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Abstract 

Selective differentiation of CD4+ T helper (Th) cells into specialized subsets such as Th1 and Th2 

cells is a key element of the adaptive immune system driving appropriate immune responses. Besides 

those canonical Th cell lineages, hybrid phenotypes such as Th1/2 cells arise in vivo, and their 

generation could be reproduced in vitro. While master-regulator transcription factors like T-bet for Th1 

and GATA-3 for Th2 cells drive and maintain differentiation into the canonical lineages, the 

transcriptional architecture of hybrid phenotypes is less well understood. In particular, it has remained 

unclear whether a hybrid phenotype implies a mixture of the effects of several canonical lineages for 

each gene, or rather a bimodal behavior across genes. Th cell differentiation is a dynamic process in 

which the regulatory factors are modulated over time, but longitudinal studies of Th cell differentiation 

are sparse. Here, we present a dynamic transcriptome analysis following Th cell differentiation into 

Th1, Th2 and Th1/2 hybrid cells. We identified an early bifurcation point in gene expression programs, 

and we found that only a minority of ~20% of Th cell-specific genes showed mixed effects from both 

Th1 and Th2 cells on Th1/2 hybrid cells. While most genes followed either Th1 or Th2 cell gene 

expression, another fraction of ~20% of genes followed a Th1 and Th2 cell-independent transcriptional 

program under control of the transcription factors STAT1 and STAT4. Overall, our results emphasize 

the key role of high-resolution longitudinal data for the characterization of cellular phenotypes.  
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Introduction 

The differentiation of CD4+ T helper (Th) cells into effector cell lineages associated with specific 

immunological functions is a critical event at the onset of an immune response. Individual Th cell 

lineages such as Th1 and Th2 cells can be discriminated by expression of the master-regulator 

transcription factors T-bet and GATA-3, and by production of signature cytokines such as IFN-γ and 

IL-4, respectively (1,2). The differentiation process from naïve Th cells into the various effector cell 

lineages spans multiple days, and the underlying transcriptional network governing the decision 

processes changes dynamically throughout differentiation (3,4). The gene-regulatory networks for Th 

cell subset-specific differentiation are quite complex and can be modulated by cell-cell interactions 

(5). Th cell phenotypes are not limited to the canonical Thx phenotypes (Th1, Th2, Th17,amongst 

others), but also include stable hybrid forms such as Th1/2 cells, which co-express T-bet and GATA-

3 as well as IFN-γ and IL-4 (6–8).  

In previous studies, combining experimental work with mathematical methods has been a successful 

approach to gain quantitative insights into Th cell dynamics and decision-making (9–15). Notably, it 

was found that although signal integration via cytokines is transient and stochastic (16,17), the 

resulting decisions regarding the generation of T cell phenotypes, including selective cytokine 

secretion, are remarkably stable even in quantitative terms at the single-cell level (10). Nevertheless, 

assessing the complex interplay of different regulatory elements shaping the phenotypic Th cell 

landscape has been exacerbated by the limited availability of kinetic data, which are difficult to obtain 

experimentally because of small cell numbers occurring in vivo especially at early time points. Indeed, 

experimental and theoretical studies have underlined the value of time-course information for the 

quantitative understanding of dynamic processes such as T cell differentiation (4,18–25). 

A still unresolved question in Th cell differentiation is the lineage identity of mixed cell phenotypes 

such as Th1/2 hybrid cells. Those cells stably co-producing T-bet and GATA-3 have initially been 

discovered to arise in mouse models of parasite infections (7), their development was successfully 

recapitulated in vitro (7,17), and they are a common observation in recently available single-cell 

phenotyping data sets (8,26). Other non-conventional Th cells comprise Tfh-like PD-1hiCXCR5-, 

‘peripheral helper’ T cells in rheumatoid arthritis (27), and Th17 cells in a ‘poised type 2 state’ in the 

context of tissue injury (28). How do hybrid Th cell lineages relate to the conventional Thx lineages? 

