

1 An atlas of epithelial cell states and plasticity in lung adenocarcinoma

2
3 Guangchun Han^{*1}, Ansam Sinjab^{*2}, Zahraa Rahal^{†2}, Anne M. Lynch^{‡3, 4}, Warapen
4 Treekitkarnmongkol², Yuejiang Liu^{2,5}, Alejandra G. Serrano², Jiping Feng², Ke Liang², Khaja
5 Khan², Wei Lu², Sharia D. Hernandez², Yunhe Liu¹, Xuanye Cao¹, Enyu Dai¹, Guangsheng Pei¹,
6 Jian Hu⁶, Camille Abaya², Lorena I. Gomez-Bolanos², Fuduan Peng¹, Minyue Chen^{2,5}, Edwin R.
7 Parra², Tina Cascone⁷, Boris Sepesi⁸, Seyed Javad Moghaddam³, Paul Scheet⁹, Marcelo V.
8 Negrao⁷, John V. Heymach⁷, Mingyao Li⁶, Steven M. Dubinett¹⁰, Christopher S. Stevenson¹¹,
9 Avrum E. Spira^{11,12}, Junya Fujimoto², Luisa M. Solis², Ignacio I. Wistuba², Jichao Chen^{#3,5},
10 Linghua Wang^{#1,5}, Humam Kadara^{#2,5}

11
12 Departments of ¹Genomic Medicine and ²Translational Molecular Pathology, ³Department of
13 Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.

14 ⁴Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas. ⁵
15 The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX.

16 ⁶Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine,
17 University of Pennsylvania, Philadelphia, PA. Departments of ⁷Thoracic, Head and Neck
18 Medical Oncology, ⁸Cardiovascular and Thoracic Surgery, and ⁹Epidemiology, The University of
19 Texas MD Anderson Cancer Center, Houston, TX. ¹⁰Department of Medicine, The University of
20 California Los Angeles, Los Angeles, CA. ¹¹Lung Cancer Initiative at Johnson and Johnson,
21 Boston, MA. ¹²Section of Computational Biomedicine, School of Medicine, Boston University,
22 Boston, MA.

23
24 ^{*,†} These authors contributed equally

25
26 [#] Correspondence: Humam Kadara, PhD: hkadara@mdanderson.org, Linghua Wang, MD, PhD:
27 lwang22@mdanderson.org, or Jichao Chen, PhD, MHS: JChen16@mdanderson.org.

28

29

30 **Abstract**

31 **Understanding cellular processes underlying early lung adenocarcinoma (LUAD)**
32 **development is needed to devise intervention strategies¹. Here we studied 246,102 single**
33 **epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial**
34 **cells comprised diverse normal and cancer cell states, and diversity among cancer cells was**
35 **strongly linked to LUAD- specific oncogenic drivers. KRAS mutant cancer cells showed**
36 **distinct transcriptional features, reduced differentiation and low levels of aneuploidy. Non-**
37 **malignant areas surrounding human LUAD samples were enriched with alveolar**
38 **intermediate cells that displayed elevated KRT8 expression (termed KRT8+ alveolar**
39 **intermediate cells (KACs) here), reduced differentiation, increased plasticity and driver**
40 **KRAS mutations. Expression profiles of KACs were enriched in lung precancer cells and in**
41 **LUAD cells and signified poor survival. In mice exposed to tobacco carcinogen, KACs**
42 **emerged before lung tumours and persisted for months after cessation of carcinogen**
43 **exposure. Moreover, they acquired Kras mutations and conveyed sensitivity to targeted**
44 **KRAS inhibition in KAC-enriched organoids derived from alveolar type 2 (AT2) cells. Last,**
45 **lineage-labelling of AT2 cells or KRT8+ cells following carcinogen exposure showed that**
46 **KACs are possible intermediates in AT2-to-tumour cell transformation.**

47 **Main**

48 Lung adenocarcinomas (LUAD) are increasingly being detected at earlier pathological stages
49 due to enhanced screening²⁻⁴. Yet, patient prognosis remains moderate to poor thus warranting
50 improved early treatment strategies. Decoding the earliest events driving LUADs can inform of
51 ideal targets for its interception. Previous work showed that smoking leads to pervasive
52 molecular (e.g., KRAS mutations) and immune changes that are shared between LUADs and their
53 adjacent normal-appearing ecosystems and that are strongly associated with development of lung
54 premalignant lesions (PMLs) and LUAD^{1,5-12}. Yet, most of these reports were based on bulk
55 approaches and were designed to focus on tumour and distant normal sites in the lung, thereby
56 discounting the cellular and transcriptional phenotypes of the expanded LUAD landscapes.
57 Furthermore, while many lung single-cell RNA-sequencing (scRNA-seq) studies have decoded
58 immune and stromal states^{13,14}, little insight is drawn to epithelial cells given their paucity (~4%)
59 when performing single-cell analyses without enrichment of the epithelial compartment.
60 Therefore, little is known of the identities of specific epithelial subsets or how they promote a
61 field of injury, trigger progression of normal lung (NL) to PML and inspire LUAD pathogenesis.
62 Understanding cell type-specific changes at the root of LUAD inception will help identify
63 actionable targets and strategies for prevention of this morbid disease. Here, our efforts were
64 focused on in-depth single-cell interrogation of malignant and normal epithelial cells from both
65 early-stage LUADs as well as carcinogenesis and lineage tracing mouse models that recapitulate
66 the disease, with attention to how specific populations evolve to give rise to malignant tumours.
67

68 **Epithelial transcriptional landscape**

69 Our study design converges in-depth scRNA-seq of early-stage LUAD clinical specimens as well
70 as cross-species analysis and lineage tracing in a human-relevant model of LUAD development
71 following exposure to tobacco carcinogen (**Fig. 1a**). We studied by scRNA-seq EPCAM-
72 enriched epithelial cell subsets from early-stage LUADs of 16 patients and 47 paired NL samples
73 spanning a topographic continuum from the LUADs, that is, tumour-adjacent, -intermediate, and
74 -distant locations¹⁵ (**Fig. 1a, Supplementary Fig. 1, and Supplementary Tables 1, 2**). We also
75 collected from the same regions, tumour and normal tissue sets for whole exome sequencing
76 (WES) profiling and for high-resolution spatial transcriptomics (ST) and protein analyses (**Fig.**
77 **1a**).

78
79 Following quality control, 246,102 epithelial cells were retained (**Supplementary Fig. 2** and
80 **Supplementary Table 2**). Malignant cells (n = 17,064) were distinguished from otherwise non-
81 malignant “normal” cells (n = 229,038) by integrating information from inferred copy number
82 variations (inferCNV¹⁶), clustering distribution, lineage-specific gene expression, and the
83 presence of reads carrying KRAS^{G12D} somatic mutations (**Fig. 1b, c and Supplementary Fig. 3**).
84 Analysis of non-malignant clusters identified two major lineages, namely alveolar and airway, as
85 well as a small subset of proliferative cells (**Extended Data Fig. 1a and Supplementary Table**
86 **2**). Airway cells (n = 40,607) included basal (KRT17⁺), ciliated (FOXJ1⁺), and club and
87 secretory (SCGB1A1⁺) populations, as well as rare types such as ionocytes (ASCL3⁺),
88 neuroendocrine (ASCL1⁺), and tuft cells (GNAT3⁺) (**Extended Data Fig. 1a and**
89 **Supplementary Table 3**). Alveolar cells (n = 187,768) consisted of alveolar type 1 (AT1;
90 AGER1⁺, ETV5⁺), alveolar type 2 (AT2; SFTPB⁺, SFTPC⁺), SCGB1A1/SFTPC dual positive
91 cells (SDP), as well as a cluster of alveolar intermediate cells (AICs) that was closely tucked

92 between AT1 and AT2 clusters and that shared gene expression features with both major alveolar
93 cell types (**Fig. 1b** and **Extended Data Fig. 1a, b**).

94

95 Malignant cells showed low/no expression of lineage-specific markers and, overall, diminished
96 lineage identity (**Fig. 1b, bottom**). Malignant cells formed 14 clusters (**Fig. 1c**) that were for the
97 most part patient-specific (**Extended Data Fig. 1c, left**) signifying strong interpatient
98 heterogeneity. Overall, malignant cells showed high levels of aneuploidy (**Extended Data Fig.**
99 **1c, middle**). We did not detect any unique clustering pattern with respect to smoking status
100 (**Extended Data Fig. 1d**). Annotation based on genomic profiling (by WES) showed that
101 malignant cells from 3 patients with *KRAS*-mutant (KM-) LUADs (P2, P10, P14) clustered
102 closely together and in comparison to malignant cells from other LUADs which showed a more
103 dispersed clustering pattern (**Fig. 1d, Extended Data Fig. 1c, e** and **Supplementary Table. 1**).
104 scRNA-seq analysis confirmed the presence of CNVs and *KRAS*^{G12D} mutations in patient-
105 specific tumour clusters as well as absence of *KRAS*^{G12D} in *KRAS* wild type (KW-) LUADs
106 (**Extended Data Fig. 1c**).

107

108 **LUAD malignant transcriptional programs**

109 Malignant cells from KM-LUADs clustered together and distinctively from those of *EGFR*-
110 mutant (EM-) or *MET*-mutant (MM-) LUADs (**Fig. 1e**). KM-LUADs showed more
111 transcriptomic similarity (i.e., shorter Bhattacharyya distances) at both sample and cell levels
112 (**Extended Data Fig. 1f, left and right**, respectively) compared to other LUADs ($P < 2.2 \times 10^{-16}$).
113 Distances between KM-LUAD samples (KM-KM) were significantly smaller compared to those
114 between EM-LUADs (EM-EM; $P = 0.02$) or other LUADs (Other-Other; $P = 0.03$; **Extended**

115 **Data Fig. 1f, left).** Clustering of malignant cells, following adjustment for patient-specific
116 effects, showed that cluster 5 was enriched with cells from KM-LUADs (P2, P10 and P14;
117 **Extended Data Fig. 1g).** Most of the *KRAS*-mutant malignant cells clustered separately from
118 other cells, indicating unique transcriptional programs in *KRAS*-mutant cells (**Fig. 1f**). In line
119 with previous reports^{15,17}, malignant cells from KM-LUADs were chromosomally more stable in
120 contrast to those from EM-LUADs ($P < 2.2 \times 10^{-16}$; **Extended Data Fig. 1h, left)**. CNV events
121 were significantly more prominent in malignant cells from smoker relative to never-smoker
122 patients ($P < 2.2 \times 10^{-16}$; **Extended Data Fig. 1h, right**). Differentiation states of malignant cells
123 exhibited high inter-patient heterogeneity, whereby, irrespective of tumour mutation load, KM-
124 LUAD cells were the least differentiated as indicated by their highest CytoTRACE¹⁸ scores,
125 followed by EM-LUADs ($P < 0.001$; **Fig. 1g, h** and **Supplementary Table 4**). There was intra-
126 tumour heterogeneity (ITH) in differentiation states (e.g. P2, P9, P14, P15), whereby malignant
127 cells from 7 out of the 14 patients with detectable malignant cells exhibited a broad distribution
128 of CytoTRACE scores, with KM-LUADs showing a trend for higher variability in differentiation
129 (greater Wasserstein distances) relative to EM- or other LUADs (**Fig. 1h** and **Extended Data**
130 **Fig. 1i**).

131
132 Clustering of malignant cells (Meta_C1 to C5) based on levels of 23 recurrent meta-programs
133 (MPs)¹⁹ showed that Meta_C1 comprised cells mostly from KM-LUADs (92%) and displayed
134 highest expression of gene modules associated with *KRAS*^{G12D} present in pancreatic ductal
135 adenocarcinoma (MP30)¹⁹, epithelial to mesenchymal transition (EMT-III; MP14) and epithelial
136 senescence (MP19), and, conversely, lowest levels of alveolar MP (MP31) (**Extended Data Fig.**
137 **2a-c, Supplementary Table 5**). Notably, malignant cells from patients P2, P10, and P14 with

138 KM-LUADs showed significantly higher expression of MP30 relative to those from patients with
139 KW-LUADs ($P < 2.2 \times 10^{-16}$; **Extended Data Fig. 2d**). Malignant cell states also exhibited ITH
140 in KM-LUAD (e.g., P14; **Extended Data Fig. 2e**). A subset of *KRAS*^{G12D} cells showed
141 activation of MP30 and there were diverse activation patterns for other MPs (e.g., cell respiration)
142 across the mutant cells (**Extended Data Fig. 2e middle, f**). Overall, malignant cells carrying
143 *KRAS*^{G12D} showed reduced differentiation (**Extended Data Fig. 2e, right**) which was concordant
144 with loss of alveolar differentiation (MP31) in KM-LUADs (**Extended Data Fig. 2a, b**). P14
145 malignant cell clusters exhibited different levels of CNVs¹⁵, whereby a cluster enriched with
146 *KRAS*^{G12D} cells harboured relatively late CNV events (e.g. Chr 1p loss, Chr 8 and Chr 12 gains)
147 and reduced alveolar signature scores, in line with attenuated differentiation (**Extended Data Fig.**
148 **2g, h**). A KRAS signature was derived based on unique expression features of *KRAS*-mutant
149 malignant cells from our cohort (i.e., specific to cluster 5; **Extended Data Fig. 1g**), and found to
150 strongly and significantly correlate with MP30 signature ($R = 0.92$, $P < 2.2 \times 10^{-16}$, **Extended**
151 **Data Fig. 2i and Supplementary Table 6**). KM-LUADs from TCGA cohort and with relatively
152 high expression of our KRAS signature were enriched with activated *KRAS* MP30 as well as
153 other MPs we had found to be increased in Meta_C1 (**Extended Data Fig. 2j**). KW-LUADs in
154 TCGA with relatively higher expression of the KRAS signature displayed significantly lower
155 overall survival (OS; $P = 0.02$; **Extended Data Fig. 2k**). A similar trend was observed when
156 analysing *KRAS*^{G12D}-mutant LUADs alone despite the small cohort size ($P = 0.3$; **Extended**
157 **Data Fig. 2k**). These data highlight extensive transcriptomic heterogeneity between LUAD cells
158 and transcriptional programs that are biologically- and possibly- clinically relevant to KM-
159 LUAD.
160

161 **Alveolar intermediate cells in LUAD**

162 In contrast to AT2 cells which were overall decreased in LUADs compared to multi-region NLs
163 ($P = 0.002$), AICs showed the opposite pattern ($P = 0.02$; **Extended Data Fig. 3a, b**). AT2
164 fractions were gradually reduced with increasing tumour proximity across multi-region NLs
165 from 7 of the 16 patients with LUAD ($P = 0.004$; **Extended Data Fig. 3c, d**). No significant
166 changes in fractions were found for other major lung epithelial cell types (**Extended Data Fig.**
167 **3e**). AICs were intermediary along the AT2-to-AT1 developmental and differentiation
168 trajectories (**Fig. 2a** and **Extended Data Fig. 3f, g**), reminiscent of intermediary alveolar cells in
169 cancer-free mice exposed to acute lung injury²⁰. The proportion of least differentiated AICs in
170 LUAD tissues was higher than that of their more differentiated counterparts (29% versus 11%,
171 respectively, **Extended Data Fig. 3h**). Notably, AICs were inferred to transition to malignant
172 cells, including *KRAS*-mutant cells that were more developmentally late relative to *EGFR*-mutant
173 malignant cells ($P < 2.2 \times 10^{-16}$; **Fig. 2a** and **Extended Data Fig. 3f**). Further analysis of AICs
174 identified a subpopulation with uniquely high expression of *KRT8* (**Fig. 2b**). These “*KRT8*⁺
175 Alveolar Intermediate Cells”, or KACs, had increased expression of *CDKN1A/2A*, *PLAUR*, and
176 the tumour marker *CLDN4* (**Fig. 2b**, **Extended Data Fig. 3i** and **Supplementary Table 7**).
177 KACs were also significantly less differentiated ($P < 2.2 \times 10^{-16}$; **Fig. 2c**) and more
178 developmentally late ($P = 1.2 \times 10^{-11}$; **Extended Data Fig. 3j**). Notably, KACs transitioned to
179 *KRAS*-mutant malignant cells in pseudotime, whereas other AICs were more closely associated
180 with differentiation to AT1 cells (**Extended Data Fig. 3j**). Proportions of KACs among non-
181 malignant epithelial cells was strongly and significantly increased in LUADs relative to multi-
182 region NL tissues ($P = 2.4 \times 10^{-4}$; **Fig. 2d**), and were significantly higher in LUADs than AT1,

183 AT2, or other AICs fractions ($P < 2.2 \times 10^{-16}$; **Fig. 2e**). Notably, tumour-associated KACs
184 clustered farther away from AICs compared to NL-derived KACs (**Extended Data Fig. 3k**).
185
186 High-resolution, multiplex imaging analysis of KRT8, CLDN4, and pan-cytokeratin (PanCK)
187 showed that KACs were not only enriched in tumour-adjacent normal regions (TANs) but were
188 also found right next to malignant cells showing high expression of KRT8 and CLDN4 (**Fig. 2f**
189 and **Extended Data Fig. 4a**). While KACs were also found in the uninvolved NLs, consistent
190 with our scRNA-seq analysis, only in the TANs did they display features of “reactive” epithelial
191 cells (**Fig. 2f** and **Extended Data Fig. 4a**). ST analysis of P14 tumour tissue demonstrated
192 increased expression of *KRT8* in tumour regions (with high CNV scores), as well as in TAN
193 regions that were histologically found to comprise highly reactive pneumocytes and that
194 exhibited moderate/low CNV scores (**Fig. 2g**). Deconvolution showed that KACs were closer to
195 tumour regions relative to alveolar cells (**Extended Data Fig. 4b**). ST analysis of a KAC-
196 enriched region showed that KACs were indeed intermediary in the transition of alveolar
197 parenchyma to tumour cells (**Extended Data Fig. 4b**). Tumour regions had markedly reduced
198 expression of *NKX2-1* and alveolar signature (**Extended Data Fig. 4b**), in line with reduced
199 alveolar differentiation in KM-LUADs (**Extended Data Fig. 2b**).
200
201 KAC markers (**Fig. 2b**) were high in tumour regions and in TANs with reactive pneumocytes as
202 well as spatially overlapped with *KRAS* signature (**Fig. 2g**). Similar to KRAS but unlike AT1 and
203 alveolar signatures, a KAC signature we derived was highest in KACs relative to AT1, AT2, or
204 other AICs (**Fig. 2h, Extended Data Fig. 4c, d** and **Supplementary Table 8**). A signature
205 pertinent to other AICs we derived was evidently lower in KACs relative to other AICs

206 (**Extended Data Fig. 4e**). In KACs from all samples, KAC and KRAS signatures positively
207 correlated together ($R = 0.45; P < 2.2 \times 10^{-16}$) and inversely so with their alveolar counterpart (R
208 $= -0.77; P < 2.2 \times 10^{-16}$; **Fig. 2h**). In contrast, there was no correlation between “other AIC” and
209 KRAS ($R = 0.045; P = 3.2 \times 10^{-5}$) nor alveolar ($R = -0.11; P < 2.2 \times 10^{-16}$) signatures (**Extended**
210 **Data Fig. 4f, g**). The KAC signature was significantly higher in KACs and in malignant cells
211 from KM-LUADs relative to those from EM-LUADs ($P < 2.2 \times 10^{-16}$; **Extended Data Fig. 4h**).
212 In sharp contrast to “other AIC” and alveolar signatures, KAC signature was significantly
213 enriched in TCGA LUADs compared to their matched uninvolved NLs ($P = 1.9 \times 10^{-15}$;
214 **Extended Data Fig. 5a-c**). Of note, KAC signature was significantly and progressively
215 increased along matched NL, premalignant atypical adenomatous hyperplasia (AAH) and
216 invasive LUAD (**Fig. 2i**), whereas there was no such pattern for “other AIC” signature
217 (**Extended Data Fig. 5d**). KAC signature was significantly higher in TCGA KM-LUADs
218 relative to KW-LUADs ($P = 0.002$; **Extended Data Fig. 5e**). Also, KAC but not “other AIC”
219 signature was significantly associated with reduced OS in two independent cohorts (TCGA, $P =$
220 0.005; PROSPECT, $P = 0.04$; **Extended Data Fig. 5f-i**). KAC signature was associated with
221 shortened OS even after accounting for stage (FDR adjusted q -value = 0.034; **Extended Data**
222 **Fig. 5j**).

223
224 Despite exhibiting lower CNV scores compared to malignant cells, KACs exhibited moderately
225 elevated CNV burdens relative to AT2, AT1, and other AICs (**Extended Data Fig. 6a, b**).
226 $KRAS^{G12D}$ was present in malignant cells with a variant allele frequency (VAF) of 78% in KM-
227 LUADs (**Fig. 2j, Extended Data Fig. 6c and Supplementary Table 9**). KACs, but not AT2,
228 AT1, or other AICs, harboured $KRAS^{G12D}$ mutations (**Extended Data Fig. 6c, d**). $KRAS^{G12D}$

229 KACs were exclusively found in tissues (primarily tumours) from KM-LUADs and, thus,
230 $KRAS^{G12D}$ VAF (10%) was higher in KACs from KM-LUADs compared to when examined in
231 all LUADs (5%) or samples (3%) (**Fig. 2j** and **Extended Data Fig. 6c, d**). $KRAS^{G12D}$ mutations
232 were detected in KACs of NL tissues of patients with KM-LUAD (VAF 2%), and other $KRAS$
233 variants ($KRAS^{G12C}$) were detected in NL of one patient with KM-LUAD, signifying a potential
234 field cancerization effect (**Extended Data Fig. 6c, d**). Concordantly, KRAS signature was
235 significantly increased in $KRAS^{G12D}$ KACs relative to $KRAS^{WT}$ counterparts ($P = 3.9 \times 10^{-3}$;
236 **Extended Data Fig. 6e**). KRAS signature was also elevated in $KRAS^{WT}$ KACs relative to other
237 AICs ($P < 2.2 \times 10^{-16}$) and in other AICs relative to AT2 cells ($P < 2.2 \times 10^{-16}$; **Extended Data**
238 **Fig. 6e**), pointing towards increased KRAS signalling along the AT2-AIC-KAC spectrum. KACs
239 from NLs or tumours of KM- but not KW-LUAD cases were consistently and significantly less
240 differentiated than other AICs (all $P < 2.2 \times 10^{-16}$, **Extended Data Fig. 6f, g**). Our findings
241 characterize KACs as an intermediate alveolar cell subset that is highly relevant to the
242 pathogenesis of human LUAD, especially KM-LUAD.

