

1 **Replication stress tolerance and management differs between naïve and primed pluripotent
2 cells**

3

4 Georgia R. Kafer^{1,2,4}, Aisling O'Connor^{1,4}, Samuel Rogers¹, Pierre Osteil^{1,3}, Christopher B. Nelson¹,
5 Hilda A. Pickett¹, Patrick P.L. Tam¹, Anthony J. Cesare^{1,5,*}.

6

7 ¹Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia.

8 ²School of Health, University of the Sunshine Coast, Moreton Bay, QLD 4502, Australia

9 ³ Swiss Cancer Research Institute (ISREC), School of Life Sciences, Ecole Polytechnique, Fédérale
10 de Lausanne (EPFL), Lausanne, Switzerland

11 ⁴These authors contributed equally

12 ⁵Lead contact

13 *Correspondence: tcesare@cmri.org.au

14

15 **Summary**

16 Replication stress is an endemic threat to genome stability. For reasons unknown, replication stress
17 response factors become essential during peri-implantation development. This coincides with a stem
18 cell potency switch from the naïve to the primed state. Using genetically matched, chimera-derived
19 mouse naïve embryonic (mESC) and primed epiblast stem cells (mEpiSC) we found that replication
20 stress management differs between potency states. Primed mEpiSCs rely on Atr activity to prevent
21 replication catastrophe, minimize genomic damage, avoid apoptosis, and re-enter the cell cycle.
22 Conversely, under replication stress, mESCs readily activate Atm regardless of Atr activity, undergo
23 replication catastrophe, and induce apoptosis. Primed pluripotent cells therefore engage Atr to
24 counteract replication difficulties and maintain viability, whereas cells in the naïve state are more
25 readily cleared under the same conditions. We anticipate these divergent strategies enable pluripotent
26 cells of different potency states to meet associated proliferative or developmental demands during
27 early development.

28

29 **Keywords**

30 naïve pluripotency, primed pluripotency, embryonic stem cell, epiblast, DNA replication stress,
31 replication stress response, replication catastrophe, Atr, Atm

32 **Introduction**

33 Maintaining genome integrity during embryogenesis is critical for fetal survival and long-term health.
34 A unique challenge of early development is protecting the genome while maintaining rapid cell
35 proliferation. Embryonic pluripotent cells progress through a series of programmed potency changes
36 including the naïve state of mESCs within the blastocyst Inner Cell Mass (ICM), and the primed state
37 of mEpiSCs within the gastrulating embryo (Nichols and Smith, 2009; Weinberger et al., 2016). The
38 potency switch from naïve to primed cells corresponds temporally with a pre-gastrulation phase
39 referred to as peri-implantation development (Rossant and Tam, 2009). Average proliferation rates
40 in naïve and primed pluripotent cells are 12 and 4 hours, respectively; a pace substantially faster than
41 the typical 24-hour doubling times observed in rapidly dividing somatic and cancer cells (Bolton et
42 al., 2016; Singla et al., 2020; Snow, 1977; Starostik et al., 2020). While rapid cell proliferation
43 correlates with mutation and genomic instability in somatic and oncogenic tissues, pluripotent
44 embryonic cells *in vivo*, and in culture, maintain expeditious cell cycles and a 1000-fold lower
45 mutational burden in comparison to differentiated tissues (Giachino et al., 2013; Hong et al., 2007;
46 Tichy, 2011; Xiong et al., 2015). Pluripotent cells must therefore employ robust cellular strategies to
47 maintain overall genome health of the conceptus whilst also facilitating rapid proliferation.

48

49 Compromised DNA replication, termed replication stress, is the primary genomic insult associated
50 with rapid cell division cycles (Zeman and Cimprich, 2014). Replication stress in somatic cells
51 promotes excessive single stranded DNA (ssDNA) at replication forks. Replication Protein A (Rpa)
52 binds this ssDNA, promoting localized recruitment of the master replication stress response regulator,
53 ataxia telangiectasia and Rad3-related (Atr) kinase (Zou and Elledge, 2003). Following double strand
54 break (DSB) induction, the related ataxia telangiectasia mutated (Atm) kinase localizes to DNA
55 lesions and regulates the DSB response (Paull, 2015). Somatic Atr inhibition coupled with replication
56 stress can exhaust the cellular Rpa pool, exposing ssDNA at stalled forks to breakage, thereby acutely
57 activating Atm (Toledo et al., 2017; Toledo et al., 2013). This event cascade, termed replication
58 catastrophe, promotes cell lethality (Buisson et al., 2015).

59

60 Potency state appears to impact how cellular pathways manage genomic threats. Naïve cells of the
61 blastocyst are less sensitive to irradiation induced DNA breaks than primed epiblast cells (Heyer et
62 al., 2000). In this context, primed epiblast cells exhibit a greater apoptotic sensitivity to due to
63 differential Atm-p53 activity relative to their naïve counterparts (Laurent and Blasi, 2015). However,
64 while both Atm and Atr are active during pluripotency, only *Atr* is essential (Barlow et al., 1996; de
65 Klein et al., 2000). Lethality of *Atr*^{-/-} embryos occurs between E4.5 and E8.5, concomitant with the

66 switch from naïve to primed potency at peri-implantation (de Klein et al., 2000). Further, peri-
67 implantation is the specific developmental window during which many replication stress response
68 factors become essential (Kafer and Cesare, 2020). Thus, we hypothesise that pluripotent cell
69 responses to genomic threats may vary across the potency states of early embryogenesis, potentially
70 in alignment with developmental pressures that arise during specific developmental windows.

71

72 Here we investigate how pluripotent embryonic cells manage replication stress. Despite their shared
73 pluripotent characteristic, we find that mESCs and mEpiSCs displayed profound functional
74 differences in the replication stress response. While mEpiSCs leverage Atr-dependent responses to
75 tolerate replication stress and maintain cell division, mESCs readily experience Atm activation,
76 replication catastrophe, and apoptosis under the same replication stress conditions. These data
77 indicate mESCs and mEpiSCs respond distinctly to replication challenges, suggestive of
78 developmentally regulated engagement of genome-integrity pathways during early embryogenesis.

79

80 Results

81 **Replication stress induces distinct cellular responses in naïve and primed pluripotent cells**

82 Using a chimera approach, we created genetically identical mESCs and mEpiSCs from an A2lox ESC
83 line (Iacobino et al., 2011; Mazzoni et al., 2011) that are respectively an *in vitro* representation of the
84 naïve inner cell mass cells (~E3.5) and the primed epiblast (~E7.5) (Osteil et al., 2016) (Fig. 1A). Our
85 cultured mESCs and mEpiSCs exhibited typical *in vitro* characteristics including mESC growth in
86 dense small and round colonies, and mEpiSCs proliferation in flatter and sparser colonies (Fig. 1B).
87 To examine the impact of potency state on the cellular response to genome threats, we subjected
88 mESC and mEpiSC cultures to DNA breaks induced by irradiation (IR), and pharmacologically
89 induced replication stress through treatment with the DNA polymerase inhibitor Aphidicolin (APH)
90 or the ribonucleotide reductase inhibitor Hydroxyurea (HU). Measuring apoptosis in live cells with
91 the fluorescent NucView-488 caspase-3 substrate (Smith et al., 2012) revealed subtle increases in
92 apoptosis rates in irradiated mESC and mEpiSC cultures, with mEpiSCs responding slightly more to
93 IR than the mESCs (Fig. 1C and Fig S1A). Replication stress, however, induced substantially
94 differently apoptotic outcomes between the cell lines. Both APH and HU treatments significantly
95 increased apoptosis in mESCs, but not in mEpiSCs (Fig. 1D, E and Fig S1B-E). In agreement, the
96 apoptosis marker cleaved caspase-3 was elevated in whole cell extracts derived from APH or HU
97 treated cultures of pluripotent mESCs, but not mEpiSCs (Fig 1F).

98

99 Following an HU or APH challenge, mESCs exhibited marked increases in phosphorylation of H2ax
100 (γ -H2ax) (Fig 1F and Fig S1F) and Trp53 (p53)-S18 (Fig 1G), and a sustained HU-induced S-phase

101 arrest (Fig 1H, Fig S1G). In contrast, the extent of γ -H2ax and Trp53-S18 phosphorylation in EpiSCs
102 was slightly elevated with HU or APH but did not approach that observed in identically treated mESC
103 cultures (Fig 1 F, G and Fig S1F). Furthermore, mEpiSCs initially halted in S-phase, but eventually
104 overcame HU treatment and resumed replication (Fig 1H).

105

106 The different response between potency states was not the result of a blunted DNA damage response
107 (DDR) in either cell line. Both mEpiSCs and mESCs exhibited HU-induced Chek1 (CHK1)
108 phosphorylation, indicative of Atr kinase activity (Fig 1F). Likewise, both cell lines demonstrated
109 similar IR dose-dependent γ -H2ax staining, and phosphorylation of the downstream Atm effector
110 Chek2 (CHK2) (Fig S1G, H). Distinct potency-associated responses also did not result from
111 differentiation in one or both cell lines. Both cell types remained pluripotent in our analysis window
112 as demonstrated by continued Pou5f1 (Oct3/4) expression following APH or HU treatment (Fig. 1G).
113 We focused on HU-induced replication stress for the remainder of this study as reduced nucleotide
114 availability better mimics physiological replication disturbances occurring through high proliferative
115 pressure (Vesela et al., 2017).

116

117 **Pluripotency state influences genomic stability following replication stress**

118 Replication stress can manifest as chromosomal aberrations, mitotic errors, and DNA breaks
119 (Wilhelm et al., 2020). Consistent with the observed differential cellular response to replication stress,
120 chromosome breaks were significantly elevated in mitotic mESCs, but not in mEpiSC, following HU
121 treatment (Fig 2A, B). Similarly, HU treated mESCs, but not mEpiSCs, exhibited a significant
122 increase in mitotic separated sister chromatids (Fig 2A, B). This is consistent with premature
123 uncoordinated loss of sister chromatid cohesion, termed cohesion fatigue (Daum et al., 2011); a
124 phenomenon associated with replication stress-induced lethality (Masamsetti et al., 2019). Neutral
125 comet assays revealed that neither cell type exhibited extensive DSBs following HU treatment,
126 though both potency types were equally affected by IR (Fig S2A, B). However, alkaline comet assays,
127 which assess a greater range of DNA damage (Langie et al., 2015), revealed mESCs accrue damage
128 at the low dose of 0.25 mM HU, whereas mEpiSCs require a higher dose of 2 mM HU to induce
129 similar DNA lesions (Fig 2C, D). Under replication stress conditions, the most likely factor promoting
130 elevated tail moments in alkaline but not neutral comet assays is the production of excessive ssDNA
131 associated with challenged DNA synthesis. Collectively the data demonstrate that naïve mESCs are
132 more susceptible than primed mEpiSCs to the negative molecular and cellular outcomes of replication
133 stress.