In particular, do hybrid cells result from mixed or superimposed gene expression programs of two or 

more conventional lineages, for instance as a combination of genes driven by T-bet and GATA-3 

transcription factors in the case of Th1/2 hybrid cells? Or, do they rather evolve toward independent 

gene expression programs during differentiation? 
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To address such questions, and to derive a comprehensive picture of transcriptional dynamics during 

Th cell differentiation, we performed a high-resolution kinetic analysis of gene expression changes 

with a 3 hr time interval for the very first time points. We followed Th cell differentiation into Th1 and 

Th2 cells, complemented by Th0 conditions and a Th1/2 hybrid phenotype, each in two independent 

kinetic transcriptomics experiments. We developed a quantitative workflow to carefully characterize 

the temporal expression patterns of kinetic genes, and to analyze differences between cell types 

arising in the kinetic transcriptional program. We found a critical lineage bifurcation point at ~24 hrs 

after antigen stimulation. Notably, we identified a set of genes that show independent behavior in the 

Th1/2 hybrid cells and are under direct control of STAT1/4 rather than following T-bet– or GATA-3–

dependent transcriptional programs.  

Results 

High-resolution kinetic gene expression analysis reveals a critical bifurcation point early 

during differentiation 

Previous experiments have shown that Th cells can exhibit distinct and mixed phenotypes based on 

the combination of polarizing cytokine signals. Here, we used an established in vitro protocol 

combining T cell receptor (TCR) stimulation and polarizing cytokines, to induce Th cell differentiation 

towards Th1, Th2 and Th1/2 hybrid cells, supplemented by a Th0 condition with TCR stimulation and 

blocking antibodies for IFN-γ, IL-12 and IL-4 (Figure 1A)(7). The obtained Th cell lineages were 

analyzed by flow cytometry, indicating lineage-specific expression profiles of key cytokines and 

transcription factors, as expected (Figure 1B, Figure S1). In particular, Th1 cells showed a dominant 

T-bet and IFN-γ expression profile, Th2 cells showed GATA-3 and IL-4 expression, and Th1/2 hybrid 

cells showed a mixed phenotype. Th cell transcriptomes were obtained at 10 time points over a time-

course of 120 hours, the first three time points in 3 hrs intervals. Two independent experiments were 

performed, with very similar overall data quality and gene expression kinetics. For many genes that 

are known to have an important role in Th cell differentiation, we observed strong up- or down-

regulation within the time window of the experiment in a cell-type specific manner (Figure 1C, Figure 

S1A). As expected, genes of the well-known Th1 and Th2 signature cytokines and transcription 

factors, Tbx21, Gata3, Ifng, IL4, showed a cell-type specific early response in the corresponding 

polarizing conditions (Figure 1D). Further, the hybrid Th1/2 phenotype featured elevated expression 

levels of both Tbx21 and Gata3, while Th0 cells showed Tbx21 dynamics similar to Th2 cells and 

Gata3 dynamics similar to Th1 cells.  

To derive a first overview on general characteristics of the obtained data, we performed principal 

component analysis (PCA) and hierarchical clustering (Figure 1E, Figure S2B and C). Differences 
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between the analyzed cell types increased gradually, and time was the variable accounting for most 

of the variance (Figure 1E). That is in line with our result of 3.944 kinetic genes out of 12.479 

expressed genes obtained by a combination of statistical tests (cf. Methods) (Figure 1F). Next, to 

analyze the kinetics of cell differentiation, we removed genes that were highly correlated across all 4 

subsets from the data set (Figure S2D). In a PCA on that reduced data set, differences between cell 

fates were far more pronounced than in the original data set (Figure 1G). The differences between 

cell fates started increasing after approximately 24 hours and reached a stable maximum at ~day 3, 

which was consistent across all first four principle components (Figure S2E). Intriguingly, the Th1/2 

hybrid cell type showed a deviating transient behavior in higher-order principle components (Figure 

S2E), already pointing to qualitative differences in the regulation of a fraction of genes that we shall 

explore in more detail below. 

In summary, our explorative analysis of kinetic gene expression during Th cell differentiation revealed 

a bifurcation between individual cell types between day 1 and day 3, suggesting a critical time window 

for Th cell differentiation around day 1 after TCR stimulation. 