243

244 **A KAC state is linked to mouse KM-LUAD**

245 We next performed scRNA-seq analysis of lung epithelial cells from mice with knockout of the
246 lung lineage-specific G-protein coupled receptor ($Gprc5a^{-/-}$)^{21,22} and that form KM-LUADs
247 following tobacco-carcinogen exposure. We analysed lungs from $Gprc5a^{-/-}$ mice treated with
248 nicotine-derived nitrosamine ketone (NNK) or control saline at the end of exposure (EOE) and at
249 7 months post-exposure, the time point of KM-LUAD onset (n = 4 mice per group and time
250 point; **Fig. 3a, Supplementary Fig. 4**). Clustering analysis of 9,272 high-quality epithelial cells
251 revealed distinct lineages including KACs that clustered in between AT1 and AT2 cell subsets

252 and close to tumour cells (**Extended Data Fig. 7a**). Like their human counterparts, malignant
253 cells displayed low expression of lineage-specific genes (**Extended Data Fig. 7b** and
254 **Supplementary Table 10**). Consistently, cells from the malignant cluster had high CNV scores,
255 expressed *Kras*^{G12D} mutations, and showed increased expression of markers associated with loss
256 of alveolar differentiation (*Kng2* and *Meg3*) and immunosuppression (*Cd24a*²³) (**Extended Data**
257 **Fig. 7c, d**). Malignant cells were present only at 7 months post-NNK and were absent at EOE to
258 carcinogen and in saline-treated animals (**Fig. 3b** and **Extended Data Fig. 7e, f**). KAC fractions
259 were markedly increased at EOE relative to control saline-treated littermates ($P = 0.03$), and they
260 were, for the most part, maintained at 7 months post-NNK (**Fig. 3b** and **Extended Data Fig. 7f,**
261 **g**). Immunofluorescence (IF) analysis showed that *Krt8*⁺ AT2-derived cells were present in
262 NNK-exposed NL and were nearly absent in lungs of saline-exposed mice (**Fig. 3c**). LUADs also
263 displayed high expression of *Krt8* (**Fig. 3c**). KACs displayed markedly increased prevalence of
264 *Kras*^{G12D} mutations, more so than CNV burden, and increased expression of genes (e.g., *Gnk2*)
265 associated with loss of alveolar differentiation²⁴, albeit to lesser extents compared to malignant
266 cells (**Fig. 3d**, **Extended Data Fig. 7h** and **Supplementary Table 11**). Of note, AT2 fractions
267 were reduced with time (**Extended Data Fig. 7f, g**). ST analysis at 7 months post-NNK showed
268 that tumour regions had significantly increased expression of *Krt8* and *Plaur* as well as spatially
269 overlapping KAC and KRAS signatures (**Fig. 3e** and **Extended Data Fig. 8a, c, e**). In line with
270 our human data, *Krt8* high KACs with elevated expression of KAC and KRAS signatures were
271 enriched in “reactive”, non-neoplastic regions surrounding tumours and were themselves
272 intermediary in the transition from normal to tumour cells (**Fig. 3e** and **Extended Data Fig. 8**).
273

274 Mouse (**Extended Data Fig. 9a**) and human (**Extended Data Fig. 9b**) KACs displayed
275 commonly increased activation of pathways including NF- κ B, hypoxia, and p53 signalling
276 among others. A p53 signature we derived was significantly elevated in KACs at EOE, and more
277 so at 7 months post-exposure to NNK, compared to both AT2 as well as tumour cells (**Extended**
278 **Data Fig. 9c, left**). Similar patterns were noted for expression of p53 pathway-related genes and
279 senescence markers including *Cdkn1a*, *Cdkn2b*, *Bax*, as well as *Trp53* itself (**Extended Data Fig.**
280 **9c, right**). Of note, activation of p53 was reported in *Krt8*⁺ transitional cells identified by Strunz
281 and colleagues²⁵ during bleomycin-induced alveolar regeneration, and which themselves
282 showed overlapping genes with KACs from our study (32%; **Extended Data Fig. 9d**). A mouse
283 KAC signature we derived and that was significantly enriched in mouse KACs and malignant
284 cells ($P < 2.2 \times 10^{-16}$, **Extended Data Fig. 9e**) and in human LUADs ($P = 1.2 \times 10^{-8}$, **Extended**
285 **Data Fig. 9f, left**) was also significantly elevated in premalignant AAHs ($P = 4.3 \times 10^{-4}$) and
286 further in invasive LUADs ($P = 1.5 \times 10^{-3}$) relative to matched NL tissues (**Extended Data Fig.**
287 **9f, right**). Like alveolar intermediates in acute lung injury^{25,26} and KACs in human LUADs (**Fig.**
288 **2**), mouse KACs were likely AT2-derived, acted as intermediate states in AT2 to AT1
289 differentiation, and also were inferred to transition to malignant cells (**Fig. 4a, top row**,
290 **Supplementary Fig. 5**, and **Supplementary Table 12**). KACs assumed an intermediate
291 differentiation state, more closely resembling malignant cells than other alveolar subsets (**Fig. 4a,**
292 **middle**). KAC signature was elevated in cancer stem cell (CSC)/stem cell-like progenitor cells
293 which we had cultured from MDA-F471 LUAD cell line (derived from an NNK-exposed
294 *Gprc5a*^{-/-} mouse²⁷) relative to parental 2D cells (**Extended Data Fig. 10a**). KACs at EOE were
295 somewhat less differentiated relative to those at 7 months post-exposure (**Fig. 4a, bottom right**).
296 Notably, the fraction of KACs with *Kras*^{G12D} mutation was low at EOE (~0.02) and was

297 increased at 7 months post-NNK (~0.19) (**Extended Data Fig. 10b**). *Kras*^{G12D} KACs from the
298 late timepoint were significantly less differentiated ($P = 7.8 \times 10^{-6}$; **Extended Data Fig. 10c**) and
299 showed higher expression of KAC signature genes such as *Cldn4*, *Krt8*, *Cavin3*, and *Cdkn2a*
300 relative to *Kras*^{wt} KACs (**Extended Data Fig. 10d**). Interestingly, *Kras*^{wt} KACs were more
301 similar to *Krt8*⁺ intermediate cells from the Strunz et. al²⁵ than *Kras*^{G12D} KACs (20% overlap
302 versus 10% respectively; **Extended Data Fig. 10e, f**).

303

304 We performed integrated scRNA-seq analysis of cells from our mouse cohort with those in mice
305 driven by *Kras*^{G12D} from the two separate studies by Marjanovic et al²⁸ and Dost et al²⁹. Cluster
306 C5 comprised cells from all three studies with distinctly high expression of KAC markers and
307 KAC signature itself (**Extended Data Fig. 10g-i**). The overwhelming fraction of C5 cells were
308 from our study, and yet, C5 cells from *Kras*^{G12D}-driven mice still expressed higher mouse KAC
309 signature compared to normal AT2 cells from all studies (**Extended Data Fig. 10j**). The mouse
310 KAC signature was markedly and significantly increased in human AT2 cells with induced
311 expression of *KRAS*^{G12D} relative to those with wild type *KRAS* from the Dost et al study ($P < 2.2$
312 $\times 10^{-16}$, **Extended Data Fig. 10k**). In agreement with these findings, the mouse KAC signature,
313 like its human counterpart (**Extended Data Fig. 4h**), was significantly enriched in KACs and
314 malignant cells from KM-LUADs relative to EM-LUADs ($P = 0.04$ and $P < 2.2 \times 10^{-16}$,
315 respectively; **Extended Data Fig. 10l**).

316

317 We further investigated the biology of KACs using *Gprc5a*^{-/-} mice with reporter labeled-AT2
318 cells (*Gprc5a*^{-/-}; *Sftpc*^{CreER/+}; *Rosa*^{SV1GFP/+}; **Fig. 4b**). GFP⁺ organoids derived from NNK- but not
319 saline-exposed reporter mice at EOE were enriched with KACs (**Extended Data Fig. 11a**,

320 **Supplementary Fig. 6).** GFP⁺ cells (n = 3,089) almost exclusively comprised AT2, early/AT2-like tumour cells, KAC/KAC-like cells, and few AT1 cells, all of which were nearly absent in the GFP⁻ fraction (**Extended Data Fig. 11b, c and Supplementary Fig. 7**). There were markedly increased fractions of GFP⁺ AT1, KACs, and, expectedly, tumour cells from NNK-versus saline-treated mice (**Fig. 4c**). GFP expression was almost exclusive to alveolar regions and tumours, the latter which were almost entirely GFP⁺ as well as Krt8⁺ and KAC marker⁺ (Cldn4⁺, Cavin3⁺) (**Supplementary Fig. 8a-c**). Normal lung regions included AT2-derived KACs (GFP⁺/Krt8⁺ and Cldn4⁺ or Cavin3⁺) (**Supplementary Fig. 8a-c**). GFP⁺/Lamp3⁺/Krt8^{-/low} AT2 cells were also evident including in normal (non-tumoral) lung regions from NNK-exposed reporter mice (**Supplementary Fig. 8d**). GFP⁺ KACs from this time point that coincides with formation of preneoplasias²¹ harboured driver *Kras*^{G12D} mutations at similar fractions when compared with early/AT2-like tumour cells (**Extended Data Fig. 11d-f**). As seen in *Gprc5a*^{-/-} mice (**Fig. 4a**), KACs were closely associated with tumour cells in pseudotime (**Extended Data Fig. 11g, h**).

334
335 GFP⁺ organoids from reporter mice at 3 months post-NNK showed significantly and markedly enhanced growth compared to those from saline-exposed animals and were almost exclusively comprised of cells with KAC markers (Krt8⁺, Cldn4⁺; **Extended Data Fig. 12a, e**). Given that KACs, like early tumour cells, acquired *Kras* mutations, we examined effects of targeted KRAS^{G12D} inhibition on these organoids. We first tested effects of KRAS^{G12D} inhibitor MRTX1133³⁰ *in vitro* and found that it inhibited the growth of mouse MDA-F471 as well as LKR13 (derived from *Kras*^{LSL-G12D} mice; ³¹) cells in a dose-dependent manner (**Extended Data Fig. 12b**). This was accompanied by suppression of phosphorylated levels of ERK1/2 and S6

343 kinase in both cell lines (**Extended Data Fig. 12c and Supplementary Fig. 9**). Notably,
344 MRTX1133-treated KAC marker positive organoids showed significantly reduced sizes as well
345 as Krt8 and Cldn4 expression intensities relative to DMSO-treated counterparts ($P < 1.5 \times 10^{-10}$;
346 **Extended Data Fig. 12d, e**).

347

348 To further confirm that KACs indeed give rise to tumour cells, we labelled Krt8⁺ cells in
349 *Gprc5a*^{-/-}; Krt8-CreER; *Rosa*^{tdT/+} mice. Krt8-CreER; *Rosa*^{tdT/+} mice were first used to confirm
350 increased tdT⁺ labelling (i.e., higher number of KACs) in the lung parenchyma at EOE to NNK
351 compared to control saline-treated mice (**Fig. 4d** and **Extended Data Fig. 13a**). We then
352 analysed lungs of NNK-exposed *Gprc5a*^{-/-}; Krt8-CreER; *Rosa*^{tdT/+} mice that were injected with
353 tamoxifen right after completing NNK (**Fig. 4d**). Of note, most tumours showed tdT⁺/Krt8⁺ cells
354 at varying levels, with some tumours showing strong extent of tdT labelling and suggesting
355 oncogenesis of Krt8⁺ cells (**Fig. 4d** and **Extended Data Fig. 13b, c**). Most tdT⁺ tumour cells
356 were AT2 derived (Lamp3⁺) (**Fig. 4e** and **Extended Data Fig. 13b**). Fraction of tdT⁺/Lamp3⁺
357 cells out of total tdT⁺ cells was similar between EOE and follow up after EOE to NNK (**Fig. 4e**).
358 Normal-appearing regions also showed tdT⁺ AT1 cells (Nkx2-1⁺/Lamp3⁻) suggesting possible
359 turnover of AT2 cells and KACs to AT1 cells (**Extended Data Fig. 13a**). Taken together, our *in*
360 *vivo* analyses identify KACs as an intermediate cell state in early development of KM-LUAD
361 and following tobacco carcinogen exposure.

362

363 **Discussion**

364

365 Our multi-modal analysis of epithelial cells from early-stage LUADs and the peripheral lung
366 uncovered diverse malignant states, patterns of ITH, and cell plasticity programs that are linked
367 to KM-LUAD pathogenesis. Of these, we identified alveolar intermediary cells (KACs) that arise
368 upon activation of alveolar differentiation programs and that could act as progenitors for KM-
369 LUAD (**Fig. 4f**). KACs were evident in normal-appearing areas in the vicinity of lesions in both
370 mouse and patient samples, suggesting that the early appearance of these cells (e.g., following
371 tobacco exposure) may represent a *field of injury*¹¹. A pervasive field of injury is relevant to
372 development of human lung cancer and to the complex spectrum of mutations present in normal-
373 appearing lung tissue^{32,33}. We propose that KACs represent injured/mutated cells in the normal-
374 appearing lung that have increased likelihood for transformation to lung tumour cells (**Fig. 4f**).
375

376 Our analysis uncovered strong links and intimately shared properties between KACs and KRAS-
377 mutant lung tumour cells including KRAS mutations, reduced differentiation, and pathways.
378 Notably, we show that growth of KAC-rich and AT2 reporter-labelled organoids derived from
379 lungs with early lesions was highly sensitive to KRAS^{G12D} inhibition³⁴. While our *in vivo*
380 findings are consistent with previous independent reports showing that AT2 cells are the
381 preferential cells-of-origin in *Kras*-driven LUADs in animals³⁵⁻³⁷, they enable a deeper scrutiny
382 of the unique attributes and states of alveolar intermediary cells in the trajectory towards KM-
383 LUADs.
384

385 Following acute lung injury, AT2 cells were shown to differentiate into AICs that are
386 characterized by high expression of *Krt8* and that are crucial for AT1 regeneration^{25,26,38}. We did
387 find evidence of KAC-like cells with notable expression of the KAC signature in *Kras*^{G12D}-

388 driven mice, albeit at lesser frequency compared to our tobacco-mediated carcinogenesis model.

389 Thus, it is plausible that KACs can arise due to an injury stimulus (here tobacco exposure) or

390 mutant *Kras* expression – or due to both. Our work introduces open questions that would be

391 important to pursue in future studies. It is not clear whether KACs are a dominant or obligatory

392 path in AT2-to-tumour transformation. Also, we do not know the effects of expressing mutant

393 oncogenes, *Kras* or others, or tumour suppressors on the likelihood of KACs to divert away from

394 mediating AT1 regeneration and, instead, transition to tumour cells. Recent studies suggest that

395 p53 could curtail the oncogenesis of alveolar intermediate cells³⁹.

396

397 Our study with a marriage between in-depth interrogation of early-stage human LUADs and

398 *Kras*-mutant lung carcinogenesis models provides an atlas with an expansive number of

399 epithelial cells. This atlas of epithelial and malignant cell states in human and mouse lungs

400 underscores new cell-specific subsets that underlie inception of LUADs. Our discoveries inspire

401 the derivation of targets (e.g., KAC signals such as early KRAS programs) to prevent initiation

402 and development of LUAD.

403

404

405 **References**

406

407 1 Kadara, H., Scheet, P., Wistuba, II & Spira, A. E. Early Events in the Molecular

408 Pathogenesis of Lung Cancer. *Cancer Prev Res (Phila)* **9**, 518-527, doi:10.1158/1940-

409 6207.CAPR-15-0400 (2016).

- 410 2 Cardarella, S. & Johnson, B. E. The impact of genomic changes on treatment of lung cancer.
- 411 *American journal of respiratory and critical care medicine* **188**, 770-775,
- 412 doi:10.1164/rccm.201305-0843PP (2013).
- 413 3 Timar, J. The clinical relevance of KRAS gene mutation in non-small-cell lung cancer.
- 414 *Current opinion in oncology* **26**, 138-144, doi:10.1097/CCO.0000000000000051 (2014).
- 415 4 Tomasini, P., Walia, P., Labbe, C., Jao, K. & Leighl, N. B. Targeting the KRAS Pathway in
- 416 Non-Small Cell Lung Cancer. *The oncologist* **21**, 1450-1460, doi:10.1634/theoncologist.2015-
- 417 0084 (2016).
- 418 5 Kadara, H. *et al.* Transcriptomic architecture of the adjacent airway field cancerization in
- 419 non-small cell lung cancer. *J Natl Cancer Inst* **106**, dju004, doi:10.1093/jnci/dju004 (2014).
- 420 6 Belinsky, S. A. *et al.* Aberrant methylation of p16(INK4a) is an early event in lung cancer
- 421 and a potential biomarker for early diagnosis. *Proc Natl Acad Sci U S A* **95**, 11891-11896,
- 422 doi:10.1073/pnas.95.20.11891 (1998).
- 423 7 Belinsky, S. A. *et al.* Aberrant promoter methylation in bronchial epithelium and sputum
- 424 from current and former smokers. *Cancer Res* **62**, 2370-2377 (2002).
- 425 8 Franklin, W. A. *et al.* Widely dispersed p53 mutation in respiratory epithelium. A novel
- 426 mechanism for field carcinogenesis. *J Clin Invest* **100**, 2133-2137, doi:10.1172/JCI119748
- 427 (1997).
- 428 9 Spira, A. *et al.* Airway epithelial gene expression in the diagnostic evaluation of smokers
- 429 with suspect lung cancer. *Nat Med* **13**, 361-366, doi:10.1038/nm1556 (2007).
- 430 10 Spira, A., Halmos, B. & Powell, C. A. Update in Lung Cancer 2014. *American journal of*
- 431 *respiratory and critical care medicine* **192**, 283-294, doi:10.1164/rccm.201504-0756UP (2015).

- 432 11 Steiling, K., Ryan, J., Brody, J. S. & Spira, A. The field of tissue injury in the lung and
433 airway. *Cancer Prev Res (Phila)* **1**, 396-403, doi:10.1158/1940-6207.CAPR-08-0174 (2008).
- 434 12 Wistuba, II *et al.* Molecular damage in the bronchial epithelium of current and former
435 smokers. *J Natl Cancer Inst* **89**, 1366-1373, doi:10.1093/jnci/89.18.1366 (1997).
- 436 13 Lambrechts, D. *et al.* Phenotype molding of stromal cells in the lung tumor
437 microenvironment. *Nat Med* **24**, 1277-1289, doi:10.1038/s41591-018-0096-5 (2018).
- 438 14 Maynard, A. *et al.* Therapy-Induced Evolution of Human Lung Cancer Revealed by Single-
439 Cell RNA Sequencing. *Cell* **182**, 1232-1251 e1222, doi:10.1016/j.cell.2020.07.017 (2020).
- 440 15 Sinjab, A. *et al.* Resolving the Spatial and Cellular Architecture of Lung Adenocarcinoma by
441 Multiregion Single-Cell Sequencing. *Cancer discovery* **11**, 2506-2523, doi:10.1158/2159-
442 8290.CD-20-1285 (2021).
- 443 16 Tirosh, I. *et al.* Single-cell RNA-seq supports a developmental hierarchy in human
444 oligodendrogloma. *Nature* **539**, 309-313, doi:10.1038/nature20123 (2016).
- 445 17 McFadden, D. G. *et al.* Mutational landscape of EGFR-, MYC-, and Kras-driven genetically
446 engineered mouse models of lung adenocarcinoma. *Proc Natl Acad Sci U S A* **113**, E6409-
447 E6417, doi:10.1073/pnas.1613601113 (2016).
- 448 18 Gulati, G. S. *et al.* Single-cell transcriptional diversity is a hallmark of developmental
449 potential. *Science* **367**, 405-411, doi:10.1126/science.aax0249 (2020).
- 450 19 Gavish, A. *et al.* Hallmarks of transcriptional intratumour heterogeneity across a thousand
451 tumours. *Nature*, doi:10.1038/s41586-023-06130-4 (2023).
- 452 20 Treutlein, B. *et al.* Reconstructing lineage hierarchies of the distal lung epithelium using
453 single-cell RNA-seq. *Nature* **509**, 371-375, doi:10.1038/nature13173 (2014).

- 454 21 Fujimoto, J. *et al.* Development of Kras mutant lung adenocarcinoma in mice with knockout
455 of the airway lineage-specific gene Gprc5a. *International journal of cancer* **141**, 1589-1599,
456 doi:10.1002/ijc.30851 (2017).
- 457 22 Westcott, P. M. *et al.* The mutational landscapes of genetic and chemical models of Kras-
458 driven lung cancer. *Nature* **517**, 489-492, doi:10.1038/nature13898 (2015).
- 459 23 Sinjab, A., Han, G., Wang, L. & Kadara, H. Field Carcinogenesis in Cancer Evolution: What
460 the Cell Is Going On? *Cancer Res* **80**, 4888-4891, doi:10.1158/0008-5472.CAN-20-1956 (2020).
- 461 24 Snyder, E. L. *et al.* Nkx2-1 represses a latent gastric differentiation program in lung
462 adenocarcinoma. *Mol Cell* **50**, 185-199, doi:10.1016/j.molcel.2013.02.018 (2013).
- 463 25 Strunz, M. *et al.* Alveolar regeneration through a Krt8+ transitional stem cell state that
464 persists in human lung fibrosis. *Nat Commun* **11**, 3559, doi:10.1038/s41467-020-17358-3 (2020).
- 465 26 Choi, J. *et al.* Inflammatory Signals Induce AT2 Cell-Derived Damage-Associated Transient
466 Progenitors that Mediate Alveolar Regeneration. *Cell Stem Cell* **27**, 366-382 e367,
467 doi:10.1016/j.stem.2020.06.020 (2020).
- 468 27 Fujimoto, J. *et al.* Comparative functional genomics analysis of NNK tobacco-carcinogen
469 induced lung adenocarcinoma development in Gprc5a-knockout mice. *PloS one* **5**, e11847,
470 doi:10.1371/journal.pone.0011847 (2010).
- 471 28 Marjanovic, N. D. *et al.* Emergence of a High-Plasticity Cell State during Lung Cancer
472 Evolution. *Cancer cell* **38**, 229-246 e213, doi:10.1016/j.ccr.2020.06.012 (2020).
- 473 29 Dost, A. F. M. *et al.* Organoids Model Transcriptional Hallmarks of Oncogenic KRAS
474 Activation in Lung Epithelial Progenitor Cells. *Cell Stem Cell* **27**, 663-678 e668,
475 doi:10.1016/j.stem.2020.07.022 (2020).

