

1 **Title: Short term tomato consumption alters the pig gut microbiome towards a more
2 favorable profile**

3

4 Running title: Tomato consumption alters the pig gut microbiome

5

6 Mallory L. Goggans¹, Emma A. Bilbrey², Cristian Quiroz-Moreno², David M. Francis³, Sheila K.
7 Jacobi⁴, Jasna Kovac^{5,6}, Jessica L. Cooperstone^{1,2,#}

8

9 ¹Food Science and Technology, The Ohio State University, Columbus, OH 43210.

10 ²Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210.

11 ³Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691.

12 ⁴Animal Sciences, The Ohio State University, Columbus, OH 43210.

13 ⁵Food Science, The Pennsylvania State University, University Park, PA, 16802.

14 ⁶Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University,
15 University Park, PA 16802.

16 [#]to whom correspondence should be addressed, cooperstone.1@osu.edu

17

18 **ABSTRACT**

19 Diets rich in fruits and vegetables have been shown to exert positive effects on the gut
20 microbiome. However, little is known about the specific effect of individual fruits or vegetables
21 on gut microbe profiles. This study aims to elucidate the effects of tomato consumption on the
22 gut microbiome, as tomatoes account for 22% of vegetable consumption in Western diets, and
23 their consumption has been associated with positive health outcomes. Using piglets as a
24 physiologically relevant model of human metabolism, 20 animals were assigned either to a
25 control or tomato powder supplemented diet (both macronutrient matched and isocaloric) for 14
26 days. The microbiome was sampled rectally at three time points: day 0 (baseline), day 7
27 (midpoint), and at day 14 (end of study). DNA was sequenced using shotgun metagenomics, and
28 reads were annotated using MG-RAST. There were no differences in body weight or feed intake
29 between our two treatment groups. There was a microbial shift which included a higher ratio of
30 Bacteroidota to Bacillota (formerly known as Bacteroidetes and Firmicutes, respectively) and
31 higher alpha-diversity in tomato-fed animals, indicating a shift to a more desirable phenotype.
32 Analyses at both the phyla and genera levels showed global microbiome profile changes
33 (PERMANOVA $P \leq 0.05$) over time, but not with tomato consumption. These data suggest that
34 short-term tomato consumption can beneficially influence the gut microbial profile, warranting
35 further investigation in humans.

36

37 **IMPORTANCE**

38 The composition of the microorganisms in the gut is a contributor to overall health, prompting
39 the development of strategies to alter the microbiome composition. Studies have investigated the
40 role of the diet on the microbiome, as it is a major modifiable risk factor contributing to health;
41 however, little is known about the causal effects of consumption of specific foods on the gut
42 microbiota. A more complete understanding of how individual foods impact the microbiome will
43 enable more evidence-based dietary recommendations for long-term health. Tomatoes are of
44 interest as the most consumed non-starchy vegetable and a common source of nutrients and
45 phytochemicals across the world. This study aimed to elucidate the effect of short-term tomato
46 consumption on the microbiome, using piglets as a physiologically relevant model to humans.
47 We found that tomato consumption can positively affect the gut microbial profile, which
48 warrants further investigation in humans.

49

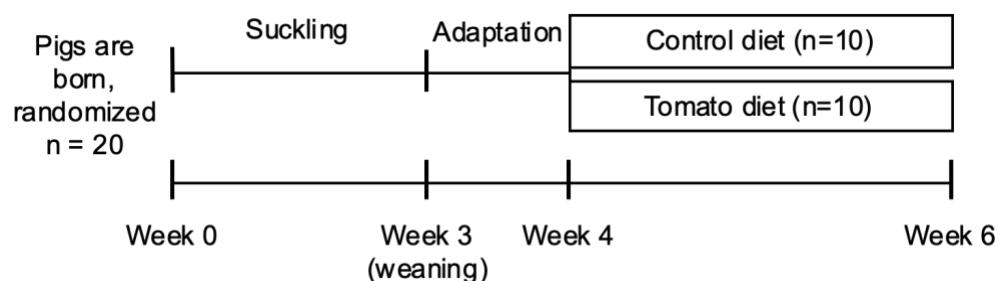
50 **INTRODUCTION**

51 Research has shown that the composition of the gut microbiome can be an effector of overall
52 health (1). The composition of these gut microorganisms has been associated with a number of
53 chronic diseases, such as cardiovascular disease (2), inflammation (3), type 2 diabetes (1), and
54 obesity (3–5). As diet is a major modifiable factor of health, there is interest in elucidating how
55 dietary factors can alter the microbiome (6, 7). While it is possible to use some microbiome
56 endpoints and associate them with health (i.e., a more diverse community is favorable (1, 6, 8),
57 and a lower Bacteroidota to Bacillota (formerly known as Bacteroidetes and Firmicutes
58 respectively) ratio (4), the reality is that bias in sequencing approaches as well as differences in
59 microbial communities due to lifestyle factors and location add complexity to this interpretation

60 (9). Still, diets rich in fruits, vegetables, and whole grains have been consistently associated with
61 a healthier microbiome (6–8, 10). However, discerning the way specific foods might affect the
62 microbiome using intervention studies remains largely uninvestigated. Understanding the global
63 effects that specific foods have on the microbiome helps contextualize the effect they are having
64 towards overall health and sets a foundation towards making personalized nutritional
65 recommendations.

66 Tomatoes are of interest as one such specific food because they are a common source of
67 nutrients for many around the world. They are the second most commonly consumed vegetable
68 (11) and are an important specialty crop across the United States. Over 12 million metric tons of
69 tomatoes are produced in the United States each year (12), with Americans consuming about 30
70 pounds per person in 2018 (13). Tomatoes are a rich source of both essential nutrients (e.g.,
71 vitamins A, C), fiber, and phytochemicals (e.g., lycopene, flavonoids, phenolic acids). Tomato
72 consumption has been linked to protection against various chronic diseases (14–16), though
73 causality about the mechanism of action is not well understood.

74 We hypothesized that one mechanism by which tomatoes provide a health benefit is
75 through their modulation of the gut microbiome. Preliminary microbiome studies in mice,
76 feeding tomatoes or their phytochemicals, have shown positive outcomes, including increased
77 microbial diversity, decreased abundance of *Clostridium* spp., and decreased symptoms of
78 irritable bowel disease (17–21). Here, we aimed to elucidate the effects of short-term, consistent
79 tomato consumption on the gut microbial ecosystem, using pigs as a physiologically relevant
80 model for humans. To investigate this question, we fed weaned piglets (n = 20, aged 4 weeks) a
81 diet supplemented with 10% w/w tomato powder or an iso-caloric and macronutrient-matched
82 control diet for two weeks, sampling the gut microbiome via rectal swab at three points during


83 the experimental period. The use of macronutrient matched diets allowed us to test the effect of
84 tomato phytochemicals on the microbiome of studied pigs, rather than the effect of differences in
85 nutrients, such as fiber or sugar. DNA from rectal swabs was subjected to shotgun metagenomic
86 sequencing (i.e., the untargeted sequencing of all the DNA present in a sample (22)). The
87 resulting reads were annotated and analyzed at both the phyla and genera levels using univariate
88 and multivariate approaches, including the analysis of beta diversity, relative abundances of
89 Bacteroidota, Bacillota, their ratio, and alpha diversity.

90

91 RESULTS AND DISCUSSION

92 **Diet type did not affect animal weight.** An overall scheme of the animal study design can be
93 found in **FIG 1**. Pigs were weighed and feed intake was measured weekly. There was no
94 difference in feed intake or animal weight over the trial (**Table S1**). Health of pigs was not
95 altered by dietary treatment.

