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 2 

ABSTRACT 18 

Diets rich in fruits and vegetables have been shown to exert positive effects on the gut 19 

microbiome. However, little is known about the specific effect of individual fruits or vegetables 20 

on gut microbe profiles. This study aims to elucidate the effects of tomato consumption on the 21 

gut microbiome, as tomatoes account for 22% of vegetable consumption in Western diets, and 22 

their consumption has been associated with positive health outcomes. Using piglets as a 23 

physiologically relevant model of human metabolism, 20 animals were assigned either to a 24 

control or tomato powder supplemented diet (both macronutrient matched and isocaloric) for 14 25 

days. The microbiome was sampled rectally at three time points: day 0 (baseline), day 7 26 

(midpoint), and at day 14 (end of study). DNA was sequenced using shotgun metagenomics, and 27 

reads were annotated using MG-RAST. There were no differences in body weight or feed intake 28 

between our two treatment groups. There was a microbial shift which included a higher ratio of 29 

Bacteroidota to Bacillota (formerly known as Bacteroidetes and Firmicutes, respectively) and 30 

higher alpha-diversity in tomato-fed animals, indicating a shift to a more desirable phenotype. 31 

Analyses at both the phyla and genera levels showed global microbiome profile changes 32 

(PERMANOVA P ≤ 0.05) over time, but not with tomato consumption. These data suggest that 33 

short-term tomato consumption can beneficially influence the gut microbial profile, warranting 34 

further investigation in humans. 35 

 36 
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IMPORTANCE 37 

The composition of the microorganisms in the gut is a contributor to overall health, prompting 38 

the development of strategies to alter the microbiome composition. Studies have investigated the 39 

role of the diet on the microbiome, as it is a major modifiable risk factor contributing to  health; 40 

however, little is known about the causal effects of consumption of specific foods on the gut 41 

microbiota. A more complete understanding of how individual foods impact the microbiome will 42 

enable more evidence-based dietary recommendations for long-term health. Tomatoes are of 43 

interest as the most consumed non-starchy vegetable and a common source of nutrients and 44 

phytochemicals across the world. This study aimed to elucidate the effect of short-term tomato 45 

consumption on the microbiome, using piglets as a physiologically relevant model to humans. 46 

We found that tomato consumption can positively affect the gut microbial profile, which 47 

warrants further investigation in humans. 48 

 49 

INTRODUCTION 50 

Research has shown that the composition of the gut microbiome can be an effector of overall 51 

health (1). The composition of these gut microorganisms has been associated with a number of 52 

chronic diseases, such as cardiovascular disease (2), inflammation (3), type 2 diabetes (1), and 53 

obesity (3–5). As diet is a major modifiable factor of health, there is interest in elucidating how 54 

dietary factors can alter the microbiome (6, 7). While it is possible to use some microbiome 55 

endpoints and associate them with health (i.e., a more diverse community is favorable (1, 6, 8), 56 

and a lower Bacteroidota to Bacillota (formerly known as Bacteroidetes and Firmicutes 57 

respectively) ratio (4), the reality is that bias in sequencing approaches as well as differences in 58 

microbial communities due to lifestyle factors and location add complexity to this interpretation 59 
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(9). Still, diets rich in fruits, vegetables, and whole grains have been consistently associated with 60 

a healthier microbiome (6–8, 10). However, discerning the way specific foods might affect the 61 

microbiome using intervention studies remains largely uninvestigated. Understanding the global 62 

effects that specific foods have on the microbiome helps contextualize the effect they are having 63 

towards overall health and sets a foundation towards making personalized nutritional 64 

recommendations.   65 

Tomatoes are of interest as one such specific food because they are a common source of 66 

nutrients for many around the world. They are the second most commonly consumed vegetable 67 

(11) and are an important specialty crop across the United States. Over 12 million metric tons of 68 

tomatoes are produced in the United States each year (12), with Americans consuming about 30 69 

pounds per person in 2018 (13). Tomatoes are a rich source of both essential nutrients (e.g., 70 

vitamins A, C), fiber, and phytochemicals (e.g., lycopene, flavonoids, phenolic acids). Tomato 71 

consumption has been linked to protection against various chronic diseases (14–16), though 72 

causality about the mechanism of action is not well understood.  73 

We hypothesized that one mechanism by which tomatoes provide a health benefit is 74 

through their modulation of the gut microbiome. Preliminary microbiome studies in mice, 75 

feeding tomatoes or their phytochemicals, have shown positive outcomes, including increased 76 

microbial diversity, decreased abundance of Clostridium spp., and decreased symptoms of 77 

irritable bowel disease (17–21). Here, we aimed to elucidate the effects of short-term, consistent 78 

tomato consumption on the gut microbial ecosystem, using pigs as a physiologically relevant 79 

model for humans. To investigate this question, we fed weaned piglets (n = 20, aged 4 weeks) a 80 

diet supplemented with 10% w/w tomato powder or an iso-caloric and macronutrient-matched 81 

control diet for two weeks, sampling the gut microbiome via rectal swab at three points during 82 
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the experimental period. The use of macronutrient matched diets allowed us to test the effect of 83 

tomato phytochemicals on the microbiome of studied pigs, rather than the effect of differences in 84 

nutrients, such as fiber or sugar. DNA from rectal swabs was subjected to shotgun metagenomic 85 

sequencing (i.e., the untargeted sequencing of all the DNA present in a sample (22)). The 86 

resulting reads were annotated and analyzed at both the phyla and genera levels using univariate 87 

and multivariate approaches, including the analysis of beta diversity, relative abundances of 88 