- 476 30 Hallin, J. *et al.* Anti-tumor efficacy of a potent and selective non-covalent KRAS^{G12D}
477 inhibitor. *Nat Med* **28**, 2171-2182, doi:10.1038/s41591-022-02007-7 (2022).
- 478 31 Wislez, M. *et al.* Inhibition of mammalian target of rapamycin reverses alveolar epithelial
479 neoplasia induced by oncogenic K-ras. *Cancer Res* **65**, 3226-3235, doi:10.1158/0008-
480 5472.CAN-04-4420 (2005).
- 481 32 Hill, W. *et al.* Lung adenocarcinoma promotion by air pollutants. *Nature* **616**, 159-167,
482 doi:10.1038/s41586-023-05874-3 (2023).
- 483 33 Kadara, H. *et al.* Driver Mutations in Normal Airway Epithelium Elucidate Spatiotemporal
484 Resolution of Lung Cancer. *American journal of respiratory and critical care medicine* **200**,
485 742-750, doi:10.1164/rccm.201806-1178OC (2019).
- 486 34 Salgia, R., Pharaon, R., Mambetsariev, I., Nam, A. & Sattler, M. The improbable targeted
487 therapy: KRAS as an emerging target in non-small cell lung cancer (NSCLC). *Cell Rep Med* **2**,
488 100186, doi:10.1016/j.xcrm.2020.100186 (2021).
- 489 35 Lin, C. *et al.* Alveolar type II cells possess the capability of initiating lung tumor
490 development. *PloS one* **7**, e53817, doi:10.1371/journal.pone.0053817 (2012).
- 491 36 Liu, B. *et al.* An entropy-based metric for assessing the purity of single cell populations. *Nat*
492 *Commun* **11**, 3155, doi:10.1038/s41467-020-16904-3 (2020).
- 493 37 Xu, X. *et al.* Evidence for type II cells as cells of origin of K-Ras-induced distal lung
494 adenocarcinoma. *Proc Natl Acad Sci U S A* **109**, 4910-4915, doi:10.1073/pnas.1112499109
495 (2012).
- 496 38 Kobayashi, Y. *et al.* Persistence of a regeneration-associated, transitional alveolar epithelial
497 cell state in pulmonary fibrosis. *Nat Cell Biol* **22**, 934-946, doi:10.1038/s41556-020-0542-8
498 (2020).

499 39 Kaiser, A. M. *et al.* p53 governs an AT1 differentiation programme in lung cancer
500 suppression. *Nature* **619**, 851-859, doi:10.1038/s41586-023-06253-8 (2023).

501

502

503 **Figure legends**

504 **Fig. 1. Transcriptional landscape of lung epithelial and malignant cells in early-stage**
505 **LUAD.** **a**, Schematic overview of experimental design and analysis workflow. State: cellular
506 transcriptional state. Composition: composition of cell subsets. Program: transcriptional
507 programs in malignant cells. Spatial: *in situ* spatial transcriptome and protein analyses. Created
508 with BioRender.com. **b**, Proportions and average expression levels) of selected marker genes for
509 ten normal epithelial and one malignant cell subset. **c**, Unsupervised clustering of 17,064
510 malignant cells coloured by cluster ID. top right inlet shows malignant cells coloured by
511 KRAS^{G12D} mutation status identified by scRNA-seq. **d**, Uniform Manifold Approximation and
512 Projection (UMAP) of malignant cells shown in **c** and coloured by driver mutations identified in
513 each tumour sample using WES. **e**, Principal component analysis (PCA) plot of malignant cells
514 coloured by driver mutations identified in each tumour sample by WES. **f**, UMAP plots of
515 malignant cells coloured by patient ID and grouped by driver mutation status. **g**, UMAP of
516 malignant cells by differentiation state inferred by CytoTRACE (top). Comparison of
517 CytoTRACE scores between malignant cells from samples with different driver mutations
518 (bottom), box, median \pm interquartile range; whiskers, 1.5 \times interquartile range; centre line:
519 median. n cells in each box-and-whisker (left to right): 9,135; 5,457; 2,472. P -values were
520 calculated using a two-sided Wilcoxon rank-sum test with a Benjamini–Hochberg correction. **h**,
521 Per sample distribution of malignant cell CytoTRACE scores.

522

523 **Fig. 2. Identification and characterization of *KRT8*⁺ alveolar intermediate cells in human**
524 **LUAD.** **a**, Pseudotime analysis of alveolar and malignant cells. **b**, Sub-clustering analysis of
525 AICs (left). Proportions and average expression levels of representative KAC marker genes
526 (right). **c**, CytoTRACE score in KACs versus other AICs. Box-and-whisker definitions are
527 similar to **Fig. 1g** with n cells (left to right): 8,591; 1,440. P - values were calculated using a two-
528 sided Wilcoxon rank-sum test. **d**, Proportion of KACs among non-malignant epithelial cells.
529 Box-and-whisker definitions are similar to **Fig. 1g** with n samples (left to right): 16; 15; 16; 16.
530 P - value was calculated using Kruskal-Wallis test. **e**, Fraction of alveolar cell subsets coloured
531 by sample type. P - values were calculated using two-sided Fisher's exact tests with a
532 Benjamini–Hochberg correction. **f**, Haematoxylin and Eosin (H&E) staining of LUAD tumour
533 (T), TAN displaying reactive hyperplasia of AT2 cells, and uninvolved NL (top). Digital spatial
534 profiling (DSP) shows KRT8, PanCK, CLDN4, Syto13 blue nuclear stain, and composite image
535 (bottom). Magnification: 20X. Scale bar: 200 μ m. Staining was repeated four times with similar
536 results. Dashed white lines represent the margins separating tumours and TAN regions. **g**, ST
537 analysis of P14 LUAD showing histologically annotated H&E-stained Visium slide (left) and
538 spatial heatmaps depicting CNV score and scaled expression of *KRT8*, KAC markers (panel b),
539 and KRAS signature. **h**, Expression and correlation analyses of KAC, KRAS and alveolar
540 signatures. Box-and-whisker definitions are similar to **Fig. 1g** with n KACs = 1,440; Other AICs
541 = 8,593; AT2 = 146,776; AT1 = 25,561. R: Spearman correlation coefficient. P - values were
542 calculated with Spearman correlation test. **i**, KAC signature expression in premalignancy cohort
543 (15 samples each). Box-and-whisker definitions are similar to **Fig. 1g**. P - values were calculated

544 using two-sided Wilcoxon signed-rank test with a Benjamini–Hochberg correction. **j**, Fraction of
545 $KRAS^{G12D}$ cells in different subsets.

546

547 **Fig. 3. KACs evolve early and prior to tumour onset during tobacco-associated KM-LUAD**

548 **pathogenesis.** **a**, Schematic view of *in vivo* experimental design. mo.: months. Created with
549 BioRender.com. **b**, Fraction of malignant cells (left) and KACs (right) across treatment groups
550 and time points. Box-and-whisker definitions are similar to **Fig. 1g** with $n = 4$ biologically
551 independent samples/condition. P -values were calculated using two-sided Mann-Whitney U
552 test. **c**, IF analysis of KRT8, LAMP3 and PDPN in mouse lung tissues. Scale bar: 10 μm . Results
553 are representative of two independent biological replicates per treatment and timepoint. Staining
554 was repeated three times with similar results. **d**, Distribution of CNV scores among alveolar and
555 malignant cells (top) and fraction of $Kras^{G12D}$ mutant cells in KACs, malignant, AT1 and AT2
556 subsets (bottom). n on top of each bar denotes the numbers of $Kras^{G12D}$ mutant cells in each cell
557 group. n cells in lower panel: AT1 = 496; AT2 = 1,320; KACs = 512; Malignant = 1,503. P -
558 values were calculated using two-sided Mann-Whitney U test with a Benjamini–Hochberg
559 correction. **e**, ST analysis of lung tissue at 7 mo post-exposure to NNK and showing histological
560 annotation of H&E-stained Visium slide (left) and spatial heatmaps showing scaled expression of
561 KRT8 as well as KAC and KRAS signatures. ST analysis was done on three different tumour-
562 bearing mouse lung tissues from two mice at 7 months following NNK.

563

564 **Fig. 4. KACs are implicated in transition of AT2 to $Kras$ -mutant tumour cells. a**,

565 Trajectories of alveolar and malignant cells coloured by inferred pseudotime, cell differentiation
566 status, and cell type (top left to right). Distribution of inferred pseudotime (bottom left) and

567 CytoTRACE (bottom middle) scores across the indicated cell subsets. Bottom right panel shows
568 CytoTRACE score distribution in KACs at the two time points. Box-and-whisker definitions are
569 similar to **Fig. 1g** with n cells (left to right): 1,791; 1,693; 636; 580; 1,791; 1,693; 636; 580; 301;
570 335. **b**, Schematic overview showing analysis of $Gprc5a^{-/-}$ mice with reporter labeled-AT2 cells
571 ($Gprc5a^{-/-}; Sftpc^{CreER/+}; Rosa^{Sun1GFP/+}$). TMX: tamoxifen. **c**, Fractions of AT1, AT2, KAC/KAC-
572 like, and early/AT2-like tumour cells within GFP⁺ cells from lungs of 2 NNK and 2 saline-
573 exposed mice analysed at 3 months post-exposure. **d**, IF analysis of tdT and Krt8 expression at
574 EOE to NNK (first column; EOE) and at 8-12 weeks following NNK (follow up after EOE) in
575 normal-appearing regions (second column) and tumours (last two columns) of $Gprc5a^{-/-}$; Krt8-
576 CreER; $Rosa^{tdT/+}$ mice. Tamoxifen (1 mg/dose) was delivered right after EOE to NNK for six
577 continuous days. Results are representative of 3 biological replicates per condition. Staining was
578 performed two times with similar results. Magnification: 20X. Scale bar: 10 μ m. **e**, Percentages
579 of lung tissue areas containing tdT⁺ cells (left). Percentage of tdT⁺/Lamp3⁺ cells among total
580 tdT⁺ cells in normal-appearing regions at different timepoints. Error bars show mean \pm SD of n
581 biologically independent samples (left to right): 6; 6; 6; 6; 10. P - values were calculated using
582 Mann-Whitney U test. **f**, Proposed model for alveolar plasticity whereby a subset of AICs in the
583 intermediate AT2-to-AT1 differentiation state are KACs and, later, acquire KRAS^{G12D} mutations
584 and are implicated in KM-LUAD development from a particular region in the lung. Panels **b** and
585 **f** were created with BioRender.com.

586

587 **Methods**

588 **Multi-regional sampling of human surgically resected LUADs and normal lung tissues**

589 Study subjects were evaluated at MD Anderson Cancer Center and underwent standard-of-care
590 surgical resection of early-stage LUAD (I–IIIA). Samples from all patients were obtained from
591 banked or residual tissues under informed consents and approved by MD Anderson institutional
592 review board (IRB) protocols. Residual surgical specimens were then used for derivation of
593 multi-regional samples for single-cell analysis (**Supplementary Table 1**). Immediately
594 following surgery, resected tissues were processed by an experienced pathologist assistant. One
595 side of the specimen was documented and measured, followed by tumour margin identification.
596 Based on placement of the tumour within the specimen, incisions were made at defined
597 collection sites in one direction along the length of the specimen and spanning the entire lobe:
598 tumour-adjacent and tumour-distant normal parenchyma at 0.5 cm from the tumour edge and
599 from the periphery of the overall specimen/lobe, respectively. An additional tumour-intermediate
600 normal tissue was selected for P2–P16 and ranged between 3 and 5 cm from the edge of the
601 tumour. Sample collection was initiated with normal lung tissues that are farthest from the
602 tumour moving inward toward the tumour to minimize cross-contamination during collection.
603

604 **Single-cell isolation from tissue samples**

605 Fresh tissues from human donors as well as mouse lungs were freshly collected in RPMI
606 medium supplemented with 2% foetal bovine serum (FBS) and maintained on ice for immediate
607 processing. Tissues were placed in a cell culture dish containing Hank's balanced salt solution
608 (HBSS) on ice and extra-pulmonary airways and connective tissue were removed with scissors.
609 Samples were transferred to a new dish on ice and minced into ~1mm³ pieces followed by
610 enzymatic digestion using a cocktail for human tissues composed of Collagenase A
611 (10103578001, Sigma Aldrich), Collagenase IV (NC9836075, Thermo Fisher Scientific), DNase

612 I, (11284932001, Sigma Aldrich), Dispase II (4942078001, Sigma Aldrich), Elastase
613 (NC9301601, Thermo Fisher Scientific) and Pronase (10165921001, Sigma Aldrich) as
614 previously described ⁴⁰, or a cocktail for mouse lung digestion composed of Collagenase Type I
615 (CLS-1 LS004197, Worthington), Elastase (ESL LS002294, Worthington), and DNase I (D
616 LS002007, Worthington). Samples were transferred to 5 ml LoBind Eppendorf tubes and
617 incubated in a 37°C oven for 20 minutes with gentle rotation. Samples were then filtered through
618 70 µm strainers (Miltenyi biotech, 130-098-462) and washed with ice-cold HBSS. Filtrates were
619 then centrifuged and resuspended in ice-cold ACK lysis buffer (A1049201, Thermo Fisher
620 Scientific) for red blood cell (RBC) lysis. Following RBC lysis, samples were centrifuged and
621 resuspended in ice-cold FBS, filtered (using 40 µm FlowMi tip filters; H13680-0040, Millipore),
622 and an aliquot was taken to count cells and check for viability by Trypan blue (T8154, Sigma
623 Aldrich) exclusion analysis.

624

625 **Sorting and enrichment of viable lung epithelial singlets**

626 Single cells from patient 1 (P1) were stained with SYTOX Blue viability dye (S34857, Life
627 Technologies), and processed on a fluorescence-activated cell sorting (FACS) Aria I instrument.
628 Cells from patients 2 through 16 (P2-P16) were stained with anti-EPCAM-PE (347198, BD
629 Biosciences; 1:50 dilution in ice-cold phosphate-buffered saline, PBS, containing 2% FBS) for 30
630 minutes with gentle rotation at 4°C. Mouse lung single cells were similarly stained but with a
631 cocktail of antibodies (1:250 each) against CD45-PE/Cy7 (103114, BioLegend), Icam2-A647
632 (A15452, Life Technologies), Epcam-BV421 (118225, BioLegend), and Ecad-A488 (53-3249-
633 80, eBioscience). Stained cells were then washed, filtered using 40 µm filters, stained with
634 SYTOX Blue (human) or SYTOX Green (mouse) and processed on a FACS Aria I instrument

635 (gating strategies for epithelial cell sorting are shown in **Supplementary Fig. 1** and **4** for human
636 and mouse cells, respectively). Doublets and dead cells were eliminated, and viable (SYTOX-
637 negative) epithelial singlets were collected in PBS containing 2% FBS. Cells were washed again
638 to eliminate ambient RNA, and a sample was taken for counting by Trypan Blue exclusion
639 before loading on 10X Genomics Chromium microfluidic chips.

640

641 **Preparation of single-cell 5' gene expression libraries**

642 Up to 10,000 cells per sample were partitioned into nanolitre-scale Gel beads-in-emulsion
643 (GEMs) using Chromium Next GEM Single Cell 5' Gel Bead kit v1.1 (1000169, 10X Genomics,
644 Pleasanton, CA) and by loading onto Chromium Next GEM Chips G (1000127, 10X Genomics,
645 Pleasanton, CA). GEMs were then recovered to construct single-cell gene expression libraries
646 using the Chromium Next GEM Single Cell 5' Library kit (1000166, 10X Genomics) according
647 to the manufacturer's protocol. Briefly, recovered barcoded GEMs were broken and pooled,
648 followed by magnetic bead clean-up (Dynabeads MyOne Silane, 37002D, Thermo Fisher
649 Scientific). 10X-barcoded full-length cDNA was then amplified by PCR and analysed using
650 Bioanalyzer High Sensitivity DNA kit (5067-4626, Agilent). Up to 50 ng of cDNA was carried
651 over to construct gene expression libraries and was enzymatically fragmented and size-selected
652 to optimize the cDNA amplicon size prior to 5' gene expression library construction. Further,
653 samples were subject to end-repair, A-tailing, adaptor ligation, and sample index PCR using
654 Single Index kit T Set A (2000240, 10X Genomics) to generate Illumina-ready barcoded gene
655 expression libraries. Library quality and yield was measured using Bioanalyzer High Sensitivity
656 DNA (5067-4626, Agilent) and Qubit dsDNA High Sensitivity Assay (Q32854, Thermo Fisher
657 Scientific) kits. Indexed libraries were normalized by adjusting for the ratio of the targeted cells

658 per library as well as individual library concentration and then pooled to a final concentration of
659 10 nM. Library pools were then denatured and diluted as recommended for sequencing on the
660 Illumina NovaSeq 6000 platform.

661

662 **Single-cell RNA-seq data processing and quality control**

663 Raw scRNA-seq data were pre-processed (demultiplex cellular barcodes, read alignment, and
664 generation of gene count matrix) using Cell Ranger Single Cell Software Suite (version 3.0.1)
665 provided by 10X Genomics. For read alignment of human and mouse scRNA-seq data, human
666 reference GRCh38 (hg38) and mouse reference GRCm38 (mm10) genomes were used,
667 respectively. Detailed quality control (QC) metrics were generated and evaluated, and cells were
668 carefully and rigorously filtered to obtain high-quality data for downstream analyses¹⁵. Briefly,
669 for basic quality filtering, cells with low complexity libraries (in which detected transcripts were
670 aligned to < 200 genes such as cell debris, empty drops, and low-quality cells) were filtered out
671 and excluded from subsequent analyses. Likely dying or apoptotic cells in which > 15% of
672 transcripts derived from the mitochondrial genome were also excluded. For scRNA-seq analysis
673 of *Gprc5a*^{-/-}; *Sftpc*^{CreER/+}; *Rosa*^{Sun1GFP/+} mice, cells with ≤ 500 detected genes or with
674 mitochondrial gene fraction that is ≥ 15% were filtered out using Seurat⁴¹.

675

676 **Doublet detection and removal, and batch effect evaluation and correction**

677 Likely doublets or multiplets were identified and carefully removed through a multi-step
678 approach as described in our recent studies^{15,42}. Briefly, doublets or multiplets were identified
679 based on library complexity, whereby cells with high-complexity libraries in which detected
680 transcripts are aligned to > 6,500 genes were removed, and also, based on cluster distribution and

681 marker gene expression, whereby doublets or multiplets forming distinct clusters with hybrid
682 expression features and/or exhibiting an aberrantly high gene count were also removed.
683 Expression levels and proportions of canonical lineage-related marker genes in each identified
684 cluster were carefully reviewed. Clusters co-expressing discrepant lineage markers were
685 identified and removed. Doublets or multiplets were also identified using the doublet detection
686 algorithm DoubletFinder⁴³. The proportion of expected doublets was estimated based on cell
687 counts obtained prior to scRNA-seq library construction. Data normalization was then performed
688 using Seurat⁴¹ on the filtered gene-cell matrix. Statistical assessment of possible batch effects
689 was performed on non-malignant epithelial cells using the R package ROGUE³⁶, an entropy-
690 based statistic, as described in our previous studies^{15,42} and Harmony⁴⁴ was run with default
691 parameters to remove batch effects present in the PCA space.

692

693 **Unsupervised clustering and subclustering analysis**

694 The function *FindVariableFeatures* of Seurat⁴¹ was applied to identify highly variable genes
695 (HVGs) for unsupervised cell clustering. PCA was performed on the top 2,000 HVGs. The
696 elbow plot was generated with the *ElbowPlot* function of Seurat and, based on which, the
697 number of significant principal components (PCs) was determined. The *FindNeighbors* function
698 of Seurat was used to construct the Shared Nearest Neighbour (SNN) graph, based on
699 unsupervised clustering performed with Seurat function *FindClusters*. Multiple rounds of
700 clustering and subclustering analysis were performed to identify major epithelial cell types and
701 distinct cell transcriptional states. Dimensionality reduction and 2-D visualization of cell clusters
702 was performed using UMAP⁴⁵ with Seurat function *RunUMAP*. The number of PCs used to
703 calculate the embedding was the same as that used for clustering. For analysis of human

704 epithelial cells, ROGUE was employed to quantify cellular transcriptional heterogeneity of each
705 cluster. Subclustering analysis was then performed for low-purity clusters identified by ROGUE.
706 Hierarchical clustering of major epithelial subsets was performed on the Harmony batch
707 corrected PCA dimension reduction space. For malignant cells, except for global UMAP
708 visualization, downstream analyses including identification of large-scale copy number
709 variations (CNVs), inference of cancer cell differentiation states, quantification of meta-program
710 expressions, trajectory analysis, and mutation analysis were performed without Harmony batch
711 correction. The hierarchical tree of human epithelial cell lineages was computed based on
712 Euclidean distance with Ward linkage method and the dendrogram was generated using the R
713 function *plot.hc*. For scRNA-seq analysis of *Gprc5a*^{-/-} mice, the top-ranked 10 PCs were
714 selected using the *elbowplot* function. SNN graph construction was performed with resolution
715 parameter = 0.4 and UMAP visualization was performed with default parameters. For scRNA-
716 seq analysis of *Gprc5a*^{-/-}; *Sftpc*^{CreER/+}; *Rosa*^{SunIGFP/+} mice, the top-ranked 20 Harmony-corrected
717 PCs were used for SNN graph construction and unsupervised clustering was performed with
718 resolution parameter = 0.4. UMAP visualization was performed with *RunUMAP* function with
719 min.dist = 0.1. Differentially expressed genes (DEGs) of clusters were identified using
720 *FindAllMarkers* function with FDR adjusted *P* - value < 0.05 and log2 fold change > 1.2.
721

722 **Identification of malignant cells and mapping KRAS codon 12 mutations**

723 Malignant cells were distinguished from non-malignant subsets based on information integrated
724 from multiple sources as described in our recent studies^{15,42}. The following strategies were used
725 to identify malignant cells: ***cluster distribution***: due to the high degree of inter-patient tumour
726 heterogeneity, malignant cells often exhibit distinct cluster distribution from that of normal

727 epithelial cells. While non-malignant cells derived from different patients often are clustered
728 together by cell type, malignant cells from different patients likely form separate clusters. **CNVs:**
729 We applied inferCNV¹⁶ (version 1.3.2) to infer large-scale CNVs in each individual cell with T
730 cells as the reference control. To quantify copy number variations at the cell level, CNV scores
731 were aggregated using a strategy like that described in a previous study¹⁶. Briefly, arm-level
732 CNV scores were computed based on the mean of the squares of CNV values across each
733 chromosomal arm. Arm-level CNV scores were further aggregated across all chromosomal arms
734 by calculating the arithmetic mean value of the arm-level scores using R function *mean*. **Marker**
735 **gene expression:** expression of lung epithelial lineage-specific genes and LUAD-related
736 oncogenes was determined in epithelial cell clusters. **Cell-level expression of KRAS^{G12D}**
737 **mutations:** as we previously described¹⁵, BAM files were queried for *KRAS^{G12D}* mutant alleles
738 which were then mapped to specific cells. *KRAS^{G12D}* mutations, along with cluster distribution,
739 marker gene expression, and inferred CNVs as described above, were used to distinguish
740 malignant cells from non-malignant cells. Following clustering of malignant cells from all
741 patients, an absence of malignant cells that were identified from P12 or P16 was noted. This can
742 be possibly attributed to the low number of epithelial cells captured in tumour samples from
743 these patients (**Supplementary Table 2**).