134

135 **Potency state correlates with differential DDR engagement upon replication stress**

136 DDR pathways depend heavily upon the master regulatory kinases Atm and Atr (Blackford and
137 Jackson, 2017). We profiled differences in kinase activity in pluripotent cells under replication stress
138 conditions by performing an unbiased phospho-proteomic analysis of HU-treated mESC and mEpiSC
139 cultures (Fig. 3A). 2,192 significant phosphorylation sites were hierarchically clustered by
140 normalised expression, revealing five primary row clusters (Fig. 3B, Table S1). Kinase motifs were
141 assigned to each phosphorylation site based on the adjacent amino acid residues. The kinases
142 displaying the lowest false-discovery rate across the dataset using Fisher's Exact test were: Atm/Atr,
143 Prkdc (DNA-PKcs), Gsk3-Erk1-2, Cdk5-Cdk and Cdc2b (Fig. 3C); kinases respectively belonging
144 to the DDR, stem cell potency, and cell cycle control (Blackford and Jackson, 2017; Pao and Tsai,
145 2021; Singh et al., 2012). We note that Gsk3-Erk1-2 phosphorylation differences were expected given
146 the maintenance of primed and naïve stem cell states requires culture modulation of FGF, activin, and
147 LIF, which signal through Gsk3-Erk1-2 pathways (Cho et al., 2012).

148

149 Phosphorylation sites in cluster 3 demonstrated strong positive enrichment of Atm/Atr motifs and
150 were generally highest in the HU-treated mESC samples (Fig. 3C-D). Atm and Atr kinases display
151 overlapping kinase motifs (pS/T-Q) making their substrates difficult to segment in unbiased datasets
152 (Mu et al., 2007). However, a selection of Atm/Atr substrates from cluster 3 were more responsive to
153 HU in mESCs based on their higher Log₂ fold-change (Fig. 3E). This included increased
154 phosphorylation of Atm autoactivation site (Atm-S1987) specifically in mESCs cultures. (Fig. 3E).
155 These data were surprising because Atr activity during somatic replication stress (Toledo et al.,
156 2013) suppresses Atm activation, suggesting a different mechanism may be active during replication
157 stress in mESCs.

158

159 **Atr suppresses replication catastrophe in primed but not naïve pluripotent cells**

160 To investigate the interplay between Atm and Atr signalling, we treated mESC and mEpiSC cultures
161 with HU and suppressed Atr activity with the specific inhibitor VE-822 (Charrier et al., 2011).
162 Cultures were treated with 2 mM HU for 8 hours ± VE-822, with Cl_dU supplemented for the final 30
163 minutes to identify replicating cells. In these conditions, γ-H2ax levels in Cl_dU-positive mESCs were
164 significantly increased with HU but were not further elevated with VE-822 co-treatment (Fig. 4A, B).
165 In mEpiSCs, HU alone did not significantly increase γ-H2ax levels, and it was only when cultures
166 were co-treated with HU and VE-822 that H2ax phosphorylation was significantly elevated (Fig 4A,
167 B).

168

169 In somatic and cancer cells, Atr activation prevents replication catastrophe (Toledo et al., 2013).
170 During replication stress, Atr activity prevents generation of excessive ssDNA at stalled replication

171 forks. When Atr is inhibited, replication stress continues to generate ssDNA that bound by Rpa,
172 resulting in the eventual depletion of the cellular Rpa pool. Continued production of ssDNA leads to
173 exposed single-strand segments, DNA breakage, Atm-activation, and a consequential increase in γ -
174 H2ax (Toledo et al., 2013). Chromatin bound Rpa1 increased significantly in mEpiSCs when cells
175 were co-treated with HU and VE-822, but not when treated with HU alone (Fig 4C, D). Conversely,
176 mESCs accumulated chromatin bound Rpa1 when treated solely with HU, and Rpa1 accumulation
177 did not increase further with VE-822 co-treatment (Fig 4C, D). Replication catastrophe is detected
178 by co-immunofluorescence of chromatin bound Rpa1 and γ -H2ax (Toledo et al., 2013). We found
179 that replication catastrophe occurs in mESCs treated with HU alone or HU + VE-822 (Fig 4E). While
180 mEpiSCs accumulated both Rpa1 and γ -H2ax exclusively in HU + VE-822 conditions, and even then,
181 to a lesser degree than observed in mESCs (Fig 4E). The data suggest mESCs are primed to enter
182 replication catastrophe when faced with replication challenges, while mEpiSCs leverage Atr-
183 dependent mechanisms to retain viability during replication stress.

184
185 Atr activation is signalled through phosphorylation of Rpa2-S33 and Chek1, whereas Atm
186 phosphorylates Rpa2-S4/8 and Chek2 (Liu et al., 2012). Both mEpiSCs and mESCs display increased
187 Atr activation with HU, and consequential Atr inhibition with VE-822 co-treatment. Replication
188 catastrophe corresponds with Atm-dependent signalling as DNA breaks accumulate (Toledo et al.,
189 2013). In congruence with the above observations, Atm-dependent phosphorylation of Chek2 and
190 Rpa2-S4/8 occurred in mEpiSCs treated with HU + VE-822 but not HU alone. Conversely, Chek2
191 and Rpa2-S4/8 were readily phosphorylated in mESCs with HU alone and with HU + VE-822 co-
192 treatment (Fig 4F).

193
194 Both mESCs and mEpiSCs retained pluripotency in our analysis window during Atr inhibition (Fig
195 S3A), suggesting the observed differences in replication catastrophe were not due to induced
196 differentiation of either cell line. Further, consistent with replication catastrophe induced death,
197 elevated levels of the apoptotic marker cleaved caspase-3 were evident in both HU and HU + VE-
198 822 treated mESCs, but were only elevated in mEpiSCs when cultures were cotreated with HU and
199 VE-822 (Fig 4F, Fig S3A). Both cell types activated and accumulated Trp53 following replication
200 stress (Fig 1G). However, p21, a p53-regulated downstream mediator of cell cycle arrest (Abbas and
201 Dutta, 2009) accumulated more in HU treated mEpiSCs than mESCs (Fig S3A,B). This is consistent
202 with mEpiSCs arresting proliferation in response to replication stress while mESCs instead promoted
203 cell death. In different mESC and mEpiSC cell lines [R1 mESCs (Nagy et al., 1993) and Delmix
204 mEpiSCs] we observed elevated cleaved caspase-3 in both the HU and HU + VE-822 treated R1
205 cultures, but only in the in the HU + VE-822 treated Delmix cells (Fig S3C). Together the data

206 indicate that under identical replication challenges, primed epiblast cells counter replication stress
207 using Atr-dependent signalling to maintain viability, whereas naïve mESCs readily experience
208 replication catastrophe and induce apoptosis.

209

210 **Discussion**

211 Our findings demonstrate different tolerance and management of replication stress between naïve and
212 primed pluripotent cells. When subjected to identical pharmacological replication stress, naïve
213 mESCs displayed more frequent chromosome segregation errors, required a lower HU dose to induce
214 genomic damage, displayed a greater inability to resume DNA synthesis, and presented higher levels
215 of cleaved Caspase-3 than chimera-derived and genetically matched primed mEpiSCs. The
216 Atr/Chek1 and Atm/Chek2 pathways were respectively activated with replication stress and IR in
217 both potency states. However, a distinction between the cell lines was drawn regarding the impact of
218 Atr activity on cell and molecular outcomes. In HU treated mEpiSC cultures, Atr prevented excessive
219 Rpa1 chromatin loading; Rpa, H2ax, and Chek2 phosphorylation; and apoptosis. Conversely, Rpa1
220 chromatin loading; Rpa, H2ax, and Chek2 phosphorylation; and apoptosis readily occurred in HU
221 treated mESCs regardless of Atr activity. In this regard, the replication stress response of mEpiSCs
222 resembles that of somatic tissues, where Atr was shown previously to prevent replication catastrophe
223 (Toledo et al., 2017; Toledo et al., 2013). In contrast, naïve mESCs differ from other cell types by
224 promptly succumbing to apoptosis in the face of a replication challenge, irrespective of Atr activity.

225

226 We do not suggest Atr is absent from the replication stress response in naïve pluripotent cells. Instead,
227 we interpret our findings to indicate naïve and primed pluripotent cells manage replication stress
228 differently. Replication stress is a pervasive threat and cultured mESCs display markers of
229 spontaneous replication defects (Ahuja et al., 2016). This includes H2ax phosphorylation and
230 remodelled replication forks protected by Rad51 (Ahuja et al., 2016). Atr is implicated in somatic
231 replication fork remodelling and protection (Berti et al., 2020), and inhibiting Atr reduces replication
232 rates (Blakemore et al., 2021) and partially suppresses spontaneous γ-H2ax (Ahuja et al., 2016) in
233 mESC cultures. Additionally, we observe Atr-dependent Chek1 phosphorylation in HU treated
234 mESCs. What is unique in naïve pluripotent cells is the ease in which cultures activate Atm and slide
235 into replication catastrophe when faced with a replication challenge. Considering this finding, it is
236 not surprising that Atm was recently observed to play a prominent role in the replication stress
237 response of naïve mESC cultures (Blakemore et al., 2021). In agreement, *Atr* deletion is lethal after
238 E4.5, during a later developmental window than blastocyst-derived mESCs, and consistent with a less
239 prominent role for Atr during naïve pluripotency (de Klein et al., 2000).

240

241 Despite our efforts we did not identify why replication stress is managed differently in mESC and
242 mEpiSC cultures. However, we interpret these data to indicate that embryonic cells tune replication
243 stress response management to address cell fitness, proliferation demands, and/or developmental
244 milestones associated with each potency state. One possibility is that Atr and replication stress
245 responses are dampened in mESCs to rapidly clear damaged cells. Pre-implantation embryos are
246 generally isolated from exogenous threats, and a diminished replication stress response is likely
247 sufficient to cope with spontaneous replication defects early *in utero*. However, should replication
248 become excessively challenged in the naïve state, Atr is quickly overwhelmed, and replication
249 catastrophe removes the cell in question. This strategy could quickly eliminate potentially damaged
250 cells and prioritize cell quality. At peri-implantation, proliferation rates substantially accelerate and
251 factors critical in the replication stress response become essential during this time (Kafer and Cesare,
252 2020). We found Atr assumes somatic-like function in primed pluripotent cells and suppresses
253 replication catastrophe. The temporal significance of engaging a complete replication stress response
254 during primed pluripotency is not clear. Primed pluripotent cells may prioritize growth arrest and
255 repair of replication stressed cells to cope with increasing proliferative demands that potentially
256 impart greater endogenous replication stress. Additionally, we speculate that as the embryo moves
257 into gastrulation and organogenesis, the development of more complex embryonic structures benefit
258 from supporting cell fidelity to maintain nascent tissue architecture.