96

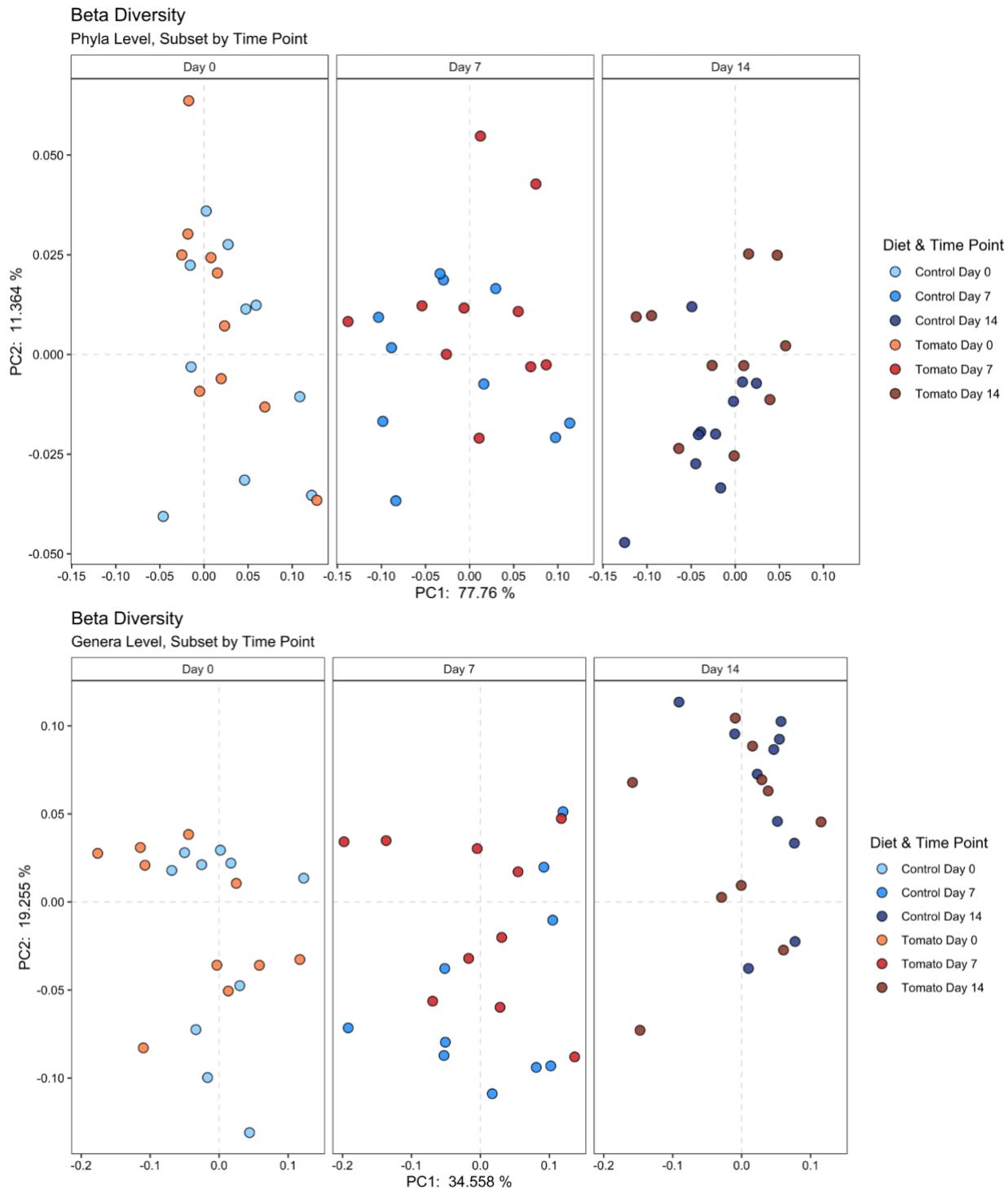
FIG 1 Overall animal study design. Pigs were adapted to a dry diet from weeks 3-4. Microbiome was sampled via rectal swabs when pigs were aged 4 weeks (day 0, baseline), 5 weeks (day 7, midpoint) and 6 weeks (day 14, end of study) for shotgun metagenomics.

97

98

99 **A median sequence depth was 2.5M reads.** Each sample's forward and reverse reads were
100 checked for quality using FastQC version 0.11.9 (23). All sequence files passed quality checks
101 and no samples had to be discarded. Thirteen of the 60 total samples were re-sequenced to a
102 median of 2.3M reads per sample. For re-sequenced samples, sequences from the first and
103 second sequencing run were merged, checked for quality and were used for further analyses.
104 Rarefaction curves demonstrate that a similar species richness was achieved in samples with
105 differing sequence depths (**Fig. S1**). A recent study has shown that even shallow shotgun
106 metagenomics (<500K reads/sample) provides better annotation of taxonomic and functional
107 composition of microbiome compared to 16S rRNA sequencing (24), providing our rationale for
108 this sequencing approach.

109
110 **Bacillota (i.e., Firmicutes) was the predominant phylum and *Prevotella* the most abundant**
111 **genus detected in the pig fecal microbiome.** The mammalian gut microbiome is a complex
112 microbial ecosystem; hence, it is beneficial to conduct analyses at more than one taxonomic
113 rank, as the profile of each rank provides different types of information. The average human gut
114 microbiome is dominated by Bacteroidota (formerly known as Bacteriodetes) and Bacillota
115 (formerly known as Firmicutes), which typically account for 70-90 % of the total microbiome
116 makeup (1). Analyses of phyla often reveal changes in the proportions of the dominant few, thus
117 providing a broad picture of the state of the gut microbiome. Alternatively, genera are highly
118 diverse, often with hundreds of taxa identified (25). These analyses provide a finer resolution of
119 microbiome composition. Here, we aimed to capture modifications of the microbiome at both the
120 phyla and genera level. For this reason, all analyses (aside from those specific to phyla) were
121 completed at both taxonomic ranks.


122 Across all pigs, annotation using MG-RAST and filtering for data quality resulted in
123 identification of 45 phyla. Of those, 28 were from the domain Bacteria, comprising on average
124 $99.3 \pm 0.2\%$ of the total reads, 10 were from Eukaryota, 5 were Archaea, 1 was Virus, and 1 was
125 unclassified. The most prevalent phyla were Bacillota (formerly known as Firmicutes 52.7%
126 average abundance $\pm 5.5\%$ standard deviation), Bacteroidota (formerly known as Bacteroidetes
127 $35.4 \pm 5.9\%$), Actinomycetota (formerly known as Actinobacteria) ($4.7 \pm 1.8\%$), Pseudomonadota
128 (formerly known as Proteobacteria) ($3.9 \pm 1.2\%$) and Fusobacteriota (formerly known as
129 Fusobacteria) ($0.43 \pm 8.5 \times 10^{-4}\%$). Similar relative abundances of phyla were observed across
130 samples, regardless of the diet groups. Previous studies reported conflicting results in terms of
131 predominant phyla in pig microbiome. Some studies have shown Firmicutes to be the most
132 abundant phyla in the pig gut microbiome after weaning (26, 27), while others have reported
133 Bacteroidetes as the dominant phyla (28).

134 Annotation from MG-RAST and filtering for data quality resulted in the identification of
135 755 genera. Of these 755 genera, 582 were in the Bacteria domain, 89 were Eukaryota, 60 were
136 Archaea, 23 were Viruses, and 1 was unclassified. Overall, the most prevalent genera were
137 *Prevotella* (22.23% average abundance $\pm 5.4\%$ standard deviation), *Bacteroides* ($10.34 \pm 1.9\%$),
138 *Clostridium* ($8.56 \pm 1.8\%$), *Lactobacillus* ($6.78 \pm 4.6\%$) and *Eubacterium* ($5.16 \pm 1.0\%$). These
139 genera were detected in similar relative abundances in each group when data were parsed by diet.
140 Previous reports have shown *Prevotella*, *Bacteroides*, and *Clostridium* to be the most abundant
141 genera in pig gut microbiomes (27), which is consistent with our findings.

142

143 **Beta diversity changed over time, but was not significantly affected by the tomato-
144 supplemented diet.** To understand the beta-diversity (differences between the microbial

145 communities) of pigs on different diets and at different time points, all data was first visualized
146 via principal coordinates analysis (PCoA) using the Bray-Curtis dissimilarity metric. PCoA plots
147 (**Fig. 2**) were created for both phyla and genera separately using the relative abundances of all
148 samples. Plots were faceted by diet to observe sample clustering by time point more easily. PC1
149 and PC2 together accounted for 89.1% of the variation in the phyla-level microbiome and 53.8%
150 at the genera level. Visual clustering in PCoA scores plots at either taxonomic level was not
151 easily observed between diets, but within the control diet, grouping was observed according to
152 time point. It is not surprising that overall microbiome profile differences are not evident in the
153 PCoA plots due to presence or absence of a single component of a diet (i.e., tomatoes). Global
154 differences in microbiome composition are more likely to be observed when two completely
155 different diets are fed, as previously shown when comparing the effect of a plant-based and
156 animal-based diet on the microbiome (29).

FIG 2 Principal coordinates analysis (PCoA) using Bray-Curtis distances showing beta-diversity of the whole microbiome at the phyla (top) level and genera (bottom) level. Each dot represents a sample collected from one pig. Plots are faceted by diet. Using repeated measures PERMANOVA (model: Beta Diversity = Diet + Time Point + Diet \times Time Point + Error), only a significant effect of time point was detected at both the phyla ($P = 0.020$) and genera ($P = 0.005$) levels.