744

745 **Mapping KRAS codon 12 mutations:** To map somatic *KRAS* mutations at single cell resolution,
746 alignment records were extracted from the corresponding BAM files using mutation location
747 information. Unique mapping alignments (MAPQ=255) labelled as either PCR duplication or
748 secondary mapping were filtered out. The resulting somatic variant carrying reads were
749 evaluated using Integrative Genomics Viewer (IGV)⁴⁶ and the “CB” tags were used to identify

750 cell identities of mutation-carrying reads. To estimate the variant allele fraction (VAF) of
751 $KRAS^{G12D}$ mutation and cell fraction of $KRAS^{G12D}$ -carrying cells within malignant and non-
752 malignant epithelial cell subpopulations (e.g., malignant cells from all LUADs, malignant cells
753 from KM-LUADs, KACs from KM-LUADs), reads were first extracted based on their unique
754 cell barcodes and bam files were generated for each subpopulation using samtools (v1.15).
755 Mutations were then visualized using IGV, and VAFs were calculated by dividing the number of
756 $KRAS^{G12D}$ -carrying reads by the total number of uniquely aligned reads for each subpopulation.
757 A similar approach was used to visualize $KRAS^{G12C}$ -carrying reads and to calculate the VAF of
758 $KRAS^{G12C}$ in KACs of normal tissues from KM cases. To calculate the mutation-carrying cell
759 fraction, extracted reads were mapped to the $KRAS^{G12D}$ locus from bam files using *AlignmentFile*
760 and *fetch* functions in *pysam* package. Extracted reads were further filtered using the ‘Duplicate’
761 and ‘Quality’ tags to remove PCR duplicates and low-quality mappings. The number of reads
762 with/without $KRAS^{G12D}$ mutation in each cell was summarized using the ‘CB’ tag in read
763 barcodes. Mutation-carrying cell fractions were then calculated as the ratio of the number of cells
764 with at least one $KRAS^{G12D}$ read over the number of cells with at least one high-quality read
765 mapped to the locus.

766

767 **PCA analysis of malignant cells and quantification of transcriptome similarity**

768 Raw unique molecular identifier (UMI) counts of identified malignant cells were log normalized
769 and used for PCA analysis using Seurat (*RunPCA* function). PCA dimension reduction data were
770 extracted using *Embeddings* function. The top three most highly ranked PCs were exported for
771 visualization using JMP v15. 3D scatterplots of PCA data were generated using the scatterplot
772 3D tool in JMP v15. Bhattacharyya distances were calculated using the *bhattacharyya.dist*

773 function from R package *fpc* (v2.2-9). Top 25 highly ranked PCs were used for both patient level
774 and cell level distance calculations. For Bhattacharyya distance quantification at the cell level,
775 100 cells were randomly sampled for each patient group defined by driver mutations (e.g., KM-LUADs).
776 The random sampling process was repeated 100 times and pairwise Bhattacharyya distances
777 were then calculated between patient groups. Differences in Bhattacharyya distances between
778 patient groups were tested using Wilcoxon Rank-Sum tests and boxplots were generated using
779 the *geom_boxplot* function from R package *ggplot2* (v3.2.0).

780

781 **Determination of non-malignant cell types and states**

782 Non-malignant cell types and states were determined based on unsupervised clustering analysis
783 following batch effect correction using Harmony⁴⁴. Two rounds of clustering analysis were
784 performed on non-malignant cells to identify major cell types and cell transcriptional states
785 within major cell types. Clustering and UMAP visualization of human normal epithelial cells
786 (**Extended Data Fig. 1a**) was performed using Seurat with default parameters. Specifically, the
787 parameters k.param = 20 and resolution = 0.4 were used for SNN graph construction and cluster
788 identification, respectively. UMAP visualization was performed with default parameters
789 (min.dist = 0.3). For clustering analysis of airway and alveolar epithelial cells, *RunPCA* function
790 was used to determine the most contributing top PCs for each subpopulation and similar
791 clustering parameters (k.param = 20 and resolution = 0.4) were used for SNN graph construction
792 and cluster identification. UMAP plots were generated with min.dist = 0.3 using the *RunUMAP*
793 function in Seurat. Density plots of alveolar intermediate cells were generated using the
794 *stat_densit_2d* function in R package *ggplot2* (version: 3.3.5) with the first two UMAP
795 dimension reduction data as the input. DEGs for each cluster were identified using the

796 *FindMarkers* function in Seurat with an FDR adjusted $P < 0.05$ and a fold change cut-off > 1.2 .
797 Canonical epithelial marker genes from previously published studies by our group and others
798 ^{15,47,48} were used to annotate normal epithelial cell types and states. Bubble plots were generated
799 for select DEGs and canonical markers to define AT1 (*AGER1/ETV5/PDPN+*), AT2
800 (*SFTPB/SFTPC/ETV5+*), SDP (*SCGB1A1/SFTPC* dual positive cells), AIC
801 (*AGER1/ETV5/PDPN+ and SFTPB/SFTPC+*), club and secretory
802 (*SCGB1A1/SCGB3A1/CYP2F1+*), basal (*KRT5/TP63+*), ciliated (*CAPS/PIFO/FOXJ1+*),
803 ionocyte (*ASCL3/FOXII+*), neuroendocrine (*CALCA/ASCL1+*) and tuft
804 (*ASCL2/MGST2/PTGS1+*) cells. KACs were identified by unsupervised clustering of AICs and
805 defined based on previously reported marker genes^{25,26,49} including significant upregulation of
806 the following genes relative to other alveolar cells: *KRT8*, *CLDN4*, *PLAUR* as well as *CDKN1A*,
807 and *CDKN2A*.

808

809 **Scoring of curated gene signatures**

810 Genes in previously defined ITH meta-programs (MPs) by Gavish *et al.*¹⁹ were downloaded
811 from the original study. Among a total of 41 consensus ITH MPs identified, MPs with
812 unassigned functional annotations (unassigned MPs 38-41; n = 4), neural/ hematopoietic lineage
813 specific MPs (MPs 25-29, MPs 33-37; n = 10) as well as cell type-specific MPs irrelevant to
814 LUAD (MPs 22-24 secreted/cilia, MP 32 skin-pigmentation; n = 4) were filtered out, resulting in
815 23 MPs which closely correlated with hallmarks of cancer and which were used for further
816 analysis. Signature scores were computed using the *AddModuleScore* function in *Seurat* as
817 described previously^{15,42}. KRAS signature used in this study was derived by calculating DEGs
818 between the *KRAS*-mutant malignant cell-enriched cluster and other malignant cells (FDR

819 adjusted P - value < 0.05, log fold change > 1.2, **Extended Data Fig. 2i)**. Human and mouse
820 KAC signatures as well as human “other AIC” signature were derived by calculating DEGs
821 using *FindAllMarkers* among alveolar cells (FDR adjusted P - value < 0.05, log fold change >
822 1.2). Mouse genes in the tp53 pathway were downloaded from the Molecular Signature Database
823 (MSigDB: [https://www.gsea-](https://www.gsea-msigdb.org/gsea/msigdb/mouse/geneset/HALLMARK_P53_PATHWAY)
824 [msigdb.org/gsea/msigdb/mouse/geneset/HALLMARK_P53_PATHWAY](https://www.gsea-msigdb.org/gsea/msigdb/mouse/geneset/HALLMARK_P53_PATHWAY); MM3896). Signature
825 scores for KACs, other AICs, KRAS and tp53 were calculated using the *AddModuleScore*
826 function in Seurat.
827

828 **Analysis of alveolar cell differentiation states and trajectories**

829 Analysis of differentiation trajectories of lung alveolar and malignant cells was performed using
830 Monocle 2⁵⁰ by inferring the pseudotemporal ordering of cells according to their transcriptome
831 similarity. Monocle 2 analysis of malignant cells from P14 was performed with default
832 parameters using the *detectGenes* function. Detected genes were further required to be expressed
833 by at least 50 cells. For construction of the differentiation trajectory of lineage-labelled epithelial
834 cells (GFP^+), the top 150 DEGs (FDR adjusted P - value < 0.05, log fold change > 1.5, expressed
835 in ≥ 50 cells) ranked by fold-change of each cell population from NNK-treated samples were
836 used for ordering cells with *setOrderingFilter* function. Trajectories were generated using the
837 *reduceDimension* function with method set to ‘DDRTree’. Trajectory roots were selected based
838 on 1) inferred pseudotemporal gradient and 2) CytoTRACE score prediction and 3) careful
839 manual review of the DEGs along the trajectory. To depict expression dynamics of ITH MPs¹⁹,
840 ITH MP scores were plotted along the pseudotime axis and smoothed lines were generated using
841 the *smoother* tool in JMP Pro v15. Using the raw counts without normalization as input,

842 CytoTRACE¹⁸ was applied with default parameters to infer cellular differentiation states to
843 complement trajectory analysis and further understand cellular differentiation hierarchies. The
844 *normalmixEM* function from mixtools R package was used to determine the CytoTRACE score
845 threshold in AICs with k = 2. A final threshold of 0.58 was used to dichotomize AICs into high
846 and low differentiation groups. Wasserstein distance metric was applied using R package
847 transport v0.13 to quantify the variability of distribution of CytoTRACE scores. Function
848 *wassersteinId* was used to calculate the distance between the distribution of actual CytoTRACE
849 scores of one patient and the distribution of simulated data with identical mean and standard
850 deviation. The robustness of Monocle 2-based pseudotemporal ordering prediction was validated
851 by independent pseudotime prediction tools including Palantir⁵¹, Slingshot⁵² and Cellrank⁵³.
852 Slingshot (v2.6.0) pseudotime prediction was performed using *slingshot* function with
853 reduceDim parameter set to ‘PCA’ and other parameters set to defaults. Cellrank prediction was
854 performed using the *CytoTRACEKernel* function with default parameters from Cellrank python
855 package (v1.5.1). Palantir prediction was performed using Palantir python package (v1.0.1). A
856 diffusion map was generated using *run_diffusion_maps* function with n_components = 5.
857 Palantir prediction was generated using *run_palantir* function with num_waypoints = 500 and
858 other parameters set to defaults. Inferred pseudotime by the three independent methods was then
859 integrated with that generated by Monocle 2 for each single cell, followed by pairwise mapping
860 and correlation analysis. Cell density plots were generated using *Contour* tool in JMP v15 with n
861 = 10 gradient levels and contour type parameter set to ‘Nonpar Density’. To assess the
862 pseudotime prediction consistency between Monocle 2 and the three independent methods,
863 Spearman’s correlation coefficients were calculated and statistically tested using *cor.test*
864 function in R.

865

866 **Spatial transcriptomics data generation and analysis**

867 Spatial transcriptomic (ST) profiling of FFPE tissues of P14 LUAD sample and of three lung
868 tissues from two *Gprc5a*^{-/-} mice was performed using the Visium platform from 10X Genomics
869 according to the manufacturer's recommendations and as previously reported by our group⁵⁴.
870 FFPE tissues were collected from areas adjacent to the tissues analysed by scRNA-seq. Regions
871 of interest per tissue/sample, each comprising a 6.5 x 6.5 mm capture area, were selected based
872 on careful annotation of H&E-stained slides that were digitally acquired using the Aperio
873 ScanScope Turbo slide scanner (Leica Microsystems Inc., Buffalo Grove, IL). HALO software
874 (Indica Labs, Albuquerque, NM) was used for pathological annotation (tumour areas, blood
875 vessels, bronchioles, lymphoid cell aggregates, macrophages, muscle tissue, normal parenchyma,
876 and reactive pneumocytes) of H&E histology images. Spot-level histopathological annotation
877 and visualization was generated using loupe browser (v6.3.0). Briefly, cloupe files generated
878 from Space Ranger were loaded into the loupe browser. Visualization of annotation was then
879 generated in svg formats using the *export plot* tool. Spatial transcriptomic RNA-seq libraries
880 were generated according to manufacturer's instructions each with up to ~3,600 uniquely
881 barcoded spots. Libraries were sequenced on the Illumina NovaSeq 6000 platform to achieve a
882 depth of at least 50,000 mean read pairs/spot and at least 2,000 median genes/spot.
883
884 Demultiplexed raw sequencing data were aligned and gene level expression quantification was
885 generated with analysis pipelines we previously employed⁵⁴. Briefly, demultiplexed clean reads
886 were aligned against the UCSC human GRCh38 (hg38) or the GRCm38 (mm10) mouse
887 reference genomes by Spaceranger (version 1.3.0 for human ST data and version 2.0.0 for mouse

888 ST data) and using default settings. Generated ST gene expression count matrices were then
889 analysed using Seurat v4.1.0 to perform unsupervised clustering analysis. Using default
890 parameters, the top-ranked 30 PCA components were employed for SNN graph construction and
891 clustering as well as UMAP low dimension space embedding with default parameters. UMAP
892 analysis was performed using the *RunUMAP* function. The *SpatialDimPlot* function was used to
893 visualize unsupervised clustering. The inferCNV¹⁶ R package was used for copy number
894 analysis. Reference spots used in CNV analysis were selected based on 1) careful review of
895 cluster marker genes using the *DotPlot* function from Seurat and 2) inspection of pathological
896 annotation. CNV scores were calculated by computing the standard deviations of copy number
897 variations inferred across 22 autosomes. Loupe browser (v6.3.0) was used for visualization of
898 pathological annotation results. Expression levels of genes of interest (e.g., *KRT8*) as well as
899 signatures of interest (e.g., KAC, KRAS) were measured and directly annotated on histology
900 images with pixel level resolution using the TESLA (v1.2.2) machine learning framework
901 (<https://github.com/jianhuupenn/TESLA>⁵⁵). TESLA can compute superpixel-level gene
902 expression and detect unique structures within and surrounding tumours by integrating
903 information from high-resolution histology images. The *annotation* and *visualize_annotation*
904 functions were used to annotate regions with high signature signals. “*KRT8*”, “*PLAUR*”,
905 “*CLDN4*”, “*CDKNIA*”, and “*CDKN2A*” were used for “KAC markers” signature annotation in
906 the human ST analysis. For mouse ST data, “*Krt8*”, “*Plaur*”, “*Cldn4*” and “*Cdkn1a*”, “*Cdkn2a*”
907 were used for “KAC signature” annotation. Gene level expression visualization of “*Krt8*” and
908 “*Plaur*” was generated using the *scatter* function from scanpy (v1.9.1). Deconvolution analysis
909 was conducted using CytoSPACE (<https://github.com/digitalcytometry/cytospace>⁵⁶). Annotated
910 scRNA-seq data were first transformed into a compatible format using function

911 *generate_cytospace_from_scRNA_seurat_object*. Visium spatial data were prepared using
912 function *generate_cytospace_from_ST_seurat_object*. Deconvolution was performed using
913 *CytoSpace* function (v1.0.4) with default parameters. To determine neighbouring cell
914 composition for a specific cell population in Visium data, CytoSPACE was first applied to
915 annotate every spot with most probable cell type. Neighbouring spots were defined as the six
916 spots surrounding each spot and, accordingly, the neighbouring cell composition for specific cell
917 types were computed. Trajectory construction of ST data was performed using Monocle 2¹⁸ with
918 the DDRTree method using DEGs with FDR adjusted *P* - value < 0.05.

919

920 **Bulk DNA extraction and WES**

921 Total DNA was isolated from homogenized cryosections of human lung tissues and, when
922 available, from frozen peripheral blood mononuclear cells (PBMCs) using the Qiagen AllPrep
923 mini kit (80204) or DNeasy Blood & Tissue kit (69504), respectively (both from Qiagen,
924 Germantown, MD) according to the manufacturer's recommendations. Qubit 4 Fluorometer
925 (Thermo Fisher Scientific, Waltham, MA) was used for measurement of DNA yield. TWIST-
926 WES was performed on the NovaSeq 6000 platform at a depth of 200X for tumour samples and
927 100X for NL and PBMCs to analyse recurrent driver mutations and using either PBMCs, or
928 distant NL tissues when blood draw was not consented, as germline control. WES data were
929 processed and mapped to human reference genome and somatic mutations were identified and
930 annotated as previously described^{57,58} with further filtration steps. Briefly, only MuTect⁵⁹ calls
931 marked as "KEEP" were selected and taken into the next step. Mutations with a low variant
932 allelic fraction (VAF < 0.02) or low alt allele read coverage (< 4) were removed. Then, common
933 variants reported by ExAc (the Exome Aggregation Consortium, <http://exac.broadinstitute.org>),

934 Phase-3 1000 Genome Project
935 (http://phase3browser.1000genomes.org/Homo_sapiens/Info/Index), or the NHLBI GO Exome
936 Sequencing Project (ESP6500) (<http://evs.gs.washington.edu/EVS/>) with minor allele
937 frequencies greater than 0.5% were further removed. Intronic mutations, mutations at 3' or 5'
938 UTR or UTR flanking regions, and silent mutations were also removed. The mutation load in
939 each tumour was calculated as the number of nonsynonymous somatic mutations (nonsense,
940 missense, splicing, stop gain, stop loss substitutions as well as frameshift insertions and
941 deletions).

942

943 **Survival analysis**

944 Analysis of overall survival (OS) in the TCGA LUAD and PROSPECT⁶⁰ cohorts was performed
945 as previously described¹⁵. KRAS mutation status in TCGA LUAD samples was downloaded from
946 cBioPortal (<https://www.cbioperl.org>, study ID: luad_tcga_pan_can_atlas_2018). For the
947 TCGA dataset, clinical data were downloaded from the PanCanAtlas study¹⁸. Logrank test and
948 Kaplan–Meier method were used to calculate *P* - values between groups and to generate survival
949 curves, respectively. Statistical significance testing for all survival analyses was two-sided. To
950 control for multiple hypothesis testing, Benjamini–Hochberg method was applied to correct *P* -
951 values and FDR *q* - values were calculated where applicable. Results were considered
952 statistically significant at *P* - value or FDR *q* - value of < 0.05. Multivariate survival analysis was
953 performed using a Cox proportional hazards (PH) regression model that calculated the Hazard
954 Ratio (HR), the 95% confidence interval (95% CI), and *P* values when using pathologic stage,
955 age, KAC and “other AIC” signatures as covariates.

956

957 **Analysis of public datasets**

958 Publicly available datasets were obtained from the Gene Expression Omnibus (GEO) database
959 (<https://www.ncbi.nlm.nih.gov/geo/>) under accession numbers GSE149813, GSE154989,
960 GSE150263, GSE102511, and GSE219124. The study by Dost et al (GSE149813) investigated
961 single lung cells from *Kras*^{LSL-G12D;LSL-YFP} mice with Ad5CMV-Cre infection ²⁹. The report by
962 Marjanovic et al (GSE154989) studied AT2 lineage-labelled cells from lungs of *Kras*^{LSL-}
963 ^{G12D/+}; *Rosa26*^{LSL-tdTomato/+} mice ²⁸. Gene expression count matrices of datasets interrogating
964 *Kras*^{G12D}-driven mouse model from GSE149813 were pre-processed using Seurat following the
965 same filtering steps in that original report. For the GSE154989 dataset ²⁸, cells used for analysis
966 were the ones labelled as “PASSED_QC” in supplementary table S7 in that study. For the
967 GSE149813 dataset from the Dost et al study, cells with a median number of genes detected >
968 500 and fraction of mitochondrial genome derived reads < 10%, and according to the pre-
969 processing methods described in their original report ²⁹, were retained for analysis. Cells with
970 number of genes detected > 7,500 were further filtered to remove potential doublets/multiplets,
971 resulting in 8,304 cells in total for downstream analysis. Both datasets were integrated with
972 mouse cell data generated in this study using Harmony¹⁸ with default parameters settings. Top-
973 ranked 20 Harmony corrected PCs were used for clustering with the *FindClusters* function using
974 resolution=0.4. UMAP dimension reduction embedding was performed using the *RunUMAP*
975 function with the same set of Harmony corrected PCs. Gene expression levels and frequencies of
976 representative cluster marker genes were visualized using *DotPlot* function from Seurat. KAC
977 signature score was calculated using the *AddModuleScore* function from Seurat. The mouse
978 KAC signature was also studied in human AT2 cells with and without inducible *KRAS*^{G12D}
979 (dataset GSE150263) also from the study Dost et al ²⁹. Cell filtration criteria described in the

980 original report by Dost et al²⁹ were followed to filter out potential dead cells and doublets
981 (number of detected genes > 800 and the percent of mitochondrial gene reads fraction < 25%).
982 The 20 top-ranked PCs were used for clustering using the *FindClusters* function with resolution
983 = 0.1. UMAP dimension reduction embeddings were computed using the same SNN graph. The
984 KAC signature score was calculated using *AddModuleScore* function from Seurat package.