Bacteroidota, Bacilotta, their ratio, and alpha diversity. 89 

 90 

RESULTS AND DISCUSSION 91 

Diet type did not affect animal weight. An overall scheme of the animal study design can be 92 

found in FIG 1. Pigs were weighed and feed intake was measured weekly. There was no 93 

difference in feed intake or animal weight over the trial (Table S1). Health of pigs was not 94 

altered by dietary treatment. 95 

 96 

 97 

 98 

FIG 1 Overall animal study design. Pigs were adapted to a dry diet from weeks 3-4. Microbiome 

was sampled via rectal swabs when pigs were aged 4 weeks (day 0, baseline), 5 weeks (day 7, 

midpoint) and 6 weeks (day 14, end of study) for shotgun metagenomics. 
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A median sequence depth was 2.5M reads. Each sample’s forward and reverse reads were 99 

checked for quality using FastQC version 0.11.9 (23). All sequence files passed quality checks 100 

and no samples had to be discarded. Thirteen of the 60 total samples were re-sequenced to a 101 

median of 2.3M reads per sample. For re-sequenced samples, sequences from the first and 102 

second sequencing run were merged, checked for quality and were used for further analyses. 103 

Rarefaction curves demonstrate that a similar species richness was achieved in samples with 104 

differing sequence depths (Fig. S1). A recent study has shown that even shallow shotgun 105 

metagenomics (<500K reads/sample) provides better annotation of taxonomic and functional 106 

composition of microbiome compared to 16S rRNA sequencing (24), providing our rationale for 107 

this sequencing approach.  108 

 109 

Bacillota (i.e., Firmicutes) was the predominant phylum and Prevotella the most abundant 110 

genus detected in the pig fecal microbiome. The mammalian gut microbiome is a complex 111 

microbial ecosystem; hence, it is beneficial to conduct analyses at more than one taxonomic 112 

rank, as the profile of each rank provides different types of information. The average human gut 113 

microbiome is dominated by Bacteroidota (formerly known as Bacteriodetes) and Bacillota 114 

(formerly known as Firmicutes), which typically account for 70-90 % of the total microbiome 115 

makeup (1). Analyses of phyla often reveal changes in the proportions of the dominant few, thus 116 

providing a broad picture of the state of the gut microbiome. Alternatively, genera are highly 117 

diverse, often with hundreds of taxa identified (25). These analyses provide a finer resolution of 118 

microbiome composition. Here, we aimed to capture modifications of the microbiome at both the 119 

phyla and genera level. For this reason, all analyses (aside from those specific to phyla) were 120 

completed at both taxonomic ranks. 121 
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 Across all pigs, annotation using MG-RAST and filtering for data quality resulted in 122 

identification of 45 phyla. Of those, 28 were from the domain Bacteria, comprising on average 123 

99.3 ± 0.2% of the total reads, 10 were from Eukaryota, 5 were Archaea, 1 was Virus, and 1 was 124 

unclassified. The most prevalent phyla were Bacilotta (formerly known as Firmicutes 52.7% 125 

average abundance ± 5.5% standard deviation), Bacteroidota (formerly known as Bacteroidetes 126 

35.4 ± 5.9), Actinomycetota (formerly known as Actinobacteria) (4.7 ± 1.8%), Pseudomonadota 127 

(formerly known as Proteobacteria) (3.9 ± 1.2%) and Fusobacteriota (formerly known as 128 

Fusobacteria) (0.43 ± 8.5x10-4%). Similar relative abundances of phyla were observed across 129 

samples, regardless of the diet groups. Previous studies reported conflicting results in terms of 130 

predominant phyla in pig microbiome. Some studies have shown Firmicutes to be the most 131 

abundant phyla in the pig gut microbiome after weaning (26, 27), while others have reported 132 

Bacteroidetes as the dominant phyla (28). 133 

 Annotation from MG-RAST and filtering for data quality resulted in the identification of 134 

755 genera. Of these 755 genera, 582 were in the Bacteria domain, 89 were Eukaryota, 60 were 135 

Archaea, 23 were Viruses, and 1 was unclassified. Overall, the most prevalent genera were 136 

Prevotella (22.23% average abundance ± 5.4% standard deviation), Bacteroides (10.34 ± 1.9%), 137 

Clostridium (8.56 ± 1.8%), Lactobacillus (6.78 ± 4.6%) and Eubacterium (5.16 ± 1.0%). These 138 

genera were detected in similar relative abundances in each group when data were parsed by diet. 139 

Previous reports have shown Prevotella, Bacteroides, and Clostridium to be the most abundant 140 

genera in pig gut microbiomes (27), which is consistent with our findings. 141 

 142 

Beta diversity changed over time, but was not significantly affected by the tomato-143 

supplemented diet. To understand the beta-diversity (differences between the microbial 144 
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communities) of pigs on different diets and at different time points, all data was first visualized 145 

via principal coordinates analysis (PCoA) using the Bray-Curtis dissimilarity metric. PCoA plots 146 

