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ABSTRACT

Diets rich in fruits and vegetables have been shown to exert positive effects on the gut
microbiome. However, little is known about the specific effect of individual fruits or vegetables
on gut microbe profiles. This study aims to elucidate the effects of tomato consumption on the
gut microbiome, as tomatoes account for 22% of vegetable consumption in Western diets, and
their consumption has been associated with positive health outcomes. Using piglets as a
physiologically relevant model of human metabolism, 20 animals were assigned either to a
control or tomato powder supplemented diet (both macronutrient matched and isocaloric) for 14
days. The microbiome was sampled rectally at three time points: day 0 (baseline), day 7
(midpoint), and at day 14 (end of study). DNA was sequenced using shotgun metagenomics, and
reads were annotated using MG-RAST. There were no differences in body weight or feed intake
between our two treatment groups. There was a microbial shift which included a higher ratio of
Bacteroidota to Bacillota (formerly known as Bacteroidetes and Firmicutes, respectively) and
higher alpha-diversity in tomato-fed animals, indicating a shift to a more desirable phenotype.
Analyses at both the phyla and genera levels showed global microbiome profile changes
(PERMANOVA P <0.05) over time, but not with tomato consumption. These data suggest that
short-term tomato consumption can beneficially influence the gut microbial profile, warranting

further investigation in humans.
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IMPORTANCE

The composition of the microorganisms in the gut is a contributor to overall health, prompting
the development of strategies to alter the microbiome composition. Studies have investigated the
role of the diet on the microbiome, as it is a major modifiable risk factor contributing to health;
however, little is known about the causal effects of consumption of specific foods on the gut
microbiota. A more complete understanding of how individual foods impact the microbiome will
enable more evidence-based dietary recommendations for long-term health. Tomatoes are of
interest as the most consumed non-starchy vegetable and a common source of nutrients and
phytochemicals across the world. This study aimed to elucidate the effect of short-term tomato
consumption on the microbiome, using piglets as a physiologically relevant model to humans.
We found that tomato consumption can positively affect the gut microbial profile, which

warrants further investigation in humans.

INTRODUCTION

Research has shown that the composition of the gut microbiome can be an effector of overall
health (1). The composition of these gut microorganisms has been associated with a number of
chronic diseases, such as cardiovascular disease (2), inflammation (3), type 2 diabetes (1), and
obesity (3-5). As diet is a major modifiable factor of health, there is interest in elucidating how
dietary factors can alter the microbiome (6, 7). While it is possible to use some microbiome
endpoints and associate them with health (i.e., a more diverse community is favorable (1, 6, 8),
and a lower Bacteroidota to Bacillota (formerly known as Bacteroidetes and Firmicutes
respectively) ratio (4), the reality is that bias in sequencing approaches as well as differences in

microbial communities due to lifestyle factors and location add complexity to this interpretation


https://doi.org/10.1101/2022.05.13.489542
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.13.489542; this version posted May 13, 2022. The copyright holder for this preprint (which

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

(9). Still, diets rich in fruits, vegetables, and whole grains have been consistently associated with
a healthier microbiome (68, 10). However, discerning the way specific foods might affect the
microbiome using intervention studies remains largely uninvestigated. Understanding the global
effects that specific foods have on the microbiome helps contextualize the effect they are having
towards overall health and sets a foundation towards making personalized nutritional
recommendations.

Tomatoes are of interest as one such specific food because they are a common source of
nutrients for many around the world. They are the second most commonly consumed vegetable
(11) and are an important specialty crop across the United States. Over 12 million metric tons of
tomatoes are produced in the United States each year (12), with Americans consuming about 30
pounds per person in 2018 (13). Tomatoes are a rich source of both essential nutrients (e.g.,
vitamins A, C), fiber, and phytochemicals (e.g., lycopene, flavonoids, phenolic acids). Tomato
consumption has been linked to protection against various chronic diseases (14-16), though
causality about the mechanism of action is not well understood.

We hypothesized that one mechanism by which tomatoes provide a health benefit is
through their modulation of the gut microbiome. Preliminary microbiome studies in mice,
feeding tomatoes or their phytochemicals, have shown positive outcomes, including increased
microbial diversity, decreased abundance of Clostridium spp., and decreased symptoms of
irritable bowel disease (17-21). Here, we aimed to elucidate the effects of short-term, consistent
tomato consumption on the gut microbial ecosystem, using pigs as a physiologically relevant
model for humans. To investigate this question, we fed weaned piglets (n = 20, aged 4 weeks) a
diet supplemented with 10% w/w tomato powder or an iso-caloric and macronutrient-matched

control diet for two weeks, sampling the gut microbiome via rectal swab at three points during
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the experimental period. The use of macronutrient matched diets allowed us to test the effect of
tomato phytochemicals on the microbiome of studied pigs, rather than the effect of differences in
nutrients, such as fiber or sugar. DNA from rectal swabs was subjected to shotgun metagenomic
sequencing (i.e., the untargeted sequencing of all the DNA present in a sample (22)). The
resulting reads were annotated and analyzed at both the phyla and genera levels using univariate
and multivariate approaches, including the analysis of beta diversity, relative abundances of

Bacteroidota, Bacilotta, their ratio, and alpha diversity.