Early Th cell differentiation features three major patterns of kinetic gene expression 

Having obtained an overview about the global transcriptomic changes during Th cell differentiation, 

we next analyzed the genes with significant changes over time in more detail. For this purpose, we 

first used the established MasigPro (29) software package to cluster the kinetic genes of each subset 

(Figure 2A, cf. Methods). We identified three dominating temporal patterns or kinetic clusters (Figure 

2B-D, Figure S3A-D): fast and transient up-regulation (C1), delayed and stable up-regulation (C2), 

and stable down-regulation (C3). The three kinetic clusters occurred in comparable abundance across 

all cell types, cluster C1 occurring with slightly lower frequency compared to clusters C2 and C3 

(Figure 2C). Many well-known Th1 and Th2 cell fate-inducing genes were identified as kinetic, and 

were associated with kinetic clusters in a cell-type specific manner (Figure 2D). In contrast, genes 

associated with other Th cell lineages such as Rorc and Il17a (Th17) or Pdcd1 (Tfh) did not show a 

significant kinetic response according to our criteria. Finally, we performed pathway 

overrepresentation analysis for the kinetic genes associated to each cluster (Figure 2E, Table S1). 

We found that the stably up-regulated dynamics of cluster C2 were strongly associated with cell-cycle 

activity and metabolism, while the transient dynamics of cluster C1 showed enrichment for regulation 

of transcription and translation. Moreover, we identified early responses for type I interferons and IL-

2 signaling in cluster C2, while other immune cell-related signaling activity was found throughout all 

clusters including the down-regulated genes in cluster C3.  

A refined selection procedure identifies quantitative and qualitative differences in kinetic gene 

expression between Th cell subtypes 
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Based on the described set of kinetic genes, we next analyzed differences in the dynamics between 

cell types. To this end, we used a combination of the kinetic differentially expressed genes (DEG) as 

derived from the Masigpro workflow (quantitative DEG) and an additional filtering step to exclude 

genes with strong pairwise correlation over time (qualitative DEG) (Figure 3A). The latter approach 

allowed us to select for genes that not only show distinct expression levels over several time points, 

but also show dissimilar trends over time (Figure 3B). This approach is analogous to a “Volcano plot” 

representation, which is often employed for selection of genes with high fold-increase in static gene 

expression analysis workflows. Finally, we added a category “cluster switch” based on whether a gene 

was assigned to a different kinetic cluster (cf. Figure 2B) for each comparison of cell types.  

The set of kinetic DEG derived from our data set contained 706 quantitative DEG, out of which 205 

are also qualitative DEG, out of which 111 also are subject to cluster switch, as exemplified for the 

Th1 vs. Th2 comparison (Figure 3C, Table S2). Visual inspection of this set of genes showed clearly 

distinguishable patterns between Th1 and Th2 cells (Figure 3D). Apart from Th1 vs. Th2 DEG, we 

found the highest numbers of DEG in the Th1 vs Th1/2 and Th2 vs Th0 comparisons (Figure 3C), as 

expected based on PCA analysis (cf. Figure 1E). Notably, we consistently identified DEG that were 

shared between the Th1 vs Th1/2 and Th2 vs Th1/2 comparisons, across quantitative, qualitative and 

cluster-switching DEG (Figure 3E), suggesting that not all parts of the Th1/2 cell transcriptome directly 

follow either the Th1 or Th2 cell gene expression program. As in the kinetic cluster analysis above, 

we found that many of the well-known Th1 and Th2 cell-associated genes such as Gata3, Ifng, Eomes 

and Il4 were identified as DEG, supplemented by other genes such as Nkg7 and Bst2 (Figure 3B, 

Figure S3E, Table S2). Pathway overrepresentation analysis (Figure 3F, Table S1) revealed strong 

enrichment of interferon-related pathways (IF) across all comparisons, except for the Th1 vs. Th0 

contrast, which did not contain any enrichment for the pathways we considered. T cell differentiation 

(T) and most of the pathways accounting for chemokine signaling and generic inflammatory patterns 

(I) were moderately enriched in the Th1 vs. Th2 and Th2 vs. Th0 comparisons only. The broader 

“cytokine” category (C) contained highly enriched pathways across all comparisons, but also pathways 

lacking significant hits for the Th1vsTh1/2 and Th2vsTh1/2 comparisons.  

Overall, this high-resolution kinetic data set allowed for a fine-tuned approach to kinetic gene 

expression analysis in terms of quantitative, qualitative and kinetic cluster-switching DEG, yielding a 

quantifiable classification suitable for direct assessment of the role of each gene in lineage-specific 

Th cell differentiation programs.  