(Fig. 2) were created for both phyla and genera separately using the relative abundances of all 147 

samples. Plots were faceted by diet to observe sample clustering by time point more easily. PC1 148 

and PC2 together accounted for 89.1% of the variation in the phyla-level microbiome and 53.8% 149 

at the genera level. Visual clustering in PCoA scores plots at either taxonomic level was not 150 

easily observed between diets, but within the control diet, grouping was observed according to 151 

time point. It is not surprising that overall microbiome profile differences are not evident in the 152 

PCoA plots due to presence or absence of a single component of a diet (i.e., tomatoes). Global 153 

differences in microbiome composition are more likely to be observed when two completely 154 

different diets are fed, as previously shown when comparing the effect of a plant-based and 155 

animal-based diet on the microbiome (29). 156 
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 157 

FIG 2 Principal coordinates analysis (PCoA) using Bray-Curtis distances showing beta-

diversity of the whole microbiome at the phyla (top) level and genera (bottom) level. Each dot 

represents a sample collected from one pig. Plots are faceted by diet. Using repeated measures 

PERMANOVA (model: Beta Diversity = Diet + Time Point + Diet × Time Point + Error), only 

a significant effect of time point was detected at both the phyla (P = 0.020) and genera (P = 

0.005) levels. 
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In order to determine significance of observed trends in the PCoA due to diet and time 158 

point, PERMANOVA was used (model: Beta Diversity = Diet + Time Point + Diet × Time Point 159 

+ Error, where each pig was a plot containing three samples collected over time). These 160 

multivariate restricted permutation tests are a useful approach for assessing differences in beta-161 

diversity because they allow for the investigation of the gut microbiome as a whole, instead of 162 

focusing on individual taxa. The PERMANOVA model p-values are recorded in Table 1. At 163 

both the phyla and genera levels, we found the interaction term to be non-significant (Phyla P = 164 

0.510; Genera P = 0.360) and therefore we removed it from the model. The new model was then 165 

tested and revealed an overall significant effect of time point (Phyla P = 0.020; Genera P = 166 

0.005) but not diet (P = 0.270) on the gut microbiome (Table 1). 167 

 168 

TABLE 1 Results from restricted permutation tests via PERMANOVA to investigate differences 169 

in beta-diversity at the phyla and genera taxonomic levels. The full model tested the variance 170 

explained by the diet, time point, and their interaction on the dissimilarity matrix, calculated with 171 

Bray-Curtis distances. 172 

Variable Phyla Genera 

Diet 0.270 0.060 

Time Point 0.020a 0.005b 

Diet × Time Point 0.510 0.360 

a Indicates significant model effect at P ≤ 0.05. 173 
b Indicates significant model effect at P ≤ 0.01. 174 

 175 

These data can be interpreted in that, at both taxonomic ranks, the microbiomes of pigs 176 

were significantly changing over the two-week intervention, but the effect of diet on beta 177 
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diversitywas not significant. In another study using a mouse model, the microbiomes were 178 

compared between a group fed a high fat diet supplemented with tomato powder and a high fat-179 

only diet group. Using clustering by unweighted UniFrac dissimilarity, a significant difference 180 

was detected between diet group microbiomes (17). However, using weighted UniFrac distances, 181 

no separation of tomato and control groups was observed in the pigs. It is possible that using a 182 

dissimilarity measure that incorporates evolutionary relatedness may have been a contributor to 183 

the detected significant effects. However, a direct comparison with our study is difficult because 184 

mice are known to be different than pigs in their microbiome composition (30). 185 

 186 

Inverse relationship between Bacteroidota and Bacillota abundances was detected over 187 

time in the control-fed pigs, but not tomato-fed pigs. In addition to multivariate approaches to 188 

understand microbiome data, univariate methods to examine differences in specific taxa are 189 

valuable. As previously stated, the phyla Bacteroidota (i.e., Bacteriodetes) and Bacillota (i.e., 190 

Firmicutes) and their relationship have been implicated in obesity and high fat diets (31, 32). 191 

With these a priori interests, changes in these two phyla were assessed individually across diets 192 

and time points using repeated measures ANOVA. Results indicated a significant model effect of 193 

time point for both phyla (Bacteroidota P = 0.024; Bacillota P = 0.001); whereas diet and the 194 

interaction term were non-significant. After post hoc analyses to determine which pair-wise 195 

groups differed, significant alteration in the abundance of both Bacteroidota and Bacillota was 196 

found between day 0 and day 14 in control-fed pigs (Bacteroidota P = 0.044; Bacillota, P = 197 

0.03). No significant differences between time points within the tomato-fed pigs were observed. 198 

Box plots of the two phyla demonstrate the inverse relationship between Bacteroidota and 199 

Bacillota abundances over time in the control-fed pigs (Fig. 3a).  200 
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 201 

  202 

FIG 3 (a) Comparing relative abundances across time points and between diets for two phyla: Bacteroidota and Bacillota. Using repeated 

measures ANOVA, a significant model effect of time point was found for both phyla (Bacteroidota: P = 0.024, Bacillota: P = 0.001). Post hoc 

findings of significant differences between Day 0 Control and Day 14 Control were found for both Bacteroidota (P = 0.044) and Bacillota (P = 

0.03). No significant effects of diet or time point-by-diet interaction were detected for either phylum. (b) Comparing the ratio of the relative 

abundance of Bacteroidota to that of Bacillota across time points and between diets. A significant effect of time via repeated measures ANOVA 

(P = 0.009) led to post hoc comparisons and a significant difference in the ratio of Bacteroidota/Bacillota between Day 0 and Day 14 in 

control-fed pigs only (P = 0.033). There was no significant effect of diet or time point-by-diet interaction. 