259
260 How stem cells maintain genome integrity continues to be explored. Recent data show that telomere
261 protective mechanisms in mESCs diverge from somatic tissues (Markiewicz-Potoczny et al., 2021;
262 Ruis et al., 2021). Here we demonstrated differences in the mESC replication stress relative to
263 mEpiSC and somatic tissues. If, and how, other genome maintenance strategies diverge between
264 somatic and pluripotent tissues is a topic for future exploration.

265 **Acknowledgements**

266 The Australian Cancer Research Foundation (ACRF) supported Telomere Analysis Center, and
267 Biomedical Proteomics Facility, both located at the Children's Medical Research Institute (CMRI),
268 are thanked for microscopy and mass spectrometry infrastructure. We thank Pablo Galaviz for his
269 assistance with statistical analyses. GK is supported by an Ideas grant from the Australian National
270 Health and Medical Research Council (NHMRC) (2011344). HAP and laboratory are supported by
271 NHMRC Ideas grants (1187606 and 2003250). PT and laboratory are supported by NHMRC Project
272 Grants (632776, 1127976) and a Research Fellowship (1110751), and by an Australian Research
273 Council (ARC) Discovery Project grant (DP160103651). AJC and laboratory are supported by an
274 ARC Future Fellowship (FT210100858) and Discovery Project grant (DP210103885), an NHMRC
275 Ideas grant (1185870), and philanthropy from the Neil and Norma Hill Foundation.

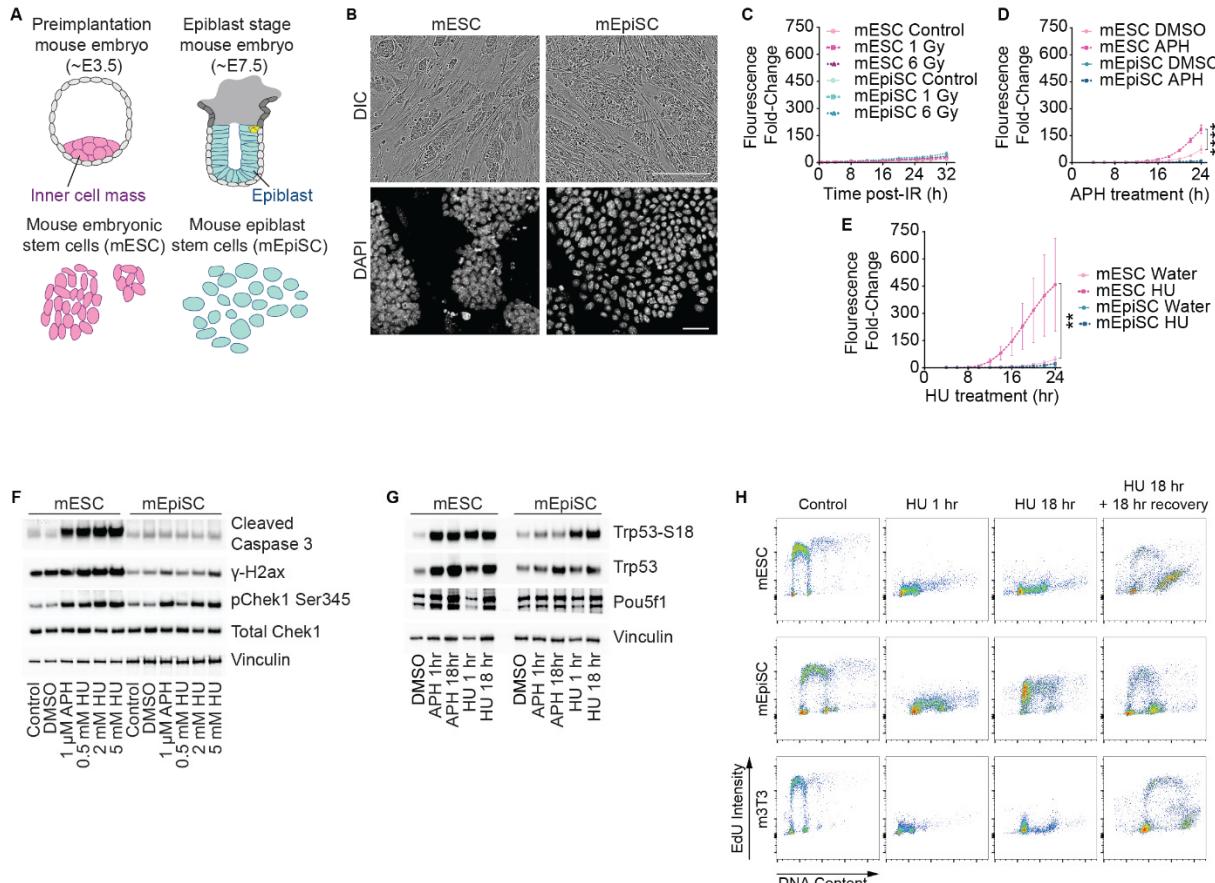
276

277 **Author contributions**

278 GRK and AJC conceived of the study.
279 GRK, AO'C, PT, AJC designed experimentation.
280 GRK and AO'C were the primary scientists and completed all cell and molecular biology, live and
281 fixed imaging, and biochemical analysis.
282 SR completed all mass spectrometry and associated analysis.
283 PO created cell lines and provided feedback on experimental design.
284 PG assisted with statistical analysis.
285 CBN assisted with comet assays and analysis under supervision from HAP.
286 GRK, AO'C, SR, AJC completed experimental analysis and interpretation and created the figures.
287 GRK, AO'C and AJC wrote the manuscript with assistance from and SR with feedback from all
288 authors.