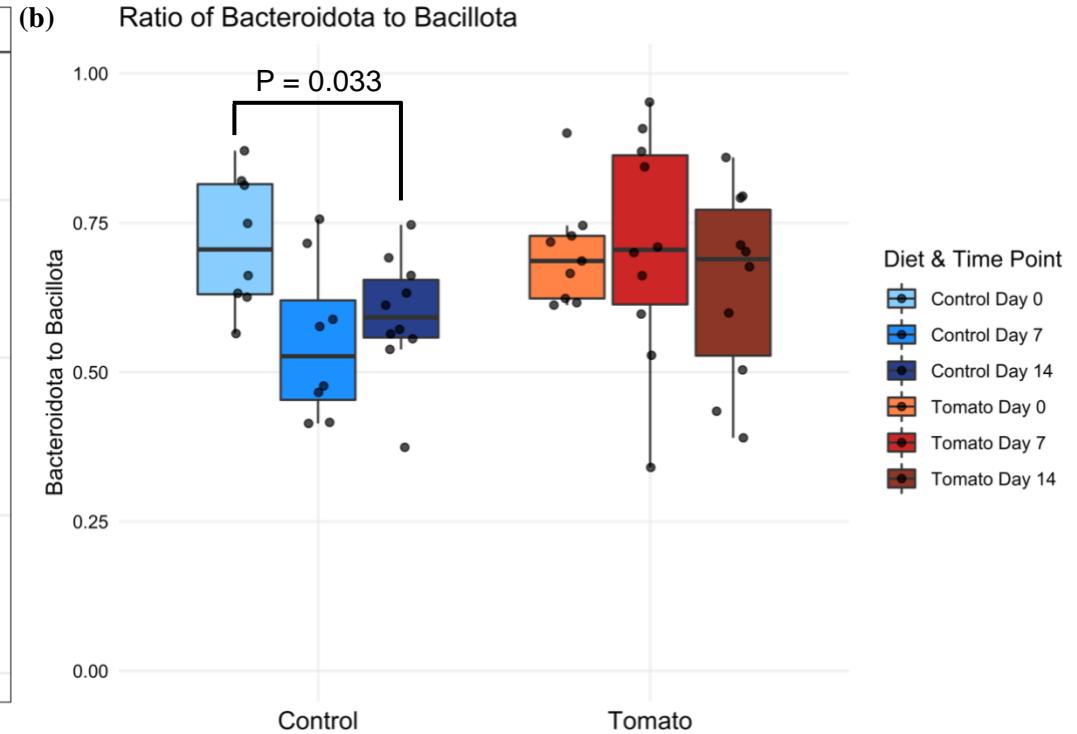
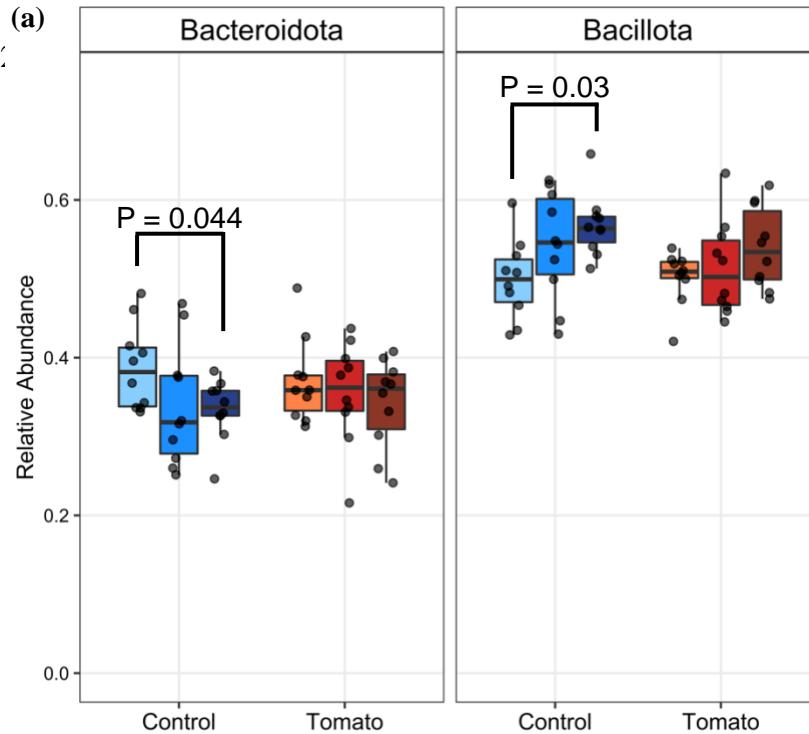
158 In order to determine significance of observed trends in the PCoA due to diet and time
159 point, PERMANOVA was used (model: Beta Diversity = Diet + Time Point + Diet \times Time Point
160 + Error, where each pig was a plot containing three samples collected over time). These
161 multivariate restricted permutation tests are a useful approach for assessing differences in beta-
162 diversity because they allow for the investigation of the gut microbiome as a whole, instead of
163 focusing on individual taxa. The PERMANOVA model p-values are recorded in **Table 1**. At
164 both the phyla and genera levels, we found the interaction term to be non-significant (Phyla P =
165 0.510; Genera P = 0.360) and therefore we removed it from the model. The new model was then
166 tested and revealed an overall significant effect of time point (Phyla P = 0.020; Genera P =
167 0.005) but not diet (P = 0.270) on the gut microbiome (**Table 1**).

168
169 **TABLE 1** Results from restricted permutation tests via PERMANOVA to investigate differences
170 in beta-diversity at the phyla and genera taxonomic levels. The full model tested the variance
171 explained by the diet, time point, and their interaction on the dissimilarity matrix, calculated with
172 Bray-Curtis distances.

Variable	Phyla	Genera
Diet	0.270	0.060
Time Point	0.020 ^a	0.005 ^b
Diet \times Time Point	0.510	0.360

173 ^aIndicates significant model effect at P \leq 0.05.

174 ^bIndicates significant model effect at P \leq 0.01.



175

176 These data can be interpreted in that, at both taxonomic ranks, the microbiomes of pigs
177 were significantly changing over the two-week intervention, but the effect of diet on beta

178 diversity was not significant. In another study using a mouse model, the microbiomes were
179 compared between a group fed a high fat diet supplemented with tomato powder and a high fat-
180 only diet group. Using clustering by unweighted UniFrac dissimilarity, a significant difference
181 was detected between diet group microbiomes (17). However, using weighted UniFrac distances,
182 no separation of tomato and control groups was observed in the pigs. It is possible that using a
183 dissimilarity measure that incorporates evolutionary relatedness may have been a contributor to
184 the detected significant effects. However, a direct comparison with our study is difficult because
185 mice are known to be different than pigs in their microbiome composition (30).

186

187 **Inverse relationship between Bacteroidota and Bacillota abundances was detected over**
188 **time in the control-fed pigs, but not tomato-fed pigs.** In addition to multivariate approaches to
189 understand microbiome data, univariate methods to examine differences in specific taxa are
190 valuable. As previously stated, the phyla Bacteroidota (i.e., Bacteroidetes) and Bacillota (i.e.,
191 Firmicutes) and their relationship have been implicated in obesity and high fat diets (31, 32).
192 With these *a priori* interests, changes in these two phyla were assessed individually across diets
193 and time points using repeated measures ANOVA. Results indicated a significant model effect of
194 time point for both phyla (Bacteroidota $P = 0.024$; Bacillota $P = 0.001$); whereas diet and the
195 interaction term were non-significant. After *post hoc* analyses to determine which pair-wise
196 groups differed, significant alteration in the abundance of both Bacteroidota and Bacillota was
197 found between day 0 and day 14 in control-fed pigs (Bacteroidota $P = 0.044$; Bacillota, $P =$
198 0.03). No significant differences between time points within the tomato-fed pigs were observed.
199 Box plots of the two phyla demonstrate the inverse relationship between Bacteroidota and
200 Bacillota abundances over time in the control-fed pigs (**Fig. 3a**).

FIG 3 (a) Comparing relative abundances across time points and between diets for two phyla: Bacteroidota and Bacillota. Using repeated measures ANOVA, a significant model effect of time point was found for both phyla (Bacteroidota: $P = 0.024$, Bacillota: $P = 0.001$). *Post hoc* findings of significant differences between Day 0 Control and Day 14 Control were found for both Bacteroidota ($P = 0.044$) and Bacillota ($P = 0.03$). No significant effects of diet or time point-by-diet interaction were detected for either phylum. (b) Comparing the ratio of the relative abundance of Bacteroidota to that of Bacillota across time points and between diets. A significant effect of time via repeated measures ANOVA ($P = 0.009$) led to *post hoc* comparisons and a significant difference in the ratio of Bacteroidota/Bacillota between Day 0 and Day 14 in control-fed pigs only ($P = 0.033$). There was no significant effect of diet or time point-by-diet interaction.

203 Additionally, the ratio of Bacteroidota to Bacillota in the gut microbiome is a commonly
204 assessed metric because of its correlation to obesity (4, 31, 32). Therefore, differences in
205 Bacteroidota/Bacillota were also tested via repeated measures ANOVA with diet, time point, and
206 their interaction as factors. This analysis revealed a significant difference due to time ($P =$
207 0.009), with a non-significant effect of diet ($P = 0.728$) and time-by-diet interaction ($P = 0.436$).
208 *Post hoc* analyses using pairwise comparisons (and adjusting for multiple comparisons using the
209 Benjamini-Hochberg procedure (33)) showed a significant difference only in the control-fed
210 group between day 0 and day 14 ($P = 0.033$) (**Fig. 3b**). There were no statistically significant
211 changes in Bacteroidota/Bacillota detected within tomato-fed pigs. The significant
212 Bacteroidota/Bacillota decrease found in the control-fed group at day 14 versus baseline
213 corresponds with the significant decrease in Bacteroidota and increase in Bacillota mentioned
214 above.

215 These data together suggest that incorporation of tomato into the diet can help prevent the
216 alteration of the microbial profile to maintain higher Bacteroidota/Bacillota ratio, which is
217 considered a more desirable phenotype. Low Bacteroidota/Bacillota ratio in the gut has been
218 linked to an obese host (4, 34, 35), suggesting a higher Bacteroidota/Bacillota ratio is more
219 desirable. In our control pigs, Bacteroidota/Bacillota decreased over time, whereas the ratio
220 remained unchanged in tomato-fed pigs, so it follows that tomato consumption may be playing a
221 role in maintaining a more desirable Bacteroidota/Bacillota ratio. It has been suggested that
222 altering this ratio may directly affect risk of obesity, as there is some evidence that taxa in the
223 Firmicutes phylum have an increased capacity for energy harvest (5, 36). The role of
224 Bacteroidota/Bacillota in predicting or influencing obesity and the mechanisms underlying this
225 relationship, including diet, are worth further investigation.

226 Diet is known to have a major influence on the gut microbiome in general (6, 8), and
227 limited studies showed that certain dietary patterns or components affect Bacteroidota/Bacillota
228 ratio. Some studies have demonstrated that fiber, starch, and other plant polysaccharides can
229 increase Bacteroidota/Bacillota ratio (8, 37, 38). Tomato powder does provide a source of these
230 carbohydrates, although our control diet was macronutrient matched to the tomato diet,
231 suggesting differences we see here are a function of the small molecule phytochemicals from
232 tomato. Some bacteria are known to metabolize tomato phytochemicals, such as rutin, quercetin,
233 and chlorogenic acid (7, 39). Adding a food with unique phytochemicals to the diet introduces a
234 new source of nutrients for the microbiome and encourages growth of certain bacteria,
235 suggesting the mechanism that phytochemicals indirectly influence the makeup of the
236 microbiome. Effects shown here could be partially or wholly induced by tomato phytochemicals;
237 however, it is also possible that certain polysaccharides in tomatoes provide benefits, preventing
238 the change in Bacteroidota, Bacillota, and Bacteroidota/Bacillota ratio seen in the control-fed
239 animals over time. A study that fed tomato powder to mice with induced liver cancer saw a
240 decreased level of Bacteroidota and an increased level of Bacillota, resulting in a lower
241 Bacteroidota/Bacillota ratio (18). However, these animals were double knockouts deficient in
242 beta carotene oxygenase 1 and 2, which is known to exert physiological affects beyond
243 metabolism of carotenoids, challenging the translation of these results to other mammals (40,
244 41).

