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Abstract 15 

 16 

Gene expression heterogeneity is ubiquitous within single cell datasets, even among cells of the 17 

same type. Heritable expression differences, defined here as those which persist over multiple 18 

cell divisions, are of particular interest, as they can underlie processes including cell differentiation 19 

during development as well as the clonal selection of drug-resistant cancer cells. However, 20 

heritable sources of variation are difficult to disentangle from non-heritable ones, such as cell 21 

cycle stage, asynchronous transcription, and measurement noise. Since heritable states should 22 

be shared by lineally related cells, we sought to leverage CRISPR-based lineage tracing, together 23 

with single cell molecular profiling, to discriminate between heritable and non-heritable variation 24 

in gene expression. We show that high efficiency capture of lineage profiles alongside single cell 25 
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gene expression enables accurate lineage tree reconstruction and reveals an abundance of 26 

progressive, heritable gene expression changes. We find that a subset of these are likely 27 

mediated by structural genetic variation (copy number alterations, translocations), but that the 28 

stable attributes of others cannot be understood with expression data alone. Towards addressing 29 

this, we develop a method to capture cell lineage histories alongside single cell chromatin 30 

accessibility profiles, such that expression and chromatin accessibility of closely related cells can 31 

be linked via their lineage histories. We call this indirect “coassay” approach "THE LORAX" and 32 

leverage it to explore the genetic and epigenetic mechanisms underlying heritable gene 33 

expression changes. Using this approach, we show that we can discern between heritable gene 34 

expression differences mediated by large and small copy number changes, trans effects, and 35 

possible epigenetic variation.  36 

 37 

Introduction 38 

 39 

Single cell molecular profiling technologies have revealed extensive gene expression 40 

heterogeneity, even between cells of a single cell type (Y. H. Choi & Kim, 2019; Li et al., 2022; 41 

Muto et al., 2021; O’Leary et al., 2020; Patel et al., 2014; SoRelle et al., 2021). Expression 42 

variation can arise from a number of sources, including transient phenomenon like cell cycle stage 43 

and transcriptional bursting (Tunnacliffe & Chubb, 2020), as well as stable genetic (Ben-David et 44 

al., 2018) or epigenetic (Bonasio et al., 2010) differences within a cell population. Stable sources 45 

of variation are of particular interest as they are “heritable” over multiple cell divisions, and can 46 

thus serve as substrates for selection, altering a cell population over time. Such heritable 47 

phenomena may underlie differentiation during normal organismal development as well as the 48 

acquisition of drug resistance in cancer (Salgia & Kulkarni, 2018). Yet within a set of single cell 49 

gene expression profiles, representing a population snapshot in time, it is difficult to distinguish 50 

between stable and transient expression variation. This is particularly challenging for cells of a 51 
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single cell type, where transient differences may mask heritable variation when performing 52 

clustering analysis to distinguish cell states (Kiselev et al., 2019). 53 

 54 

Heritable sources of expression variation have at least one property which distinguishes them 55 

from transient variation: because they are stable over multiple cell divisions, they should be 56 

shared by cells which are closely related by lineage. It follows that if all lineage relationships were 57 

known, we could discern heritable from non-heritable variation by assessing the distribution of 58 

variation across a lineage tree (Figure 1a). While transient variation should be randomly 59 

distributed, stably maintained expression states should cluster together within the tree, i.e. 60 

tracking to a common “founder” event. Thus, lineage histories, coupled to gene expression 61 

profiling, could potentially enable the differentiation of heritable vs. non-heritable sources of 62 

expression variation.  63 

 64 

Molecular methods for cell lineage history profiling compatible with concurrent expression profiling 65 

involve either static or progressive genetic barcoding. The static approach introduces  short, 66 

transgenic barcodes to proliferating cells, such that closely related descendants share a barcode 67 

sequence (Biddy et al., 2018; Guo et al., 2019; Rodriguez-Fraticelli et al., 2018; Weinreb et al., 68 

2020). Static barcoding might reveal heritable sources of gene expression that were acquired 69 

close to the time of labeling, but would presumably miss those occurring substantially earlier or 70 

later. In contrast, progressive lineage tracing methods (e.g. GESTALT and related methods), 71 

wherein cells accumulate sequence diversity at multiple genomic locations over time, facilitate 72 

reconstruction of multi-tier lineage trees, and might therefore be more sensitive with respect to 73 

detecting heritable gene expression variation (Alemany et al., 2018; Bowling et al., 2020; Chan et 74 

al., 2019; Hwang et al., 2019; Kalhor et al., 2017, 2018; Loveless et al., 2021; McKenna et al., 75 

2016; Perli et al., 2016; Raj, Gagnon, et al., 2018; Raj, Wagner, et al., 2018; Spanjaard et al., 76 

2018; Wagner et al., 2018).  77 
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 78 

A high diversity of labels can be achieved via CRISPR/Cas9, where imperfect double strand break 79 

repair via NHEJ can generate a variety of outcomes (referred to here as “edits” or “indels”) 80 

(Alemany et al., 2018; Bowling et al., 2020; Chan et al., 2019; Kalhor et al., 2017, 2018; Loveless 81 

et al., 2021; McKenna et al., 2016; Perli et al., 2016; Raj, Gagnon, et al., 2018; Raj, Wagner, et 82 

al., 2018; Spanjaard et al., 2018; Wagner et al., 2018). Over many cell divisions, the pattern of 83 

indels that accumulate at CRISPR/Cas9 targets are informative with respect to the lineage 84 

relationships amongst the cells in which they occur. Most strategies reported to date, whether 85 

implemented in vitro or in vivo, place several targets in tandem, such that the edits at these 86 

multiple targets can be recovered within a single DNA or RNA-derived sequencing read (Alemany 87 

et al., 2018; Bowling et al., 2020; Chan et al., 2019; Kalhor et al., 2017, 2018; Loveless et al., 88 