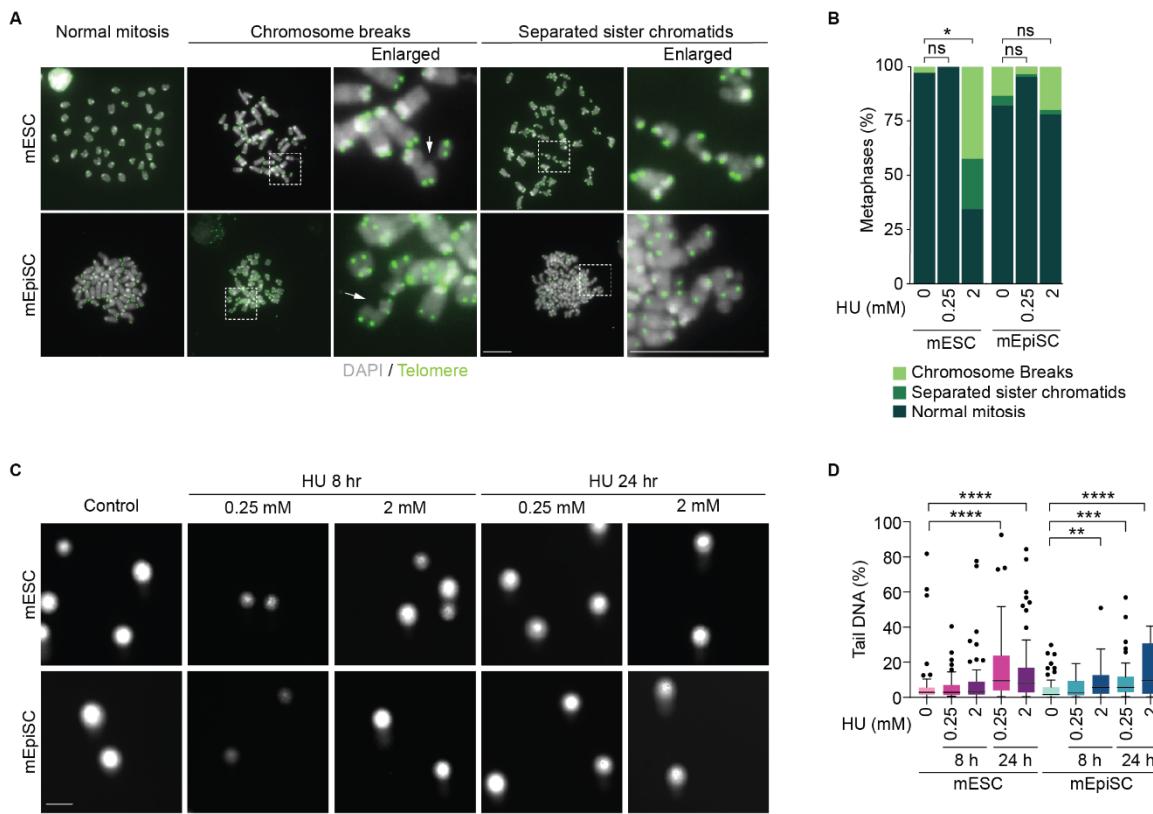
289

290 **Declaration of interests**

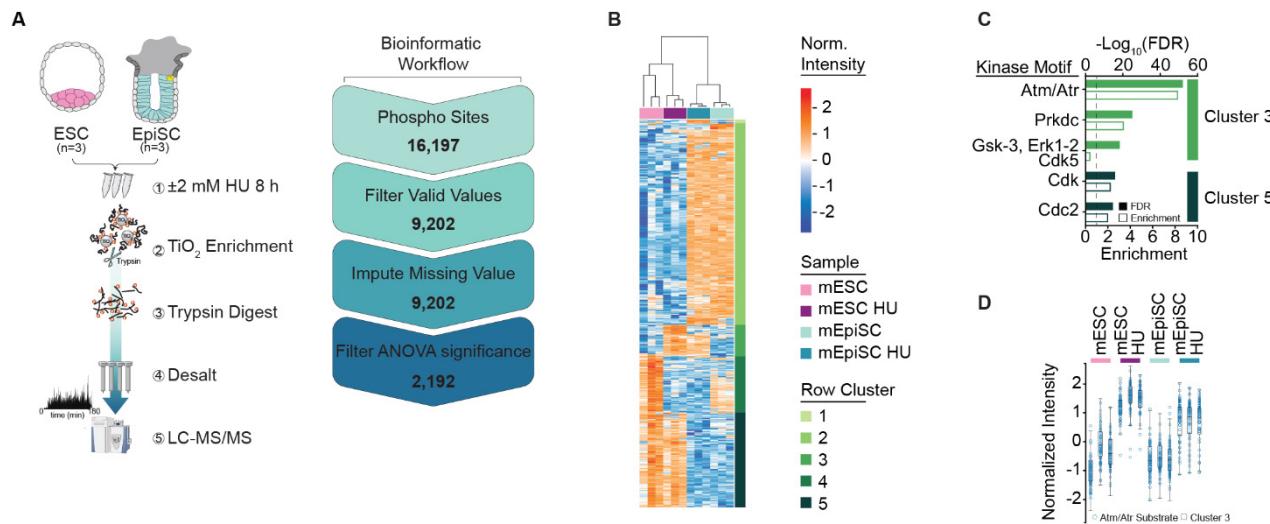

291 The authors have no competing interests to declare.

292

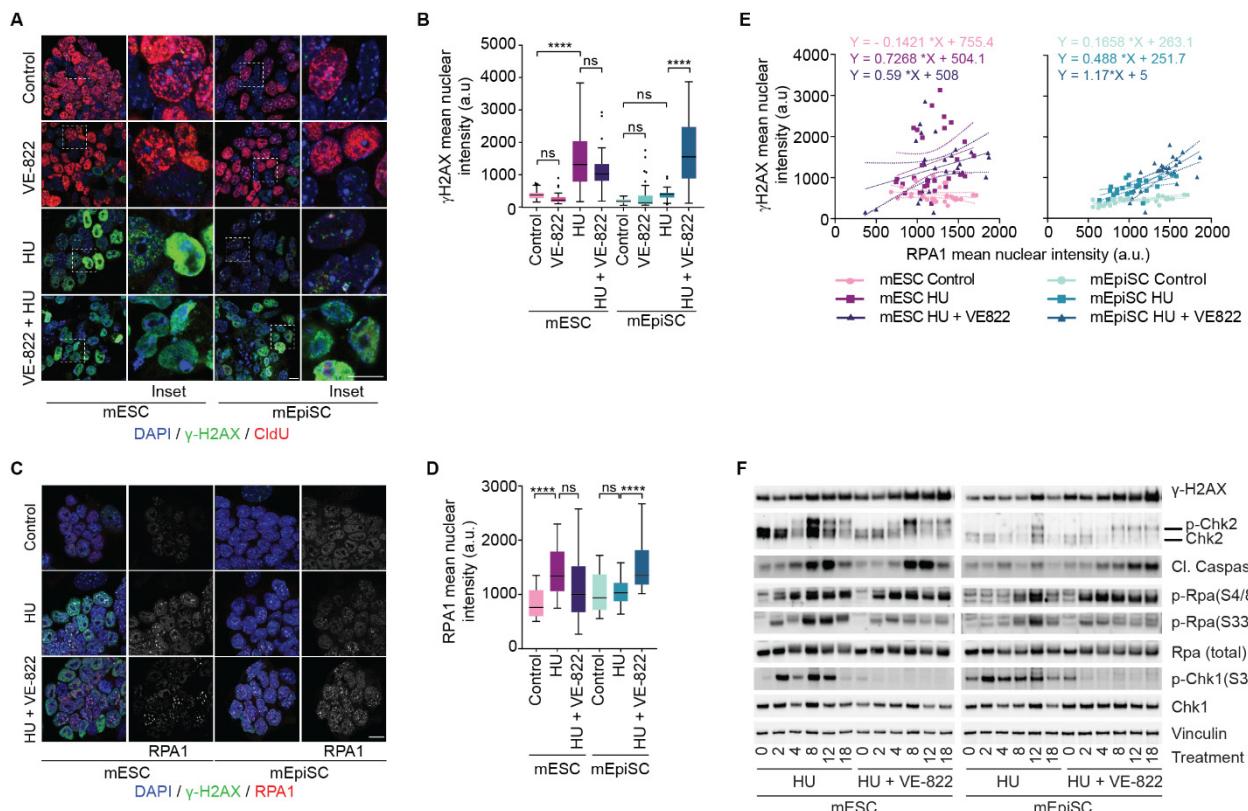
293 **Inclusion and diversity**


294 This study did not feature human or non-human subjects, nor genomic datasets. Authors on this paper
295 include one or more individuals who self-identify as an underrepresented ethnic minority in science,
296 who self-identify as LGBTQ+, and who received support from programs designed to increase
297 diversity in science.

298 **Figures and legends**



299 **Figure 1: Naïve mESCs but not primed mEpiSCs readily succumb to replication stress.**


300 (A) Schematic of sources of murine embryonic (mESC) and epiblast (mEpiSC) stem cells. (B) 301 Differential interference contrast (DIC) and DAPI fluorescent micrographs of stem cells in culture. 302 Scale bar 300 μ m. (C-E) Quantification of apoptosis in cultures treated with (C) gamma-irradiation, 303 (D) 1.25 μ M Aphidicolin (APH), or (E) 2.5 mM Hydroxyurea (HU). Mean data (\pm SD) from > 2 304 independent experiments. Analysis using ANOVA (Bartlett's test, comparing area under the curve 305 for each condition). Supplementary Figure 1A shows the data from (C) with a different y-axis scale. 306 (F) Western blots of whole cell extracts derived from cultures treated with APH or HU for 18 hours 307 (n > 2 experimental repeats). (G) Western blots on whole cell extracts derived from cultures treated 308 with 2 mM HU for 1 or 18 hours (n > 2 experimental repeats). H) Flow cytometry measuring DNA 309 synthesis (EdU Intensity) and content of cultures treated with 2 mM HU for 1hr, 18 hrs, or 18 hrs 310 followed by an 18-hr recovery period (> 2 experimental replicates).

313 **Figure 2: Molecular outcomes to replication stress differ between naïve and primed pluripotent**
314 **cells.** A) Representative images of mitotic chromosome spreads following 24 hours \pm 0.25 mM or 2
315 mM HU. Stained with DAPI (grey) and telomere PNA fluorescent *in situ* hybridization (green), Scale
316 bar = 20 μ m. B) Quantification of the experiment in (A) (mean n = 3 experimental replicates
317 quantifying \geq 15 mitoses spreads per replicate). Raw data was normalized to represent metaphase
318 percentage. P values were calculated using a Wilcoxon test and corrected using the Benjamini –
319 Hochberg method to account for false discovery rate. C) Alkaline comet assay of cultures treated with
320 HU for 8 hrs or 24 hrs, Scale bar 50 μ m. D) Quantification of % Tail DNA from (C) in cells treated
321 with HU for 8 or 24 hours (n = 3 experimental replicates of \geq 30 cells per replicate compiled into a
322 Tukey box plot. Analysis using Kruskal-Wallis and Dunn's multiple comparisons test. For all panels
323 **** = p < 0.0001, *** = p < 0.001, ** = p < 0.01, * = p < 0.05, ns = not significant.

324 **Figure 3: Replication stress induces differential DNA damage response signalling in naïve and**
325 **primed pluripotent cells. A)** Schematic of the mass spectrometry workflow. **B)** Hierarchically row
326 and column clustered heatmap showing normalized intensity of 2,192 significant phosphopeptides
327 detected by mass-spectrometry in vehicle and HU-treated mESC and mEpiSC cultures (n=3
328 experimental replicates). **C)** The top 5 predicted kinase motifs within all row clusters from (B).
329 Rankings determined by $-\text{Log}_{10}\text{FDR}$, where enrichment values ≥ 1 indicate positive enrichment,
330 analysis using Fisher's Exact Test. **D)** Normalised intensity of Atm/Atr substrates from cluster 3,
331 superimposed over all cluster 3 phosphopeptides. **E)** Log₂ Fold-Change (HU vs. vehicle) values for a
332 selection of Atm/Atr substrates from cluster 3.

333

334 **Figure 4: Atr prevents replication catastrophe in primed but not naïve embryonic pluripotent**
 335 **cells.** A) Representative micrographs of mESC and mEpiSC cultures treated with, 2 μ M VE-822 and
 336 2 mM HU, alone or in combination, for 8 hrs and stained for DNA (DAPI, blue), γ H2ax (green), and
 337 CldU (red). Scale bar in = 5 μ m. B) Quantification of γ H2AX mean nuclear intensity in arbitrary
 338 units (a.u.) (n = 2 experimental replicates quantifying \geq 10 nuclei per replicate compiled into a Tukey
 339 box plot, analysis performed using ANOVA with Brown-Forsythe post-hoc test, **** = p < 0.001,
 340 ns = not significant). C) Representative micrographs of cultures treated with 2 mM HU or HU and 2
 341 μ M VE-822 in combination, for 8 hrs, then pre-extracted and stained for DAPI (blue), γ H2ax (green)
 342 and Rpa1 (red). Scale bar = 5 μ m. D) Quantification of Rpa1 mean nuclear intensity (a.u.) from the
 343 experiment in (C), n = 2 experimental replicates quantifying \geq 10 nuclei per treatment, data
 344 presentation and statistics as described in (F). (E) Correlation plots (linear regression) of γ H2ax and
 345 Rpa1 mean nuclear intensity from mESC and mEpiSC from (C). Linear regression equations for each
 346 slope are indicated. (F) Immunoblots of whole-cell extracts derived from cultures treated with 2 mM
 347 HU alone or in combination with 2 μ M VE-822 for the indicated time (representative example of 2
 348 experimental repeats). For all panels **** = p < 0.0001, ns = not significant.

349 **STAR Methods**

350 **Key Resources Tables**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
<i>Drugs and chemical reagents</i>		
DMSO	Sigma Aldrich	276855
Aphidicolin	Sigma Aldrich	A0781
Hydroxyurea	Sigma Aldrich	H8627
VE-822	SelleckChem	S7102
YOYO-1	ThermoFisher Scientific	Y3601
EdU	ThermoFisher Scientific	A10044
CldU	Sigma Aldrich	C6891
Telomere PNA probe (Alexa488-OO-(CCCTAA)3	Panagene	F1004
6-carboxyfluorescein-TEG azide	Berry and Associates	FF 6110
sodium L-ascorbate,	Sigma Aldrich	A4034
Copper (II) sulphate	Sigma Aldrich	451657
Proteinase K	Sigma Aldrich	03115852001
Methanol	Sigma Aldrich	322415
RNase A	Qiagen	1007885
Triton-100X	Sigma Aldrich	X100
Ponceau S	Sigma Aldrich	P7170
Ethanol	Supleco	1.00983,2511
EDTA	Chem-Supply	EA022
Sodium Hydroxide	Ajax Finechem	482
Formamide	Sigma Aldrich	221198
BSA	Sigma Aldrich	A7906
NuPAGE MES SDS Running buffer	ThermoFisher Scientific	NP0002
Tween-20	Sigma Aldrich	P7949
NucView Caspase-3 Enzyme Substrate 488	Biotium	10402
Acetic acid	Ajax Finechem	AJA1
B-mercaptoethanol	Sigma Aldrich	M3148
SDS	Amresco	0227
Formaldehyde	Merck	1.04003.2500
Prolong gold antifade mounting media	ThermoFisher Scientific	P36930
Colcemid	ThermoFisher Scientific	15212012
B-agarase	NEB	M0392L
Clarity Western ECL Substrate	Bio-rad	1705060