245

246 **Several phyla were detected in significantly higher relative abundance in tomato-fed pigs**
247 **compared to control pigs after 14 days of feeding.** In addition to assessing Bacteroidetes and
248 Firmicutes, which were of *a priori* interest, we assessed changes in each of the 45 detected phyla

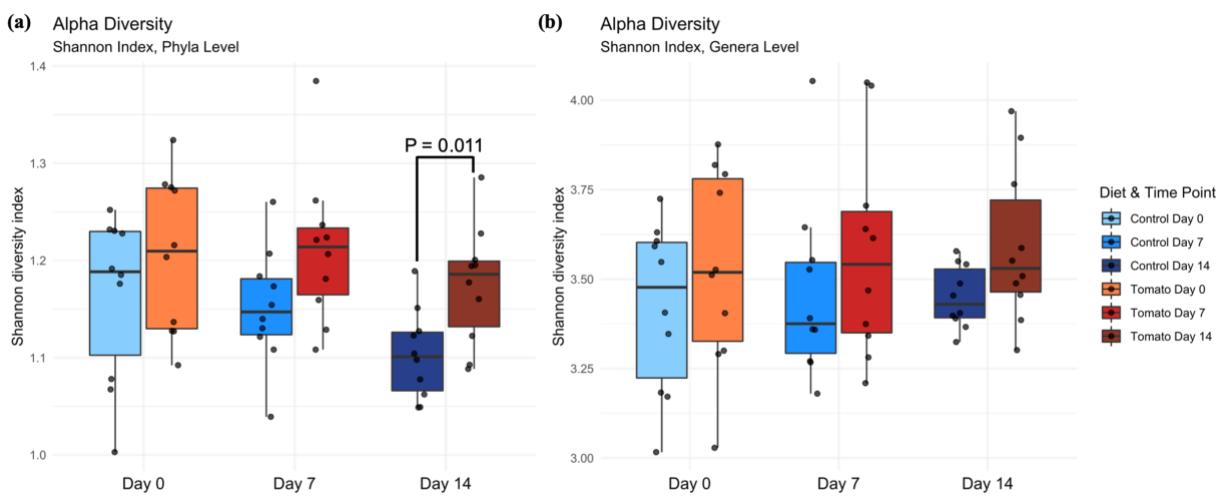
249 across time points and between diet groups. Differences between relative abundances of
250 individual taxa were determined by compositional analyses using the *ALDEx2* package in R (42–
251 45). Within control-fed pigs, there were no significant changes in relative abundance of any
252 phylum over time. While we would expect to see differences due to time in Bacteroidota and
253 Bacillota, as was discovered with repeated measures ANOVA, we suspect that due to the
254 multiple testing corrections incurred to test the 45 phyla, this test is conservative in its estimate
255 of changes in taxa relative abundance. Within tomato-fed pigs, 1 phylum (unclassified (Bacteria-
256 derived)) of the 45 detected was significantly altered over time. When comparing diet groups,
257 there were no significant phyla-level differences at day 0, 1 phylum (unclassified (Bacteria-
258 derived)) on day 7, and 5 phyla (Nematoda, Apicomplexa, Deinococcus-Thermus,
259 Pseudomonadota (i.e., Proteobacteria), and unclassified (Bacteria-derived)) on day 14. The
260 relative abundance of each of these phyla was found to be higher in the tomato-fed group than in
261 the control, apart from Deinococcus-Thermus for which the opposite was true. The full list of p-
262 values for all phyla level comparisons can be found in Supplemental Table 5.

263 No significant differences at day 0 is expected, as no intervention had yet occurred, and
264 microbiome compositions should be relatively consistent between pigs. Providing an explanation
265 for the functional implications of changes in phyla at the other two time points is challenging to
266 describe, as most have not been extensively studied in the context of the gut microbiome and
267 each contain diverse genera and species that vary in function.

268 To get closer to understanding functional implications of differences in taxa across time
269 points and between diet groups, the same compositional analyses were conducted using *ALDEx2*
270 at the genus level. Significant differences were detected in relative abundances of 4 genera
271 across time in control-fed pigs. These were *Oribacterium*, *Streptococcus*, *Lactococcus*, and

272 *Granulicatella*; all of which were detected in a higher relative abundance with time. In tomato-
273 fed pigs compared to control-fed pigs, four genera were found to have significantly increased in
274 relative abundance over time: *Staphylococcus*, *Alphatorquevirus*, Lambda-like viruses, and an
275 unclassified group (Bacteria-derived).

276 In the context of the gut microbiome, changes in *Lactococcus* (phylum Firmicutes) and
277 *Staphylococcus* (phylum Firmicutes) abundances is of interest. Some *Lactococcus* species and
278 strains have shown potential to act as a probiotic in the gut and provide some health benefits in
279 animal studies (46, 47). In contrast, this genus has also been associated with body fat
280 accumulation in mice fed a high fat diet (48). More work is needed to determine its exact role.
281 Here we report an increase in *Lactococcus* relative abundance over time within the microbiomes
282 of the control-fed pigs, resulting in a significant difference between diet groups at day 14. Many
283 species within the *Staphylococcus* genus are known to be typical commensal inhabitants of the
284 human and pig skin microbiomes (49, 50). However, there are some species which can cause
285 pathogenesis in humans (51). Without further knowledge of the species present in these samples,
286 it is impossible to say whether increases in *Staphylococcus* abundance in tomato-fed pigs should
287 be viewed as negative. However, it should be noted that no pigs showed signs of diseases
288 throughout the study.


289 Furthermore, significant differences were assessed between diet groups for each genus.
290 As in phyla-level analyses, no significant differences in abundance of genera were noted between
291 diet groups at day 0. At day 7, an unclassified group (Bacteria-derived) was significantly
292 different between diets, consistent with the single phylum (unclassified (Bacteria-derived) for
293 which a difference was detected in the phyla-level analyses. Analyses of differences at day 14
294 showed 14 genera significantly different in relative abundance. These were *Alphatorquevirus*,

295 *Brugia, Loa, Malassezia, Plasmodium, Propionibacterium, Rosiflexus, Saccharomyces,*
296 *Staphylococcus, Stenotrophomonas, Streptococcus, Vanderwaltozyma*, Lambda-like viruses, and
297 unclassified (Bacteria-derived). All were significantly higher in tomato-fed vs. control group,
298 except for *Rosiflexus* and *Streptococcus*, which were higher in the control group. There is
299 evidence that *Propionibacterium* are early colonizers of the infant gut (52), with their enrichment
300 protective against necrotizing enterocolitis (53), and acting a probiotic (54). Similarly, some
301 *Saccharomyces* species have also been shown to be probiotic, increasing the abundance of
302 Bacteroidota and decreasing Bacillota (55), while others act along the gut-brain axis in reducing
303 irritable bowel disease severity (56). Increased *Streptococcus* has been associated with increased
304 localized inflammation (57), while other strains have been shown to be probiotic (58). However,
305 it is currently difficult to contextualizing these findings because of the diversity of species within
306 each genus. The full list of p-values for all genera level comparisons can be found in
307 Supplemental Table 6.

308

309 **Tomato-fed pigs had a significantly higher fecal microbiome alpha diversity at a phylum,**
310 **but not at a genus levels.** The microbiome is a complex collection of organisms, so it is
311 important to analyze differences in the community based not only on single phyla and genera,
312 but also by examining the overall diversity present. Therefore, using the Shannon index, alpha-
313 diversity was calculated at the phyla- and genera-level for each sample to provide a measure of
314 taxonomic diversity within each sample. Diet and time point group averages were then compared
315 with a repeated measures ANOVA (**FIG. 4**).

316 Comparison of phyla-level alpha-diversity between diets and time points showed a
317 significant effect of diet on alpha-diversity ($P = 0.004$) but no significant effect of time ($P =$
318 0.086) or diet-by-time interaction ($P = 0.791$). *Post hoc* analyses by pairwise comparison
319 revealed a statistical difference between control- and tomato-fed pigs at day 14 ($P = 0.011$), with
320 higher alpha-diversity in the tomato-fed animals (**Fig. 4a**). This aligns with our univariate
321 *ALDEx2* analyses, as significant differences in 5 phyla were observed between the diets at day
322 14. Consumption of tomato has previously been shown to affect alpha-diversity. Mice

FIG 4 Alpha diversity as measured by the Shannon diversity index at the (a) phyla and (b) genera level. (a) A statistically significant effect of diet was found via repeated measures ANOVA ($P = 0.004$), and a *post hoc* difference ($P = 0.011$) was found at the phyla level between control and tomato fed pigs at day 14. (b) No significant differences were observed at the genera level.

323 consuming high-fat diets supplemented with tomato powder had higher levels of alpha-diversity
324 than those who did not consume tomato powder (17, 18). Higher alpha-diversity is desirable, as a
325 more diverse gut microbiome has been associated with more benefits for the host and better
326 resilience to pathogens (25).