RESULTS AND DISCUSSION

Diet type did not affect animal weight. An overall scheme of the animal study design can be
found in FIG 1. Pigs were weighed and feed intake was measured weekly. There was no
difference in feed intake or animal weight over the trial (Table S1). Health of pigs was not

altered by dietary treatment.

Pigs are Suckling Adaptation Control diet (n=10)
bom, I 1
randomized Tomato diet (n=10)
n=20
| | |
I I I 1
Week 0 Week3  Week 4 Week 6
(weaning)

FIG 1 Overall animal study design. Pigs were adapted to a dry diet from weeks 3-4. Microbiome
was sampled via rectal swabs when pigs were aged 4 weeks (day 0, baseline), 5 weeks (day 7,
midpoint) and 6 weeks (day 14, end of study) for shotgun metagenomics.
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A median sequence depth was 2.5M reads. Each sample’s forward and reverse reads were
checked for quality using FastQC version 0.11.9 (23). All sequence files passed quality checks
and no samples had to be discarded. Thirteen of the 60 total samples were re-sequenced to a
median of 2.3M reads per sample. For re-sequenced samples, sequences from the first and
second sequencing run were merged, checked for quality and were used for further analyses.
Rarefaction curves demonstrate that a similar species richness was achieved in samples with
differing sequence depths (Fig. S1). A recent study has shown that even shallow shotgun
metagenomics (<500K reads/sample) provides better annotation of taxonomic and functional
composition of microbiome compared to 16S rRNA sequencing (24), providing our rationale for

this sequencing approach.

Bacillota (i.e., Firmicutes) was the predominant phylum and Prevotella the most abundant
genus detected in the pig fecal microbiome. The mammalian gut microbiome is a complex
microbial ecosystem; hence, it is beneficial to conduct analyses at more than one taxonomic
rank, as the profile of each rank provides different types of information. The average human gut
microbiome is dominated by Bacteroidota (formerly known as Bacteriodetes) and Bacillota
(formerly known as Firmicutes), which typically account for 70-90 % of the total microbiome
makeup (1). Analyses of phyla often reveal changes in the proportions of the dominant few, thus
providing a broad picture of the state of the gut microbiome. Alternatively, genera are highly
diverse, often with hundreds of taxa identified (25). These analyses provide a finer resolution of
microbiome composition. Here, we aimed to capture modifications of the microbiome at both the
phyla and genera level. For this reason, all analyses (aside from those specific to phyla) were

completed at both taxonomic ranks.
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Across all pigs, annotation using MG-RAST and filtering for data quality resulted in
identification of 45 phyla. Of those, 28 were from the domain Bacteria, comprising on average
99.3 £ 0.2% of the total reads, 10 were from Eukaryota, 5 were Archaea, 1 was Virus, and 1 was
unclassified. The most prevalent phyla were Bacilotta (formerly known as Firmicutes 52.7%
average abundance + 5.5% standard deviation), Bacteroidota (formerly known as Bacteroidetes
35.4 £5.9), Actinomycetota (formerly known as Actinobacteria) (4.7 = 1.8%), Pseudomonadota
(formerly known as Proteobacteria) (3.9 + 1.2%) and Fusobacteriota (formerly known as
Fusobacteria) (0.43 + 8.5x107%%). Similar relative abundances of phyla were observed across
samples, regardless of the diet groups. Previous studies reported conflicting results in terms of
predominant phyla in pig microbiome. Some studies have shown Firmicutes to be the most
abundant phyla in the pig gut microbiome after weaning (26, 27), while others have reported
Bacteroidetes as the dominant phyla (28).

Annotation from MG-RAST and filtering for data quality resulted in the identification of
755 genera. Of these 755 genera, 582 were in the Bacteria domain, 89 were Eukaryota, 60 were
Archaea, 23 were Viruses, and 1 was unclassified. Overall, the most prevalent genera were
Prevotella (22.23% average abundance + 5.4% standard deviation), Bacteroides (10.34 £ 1.9%),
Clostridium (8.56 = 1.8%), Lactobacillus (6.78 + 4.6%) and Eubacterium (5.16 + 1.0%). These
genera were detected in similar relative abundances in each group when data were parsed by diet.
Previous reports have shown Prevotella, Bacteroides, and Clostridium to be the most abundant

genera in pig gut microbiomes (27), which is consistent with our findings.