larity Max Western ECL Substrate	Bio-rad	1705062
PBS	Millipore	2810305
Coomassie Brilliant Blue	Biorad	161-0406
Sodium Chloride	Sigma Aldrich	S9625
Immersion oil	Zeiss	444970-9010-000
Ammonium Bicarbonate	Sigma Aldrich	09830
Trifluoroacetic Acid (TFA)	ThermoFisher Scientific	85183
Trypsin / LysC	Promega	VA1061
Ammonia Solution (25%)	Merck Millipore	5.33003
Sodium Deoxycholate (SDC)	Sigma Aldrich	D6750
Tris(2-carboxyethyl)phosphine (TCEP)	Sigma Aldrich	C4706
2-Chloroacetimidate (CAM)	Sigma Aldrich	22790
Titansphere Phos-TiO Bulk Material, 10 µm	GL Sciences	5010-21315
Empore C8 SPE Disks	3M	66882-U
Attract SPE Bio SDB-RPS Disks	AffiniseP	Bio-RPS-M-47.20
Optima MeOH (LC-MS)	Fisher Chemicals	A456-1
ReproSil-Pur C18-AQ, 1.9 µm	Dr. Maisch GmbH	r219.aq.
Formic acid	Sigma Aldrich	5.33002
Acetonitrile	Honeywell	LC015
Antibodies		
Mouse anti-Chk1	CST	2360
Rabbit anti-Chk1Ser345ph	CST	2341
Mouse anti-Chk2	CST	2662
Mouse anti-γH2AX	Millipore	05-636
Rabbit anti-Cleaved caspase 3	CST	9661S
Mouse anti-Oct4	Santa Cruz	sc-5279
Rabbit anti-p21	Abcam	ab188224
Mouse anti-p53	CST	2524
Rabbit anti-p53Ser15ph	CST	9284
Rabbit anti-Rpa	Novus	NB100-332
Rabbit anti-RpaSer4/8ph	Bethyl	A300-245A
Rabbit anti-RpaSer33ph	Bethyl	A300-246A
Mouse anti-vinculin	Sigma Aldrich	V9131
Mouse anti-β-actin	Sigma Aldrich	A5441
Rat anti-BrdU	Abcam	Ab6326

Polyclonal Goat anti-rabbit-IgG/HRP	Dako	P0448
Polyclonal Goat anti-mouse-IgG/HRP	Dako	P0447
Goat anti-rat Alexa Fluor 594	ThermoFisher Scientific	A-11007
Donkey anti-mouse Alex Fluor 488	ThermoFisher Scientific	A-21202
Donkey anti-mouse Alex Fluor 594	ThermoFisher Scientific	A-21203
Goat anti-rabbit Alexa Fluor 594	ThermoFisher Scientific	A-11012

351

Software and Algorithms	
Software / algorithm name	Source
ZEISS Zen Black and Zen Blue	Zeiss
Metafer 4	Metasystems
Image J / Fiji	NIH, USA
FlowJo Version V10	FlowJo
Graphpad Prism v9	GraphPad Software
Cell profiler v2.1.1	Cell profiler
Incucyte Zoom	Santorius
Image Lab	Bio-Rad
MaxQuant (1.6.0.16)	Juergen Cox
Adobe Illustrator 2020	Adobe

352

353 **Resource availability**

354 *Lead contact*

355 Further information and requests for resources should be directed to the Lead Contact
356 (tcesare@cmri.org.au).

357

358 *Materials availability*

359 This study did not generate new unique reagents.

360

361 **Method details**

362 *Cell culture*

363 Mouse cells (immortalised 3T3 fibroblasts, inactivated MEFs (iMEFs, E13), epiblast stem cells
364 (mEpiSC) and embryonic stem cells (mESC) were grown under physiologically normoxic conditions
365 (10% CO₂, 3% O₂ humidified environment at 37°C). iMEF and m3T3 cells were maintained in
366 complete DMEM (10% FBS). mESCs were grown in ESC media (DMEM, 10% ES batch tested FBS
367 (heat inactivated), mouse recombinant LIF (10 ng/mL, Millipore ESGRO® ESG1107) with media
368 exchanged daily and cells passaged at ~70% confluence using 0.05% Trypsin. Both mESC and

369 mEpiSC were passaged onto pre-plated iMEFs growing on gelatinised (0.1% gelatin, Sigma Aldrich, 370 G9391) plates. mEpiSCs were grown in EpiSC media containing (KnockOut DMEM (Gibco, 371 10829018), 20% KnockOut serum replacement (Gibco, 10828010), supplemented with FGF2 (10 372 µg/mL, R&D, 233-FB/CF) and Activin (20 µg/mL, R&D, 338-AC/CF). mEpiSC media was 373 exchanged daily and cells passaged at ~80% confluence using sequential collagenase (3mg/mL 374 collagenase Type IV, ThermoFisher, 17104-019) and 0.05% trypsin dissociation steps in the presence 375 of ROCKi (1 µg/mL, Stem Cell Technologies, Y-27632) during passage and for 24 hours after 376 splitting. All media was supplemented with 1x GlutaMAX (ThermoFisher, 35050061), 1x MEM 377 NEAA (ThermoFisher, 11140050) and β-mercaptoethanol (0.05 mM, Sigma Aldrich, M3148). 378 iMEFs were generated from PMEF-CFL EMB Millipore EmbryoMax® Primary MEFs expanded and 379 irradiated with 30 Gy. The following compounds were used in cell treatments: dimethyl sulfoxide 380 (DMSO, Sigma-Aldrich, 276855), Aphidicolin (APH, Sigma-Aldrich, A0781), Hydroxyurea (HU, 381 Sigma-Aldrich, H8627), VE-822 (Selleckchem, S7102), or CldU (Sigma-Aldrich, C6891) for 382 indicated times at indicated concentrations. Where necessary, irradiation was performed using a 383 Gammacell 3000 Elan irradiator for the indicated dosage. DIC images were captured using a EVOS 384 cell imaging system (ThermoFisher).

385

386 *Proliferation and apoptosis assays*

387 Cells were seeded into 96-well plates at 5,000 cells / well with a minimum of 2 technical replicates 388 per condition. After 24 hours, cells were treated with the apoptosis indicator NucView Caspase-3 389 Enzyme Substrate 488 (1:1000, Biotium, 10402) for 30 minutes. Cells were treated as required and 390 placed in an Incucyte live cell imaging system (Sartorius). Cells were imaged every 2 hours for a 391 maximum of 36 hours without interruption. Cell masks were generated using Incucyte Zoom software 392 was used to estimate changes in cell proliferation (recorded as occupied surface area mm²) and 393 apoptosis was estimated measuring the intensity of activated NucView substrate (integrated 394 fluorescence intensity calculated using summed pixel intensity in calibrated units to determine the 395 relative fluorescence intensity as units per image). Once defined, cell mask parameters were used 396 unchanged for all analysed data across each experiment.

397

398 *Immunoblotting*

399 Cells were collected via trypsinisation and counted prior to PBS washing and pelleted via 400 centrifugation (1,000 rpm for 5 minutes) prior to snap freezing. Cells were thawed and lysed in 4x 401 Lithium dodecyl sulfate (LDS) at a concentration of 10,000 cells/µL for 10 minutes at RT with 402 intermittent mixing. Extracts were snap frozen again, thawed and proteins denatured at 65 °C for 10 403 minutes. Protein extracts were resolved on NuPage Novex Bis–Tris 4–12% gels (ThermoFisher,

404 NP0321BOX) and electrophorized at 200V for 35 minutes at RT or 90 minutes at 4°C for greater
405 separation (pChk2) in 1x NuPAGE MES SDS Running buffer (ThermoFisher, NP0002). Proteins
406 were transferred onto nitrocellulose membranes at 100 V for 1 hour using transfer buffer (25 mM
407 Tris-base (Chem-Supply, TA034), 192 mM Glycine [pH 8.3] (Sigma Aldrich, 410225) with 10%
408 methanol (Sigma Aldrich, Chem-Supply, TA034), 322415)). Transfers were confirmed with
409 reversible Ponceau S (Sigma-Aldrich, P7170) then blocked with 5 % skim milk (for non-
410 phosphorylated protein targets) TBS-T (20 mM Tris (Chem-Supply, TA034), 150 mM NaCl (Sigma
411 Aldrich, S9625), 0.1% Tween 20 [pH 7.6] (Sigma Aldrich, P7949)) or 5% BSA-TBS-T (for
412 phosphorylated protein targets) for 1 hour and probed with primary antibody overnight at 4 °C with
413 gentle agitation. Blots were then washed 5 x 5 minutes in 1x TBS-T, probed with secondary
414 antibodies, washed 5 x 5 minutes with TBS-T and rinsed with dH₂O before adding standard (Bio-rad,
415 1705062) or maximum ECL (Bio-rad, 1705062) for 2 minutes prior to digital visualisation on a BIO-
416 RAD ChemiDoc using Image Lab software. See Supplemental Table 2 for primary and secondary
417 antibody details.

418

419 *Flow Cytometry*

420 Cells were treated with 100 µM EdU (ThermoFisher, A10044) for 30 minutes prior to harvesting by
421 trypsinisation. Cells were centrifuged at 2000 RPM for 5 minutes, washed with PBS and centrifuged
422 again prior to fixation with 70 % ethanol. Pellets were washed with PBS, then blocked with 1 % BSA-
423 PBS. Incorporated EdU was labelled with Click chemistry [(10 µM 6-carboxyfluorescein-TEG azide
424 (Berry and Associates, FF 6110), 10 mM sodium L-ascorbate (Sigma Aldrich, A4034), 2mM Copper
425 (II) sulphate (Sigma Aldrich, 451657)] for 30 minutes in the dark. Cells were washed with 0.5%
426 PBST containing 1 % BSA, RNase (Qiagen, 1007885) treated, and DNA was stained with DAPI (0.1
427 µg/mL, Sigma Aldrich, 10236276001). Data was acquired on the BD FACSCANTO II and analysed
428 using FlowJo software v10.