985

986 The bulk RNA-seq dataset GSE102511 was a previously published dataset by our group
987 comprised of normal lung tissues, precursor atypical adenomatous hyperplasias (AAHs) and
988 matched LUADs (n = 15, each)⁶¹. The bulk RNA-seq data GSE219124 by Daouk et al were
989 generated on CSC/stem cell-like progenitor cells, in the form of spheres, and their parental
990 MDA-F471 counterparts (a cell line we had developed and cultured from a KM-LUAD of an
991 NNK-exposed *Gprc5a*^{-/-} mouse)⁶². To interrogate the association of KACs with tumour
992 formation, gene expression matrices of bulk RNA-seq data GSE102511 (TPM count matrix) and
993 GSE219124 (FPKM count matrix) were extracted and used for quantification of KAC signature
994 expression using MCPcounter (v1.2.0) R package. Heatmaps were generated using pheatmap
995 (v1.0.12) R package.

996

997 Mouse KACs from this study were compared to mouse *Krt8*⁺ transitional cells involved in
998 alveolar regeneration post-acute lung injury from the study by Strunz and colleagues²⁵.
999 Overlapping marker genes between mouse KACs and the previously reported *Krt8*⁺ transitional
1000 cells were statistically evaluated using the ggvenn (v0.1.9) R package using the top-ranked 50
1001 marker genes based on fold change from each study.

1002

1003 **Digital spatial profiling (DSP) of human tissues**

1004 The following antibodies were used for DSP: Claudin 4 (Clone 3E2C1, AF594, LSBio, catalogue
1005 number LS-C354893, concentration 0.5 µg/ml) and Keratin 8 (Clone EP1628Y, AF647, Abcam,
1006 catalogue number ab192468, concentration 0.25 µg/ml). Optimization of antibodies was
1007 performed with different dilutions using colorectal carcinoma and LUAD tissues. IF staining was
1008 performed on three cases of matched LUAD and NL using the standard GeoMx DSP protocol for
1009 morphology markers only (PanCk: clone AE1/AE3, AF532, concentration 0.25 µg/ml, from
1010 GeoMx Solid Tumour Morph kit HsP, 121300301, Novus Biologicals, Littleton, CO). Slides were
1011 scanned at 20X using the GeoMx DSP platform (NanoString Technologies, Seattle, WA).
1012 Following scanning, multiplex IF image slides were visualized adjusting channel thresholds for
1013 each fluorophore. Expression of KRT8, PanCK, and CLDN4 was assessed in adenocarcinoma
1014 cells, adjacent reactive lung tissue and distant non-reactive lung tissue.

1015

1016 **Animal housing and tobacco carcinogen exposure experiments**

1017 Animal experiments were conducted according to Institutional Animal Care and Use Committee
1018 (IACUC)-approved protocols at the University of Texas MD Anderson Cancer Center. Mice
1019 were maintained in a pathogen-free animal facility. No statistical methods were used to
1020 predetermine sample size. In all animal experiments, sex- and age-matched mice were
1021 randomized to treatment groups. For all experiments and until endpoints were reached (up to 7
1022 months post-exposure to saline or NNK), mice were monitored for signs of ill health and their
1023 body weight was measured to ensure weight loss does not exceed 20% of body weight over
1024 72□hours. None of the mice developed these symptoms and thus, they were all euthanized upon
1025 reaching IACUC-approved endpoints. Endpoints permitted by our IACUC protocols were not

1026 exceeded in any of the experiments. Analysis of data from animal experiments was performed in
1027 a blinded fashion. To study KACs in the context of KM-LUAD pathogenesis *in vivo*,
1028 *Gprc5a*^{-/-} mice were interrogated since they form LUADs that are accelerated by tobacco-
1029 carcinogen exposure and that acquire somatic *Kras*^{G12D} mutations – features that are highly
1030 pertinent to KM-LUAD development^{21,63,64} and thus to exploring KACs in this setting.
1031 *Gprc5a*^{-/-} mice were generated as previously described^{21,65}. Sex- and age-
1032 matched *Gprc5a*^{-/-} mice were divided into starting groups of 4 mice per exposure (NNK or
1033 saline control) and timepoint (EOE or 7 months post-exposure, n = 16 mice in total). 8-week-old
1034 mice were intraperitoneally (IP) injected with 75 mg/kg of body weight nicotine-specific
1035 nitrosamine ketone (NNK) or vehicle 0.9% saline (control), three times per week for 8 weeks. At
1036 EOE or at 7 months post-exposure, lungs were harvested for derivation of live single cells for
1037 scRNA-seq. Whole lungs from additional mice treated as described above were processed by
1038 formalin fixation and paraffin-embedding (FFPE) and for analysis by IF (n = 2 mice per
1039 treatment group at EOE and 7 months post-exposure, 8 mice in total) and ST (3 lung tissues from
1040 n = 2 mice at 7 months post-NNK).
1041
1042 *Sftpc*^{CreER/+}; *Rosa*^{Sun1GFP/+} mice were generously provided by Dr. Harold Chapman (University of
1043 California, San Francisco) and were crossed to *Gprc5a*^{-/-} mice to generate *Gprc5a*^{-/-}; *Sftpc*^{CreER/+};
1044 *Rosa*^{Sun1GFP/+} mice for analysis of lineage-labelled AT2 cells. *Gprc5a*^{-/-}; *Sftpc*^{CreER/+};
1045 *Rosa*^{Sun1GFP/+} mice were treated with 75 mg/kg NNK or control saline (IP), three times per week
1046 for 8 weeks. At week 6 of treatment (two weeks before EOE), mice from both groups received
1047 250 µg (IP) tamoxifen dissolved in corn oil for four consecutive days. At EOE or 3 months post-
1048 exposure to saline or NNK, lungs were digested to derive live (SYTOX Blue negative) GFP⁺

1049 single cells by flow cytometry using a FACS Aria I instrument as previously described⁶⁶ (gating
1050 strategy for GFP cell sorting is shown in **Supplementary Fig. 6**). Sorted single cells were
1051 analysed by scRNA-seq (GFP⁺ and GFP⁻ fractions from n = 2 mice per treatment at 3 months
1052 post-exposure to saline and NNK) or used to derive organoids (GFP⁺ cells from n = 4 or 5 mice
1053 at EOE to saline or NNK, respectively, and from n = 10 or 13 mice at 3 months post-saline or
1054 NNK, respectively). Whole lungs from additional mice treated with saline or NNK and
1055 tamoxifen as described above (n = 2 per treatment group) were collected (FFPE) at 3 months
1056 post-NNK and analysed by IF.

1057
1058 Krt8-CreER; *Rosa*^{tdT/+} animals were used to generate *Gprc5a*^{-/-}; Krt8-CreER; *Rosa*^{tdT/+} mice for
1059 analysis of lineage-labelled Krt8⁺ cells. Krt8-CreER (stock number 017947) and *Rosa*^{tdT/+} (Ai14;
1060 stock number 007914) mice were obtained from the Jackson Laboratory. Mice harbouring Krt8-
1061 CreER; *Rosa*^{tdT/+} were first used for pilot studies to examine labelling of Krt8⁺ cells. Mice were
1062 exposed to control saline (n = 2 mice) or to 8 weeks of NNK (n = 3 mice) like above followed by
1063 1 mg tamoxifen for six continuous days, after which lungs were analyzed at the end of tamoxifen
1064 exposure. To examine the relevance of labeled Krt8⁺ cells to tumour development, *Gprc5a*^{-/-};
1065 Krt8-CreER; *Rosa*^{tdT/+} mice were similarly exposed to NNK for 8 weeks followed by tamoxifen,
1066 and lungs were then analyzed at 8-12 weeks post-NNK (n = 3 mice). All lungs were harvested
1067 and processed for formalin fixation, OCT-embedding, and IF analysis.

1068
1069 **Histopathological and IF analysis of mouse lung tissues**
1070 Lungs of *Gprc5a*^{-/-} mice (n = 2 per treatment and timepoint) were inflated with formalin by
1071 gravity drip inflation, excised, examined for lung surface lesions by macroscopic observation,

1072 and processed for FFPE, sectioning, and H&E staining. Stained slides were digitally scanned
1073 using the Aperio ScanScope Turbo slide scanner (Leica Microsystems Inc., Buffalo Grove, IL) at
1074 200X magnification, and visualized by ImageScope software (Leica Microsystems, Inc.).
1075 Unstained lung tissue sections were obtained for IF analysis of Lamp3 (clone 391005, Synaptic
1076 Systems), Krt8 (TROMA-I clone from the University of Iowa DSHB), and Pdpn (clone 8.1.1,
1077 from the University of Iowa DSHB). Lung FFPE tissue samples were obtained in the same
1078 manner from *Gprc5a*^{-/-}; *Sftpc*^{CreER/+}; *Rosa*^{SV40GFP/+} mice at 3 months post-exposure to saline or
1079 NNK (n = 2 mice per condition) and following injection with tamoxifen. Tissue sections were
1080 obtained for H&E staining and assessment of tumour development, and unstained sections were
1081 used for IF analysis using antibodies against GFP (AB13970, Abcam, 1:5000), LAMP3 (391005,
1082 Synaptic Systems, 1:10000), KRT8 (TROMA-I, University of Iowa Developmental Studies
1083 Hybridoma Bank, 1:100), PDPN (clone 8.1.1, University of Iowa Developmental Studies
1084 Hybridoma Bank, 1:100), claudin 4 (ZMD.306, Invitrogen, 1:250), and PRKCDBP (Cavin3,
1085 Proteintech, 1:250). Slides were then stained with fluorophore-conjugated secondary antibodies
1086 and 4',6'-diamidino-2-phenylindole (DAPI). Sections were mounted with Aquapolymount
1087 (18606, Polysciences), cover slipped, imaged using Andor Revolution XDi WD Spinning Disk
1088 Confocal microscope and analysed using Imaris software (Oxford Instruments).
1089
1090 Formalin-inflated lung lobes from mice with Krt8-CreER; *Rosa*^{idT/+} were cryoprotected in 20%
1091 sucrose in PBS containing 10% optimal cutting temperature compound (OCT; 4583, Tissue-Tek)
1092 overnight on a rocker at 4 °C and embedded in OCT the next day, 10 µm cryosections were
1093 blocked in PBS with 0.3% Triton X-100 and 5% normal donkey serum (017-000-121, Jackson
1094 ImmunoResearch) and incubated overnight in a humidified chamber at 4 °C with primary

1095 antibodies diluted in PBS with 0.3% Triton X-100 and raised against: NKX2-1 (sc-13040, Santa
1096 Cruz, 1:1000), LAMP3 (same as above) and KRT8 (same as above). The next morning, sections
1097 were washed followed by incubation with secondary antibodies (Jackson ImmunoResearch) and
1098 DAPI. Slides were then washed, cover slipped as above and imaged using a Nikon A1plus
1099 confocal microscope. Cell counter ImageJ plugin was used to count tdT+ cells within lesions, as
1100 well as cells in normal-appearing areas, namely: AT2 cells (Lamp3+), tdT+ AT2 cells
1101 (tdT+/Lamp3+), AT1 cells (Lamp3-/Nkx2-1+, avoiding noticeable airways), and tdT+ AT1 cells
1102 (tdT+/Nkx2-1+/Lamp3-). Percentages of tdT+/Lamp3+ as well as tdT+/Nkx2-1+/Lamp3- cells
1103 out of total tdT+ cells were computed. Counts were averages of triplicate images taken at 20X
1104 magnification for each time point. The percent regional surface area covered by tdT+ cells in
1105 normal-appearing regions was estimated by examining tdT expression across entire lobe sections
1106 for each replicate.

1107

1108 **3D culture and analysis of AT2-derived organoids**

1109 *Gprc5a^{-/-}; Sftpc^{CreER/+}; Rosa^{Sun1GFP/+}* were treated with NNK or saline as well as tamoxifen as
1110 described above, and they were sacrificed at EOE (4 saline- and 5 NNK-treated mice) or at 3
1111 months post-exposure (10 saline- and 13 NNK-treated mice). Lungs were harvested, dissociated
1112 into single cells (see mouse single-cell derivation in Methods section “Single-cell isolation from
1113 tissue samples”), and live (SYTOX Blue negative) GFP⁺ single cells were collected by flow
1114 cytometry using a FACS Aria I instrument as previously described⁶⁶. GFP⁺ AT2 cells from
1115 NNK- or saline-treated groups were immediately washed and resuspended at a concentration of
1116 5,000 cells/50 µl of 3D media (F12 medium supplemented with insulin/transferrin/selenium, 10%
1117 FBS, penicillin/streptomycin, L-glutamine). GFP⁺ cells were mixed at a 1:1 ratio (by volume)

1118 with 50,000 mouse endothelial cells (harvested from mouse lungs by CD31 selection and
1119 expanded *in vitro* as previously described⁶⁷) and resuspended in 50 µl of Geltrex™ reduced
1120 growth factor basement membrane matrix (A1413301, Gibco). 100 µl of 1:1 GFP⁺:endothelial
1121 cell mixture was plated on transwell inserts with 0.4 µm pores and allowed to solidify for 30
1122 mins in a humidified CO₂ incubator (EOE: n = 3 wells per condition; 3 months post-exposure: n
1123 = 4 wells for saline-derived organoids and n = 12 wells for NNK-derived organoids). Each well
1124 was then supplemented with 3D media containing ROCK inhibitor (Y-27632, Millipore) and
1125 recombinant mouse FGF-10 (6224-FG, R&D Systems), and plates were incubated at 37°C in a
1126 humidified CO₂ incubator. Wells were replenished with 3D media every other day. For GFP⁺
1127 organoids derived from mice exposed to NNK, 200 nM KRAS^{G12D} specific inhibitor MRTX1133
1128 or DMSO vehicle was added to the media and replenished three times a week (n = 6 wells per
1129 condition). Organoids were monitored and analysed twice a week using EVOS M7000 Imaging
1130 System (Thermo Fisher Scientific, Waltham, MA), whereby the numbers and sizes of organoids
1131 greater than 100 µm in diameter were recorded. At endpoint, 3D organoids were harvested from
1132 the basement membrane matrix using Gentle Cell Dissociation Reagent (100-0485, StemCell
1133 Technologies), fixed with 4% paraformaldehyde, permeabilized, blocked, and stained overnight
1134 at 4°C with a mixture of IF primary antibodies raised against Lamp3, GFP, Krt8, and Cavin3.
1135 The next day, organoids were washed and stained with fluorophore-conjugated secondary
1136 antibodies overnight at 4°C while being protected from light. Organoids were washed and
1137 stained with DAPI nuclear stain for 30 minutes, after which they were collected in Aqua-
1138 Poly/Mount (18606-20, Polysciences) and transferred to slides. Images of organoids were
1139 captured using an Andor Revolution XDi WD Spinning Disk Confocal microscope and analysed
1140 using Imaris software (Oxford Instruments, Abingdon, United Kingdom).

1141

1142 **2D viability assays**

1143 Mouse mycoplasma-free LUAD cell lines LKR13 (mutant *Kras*^{G12D}-driven; ³¹) and MDA-F471
1144 (*Gprc5a*^{-/-} and *Kras*^{G12D} mutant; ²⁷) were plated on 96-well plates (10³ cells/well) and grown in
1145 DMEM (Dulbecco's Modified Eagle Medium, Gibco), supplemented with 10% FBS, 1%
1146 antibiotic antimycotic solution (A5955, Sigma-Aldrich, St. Louis, MO), and 1% L-Glutamine
1147 (G7513, Sigma-Aldrich, St. Louis, MO). The next day, cells were cultured for up to 4 days with
1148 media containing either 0.5% FBS, 0.5% FBS with 50 ng/ml epidermal growth factor (EGF)
1149 (E5160, Sigma-Aldrich, St. Louis, MO), or 0.5% FBS with EGF and varying concentrations of
1150 MRTX1133 (Mirati Therapeutics, San Diego, CA). 25 ul alamarBlue Cell Viability Reagent
1151 (DAL1025, ThermoFisher, Waltham, MA) was added to each well. At 4 days post-treatment,
1152 viability was assessed by fluorescence spectrophotometry at 570 nm (and 600 nm as a reference)
1153 where for wells showing net positive absorbances relative to blank wells (at least 3 wells per cell
1154 line and condition) percent differences in reduction between treated and control wells were
1155 calculated.

1156

1157 **Western blot analysis**

1158 LKR13 and MDA-F471 cells were plated in 6-well plates (10⁶ cells/well) and grown under
1159 different conditions as described above. Protein lysates were extracted at 3 hours post-treatment
1160 and analysed by western blot following overnight incubation with antibodies against the
1161 following primary proteins: Vinculin (E1E9V, rabbit, Cell Signaling Technology, 13901,
1162 1:1000), Phosphorylated p44/42 MAPK (ERK1/2, rabbit, Cell Signaling Technology, 9101,
1163 1:2000), Phosphorylated S6 Ribosomal protein (Ser 235/236, rabbit, Cell Signaling Technology,

1164 4858, 1:2000), p44/42 MAPK (ERK1/2, rabbit, Cell Signaling Technology, 9102, 1:2000), or S6
1165 (E.573.4, rabbit, Invitrogen, MA5-15164, 1:1000), and followed by one-hour incubation with
1166 diluted secondary antibody (1706515 Goat Anti-Rabbit IgG-HRP Conjugate, Bio-Rad, Hercules,
1167 CA). Protein lysates from each cell line were analysed on multiple gels (four per cell line) with
1168 Precision Plus Protein Dual Color Standard (1610394, Bio-Rad, Hercules, CA) as ladder and
1169 blotted to membranes to separately probe for phosphorylated and total forms of the same proteins,
1170 which have very similar molecular weights (using phospho-specific antibodies or antibodies
1171 targeting total version of same protein). Vinculin protein levels were evaluated as loading control
1172 on each of the blots. Four blots (phospho-ERK, total ERK, phospho-S6, total S6) for each of
1173 LKR13 and MDA-F471 are shown in **Supplementary Fig. 9**, each with its own analysis of equal
1174 protein loading (vinculin blot) and whereby only the ones indicated with green rectangles are
1175 presented in **Extended Data Fig. 12c**. Membranes were cut horizontally using molecular weight
1176 marker as a guide, and cut membranes were incubated with the specified antibodies (see
1177 **Supplementary Fig. 9** for site of cutting and for overlay of colorimetric and chemiluminescent
1178 images of the same blot to display ladder and the analysed protein, respectively). Blots were
1179 imaged using the ChemiDoc Touch Imaging System (Bio-Rad, Hercules, CA) with
1180 “Chemiluminescence” and “Colorimetric” (for protein ladder) applications and auto expose or
1181 manual settings.
1182

1183 **Chemicals and reagents**

1184 Tobacco-specific carcinogen (nicotine-specific nitrosamine ketone; NNK) with a purity of
1185 99.96% by HPLC was purchased from TargetMol (Wellesley Hills, MA). Tamoxifen, as well as
1186 H&E staining reagents, were purchased from Sigma Aldrich (St. Louis, MO). The KRAS^{G12D}

1187 inhibitor MRTX1133 was generously provided by Dr. James Christensen (Mirati Therapeutics
1188 Inc., San Diego, CA).

1189

1190 **Statistical analyses**

1191 In addition to the algorithms and statistical analyses described above, all other basic statistical
1192 analyses were performed in the R statistical environment (version 4.0.0). The Kruskal–Wallis H
1193 test was used to compare variables of interests across three or more groups. Wilcoxon Rank-Sum
1194 test was used for paired comparisons among matched samples from the same patients. Wilcoxon
1195 Rank-Sum test was used to compare other continuous variables such as gene expression levels
1196 and signature scores between groups. Spearman’s correlation coefficient was calculated to assess
1197 associations between two continuous variables (e.g., cellular proportions and gene signature
1198 scores). Fisher’s exact test was used to identify differences in frequencies of groups based on two
1199 categorical variables. Ordinal logistic regression was performed using the *polr* function in the
1200 built-in R package MASS (v7.3). Benjamin-Hochberg method was used to control for multiple
1201 hypothesis testing. All statistical tests performed in this study were two-sided. Results were
1202 considered statistically significant at P - values or FDR q - values < 0.05 . When a P - value
1203 reported by R was smaller than $2.2\text{e-}16$, it was reported as “ $P < 2.2 \times 10^{-16}$ ”.

1204

1205 **Data Availability**

1206 Sequencing data for P1 - P5 were previously generated and deposited in the European Genome–
1207 phenome Archive (EGA) under the accession number EGAS00001005021¹⁵. Human scRNA-seq
1208 (P6 – P16) and ST data generated in this study are deposited in EGA under the same accession
1209 number (EGAS00001005021). Mouse scRNA-seq and ST data generated in this study are

1210 deposited in NCBI under GEO accession number GSE222901. Relevant source data are provided
1211 with this paper.

1212

1213 **Code availability**

1214 Codes for analysis of scRNA-seq, WES, and ST data are available at Zenodo
1215 (<https://doi.org/10.5281/zenodo.8280138>) and GitHub
1216 (https://github.com/guangchunhan/LUAD_Code).

1217

1218 **Methods references**

1219

1220 40 Slyper, M. *et al.* A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen
1221 human tumors. *Nat Med* **26**, 792-802, doi:10.1038/s41591-020-0844-1 (2020).

1222 41 Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell
1223 transcriptomic data across different conditions, technologies, and species. *Nature biotechnology*
1224 **36**, 411-420, doi:10.1038/nbt.4096 (2018).

1225 42 Wang, R. *et al.* Single-cell dissection of intratumoral heterogeneity and lineage diversity in
1226 metastatic gastric adenocarcinoma. *Nat Med* **27**, 141-151, doi:10.1038/s41591-020-1125-8
1227 (2021).

1228 43 McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet Detection in
1229 Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst* **8**, 329-337
1230 e324, doi:10.1016/j.cels.2019.03.003 (2019).

1231 44 Korsunsky, I. *et al.* Fast, sensitive and accurate integration of single-cell data with Harmony.
1232 *Nature methods* **16**, 1289-1296, doi:10.1038/s41592-019-0619-0 (2019).