Beta diversity changed over time, but was not significantly affected by the tomato-

supplemented diet. To understand the beta-diversity (differences between the microbial
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communities) of pigs on different diets and at different time points, all data was first visualized
via principal coordinates analysis (PCoA) using the Bray-Curtis dissimilarity metric. PCoA plots
(Fig. 2) were created for both phyla and genera separately using the relative abundances of all
samples. Plots were faceted by diet to observe sample clustering by time point more easily. PC1
and PC2 together accounted for 89.1% of the variation in the phyla-level microbiome and 53.8%
at the genera level. Visual clustering in PCoA scores plots at either taxonomic level was not
easily observed between diets, but within the control diet, grouping was observed according to
time point. It is not surprising that overall microbiome profile differences are not evident in the
PCoA plots due to presence or absence of a single component of a diet (i.e., tomatoes). Global
differences in microbiome composition are more likely to be observed when two completely
different diets are fed, as previously shown when comparing the effect of a plant-based and

animal-based diet on the microbiome (29).
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FIG 2 Principal coordinates analysis (PCoA) using Bray-Curtis distances showing beta-
diversity of the whole microbiome at the phyla (top) level and genera (bottom) level. Each dot
represents a sample collected from one pig. Plots are faceted by diet. Using repeated measures
PERMANOVA (model: Beta Diversity = Diet + Time Point + Diet x Time Point + Error), only
a significant effect of time point was detected at both the phyla (P = 0.020) and genera (P =
0.005) levels.
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In order to determine significance of observed trends in the PCoA due to diet and time
point, PERMANOVA was used (model: Beta Diversity = Diet + Time Point + Diet x Time Point
+ Error, where each pig was a plot containing three samples collected over time). These
multivariate restricted permutation tests are a useful approach for assessing differences in beta-
diversity because they allow for the investigation of the gut microbiome as a whole, instead of
focusing on individual taxa. The PERMANOVA model p-values are recorded in Table 1. At
both the phyla and genera levels, we found the interaction term to be non-significant (Phyla P =
0.510; Genera P = 0.360) and therefore we removed it from the model. The new model was then
tested and revealed an overall significant effect of time point (Phyla P = 0.020; Genera P =

0.005) but not diet (P = 0.270) on the gut microbiome (Table 1).

TABLE 1 Results from restricted permutation tests via PERMANOVA to investigate differences
in beta-diversity at the phyla and genera taxonomic levels. The full model tested the variance
explained by the diet, time point, and their interaction on the dissimilarity matrix, calculated with

Bray-Curtis distances.

Variable Phyla Genera
Diet 0.270 0.060
Time Point 0.020? 0.005°
Diet x Time Point 0.510 0.360

|ndicates significant model effect at P < 0.05.
b Indicates significant model effect at P < 0.01.

These data can be interpreted in that, at both taxonomic ranks, the microbiomes of pigs

were significantly changing over the two-week intervention, but the effect of diet on beta

10
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diversitywas not significant. In another study using a mouse model, the microbiomes were
compared between a group fed a high fat diet supplemented with tomato powder and a high fat-
only diet group. Using clustering by unweighted UniFrac dissimilarity, a significant difference
was detected between diet group microbiomes (17). However, using weighted UniFrac distances,
no separation of tomato and control groups was observed in the pigs. It is possible that using a
dissimilarity measure that incorporates evolutionary relatedness may have been a contributor to
the detected significant effects. However, a direct comparison with our study is difficult because

mice are known to be different than pigs in their microbiome composition (30).

Inverse relationship between Bacteroidota and Bacillota abundances was detected over
time in the control-fed pigs, but not tomato-fed pigs. In addition to multivariate approaches to
understand microbiome data, univariate methods to examine differences in specific taxa are
valuable. As previously stated, the phyla Bacteroidota (i.e., Bacteriodetes) and Bacillota (i.e.,
Firmicutes) and their relationship have been implicated in obesity and high fat diets (31, 32).
With these a priori interests, changes in these two phyla were assessed individually across diets
and time points using repeated measures ANOVA. Results indicated a significant model effect of
time point for both phyla (Bacteroidota P = 0.024; Bacillota P = 0.001); whereas diet and the
interaction term were non-significant. After post hoc analyses to determine which pair-wise
groups differed, significant alteration in the abundance of both Bacteroidota and Bacillota was
found between day 0 and day 14 in control-fed pigs (Bacteroidota P = 0.044; Bacillota, P =
0.03). No significant differences between time points within the tomato-fed pigs were observed.
Box plots of the two phyla demonstrate the inverse relationship between Bacteroidota and

Bacillota abundances over time in the control-fed pigs (Fig. 3a).