Hybrid Th1/2 cells are partly driven by a STAT1/4-dependent gene expression program that is 

independent of Th1 and Th2 cell specific gene regulation 
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Our analysis consistently revealed an overlap of Th1 vs. Th1/2 and Th2 vs. Th1/2 DEG (Figure 3D). 

That suggests that the majority of the kinetic transcripts in Th1/2 hybrid cells follows either the Th1 or 

the Th2 cell gene expression program, while a substantial fraction of the transcriptome differs from 

that of both Th1 and Th2 cells. We reasoned that such transcriptional kinetics could result from either 

“superposition”, that is a combined effect of Th1 and Th2 cell types of gene regulation, or from an 

“independent” gene expression program, that is an expression pattern that cannot be attributed to Th1 

or Th2 cells nor to their combination.  

To further investigate the relation of Th1/2 hybrid cells to Th1 and Th2 cells, we restricted the analysis 

to the set of Th1 vs. Th2 DEG, thereby focusing on genes that are highly related to differential Th cell 

fate-development (Figure 4A). Next, we set up a linear regression model to describe the transcriptional 

program of Th1/2 hybrid cells as a function of Th1 and Th2 cell gene expression. The resulting 

regression coefficients βTh1 and βTh2 for each gene span a plane in which additive and subtractive 

effects relating to Th1 and Th2 cell gene expression are directly accessible (Figure S4A). We grouped 

all considered Th1 vs. Th2 DEG into “Th1-like”, “Th2-like”, “Superposition” and “Independent” 

categories, based on the significance of the βTh1 and βTh2 regression fitting (Figure 4B and C)(cf. 

Methods). As expected based on the PCA and DEG analysis results, a large fraction of genes in the 

Th1/2 hybrid cell expression profile was classified as “Th2-like”, again indicating the overall similarity 

of the Th1/2 hybrid phenotype to the Th2 cell type (Figure 4C). Another large fraction of genes was 

classified as “Superposition” or “Independent”, and quite remarkably, we found those two categories 

at almost the same frequency.  

To further evaluate the described types of genes in context of the overall transcriptional program, we 

performed enrichment analysis with regard to publicly available gene lists of transcription factor targets 

as obtained from ChipSeq data (30–34). We focused on gene regulation by the transcription factors 

GATA-3, T-bet, and STAT1/4/6, which are known to be key regulators of Th cell differentiation. As 

expected, in the overall Th1 vs. Th2 contrast, the Th1 cell-related genes were enriched for T-bet, 

STAT4 and Th1-cell specific GATA3 targets, while the Th2 cell-related genes were enriched for 

STAT6 and Th2-cell specific GATA-3 and targets (Figure 4D, left panel). In the Th1-like and Th2-like 

genes of the Th1/2 hybrid cells, we also found strong enrichment for T-bet and GATA-3 target genes, 

respectively (Figure 4D, right panel). The superposition genes showed strong enrichment in the 

GATA-3 target genes of Th1 cells. In contrast, in the Independent genes of the Th1/2 hybrid cells, we 

identified a significant signature of STAT1 and STAT4 target genes that is absent in all other types of 

Th1/2 hybrid cell genes. This pattern of a dominating STAT-dependent transcriptional program for 

Independent genes and dominating GATA-3-dependent regulation for Superposition genes was 

consistent for our two independent replicates and was robust to changes in the applied thresholds for 

statistical analysis (Figure S4B-E).  
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Taken together, we found that the majority of genes in the Th1/2 hybrid cells closely follow either the 

Th1 or Th2 cell transcriptional programs, but about 20% of the remaining genes showed independent 

behavior rather than being explained by a combination of Th1- and Th2-dependent effects. In contrast 

to the expression profiles of Th1 and Th2 cells, which were dominated by T-bet and GATA-3 control, 

those independent genes in Th1/2 hybrid cells were primarily comprised of STAT1 and STAT4 target 

genes.   

Discussion 

The commitment of Th cells to a specific effector state is one of the key decision-making processes 

at the beginning of an immune reaction and has far-reaching consequences regarding the type and 

strength of the response. That decision can have severe consequences in the context of diseases 

including autoimmune disorders (35,36), cancer (37), or viral infections including SARS-CoV-2 (38). 