429

430 *Comet assay*

431 For both neutral and alkaline comet assays, cells were harvested using trypsin, counted, and diluted
432 to 10,000 cells/mL in low melting agarose (LMA, Trevigen, 4250-050-K) at 37°C at a ratio of 1:10
433 v/v and added to CometSlide™ (Trevigen, 4250-050-K). Cells were embedded in the LMA and
434 incubated in lysis solution (Trevigen, 4250-050-K) overnight at 4°C. For the neutral comet assay,
435 CometSlides with embedded cells were immersed in neutral electrophoresis buffer for 30 minutes
436 prior to electrophoresis at 1 V/cm² for 45 minutes at 4°C. For alkaline comet assays, CometSlides
437 with embedded cells were immersed in alkaline unwinding solution (200 mM NaOH (Ajax Finechem,
438 482), 1 mM EDTA (Chem-Supply, EA022)) for 20 minutes at room temperature. Electrophoresis was

439 conducted in alkaline unwinding solution at 1 V/cm for 30 minutes. All slides were washed briefly
440 with dH₂O, immersed in 70% ethanol for 5 minutes and dried at 37°C. DNA was stained with 1 µM
441 YOYO-1 DNA stain (ThermoFisher, Y3601). Images were captured using Axio Imager.Z2
442 microscope using a Plan-Apochromat 20x/0.8 M27 air objective, HXP 120 V light source, Axiocam
443 506 imaging device and appropriate filter cube. Images were processed using ZeissZen Blue software.
444 For analysis, a CellProfiler™ pipeline was developed for semi-automated quantification. DNA was
445 selected as the input image with nuclei as the primary object to be identified. Object diameter range
446 was set to 70 – 1000 pixels to accommodate a range of nuclei sizes. To determine the grading
447 threshold, a global strategy was employed (Otsu method, two class, weighted variance, automatic
448 smoothing, threshold correction factor of 0.7) and lower and upper threshold bounds were set as 0.0
449 – 1.0 respectively. The pipeline allowed image hole filling in identified objects after thresholding and
450 de-clumping. DNA of each object was then manually edited to separate the DNA in the nucleus and
451 the comet tail. The intensity (integrated density) of the DNA in each segment was measured and
452 exported to excel. Percentage of tail DNA was calculated in excel and data was graphed using
453 GraphPad Prism (v9.0)

454

455 *Chromosome spreads*

456 Cells were treated with 0.2 µg/mL of colcemid (ThermoFisher, 15212012) for 2 hours prior to
457 harvesting. Cells were trypsinised and the reaction was quenched with media containing serum. Cells
458 were incubated at 3:1 dH₂O: DMEM for 10 minutes at 37 °C. Cells were centrifuged at 1250 RPM
459 for 5 minutes, then fixed with ice cold 3:1 methanol (Sigma Aldrich, 322415):acetic acid (Ajax
460 Finechem, AJA1) overnight at 4 °C. Cells were dropped onto humidified slides which had been
461 washed with 100 % methanol for 1 hour prior and air dried overnight. Slides were rehydrated in PBS
462 for 5 minutes, fixed with 4 % formaldehyde (Merck, 1.04003.2500) /PBS for 5 minutes and washed
463 3 x 2 minutes with PBS. Slides were treated with 0.25 mg/mL RNaseA (Qiagen, 1007885) / PBS for
464 15 minutes at 37 °C, fixed with 4 % formaldehyde/PBS for 2 minutes, washed with PBS 3 x 2 minutes,
465 dehydrated in ethanol (Supelco, 1.00.983.2511), and allowed to air dry. A telomere PNA probe (0.3
466 µg/mL, Alexa488-OO-(CCCTAA)3, Panagene, F1004) was added to the slides, followed by
467 denaturation for 10 minutes at 70°C then hybridised overnight at 37 °C. Slides were washed in PNA
468 wash A (70 % formamide (Sigma Aldrich, 221198), 10 mM Tris pH 7.5) for 2 x 10 minutes followed
469 by PNA wash B (50 mM Tris pH 7.5, 150 mM NaCl, 0.8 % Tween20) 3 x 5 minutes. DNA was
470 stained with DAPI (0.1 µg/mL, Sigma Aldrich, 10236276001) and slides were mounted with DABCO
471 [(2.3% 1,4 Diazabicyclo (2.2.2) octane (Sigma Aldrich, D27802, 90 % glycerol (Sigma Aldrich,
472 G5516), 50 mM Tris pH 8.0 (Amresco, 92161)] anti-fade. Images were captured on a Zeiss
473 AxioImager Z.2 with a 63×, 1.4 NA oil objective and immersion Oil 518F (Carl Zeiss, Wetzlar),

474 appropriate filter cubes and a CoolCube 1m camera (Metasystems). Automated metaphase finding
475 and image acquisition for these experiments were done using Metafer4 v3.12.8, MetaSystems
476 imaging platform.

477

478 *Immunofluorescence microscopy and analysis*

479 All samples were grown on gelatinised (0.1% gelatin) cover glass (thickness No. 1.5H (0.170 mm ±
480 0.005 mm, Australian Scientific, 0117530) and fixed with 4 % PFA for 10 minutes at 4 °C. Samples
481 processed for replication catastrophe experiments were pre-treated with ice cold 0.2% PBS-TritonX
482 for 1 minute prior to fixation. In experiments assaying CldU thymidine analogue incorporation, cells
483 were pulsed with 50 µM CldU (Sigma-Aldrich, C6891) as indicated prior to fixation. Samples were
484 stored in PBST (0.1 % Tween-20) prior to labelling for no more than 5 days. For labelling, samples
485 were washed 3 x 5 minutes in PBST, permeabilised 1 x 5 minutes in PBS-Triton 100X (0.5 %, Sigma
486 Aldrich, X100), then washed 3 x 5 minutes in PBST. Samples were blocked for 2 hours in 2 % BSA-
487 PBST, then incubated with primary antibody diluted in block solution overnight at 4 °C (see
488 Supplementary Table 2). Samples were washed 5 x 3 minutes in PBST and incubated in the dark with
489 secondary antibody diluted in block solution for 1.5 hours at RT. Samples were washed 5 x 3 minutes
490 in PBST. DAPI (1 µg/ml, Sigma Aldrich, 10236276001) was included in the final wash, before brief
491 rinsing in dH₂O and dehydration with sequential 3-minute ethanol washes (70 %, 90 % and 100 %)
492 prior to mounting onto microscope glass (Bio-strategy, EPBRSP41296SP) with Prolong Gold
493 (ThermoFisher, P36930)). Cells were imaged on a Zeiss Airyscan LSM 880 AxioObserver confocal
494 fluorescent microscope fitted with an Airyscan detector using either a 40x or 63x 1.4 NA M27 oil-
495 immersion objective and immersion liquid (Zeiss, 444970-9010-000). Representative images were
496 acquired from a minimum of 5 areas across the coverslip using identical imaging parameters (percent
497 excitation laser power with 1x1 binning for all laser conditions and appropriate filter sets) for like
498 staining in all experiments. For each image, the top and bottom z-plane limits were identified, and z-
499 stack imaging performed to capture the centre of the nucleus. Central z-stack images were used for
500 analysis. For image analysis, immunofluorescence intensity was measured using ImageJ/FIJI
501 (Schindelin et al., 2012). Briefly, outlines around nuclei were created in the DAPI channel, and
502 intensity measured (mean grey value) in channels which pertained to staining of the protein of
503 interest. Randomly selected cell-free areas were measured in each sample image to estimate
504 background fluorescent readings, which were subtracted from the final intensity value for each
505 nucleus. For this analysis, only interphase cells were included. Cells which lacked a discrete nuclei
506 boundary which could not be easily discerned were not included in the analysis.

507

508 *Phosphopeptide Purification*

509 Cells were harvested via trypsinisation methods described above, washed twice with D-PBS and snap
510 frozen as dry pellets prior to phosphopeptide purification as per the EasyPhos workflow (Humphrey
511 et al., 2018). Briefly, pellets were lysed in SDC buffer (containing 10 mM TCEP and 40 mM CAM)
512 and heated for 5 min at 95 °C. Lysates were sonicated at 4 °C in 2 x 10-minute cycles in a bioruptor
513 Plus diagenode at max output. For each sample, 1.25 mg of lysate was removed and digested
514 overnight at 37 °C with 12.5 µg of Trypsin/LysC. Digested phospho-peptides were enriched on TiO₂
515 beads) at 12:1 (bead wt : protein wt). Enriched phosphopeptides were eluted from the TiO₂ beads and
516 desalted on house-made SDB-RPS stage tips, dried and then reconstituted in 5 µL of MS buffer.
517

518 *Liquid Chromatography Tandem Mass Spectrometry and Bioinformatics*

519 Samples were loaded on a ~45 cm x 75 µm (ID) fused silica column, packed in-house with 1.9 µm
520 ReproSil AQ C18 particles on a UltiMate3000 UPLC (Dionex) inside a 50 C column oven (Sonation)
521 attached to an ESI-nano-spray source (ThermoFisher). Peptide fractions were separated over a 195
522 minute gradient consisting of a binary buffer system Buffer A (0.1% formic acid) and Buffer B (0.1%
523 formic acid 90% acetonitrile at a flow rate of 300 nL/min. Elution occurred with a 20 minute loading
524 in 5% buffer B, 150 minute gradient from 5-30% buffer B, final 5 minute elution 30-60% buffer B,
525 and 5 minute column wash in 95% buffer B. Peptides were analysed on a Q-Exactive Plus
526 (ThermoFisher) operating in positive ion DDA mode, with one full scan (300-1650 m/Z, R=35,000
527 at 200 m/Z) with 3e6 AGC target, and 20 ms IT. The top 10 peptides peaks were submitted for HCD
528 fragmentation (27% NCE) and MS2 (R=35,000 at 200 m/Z) with 1e5 AGC target and 120 ms IT.
529 Centroided Thermo Raw files were analysed in MaxQuant (1.6.0.16) using standard settings and LFQ
530 quantification and searched against the *M. musculus* Uniprot database (11/2019 release). The
531 phosphopeptide dataset was processed in Perseus (version 16.10.43) (Tyanova et al., 2016). Briefly,
532 the dataset was filtered for common contaminants, reverse identifications and peptides with < 3 valid
533 intensity values from at least one sample group using Perseus (version 16.10.43). Missing intensity
534 values from the remaining peptides were imputed, and significant phosphorylations were identified
535 using ANOVA with permutation-based FDR for multiple corrections. Linear kinase motifs and
536 functional annotations were applied using Perseus's built-in packages and the PhosphoSite Plus
537 database (Table S1).

538

539 *Statistical analysis and software*

540 Statistical analysis for chromosome spreads and flow cytometry was performed using custom R
541 scripts (please see Data and code availability). We used R version 4.1.0., with the following packages
542 ggplot2, multcomp and tidyverse. All other statistical analysis was performed using GraphPad Prism
543 (v9.0). Figure legends describe error bars, statistical methods, and replicate details for all

544 experiments. No statistical method was used to predetermine sample size. All experiments were
545 repeated at least twice. Figures were prepared using Adobe Illustrator.

546

547 **Data and code availability**

548 The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
549 via the PRIDE (Perez-Riverol et al., 2022) partner repository with the dataset identifier PXD032103.
550 R scripts and chromosome spread data are located on GitHub:
551 https://github.com/ChildrensMedicalResearchInstitute/Kafer_OConnor_et_al_2022.git

552 **References**

553 Abbas, T., and Dutta, A. (2009). p21 in cancer: intricate networks and multiple activities. *Nature reviews Cancer* *9*, 400-414.