11
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FIG 3 (a) Comparing relative abundances across time points and between diets for two phyla: Bacteroidota and Bacillota. Using repeated
measures ANOVA, a significant model effect of time point was found for both phyla (Bacteroidota: P = 0.024, Bacillota: P = 0.001). Post hoc
findings of significant differences between Day 0 Control and Day 14 Control were found for both Bacteroidota (P = 0.044) and Bacillota (P =
0.03). No significant effects of diet or time point-by-diet interaction were detected for either phylum. (b) Comparing the ratio of the relative
abundance of Bacteroidota to that of Bacillota across time points and between diets. A significant effect of time via repeated measures ANOVA
(P=0.009) led to post hoc comparisons and a significant difference in the ratio of Bacteroidota/Bacillota between Day 0 and Day 14 in
control-fed pigs only (P = 0.033). There was no significant effect of diet or time point-by-diet interaction.
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Additionally, the ratio of Bacteroidota to Bacillota in the gut microbiome is a commonly
assessed metric because of its correlation to obesity (4, 31, 32). Therefore, differences in
Bacteroidota/Bacillota were also tested via repeated measures ANOVA with diet, time point, and
their interaction as factors. This analysis revealed a significant difference due to time (P =
0.009), with a non-significant effect of diet (P = 0.728) and time-by-diet interaction (P = 0.436).
Post hoc analyses using pairwise comparisons (and adjusting for multiple comparisons using the
Benjamini-Hochberg procedure (33)) showed a significant difference only in the control-fed
group between day 0 and day 14 (P = 0.033) (Fig. 3b). There were no statistically significant
changes in Bacteroidota/Bacillota detected within tomato-fed pigs. The significant
Bacteroidota/Bacillota decrease found in the control-fed group at day 14 versus baseline
corresponds with the significant decrease in Bacteroidota and increase in Bacillota mentioned
above.

These data together suggest that incorporation of tomato into the diet can help prevent the
alteration of the microbial profile to maintain higher Bacteroidota/Bacillota ratio, which is
considered a more desirable phenotype. Low Bacteroidota/Bacillota ratio in the gut has been
linked to an obese host (4, 34, 35), suggesting a higher Bacteroidota/Bacillota ratio is more
desirable. In our control pigs, Bacteroidota/Bacillota decreased over time, whereas the ratio
remained unchanged in tomato-fed pigs, so it follows that tomato consumption may be playing a
role in maintaining a more desirable Bacteroidota/Bacillota ratio. It has been suggested that
altering this ratio may directly affect risk of obesity, as there is some evidence that taxa in the
Firmicutes phylum have an increased capacity for energy harvest (5, 36). The role of
Bacteroidota/Bacillota in predicting or influencing obesity and the mechanisms underlying this

relationship, including diet, are worth further investigation.

13


https://doi.org/10.1101/2022.05.13.489542
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.13.489542; this version posted May 13, 2022. The copyright holder for this preprint (which

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Diet is known to have a major influence on the gut microbiome in general (6, 8), and
limited studies showed that certain dietary patterns or components affect Bacteroidota/Bacillota
ratio. Some studies have demonstrated that fiber, starch, and other plant polysaccharides can
increase Bacteroidota/Bacillota ratio (8, 37, 38). Tomato powder does provide a source of these
carbohydrates, although our control diet was macronutrient matched to the tomato diet,
suggesting differences we see here are a function of the small molecule phytochemicals from
tomato. Some bacteria are known to metabolize tomato phytochemicals, such as rutin, quercetin,
and chlorogenic acid (7, 39). Adding a food with unique phytochemicals to the diet introduces a
new source of nutrients for the microbiome and encourages growth of certain bacteria,
suggesting the mechanism that phytochemicals indirectly influence the makeup of the
microbiome. Effects shown here could be partially or wholly induced by tomato phytochemicals;
however, it is also possible that certain polysaccharides in tomatoes provide benefits, preventing
the change in Bacteroidota, Bacillota, and Bacteroidota/Bacillota ratio seen in the control-fed
animals over time. A study that fed tomato powder to mice with induced liver cancer saw a
decreased level of Bacteroidota and an increased level of Bacillota, resulting in a lower
Bacteroidota/Bacillota ratio (18). However, these animals were double knockouts deficient in
beta carotene oxygenase 1 and 2, which is known to exert physiological affects beyond
metabolism of carotenoids, challenging the translation of these results to other mammals (40,

41).

Several phyla were detected in significantly higher relative abundance in tomato-fed pigs

compared to control pigs after 14 days of feeding. In addition to assessing Bacteroidetes and

Firmicutes, which were of a priori interest, we assessed changes in each of the 45 detected phyla
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249  across time points and between diet groups. Differences between relative abundances of

250 individual taxa were determined by compositional analyses using the ALDEx2 package in R (42—
251  45). Within control-fed pigs, there were no significant changes in relative abundance of any

252  phylum over time. While we would expect to see differences due to time in Bacteroidota and
253  Bacillota, as was discovered with repeated measures ANOVA, we suspect that due to the

254  multiple testing corrections incurred to test the 45 phyla, this test is conservative in its estimate
255  of changes in taxa relative abundance. Within tomato-fed pigs, 1 phylum (unclassified (Bacteria-
256  derived)) of the 45 detected was significantly altered over time. When comparing diet groups,
257  there were no significant phyla-level differences at day 0, 1 phylum (unclassified (Bacteria-

258  derived)) on day 7, and 5 phyla (Nematoda, Apicomplexa, Deinococcus-Thermus,

259  Pseudomonadota (i.e., Proteobacteria), and unclassified (Bacteria-derived)) on day 14. The

260 relative abundance of each of these phyla was found to be higher in the tomato-fed group than in
261  the control, apart from Deinococcus-Thermus for which the opposite was true. The full list of p-
262  values for all phyla level comparisons can be found in Supplemental Table 5.