P = 0.033 

P = 0.044 

P = 0.03 

(a) (b) 
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Additionally, the ratio of Bacteroidota to Bacillota in the gut microbiome is a commonly 203 

assessed metric because of its correlation to obesity (4, 31, 32). Therefore, differences in 204 

Bacteroidota/Bacillota were also tested via repeated measures ANOVA with diet, time point, and 205 

their interaction as factors. This analysis revealed a significant difference due to time (P = 206 

0.009), with a non-significant effect of diet (P = 0.728) and time-by-diet interaction (P = 0.436). 207 

Post hoc analyses using pairwise comparisons (and adjusting for multiple comparisons using the 208 

Benjamini-Hochberg procedure (33)) showed a significant difference only in the control-fed 209 

group between day 0 and day 14 (P = 0.033) (Fig. 3b). There were no statistically significant 210 

changes in Bacteroidota/Bacillota detected within tomato-fed pigs. The significant 211 

Bacteroidota/Bacillota decrease found in the control-fed group at day 14 versus baseline 212 

corresponds with the significant decrease in Bacteroidota and increase in Bacillota mentioned 213 

above. 214 

These data together suggest that incorporation of tomato into the diet can help prevent the 215 

alteration of the microbial profile to maintain higher Bacteroidota/Bacillota ratio, which is 216 

considered a more desirable phenotype. Low Bacteroidota/Bacillota ratio in the gut has been 217 

linked to an obese host (4, 34, 35), suggesting a higher Bacteroidota/Bacillota ratio is more 218 

desirable. In our control pigs, Bacteroidota/Bacillota decreased over time, whereas the ratio 219 

remained unchanged in tomato-fed pigs, so it follows that tomato consumption may be playing a 220 

role in maintaining a more desirable Bacteroidota/Bacillota ratio. It has been suggested that 221 

altering this ratio may directly affect risk of obesity, as there is some evidence that taxa in the 222 

Firmicutes phylum have an increased capacity for energy harvest (5, 36). The role of 223 

Bacteroidota/Bacillota in predicting or influencing obesity and the mechanisms underlying this 224 

relationship, including diet, are worth further investigation. 225 
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Diet is known to have a major influence on the gut microbiome in general (6, 8), and 226 

limited studies showed that certain dietary patterns or components affect Bacteroidota/Bacillota 227 

ratio. Some studies have demonstrated that fiber, starch, and other plant polysaccharides can 228 

increase Bacteroidota/Bacillota ratio (8, 37, 38). Tomato powder does provide a source of these 229 

carbohydrates, although our control diet was macronutrient matched to the tomato diet, 230 

suggesting differences we see here are a function of the small molecule phytochemicals from 231 

tomato. Some bacteria are known to metabolize tomato phytochemicals, such as rutin, quercetin, 232 

and chlorogenic acid (7, 39). Adding a food with unique phytochemicals to the diet introduces a 233 

new source of nutrients for the microbiome and encourages growth of certain bacteria, 234 

suggesting the mechanism that phytochemicals indirectly influence the makeup of the 235 

microbiome. Effects shown here could be partially or wholly induced by tomato phytochemicals; 236 

however, it is also possible that certain polysaccharides in tomatoes provide benefits, preventing 237 

the change in Bacteroidota, Bacillota, and Bacteroidota/Bacillota ratio seen in the control-fed 238 

animals over time. A study that fed tomato powder to mice with induced liver cancer saw a 239 

decreased level of Bacteroidota and an increased level of Bacillota, resulting in a lower 240 

Bacteroidota/Bacillota ratio (18). However, these animals were double knockouts deficient in 241 

beta carotene oxygenase 1 and 2, which is known to exert physiological affects beyond 242 

metabolism of carotenoids, challenging the translation of these results to other mammals (40, 243 

41). 244 

 245 

Several phyla were detected in significantly higher relative abundance in tomato-fed pigs 246 

compared to control pigs after 14 days of feeding. In addition to assessing Bacteroidetes and 247 

Firmicutes, which were of a priori interest, we assessed changes in each of the 45 detected phyla 248 
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across time points and between diet groups. Differences between relative abundances of 249 

individual taxa were determined by compositional analyses using the ALDEx2 package in R (42–250 

45). Within control-fed pigs, there were no significant changes in relative abundance of any 251 

phylum over time. While we would expect to see differences due to time in Bacteroidota and 252 