2021; McKenna et al., 2016; Perli et al., 2016; Raj, Gagnon, et al., 2018; Raj, Wagner, et al., 89 

2018; Spanjaard et al., 2018; Wagner et al., 2018). 90 

 91 

In practice, however, there are a number of technical issues that limit this approach. First, arrays 92 

of CRISPR/Cas9 targets frequently acquire large deletions when concurrent DSBs at different 93 

targets within the array are joined, potentially excising previously recorded information at 94 

intervening targets. Second, read length limitations require targets to be placed close to one 95 

another, such that the editing of one target risks corrupting adjacent targets. Third, although it is 96 

possible to capture CRISPR/Cas9-edited lineage targets as part of a single cell RNA-seq (scRNA-97 

seq) profile, this has usually been inefficient in practice. For example, using InDrops to capture a 98 

tandem array of 10 CRISPR targets alongside single cell transcriptomes in juvenile zebrafish 99 

brains, Raj et al. (2018) recovered lineage profiles from just 6-28% of cells with expression profiles 100 

(Raj, Wagner, et al., 2018). Similarly, using 10X Genomics to capture arrays of 3 CRISPR targets 101 

from mouse embryos alongside scRNA-seq (3-15 array integrations per embryo), Chan et al. 102 

(2019) recovered at least one edited lineage array from 15-75% of cells per embryo, but just one 103 
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target array was captured efficiently (>25% of cells) in 6 of 7 embryos (Chan et al., 2019). In each 104 

case, both target design and the method of capturing lineage targets during scRNA-seq likely 105 

contributed to the limited recovery. 106 

 107 

Here, we introduce a CRISPR-based lineage tracing approach in which many distinct lineage 108 

recording loci are integrated independently throughout the genome. These targets can each 109 

accommodate relatively large deletions and insertions. We further show that, with targeted 110 

enrichment, they can be captured efficiently alongside transcriptomes via a combinatorial indexing 111 

approach (sci-RNA-seq) (Cao et al., 2017, 2019). To analyze data generated from a proof-of-112 

concept in vitro monoclonal expansion, we developed a lineage tree reconstruction algorithm that 113 

is robust to missing data and recurrences (i.e. where identical edits occur independently), and 114 

validate the algorithm using copy number alterations (CNAs) that are evident in expression data. 115 

We show that incorporating lineage relationships into expression analysis reveals abundant 116 

heritable expression variation, including instances that are clearly explained by CNAs, but also 117 

many which are not.  118 

 119 

!"#$%%&'()*+$,-.("#/0.)"1$)"#1()20(3042$#".35.6(7#-0,%&"#1(089,0.."*#(20,")$:"%")&'(+0(-0/0%*9($#(120 

$99,*$42()*(4$9)7,0(40%%( %"#0$10(,0%$)"*#.2"9.($%*#1."-0(."#1%0(40%%(42,*3$)"#($440..":"%")&;(<0(121 

.2*+( )2$)( +0( 4$#( %"#=( )+*( -".)"#4)( 3*%047%$,( >0$)7,0.?10#0( 089,0.."*#( $#-( 42,*3$)"#(122 

$440..":"%")&?/"$()20",(%"#0$10(9,*>"%0.(5Figure 1b). We then use these lineage-tethered features 123 

to further distinguish between expression changes which can be explained directly by copy 124 

number alterations, ones likely mediated by trans effects of copy number alterations, and ones 125 

which are more likely to have resulted from a stable change in cis regulatory state. We term this 126 
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approach THE LORAX: Tracking Heritable Events via Lineage-based Ordering of chRomatin 127 

Accessibility & eXpression profiles.  128 

 129 

 130 

 131 

 132 

Figure 1. Tethering the molecular profiles of single cells by their lineage histories to investigate 133 

sources of cell state heterogeneity. (a) A framework to distinguish heritable from non-heritable sources 134 

of gene expression variation using lineage relationships. (b) A framework for tethering single cell expression 135 

(scRNA-seq) and chromatin accessibility (scATAC-seq) measurements via lineage relationships to 136 

investigate the mechanisms underlying heritable expression variation (THE LORAX).  137 

  138 
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Results 139 

 140 

Concurrent profiling of many independent CRISPR lineage targets and gene expression via single 141 

cell combinatorial indexing 142 

 143 

We first set out to design a CRISPR/Cas9-based lineage tracing strategy that addresses 144 

outstanding technical challenges. Reconstructing an accurate, multi-tier lineage tree from 145 

progressively acquired edits requires the following: (a) multiple editable loci such that successive 146 

tagging can occur in a single lineage over time; (b) a high probability of diverse editing outcomes 147 

at a single target, such that identical edits at that target are unlikely to occur independently in 148 

different cells; (c) controllable editing machinery, such that target capacity is not exhausted quickly 149 

after editing onset; (d) permanence of edits, such that they are not likely to be overwritten or lost; 150 

and (e) a high rate of capture of editing information alongside single cell profiling of other features. 151 

Towards realizing these features, we designed a construct in which individual targets are 152 

integrated independently across the genome and captured as separate transcripts (Figure 2a-b). 153 