263 No significant differences at day 0 is expected, as no intervention had yet occurred, and
264  microbiome compositions should be relatively consistent between pigs. Providing an explanation
265  for the functional implications of changes in phyla at the other two time points is challenging to
266  describe, as most have not been extensively studied in the context of the gut microbiome and
267  each contain diverse genera and species that vary in function.

268 To get closer to understanding functional implications of differences in taxa across time
269  points and between diet groups, the same compositional analyses were conducted using ALDEXx2
270  atthe genus level. Significant differences were detected in relative abundances of 4 genera

271  across time in control-fed pigs. These were Oribacterium, Streptococcus, Lactococcus, and
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272  Granulicatella; all of which were detected in a higher relative abundance with time. In tomato-
273  fed pigs compared to control-fed pigs, four genera were found to have significantly increased in
274  relative abundance over time: Staphylococcus, Alphatorquevirus, Lambda-like viruses, and an
275  unclassified group (Bacteria-derived).

276 In the context of the gut microbiome, changes in Lactococcus (phylum Firmicutes) and
277  Staphylococcus (phylum Firmicutes) abundances is of interest. Some Lactococcus species and
278  strains have shown potential to act as a probiotic in the gut and provide some health benefits in
279  animal studies (46, 47). In contrast, this genus has also been associated with body fat

280 accumulation in mice fed a high fat diet (48). More work is needed to determine its exact role.
281  Here we report an increase in Lactococcus relative abundance over time within the microbiomes
282  of the control-fed pigs, resulting in a significant difference between diet groups at day 14. Many
283  species within the Staphylococcus genus are known to be typical commensal inhabitants of the
284  human and pig skin microbiomes (49, 50). However, there are some species which can cause
285  pathogenesis in humans (51). Without further knowledge of the species present in these samples,
286 itis impossible to say whether increases in Staphylococcus abundance in tomato-fed pigs should
287  be viewed as negative. However, it should be noted that no pigs showed signs of diseases

288  throughout the study.

289 Furthermore, significant differences were assessed between diet groups for each genus.
290  Asin phyla-level analyses, no significant differences in abundance of genera were noted between
291  diet groups at day 0. At day 7, an unclassified group (Bacteria-derived) was significantly

292  different between diets, consistent with the single phylum (unclassified (Bacteria-derived) for
293  which a difference was detected in the phyla-level analyses. Analyses of differences at day 14

294  showed 14 genera significantly different in relative abundance. These were Alphatorquevirus,
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Brugia, Loa, Malassezia, Plasmodium, Propionibacterium, Rosiflexus, Saccharomyces,
Staphylococcus, Stenotrophomonas, Streptococcus, Vanderwaltozyma, Lambda-like viruses, and
unclassified (Bacteria-derived). All were significantly higher in tomato-fed vs. control group,
except for Rosiflexus and Streptococcus, which were higher in the control group. There is
evidence that Propionibacterium are early colonizers of the infant gut (52), with their enrichment
protective against necrotizing enterocolitis (53), and acting a probiotic (54). Similarly, some
Saccharomyces species have also been shown to be probiotic, increasing the abundance of
Bacteroidota and decreasing Bacilotta (55), while others act along the gut-brain axis in reducing
irritable bowel disease severity (56). Increased Streptococcus has been associated with increased
localized inflammation (57), while other strains have been shown to be probiotic (58). However,
it is currently difficult to contextualizing these findings because of the diversity of species within
each genus. The full list of p-values for all genera level comparisons can be found in

Supplemental Table 6.
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309 Tomato-fed pigs had a significantly higher fecal microbiome alpha diversity at a phylum,
310 but not at a genus levels. The microbiome is a complex collection of organisms, so it is

311 important to analyze differences in the community based not only on single phyla and genera,
312  but also by examining the overall diversity present. Therefore, using the Shannon index, alpha-
313  diversity was calculated at the phyla- and genera-level for each sample to provide a measure of
314  taxonomic diversity within each sample. Diet and time point group averages were then compared
315  with a repeated measures ANOVA (FIG. 4).