555 Ahuja, A.K., Jodkowska, K., Teloni, F., Bizard, A.H., Zellweger, R., Herrador, R., Ortega, S.,
556 Hickson, I.D., Altmeyer, M., Mendez, J., *et al.* (2016). A short G1 phase imposes constitutive
557 replication stress and fork remodelling in mouse embryonic stem cells. *Nature communications* *7*,
558 10660.

559 Barlow, C., Hirotsune, S., Paylor, R., Liyanage, M., Eckhaus, M., Collins, F., Shiloh, Y., Crawley,
560 J.N., Ried, T., Tagle, D., *et al.* (1996). Atm-deficient mice: a paradigm of ataxia telangiectasia. *Cell*
561 *86*, 159-171.

562 Berti, M., Cortez, D., and Lopes, M. (2020). The plasticity of DNA replication forks in response to
563 clinically relevant genotoxic stress. *Nat Rev Mol Cell Biol* *21*, 633-651.

564 Blackford, A.N., and Jackson, S.P. (2017). ATM, ATR, and DNA-PK: The Trinity at the Heart of the
565 DNA Damage Response. *Molecular cell* *66*, 801-817.

566 Blakemore, D., Vilaplana-Lopera, N., Almaghrabi, R., Gonzalez, E., Moya, M., Ward, C., Murphy,
567 G., Gambus, A., Petermann, E., Stewart, G.S., *et al.* (2021). MYBL2 and ATM suppress replication
568 stress in pluripotent stem cells. *EMBO reports* *22*, e51120.

569 Bolton, H., Graham, S.J.L., Van der Aa, N., Kumar, P., Theunis, K., Fernandez Gallardo, E., Voet,
570 T., and Zernicka-Goetz, M. (2016). Mouse model of chromosome mosaicism reveals lineage-specific
571 depletion of aneuploid cells and normal developmental potential. *Nature communications* *7*, 11165.

572 Buisson, R., Boisvert, J.L., Benes, C.H., and Zou, L. (2015). Distinct but Concerted Roles of ATR,
573 DNA-PK, and Chk1 in Countering Replication Stress during S Phase. *Molecular cell* *59*, 1011-1024.

574 Charrier, J.D., Durrant, S.J., Golec, J.M., Kay, D.P., Knegtel, R.M., MacCormick, S., Mortimore, M.,
575 O'Donnell, M.E., Pinder, J.L., Reaper, P.M., *et al.* (2011). Discovery of potent and selective inhibitors
576 of ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase as potential anticancer agents.
577 *Journal of medicinal chemistry* *54*, 2320-2330.

578 Cho, L.T., Wamaitha, S.E., Tsai, I.J., Artus, J., Sherwood, R.I., Pedersen, R.A., Hadjantonakis, A.K.,
579 and Niakan, K.K. (2012). Conversion from mouse embryonic to extra-embryonic endoderm stem
580 cells reveals distinct differentiation capacities of pluripotent stem cell states. *Development*
581 (Cambridge, England) *139*, 2866-2877.

582 Daum, J.R., Potapova, T.A., Sivakumar, S., Daniel, J.J., Flynn, J.N., Rankin, S., and Gorbsky, G.J.
583 (2011). Cohesion fatigue induces chromatid separation in cells delayed at metaphase. *Current biology*
584 : CB *21*, 1018-1024.

585 de Klein, A., Muijtjens, M., van Os, R., Verhoeven, Y., Smit, B., Carr, A.M., Lehmann, A.R., and
586 Hoeijmakers, J.H. (2000). Targeted disruption of the cell-cycle checkpoint gene ATR leads to early
587 embryonic lethality in mice. *Current biology* : CB *10*, 479-482.

588 Giachino, C., Orlando, L., and Turinotto, V. (2013). Maintenance of genomic stability in mouse
589 embryonic stem cells: relevance in aging and disease. *Int J Mol Sci* *14*, 2617-2636.

590 Heyer, B.S., MacAuley, A., Behrendtsen, O., and Werb, Z. (2000). Hypersensitivity to DNA damage
591 leads to increased apoptosis during early mouse development. *Genes Dev* *14*, 2072-2084.

592 Hong, Y., Cervantes, R.B., Tichy, E., Tischfield, J.A., and Stambrook, P.J. (2007). Protecting
593 genomic integrity in somatic cells and embryonic stem cells. *Mutat Res* *614*, 48-55.

594 Humphrey, S.J., Karayel, O., James, D.E., and Mann, M. (2018). High-throughput and high-
595 sensitivity phosphoproteomics with the EasyPhos platform. *Nature protocols* *13*, 1897-1916.

596 Iacovino, M., Bosnakovski, D., Fey, H., Rux, D., Bajwa, G., Mahen, E., Mitanoska, A., Xu, Z., and
597 Kyba, M. (2011). Inducible cassette exchange: a rapid and efficient system enabling conditional gene
598 expression in embryonic stem and primary cells. *Stem cells (Dayton, Ohio)* *29*, 1580-1588.

599 Kafer, G.R., and Cesare, A.J. (2020). A Survey of Essential Genome Stability Genes Reveals That
600 Replication Stress Mitigation Is Critical for Peri-Implantation Embryogenesis. *Front Cell Dev Biol*
601 *8*, 416.

602 Langie, S.A., Azqueta, A., and Collins, A.R. (2015). The comet assay: past, present, and future.
603 *Frontiers in genetics* *6*, 266.

604 Laurent, A., and Blasi, F. (2015). Differential DNA damage signalling and apoptotic threshold
605 correlate with mouse epiblast-specific hypersensitivity to radiation. *Development (Cambridge, England)* *142*, 3675-3685.

607 Liu, S., Opiyo, S.O., Manthey, K., Glanzer, J.G., Ashley, A.K., Amerin, C., Troksa, K., Shrivastav,
608 M., Nickoloff, J.A., and Oakley, G.G. (2012). Distinct roles for DNA-PK, ATM and ATR in RPA
609 phosphorylation and checkpoint activation in response to replication stress. *Nucleic acids research*
610 *40*, 10780-10794.

611 Masamsetti, V.P., Low, R.R.J., Mak, K.S., O'Connor, A., Riffkin, C.D., Lamm, N., Crabbe, L.,
612 Karlseder, J., Huang, D.C.S., Hayashi, M.T., *et al.* (2019). Replication stress induces mitotic death
613 through parallel pathways regulated by WAPL and telomere deprotection. *Nature communications*
614 *10*, 4224.

615 Mazzoni, E.O., Mahony, S., Iacovino, M., Morrison, C.A., Mountoufaris, G., Closser, M., Whyte,
616 W.A., Young, R.A., Kyba, M., Gifford, D.K., *et al.* (2011). Embryonic stem cell-based mapping of
617 developmental transcriptional programs. *Nature methods* *8*, 1056-1058.

618 Mu, J.J., Wang, Y., Luo, H., Leng, M., Zhang, J., Yang, T., Besusso, D., Jung, S.Y., and Qin, J.
619 (2007). A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR)
620 substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints.
621 *The Journal of biological chemistry* *282*, 17330-17334.

622 Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., and Roder, J.C. (1993). Derivation of
623 completely cell culture-derived mice from early-passage embryonic stem cells. *Proceedings of the
624 National Academy of Sciences of the United States of America* *90*, 8424-8428.

625 Nichols, J., and Smith, A. (2009). Naive and primed pluripotent states. *Cell Stem Cell* *4*, 487-492.

626 Osteil, P., Studdert, J., Wilkie, E., Fossat, N., and Tam, P.P. (2016). Generation of genome-edited
627 mouse epiblast stem cells via a detour through ES cell-chimeras. *Differentiation* *91*, 119-125.

628 Pao, P.C., and Tsai, L.H. (2021). Three decades of Cdk5. *Journal of biomedical science* *28*, 79.

629 Paull, T.T. (2015). Mechanisms of ATM Activation. *Annual review of biochemistry* *84*, 711-738.

630 Perez-Riverol, Y., Bai, J., Bandla, C., García-Seisdedos, D., Hewapathirana, S., Kamatchinathan, S.,
631 Kundu, D.J., Prakash, A., Frericks-Zipper, A., Eisenacher, M., *et al.* (2022). The PRIDE database
632 resources in 2022: a hub for mass spectrometry-based proteomics evidences. *Nucleic acids research*
633 *50*, D543-d552.

634 Rossant, J., and Tam, P.P. (2009). Blastocyst lineage formation, early embryonic asymmetries and
635 axis patterning in the mouse. *Development (Cambridge, England)* *136*, 701-713.

636 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,
637 Rueden, C., Saalfeld, S., Schmid, B., *et al.* (2012). Fiji: an open-source platform for biological-image
638 analysis. *Nature methods* *9*, 676-682.

639 Singh, A.M., Bechard, M., Smith, K., and Dalton, S. (2012). Reconciling the different roles of Gsk3 β
640 in "naïve" and "primed" pluripotent stem cells. *Cell cycle (Georgetown, Tex)* *11*, 2991-2996.

641 Singla, S., Iwamoto-Stohl, L.K., Zhu, M., and Zernicka-Goetz, M. (2020). Autophagy-mediated
642 apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. *Nature
643 communications* *11*, 2958.

644 Smith, G.S., Voyer-Grant, J.A., and Harauz, G. (2012). Monitoring cleaved caspase-3 activity and
645 apoptosis of immortalized oligodendroglial cells using live-cell imaging and cleavable fluorogenic-
646 dye substrates following potassium-induced membrane depolarization. *J Vis Exp*.

647 Snow, M.H.L. (1977). Gastrulation in the mouse: growth and regionalization of the epiblast. *J
648 Embryol Exp Morphol* *42*, 293-303.

649 Starostik, M.R., Sosina, O.A., and McCoy, R.C. (2020). Single-cell analysis of human embryos
650 reveals diverse patterns of aneuploidy and mosaicism. *Genome Res* *30*, 814-825.

651 Tichy, E.D. (2011). Mechanisms maintaining genomic integrity in embryonic stem cells and induced
652 pluripotent stem cells. *Exp Biol Med (Maywood)* *236*, 987-996.

653 Toledo, L., Neelsen, K.J., and Lukas, J. (2017). Replication Catastrophe: When a Checkpoint Fails
654 because of Exhaustion. *Molecular cell* *66*, 735-749.

655 Toledo, L.I., Altmeyer, M., Rask, M.B., Lukas, C., Larsen, D.H., Povlsen, L.K., Bekker-Jensen, S.,
656 Mailand, N., Bartek, J., and Lukas, J. (2013). ATR prohibits replication catastrophe by preventing
657 global exhaustion of RPA. *Cell* *155*, 1088-1103.