327 The repeated measures ANOVA investigating the effect of diet, time point, and their
328 interaction on alpha-diversity at the genera level showed no significant differences (**Fig. 4b**). The
329 lack of observed effect has been similarly noted in human interventions with single foods,
330 including broccoli (59). Another study showed that walnut consumption significantly increased
331 alpha-diversity in rats (60). Again, few studies have been conducted with single plant food
332 interventions for comparison to our results here.

333 The gut microbiome has a large amount of functional redundancy at the genera and
334 species level, meaning multiple microorganisms contribute the same metabolic functions (25).
335 For example, there are numerous different organisms, when annotated at the genus level, that
336 metabolize carbohydrates, others that metabolize proteins, and some that overlap and metabolize
337 both macromolecules. This provides stability and resiliency to the microbial ecosystem of the gut
338 through a consistent use of nutrients and output of metabolites, even if the exact genera or
339 species presence is changing. Dietary causes of change in alpha-diversity typically occur from
340 repeated habits or patterns that are sustained and dominated by one macronutrient, such as
341 consistent high fat intake, because this limits the available nutrients for microbes (25).

342 In summary, we have found that supplementation of the diet with 10% tomato powder (as
343 compared to a macronutrient-matched control) has the ability to modulate the gut microbiome in
344 pigs. Animals on tomato-containing diets had higher alpha diversity, a higher
345 Bacteroidota/Bacillota ratio, higher abundance of Bacteroidota (i.e., Bacteroidetes), and lower

346 abundance of Bacillota (i.e., Firmicutes), consistent with a more beneficial microbial phenotype.
347 The effect of tomato consumption on the gut microbiome in humans warrants further
348 investigation at a functional level to improve the understanding of the effect of tomato-rich diet
349 on functional resilience of human gut microbiome.

350

351 **METHODS**

352 **Experimental Diet Production.** Processing tomatoes (*Solanum lycopersicum* L.) used in this
353 study were grown at the North Central Agricultural Research Station of Ohio State University
354 (OSU) in Fremont, OH. A hybrid tomato derived from the cross OH8245 × OH8243 (61) was
355 used. Tomatoes were grown using conventional horticultural practices, mechanically harvested
356 using a Guaresci harvester (Guaresci, Sp.A, Pilastri, Italy), and sorted to include ripe fruits only.
357 Tomatoes were transported to the Columbus, OH, campus of OSU and processed at the Food
358 Industries Center Pilot Plant, where fruits were immediately washed, diced, and frozen, as
359 previously described (62). Frozen tomatoes were freeze-dried and dry material ground into a fine
360 powder using a vertical chopper mixer (62). Tomato powder was stored in vacuum sealed bags at
361 -20 °C until use.

362 The basal diet (**Table 2**) was formulated with a nutrient make-up appropriate for nursery
363 pigs weighing 7-11 kg according to the National Research Council (63). To the basal diet, the
364 tomato powder was added at 10% *w/w*. To create the control diet, the basal diet was
365 supplemented with milk protein isolate (90% purity, 13%, protein), powdered sugar (70%,
366 sugar), pectin (3.4%, soluble fiber) and cellulose (13.6%, insoluble fiber) to create a
367 macronutrient match to the tomato diet (**Table 2**). These ingredients were formulated to match

368 the ratios of nutrients typically found in tomato powder as reported by FoodData Central (64).

369 This supplement was added at 10% *w/w* to match the addition of the tomato powder.

370

371 **TABLE 2.** Composition of basal diet on an as-fed basis. This diet delivered 3,381 kcal/kg,
372 22.7% crude protein, 1.35% standardized ileal digestible lysine, 34% ileal digestible
373 methionine:lysine, 57% ileal digestible methionine and cysteine:lysine, 0.8% calcium, and
374 0.67% phosphate.

Ingredient	% Basal Diet
Corn	50.06
Dehulled soybean meal	26.76
Whey powder	10
Soy protein (HP300)	7.5
Pork fat (choice white grease)	2
Calcium phosphate	1.05
Limestone, ground	1.1
Sodium chloride	0.3
L-lysine hydrochloride	0.3
Vitamin premix without phytase ^a	0.25
Zinc Oxide	0.25
DL-methionine	0.16
L-threonine	0.11
Trace mineral premix ^b	0.15
Feed enzymes (HiPhos 2700)	0.015

375 ^a Vitamin premix provided per ton of diet: vitamin A, 1x10⁷ IU; vitamin D, 1.25x10⁷ IU; vitamin
376 E, 4x10⁴ IU; vitamin B12, 35 mg; niacin, 45,000 mg; pantothenic acid, 25,000 mg; riboflavin,
377 7,500 mg.

378 ^b Trace mineral premix provided per ton of diet: zinc, 1965 ppm; iron, 165 ppm; manganese, 40
379 ppm; copper, 17 ppm; iodine, 0.30 ppm; selenium, 0.30 ppm.

380

381 **Animal Study Design.** Twenty male pigs born to six sows in summer 2019 at the OSU Swine
382 Facility in Dublin, OH were used in this study. Male pigs were selected to allow sampling of
383 prostatic tissue for a secondary study. At weaning twenty male pigs were selected according to
384 weight and randomly assigned to dietary treatment. A scheme of the overall study design can be
385 found in **Fig. 1**.

386 To prevent diet mixing and cross-contamination of microbiomes through contact, only
387 pigs consuming the same diets were allowed to have contact. The two diet groups were housed
388 across the room from each other and divided by a walkway. Pens had sufficient space between
389 railings for nose-to-nose contact with other pigs, though not enough space to allow a pig to leave
390 its own pen. After successful weaning from mother's milk, all pigs consumed the basal diet to

391 acclimate to solid food from week 3 to 4. Pigs at 4 weeks of age began consuming the
392 experimental diets assigned. Feeders were attached to the front of the pens and allowed pigs to
393 eat *ad libitum*. Pigs were weighed weekly to monitor growth and were checked daily to ensure
394 health. Apart from feeding, weighing, and swabbing, human contact with pigs was minimized to
395 limit influences on the gut microbiome of pigs. This study was approved by the OSU Office of
396 Responsible Research Practices (IACUC #2019A00000060).

397

398 **Sample Collection.** The microbiome was sampled 3 times during this study via rectal swabs:
399 prior to beginning experimental diets (day 0, aged 4 weeks), after one week of consuming
400 assigned diets (day 7, the study midpoint, aged 5 weeks), and after two weeks of dietary
401 intervention (day 14, end of study, aged 6 weeks) (**Fig. 1**). Swabs used for collection were sterile
402 DNA/RNA Shield Collection Tubes (Zymo Research, Irvine, CA, United States) and were stored
403 at -80 °C after collection prior to sequencing.

404

405 **Sample Processing and Sequencing.** Swabs were sent to CosmosID, Inc. (Rockville, MD,
406 United States) for DNA extraction and sequencing. Samples were sequenced via 150 bp paired-
407 end shotgun sequencing, using an Illumina HiSeq4000 instrument (San Diego, CA, United
408 States). Unopened collection tubes were used as negative controls. Samples with reads lower
409 than 1.8M reads were re-sequenced and merged with the prior sequences, allowing increased
410 microbiome coverage.

411

412 **Quality of Sequences.** Quality of sequences was analyzed using FastQC version 0.11.9 (23).
413 Sequences were trimmed during annotation in MG-RAST version 4.0.3 (65) if they contained

414 more than 5 bases that were below a minimum Phred quality score of 20. Full metadata for MG-
415 RAST parameters can be found at <https://www.mg-rast.org/linkin.cgi?project=mpg93233>.

416

417 **Sequence analyses and taxonomy identification.** Raw fastq files were made publicly available
418 via the NCBI Sequence Read Archive (SRA), project number PRJNA601162. Annotated files
419 are available through MG-RAST (project mpg93233), and annotated taxa can be found in the
420 Supplementary Tables S3 and S4. Sample reads were annotated via the MG-RAST open-access
421 pipeline (65) using the RefSeq database (66). No assembly was completed prior to annotation.
422 Sequences were screened for host DNA using the NCBI *Sus scrofa* v10.2 genome and, if
423 identified, were removed. Sequences from Bacteria, Archaea, Eukaryota, and viruses were kept
424 for further analysis. Phyla and genera were filtered to exclude taxa that were present in less than
425 67% of tested samples.

426

427 **Statistical analysis.** All data analysis was performed in R version 4.0.3 (67) using RStudio (68)
428 and results were considered significant at $P \leq 0.05$. All code used to conduct analyses can be
429 found in the tomato-pig-microbiome repository at www.github.com/CooperstoneLab. All figures
430 were created using *ggplot2* (69). Microbiome profiles at both the phyla and genera taxonomic
431 level were analyzed. Data was normalized using relative abundance to account for differences in
432 sequencing depth, since rarefaction is no longer recommended as a normalization tool due to
433 high potential for data loss (70). Relative abundance was calculated by dividing the number of
434 counts for any one taxon by the total number of counts at that taxonomic level per sample.
435 Interactive Krona plots (Fig. S1) were created using R packages *phyloseq* (71) and *psadd* (72) to
436 visualize the microbiome composition. To assess sufficiency of sequencing depth, rarefaction

437 curves were created using the package *ranacapa* (73) with a window size of 60,000 counts (**Fig.**
438 **S2**).