316 Comparison of phyla-level alpha-diversity between diets and time points showed a

317  significant effect of diet on alpha-diversity (P = 0.004) but no significant effect of time (P =

318 0.086) or diet-by-time interaction (P = 0.791). Post hoc analyses by pairwise comparison

319 revealed a statistical difference between control- and tomato-fed pigs at day 14 (P = 0.011), with
320  higher alpha-diversity in the tomato-fed animals (Fig. 4a). This aligns with our univariate

321  ALDEX2 analyses, as significant differences in 5 phyla were observed between the diets at day

322  14. Consumption of tomato has previously been shown to affect alpha-diversity. Mice
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FIG 4 Alpha diversity as measured by the Shannon diversity index at the (a) phyla and (b)
genera level. (a) A statistically significant effect of diet was found via repeated measures
ANOVA (P =0.004), and a post hoc difference (P = 0.011) was found at the phyla level
between control and tomato fed pigs at day 14. (b) No significant differences were observed at
the genera level.
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consuming high-fat diets supplemented with tomato powder had higher levels of alpha-diversity
than those who did not consume tomato powder (17, 18). Higher alpha-diversity is desirable, as a
more diverse gut microbiome has been associated with more benefits for the host and better
resilience to pathogens (25).

The repeated measures ANOVA investigating the effect of diet, time point, and their
interaction on alpha-diversity at the genera level showed no significant differences (Fig. 4b). The
lack of observed effect has been similarly noted in human interventions with single foods,
including broccoli (59). Another study showed that walnut consumption significantly increased
alpha-diversity in rats (60). Again, few studies have been conducted with single plant food
interventions for comparison to our results here.

The gut microbiome has a large amount of functional redundancy at the genera and
species level, meaning multiple microorganisms contribute the same metabolic functions (25).
For example, there are numerous different organisms, when annotated at the genus level, that
metabolize carbohydrates, others that metabolize proteins, and some that overlap and metabolize
both macromolecules. This provides stability and resiliency to the microbial ecosystem of the gut
through a consistent use of nutrients and output of metabolites, even if the exact genera or
species presence is changing. Dietary causes of change in alpha-diversity typically occur from
repeated habits or patterns that are sustained and dominated by one macronutrient, such as
consistent high fat intake, because this limits the available nutrients for microbes (25).

In summary, we have found that supplementation of the diet with 10% tomato powder (as
compared to a macronutrient-matched control) has the ability to modulate the gut microbiome in
pigs. Animals on tomato-containing diets had higher alpha diversity, a higher

Bacteroidota/Bacillota ratio, higher abundance of Bacteroidota (i.e., Bacteroidetes), and lower
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346  abundance of Bacillota (i.e., Firmicutes), consistent with a more beneficial microbial phenotype.
347  The effect of tomato consumption on the gut microbiome in humans warrants further

348 investigation at a functional level to improve the understanding of the effect of tomato-rich diet
349  on functional resilience of human gut microbiome.

350

351 METHODS

352  Experimental Diet Production. Processing tomatoes (Solanum lycopersicum L.) used in this
353  study were grown at the North Central Agricultural Research Station of Ohio State University
354  (OSU) in Fremont, OH. A hybrid tomato derived from the cross OH8245 x OH8243 (61)was
355  used. Tomatoes were grown using conventional horticultural practices, mechanically harvested
356  using a Guaresci harvester (Guaresci, Sp.A, Pilastri, Italy), and sorted to include ripe fruits only.
357  Tomatoes were transported to the Columbus, OH, campus of OSU and processed at the Food
358 Industries Center Pilot Plant, where fruits were immediately washed, diced, and frozen, as

359  previously described (62). Frozen tomatoes were freeze-dried and dry material ground into a fine
360  powder using a vertical chopper mixer (62). Tomato powder was stored in vacuum sealed bags at
361  -20 °C until use.

362 The basal diet (Table 2) was formulated with a nutrient make-up appropriate for nursery
363  pigs weighing 7-11 kg according to the National Research Council (63). To the basal diet, the
364  tomato powder was added at 10% w/w. To create the control diet, the basal diet was

365  supplemented with milk protein isolate (90% purity, 13%, protein), powdered sugar (70%,

366  sugar), pectin (3.4%, soluble fiber) and cellulose (13.6%, insoluble fiber) to create a

367  macronutrient match to the tomato diet (Table 2). These ingredients were formulated to match
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368 the ratios of nutrients typically found in tomato powder as reported by FoodData Central (64).

369  This supplement was added at 10% w/w to match the addition of the tomato powder.

370
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TABLE 2. Composition of basal diet on an as-fed basis. This diet delivered 3,381 kcal/kg,
22.7& crude protein, 1.35% standardized ileal digestible lysine, 34% ileal digestible
methionine:lysine, 57% ileal digestible methionine and cysteine:lysine, 0.8% calcium, and
0.67% phosphate.