Bacillota, as was discovered with repeated measures ANOVA, we suspect that due to the 253 

multiple testing corrections incurred to test the 45 phyla, this test is conservative in its estimate 254 

of changes in taxa relative abundance. Within tomato-fed pigs, 1 phylum (unclassified (Bacteria-255 

derived)) of the 45 detected was significantly altered over time. When comparing diet groups, 256 

there were no significant phyla-level differences at day 0, 1 phylum (unclassified (Bacteria-257 

derived)) on day 7, and 5 phyla (Nematoda, Apicomplexa, Deinococcus-Thermus, 258 

Pseudomonadota (i.e., Proteobacteria), and unclassified (Bacteria-derived)) on day 14. The 259 

relative abundance of each of these phyla was found to be higher in the tomato-fed group than in 260 

the control, apart from Deinococcus-Thermus for which the opposite was true. The full list of p-261 

values for all phyla level comparisons can be found in Supplemental Table 5. 262 

No significant differences at day 0 is expected, as no intervention had yet occurred, and 263 

microbiome compositions should be relatively consistent between pigs. Providing an explanation 264 

for the functional implications of changes in phyla at the other two time points is challenging to 265 

describe, as most have not been extensively studied in the context of the gut microbiome and 266 

each contain diverse genera and species that vary in function. 267 

To get closer to understanding functional implications of differences in taxa across time 268 

points and between diet groups, the same compositional analyses were conducted using ALDEx2 269 

at the genus level. Significant differences were detected in relative abundances of 4 genera 270 

across time in control-fed pigs. These were Oribacterium, Streptococcus, Lactococcus, and 271 
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Granulicatella; all of which were detected in a higher relative abundance with time. In tomato-272 

fed pigs compared to control-fed pigs, four genera were found to have significantly increased in 273 

relative abundance over time: Staphylococcus, Alphatorquevirus, Lambda-like viruses, and an 274 

unclassified group (Bacteria-derived). 275 

In the context of the gut microbiome, changes in Lactococcus (phylum Firmicutes) and 276 

Staphylococcus (phylum Firmicutes) abundances is of interest. Some Lactococcus species and 277 

strains have shown potential to act as a probiotic in the gut and provide some health benefits in 278 

animal studies (46, 47). In contrast, this genus has also been associated with body fat 279 

accumulation in mice fed a high fat diet (48). More work is needed to determine its exact role. 280 

Here we report an increase in Lactococcus relative abundance over time within the microbiomes 281 

of the control-fed pigs, resulting in a significant difference between diet groups at day 14. Many 282 

species within the Staphylococcus genus are known to be typical commensal inhabitants of the 283 

human and pig skin microbiomes (49, 50). However, there are some species which can cause 284 

pathogenesis in humans (51). Without further knowledge of the species present in these samples, 285 

it is impossible to say whether increases in Staphylococcus abundance in tomato-fed pigs should 286 

be viewed as negative. However, it should be noted that no pigs showed signs of diseases 287 

throughout the study. 288 

Furthermore, significant differences were assessed between diet groups for each genus. 289 

As in phyla-level analyses, no significant differences in abundance of genera were noted between 290 

diet groups at day 0. At day 7, an unclassified group (Bacteria-derived) was significantly 291 

different between diets, consistent with the single phylum (unclassified (Bacteria-derived) for 292 

which a difference was detected in the phyla-level analyses. Analyses of differences at day 14 293 

showed 14 genera significantly different in relative abundance. These were Alphatorquevirus, 294 
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Brugia, Loa, Malassezia, Plasmodium, Propionibacterium, Rosiflexus, Saccharomyces, 295 

Staphylococcus, Stenotrophomonas, Streptococcus, Vanderwaltozyma, Lambda-like viruses, and 296 

unclassified (Bacteria-derived). All were significantly higher in tomato-fed vs. control group, 297 

except for Rosiflexus and Streptococcus, which were higher in the control group. There is 298 

evidence that Propionibacterium are early colonizers of the infant gut (52), with their enrichment 299 

protective against necrotizing enterocolitis (53), and acting a probiotic (54). Similarly, some 300 

Saccharomyces species have also been shown to be probiotic, increasing the abundance of 301 

Bacteroidota and decreasing Bacilotta (55), while others act along the gut-brain axis in reducing 302 

irritable bowel disease severity (56). Increased Streptococcus has been associated with increased 303 

localized inflammation (57), while other strains have been shown to be probiotic (58). However, 304 

it is currently difficult to contextualizing these findings because of the diversity of species within 305 

each genus. The full list of p-values for all genera level comparisons can be found in 306 

Supplemental Table 6. 307 

 308 
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Tomato-fed pigs had a significantly higher fecal microbiome alpha diversity at a phylum, 309 

but not at a genus levels. The microbiome is a complex collection of organisms, so it is 310 

important to analyze differences in the community based not only on single phyla and genera, 311 

but also by examining the overall diversity present. Therefore, using the Shannon index, alpha-312 

diversity was calculated at the phyla- and genera-level for each sample to provide a measure of 313 

taxonomic diversity within each sample. Diet and time point group averages were then compared 314 

with a repeated measures ANOVA (FIG. 4). 315 

 Comparison of phyla-level alpha-diversity between diets and time points showed a 316 

significant effect of diet on alpha-diversity (P = 0.004) but no significant effect of time (P = 317 

0.086) or diet-by-time interaction (P = 0.791). Post hoc analyses by pairwise comparison 318 

revealed a statistical difference between control- and tomato-fed pigs at day 14 (P = 0.011), with 319 

higher alpha-diversity in the tomato-fed animals (Fig. 4a). This aligns with our univariate 320 

ALDEx2 analyses, as significant differences in 5 phyla were observed between the diets at day 321 

14. Consumption of tomato has previously been shown to affect alpha-diversity. Mice 322 

FIG 4 Alpha diversity as measured by the Shannon diversity index at the (a) phyla and (b) 

genera level. (a) A statistically significant effect of diet was found via repeated measures 