Each target contains a unique identifier sequence, which is positioned such that the target can 154 

accommodate up to a 70 bp deletion centered at the cut site without corrupting the identifier, as 155 

well as, assuming 300 bp read lengths, insertions of up to 105 bp. The sgRNAs are delivered on 156 

the same lentiviral construct as the targets, with targets expressed from a highly active EF-1α 157 

promoter to enable lineage capture from mRNA.  158 

 159 

To generate cells with a high capacity for lineage recording, we transduced HEK293 cells at a 160 

high multiplicity-of-infection (MOI) with this construct and attempted to establish clonal 161 

populations. Even in the absence of editing, most clones grew poorly, with the lentiviral 162 

integrations themselves at this high MOI potentially contributing to toxicity. Across 26 clones, we 163 

observed integration counts ranging from 2 to 53, with a median of 11 integrations 164 
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(Supplementary Fig. 1a). We moved forward with a  robust clone bearing 36 unique integrations, 165 

as evidenced by the diversity of unique identifier sequences (“target IDs”; Supplementary Fig. 166 

1b). To induce editing, we transduced this clone again with a doxycycline-inducible Cas9 lentiviral 167 

construct, sorted single cells, and allowed a clonal population to grow from a single founder cell 168 

(such that all progeny cells comprise a single lineage tree). Interestingly, only 32 unique target 169 

IDs were observed after this second round of cloning, potentially due to karyotypic instability 170 

(discussed further below), while one integrant contained a mutation that corrupted its target site 171 

(Supplementary Fig. 1b).  172 

 173 

After 35 days of expansion of this clone, with passaging as needed (Methods), a portion of the 174 

cells were harvested for single cell expression and lineage analysis, while the remaining cells 175 

were frozen down for subsequent profiling of chromatin accessibility. Of note, although 176 

doxycycline was not applied, we nonetheless observed diverse and progressive editing with this 177 

clone, presumably because of leaky expression of Cas9 (Costello et al., 2019). For concurrent 178 

acquisition of whole cell transcriptomes alongside lineage information, we performed 96 x 768 179 

sci-RNA-seq, with processing of cells in eight batches during the second indexing step (Cao et 180 

al., 2017, 2019). To facilitate the efficient recovery of lineage targets from each cell, we introduced 181 

a supplemental set of reverse transcription primers during the first round of indexing, and split the 182 

material in half prior to indexed PCR during the second round of sci-RNA-seq2, with one half 183 

being used for the general transcriptome, and the other half for targeted recovery of the lineage 184 

profiles (Methods).  185 

 186 

These libraries were sequenced, and the resulting reads were adaptor-trimmed, aligned to the 187 

reference human genome, and deduplicated. For the single cell transcriptomes, we observed a 188 

median of 13,212 UMIs per cell, across 15,525 cells (Figure 2c). For the 31 retained, uncorrupted 189 
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lineage targets (Supplementary Fig. 1b)'( 0$42( :0$,"#1( $( 7#"@70( )$,10)( AB( .0@70#40( "#( )20(190 

,0.7%)"#1(,0$-.'(+0(*:.0,/0-($(2"12(,$)0(*>(4$9)7,0'(+")2(C(DE(4$9)7,0-(>,*3(EFG(*>(40%%.'(C(DH(191 

>,*3(IEG(*>(40%%.'($#-(C(JH(>,*3(FFG(5Figure 2d). Target capture rates were unevenly distributed 192 

across the eight batches of indexed PCR amplification, likely due to slight technical differences 193 

(Methods; Supplementary Figure 2a-b). Recovery varied across the integrations as well, with 194 

each target ID recovered in a median of 80% of cells (range 50% to 93%) (Figure 2e), presumably 195 

due to position effect variegation and/or early karyotypic instability or large deletions associated 196 

with more frequently lost targets. Overall, these results indicate that a modified version of sci-197 

RNA-seq can be used to efficiently recover transcriptomes alongside dozens of lineage target 198 

integrants from each of many single cells.  199 

 200 

We next performed a series of filtration steps, removing cells with limited lineage information as 201 

well as those deemed likely to be doublets.  First, cells were filtered to those with at least 10 202 

lineage targets recovered, at least one of which was edited. In some cases, an edit could not be 203 

resolved, as more than one editing pattern seemed to exist for a given lineage target integrant 204 

(Methods). We termed these edits "ambiguous." Cells associated with more ambiguous than 205 

unambiguous edits, presumably doublets, were removed, as were cells with excessively high UMI 206 

counts (Methods; Supplementary Fig 2c-d). The single cell transcriptomes and associated 207 

lineage targets of the remaining 10,234 cells were carried forward for all subsequent analyses.   208 

 209 

Across this entire dataset, we observed 461 unique editing patterns of the common target 210 

sequence, of which 182 were independently observed in at least 2 cells in association with the 211 

same target ID. The remainder may correspond to real events that occurred late in the expansion 212 

and were thus only sampled once, or alternatively PCR or sequencing errors. The 50 most 213 
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frequently observed edits, across all cells and target IDs, are shown in Figure 2f. Of note, edits 214 

that recur independently as well as edits that occurred early during clonal expansion will both 215 

appear “common” by this measure. The three most frequently observed edits, together comprising 216 

58% of all edits, appear to be recurrent: they occur in association with the majority of target IDs 217 

(Figure 2f), and furthermore correspond to outcomes anticipated to be favored by microhomology 218 