Here, kinetic gene expression analysis at high temporal resolution especially in the very early phase 

of cell differentiation allowed us to derive a full picture of the transcriptional landscape during Th1, Th2 

and Th1/2 cell differentiation, and to achieve a detailed classification of the kinetically changing genes. 

We could pinpoint a critical time window at ~24 hrs after TCR stimulation, where the lineages start to 

show divergent behavior, and we provide detailed information regarding kinetic patterning of genes 

within and between Th cell effector subtypes.       

Recently, high-content single-cell technologies such as CyTOF and single-cell sequencing have 

allowed deep insights into the rich and previously unforeseen diversity of the phenotypic space of 

effector Th cells, which can cover the full spectrum between and around the conventional Th1, Th2, 

Th17 etc. cells (8,26,39,40). Furthermore, non-conventional Th cell phenotypes have been discovered 

for instance in the contexts of rheumatoid arthritis and tissue injury (27,28). Such findings have raised 

the question whether immune cell phenotypes should be regarded as a continuous landscape rather 

than a set of discrete states (40). Here, using kinetic transcriptome analysis after highly controlled 

generation of Th1, Th2 and hybrid Th1/2 cells in vitro, we were able to follow the gene expression 

dynamics in all three cell types simultaneously. In particular, we could directly compare the changes 

of individual genes between the hybrid cells and the related conventional Th1 and Th2 cells over the 

full time-course of Th cell differentiation.  

We found that despite the co-expression of T-bet and GATA-3 in the Th1/2 hybrid cells, the majority 

of genes showed “bi-modal” behavior and closely followed either the Th1 or the Th2 cell type 

dynamics. Only a fraction of ~20% of genes showed the expected “in-between” behavior, that is, a 

superposition of the Th1- and Th2-dependent effects. An equal portion of again ~20% of genes 

showed independent behavior, that means the temporal evolution of those genes could not be 

attributed to either Th1 or Th2 kinetic patterns or the combination of both. Notably, we found that the 
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independent genes in the Th1/2 hybrid cells do not follow the otherwise dominant signature of T-bet 

or GATA-3 target gene enrichment, but rather are under the control of STAT1- and STAT4-dependent 

gene regulation. Such dominant STAT1/4 control might be a consequence of GATA-3 and T-bet 

dependent gene regulation cancelling the effect of each other in those genes. 

Hence, our analysis revealed substantial commitment of the hybrid Th1/2 cell lineage to the 

corresponding conventional, polarizing Th1 and Th2 cell lineages; nevertheless, we also identified 

fractions of the gene expression program accounting for independent or intermediate states. That 

suggests that the question of a continuous versus discrete gene expression landscape of Th cell 

lineages depends on the individual gene or gene set under consideration. Here, deep time-course 

transcriptomic profiling generated a resolution allowing for such detailed analysis of the phenotypic 

identity among closely related immune cell types.    

Materials and Methods 

Mice 

Balb/c mice were bred under specific pathogen-free conditions at the Charite, Berlin. All animal 

experiments were performed in accordance with the German animal protection with permission from 

the local veterinary offices. 

Cell culture and in vitro differentiation 

Cells were isolated and cultured as previously described (7). Briefly, naïve CD4+ CD62Lhi T cells were 

isolated from pooled spleen and lymph node cells of 5-8 week old Balb/c mice using a two-step 

magnetic sorting strategy (Multisort kit, Miltenyi Biotec). T cells were cultured in RPMI 

1640+GlutaMax-I supplemented with 10% (v/v) FCS (Gibco), penicillin (100 U/ml; Gibco), 

streptomycin (100 µg/ml; Gibco), and ß-mercaptoethanol (50 ng/ml; Sigma). Cultures were prepared 

by stimulation with plate-bound 2.5 µg/ml anti-CD3ε (145-2C11) and 3 µg/ml soluble anti-CD28 (37.51, 

both from BD Biosciences). For Th1 differentiation, 10 ng/ml IL-12 (R&D Systems), and 10 µg/ml anti–

IL-4 (11B11) were added. For Th2 differentiation, 30 ng/ml IL-4 (R&D Systems), 10 µg/ml anti–IL-12 

(C17.8), and 10 µg/ml anti–IFN-γ (AN18.17.24) were added. Hybrid Th1/2 cells were cultured with 10 

ng/ml IL-12, and 30 ng/ml IL-4. Th0 cells were generated under neutral conditions with anti–IL-12, 

anti–IFN-γ, and anti–IL-4. Cell cultures were transferred to a new plate and split on d 2. Transcription 

factor stainings were performed as previously described  (7). T-bet and GATA-3 protein amounts were 

analyzed using FoxP3 staining buffer set (eBioscience) according to the manufacturer's instructions. 