ANOVA (P = 0.004), and a post hoc difference (P = 0.011) was found at the phyla level 

between control and tomato fed pigs at day 14. (b) No significant differences were observed at 

the genera level. 
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consuming high-fat diets supplemented with tomato powder had higher levels of alpha-diversity 323 

than those who did not consume tomato powder (17, 18). Higher alpha-diversity is desirable, as a 324 

more diverse gut microbiome has been associated with more benefits for the host and better 325 

resilience to pathogens (25). 326 

 The repeated measures ANOVA investigating the effect of diet, time point, and their 327 

interaction on alpha-diversity at the genera level showed no significant differences (Fig. 4b). The 328 

lack of observed effect has been similarly noted in human interventions with single foods, 329 

including broccoli (59). Another study showed that walnut consumption significantly increased 330 

alpha-diversity in rats (60). Again, few studies have been conducted with single plant food 331 

interventions for comparison to our results here. 332 

The gut microbiome has a large amount of functional redundancy at the genera and 333 

species level, meaning multiple microorganisms contribute the same metabolic functions (25). 334 

For example, there are numerous different organisms, when annotated at the genus level, that 335 

metabolize carbohydrates, others that metabolize proteins, and some that overlap and metabolize 336 

both macromolecules. This provides stability and resiliency to the microbial ecosystem of the gut 337 

through a consistent use of nutrients and output of metabolites, even if the exact genera or 338 

species presence is changing. Dietary causes of change in alpha-diversity typically occur from 339 

repeated habits or patterns that are sustained and dominated by one macronutrient, such as 340 

consistent high fat intake, because this limits the available nutrients for microbes (25).  341 

In summary, we have found that supplementation of the diet with 10% tomato powder (as 342 

compared to a macronutrient-matched control) has the ability to modulate the gut microbiome in 343 

pigs. Animals on tomato-containing diets had higher alpha diversity, a higher 344 

Bacteroidota/Bacillota ratio, higher abundance of Bacteroidota (i.e., Bacteroidetes), and lower 345 
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abundance of Bacillota (i.e., Firmicutes), consistent with a more beneficial microbial phenotype. 346 

The effect of tomato consumption on the gut microbiome in humans warrants further 347 

investigation at a functional level to improve the understanding of the effect of tomato-rich diet 348 

on functional resilience of human gut microbiome. 349 

 350 

METHODS 351 

Experimental Diet Production. Processing tomatoes (Solanum lycopersicum L.) used in this 352 

study were grown at the North Central Agricultural Research Station of Ohio State University 353 

(OSU) in Fremont, OH. A hybrid tomato derived from the cross OH8245 × OH8243 (61)was 354 

used. Tomatoes were grown using conventional horticultural practices, mechanically harvested 355 

using a Guaresci harvester (Guaresci, Sp.A, Pilastri, Italy), and sorted to include ripe fruits only. 356 

Tomatoes were transported to the Columbus, OH, campus of OSU and processed at the Food 357 

Industries Center Pilot Plant, where fruits were immediately washed, diced, and frozen, as 358 

previously described (62). Frozen tomatoes were freeze-dried and dry material ground into a fine 359 

powder using a vertical chopper mixer (62). Tomato powder was stored in vacuum sealed bags at 360 

-20 C until use.  361 

The basal diet (Table 2) was formulated with a nutrient make-up appropriate for nursery 362 

pigs weighing 7-11 kg according to the National Research Council (63). To the basal diet, the 363 

tomato powder was added at 10% w/w. To create the control diet, the basal diet was 364 

supplemented with milk protein isolate (90% purity, 13%, protein), powdered sugar (70%, 365 

sugar), pectin (3.4%, soluble fiber) and cellulose (13.6%, insoluble fiber) to create a 366 

macronutrient match to the tomato diet (Table 2). These ingredients were formulated to match 367 
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the ratios of nutrients typically found in tomato powder as reported by FoodData Central (64). 368 

This supplement was added at 10% w/w to match the addition of the tomato powder.  369 

 370 
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TABLE 2. Composition of basal diet on an as-fed basis. This diet delivered 3,381 kcal/kg, 371 

22.7& crude protein, 1.35% standardized ileal digestible lysine, 34% ileal digestible 372 

methionine:lysine, 57% ileal digestible methionine and cysteine:lysine, 0.8% calcium, and 373 

0.67% phosphate. 374 

Ingredient % Basal Diet 

Corn 50.06 

Dehulled soybean meal 26.76 

Whey powder 10 

Soy protein (HP300) 7.5 

Pork fat (choice white grease) 2 

Calcium phosphate 1.05 

Limestone, ground 1.1 

Sodium chloride 0.3 

L-lysine hydrochloride 0.3 

Vitamin premix without phytasea 0.25 

Zinc Oxide 0.25 

DL-methionine 0.16 

L-threonine 0.11 

Trace mineral premixb 0.15 

Feed enzymes (HiPhos 2700) 0.015 
a Vitamin premix provided per ton of diet: vitamin A, 1x107 IU; vitamin D, 1.25x107 IU; vitamin 375 

E, 4x104 IU; vitamin B12, 35 mg; niacin, 45,000 mg; pantothenic acid, 25,000 mg; riboflavin, 376 

7,500 mg. 377 
b Trace mineral premix provided per ton of diet: zinc, 1965 ppm; iron, 165 ppm; manganese, 40 378 

ppm; copper, 17 ppm; iodine, 0.30 ppm; selenium, 0.30 ppm. 379 

 380 

Animal Study Design. Twenty male pigs born to six sows in summer 2019 at the OSU Swine 381 