(Sfeir & Symington, 2015). Such frequent editing outcomes complicate tree construction, and can 219 

be avoided in the future through better target design (W. Chen et al., 2019). However, the clear 220 

majority of editing outcomes were only observed in association with a single target ID, consistent 221 

with their origination from a single event during the clonal expansion (Figure 2g). 222 

 223 

K#08904)0-%&'()+*()$,10).(5LMH(N(LMJ6(4*#)$"#0-($(%$,10(#73:0,(*>($3:"17*7.(0-")"#1(4$%%.?)+*(224 

-".)"#4)(0-")"#1(9$))0,#.(4*#/"#4"#1%&(9,0.0#)("#($..*4"$)"*#(+")2()20(.$30()$,10)(AB("#()20(.$30(225 

."#1%0(40%%;(O2".(".(4*#.".)0#)(+")2($(-79%"4$)"*#(0/0#)'(i.e. in which the locus in which the target 226 

ID resides was duplicated early in the clonal expansion, or more likely during the second round 227 

of cloning. Additional evidence, discussed further below, of large-scale CNAs in the transcriptome 228 

data, corroborates this hypothesis. Rather than filtering out these targets, we “duplicated” them in 229 

silico, parsimoniously distributing the top two edits associated with these target IDs in a given cell, 230 

while minimizing the number of independent editing events required to explain them (Methods). 231 

As such, in the end, single cell lineage profiles contained 33 unique targets.       232 

 233 

 234 

 235 

 236 

 237 
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 238 

 239 

Figure 2. Experimental design, target capture rate and CRISPR editing diversity. (a) Target vector 240 

design. A target cassette was integrated into the CROP-seq vector (Datlinger et al., 2017) as shown. (b) 241 
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Schematic of experimental workflow. Cells were transduced at high MOI with constructs containing an 242 

sgRNA and barcoded target sequences, such that many integration events per cell were expected. A single 243 

clone was then transduced with a doxycycline-inducible Cas9 vector, single cells were sorted, and a single 244 

founder cell was allowed to divide for 35 days while editing occurred. The final cell population was split for 245 

either target capture alongside sci-RNA-seq or sci-ATAC-seq. (c) Log-scaled boxplot of UMI counts for sci-246 

RNA-seq (not including enriched target UMIs). Box shows median and encompasses counts in the second 247 

and third quartiles. Whiskers depict the interquartile range, with outliers shown. (d) Histogram of the number 248 

of targets captured per cell. (e) Percent of cells from which each individual target was captured. Targets 30 249 

& 31 were duplicated (see text), and hence artificially appear to have a high rate of capture. (f) Left: Top 50 250 

most abundant editing patterns. Insertions are shown one base left of the insertion site; “Mu”: multi-base 251 

insertion. Middle: Targets at which the editing pattern is observed in at least 20 cells. Right: Log-scaled 252 

percentage of all edits represented by the top 50 editing patterns. (g) Proportion of editing patterns 253 

observed in 1, 2, 3, or more than 3 targets, if considering editing patterns appearing in at least 2 cells at a 254 

single target (left), or at least 20 cells (right). 255 

  256 
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Reconstructing lineage relationships using single cell lineage profiles 257 

 258 

The reconstruction of cell lineage trees from CRISPR-edited targets has proven to be a difficult 259 

problem (Gong et al., 2021; Salvador-Martínez et al., 2019). Although phylogenetic reconstruction 260 

methods can in principle be applied here, several factors make this practically challenging. First, 261 

the amount of information within a lineage profile is limited to the number of targets that are edited 262 

and successfully recovered; the inefficient recovery observed in most studies to date results in 263 

substantial “missing data”. Second, recurrent events, i.e. the same edit occuring more than once 264 

independently at the same target, can be much more likely than in more conventional 265 

phylogenetic datasets, further complicating reconstruction. Third, it is computationally impractical 266 

to apply many popular phylogenetic algorithms to the large number of cells profiled with CRISPR-267 

based lineage tracing, particularly those relying on generating a subset of all possible trees and 268 

choosing the most likely among them. To overcome this, one group employed a greedy approach 269 

to split cells into subgroups, generating subtrees of subgroups and merging them at the end 270 

(Jones et al., 2020). However, this approach was hindered by missing data in individual cell 271 

lineage profiles, which frequently split closely related cells across multiple subgroups. 272 

 273 

On the other hand, CRISPR-based lineage tracing data has one feature which makes it more 274 

amenable to step-wise (rather than probabilistic) reconstruction strategies?the starting state of 275 

each target, i.e. unedited, is known. Given this, it is at least theoretically possible to employ a 276 

divisive, greedy approach to build a highly accurate tree (Figure 3c,d). In the proposed algorithm, 277 

all cells begin as a single group, which is split into two groups based on the presence vs. absence 278 

of the most common editing pattern associated with a single target. This edit is inferred by its 279 

frequency to have occurred earlier than other edits in cells belonging to the group. This splitting 280 

step is iterated on each sub-group, and each sub-sub-group, etc., terminating when all unique 281 
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lineage profiles are represented by individual branches. Subsequently, unsupported bifurcations 282 

(those wherein a branch is not defined by a specific editing event(s)) are collapsed, such that 283 

more than two branches can arise from a single inferred ancestor. 284 

 285 

The success of this approach is dependent upon two important assumptions: erroneous or 286 

missing data is minimal, and convergence events?)+*( *,( 3*,0( "-0#)"4$%( 0-").( *447,,"#1(287 