439 To understand overall microbiome differences between diet groups and across time
440 points, beta diversity was calculated using the R package *vegan* and functions “vegdist” and
441 “cmdscale” then visualized using PCoA with a Bray-Curtis dissimilarity matrix. Significance of
442 separation between treatments was tested via restricted permutation tests using Permutational
443 Multivariate Analysis of Variance (PERMANOVA) (74) with the R package *vegan* using the
444 function “adonis2” (75) and the “how” function from the package *permute* (76) (model: Beta
445 Diversity ~ Diet + Time Point + Diet×Time Point + Error where each pig was a plot containing 3
446 samples collected over time). The argument “by” was set to “margin” to assess how much each
447 individual term contributes to the model. The permutations were restricted within each pig as a
448 time series for which the same permutation was used across pigs (R code available in
449 supplemental data).

450 To examine differences in relative abundances of individual microorganisms across
451 groups, univariate analyses were conducted using the R package *ALDEEx2* (42–44). This specific
452 package was used because it is designed to analyze high-throughput sequence data as
453 compositional data (i.e., it accounts for total reads and uses a data transformation for statistical
454 testing), allowing direct comparison of samples without an effect of total number of reads (43,
455 45). Raw taxa counts (as compared to relative abundance data) were used and center log ratio
456 (CLR) transformed for these analyses (42, 43). Parametric tests were used for these analyses as
457 our data met assumptions for normality.

458 Alpha-diversity of each sample was calculated from counts using the Shannon index in
459 the R package *vegan* with the function “diversity” (75). The Shannon index alpha-diversity

460 group means were compared using repeated measures two-way ANOVA (model: Alpha-
461 Diversity ~ Diet + Time Point + Diet×Time Point + Error). *Post hoc* analyses for significant
462 model terms were completed using pairwise comparison via *t*-test to determine where differences
463 originated.

464 The ratio of the phyla Bacteroidota (i.e., Bacteroidetes) to Bacilotta (i.e., Firmicutes) was
465 determined for each sample by dividing relative abundance of Bacteroidota by that of Bacilotta,
466 each as a percentage of the total phyla. Differences between the ratios were tested between diets
467 and time points using two-way repeated measures ANOVA given our *a priori* interest in these
468 phyla, followed by a pairwise comparison via *t*-test as a *post hoc* analysis. Additionally, the
469 relative abundance of Bacteroidota and Bacilotta phyla were separately tested using two-way
470 repeated measured ANOVA with a post-hoc test of pairwise comparison by *t*-test.

471

472 **ACKNOWLEDGMENTS**

473 This research was financially supported by USDA Hatch funds (OHO01470 and
474 PEN04646/Accession 1015787), USDA-NIFA National Needs Fellowship (2014-38420-21844),
475 Ohio Agricultural Research and Development Center Seed Grant (to MLG), and Foods for
476 Health, a focus area of the Discovery Themes Initiative at The Ohio State University. The
477 funders had no role in study, design, data collection and interpretation, or the decision to submit
478 the work for publication. The authors thank to M. Laura Rolon for providing the starting R code
479 for microbiome data analyses.

480

481 **AUTHOR CONTRIBUTIONS**

482 Conception and study design: MLG, SKJ, JK, and JLC; Data collection: MLG, DMF, SKJ, JLC;
483 Data analysis and interpretation: MLG, EAB, CQ-M, JK, JLC; Drafting the article: MLG, EAB,
484 JLC; Revision and review of the article: MLG, EAB, CQ-M, DMF, SKJ, JK, JLC; Responsibility
485 for final content: JLC.

486 **REFERENCES**

- 487 1. Park W. 2018. Gut microbiomes and their metabolites shape human and animal health. *J*
488 *Microbiol* 56:151–153.
- 489 2. Battson ML, Lee DM, Weir TL, Gentile CL. 2018. The gut microbiota as a novel regulator
490 of cardiovascular function and disease. *The Journal of Nutritional Biochemistry* 56:1–15.
- 491 3. Tuddenham S, Sears CL. 2015. The intestinal microbiome and health: *Current Opinion in*
492 *Infectious Diseases* 28:464–470.
- 493 4. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 2006. Human gut microbes associated with
494 obesity. *Nature* 444:1022–1023.
- 495 5. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An
496 obesity-associated gut microbiome with increased capacity for energy harvest. *Nature*
497 444:1027–1031.
- 498 6. Jeffery I, O'Toole P. 2013. Diet-Microbiota Interactions and Their Implications for Healthy
499 Living. *Nutrients* 5:234–252.
- 500 7. Tuohy KM, Conterno L, Gasperotti M, Viola R. 2012. Up-regulating the Human Intestinal
501 Microbiome Using Whole Plant Foods, Polyphenols, and/or Fiber. *J Agric Food Chem*
502 60:8776–8782.
- 503 8. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. 2009. The Effect of
504 Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic
505 Mice. *Science Translational Medicine* 1:6ra14-6ra14.
- 506 9. Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamurugan R.
507 2020. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese
508 Patients? *Nutrients* 12:1474.
- 509 10. Kopf JC, Suhr MJ, Clarke J, Eyun S, Riethoven J-JM, Ramer-Tait AE, Rose DJ. 2018. Role
510 of whole grains versus fruits and vegetables in reducing subclinical inflammation and
511 promoting gastrointestinal health in individuals affected by overweight and obesity: a
512 randomized controlled trial. *Nutr J* 17:72.
- 513 11. United States Department of Agriculture, Economic Research Service. 2019. Potatoes and
514 tomatoes are the most commonly consumed vegetables.
- 515 12. FAOSTAT. 2016. Food and Agriculture Organization of the United Nations. FAO, Rome,
516 Italy. <http://www.fao.org/faostat/en/#data>.
- 517 13. USDA Economic Research Service. 2018. Vegetables and Pulses Yearbook Tables.
- 518 14. Sesso HD, Liu S, Gaziano JM, Buring JE. 2003. Dietary Lycopene, Tomato-Based Food
519 Products and Cardiovascular Disease in Women. *The Journal of Nutrition* 133:2336–2341.

520 15. Burton-Freeman BM, Sesso HD. 2014. Whole Food versus Supplement: Comparing the
521 Clinical Evidence of Tomato Intake and Lycopene Supplementation on Cardiovascular Risk
522 Factors. *Advances in Nutrition* 5:457–485.

523 16. Rowles JL, Ranard KM, Applegate CC, Jeon S, An R, Erdman JW. 2018. Processed and
524 raw tomato consumption and risk of prostate cancer: a systematic review and dose–
525 response meta-analysis. *Prostate Cancer Prostatic Dis* 21:319–336.

526 17. Li C-C, Liu C, Fu M, Hu K-Q, Aizawa K, Takahashi S, Hiroyuki S, Cheng J, von Lintig J,
527 Wang X-D. 2018. Tomato Powder Inhibits Hepatic Steatosis and Inflammation Potentially
528 Through Restoring SIRT1 Activity and Adiponectin Function Independent of Carotenoid
529 Cleavage Enzymes in Mice. *Mol Nutr Food Res* 62:1700738.

530 18. Xia H, Liu C, Li C-C, Fu M, Takahashi S, Hu K-Q, Aizawa K, Hiroyuki S, Wu G, Zhao L,
531 Wang X-D. 2018. Dietary Tomato Powder Inhibits High-Fat Diet–Promoted Hepatocellular
532 Carcinoma with Alteration of Gut Microbiota in Mice Lacking Carotenoid Cleavage
533 Enzymes. *Cancer Prev Res* 11:797–810.

534 19. Scarano A, Butelli E, De Santis S, Cavalcanti E, Hill L, De Angelis M, Giovinazzo G,
535 Chieppa M, Martin C, Santino A. 2018. Combined Dietary Anthocyanins, Flavonols, and
536 Stilbenoids Alleviate Inflammatory Bowel Disease Symptoms in Mice. *Front Nutr* 4:75.

537 20. Liso M, De Santis S, Scarano A, Verna G, Dicarlo M, Galleggiante V, Campiglia P,
538 Mastronardi M, Lippolis A, Vacca M, Sobolewski A, Serino G, Butelli E, De Angelis M,
539 Martin C, Santino A, Chieppa M. 2018. A Bronze-Tomato Enriched Diet Affects the
540 Intestinal Microbiome under Homeostatic and Inflammatory Conditions. *Nutrients* 10:1862.

541 21. Ephraim E, Jewell D. 2021. The Influence of Fiber Source on Circulating Concentration of
542 Age-Related Metabolites and the Gut Microbial Composition in Senior Cats. *Current
543 Developments in Nutrition* 5:13–13.

544 22. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. 2017. Shotgun metagenomics,
545 from sampling to analysis. *Nat Biotechnol* 35:833–844.

546 23. Andrews S. 2010. FastQC: A Quality Control Tool for High Throughput Sequence Data.
547 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>.

548 24. Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Gohl DM, Beckman KB, Knight R,
549 Knights D. 2018. Evaluating the Information Content of Shallow Shotgun Metagenomics
550 3:12.

551 25. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 2012. Diversity, stability
552 and resilience of the human gut microbiota. *Nature* 489:220–230.

553 26. Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE. 2011.
554 Longitudinal investigation of the age-related bacterial diversity in the feces of commercial
555 pigs. *Veterinary Microbiology* 153:124–133.

556 27. Xiao L, Estellé J, Kiilerich P, Ramayo-Caldas Y, Xia Z, Feng Q, Liang S, Pedersen AØ,
557 Kjeldsen NJ, Liu C, Maguin E, Doré J, Pons N, Le Chatelier E, Prifti E, Li J, Jia H, Liu X,
558 Xu X, Ehrlich SD, Madsen L, Kristiansen K, Rogel-Gaillard C, Wang J. 2016. A reference
559 gene catalogue of the pig gut microbiome. *Nat Microbiol* 1:16161.