Facility in Dublin, OH were used in this study. Male pigs were selected to allow sampling of 382 

prostatic tissue for a secondary study. At weaning twenty male pigs were selected according to 383 

weight and randomly assigned to dietary treatment. A scheme of the overall study design can be 384 

found in Fig. 1. 385 

To prevent diet mixing and cross-contamination of microbiomes through contact, only 386 

pigs consuming the same diets were allowed to have contact. The two diet groups were housed 387 

across the room from each other and divided by a walkway. Pens had sufficient space between 388 

railings for nose-to-nose contact with other pigs, though not enough space to allow a pig to leave 389 

its own pen. After successful weaning from mother’s milk, all pigs consumed the basal diet to 390 
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acclimate to solid food from week 3 to 4. Pigs at 4 weeks of age began consuming the 391 

experimental diets assigned. Feeders were attached to the front of the pens and allowed pigs to 392 

eat ad libitum. Pigs were weighed weekly to monitor growth and were checked daily to ensure 393 

health. Apart from feeding, weighing, and swabbing, human contact with pigs was minimized to 394 

limit influences on the gut microbiome of pigs. This study was approved by the OSU Office of 395 

Responsible Research Practices (IACUC #2019A00000060). 396 

 397 

Sample Collection. The microbiome was sampled 3 times during this study via rectal swabs: 398 

prior to beginning experimental diets (day 0, aged 4 weeks), after one week of consuming 399 

assigned diets (day 7, the study midpoint, aged 5 weeks), and after two weeks of dietary 400 

intervention (day 14, end of study, aged 6 weeks) (Fig. 1). Swabs used for collection were sterile 401 

DNA/RNA Shield Collection Tubes (Zymo Research, Irvine, CA, United States) and were stored 402 

at -80 °C after collection prior to sequencing.  403 

 404 

Sample Processing and Sequencing. Swabs were sent to CosmosID, Inc. (Rockville, MD, 405 

United States) for DNA extraction and sequencing. Samples were sequenced via 150 bp paired-406 

end shotgun sequencing, using an Illumina HiSeq4000 instrument (San Diego, CA, United 407 

States). Unopened collection tubes were used as negative controls. Samples with reads lower 408 

than 1.8M reads were re-sequenced and merged with the prior sequences, allowing increased 409 

microbiome coverage.  410 

 411 

Quality of Sequences. Quality of sequences was analyzed using FastQC version 0.11.9 (23). 412 

Sequences were trimmed during annotation in MG-RAST version 4.0.3 (65) if they contained 413 
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more than 5 bases that were below a minimum Phred quality score of 20. Full metadata for MG-414 

RAST parameters can be found at https://www.mg-rast.org/linkin.cgi?project=mgp93233.   415 

 416 

Sequence analyses and taxonomy identification. Raw fastq files were made publicly available 417 

via the NCBI Sequence Read Archive (SRA), project number PRJNA601162. Annotated files 418 

are available through MG-RAST (project mgp93233), and annotated taxa can be found in the 419 

Supplementary Tables S3 and S4. Sample reads were annotated via the MG-RAST open-access 420 

pipeline (65) using the RefSeq database (66). No assembly was completed prior to annotation. 421 

Sequences were screened for host DNA using the NCBI Sus scrofa v10.2 genome and, if 422 

identified, were removed. Sequences from Bacteria, Archaea, Eukaryota, and viruses were kept 423 

for further analysis. Phyla and genera were filtered to exclude taxa that were present in less than 424 

67% of tested samples.   425 

 426 

Statistical analysis. All data analysis was performed in R version 4.0.3 (67) using RStudio (68) 427 

and results were considered significant at P ≤ 0.05. All code used to conduct analyses can be 428 

found in the tomato-pig-microbiome repository at www.github.com/CooperstoneLab. All figures 429 

were created using ggplot2 (69). Microbiome profiles at both the phyla and genera taxonomic 430 

level were analyzed. Data was normalized using relative abundance to account for differences in 431 

sequencing depth, since rarefaction is no longer recommended as a normalization tool due to 432 

high potential for data loss (70). Relative abundance was calculated by dividing the number of 433 

counts for any one taxon by the total number of counts at that taxonomic level per sample. 434 

Interactive Krona plots (Fig. S1) were created using R packages phyloseq (71) and psadd (72) to 435 

visualize the microbiome composition. To assess sufficiency of sequencing depth, rarefaction 436 
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curves were created using the package ranacapa (73) with a window size of 60,000 counts (Fig. 437 

S2). 438 

To understand overall microbiome differences between diet groups and across time 439 

points, beta diversity was calculated using the R package vegan and functions “vegdist” and 440 

“cmdscale” then visualized using PCoA with a Bray-Curtis dissimilarity matrix. Significance of 441 

separation between treatments was tested via restricted permutation tests using Permutational 442 

Multivariate Analysis of Variance (PERMANOVA) (74) with the R package vegan using the 443 

function “adonis2” (75) and the “how” function from the package permute (76) (model: Beta 444 