"#-090#-0#)%&($)($(."#1%0()$,10)(.")0?are rare. We thus set out to optimize the dataset to better 288 

fit these assumptions. Sources of erroneous data include PCR and sequencing errors within the 289 

target, where a single mismatch in the 70bp (unedited) amplicon would instead appear as a 290 

distinct edit. Defining edits is further complicated by the fact that an edit containing both deleted 291 

and inserted bases can appear discontinuous when aligned to the reference sequence (e.g. see 292 

examples within alignments shown in Figure 2f). To mitigate errors and misalignments, we 293 

required that an edit had to begin within 4 bases of the CRISPR cut site, and that all discontinuous 294 

segments be within a maximum of 4 bases from each other (Methods). To address missing data, 295 

we first defined a similarity metric between cells based on shared edits and used it to identify a 296 

set of nearest neighbors for each cell. We then imputed missing and ambiguous edits from these 297 

nearest neighbors (Methods). Individual cell lineage profiles for a group of closely related cells 298 

with missing and ambiguous data shown (black and red boxes, respectively) are plotted in Figure 299 

3e.  300 

 301 

An additional source of error arises from cross-talk between cellular and target indices during 302 

PCR amplification, such that a target sequence derived from one cell becomes associated with 303 

the profile of another. A single such error might place a cell far from its true lineage via the 304 

algorithm described above. However, although these events are undetectable at the single cell 305 

level, they are often obvious when examining groups of closely related cells. To take advantage 306 
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of this, we sought to pool closely related cells, infer a “consensus” lineage profile for each group 307 

(encompassing edits shared by the majority of the group), and generate a preliminary tree of 308 

these consensus profiles, such that cells with “contaminating” target sequences would be retained 309 

in the group via overall proximity to their neighbors. To identify groups of closely related cells, we 310 

again calculated all pairwise similarity scores, and used these as input for hierarchical clustering 311 

using Ward's method. We visually determined the number of clusters into which to subdivide cells, 312 

using plots such as the one in Figure 3e (right), and computationally inferred a consensus profile 313 

for each group. In some cases, where we could explain why an edit did not reach the needed 314 

majority for inclusion, automatically inferred consensus profiles were manually corrected 315 

(Methods). Finally, we applied the algorithm above to the consensus profiles, generating a 316 

lineage tree of subgroups of closely related cells. 317 

 318 

Since cells within each subgroup contain additional edits beyond the shared edits shown in the 319 

"consensus" profile, one can in theory iteratively apply this set of steps to each subgroup, and 320 

concatenate the resulting subtrees to derive a single cell-resolved lineage tree. Since our 321 

downstream intended application involved comparing pooled expression and chromatin 322 

accessibility profiles from groups of closely related cells, and we found that particularly small 323 

lineage groups were too noisy for meaningful gene expression and chromatin accessibility 324 

analysis, we performed such iterative subdivisions for only a subset of the groups.  325 

 326 

For several reasons, we generated an initial tree using only about a quarter of the filtered cells (n 327 

= 2,419). First, the hierarchical clustering algorithm used for initial subgrouping has O(n³) run time. 328 

Second, as described in the previous section, two out of eight batches (1 & 3, Supplementary 329 

Figure 2) exhibited the most complete lineage profiles, and we reasoned that these would 330 

generate the most accurate cell lineage groups into which the remaining cells could be placed via 331 

a nearest neighbors approach. Provided that the terminal lineage groups we generate are large 332 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2022. ; https://doi.org/10.1101/2022.05.12.491602doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.12.491602
http://creativecommons.org/licenses/by/4.0/


16 

enough, we can assume close cell relatives of every cell in the dataset are present within this 333 

subset of the overall data. Including all cells, the final tree used for downstream analyses 334 

contained 42 lineage groups, ranging in size from 34 to 1217 cells (Figure 3e).   335 

 336 

This iterative approach of building and concatenating subtrees from root to tip mitigates the 337 

probability that recurrent editing patterns at individual targets grossly impact tree structure. For 338 

example, if the same edit occurred in two cells independently at target #2, and if one of these 339 

events occurred early enough to define an early bifurcation, all descendants of the other cell would 340 

be misplaced early during tree reconstruction when employing a greedy approach. However, 341 

initial subgrouping of cells based on the full set of edits they contain prevents this problem when 342 

at least one of the edits occurs late enough that it does not define the group as part of its 343 

"consensus" lineage profile.  344 

 345 

Nevertheless, CNAs inferred from expression data occurring over the course of this experiment 346 

(discussed in detail in the next section) signaled the presence of two convergence events within 347 

lineage data impacting our tree structure. In each case, the convergence events were mediated 348 

by a very common editing pattern (Figure 2f), and we manually resolved these events to come 349 

to the tree structure shown in Figure 3e (Methods). However, it should be emphasized that with 350 

the exception of these two manual changes, the tree shown in Fig. 3e was reconstructed solely 351 

from lineage profiles, i.e. expression data was not used for lineage inference.  352 

 353 

 354 

 355 

 356 

 357 

 358 
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 359 

 360 

 361 

Figure 3. Cell lineage tree reconstruction. (a) Visualization of cell lineage profiles. Each unique editing 362 

pattern is assigned a unique color. (b) Preprocessing of lineage data. Missing data are imputed from 363 
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nearest neighbors and pairwise similarity scores are computed from corrected lineage profiles. Similarity 364 

scores are used to generate a hierarchically clustered tree, grouping related cells. This tree is subdivided 365 

into groups of related cells and consensus lineage profiles are generated for each lineage group. The 366 

consensus profiles are then used to reconstruct a preliminary cell lineage tree via a greedy approach. (c,d) 367 