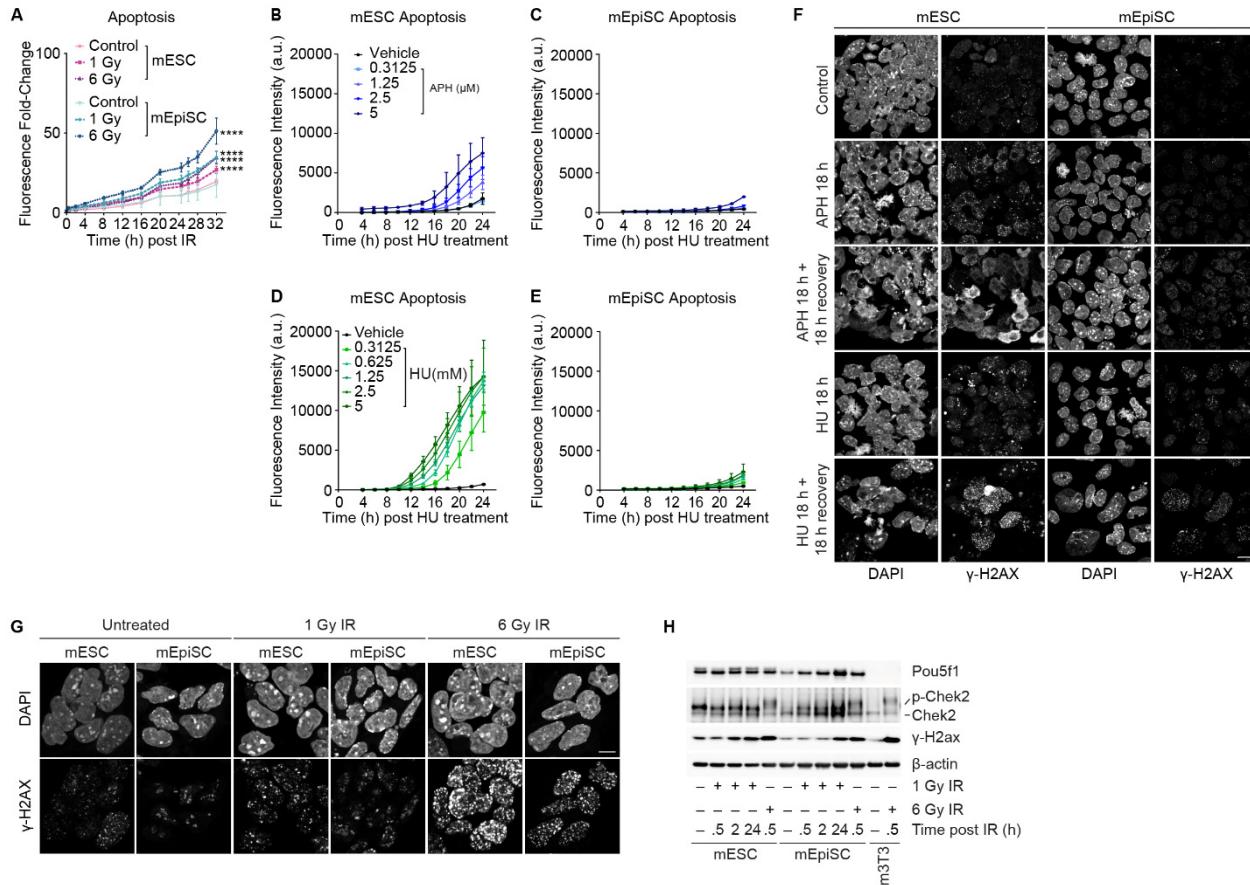
658 Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann, M., and Cox, J.
659 (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. *Nature
660 methods* *13*, 731-740.

661 Vesela, E., Chroma, K., Turi, Z., and Mistrik, M. (2017). Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies. *Biomolecules* *7*.

663 Weinberger, L., Ayyash, M., Novershtern, N., and Hanna, J.H. (2016). Dynamic stem cell states:
664 naive to primed pluripotency in rodents and humans. *Nat Rev Mol Cell Biol* *17*, 155-169.

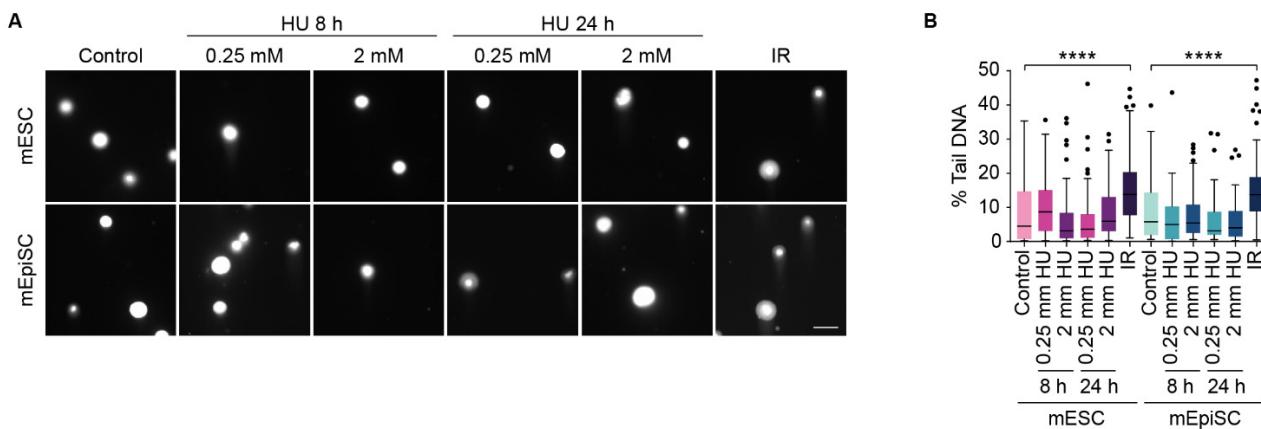
665 Wilhelm, T., Said, M., and Naim, V. (2020). DNA Replication Stress and Chromosomal Instability:
666 Dangerous Liaisons. *Genes (Basel)* *11*.

667 Xiong, J., Todorova, D., Su, N.Y., Kim, J., Lee, P.J., Shen, Z., Briggs, S.P., and Xu, Y. (2015).
668 Stemness factor Sall4 is required for DNA damage response in embryonic stem cells. *J Cell Biol* 208,
669 513-520.

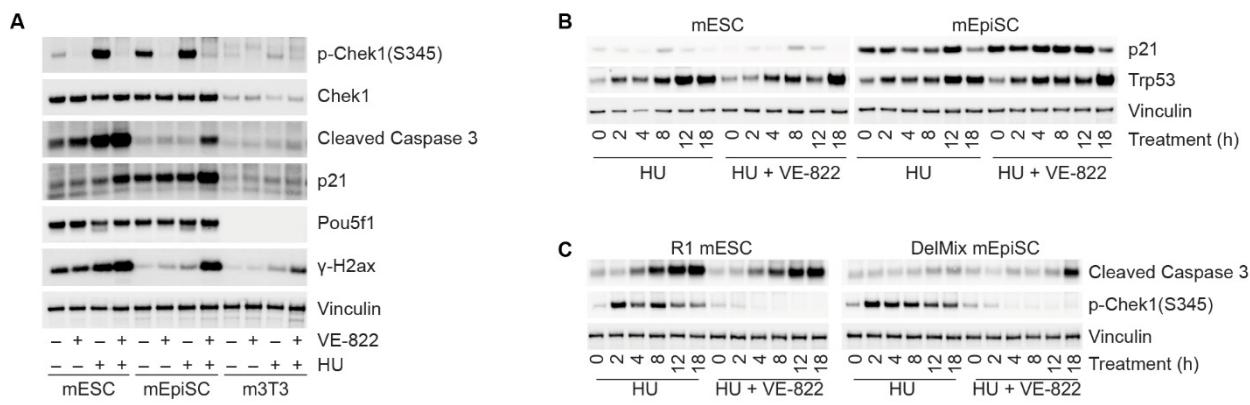

670 Zeman, M.K., and Cimprich, K.A. (2014). Causes and consequences of replication stress. *Nature cell*
671 *biology* 16, 2-9.

672 Zou, L., and Elledge, S.J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA
673 complexes. *Science (New York, NY)* 300, 1542-1548.

674


675

Supplementary Information



676

Supplementary Figure 1: Pluripotent cells of different potency states respond similarly to irradiation, but differently to replication stress. A) Quantification of apoptosis in cultures treated with gamma-irradiation. These are the same data as Figure 1C plotted on a different Y-axis. Mean (\pm SD) from > 2 independent experiments. ANOVA (Bartlett's test, comparing area under the curve for each condition). B-E) Quantification of Apoptosis in cultures treated with (B, C) increasing doses of Aphidicolin (APH), or (D, E) increasing does of Hydroxyrerra (HU). Mean data (\pm SD) from > 2 independent experiments. F) Fluorescent micrographs of cultures treated with 1 μ M APH or 2 mM HU for 18 hrs, with and without 18 hrs of recovery after treatment (representative images of $n > 2$ experimental replicates). G) Fluorescent micrographs of cultures fixed 30 minutes after treatment with 1 or 6 Gy IR and stained with DAPI and γ -H2ax (representative images of $n > 2$ experimental replicates). H) Immunoblots of whole cell extracts derived from cells treated with 1 or 6 Gy IR collected at the indicated times post-treatment (representative blots of $n > 2$ experimental replicates).

688 **Supplementary Figure 2: Molecular outcomes to irradiation are similar in naïve and primed**
689 **embryonic stem cells.** A) Representative micrographs of neutral comet assays on cultures treated
690 with 2 mM HU for 8 hrs or 24 hrs, or 1 hr after treatment 10 Gy IR. Scale bar 20 μ m. B) Quantification
691 of % Tail DNA from the experiment shown in (A) (n = 3 biological replicates quantifying ≥ 30 cells
692 per replicates compiled into a Tukey box plot, Kruskal-Wallis and Dunn's multiple comparisons test,
693 **** = p < 0.0001, *** = p < 0.001 and ** = p < 0.01).

694 **Supplementary Figure 3: Naïve embryonic stem cells readily undergo replication catastrophe**
695 **during replication stress.** A) Immunoblots of whole cell extracts derived from naïve pluripotent
696 mESC, primed pluripotent mEpiSC, and somatic immortalized m3T3 cultures after 18 hrs treatment
697 with 2 mM HU and 2 μ M VE-822, alone or in combination (representative blots from $n > 2$
698 experimental replicates). B) Immunoblots of mESC and mEpiSC cultures treated with 2 mM HU
699 alone or in combination with 2 μ M VE-822 for the indicated times (representative blots from $n > 2$
700 biological replicates). C) Immunoblots of R1 mESC and DelMix mEpiSC cultures after treatment
701 with 2 mM HU alone or in combination with 2 μ M VE-822 for the indicated times (representative
702 blots from $n > 2$ biological replicates).