Ingredient % Basal Diet
Corn 50.06
Dehulled soybean meal 26.76
Whey powder 10
Soy protein (HP300) 7.5
Pork fat (choice white grease) 2
Calcium phosphate 1.05
Limestone, ground 1.1
Sodium chloride 0.3
L-lysine hydrochloride 0.3
Vitamin premix without phytase? 0.25
Zinc Oxide 0.25
DL-methionine 0.16
L-threonine 0.11
Trace mineral premix® 0.15
Feed enzymes (HiPhos 2700) 0.015

2 Vitamin premix provided per ton of diet: vitamin A, 1x107 IU; vitamin D, 1.25x107 IU; vitamin
E, 4x10* 1U; vitamin B12, 35 mg; niacin, 45,000 mg; pantothenic acid, 25,000 mg; riboflavin,
7,500 mg.
®Trace mineral premix provided per ton of diet: zinc, 1965 ppm; iron, 165 ppm; manganese, 40
ppm; copper, 17 ppm; iodine, 0.30 ppm; selenium, 0.30 ppm.
Animal Study Design. Twenty male pigs born to six sows in summer 2019 at the OSU Swine
Facility in Dublin, OH were used in this study. Male pigs were selected to allow sampling of
prostatic tissue for a secondary study. At weaning twenty male pigs were selected according to
weight and randomly assigned to dietary treatment. A scheme of the overall study design can be
found in Fig. 1.

To prevent diet mixing and cross-contamination of microbiomes through contact, only
pigs consuming the same diets were allowed to have contact. The two diet groups were housed
across the room from each other and divided by a walkway. Pens had sufficient space between

railings for nose-to-nose contact with other pigs, though not enough space to allow a pig to leave

its own pen. After successful weaning from mother’s milk, all pigs consumed the basal diet to
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acclimate to solid food from week 3 to 4. Pigs at 4 weeks of age began consuming the
experimental diets assigned. Feeders were attached to the front of the pens and allowed pigs to
eat ad libitum. Pigs were weighed weekly to monitor growth and were checked daily to ensure
health. Apart from feeding, weighing, and swabbing, human contact with pigs was minimized to
limit influences on the gut microbiome of pigs. This study was approved by the OSU Office of

Responsible Research Practices (IACUC #2019A00000060).

Sample Collection. The microbiome was sampled 3 times during this study via rectal swabs:
prior to beginning experimental diets (day 0, aged 4 weeks), after one week of consuming
assigned diets (day 7, the study midpoint, aged 5 weeks), and after two weeks of dietary
intervention (day 14, end of study, aged 6 weeks) (Fig. 1). Swabs used for collection were sterile
DNA/RNA Shield Collection Tubes (Zymo Research, Irvine, CA, United States) and were stored

at -80 °C after collection prior to sequencing.

Sample Processing and Sequencing. Swabs were sent to CosmoslID, Inc. (Rockville, MD,
United States) for DNA extraction and sequencing. Samples were sequenced via 150 bp paired-
end shotgun sequencing, using an lllumina HiSeq4000 instrument (San Diego, CA, United
States). Unopened collection tubes were used as negative controls. Samples with reads lower
than 1.8M reads were re-sequenced and merged with the prior sequences, allowing increased

microbiome coverage.

Quality of Sequences. Quality of sequences was analyzed using FastQC version 0.11.9 (23).

Sequences were trimmed during annotation in MG-RAST version 4.0.3 (65) if they contained
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more than 5 bases that were below a minimum Phred quality score of 20. Full metadata for MG-

RAST parameters can be found at https://www.mg-rast.org/linkin.cgi?project=mgp93233.

Sequence analyses and taxonomy identification. Raw fastq files were made publicly available
via the NCBI Sequence Read Archive (SRA), project number PRINA601162. Annotated files
are available through MG-RAST (project mgp93233), and annotated taxa can be found in the
Supplementary Tables S3 and S4. Sample reads were annotated via the MG-RAST open-access
pipeline (65) using the RefSeq database (66). No assembly was completed prior to annotation.
Sequences were screened for host DNA using the NCBI Sus scrofa v10.2 genome and, if
identified, were removed. Sequences from Bacteria, Archaea, Eukaryota, and viruses were kept
for further analysis. Phyla and genera were filtered to exclude taxa that were present in less than

67% of tested samples.

Statistical analysis. All data analysis was performed in R version 4.0.3 (67) using RStudio (68)
and results were considered significant at P < 0.05. All code used to conduct analyses can be

found in the tomato-pig-microbiome repository at www.github.com/CooperstoneLab. All figures

were created using ggplot2 (69). Microbiome profiles at both the phyla and genera taxonomic
level were analyzed. Data was normalized using relative abundance to account for differences in
sequencing depth, since rarefaction is no longer recommended as a normalization tool due to
high potential for data loss (70). Relative abundance was calculated by dividing the number of
counts for any one taxon by the total number of counts at that taxonomic level per sample.
Interactive Krona plots (Fig. S1) were created using R packages phyloseq (71) and psadd (72) to

visualize the microbiome composition. To assess sufficiency of sequencing depth, rarefaction
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curves were created using the package ranacapa (73) with a window size of 60,000 counts (Fig.
S2).