- 1233 45 McInnes, L., Healy, J. & Melville, J. Umap: Uniform manifold approximation and projection
1234 for dimension reduction. *arXiv preprint arXiv:1802.03426* (2018).
- 1235 46 Robinson, J. T., Thorvaldsdottir, H., Wenger, A. M., Zehir, A. & Mesirov, J. P. Variant
1236 Review with the Integrative Genomics Viewer. *Cancer Res* **77**, e31-e34, doi:10.1158/0008-
1237 5472.CAN-17-0337 (2017).
- 1238 47 Sjostedt, E. *et al.* An atlas of the protein-coding genes in the human, pig, and mouse brain.
1239 *Science* **367**, doi:10.1126/science.aay5947 (2020).
- 1240 48 Travaglini, K. J. *et al.* A molecular cell atlas of the human lung from single-cell RNA
1241 sequencing. *Nature* **587**, 619-625, doi:10.1038/s41586-020-2922-4 (2020).
- 1242 49 Maroni, G. *et al.* Identification of a targetable KRAS-mutant epithelial population in non-
1243 small cell lung cancer. *Commun Biol* **4**, 370, doi:10.1038/s42003-021-01897-6 (2021).
- 1244 50 Cao, J. *et al.* The single-cell transcriptional landscape of mammalian organogenesis. *Nature*
1245 **566**, 496-502, doi:10.1038/s41586-019-0969-x (2019).
- 1246 51 Setty, M. *et al.* Characterization of cell fate probabilities in single-cell data with Palantir.
1247 *Nature biotechnology* **37**, 451-460, doi:10.1038/s41587-019-0068-4 (2019).
- 1248 52 Street, K. *et al.* Slingshot: cell lineage and pseudotime inference for single-cell
1249 transcriptomics. *BMC genomics* **19**, 477, doi:10.1186/s12864-018-4772-0 (2018).
- 1250 53 Lange, M. *et al.* CellRank for directed single-cell fate mapping. *Nature methods* **19**, 159-170,
1251 doi:10.1038/s41592-021-01346-6 (2022).
- 1252 54 Hao, D. *et al.* The Single-Cell Immunogenomic Landscape of B and Plasma Cells in Early-
1253 Stage Lung Adenocarcinoma. *Cancer discovery* **12**, 2626-2645, doi:10.1158/2159-8290.CD-21-
1254 1658 (2022).

- 1255 55 Hu, J. *et al.* Deciphering tumor ecosystems at super resolution from spatial transcriptomics
1256 with TESLA. *Cell Syst* **14**, 404-417 e404, doi:10.1016/j.cels.2023.03.008 (2023).
- 1257 56 Vahid, M. R. *et al.* High-resolution alignment of single-cell and spatial transcriptomes with
1258 CytoSPACE. *Nature biotechnology*, doi:10.1038/s41587-023-01697-9 (2023).
- 1259 57 Wang, R. *et al.* Multiplex profiling of peritoneal metastases from gastric adenocarcinoma
1260 identified novel targets and molecular subtypes that predict treatment response. *Gut* **69**, 18-31,
1261 doi:10.1136/gutjnl-2018-318070 (2020).
- 1262 58 Hao, D. *et al.* Integrated genomic profiling and modelling for risk stratification in patients
1263 with advanced oesophagogastric adenocarcinoma. *Gut* **70**, 2055-2065, doi:10.1136/gutjnl-2020-
1264 322707 (2021).
- 1265 59 Cibulskis, K. *et al.* Sensitive detection of somatic point mutations in impure and
1266 heterogeneous cancer samples. *Nature biotechnology* **31**, 213-219, doi:10.1038/nbt.2514 (2013).
- 1267 60 Skoulidis, F. *et al.* Co-occurring genomic alterations define major subsets of KRAS-mutant
1268 lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities.
1269 *Cancer discovery* **5**, 860-877, doi:10.1158/2159-8290.CD-14-1236 (2015).
- 1270 61 Sivakumar, S. *et al.* Genomic Landscape of Atypical Adenomatous Hyperplasia Reveals
1271 Divergent Modes to Lung Adenocarcinoma. *Cancer Res* **77**, 6119-6130, doi:10.1158/0008-
1272 5472.CAN-17-1605 (2017).
- 1273 62 Daouk, R. *et al.* Genome-Wide and Phenotypic Evaluation of Stem Cell Progenitors Derived
1274 From Gprc5a-Deficient Mouse Lung Adenocarcinoma With Somatic Kras Mutations. *Frontiers
1275 in oncology* **9**, 207, doi:10.3389/fonc.2019.00207 (2019).
- 1276 63 Cancer Genome Atlas Research, N. Comprehensive molecular profiling of lung
1277 adenocarcinoma. *Nature* **511**, 543-550, doi:10.1038/nature13385 (2014).

1278 64 Kantrowitz, J. *et al.* Genome-Wide Gene Expression Changes in the Normal-Appearing
1279 Airway during the Evolution of Smoking-Associated Lung Adenocarcinoma. *Cancer Prev Res*
1280 (*Phila*) **11**, 237-248, doi:10.1158/1940-6207.CAPR-17-0295 (2018).

1281 65 Tao, Q. *et al.* Identification of the retinoic acid-inducible Gprc5a as a new lung tumor
1282 suppressor gene. *J Natl Cancer Inst* **99**, 1668-1682, doi:10.1093/jnci/djm208 (2007).

1283 66 Barkauskas, C. E. *et al.* Type 2 alveolar cells are stem cells in adult lung. *J Clin Invest* **123**,
1284 3025-3036, doi:10.1172/JCI68782 (2013).

1285 67 Lee, J. H. *et al.* Lung stem cell differentiation in mice directed by endothelial cells via a
1286 BMP4-NFATc1-thrombospondin-1 axis. *Cell* **156**, 440-455, doi:10.1016/j.cell.2013.12.039
1287 (2014).

1288

1289

1290 **Acknowledgements**

1291 We appreciate all the patients who generously provided their samples for this research under
1292 approved consents. We thank Dr. Harold Chapman for kindly providing *Sftpc*^{CreER/+};
1293 *Rosa*^{*Sun1GFP/+*} mice. This work was supported in part by funding from Johnson and Johnson (to
1294 H.K.), The University of Texas MD Anderson Cancer Center Office of Strategic Research
1295 Programs (to H.K.), the National Cancer Institute (NCI) grants R01CA205608 (to H.K.),
1296 R01CA272863 (to H.K.), 1U2CCA233238 (to H.K., S.M.D., and A.E.S.), U01CA264583 (to
1297 H.K. and L.W.) and T32CA217789 MD Anderson Cancer Center postdoctoral fellowship (to
1298 A.S.), University of Texas SPORE in Lung Cancer P50CA070907, as well as the Cancer
1299 Prevention and Research Institute of Texas grants RP150079 (to H.K.) and RP220101 (to H.K.).
1300 L.W. and H.K. acknowledge support from the start-up research fund from the University of

1301 Texas MD Anderson Cancer Center. T.C., L.W. and H.K. are Andrew Sabin Family Foundation
1302 Fellows at the University of Texas MD Anderson Cancer Center. The Flow Cytometry &
1303 Cellular Imaging Core Facility is supported by the National Cancer Institute through MD
1304 Anderson's Cancer Center Support Grant P30 CA016672. The sequencing core facility at MD
1305 Anderson Cancer Center is supported by the National Institutes of Health grant 1S10OD024977.

1306

1307

1308 **Author information**

1309 These authors contributed equally: Guangchun Han, Ansam Sinjab

1310 These authors contributed equally: Zahraa Rahal, Anne M. Lynch

1311 These authors jointly supervised the work: Jichao Chen, Linghua Wang, Humam Kadara

1312

1313 Authors and Affiliations

1314 **Department of Translational Molecular Pathology, The University of Texas MD Anderson**

1315 **Cancer Center, Houston, TX, USA**

1316 Ansam Sinjab, Zahraa Rahal, Warapen Treekitkarnmongkol, Yuejiang Liu, Alejandra G. Serrano,

1317 Jiping Feng, Ke Liang, Khaja Khan, Wei Lu, Sharia Hernandez, Camille Abaya, Lorena I.

1318 Gomez-Bolanos, Minyue Chen, Edwin R. Parra, Junya Fujimoto, Luisa M. Solis, Ignacio I.

1319 Wistuba & Humam Kadara

1320 **Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center,**

1321 **Houston, TX, USA**

1322 Guangchun Han, Yunhe Liu, Xuanye Cao, Enyu Dai, Guangsheng Pei, Fuduan Peng & Linghua

1323 Wang

- 1324 **Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer**
- 1325 **Center, Houston, TX, USA**
- 1326 Anne M. Lynch, Seyed Javad Moghaddam & Jichao Chen
- 1327 **Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas,**
- 1328 **USA**
- 1329 Anne M. Lynch
- 1330 **Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD**
- 1331 **Anderson Cancer Center, Houston, TX, USA**
- 1332 Tina Cascone, Marcelo V. Negrao & John V. Heymach
- 1333 **Department of Cardiovascular and Thoracic Surgery, The University of Texas MD**
- 1334 **Anderson Cancer Center, Houston, TX, USA**
- 1335 Boris Sepesi
- 1336 **Department of Epidemiology, The University of Texas MD Anderson Cancer Center,**
- 1337 **Houston, TX, USA**
- 1338 Paul Scheet
- 1339 **Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine,**
- 1340 **University of Pennsylvania, Philadelphia, PA, USA**
- 1341 Jian Hu & Mingyao Li
- 1342 **Department of Medicine, The University of California Los Angeles, Los Angeles, CA, USA**
- 1343 Steven M. Dubinett
- 1344 **Lung Cancer Initiative at Johnson and Johnson, Boston, MA, USA**
- 1345 Christopher S. Stevenson & Avrum E. Spira

1346 **Section of Computational Biomedicine, School of Medicine, Boston University, Boston, MA,**
1347 **USA**
1348 Avrum E. Spira
1349 **The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston,**
1350 **TX, USA**
1351 Yuejiang Liu, Minyue Chen, Tina Cascone, Seyed Javad Moghaddam, Paul Scheet, John V.
1352 Heymach, Linghua Wang & Humam Kadara
1353
1354 Contributions
1355 G.H., A.S., L.W. and H.K. designed the study, interpreted the data, and wrote the original draft
1356 of the manuscript. All authors reviewed the final version of the manuscript. G.H. led
1357 computational analyses relating to scRNA-seq, WES and ST. G.H., A.S., L.W. and H.K.
1358 performed data quality control and curation. G.H., X.C. and F.P. processed and aligned scRNA-
1359 seq and ST data. G.H. and E.D. analysed MPs. G.H. and Yunhe.L. performed *KRAS* mutation
1360 screening using the scRNA-seq data. G.H., Yunhe.L. and G.P. curated bioinformatic pipelines
1361 for ST analysis. G.H., A.S., L.W. and H.K. annotated cells, governed overall analysis and
1362 interpretation of scRNA-seq, ST and WES data as well as performed data visualization. P.S.
1363 developed workflows for analysis of mutations in normal tissues and assisted in data
1364 interpretation. A.S. led generation of scRNA-seq, WES, ST and IF data. A.S., K.K. and L.M.S.
1365 processed tissues for ST analysis. J. Fujimoto performed histopathological analysis of tissues
1366 analysed by scRNA-seq. A.G.S., J. Fujimoto and L.M.S. performed spot-level histopathological
1367 evaluation of mouse and human tissues analysed by ST. W.L., S.D.H. and L.M.S. performed the
1368 digital spatial profiling of human tissues. L.I.B-G., E.R.P., L.M.S. developed workflows and

1369 provided resources for digital spatial profiling and IF analysis. A.S., Z.R., J. Feng and W.T.
1370 performed tobacco carcinogenesis experiments. A.S. and Z.R. performed tobacco carcinogenesis
1371 experiments in AT2 and Krt8 reporter mice. A.S., Z.R., A.M.L., K.L., J.C. and H.K. analysed
1372 AT2 and KRT8 tracing in reporter-containing tobacco carcinogenesis experiments. A.M.L.,
1373 S.J.M. and J.C. developed workflows for Krt8 reporter tracing and IF analysis of mouse lung
1374 tissues. J.H. and M.L. developed workflows and tools for ST analysis used in this study. M.L.
1375 assisted in human ST data interpretation and analysis. A.S., Yuejiang.L., C.A. and M.C.
1376 performed experiments with cell lines and organoids. T.C., B.S., M.V.N., J.V.H. and J. Fujimoto
1377 provided human tissue resources and clinical annotations. M.V.N. and J.V.H. provided advice
1378 for KRAS targeted inhibition studies. S.M.D., C.S.S. and A.E.S. provided administrative
1379 support, data interpretation and resources pertaining to lung cancer cohorts. J.C., L.W. and H.K.
1380 supervised the overall study. H.K. provided strategic oversight and conceived the study.

1381

1382 Corresponding author

1383 Correspondence to Jichao Chen, Linghua Wang, or Humam Kadara.

1384

1385 **Ethics declarations**

1386 All human LUAD and normal lung tissues were obtained from patients who provided informed
1387 consents and under IRB-approved protocols at The University of Texas MD Anderson Cancer
1388 Center. All human data in this manuscript are deidentified to ensure patient privacy. All animal
1389 studies were conducted under IACUC-approved protocols at the University of Texas MD
1390 Anderson Cancer Center.

1391

1392 **Competing interests**

1393 CSS and AES are employees of Johnson and Johnson.

1394 HK reports research funding from Johnson and Johnson.

1395 MVN receives research funding to institution from Mirati, Novartis, Checkmate,

1396 Alaunos/Ziopharm, AstraZeneca, Pfizer, Genentech, and consultant/advisory board fees from:

1397 Mirati, Merck/MSD, Genentech.

1398 T.C. reports speaker fees/honoraria from The Society for Immunotherapy of Cancer, Bristol

1399 Myers Squibb, Roche, Medscape, and PeerView; travel, food and beverage expenses from Dava

1400 Oncology and Bristol Myers Squibb; advisory role/consulting fees from

1401 MedImmune/AstraZeneca, Bristol Myers Squibb, EMD Serono, Merck & Co., Genentech,

1402 Arrowhead Pharmaceuticals, and Regeneron; and institutional research funding from

1403 MedImmune/AstraZeneca, Bristol Myers Squibb, Boehringer Ingelheim, and EMD Serono.

1404 SJM reports funding from Arrowhead Pharma and Boehringer Ingelheim outside the scopes of

1405 submitted work.

1406 B.S. reports consulting and speaker fees from PeerView, AstraZeneca and Medscape, and

1407 institutional research funding from Bristol Myers Squibb.

1408 J.V.H. reports fees for advisory committees/consulting from AstraZeneca, EMD Serono,

1409 Boehringer-Ingelheim, Catalyst, Genentech, GlaxoSmithKline, Hengrui Therapeutics, Eli Lilly,

1410 Spectrum, Sanofi, Takeda, Mirati Therapeutics, BMS, BrightPath Biotherapeutics, Janssen

1411 Global Services, Nexus Health Systems, Pneuma Respiratory, Kairos Venture Investments,

1412 Roche, Leads Biolabs, RefleXion, Chugai Pharmaceuticals; research support from AstraZeneca,

1413 Bristol-Myers Squibb, Spectrum and Takeda, and royalties and licensing fees from Spectrum.

1414 IIW reports grants and personal fees from Genentech/Roche, grants and personal fees from
1415 Bayer, grants and personal fees from Bristol-Myers Squibb, grants and personal fees from
1416 AstraZeneca, grants and personal fees from Pfizer, grants and personal fees from HTG
1417 Molecular, personal fees from Asuragen, grants and personal fees from Merck, grants and
1418 personal fees from GlaxoSmithKline, grants and personal fees from Guardant Health, personal
1419 fees from Flame, grants and personal fees from Novartis, grants and personal fees from Sanofi,
1420 personal fees from Daiichi Sankyo, grants and personal fees from Amgen, personal fees from
1421 Oncocyte, personal fees from MSD, personal fees from Platform Health, grants from Adaptive,
1422 grants from Adaptimmune, grants from EMD Serono, grants from Takeda, grants from Karus,
1423 grants from Johnson and Johnson, grants from 4D, from Iovance, from Akoya, outside the
1424 submitted work.

1425 All other authors declare no competing financial interests.

1426

1427 **Additional information**

1428 Supplementary Figs. 1-9 and Supplementary Tables 1-12 are included in Supplementary
1429 Information accompanying this manuscript.

1430

1431 **Extended Data Figure Legends**

1432 **Extended Data Fig. 1. Analysis of normal lung epithelial and malignant subsets in early-**
1433 **stage LUADs. a, b,** UMAP plots of 229,038 normal epithelial cells from 63 samples. Each dot
1434 represents a single cell coloured by major cell lineage (**a**, left), airway sub-lineage (**a**, top right)
1435 and alveolar sub-lineages (**a**, bottom right). SDP cells were separately coloured to show their
1436 position on the UMAP (**b**). **c, d** UMAP plots of 17,064 malignant cells coloured by patient ID (**c**,

1437 left), CNV score (**c**, middle), presence of *KRAS*^{G12D} mutation (**c**, right) and smoking status (**d**). **e**,
1438 Analysis of recurrent driver mutations identified by WES. **f**, Transcriptomic variances quantified
1439 by Bhattacharyya distances at the sample (left) and cell (right) levels among LUADs with driver
1440 mutations in *KRAS* (KM), *EGFR* (EM), and *MET* (MM), or LUADs that are wild type (WT) for
1441 these genes. Box, median \pm interquartile range; whiskers, $1.5 \times$ interquartile range; centre line:
1442 median. n cells in each box-and-whisker in the left panel: KM-KM = 3; KM-EM = 15; KM-MM
1443 = 6; KM-Other = 12; EM-EM = 10; EM-MM = 10; EM-Other = 20; MM-Other = 8; Other-Other
1444 = 6. n cells in each box-and-whisker in the right panel: 100. P - values were calculated by two-
1445 sided Wilcoxon Rank-Sum test with a Benjamini–Hochberg correction. **g**, Harmony-corrected
1446 UMAP plot of malignant cells coloured by cluster ID (left) and cluster distribution by sample
1447 (right). **h**, UMAP plots of malignant cells coloured by CNV scores (top left), smoking status (top
1448 right). Comparison of CNV scores between malignant cells from samples carrying different
1449 driver mutations (bottom left) or between smokers and never smokers (bottom right). Box-and-
1450 whisker definitions are similar to panel **f**. n cells in each box-and-whisker: *EGFR* = 5,457; Other
1451 = 9,135; *KRAS* = 2,472; Smoker = 5,999; Never smoker = 11,065. P - values were calculated by
1452 two-sided Wilcoxon Rank-Sum test with a Benjamini–Hochberg correction. **i**, Analysis of
1453 Wasserstein distances among KM-LUADs, EM-LUADs, and LUADs with WT *KRAS* and *EGFR*
1454 (Double WT). Box-and-whisker definitions are similar to panel **f**. n samples in each box-and-
1455 whisker: 3; 5; 6. P - value was calculated by a two-sided Wilcoxon Rank-Sum test.
1456

1457 **Extended Data Fig. 2. Characterization of inter- and intra-tumour heterogeneity of LUAD**
1458 **malignant cells. a**, Unsupervised clustering of malignant cells based on expression of 23
1459 previously defined consensus cancer cell meta-programs (MPs). **b**, Distribution of signature

1460 scores of 4 representative MPs across clusters from **a**. Box-and-whisker definitions similar to
1461 **Extended Data Fig. 1f**. *n* cells in each box-and-whisker: C1 = 2,600; C2 = 3,968; C3 = 1,647;
1462 C4 = 7,182; C5 = 1,667. **c**, Enrichment of clusters (C1-C5) in cells colour coded by recurrent
1463 driver mutation status (left) and patients (right). **: $P < 2.2 \times 10^{-16}$. *P* - value was calculated
1464 using two-sided Fisher's exact test with a Benjamini–Hochberg correction. **d**, MP30 was
1465 computed in malignant cells in each patient (left) and in KM-LUADs versus *KRAS* WT LUADs
1466 (KW-LUADs, right). *n* cells in each box-and-whisker: P14 = 1,614; P10 = 326; P2 = 532; P1 =
1467 64; P6 = 2,604; P7 = 823; P8 = 147; P15 = 1,819; P4 = 404; P9 = 25; P3 = 2,419; P5 = 5,872;
1468 P11 = 375; P13 = 40; KM-LUADs = 2,472; KW-LUADs = 14,592. Box-and-whisker definitions
1469 are similar to **Extended Data Fig. 1f**. *P* - values were calculated using two-sided Wilcoxon
1470 Rank-Sum test with a Benjamini–Hochberg correction. **e**, Profiling of ITH in malignant cells
1471 from P14 LUAD. UMAP plots show malignant cells coloured by (top left to top right) *KRAS*^{G12D}
1472 mutation status, KRAS signature expression, and cell differentiation status (CytoTRACE).
1473 Trajectories of P14 malignant cells coloured by (bottom left to bottom right) the presence of
1474 *KRAS*^{G12D} mutation, inferred pseudotime, and differentiation status. **f**, UMAP plots showing P14
1475 malignant cells coloured by expression of the 3 indicated MPs. **g**, Unsupervised clustering
1476 analysis of P14 malignant cells based on inferred CNV profiles (left). UMAP of P14 malignant
1477 cells (middle) and inferred trajectory (top right) coloured by CNV clusters, as well as *KRAS*^{G12D}
1478 mutation expression status along pseudotime trajectory (bottom right). **h**, Alveolar MP
1479 expression across the CNV clusters shown in panel **g**. *n* cells in each group: 477; 464; 673. *P* -
1480 values were calculated using two-sided Wilcoxon Rank-Sum test with a Benjamini–Hochberg
1481 correction. **i**, Harmony-corrected UMAP plot of malignant cells coloured by KRAS signature
1482 score (left). Correlation between MP30 expression and KRAS signature score in malignant cells

1483 of KM-LUADs (right). P - value was calculated with Spearman correlation test. R denotes the
1484 Spearman correlation coefficient. **j**, Heatmap showing score distribution of the indicated MPs
1485 and signatures in TCGA LUAD samples. **k**, Kaplan-Meier plot showing differences in the
1486 survival probability between samples with high and low levels of KRAS signature (KRAS sig.),
1487 and those with $KRAS^{G12D}$ mutation. OS: overall survival. KRAS sig. high: samples within top
1488 quartile of KRAS signature score. KRAS sig. low: samples below the third quartile of KRAS
1489 signature score. mo.: months. P - value was calculated with logrank test.