560 28. Alain B, Pajarillo E, Chae J-P, P. Balolong M, Bum Kim H, Kang D-K. 2014. Assessment
561 of fecal bacterial diversity among healthy piglets during the weaning transition. *J Gen Appl*
562 *Microbiol* 60:140–146.

563 29. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV,
564 Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. 2014. Diet
565 rapidly and reproducibly alters the human gut microbiome. *Nature* 505:559–563.

566 30. Ziegler A, Gonzalez L, Blikslager A. 2016. Large Animal Models: The Key to
567 Translational Discovery in Digestive Disease Research. *Cellular and Molecular*
568 *Gastroenterology and Hepatology* 2:716–724.

569 31. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V,
570 Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi
571 DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight
572 R, Newgard CB, Heath AC, Gordon JI. 2013. Gut Microbiota from Twins Discordant for
573 Obesity Modulate Metabolism in Mice. *Science* 341:1241214.

574 32. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen Y,
575 Knight R, Ahima RS, Bushman F, Wu GD. 2009. High-Fat Diet Determines the
576 Composition of the Murine Gut Microbiome Independently of Obesity. *Gastroenterology*
577 137:1716-1724.e2.

578 33. Benjamini Y, Hochberg Y. 1995. Controlling the False Discovery Rate: A Practical and
579 Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series B*
580 (Methodological) 57:289–300.

581 34. Ismail NA, Ragab SH, ElBaky AA, Shoeib ARS, Alhosary Y, Fekry D. 2011. Frequency of
582 Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian
583 children and adults. *aoms* 3:501–507.

584 35. Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, Gavalko Y,
585 Dorofeyev A, Romanenko M, Tkach S, Sineok L, Lushchak O, Vaiserman A. 2017.
586 Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult
587 Ukrainian population. *BMC Microbiol* 17:120.

588 36. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI.
589 2004. The gut microbiota as an environmental factor that regulates fat storage. *Proceedings*
590 *of the National Academy of Sciences* 101:15718–15723.

591 37. Barczynska R, Slizewska K, Litwin M, Szalecki M, Zarski A, Kapusniak J. 2015. The
592 effect of dietary fibre preparations from potato starch on the growth and activity of bacterial

593 strains belonging to the phyla Firmicutes, Bacteroidetes, and Actinobacteria. *Journal of*
594 *Functional Foods* 19:661–668.

595 38. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poulet JB, Massart S, Collini S,
596 Pieraccini G, Lionetti P. 2010. Impact of diet in shaping gut microbiota revealed by a
597 comparative study in children from Europe and rural Africa. *Proceedings of the National*
598 *Academy of Sciences* 107:14691–14696.

599 39. Edwards CA, Havlik J, Cong W, Mullen W, Preston T, Morrison DJ, Combet E. 2017.
600 Polyphenols and health: Interactions between fibre, plant polyphenols and the gut
601 microbiota. *Nutr Bull* 42:356–360.

602 40. Guo X, Wu L, Lyu Y, Chowanadisai W, Clarke SL, Lucas EA, Smith BJ, He H, Wang W,
603 Medeiros DM, Lin D. 2017. Ablation of β,β -carotene-9',10'-oxygenase 2 remodels the
604 hypothalamic metabolome leading to metabolic disorders in mice. *The Journal of*
605 *Nutritional Biochemistry* 46:74–82.

606 41. Wu L, Guo X, Hartson SD, Davis MA, He H, Medeiros DM, Wang W, Clarke SL, Lucas
607 EA, Smith BJ, von Lintig J, Lin D. 2017. Lack of β,β -carotene-9', 10'-oxygenase 2 leads to
608 hepatic mitochondrial dysfunction and cellular oxidative stress in mice. *Mol Nutr Food Res*
609 61:1600576.

610 42. Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. 2014.
611 Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S
612 rRNA gene sequencing and selective growth experiments by compositional data analysis.
613 *Microbiome* 2:15.

614 43. Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB. 2013. ANOVA-Like
615 Differential Expression (ALDEx) Analysis for Mixed Population RNA-Seq. *PLoS ONE*
616 8:e67019.

617 44. Gloor GB, Macklaim JM, Fernandes AD. 2016. Displaying Variation in Large Datasets:
618 Plotting a Visual Summary of Effect Sizes. *Journal of Computational and Graphical*
619 *Statistics* 25:971–979.

620 45. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egoscue JJ. 2017. Microbiome Datasets
621 Are Compositional: And This Is Not Optional. *Front Microbiol* 8:2224.

622 46. Berlec A, Perše M, Ravnikar M, Lunder M, Erman A, Cerar A, Štrukelj B. 2017. Dextran
623 sulphate sodium colitis in C57BL/6J mice is alleviated by *Lactococcus lactis* and worsened
624 by the neutralization of Tumor necrosis Factor α . *International Immunopharmacology*
625 43:219–226.

626 47. Kimoto-Nira H, Mizumachi K, Nomura M, Kobayashi M, Fujita Y, Okamoto T, Suzuki I,
627 Tsuji NM, Kurisaki J, Ohmomo S. 2007. *Lactococcus* sp. as Potential Probiotic Lactic Acid
628 Bacteria. *JARQ* 41:181–189.

629 48. Parks BW, Nam E, Org E, Kostem E, Norheim F, Hui ST, Pan C, Civelek M, Rau CD,
630 Bennett BJ, Mehrabian M, Ursell LK, He A, Castellani LW, Zinker B, Kirby M, Drake TA,
631 Drevon CA, Knight R, Gargalovic P, Kirchgessner T, Eskin E, Lusis AJ. 2013. Genetic
632 Control of Obesity and Gut Microbiota Composition in Response to High-Fat, High-
633 Sucrose Diet in Mice. *Cell Metabolism* 17:141–152.

634 49. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. 2009. Bacterial
635 Community Variation in Human Body Habitats Across Space and Time. *Science* 326:1694–
636 1697.

637 50. Kloos WE. 1980. Natural Populations of the Genus *Staphylococcus*. *Annu Rev Microbiol*
638 34:559–592.

639 51. Lowy FD. 1998. *Staphylococcus aureus* Infections. *The New England Journal of Medicine*
640 339:13.

641 52. Rocha Martin VN, Schwab C, Krych L, Voney E, Geirnaert A, Braegger C, Lacroix C.
642 2019. Colonization of *Cutibacterium avidum* during infant gut microbiota establishment.
643 *FEMS Microbiology Ecology* 95.

644 53. Colliou N, Ge Y, Sahay B, Gong M, Zadeh M, Owen JL, Neu J, Farmerie WG, Alonso F,
645 Liu K, Jones DP, Li S, Mohamadzadeh M. 2017. Commensal *Propionibacterium* strain UF1
646 mitigates intestinal inflammation via Th17 cell regulation. *Journal of Clinical Investigation*
647 127:3970–3986.

648 54. Lan A, Bruneau A, Philippe C, Rochet V, Rouault A, Hervé C, Roland N, Rabot S, Jan G.
649 2007. Survival and metabolic activity of selected strains of *Propionibacterium*
650 *freudenreichii* in the gastrointestinal tract of human microbiota-associated rats. *Br J Nutr*
651 97:714–724.

652 55. Yu L, Zhao X, Cheng M, Yang G, Wang B, Liu H, Hu Y, Zhu L, Zhang S, Xiao Z, Liu Y,
653 Zhang B, Mu M. 2017. *Saccharomyces boulardii* Administration Changes Gut Microbiota
654 and Attenuates D-Galactosamine-Induced Liver Injury. *Sci Rep* 7:1359.

655 56. Constante M, De Palma G, Lu J, Jury J, Rondeau L, Caminero A, Collins SM, Verdu EF,
656 Bercik P. 2021. *Saccharomyces boulardii* CNCM I-745 modulates the microbiota–gut–
657 brain axis in a humanized mouse model of Irritable Bowel Syndrome.
658 *Neurogastroenterology & Motility* 33.

659 57. Boer CG, Radjabzadeh D, Medina-Gomez C, Garmaeva S, Schiphof D, Arp P, Koet T,
660 Kurilshikov A, Fu J, Ikram MA, Bierma-Zeinstra S, Uitterlinden AG, Kraaij R, Zhernakova
661 A, van Meurs JBJ. 2019. Intestinal microbiome composition and its relation to joint pain
662 and inflammation. *Nat Commun* 10:4881.

663 58. Iyer R, Tomar SK, Kapila S, Mani J, Singh R. 2010. Probiotic properties of folate
664 producing *Streptococcus thermophilus* strains. *Food Research International* 43:103–110.

665 59. Kaczmarek JL, Liu X, Charron CS, Novotny JA, Jeffery EH, Seifried HE, Ross SA, Miller
666 MJ, Swanson KS, Holscher HD. 2019. Broccoli consumption affects the human
667 gastrointestinal microbiota. *The Journal of Nutritional Biochemistry* 63:27–34.

668 60. Byerley LO, Samuelson D, Blanchard E, Luo M, Lorenzen BN, Banks S, Ponder MA,
669 Welsh DA, Taylor CM. 2017. Changes in the gut microbial communities following addition
670 of walnuts to the diet. *The Journal of Nutritional Biochemistry* 48:94–102.

671 61. Berry SZ, Gould WA, Wiese KL. 1991. “Ohio 8245” Processing Tomato. *HortScience*
672 26:1083.

673 62. Cooperstone JL, Tober KL, Riedl KM, Teegarden MD, Cichon MJ, Francis DM, Schwartz
674 SJ, Oberyszyn TM. 2017. Tomatoes protect against development of UV-induced
675 keratinocyte carcinoma via metabolomic alterations. *Sci Rep* 7:5106.

676 63. National Research Council. 2012. Nutrient Requirements of Swine: Eleventh Revised
677 Edition 11th edition. The National Academies Press, Washington, DC.