Summary and example of a greedy approach to reconstruct a cell lineage tree. This greedy approach can 368 

be performed iteratively on groups of cells within a lineage group to generate a tree with individual cells at 369 

the leaves. (e) Left: Tree of cell lineage groups ("consensus" editing patterns shown as rows; each column 370 

represents a unique target site). Each color represents a unique editing pattern. White: unedited target. 371 

Black: targets with missing data for a majority of cells in the group. Number of cells represented by each 372 

consensus cell is shown. Inset (right) shows the editing patterns for all 100 cells assigned to lineage group 373 

#24. Black: missing targets. Red: ambiguous targets. 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

  389 
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Chromosome copy number alterations inferred from sci-RNA-seq recapitulate the lineage-inferred 390 

tree structure 391 

 392 

We reasoned that heritable variation in gene expression patterns should visually correlate with 393 

tree structure, whereas non-heritable variation should not (Figure 1a). To explore this, we 394 

aggregated single cell expression profiles within each of the 42 groups described above, and 395 

plotted relative group expression as a heatmap (Figure 4). Unexpectedly, when genes were 396 

arranged by their genomic location, we observed large, continuous stretches of down- or 397 

upregulated genes, strong evidence of partial or full chromosomal gain or loss events. HEK293s 398 

are pseudotriploid and known to be karyotypically unstable, and an active CRISPR/Cas9 system 399 

may also contribute to instability (Y.-C. Lin et al., 2014).  400 

 401 

As CNAs are themselves heritable genomic events, we saw an opportunity to use them to validate 402 

our CRISPR-inferred tree structure. Strikingly, where present, CNAs were generally concordant 403 

with the tree structure inferred from lineage data. In particular, with the exception of full 404 

chromosome gains or losses, most CNAs appear to have arisen from a single founder event 405 

(Figure 4). As described in the previous section and Methods, on two occasions, CNAs were 406 

used to resolve ambiguity in the lineage data due to convergence events. However, the remaining 407 

CNAs shown in Figure 4 were not used for lineage reconstruction and, importantly, we observed 408 

no instances of CNAs contradicting CRISPR-derived lineage relationships.  409 

 410 

 411 
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 412 

 413 

Figure 4. Gene expression in lineage groups arranged by genomic location. Heatmap shows log2-414 

fold gene expression variation relative to the mean expression of each gene across cells. Genes are shown 415 

in the order in which they appear along chromosomes in the reference human genome. Log2 fold changes 416 

>1 & -1 were manually fixed at these maximum and minimum values for visualization. A minimum mean 417 

expression cutoff was applied to remove lowly-expressed genes, leaving 6,241 genes. Green shading of 418 

the boxes containing lineage group numbers at the tree leaves is based on the log-scale number of cells 419 

per group. 420 

 421 

 422 

 423 
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Allelic ratios further inform chromosome copy number dynamics across lineages 424 

 425 

We next wondered whether we could use lineage-resolved expression data to investigate allele-426 

specific copy number dynamics. Indeed, although we made no direct measurement of copy 427 

number, we found that in many cases we could infer copy number based on SNP ratios in sci-428 

RNA-seq data (Figure 5a). For example, if a chromosome shows heterozygosity at known SNPs, 429 

and we observe allelic ratios of 1:2 across these positions, this chromosome is likely to be present 430 

in three copies, while a 1:1 allelic ratio would suggest two or four copies, and a 1:3 allelic ratio 431 

would suggest four copies. On the other hand, a paucity of SNPs would suggest regional or 432 

chromosome-wide loss-of-heterozygosity, in which case copy number could not be inferred by 433 

this method.  434 

 435 

We first performed such an analysis on each chromosome using expression data from all cells. 436 

Since each genomic position is represented sparsely in sc-RNA-seq data, we divided the genome 437 

into 5Mb bins, identified coordinates which appeared to be heterozygous in our data (most 438 

frequent base present at in <85% of reads), subsetted these to include only those positions which 439 

overlapped known human SNPs (i.e. those appearing in dbSNP), and combined counts for SNPs 440 

within each 5Mb bin. For this last step, because phasing information was not available, we simply 441 

assumed the more abundant alleles at each SNP within a bin were on the same haplotype for 442 

binning purposes (as would be expected if homologs existed in unbalanced ratios, at least 443 

provided counts are sufficiently high). We then calculated a "major" (most abundant) allele 444 

frequency for each bin and plotted these by relative genomic position (Figure 5a,b). Figure 5b 445 

shows several examples of this approach for chromosomes with stable copy number in our 446 

dataset, revealing there to be 3 copies of chr19, 4 copies of chr18, and 2 or 4 copies of chr17. Of 447 

note, because our heuristic always places the most abundant allele on the same haplotype, we 448 

expect a major allele frequency above 1/2 for cases where haplotypes exist in equal copies, e.g. 449 
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as we infer for chr17. On the other hand, chr14 exhibited very low overall heterozygosity at known 450 

SNPs together with an unstable ratio, suggesting  loss-of-heterozygosity. Consistent with this 451 

prediction, the "minor" alleles inferred in chr14 and other chromosomes which exhibit this unstable 452 

pattern (Supplementary Figure 3a) often do not match known variants founds in the human 453 

population , in contrast with inferred minor alleles in chromosomes exhibiting heterozygosity 454 