1490

1491 **Extended Data Fig. 3. Phenotypic diversity and states of human normal lung epithelial**
1492 **cells. a**, Composition of normal epithelial lineages across spatial regions as defined in **Fig. 1a**.
1493 Dis: distant normal. Int: intermediate normal. Adj: adjacent normal. NE: neuroendocrine. **b**,
1494 Changes in cellular fractions of AT2 cells (left) and AICs (right) across the spatial samples. Box-
1495 and-whisker definitions are similar to **Extended Data Fig. 1f**. n samples in each box-and-
1496 whisker (left to right): 16; 15; 16; 16. P - values were calculated with Kruskal-Wallis test. **c**,
1497 Composition of normal epithelial lineages across the spatial regions at the sample level. **d**,
1498 Fractional changes of AT2 cells among all epithelial cells across the spatial regions at the patient
1499 level. **c** and **d**: Cases showing gradually reduced AT2 fractions with increasing tumour proximity
1500 (7 of the 16 patients; $P = 0.004$ by ordinal regression analysis in **d**). **e**, Fractions of AT1, basal,
1501 ciliated, and club and secretory cells along the continuum of the spatial samples. Box-and-
1502 whisker definitions are similar to **Extended Data Fig. 1f**. n samples in each box-and-whisker
1503 (left to right): 16; 16; 15; 16. P - values were calculated with Kruskal-Wallis test. **f**, Distribution
1504 of CytoTRACE scores in AICs, AT1 and AT2 cells (left). Distribution of pseudotime scores in
1505 malignant cells from *EGFR*- or *KRAS*-mutant tumours (right). P - value was calculated with two-

1506 sided Wilcoxon Rank-Sum test. Box-and-whisker definitions are similar to **Extended Data Fig.**
1507 **1f** with n cells: AT2 = 14,649; AICs = 974; AT1 = 2,529; EGFR = 1,711; KRAS = 1,326. **g**,
1508 Pseudotime trajectory analysis of alveolar and malignant subsets coloured by tissue location. **h**,
1509 Distribution and composition of AICs with low (left) or high (right) CytoTRACE score. **i**, DEGs
1510 between KACs and other AICs. **j**, Pseudotime trajectory analysis of malignant and alveolar
1511 subsets colour-coded by cell lineage and presence of KRAS^{G12D} mutation (top). Pseudotime score
1512 in KACs versus other AICs (bottom). Box-and-whisker definitions are similar to **Extended Data**
1513 **Fig. 1f.** n cells in each box-and-whisker: KACs = 157; Other AICs = 817. P - value was
1514 calculated by two-sided Wilcoxon Rank-Sum test. **k**, Differences in cell densities between
1515 LUAD (top) and NL tissues (bottom).

1516

1517 **Extended Data Fig. 4. Spatial and molecular attributes of human KACs. a,**
1518 Microphotographs of P10 (left) and P15 (right) LUAD and paired uninvolved NL tissues. Top
1519 panels: H&E staining showing LUAD T and TAN (left columns) regions, and uninvolved NL
1520 (right columns). DSP analysis of KRT8 (red), CLDN4 (yellow), and pan-cytokeratin (PanCK;
1521 green) in LUAD, TAN, and NL regions. Blue nuclear staining was done using Syto13.
1522 Magnification 20X. Scale bar = 200 μ m. Staining was repeated four times with similar results. **b**,
1523 CytoSPACE deconvolution and trajectory analysis of P14 LUAD ST data. The left spatial map is
1524 coloured by deconvoluted cell types. Top middle panel shows the neighbouring cell composition
1525 of KACs, and the bottom middle panel depicts inferred trajectory and pseudotime prediction
1526 using Monocle 2. Scaled expression of NKX2-1 and alveolar signature are shown in the
1527 rightmost top and bottom panels, respectively. **c-e**, Expression of KRAS (**c**), AT1 (**d**), and other
1528 AIC (**e**) signatures across AT1, AT2, KACs and other AICs. Box-and-whisker definitions are

1529 similar to **Extended Data Fig. 1f.** n cells in each group: KACs = 1,440; Other AICs = 8,593;
1530 AT2 = 146,776; AT1= 25,561. **f, g,** Correlation analysis between Other AIC and KRAS (**f**) or
1531 alveolar (**g**) signature scores. P - values were calculated with Spearman correlation test. R
1532 denotes the Spearman correlation coefficients. **h,** Enrichment of KAC signature among KACs
1533 (left) and malignant cells (right) from KM- or EM-LUAD samples. Box-and-whisker definitions
1534 are similar to **Extended Data Fig. 1f.** n cells in each box-and-whisker (left to right): KACs, EM-
1535 LUADs = 135; KACs, KM-LUADs = 719; Malignant, EM-LUADs = 5,457; Malignant, KM-
1536 LUADs = 2,472. P - values were calculated by two-sided Wilcoxon Rank-Sum test.

1537

1538 **Extended Data Fig. 5. Enrichment and clinical relevance of KAC, Other AIC, and alveolar**
1539 **signatures in LUAD. a-e,** Expression of KAC (**a**), other AIC (**b**) and alveolar (**c**) signatures in
1540 TCGA LUAD samples and matched NL tissues, of other AIC signature in a lung preneoplasia
1541 cohort (**d**), as well as of KAC signature in TCGA LUAD samples grouped by *KRAS* mutation
1542 status (**e**). Box-and-whisker definitions are similar to **Extended Data Fig. 1f.** n samples in each
1543 group: TCGA Normal = 52; TCGA LUAD = 52; preneoplasia Normal, AAH, and LUAD: 15
1544 each; TCGA LUAD *KRAS* WT = 346; TCGA LUAD *KRAS* MUT = 152. P - values were
1545 calculated by two-sided Wilcoxon Rank-Sum test. Benjamini–Hochberg method was used for
1546 multiple testing correction. n.s.: non-significant ($P > 0.05$). **f-i,** Kaplan-Meier plots showing
1547 differences in overall survival probability across TCGA (**f**) and PROSPECT (**g**) samples with
1548 high versus low KAC signature scores, or with high versus low scores for other AIC signature
1549 (**h:** TCGA; **i:** PROSPECT). Sig. low: LUAD samples with signature scores lower than the group
1550 median value. Sig. hi: LUAD samples with signature scores higher than the group median value.
1551 P - values were calculated with the logrank test. **j,** Multivariate Cox proportional hazard

1552 regression analysis including pathologic stage, age, as well as KAC and other AIC signatures.

1553 Center: estimated Hazard Ratio; error bars: 95% CI. q - values were calculated by Cox

1554 proportional hazards regression model and adjusted with Benjamini–Hochberg method.

1555

1556 **Extended Data Fig. 6. Prevalence of KRAS^{G12D} mutant KACs in LUAD. a,** UMAP clustering

1557 of alveolar subsets. **b,** Quantification of CNV scores across AT1, AT2, KACs and other AICs.

1558 Box-and-whisker definitions are similar to **Extended Data Fig. 1f.** n cells in each group: AT2

1559 =146,776; AT1 = 25,561, Other AICs = 8,593; KACs = 1,440; Malignant = 17,064. P - values

1560 were calculated using two-sided Wilcoxon Rank-Sum test with a Benjamini–Hochberg

1561 correction. $KRAS^{G12D}$ variant allele frequencies (**c**) and fractions of $KRAS^{G12D}$ mutant cells (**d**) in

1562 alveolar and malignant cells from LUAD and normal samples and analysed by scRNA-seq. VAF

1563 for $KRAS^{G12C}$ variant in KACs from KM normal tissues is shown in green (**c**). n on top of each

1564 bar in **d:** number of $KRAS^{G12D}$ mutant cells. **e,** KRAS activation signature was statistically

1565 compared across $KRAS^{G12D}$ mutant KACs, $KRAS^{wt}$ KACs, AICs, and AT2 cells. Box-and-

1566 whisker definitions are similar to **Extended Data Fig. 1f.** n cells in each box-and-whisker:

1567 KACs $KRAS^{G12D}$ = 15; KACs $KRAS^{wt}$ = 1,425; Other AICs = 8,593; AT2 = 146,776. P - values

1568 were calculated using the two-sided Wilcoxon Rank-Sum test with a Benjamini–Hochberg

1569 correction. **f, g,** CytoTRACE scores in KACs versus other AICs from all cells of KM (**f**, left) and

1570 KW cases (**f**, right), in cells from normal lung tissues of patients with KM-LUAD (**g**, left), and

1571 cells from KM-LUAD (**g**, middle) and KW-LUAD (**g**, right) tissues. Box-and-whisker

1572 definitions are similar to **Extended Data Fig. 1f.** n cells in each box-and-whisker: KM cases,

1573 KACs = 719; KM cases, Other AICs = 2,414; KW cases, KACs = 721; KM cases, Other AICs =

1574 6,179; KM normal tissues, KACs = 408; KM normal tissues, Other AICs = 2,286; KM-LUADs,

1575 KACs = 311; KM-LUADs, Other AICs = 128; KW-LUADs, KACs = 295; KW-LUADs, Other
1576 AICs = 940. *P* - values were calculated using two-sided Wilcoxon Rank-Sum tests with
1577 Benjamini–Hochberg adjustment for multiple testing correction.
1578

1579 **Extended Data Fig. 7. scRNA-seq analysis of epithelial subsets in a tobacco carcinogenesis**
1580 **mouse model of KM-LUAD. a,** UMAP distribution of mouse epithelial cell subsets. **b,**
1581 Proportions and average expression levels of select marker genes for mouse normal epithelial
1582 cell lineages and malignant cell clusters as defined in panel **a**. **c,** UMAP plots of alveolar and
1583 malignant cells coloured by CNV score, presence of *Kras*^{G12D} mutation, or expression levels of
1584 *Kng2* and *Meg3*. **d,** UMAP (top) and violin (bottom) plots showing expression level of *Cd24a* in
1585 malignant and alveolar subsets. Box-and-whisker definitions are similar to **Extended Data Fig.**
1586 **1f.** *n* cells in each group: Malignant = 1,693; AT1 = 580; KACs = 636; AT2 = 1,791. **e,** UMAP
1587 distribution of alveolar and malignant cells coloured by cell lineage, *Kras*^{G12D} mutation status,
1588 and CNV score at EOE or 7 mo post-NNK. **f,** Proportions of normal epithelial cell lineages and
1589 malignant cells in each sample. **g,** Fractional changes of malignant cells, KACs, AT2 and AT1
1590 cells between EOE and 7 months post treatment with NNK or saline; *n* = 4 biologically
1591 independent samples in each group. Whiskers, 1.5× interquartile range; Center dot: median. **h,**
1592 UMAP (top) and violin (bottom) plots showing expression levels of *Gkn2* in malignant and
1593 alveolar cell subsets. *n* cells in each group: Malignant = 1,693; AT1 = 580; KACs = 636; AT2 =
1594 1,791.

1595
1596 **Extended Data Fig. 8. ST analysis of KACs in tobacco-associated development of KM-**
1597 **LUAD. a,** ST analysis of the same tumour-bearing mouse lung in **Fig. 3e** with cell clusters

1598 identified by Seurat (inlet) and mapped spatially (left). Spatial maps with scaled expression of
1599 *Krt8* and *Plaur* are shown on the right. **b**, Pseudotime trajectory analysis of C0 (alveolar
1600 parenchyma), C2 (reactive area with KACs nearby tumours), and clusters C7 and C8
1601 (representing two tumours) from the same tumour-bearing mouse lung in **a**. **c**, ST analysis of
1602 another tumour-bearing lung region from the same NNK-exposed mouse as in panel a, and
1603 showing histological spot-level annotation of H&E-stained images (left) followed by spatial
1604 maps with scaled expression of *Krt8*, *Plaur*, and KAC signature (right). **d**, Cell clusters identified
1605 by Seurat (top left) and mapped spatially (top right) from the same mouse tumour-bearing lung
1606 in **c**. bottom of panel k: Pseudotime trajectory analysis of C0 (alveolar parenchyma), C8 (reactive
1607 area with KACs nearby the tumour), and C5 (representing one tumour) from the mouse tumour-
1608 bearing lung in **c**. **e**, ST analysis of a tumour-bearing lung from an additional mouse at 7 months
1609 following NNK showing histological spot-level annotation of H&E-stained images (left)
1610 followed by spatial maps with scaled expression of *Krt8* (middle, top), *Plaur* (middle, bottom),
1611 and KAC signature (right).

1612

1613 **Extended Data Fig. 9. Mouse KAC signatures and pathways are relevant to both injury**
1614 **models and human KM-LUAD.** **a, b**, Pathway enrichment analysis of KACs relative to other
1615 alveolar cell subsets and malignant cells in tumour-bearing mice at 7 months post-NNK (**a**) and
1616 in the human LUAD scRNA-seq dataset from this study (**b**). **c**, Enrichment of *Tp53* signature
1617 derived from mouse KACs, and expression of *Btg2*, *Ccng1*, *Cdkn2b*, *Bax*, *Cdkn1a*, as well as
1618 *Trp53* itself, across AT2 cells, malignant cells, and KACs at EOE or at 7 mo post-NNK or saline.
1619 *n* cells in each group: AT2 = 1,791; KACs EOE = 301; KACs 7mo. = 335; Malignant = 1,693. **d**,
1620 Pie chart showing percentages of unique and overlapping DEG sets between mouse KACs from

1621 this study and *Krt8*⁺ transitional cells identified by Strunz and colleagues. **e, f**, Expression of the
1622 mouse KAC signature across alveolar and malignant cell subsets from this study (**e**), in normal
1623 lung (Normal) and LUAD tissues from the TCGA cohort (**f**, left), as well as in normal lung
1624 (Normal), AAH, and LUAD tissues of our premalignancy cohort (**f**, right). *n* cells in each group
1625 of panel **e**: AT2 = 1,791; KACs EOE = 301; KACs 7mo. = 335; Malignant = 1,693. *n* samples in
1626 each group of panel **f** left: Normal = 52; LUAD = 52. *n* samples in each group of panel **f** right:
1627 Normal = 15; AAH = 15; LUAD = 15. Box-and-whisker definitions are similar to **Extended**
1628 **Data Fig. 1f.** *P* - values were calculated using two-sided Wilcoxon Rank-Sum test with a
1629 Benjamini–Hochberg correction.

1630

1631 **Extended Data Fig. 10. Mouse KACs exist in a continuum, bear strong resemblance to**
1632 **human KACs, and are present in independent KRAS^{G12D}-driven mouse models of LUAD. a,**
1633 Mouse KAC signature score (left) and heatmap showing expression of select KAC marker genes
1634 (right) in bulk transcriptomes of MDA-F471-derived 3D spheres versus parental MDA-F471
1635 cells grown in 2D. *P* - value was calculated using two-sided Wilcoxon Rank-Sum test. Box-and-
1636 whisker definitions are similar to **Extended Data Fig. 1f. b**, Fraction of *Kras*^{G12D} mutant cells in
1637 different mouse alveolar cell subsets including when separating KACs into early KACs at EOE
1638 and late KACs at 7 months post-NNK. Numbers of *Kras*^{G12D} mutant cells are indicated on top of
1639 each bar. **c**, CytoTRACE scores in late KACs with *Kras*^{G12D} mutation and in those with wild
1640 type *KRAS* (*Kras*^{wt}). *P* - value was calculated using two-sided Wilcoxon Rank-Sum test. Box-
1641 and-whisker definitions are similar to **Extended Data Fig. 1f.** *n* cells in each box-and-whisker:
1642 *Kras*^{G12D} = 72; *Kras*^{wt} = 564. **d**, Proportions and average expression levels of select marker genes
1643 for the different subsets indicated. Pie charts showing percentages of unique and overlapping

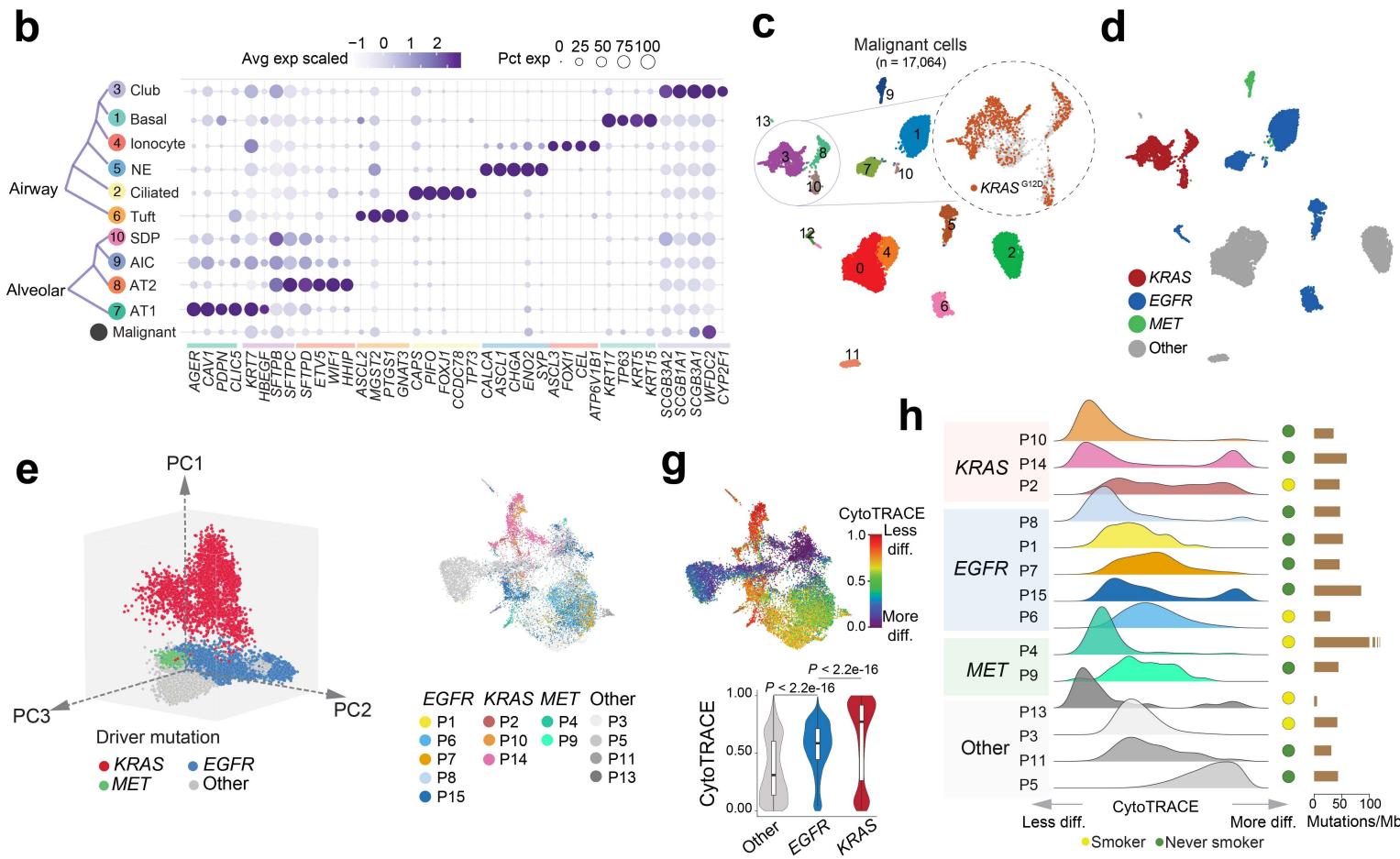
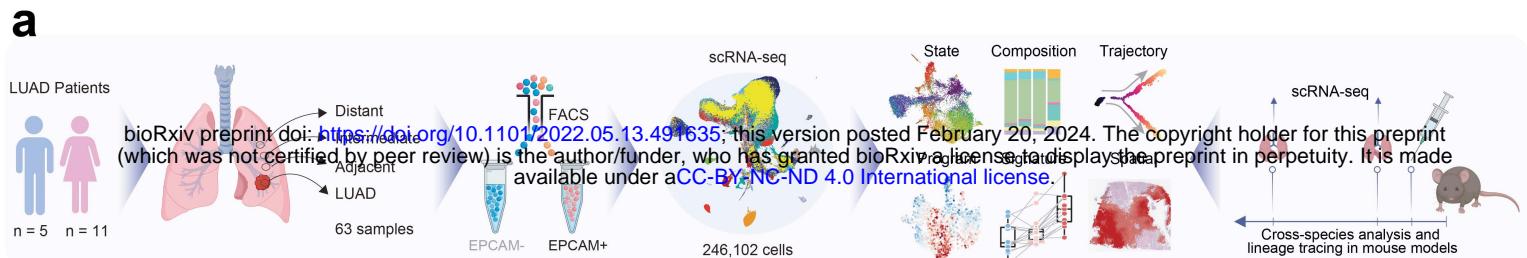
1644 DEG sets between *Krt8*⁺ transitional cells identified by Strunz and colleagues and either
1645 *Kras*^{G12D} (**e**) or *Kras*^{WT} (**f**) KACs from this study. **g**, UMAP clustering of cells integrated from our
1646 mouse cohort with cells in the scRNA-seq datasets from studies by Marjanovic et al. and Dost et
1647 al. **h**, Proportions and average expression levels of select marker genes for diverse alveolar and
1648 tumour cell subsets and across clusters defined in panel **g** with cluster 5 (C5) shown to be
1649 enriched with KAC markers. **i**, KAC signature expression across clusters defined in panel **g**. *n*
1650 cells in each cluster: 2 = 2,463; 11 = 154; 1 = 3,480; 0 = 4,396; 5 = 1,362; 4 = 1,513; 3 = 2,392;
1651 10 = 219; 8 = 577; 7-0 = 382; 6 = 1,042; 9 = 285; 7-1 = 141; 7-2 = 115; 12 = 119. **j**, Distribution
1652 of cells from C5 across the three indicated cohorts (left). KAC signature enrichment across
1653 KACs from the three cohorts and relative to pooled AT2 cells (right). Box-and-whisker
1654 definitions are similar to **Extended Data Fig. 1f**. *n* cells in each box-and-whisker: KACs,
1655 Marjanovic et al = 90; This study = 485; Dost et al = 343; AT2 = 3,762. **k**, KAC signature score
1656 in human AT2 cells with induced expression of *KRAS*^{G12D} (Dox) relative to *KRAS*^{WT} cells (Ctrl)
1657 from the Dost et al. study. Dox: Doxycycline. Box-and-whisker definitions are similar to
1658 **Extended Data Fig. 1f**. *n* cells in each box-and-whisker: Ctrl = 802; Dox = 1,341. *P* - value was
1659 calculated using two-sided Wilcoxon Rank-Sum test. **l**, Mouse KAC signature expression in
1660 KACs (left) and malignant cells (Malignant, right) from KM-LUADs relative to EM-LUADs in
1661 our human scRNA-seq dataset. Box-and-whisker definitions are similar to **Extended Data Fig.**
1662 **1f**. *n* cells in each box-and-whisker: KACs, EM-LUADs = 135; KACs, KM-LUADs = 719;
1663 Malignant, EM-LUADs = 5,457; Malignant, KM-LUADs = 2,472. *P* - values were calculated
1664 using two-sided Wilcoxon Rank-Sum test.
1665