678 64. 2018. Tomato powder. SR Legacy. United States Department of Agriculture.

679 65. Meyer F, Paarmann D, D’Souza M, Olson R, Glass E, Kubal M, Paczian T, Rodriguez A,
680 Stevens R, Wilke A, Wilkening J, Edwards R. 2008. The metagenomics RAST server – a
681 public resource for the automatic phylogenetic and functional analysis of metagenomes.
682 *BMC Bioinformatics* 9:386.

683 66. Pruitt KD, Tatusova T, Maglott DR. 2007. NCBI reference sequences (RefSeq): a curated
684 non-redundant sequence database of genomes, transcripts and proteins. *Nucleic Acids
685 Research* 35:D61–D65.

686 67. R Core Team. 2021. R: A language and environment for statistical computing (4.0.3). R
687 Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

688 68. RStudio Team. 2021. RStudio: Integrated Development Environment for R (1.4.1103).
689 RStudio, PBC. <http://www.rstudio.com/>.

690 69. Wickham H. 2016. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag, New
691 York. <https://ggplot2.tidyverse.org>.

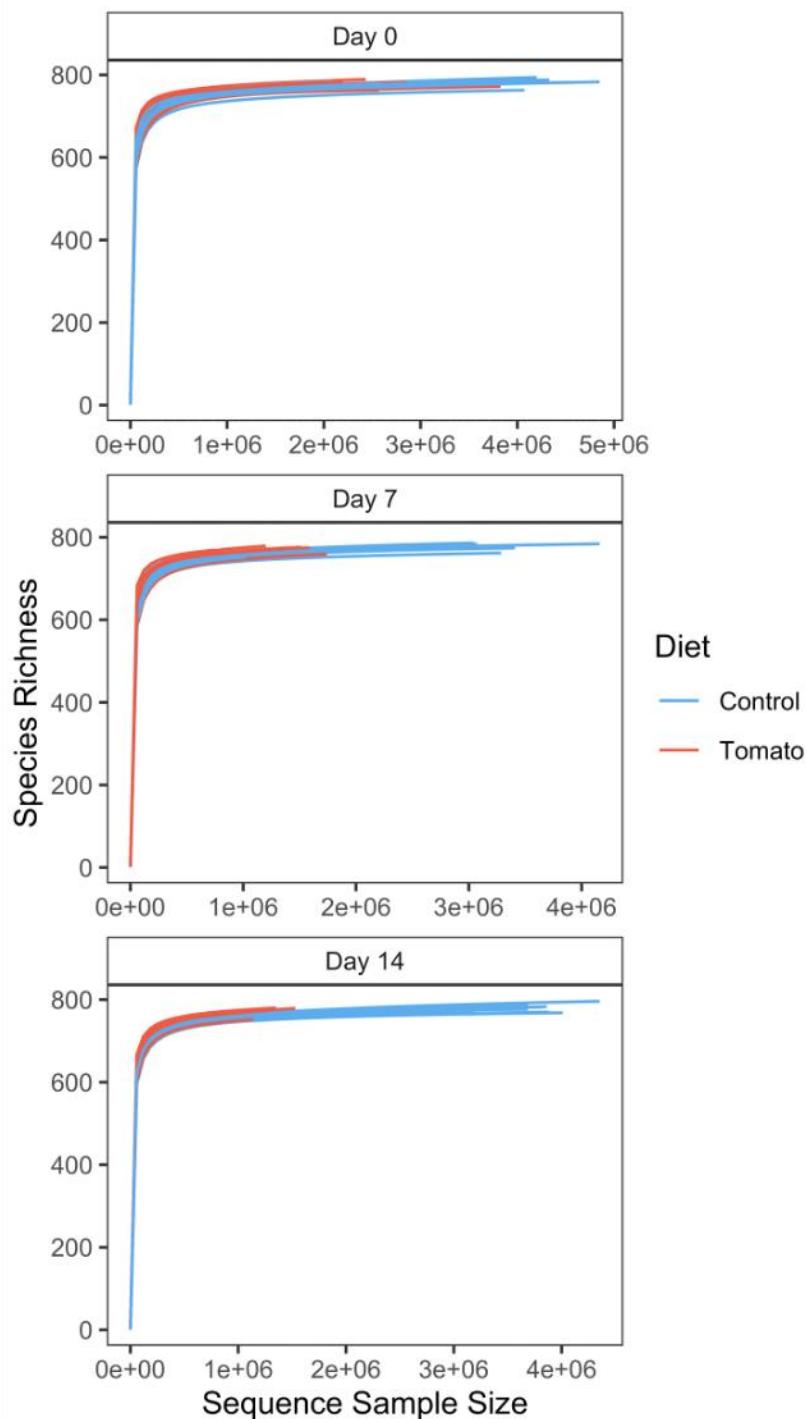
692 70. McMurdie PJ, Holmes S. 2014. Waste Not, Want Not: Why Rarefying Microbiome Data Is
693 Inadmissible. *PLoS Comput Biol* 10:e1003531.

694 71. McMurdie PJ, Holmes S. 2013. phyloseq: An R Package for Reproducible Interactive
695 Analysis and Graphics of Microbiome Census Data. *PLoS ONE* 8:e61217.

696 72. Pauvert C. psadd: Additions to phyloseq package for microbiome analysis.
697 <https://github.com/cpauvert/psadd>.

698 73. Kandlikar GS, Gold ZJ, Cowen MC, Meyer RS, Freise AC, Kraft NJB, Moberg-Parker J,
699 Sprague J, Kushner DJ, Curd EE. 2018. ranacapa: An R package and Shiny web app to
700 explore environmental DNA data with exploratory statistics and interactive visualizations.
701 F1000Res 7:1734.

702 74. Anderson MJ. 2017. Permutational Multivariate Analysis of Variance (PERMANOVA).
703 Wiley StatsRef: Statistics Reference Online 1–15.


704 75. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR,
705 O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Eduard S, Wagner H. 2019. vegan:
706 Community Ecology Package. (R package version 2.5-6.). <https://CRAN.R-project.org/package=vegan>.

708 76. Simpson G, R Core Team, Bates D, Oksanen J. 2021. *permute* (0.9-7). <https://CRAN.R-project.org/package=permute>.

710

711 **SUPPLEMENTAL MATERIAL**

712 **Supplemental Figures**

SUPPLEMENTAL FIGURE 1 Rarefaction curves showing species richness relative to sequence sample size, by sampling day and diet.

713

714

715 Supplemental Tables: Provided in Excel document:

716 Goggans_etal_2021_tomato_pig_microbiome_WGS

717

718 **SUPPLEMENTAL TABLE 1.** Weights (kg) of pigs at study day 0 (aged 4 weeks), study day 7
719 (aged 5 weeks), and study day 14 (aged 6 weeks). There were no significant differences between
720 diets at any time point by unpaired t-tests.

721

722 **SUPPLEMENTAL TABLE 2.** Sample metadata, containing full sample name and each
723 variable.

724

725 **SUPPLEMENTAL TABLE 3.** Taxonomic identification annotated at the phyla level via MG-
726 RAST.

727

728 **SUPPLEMENTAL TABLE 4.** Taxonomic identification annotation at the genera level via MG-
729 RAST.

730

731 **SUPPLEMENTAL TABLE5.** Output from ALDEeX2 univariate analysis at the phyla level,
732 significant taxa after a multiple testing correction are indicated with a yellow highlight.

733 Abbreviations: rab.all: median clr value for all samples in the feature; rab.win.Control: median
734 clr value for the control group; rab.win.Tomato: median clr value for the tomato group; dif.btw:
735 median difference in clr values between S and NS groups; diff.btw: median difference in clr
736 values between tomato and control groups; diff.win: median of the largest difference in clr

737 values within tomato and control groups; overlap: proportion of effect size that overlaps 0
738 (i.e. no effect); we.ep: Expected P value of Welch's t test; we.eBH: Expected Benjamini-
739 Hochberg corrected P value of Welch's t test; wi.ep: Expected P value of Wilcoxon rank test;
740 wi.eBH: Expected Benjamini-Hochberg corrected P value of Wilcoxon test; kw.ep: Expected P
741 value of Kruskal-Wallace test; kw.eBH: Expected Benjamini-Hochberg corrected P value of
742 Kruskal-Wallace test; glm.ep: Expected P value of glm test; glm.eBH: Expected Benjamini-
743 Hochberg corrected P value of glm test
744
745 **SUPPLEMENTAL TABLE 6.** Output from ALDEeX2 univariate analysis at the genera level,
746 significant taxa after a multiple testing correction are indicated with a yellow highlight.
747 Abbreviations: rab.all: median clr value for all samples in the feature; rab.win.Control: median
748 clr value for the control group; rab.win.Tomato: median clr value for the tomato group; dif.btw:
749 median difference in clr values between S and NS groups; diff.btw: median difference in clr
750 values between tomato and control groups; diff.win: median of the largest difference in clr
751 values within tomato and control groups; overlap: proportion of effect size that overlaps 0
752 (i.e. no effect); we.ep: Expected P value of Welch's t test; we.eBH: Expected Benjamini-
753 Hochberg corrected P value of Welch's t test; wi.ep: Expected P value of Wilcoxon rank test;
754 wi.eBH: Expected Benjamini-Hochberg corrected P value of Wilcoxon test; kw.ep: Expected P
755 value of Kruskal-Wallace test; kw.eBH: Expected Benjamini-Hochberg corrected P value of
756 Kruskal-Wallace test; glm.ep: Expected P value of glm test; glm.eBH: Expected Benjamini-
757 Hochberg corrected P value of glm test