Briefly, cells were stained with anti-CD4 (RM4–5) followed by fixation with 1× 

Fixation/Permeabilization buffer and intracellular staining with PE-conjugated anti–T-bet (4B10) and 
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Alexa-647–conjugated anti–GATA-3 (TWAJ, both from eBioscience) in 1× permeabilization buffer. 

Cells were washed in 1× permeabilization buffer and analyzed by FACS. 

Microarrays and data processing  

Illumina microarrays (Illumina Mouse Sentrix-6) were used to profile T cell gene expression under 

polarizing conditions at 10 time points. Data were background corrected, quantile-normalized and 

log2-transformed. As an additional filtering step, we selected only probes whose expression was 

above the median expression across all groups and timepoints for at least one condition. Afterwards, 

we selected only probes that had gene annotations for EntrezGene ID, RefSeq ID and gene symbol, 

resulting in the analysis of 18284 probes (out of 46089), matching to 12479 expressed genes. 

Kinetic gene expression analysis 

To identify kinetic genes, we first ran MaSigPro (29) on individual CD4+ T cell subsets to only consider 

time as an explanatory variable in the model. Additionally, we considered genes that had a 2-fold 

increase compared to time 0 at two consecutive time points. To identify temporal patterns, we 

employed hierarchical clustering using gene-gene correlation as a distance measure for each set of 

kinetic genes. The resulting dendrogram was cut at a prescribed number of clusters (Figure S4). Next, 

we used the union of all kinetic genes to also evaluate differences between different groups. To this 

end, we employed the MaSigPro workflow on all groups combined, thus considering time and group 

identity (Th1/Th2/Th12/Th0) as explanatory variables. To identify DEG over time, we first used a 

polynomial regression model as implemented in the MaSigPro package. Further, for the genes 

identified as having significant profile differences between groups (“quantitative DEG”), we computed 

for each gene the kinetic correlation using pairwise comparisons between cell types across all time 

points. Reasoning that a high correlation indicates a similar transcriptomic trajectory, we defined a 

correlation index 1-R2, where R2 is the Pearsson correlation coefficient, and identified all DEG with 

correlation index <0.3 between cell types as “qualitative DEG” (Figure 3A-C). For pathway analysis, 

gene sets were pooled from the public REACTOME, GO:BP, Msigdb:Hallmark and 

Msigdb:C23:Wikipathways data bases. We excluded gene sets with less than 3 or more than 1000 

genes. Pathway overrepresentation analysis was performed by applying a hypergeometric test on 

gene sets of all databases combined after background correction. 

Linear model analysis. We used the following model to describe the expression for a gene i 

expressed in cell type j as a function of Th1 and Th2 expression: 𝑌𝑖,𝑗 = 𝛽𝑖,𝑇ℎ1𝑌𝑖,𝑇ℎ1 + 𝛽𝑖,𝑇ℎ2𝑌𝑖,𝑇ℎ2 + 𝜖. 

Here 𝑌𝑖,𝑗 represents the gene expression for cell type 𝑗 ∈ {Th0,Th1/2}, and 𝑌𝑇ℎ1 (𝑌𝑇ℎ2) the gene 

expression of Th1 and Th2, respectively. The coefficients 𝛽𝑇ℎ1  and  𝛽𝑇ℎ2 denote the contribution of 

the respective cells to explaining the expression for 𝑌𝑖,𝑗. Fitting the model to each gene allowed 
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classification into the categories Th1-like, Th2-like, Superposition and Independent, based on 

significance of the regression fit coefficients 𝛽𝑇ℎ1  and  𝛽𝑇ℎ2 (see Figure 4A and Figure S7A). Of note, 

some fits showed a mixed combination of positive and negative coefficients, which would indicate a 

combined effect of negative and positive regulation. However, in all those cases the negative 

coefficient was not significant. 

