Th2-dependent effects. An equal portion of again ~20% of genes

showed independent behavior, that means the temporal evolution of those genes could not be

attributed to either Thl or Th2 kinetic patterns or the combination of both. Notably, we found that the
8
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independent genes in the Th1/2 hybrid cells do not follow the otherwise dominant signature of T-bet
or GATA-3 target gene enrichment, but rather are under the control of STAT1- and STAT4-dependent
gene regulation. Such dominant STAT1/4 control might be a consequence of GATA-3 and T-bet

dependent gene regulation cancelling the effect of each other in those genes.

Hence, our analysis revealed substantial commitment of the hybrid Thl/2 cell lineage to the
corresponding conventional, polarizing Thl and Th2 cell lineages; nevertheless, we also identified
fractions of the gene expression program accounting for independent or intermediate states. That
suggests that the question of a continuous versus discrete gene expression landscape of Th cell
lineages depends on the individual gene or gene set under consideration. Here, deep time-course
transcriptomic profiling generated a resolution allowing for such detailed analysis of the phenotypic

identity among closely related immune cell types.

Materials and Methods
Mice

Balb/c mice were bred under specific pathogen-free conditions at the Charite, Berlin. All animal
experiments were performed in accordance with the German animal protection with permission from

the local veterinary offices.
Cell culture and in vitro differentiation

Cells were isolated and cultured as previously described (7). Briefly, naive CD4+ CD62L" T cells were
isolated from pooled spleen and lymph node cells of 5-8 week old Balb/c mice using a two-step
magnetic sorting strategy (Multisort kit, Miltenyi Biotec). T cells were cultured in RPMI
1640+GlutaMax-1 supplemented with 10% (v/v) FCS (Gibco), penicilin (100 U/ml; Gibco),
streptomycin (100 pg/ml; Gibco), and R-mercaptoethanol (50 ng/ml; Sigma). Cultures were prepared
by stimulation with plate-bound 2.5 pg/ml anti-CD3¢ (145-2C11) and 3 pg/ml soluble anti-CD28 (37.51,
both from BD Biosciences). For Th1l differentiation, 10 ng/ml IL-12 (R&D Systems), and 10 pg/ml anti—
IL-4 (11B11) were added. For Th2 differentiation, 30 ng/ml IL-4 (R&D Systems), 10 pg/ml anti—IL-12
(C17.8), and 10 pg/ml anti—-IFN-y (AN18.17.24) were added. Hybrid Th1/2 cells were cultured with 10
ng/ml IL-12, and 30 ng/ml IL-4. ThO cells were generated under neutral conditions with anti—IL-12,
anti-IFN-y, and anti—IL-4. Cell cultures were transferred to a new plate and split on d 2. Transcription
factor stainings were performed as previously described (7). T-bet and GATA-3 protein amounts were
analyzed using FoxP3 staining buffer set (eBioscience) according to the manufacturer's instructions.
Briefly, cells were stained with anti-CD4 (RM4-5) followed by fixation with 1x

Fixation/Permeabilization buffer and intracellular staining with PE-conjugated anti—T-bet (4B10) and
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Alexa-647—conjugated anti-GATA-3 (TWAJ, both from eBioscience) in 1x permeabilization buffer.
Cells were washed in 1x permeabilization buffer and analyzed by FACS.

Microarrays and data processing

lllumina microarrays (lllumina Mouse Sentrix-6) were used to profile T cell gene expression under
polarizing conditions at 10 time points. Data were background corrected, quantile-normalized and
log2-transformed. As an additional filtering step, we selected only probes whose expression was
above the median expression across all groups and timepoints for at least one condition. Afterwards,
we selected only probes that had gene annotations for EntrezGene ID, RefSeq ID and gene symbol,

resulting in the analysis of 18284 probes (out of 46089), matching to 12479 expressed genes.
Kinetic gene expression analysis

To identify kinetic genes, we first ran MaSigPro (29) on individual CD4+ T cell subsets to only consider
time as an explanatory variable in the model. Additionally, we considered genes that had a 2-fold
increase compared to time O at two consecutive time points. To identify temporal patterns, we
employed hierarchical clustering using gene-gene correlation as a distance measure for each set of
kinetic genes. The resulting dendrogram was cut at a prescribed number of clusters (Figure S4). Next,
we used the union of all kinetic genes to also evaluate differences between different groups. To this
end, we employed the MaSigPro workflow on all groups combined, thus considering time and group
identity (Th1/Th2/Th12/Th0) as explanatory variables. To identify DEG over time, we first used a
polynomial regression model as implemented in the MaSigPro package. Further, for the genes
identified as having significant profile differences between groups (“‘quantitative DEG”), we computed
for each gene the kinetic correlation using pairwise comparisons between cell types across all time
points. Reasoning that a high correlation indicates a similar transcriptomic trajectory, we defined a
correlation index 1-R?, where R? is the Pearsson correlation coefficient, and identified all DEG with
correlation index <0.3 between cell types as “qualitative DEG” (Figure 3A-C). For pathway analysis,
gene sets were pooled from the public REACTOME, GO:BP, Msigdb:Hallmark and
Msigdb:C23:Wikipathways data bases. We excluded gene sets with less than 3 or more than 1000
genes. Pathway overrepresentation analysis was performed by applying a hypergeometric test on

gene sets of all databases combined after background correction.