To understand overall microbiome differences between diet groups and across time
points, beta diversity was calculated using the R package vegan and functions “vegdist” and
“cmdscale” then visualized using PCoA with a Bray-Curtis dissimilarity matrix. Significance of
separation between treatments was tested via restricted permutation tests using Permutational
Multivariate Analysis of Variance (PERMANOVA) (74) with the R package vegan using the
function “adonis2” (75) and the “how” function from the package permute (76) (model: Beta
Diversity ~ Diet + Time Point + DietxTime Point + Error where each pig was a plot containing 3
samples collected over time). The argument “by” was set to “margin” to assess how much each
individual term contributes to the model. The permutations were restricted within each pig as a
time series for which the same permutation was used across pigs (R code available in
supplemental data).

To examine differences in relative abundances of individual microorganisms across
groups, univariate analyses were conducted using the R package ALDEX2 (42—-44). This specific
package was used because it is designed to analyze high-throughput sequence data as
compositional data (i.e., it accounts for total reads and uses a data transformation for statistical
testing), allowing direct comparison of samples without an effect of total number of reads (43,
45). Raw taxa counts (as compared to relative abundance data) were used and center log ratio
(CLR) transformed for these analyses (42, 43). Parametric tests were used for these analyses as
our data met assumptions for normality.

Alpha-diversity of each sample was calculated from counts using the Shannon index in

the R package vegan with the function “diversity” (75). The Shannon index alpha-diversity
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group means were compared using repeated measures two-way ANOVA (model: Alpha-
Diversity ~ Diet + Time Point + DietxTime Point + Error). Post hoc analyses for significant
model terms were completed using pairwise comparison via t-test to determine where differences
originated.

The ratio of the phyla Bacteroidota (i.e., Bacteroidetes) to Bacilotta (i.e., Firmicutes) was
determined for each sample by dividing relative abundance of Bacteroidota by that of Bacilotta,
each as a percentage of the total phyla. Differences between the ratios were tested between diets
and time points using two-way repeated measures ANOVA given our a priori interest in these
phyla, followed by a pairwise comparison via t-test as a post hoc analysis. Additionally, the
relative abundance of Bacteroidota and Bacilotta phyla were separately tested using two-way

repeated measured ANOVA with a post-hoc test of pairwise comparison by t-test.
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Supplemental Tables: Provided in Excel document:

Goggans_etal 2021 tomato_pig_microbiome_WGS

SUPPLEMENTAL TABLE 1. Weights (kg) of pigs at study day 0 (aged 4 weeks), study day 7
(aged 5 weeks), and study day 14 (aged 6 weeks). There were no significant differences between

diets at any time point by unpaired t-tests.

SUPPLEMENTAL TABLE 2. Sample metadata, containing full sample name and each

variable.

SUPPLEMENTAL TABLE 3. Taxonomic identification annotated at the phyla level via MG-

RAST.

SUPPLEMENTAL TABLE 4. Taxonomic identification annotation at the genera level via MG-

RAST.

SUPPLEMENTAL TABLES. Output from ALDEeX2 univariate analysis at the phyla level,
significant taxa after a multiple testing correction are indicated with a yellow highlight.
Abbreviations: rab.all: median clr value for all samples in the feature; rab.win.Control: median
clr value for the control group; rab.win. Tomato: median clr value for the tomato group; dif.btw:
median difference in clr values between S and NS groups; diff.btw: median difference in clr

values between tomato and control groups; diff.win: median of the largest difference in clr
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values within tomato and control groups; overlap: proportion of effect size that overlaps 0

(i.e. no effect); we.ep: Expected P value of Welch’s t test; we.eBH: Expected Benjamini-
Hochberg corrected P value of Welch’s t test; wi.ep: Expected P value of Wilcoxon rank test;
wi.eBH: Expected Benjamini-Hochberg corrected P value of Wilcoxon test; kw.ep: Expected P
value of Kruskal-Wallace test; kw.eBH: Expected Benjamini-Hochberg corrected P value of
Kruskal-Wallace test; glm.ep: Expected P value of glm test; glm.eBH: Expected Benjamini-

Hochberg corrected P value of glm test

SUPPLEMENTAL TABLE 6. Output from ALDEeX2 univariate analysis at the genera level,
significant taxa after a multiple testing correction are indicated with a yellow highlight.
Abbreviations: rab.all: median clr value for all samples in the feature; rab.win.Control: median
clr value for the control group; rab.win. Tomato: median clr value for the tomato group; dif.btw:
median difference in clr values between S and NS groups; diff.btw: median difference in clr
values between tomato and control groups; diff.win: median of the largest difference in clr
values within tomato and control groups; overlap: proportion of effect size that overlaps 0

(i.e. no effect); we.ep: Expected P value of Welch’s t test; we.eBH: Expected Benjamini-
Hochberg corrected P value of Welch’s t test; wi.ep: Expected P value of Wilcoxon rank test;
wi.eBH: Expected Benjamini-Hochberg corrected P value of Wilcoxon test; kw.ep: Expected P
value of Kruskal-Wallace test; kw.eBH: Expected Benjamini-Hochberg corrected P value of
Kruskal-Wallace test; glm.ep: Expected P value of glm test; glm.eBH: Expected Benjamini-

Hochberg corrected P value of glm test
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