Statistics. The p-values derived from MasigPro or other methods were corrected for multiple-testing 

using the Benjamini-Hochberg method, if applicable. The resulting false-discovery-rate (FDR) or 

simple p-value was regarded significant at a significance level of 0.05, except for pathway enrichment 

analysis, where we accepted values of FDR<0.1.  

Data availability. The R-scripts developed for kinetic gene expression analysis will be released 

alongside the GEO data repository upon publication of the manuscript.   
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Figure Captions 

Figure 1: A high-resolution time course of Th cell differentiation.  

(A) Experimental setup. Th cell subsets were induced by polarizing signals in vitro, and gene 

expression profiles were obtained at 10 time points between 0 and 120 hours after activation.     (B) 

Flow-cytometric characterization of Th cell subsets 120 hours after activation with polarizing 

conditions as described in (A). Normalized geometric mean indices for T-bet and GATA-3 expression 

are shown. Geometric mean intensities for IFN-γ and IL-4 positive cells are indicated in bold. (C) 

Gene-expression profiles of four groups of genes (top to bottom): Th1-related, Th2-related, Tfh and 

Th17-related, and other important Th cell-related genes. (D) Kinetics of master regulator transcription 

factors and signature cytokines for individual CD4+ T cell subsets. Shown are normalized expression 

intensities as fold-change relative to the first measured timepoint (0h). (E) Principal component (PC) 

analysis of the differentiation time course. Cell subsets are indicated by marker shape. Time of 

measurement is indicated by color. (F) Numbers and overlap of kinetic genes between cell subsets. 

(G) Evolution of PC1 over time. Genes with high correlation between subsets were removed (bottom) 

or kept for comparison (top).  

Figure 2: Early Th cell differentiation features three major patterns of kinetic gene expression. 

(A) Expression heatmap for kinetic genes. (B) Normalized expression kinetics of the three identified 

kinetic gene expression clusters, shown as averages over all genes and all cell types contained in 

each cluster. (C) Quantification of the numbers of identified kinetic genes across cell types within each 

kinetic cluster. (D) Gene classification as non-kinetic or kinetic incl. cluster association, for the four 

groups of Th cell-related genes introduced in Figure 1C. (E) Pathway enrichment analysis for genes 

uniquely assigned to kinetic clusters C1-C3. Pathways were pooled from REACTOME and 

Msigdb:Hallmark data bases, for a list of all enriched pathways see Table S1.  

Figure 3: A refined selection procedure identifies quantitative and qualitative differences in 

kinetic gene expression. 

(A) Workflow illustration. We employed a combination of regression fitting in MasigPro to derive 

quantitative differentially expressed genes (DEG), followed by a correlation filter to identify qualitative 

DEG and by an analysis of switching of kinetic clusters between cell types.                       (B) Correlation 

volcano-plots based on the workflow in (A). Genes are categorized as kinetic (grey), quantitative DEG 

(black) or qualitative DEG (red). See Methods for details. (C) Numbers of qualitative and quantitative 

DEG obtained for each comparison of cell types. Brackets indicate the numbers of kinetic cluster 
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switches. (D) Expression heatmap for all qualitative DEG exhibiting kinetic cluster switches in at least 

one comparison of cell types, as indicated on the left. (E) Venn diagrams of quantitative (left) and 

qualitative (right) DEG shared between Th1 or Th2 cells and Th1/2 hybrid cells. (F) Pathway 

enrichment analysis of DEG for all pairwise comparisons between cell types. Pathways were pooled 

from REACTOME, GO:BP, Msigdb:C2:WikiPathways and Msigdb:C3:TFT data bases. Shown are 

pathways with significant enrichment in at least two comparisons. 

Figure 4: Superposition and independence of genes in Th1/2 hybrid cells. 

(A) Workflow sketch. Based on the identified qualitative Th1vsTh2 DEG (see Figure 3C), similarity of 

genes to the expression profile of Th1/2 hybrid cells was assessed by a linear regression model. (B) 

Time-courses of representative genes, and (C) quantification of gene classification into the four 

different categories. (D) Enrichment analysis using published transcription factor target gene sets (see 

text). Left: Analysis of up-regulated genes in Th1 (Th2) cells, which are taken as Th1vsTh2 DEG with 

expression values higher (lower) in Th1 compared to Th2 cells.  Right: Analysis of the Th1/2 hybrid 

transcriptional profile along the gene categories obtained in (A-C).
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