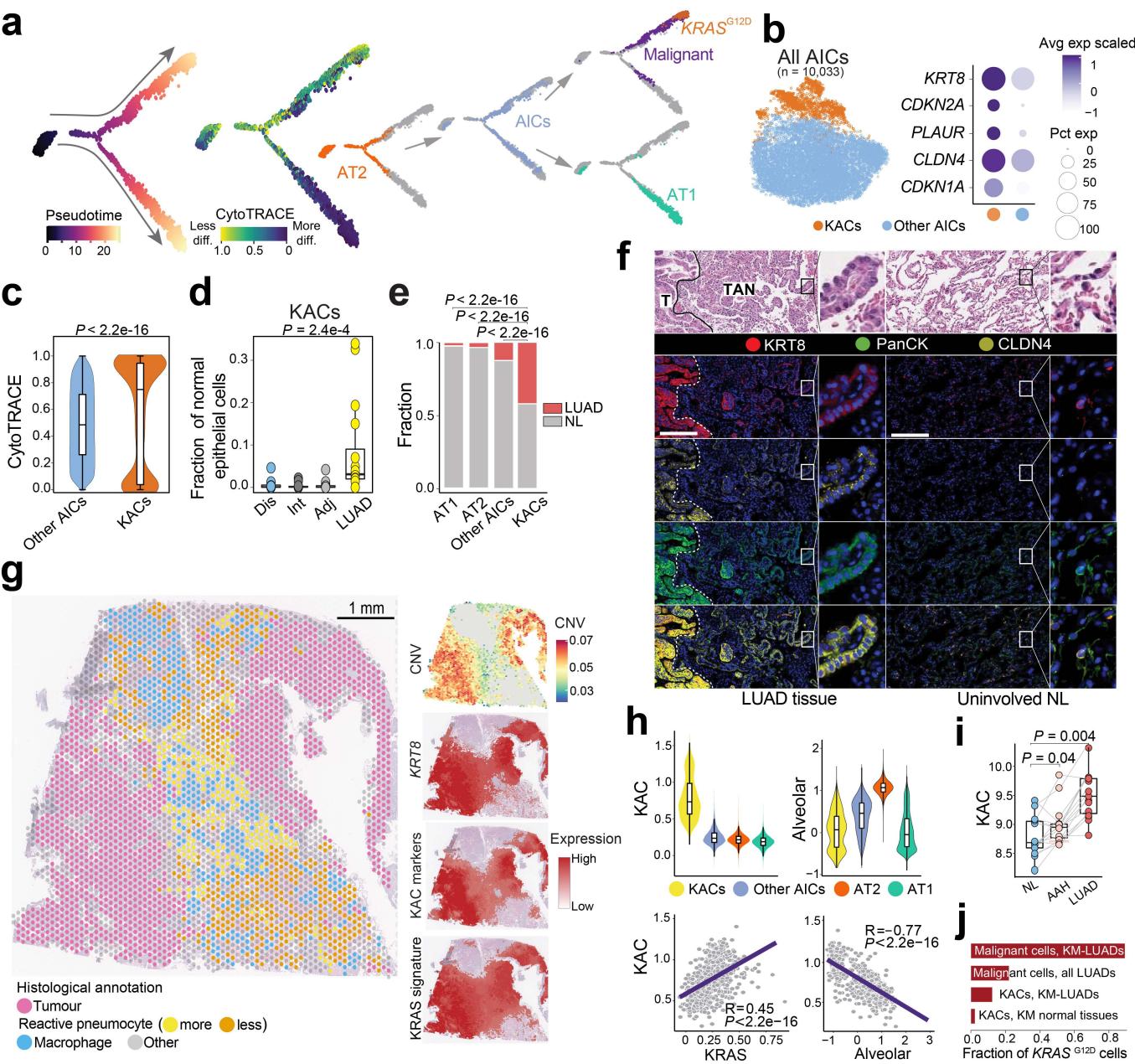
1666 **Extended Data Fig. 11. KACs are enriched in lungs and they precede the formation of**
1667 ***Kras*^{G12D} tumours in an AT2 lineage reporter tobacco carcinogenesis mouse model. a,**
1668 Representative IF analysis of KRT8, GFP, and LAMP3 in GFP-labelled AT2-derived mouse
1669 lung organoids (n = 3 wells per condition) derived from tamoxifen-exposed AT2 reporter mice at
1670 EOE to saline (n = 4 mice) or NNK (n = 5 mice). Scale bar: 10 µm. **b**, UMAP distribution of
1671 GFP⁺ cells at 3 months following NNK exposure or saline and coloured by alveolar or tumour
1672 subsets. **c**, Proportions and average expression levels of select marker genes for mouse normal
1673 alveolar cell lineages and tumour cells defined in **b**. **d**, Fraction of *Kras*^{G12D} cells across alveolar
1674 and early tumour subsets. Absolute numbers of *Kras*^{G12D} cells are indicated on top of each bar. **e**,
1675 UMAPs of GFP⁺ cells from tumour-bearing AT2 reporter mice at 3 months post-NNK or saline
1676 and coloured by presence of *Kras*^{G12D} mutation or expression of KAC, AT1, and AT2 signatures.
1677 **f**, UMAPs showing distribution of alveolar and tumour cell subsets (left) as well as cells with
1678 *Kras*^{G12D} mutation (right) by treatment (saline or NNK). **f**, Trajectories of GFP⁺ cells from
1679 tumour-bearing reporter mice at 3 months post-NNK or saline coloured by inferred pseudotime
1680 (left), differentiation (middle), and cell lineage and showing subset composition (right). **g**,
1681 CytoTRACE (left) and pseudotime (right) scores across GFP⁺ subsets. Box-and-whisker
1682 definitions are similar to **Extended Data Fig. 1f**. n cells in each box-and-whisker: AT2 = 144;
1683 Early/AT2-like tumour = 144; KAC/KAC-like = 288; AT1 = 72.
1684
1685 **Extended Data Fig. 12. KAC-rich organoids are sensitive to targeted inhibition of KRAS. a,**
1686 Size quantification of organoids derived from GFP⁺ lungs cells of mice treated with saline
1687 (derived from 10 mice and plated into 4 wells) or NNK (derived from 13 mice and plated into 12
1688 wells) at 3 months post-exposure. Box-and-whisker definitions are similar to **Extended Data Fig.**

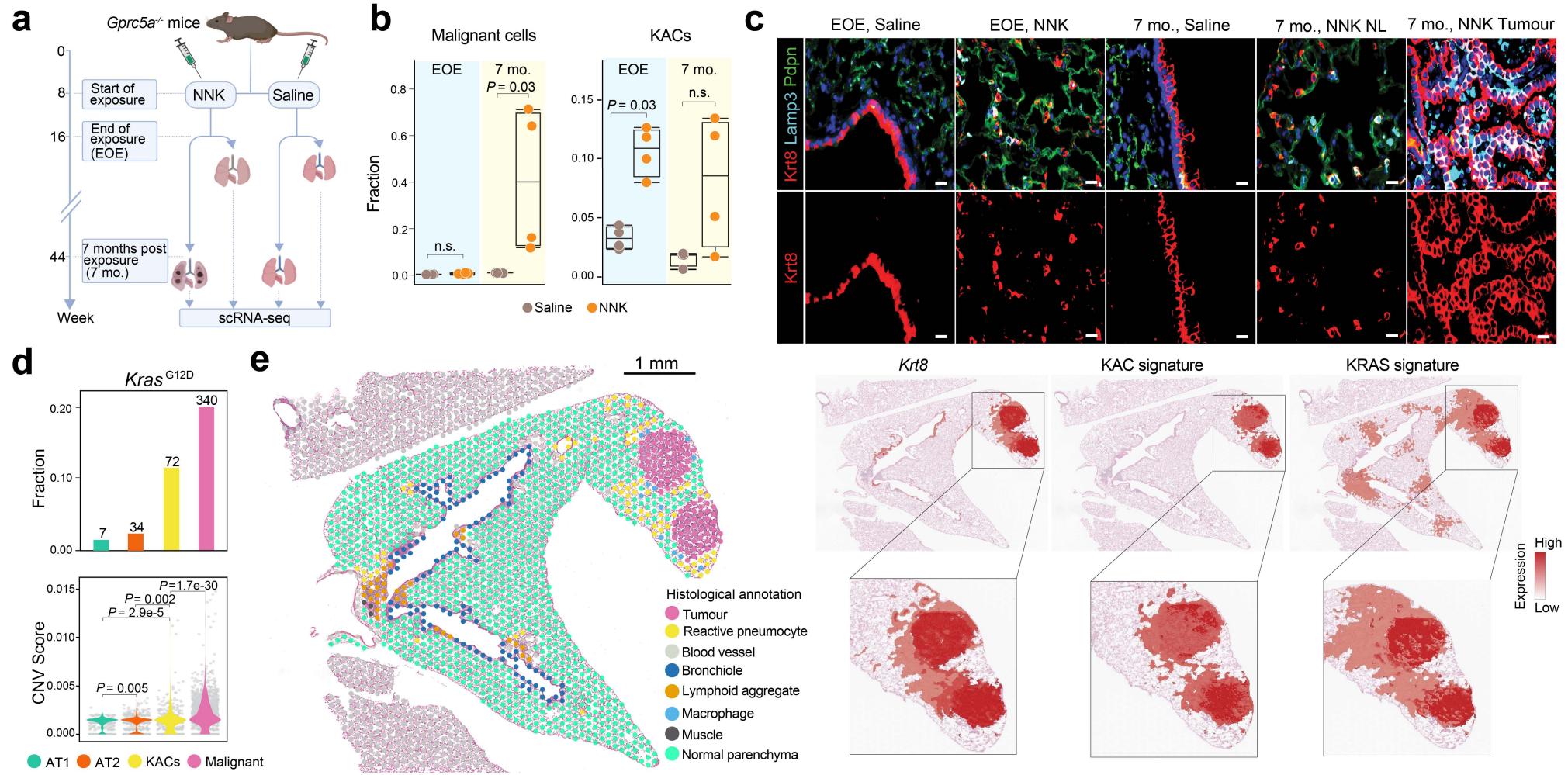
1689 **1f.** *n* organoids in each group: Saline = 63; NNK = 66. *P* - value was calculated using two-sided
1690 Wilcoxon Rank-Sum test. **b**, Analysis of relative viability 4 days post treatment of LKR13 and
1691 MDA-F471 cells following treatment with increasing concentrations of MRTX1133. *n* samples
1692 in each group of LKR13 cells: - = 7; 1 = 7; 10 = 3; 40 = 4; 100 = 3. *n* samples in each group of
1693 MDA-F471 cells: - = 8; 1 = 8; 10 = 7; 40 = 11; 100 = 6. n.s: non-significant (*P* > 0.05). Error-
1694 bars: standard deviations of means. *P* - values were calculated using an ordinary one-way
1695 ANOVA with Dunnett's post-test. Results are representative of two independent experiments. **c**,
1696 Western blot analysis for the indicated proteins and phosphorylated proteins at 3 hours post-
1697 treatment to EGF without or with increasing concentrations of the KRASG12D inhibitor
1698 MRTX1133 (from Mirati Therapeutics, Inc.). Proteins were run on additional gels (4 per cell line)
1699 to separately blot with antibodies against phosphorylated and total forms of each of the indicated
1700 proteins (**Supplementary Fig. 9**). Vinculin protein levels were analysed as loading control for
1701 each gel whereby four LKR13 and four MDA-F471 blots are shown in **Supplementary Fig. 9**.
1702 For lysates from each of the two cell lines, vinculin blots from Gel 1 (**Supplementary Fig. 9**) are
1703 selected and shown in this figure panel. Uncropped images of western blots with molecular
1704 weight ladder are also shown in **Supplementary Fig. 9**. Results are representative of three
1705 independent experiments. EGF: epidermal growth factor. **d**, Size quantification of organoids
1706 derived from GFP⁺ lungs cells of NNK-treated AT2 reporter mice and treated with 200 nM
1707 MRTX1133 or control DMSO *in vitro* (*n* = 6 wells per condition). Box-and-whisker definitions
1708 are similar to **Extended Data Fig. 1f**. *n* samples (organoids) in each group: DMSO = 38;
1709 MRTX1133 = 53. *P* - value was calculated using two-sided Wilcoxon Rank-Sum test. **e**, IF
1710 analysis showing representative organoids derived from sorted GFP⁺ cells from AT2 reporter
1711 mice that were exposed to saline (top two rows; *n* = 4 wells) or exposed to NNK and then treated

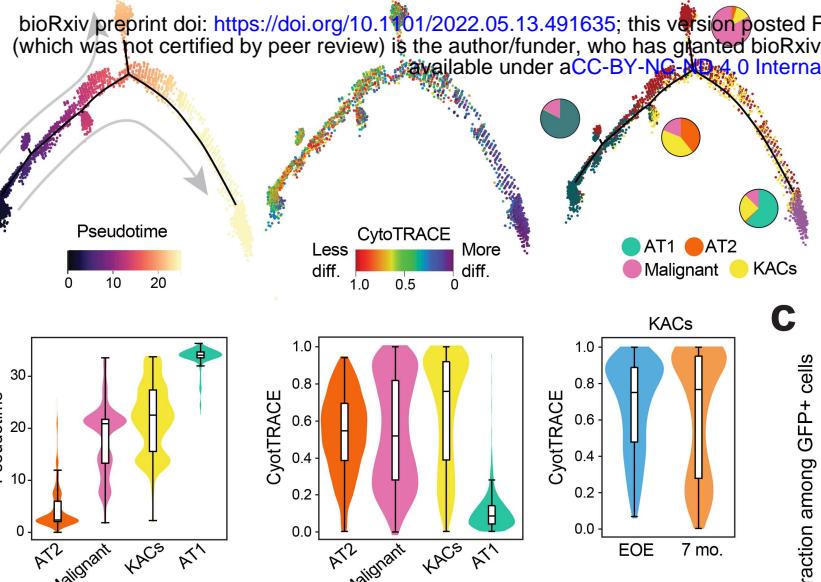
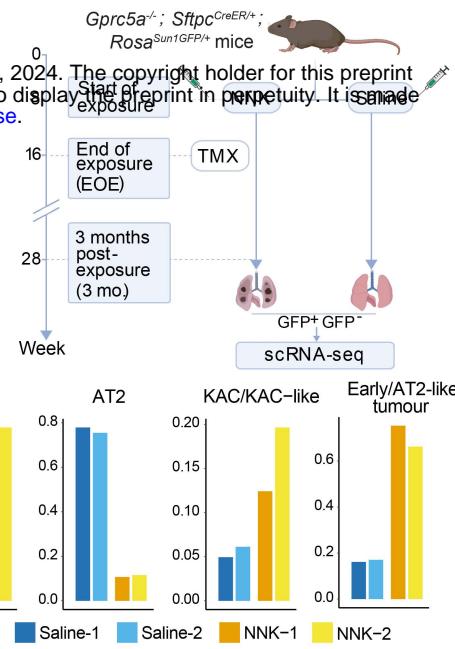
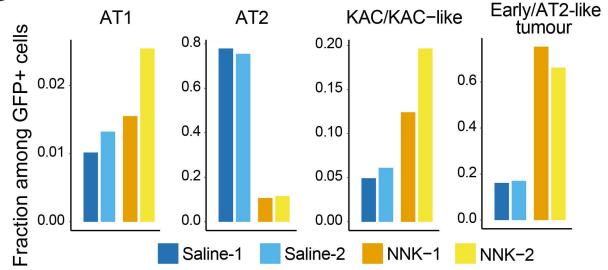
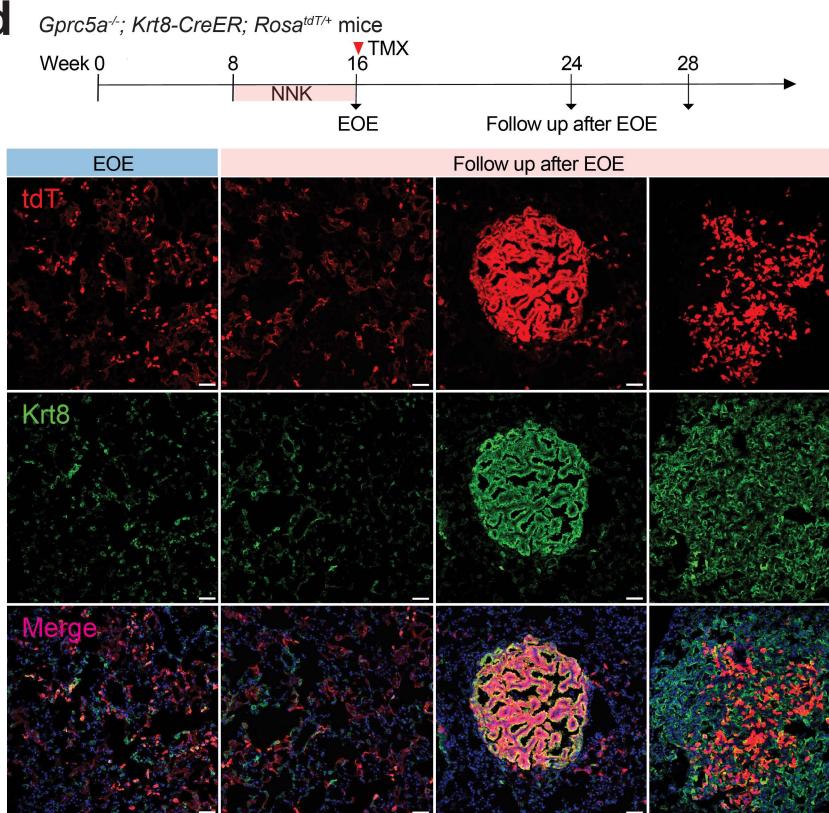
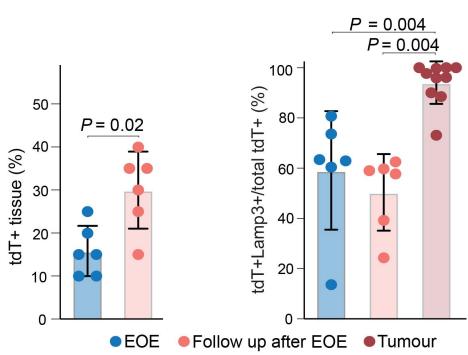
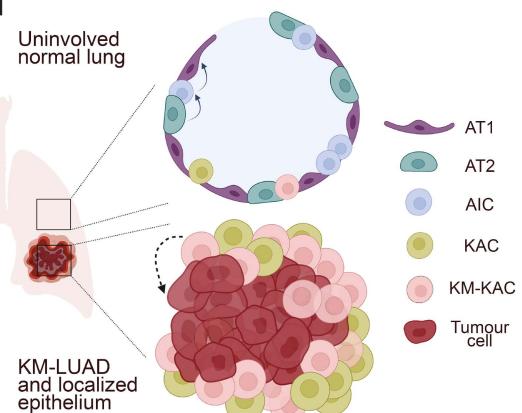
1712 *ex vivo* with DMSO (middle two rows; n = 6 wells) or 200 nM MRTX1133 (bottom two rows; n
1713 = 6 wells). Scale bars = 50 μm except for the first DMSO-treated organoid (third row) whereby
1714 scale bar = 100 μm . Staining was repeated three times with similar results.

1715



1716 **Extended Data Fig. 13. Analysis of labelled Krt8⁺ cells following tobacco carcinogen**


1717 **exposure. a,** Representative images of IF analysis of tdT, LAMP3, and NKX2-1 in lung tissues
1718 of control saline-treated mice (upper row; n = 2), in non-tumour (normal) lung regions of mice at
1719 end of an 8-week NNK exposure (middle row; n = 3), as well as in non-tumour (normal) lung
1720 regions of mice at 8-12 weeks following EOE to NNK (lower row; n = 3), and in *Gprc5a*^{-/-}; Krt8-
1721 CreER; *Rosa*^{tdT/+} mice. IF analysis of tdT and Lamp3 in tumours detected in *Gprc5a*^{-/-}; Krt8-
1722 CreER; *Rosa*^{tdT/+} mice and showing strong (**b**, n = 10) and negative/low (**c**, n = 7) tdT labelling in
1723 tumour cells. Scale bars = 10 μm .


1724







1725 **Supplementary Information**

1726 The **Supplementary Figures** file contains nine supplementary figures along with their legends.
1727 **Supplementary Fig. 1** outlines gating strategy for sorting epithelial cells from human lung
1728 tissues. **Supplementary Fig. 2, 3, and 5** include additional details pertaining to scRNA-seq data
1729 processing and analysis. **Supplementary Fig. 4 and 6** outline gating strategies for sorting lung
1730 cells from mouse models including those with AT2 lineage tracing. **Supplementary Fig. 7 and 8**
1731 show complementary analyses in AT2 lineage-labelling mouse experiments. **Supplementary**
1732 **Fig. 9** shows raw western blots images for each cell line and gel analysed. We also provide
1733 **Supplementary Tables 1-12** along with their titles.

a**b****c****d****e****f**