Diversity ~ Diet + Time Point + Diet×Time Point + Error where each pig was a plot containing 3 445 

samples collected over time). The argument “by” was set to “margin” to assess how much each 446 

individual term contributes to the model. The permutations were restricted within each pig as a 447 

time series for which the same permutation was used across pigs (R code available in 448 

supplemental data).  449 

To examine differences in relative abundances of individual microorganisms across 450 

groups, univariate analyses were conducted using the R package ALDEx2 (42–44). This specific 451 

package was used because it is designed to analyze high-throughput sequence data as 452 

compositional data (i.e., it accounts for total reads and uses a data transformation for statistical 453 

testing), allowing direct comparison of samples without an effect of total number of reads (43, 454 

45). Raw taxa counts (as compared to relative abundance data) were used and center log ratio 455 

(CLR) transformed for these analyses (42, 43). Parametric tests were used for these analyses as 456 

our data met assumptions for normality. 457 

 Alpha-diversity of each sample was calculated from counts using the Shannon index in 458 

the R package vegan with the function “diversity” (75). The Shannon index alpha-diversity 459 
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group means were compared using repeated measures two-way ANOVA (model: Alpha-460 

Diversity ~ Diet + Time Point + Diet×Time Point + Error). Post hoc analyses for significant 461 

model terms were completed using pairwise comparison via t-test to determine where differences 462 

originated.  463 

The ratio of the phyla Bacteroidota (i.e., Bacteroidetes) to Bacilotta (i.e., Firmicutes) was 464 

determined for each sample by dividing relative abundance of Bacteroidota by that of Bacilotta, 465 

each as a percentage of the total phyla. Differences between the ratios were tested between diets 466 

and time points using two-way repeated measures ANOVA given our a priori interest in these 467 

phyla, followed by a pairwise comparison via t-test as a post hoc analysis. Additionally, the 468 

relative abundance of Bacteroidota and Bacilotta phyla were separately tested using two-way 469 

repeated measured ANOVA with a post-hoc test of pairwise comparison by t-test. 470 

 471 
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SUPPLEMENTAL MATERIAL 711 

Supplemental Figures 712 

 713 

SUPPLEMENTAL FIGURE 1 Rarefaction curves showing species 

richness relative to sequence sample size, by sampling day and diet. 
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 714 

Supplemental Tables: Provided in Excel document: 715 

Goggans_etal_2021_tomato_pig_microbiome_WGS 716 

 717 

SUPPLEMENTAL TABLE 1. Weights (kg) of pigs at study day 0 (aged 4 weeks), study day 7 718 

(aged 5 weeks), and study day 14 (aged 6 weeks).  There were no significant differences between 719 

diets at any time point by unpaired t-tests. 720 

 721 

SUPPLEMENTAL TABLE 2. Sample metadata, containing full sample name and each 722 

variable. 723 

 724 

SUPPLEMENTAL TABLE 3. Taxonomic identification annotated at the phyla level via MG-725 

RAST. 726 

 727 

SUPPLEMENTAL TABLE 4. Taxonomic identification annotation at the genera level via MG-728 

RAST. 729 

 730 

SUPPLEMENTAL TABLE5. Output from ALDEeX2 univariate analysis at the phyla level, 731 

significant taxa after a multiple testing correction are indicated with a yellow highlight.  732 

Abbreviations: rab.all: median clr value for all samples in the feature; rab.win.Control: median 733 

clr value for the control group; rab.win.Tomato: median clr value for the tomato group; dif.btw: 734 

median difference in clr values between S and NS groups; diff.btw: median difference in clr 735 

values between tomato and control groups; diff.win: median of the largest difference in clr 736 
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values within tomato and control groups; overlap: proportion of effect size that overlaps 0 737 

(i.e. no effect); we.ep: Expected P value of Welch’s t test; we.eBH: Expected Benjamini-738 

Hochberg corrected P value of Welch’s t test; wi.ep: Expected P value of Wilcoxon rank test; 739 

wi.eBH: Expected Benjamini-Hochberg corrected P value of Wilcoxon test; kw.ep: Expected P 740 

value of Kruskal-Wallace test; kw.eBH: Expected Benjamini-Hochberg corrected P value of 741 

Kruskal-Wallace test; glm.ep: Expected P value of glm test; glm.eBH: Expected Benjamini-742 

Hochberg corrected P value of glm test 743 

 744 

SUPPLEMENTAL TABLE 6. Output from ALDEeX2 univariate analysis at the genera level, 745 

significant taxa after a multiple testing correction are indicated with a yellow highlight. 746 

Abbreviations: rab.all: median clr value for all samples in the feature; rab.win.Control: median 747 

clr value for the control group; rab.win.Tomato: median clr value for the tomato group; dif.btw: 748 

median difference in clr values between S and NS groups; diff.btw: median difference in clr 749 

values between tomato and control groups; diff.win: median of the largest difference in clr 750 

values within tomato and control groups; overlap: proportion of effect size that overlaps 0 751 

(i.e. no effect); we.ep: Expected P value of Welch’s t test; we.eBH: Expected Benjamini-752 

Hochberg corrected P value of Welch’s t test; wi.ep: Expected P value of Wilcoxon rank test; 753 

wi.eBH: Expected Benjamini-Hochberg corrected P value of Wilcoxon test; kw.ep: Expected P 754 

value of Kruskal-Wallace test; kw.eBH: Expected Benjamini-Hochberg corrected P value of 755 

Kruskal-Wallace test; glm.ep: Expected P value of glm test; glm.eBH: Expected Benjamini-756 

Hochberg corrected P value of glm test 757 
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