Linear model analysis. We used the following model to describe the expression for a gene i
expressed in cell type j as a function of Thl and Th2 expression: Y; j = B rp1Yirn1 + Birn2Yirnz + €.
Here Y, ; represents the gene expression for cell type j € {Th0,Th1/2}, and Yr,; (Yrnz) the gene
expression of Thl and Th2, respectively. The coefficients 1 and Sy, denote the contribution of

the respective cells to explaining the expression for Y; ;. Fitting the model to each gene allowed

10
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classification into the categories Thl-like, Th2-like, Superposition and Independent, based on
significance of the regression fit coefficients fr,; and Br;, (see Figure 4A and Figure S7A). Of note,
some fits showed a mixed combination of positive and negative coefficients, which would indicate a
combined effect of negative and positive regulation. However, in all those cases the negative

coefficient was not significant.

Statistics. The p-values derived from MasigPro or other methods were corrected for multiple-testing
using the Benjamini-Hochberg method, if applicable. The resulting false-discovery-rate (FDR) or
simple p-value was regarded significant at a significance level of 0.05, except for pathway enrichment
analysis, where we accepted values of FDR<0.1.

Data availability. The R-scripts developed for kinetic gene expression analysis will be released
alongside the GEO data repository upon publication of the manuscript.
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Figure Captions
Figure 1: A high-resolution time course of Th cell differentiation.

(A) Experimental setup. Th cell subsets were induced by polarizing signals in vitro, and gene
expression profiles were obtained at 10 time points between 0 and 120 hours after activation.  (B)
Flow-cytometric characterization of Th cell subsets 120 hours after activation with polarizing
conditions as described in (A). Normalized geometric mean indices for T-bet and GATA-3 expression
are shown. Geometric mean intensities for IFN-y and IL-4 positive cells are indicated in bold. (C)
Gene-expression profiles of four groups of genes (top to bottom): Thl-related, Th2-related, Tth and
Thl7-related, and other important Th cell-related genes. (D) Kinetics of master regulator transcription
factors and signature cytokines for individual CD4+ T cell subsets. Shown are normalized expression
intensities as fold-change relative to the first measured timepoint (Oh). (E) Principal component (PC)
analysis of the differentiation time course. Cell subsets are indicated by marker shape. Time of
measurement is indicated by color. (F) Numbers and overlap of kinetic genes between cell subsets.
(G) Evolution of PC1 over time. Genes with high correlation between subsets were removed (bottom)
or kept for comparison (top).

Figure 2: Early Th cell differentiation features three major patterns of kinetic gene expression.

(A) Expression heatmap for kinetic genes. (B) Normalized expression kinetics of the three identified
kinetic gene expression clusters, shown as averages over all genes and all cell types contained in
each cluster. (C) Quantification of the numbers of identified kinetic genes across cell types within each
kinetic cluster. (D) Gene classification as non-kinetic or kinetic incl. cluster association, for the four
groups of Th cell-related genes introduced in Figure 1C. (E) Pathway enrichment analysis for genes
uniquely assigned to kinetic clusters C1-C3. Pathways were pooled from REACTOME and

Msigdb:Hallmark data bases, for a list of all enriched pathways see Table S1.

Figure 3: A refined selection procedure identifies quantitative and qualitative differences in

kinetic gene expression.

(A) Workflow illustration. We employed a combination of regression fitting in MasigPro to derive
guantitative differentially expressed genes (DEG), followed by a correlation filter to identify qualitative
DEG and by an analysis of switching of kinetic clusters between cell types. (B) Correlation
volcano-plots based on the workflow in (A). Genes are categorized as kinetic (grey), quantitative DEG
(black) or qualitative DEG (red). See Methods for details. (C) Numbers of qualitative and quantitative

DEG obtained for each comparison of cell types. Brackets indicate the numbers of kinetic cluster
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switches. (D) Expression heatmap for all qualitative DEG exhibiting kinetic cluster switches in at least
one comparison of cell types, as indicated on the left. (E) Venn diagrams of quantitative (left) and
qualitative (right) DEG shared between Thl or Th2 cells and Th1/2 hybrid cells. (F) Pathway
enrichment analysis of DEG for all pairwise comparisons between cell types. Pathways were pooled
from REACTOME, GO:BP, Msigdb:C2:WikiPathways and Msigdb:C3:TFT data bases. Shown are

pathways with significant enrichment in at least two comparisons.
Figure 4: Superposition and independence of genes in Th1/2 hybrid cells.

(A) Workflow sketch. Based on the identified qualitative ThlvsTh2 DEG (see Figure 3C), similarity of
genes to the expression profile of Th1/2 hybrid cells was assessed by a linear regression model. (B)
Time-courses of representative genes, and (C) quantification of gene classification into the four
different categories. (D) Enrichment analysis using published transcription factor target gene sets (see
text). Left: Analysis of up-regulated genes in Thl (Th2) cells, which are taken as ThlvsTh2 DEG with
expression values higher (lower) in Thl compared to Th2 cells. Right: Analysis of the Th1/2 hybrid
transcriptional profile along the gene categories obtained in (A-C).
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