(Supplementary Figure 3b). Major allele frequency plots for all chromosomes are shown in 455 

Supplementary Figure 3a.  456 

 457 

We next applied this approach to subgroups of the tree to investigate copy number dynamics 458 

during the monoclonal expansion. For example, this analysis revealed a partial loss of an extra 459 

copy of the short arm of chr3 impacting only a subgroup of related cells (Figure 5c, left panel). 460 

Of note, the inferred breakpoint is slightly shifted from the centromere, such that several genes 461 

on the short arm are retained. We calculated a binned major allele frequency for the subgroups 462 

indicated in Figure 5c (left panel), using the major haplotypes we inferred from all cells (Figure 463 

5c, right panel). Subgroup copy number analysis (Figure 5c, right panel) of groups 1-9 (top, 464 

purple) agrees with the predicted ancestral state, whereas the major allele frequency in groups 465 

10-19 has dropped between 1/2 & 2/3 across the whole chromosome. Since heterozygosity 466 

appears preserved on the left arm, we infer that the partial chromosome (i.e. a copy of the short 467 

arm of chr3) was lost in groups 10-19, relative to the ancestral state. 468 

 469 

A similar analysis suggested more complex copy number dynamics for chr11, for which multiple 470 

full and partial chromosome copy number changes appear to occur at different parts of the lineage 471 

(Figure 5d, left panel). Performing a subgroup analysis, we observe a pattern consistent with at 472 

least three independent full chromosomal losses (Figure 5d, middle panel). Intriguingly, these 473 

result in different allelic ratios, with loss-of-heterozygosity in two groups (Figure 5d, green & blue), 474 

and maintained heterozygosity in one (beige). Overall, these analyses highlight the potential of 475 
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high-resolution, progressive lineage histories to disambiguate copy number alterations, including 476 

but not limited to recurrent gains and losses. 477 

 478 

 479 

 480 

 481 
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 482 

Figure 5. Lineage-resolved allelic ratios inform complex chromosome copy number dynamics . (a) 483 

A strategy to infer copy number using SNPs from sc-RNA-seq data. First, haplotypic imbalance is assumed 484 
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and haplotypes are inferred based on base abundance at known SNPs, using all cells. We can then use 485 

these to infer the ancestral (or most observed) copy number. Using these haplotypes, we can perform this 486 

analysis on subsets of the tree to infer whole or partial chromosome gains or losses.  (b) Copy number 487 

analysis described in panel a for chr19, chr18, chr17, & chr14, using all cells. Point fill color represents the 488 

number of SNPs found to be heterozygous in that bin, signaling the reliability of this analysis at that location. 489 

Yellow line shows the centromere position. (c) Subgroup copy number analysis of chr3. Left: expression 490 

heatmap as described in Figure 4. Middle: Copy number analysis of chr3 for indicated subgroups. Right: 491 

schematic of inferred haplotype dynamics. Point fill color represents the number of observed heterozygous 492 

SNPs per bin detected when pooling all cells, not just subgroup cells. Yellow line shows the centromere 493 

position. (d) Subgroup copy number analysis of chr11. Left: expression heatmap as described in Figure 4. 494 

Middle: Copy number analysis of chr11 for indicated subgroups. Right: Schematic of inferred haplotype 495 

dynamics. Point fill color represents the number of observed heterozygous SNPs per bin detected when 496 

pooling all cells, not just subgroup cells. Yellow line shows the centromere position. 497 

  498 
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 499 

Heritable expression changes unexplained by CNAs are observed throughout the tree 500 

 501 

<")2"#( 10#*3"4( ,01"*#.( 082":")"#1( %$,10P.4$%0( QRS.'( 4*9&( #73:0,( 42$#10( ".( )20( *:/"*7.(502 

3042$#".3(>*,(-">>0,0#)"$%(089,0.."*#(*>(10#0.("#()20("39$4)0-(,01"*#;(T7)(*)20,(920#*30#$?503 

e.g.( 09"10#0)"4( 42$#10.'( 42$#10.( "#( )20( %0/0%.( *>( 79.),0$3( ,017%$)*,.'( >*4$%( QRS.( $#-(504 

),$#.%*4$)"*#.?3"12)("#-740(20,")$:%0(089,0.."*#(42$#10.($.(+0%%;(O*(089%*,0(4*#),":7)"*#.(>,*3(505 

.742(.*7,40.'(+0(.0)(*7)( )*(.&.)03$)"4$%%&( "-0#)">&(08$39%0.(*>(20,")$:%0(089,0.."*#(/$,"$)"*#(506 

$4,*..()20(),00()2$)(+0,0(#*)(*:/"*7.%&(089%$"#0-(:&(QRS.;( 507 

 508 

To this end, we first inferred the boundaries of CNA events between every pair of sister branches 509 

(defined as those that share an immediate common ancestor in the tree) using a combination of 510 

expression heatmaps (as shown in Figures 4, 6f), and pairwise log-fold change plots, where 511 

stretches of differential expressed (DE) genes are visible (Figure 6d; Supplementary Figure 56;(512 

<0()20#(.*712)()*(0/$%7$)0(BU(:0)+00#(0/0,&(9$",(*>(.".)0,(:,$#420.'(7."#1(BU(+")2"#(QRS.($.(513 

1,*7#-( ),7)2( >*,( .0#.")"/")&;( S99%&"#1( BU.0@D'( +2"42( 3*-0%.( -$)$( $.( $( #01$)"/0( :"#*3"$%(514 

-".),":7)"*#'(+0(*:.0,/0-($( .7:.)$#)"$%( #73:0,( *>( >$%.0( #01$)"/0.?10#0.(+")2"#(QRS.(+2"42(515 

+0,0( #*)( -0)04)0-( $.( BU?0/0#( :0)+00#( %$,10( 1,*79.( *>( 40%%.( 5Figure 6b, top panel; 516 

Supplementary Figure 4a). We thus sought to develop a strategy which would be sensitive to 517 

small-magnitude expression changes, while also being robust to large differences in the number 518 
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of cells between the groups being compared (Figure 6a; Methods). As a first step, cells from 519 

each pair of sister branches are permuted 10,000 times, in each instance creating two groups of 520 

the original sizes. For each permuted set, we calculate the log2-fold change for each gene. We 521 

then use permuted expression ratios to (a) generate an expected distribution which we can use 522 

to calculate a z-score associated with the observed fold change; and (b) rank against the observed 523 

expression ratio to assign significance. For a set of genes evaluated for a pair of groups, if none 524 

are significantly DE, the distribution of observed ranks is expected to be uniformly distributed; on 525 

the other hand, if there are DE genes, we expect to observe their enrichment at the extremes of 526 

the rank list. Using an FDR of 5%, we can calculate a set of "significant" ranks (and thus genes) 527 

for each pair of groups being compared.  528 

 529 

This permutation strategy detected a substantial fraction of genes within CNA regions as 530 

differentially expressed (Figure 6b,c; Supplementary Figure 5). Genes within CNAs across all 531 

pairwise comparisons were more likely to be identified by our approach, with lowly-expressed 532 

genes within CNAs more likely to be missed by DESeq2 (Supplementary Figure 4a; 533 

Supplementary Figure 5). For example, between groups A & B, 85% of expressed genes (see 534 

Methods for filtering criteria) within the CNA region on chromosome 3 were identified as DE using 535 

our approach, compared with 49% detected by DESeq2 (Supplementary Figures 4a, 5). Unless 536 

otherwise stated, here we will refer to DE genes as those identified by the permutation approach 537 

at an FDR of 5%. 538 

 539 

As expected, statistical power decreases with group size, but we nonetheless detected some DE 540 

genes within CNAs even between smaller groups (Figure 6d; comparisons G/H; J/K). For 541 

example, between group J & K (as labeled in Figure 6d), containing 234 and 276 cells, 542 

respectively, we detect a subset of CNA-associated genes across several chromosomes 543 

(Supplementary Figure 4c), including TRIO, SRPK2, & FGF13 (log2-fold changes of -.22, .36, 544 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2022. ; https://doi.org/10.1101/2022.05.12.491602doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.12.491602
http://creativecommons.org/licenses/by/4.0/


28 

& -.59, respectively). The allelic chromosome copy number analysis presented in Figure 5 545 

suggests a copy number change from 4 to 5 on chr5 (TRIO) & from 3 to 2 on chr7 (SRPK2) 546 

between these two groups. Since no heterozygosity is observed on chrX, and thus we cannot 547 

infer absolute copy number change for FGF13.  548 

 549 

In total, across 66 pairwise comparisons, we detected 11,454 DE genes using the permutation 550 

approach. Of these, 4,810 (42%) were detected using DESeq2, which detected an additional 520 551 

genes not detected by our approach (Figure 6c; Supplementary Figure 5). Surprisingly, 48% of 552 

DE genes detected by permutation analysis could not be directly explained by large-scale CNAs 553 

(Supplementary Figure 5). The heritable nature of these expression changes may be a product 554 

of smaller scale copy number  changes , focal genetic or epigenetic differences,or trans-effects 555 

mediated by heritable events elsewhere in the genome (e.g. CNAs or other). Interestingly, when 556 

quantified by sister branch pair comparisons, the number of DE genes that we detected outside 557 

CNA regions was well correlated with the number of genes within CNAs (Pearson's r of log-558 

transformed numbers of genes within vs. outside of CNAs  = .90, Figure 6e), suggesting CNA-559 

mediated expression changes might contribute to heritable gene expression variation through 560 

trans-acting effects. However, this relationship may largely be explained by the increased 561 

statistical power to detect DE genes in larger groups (Pearson's r of log-transformed number of 562 

genes outside of CNAs vs. group size = .76, Figure 6e; Supplementary Figure 4b). 563 

 564 

The most striking heritable expression change which cannot be explained by an obvious CNA 565 

was observed in GRIA1, a glutamate receptor subunit on chr5 (Figure 6f-h, z-score = 28.2, log2 566 

fold-change (FC) = 3.32, between the indicated groups). Markedly elevated expression is 567 

observed in lineage groups 11-15 relative to the rest of the tree (with elevated expression in group 568 

16 likely due to misplaced cells). Though we cannot conclusively determine from this data alone 569 

whether this expression change is caused by genetic (e.g. focal amplification) or epigenetic 570 
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factors, it is notable that GRIA1 is located in a replication transition zone in various cell lines, 571 

potentially predisposing it to structural instability (Watanabe et al., 2014). Additional examples of 572 

genes exhibiting differential gene expression patterns that track closely with the lineage-derived 573 

tree structure appear throughout the tree (Supplementary Figure 4d).  574 

 575 

Another intriguing example, where multiple expression levels appear to have been stably inherited 576 

is observed in CSMD3, on chr8 (Figure 6f-h). Group B expression is markedly elevated over its 577 

sister group A (A/B z-score = -7.30, log2FC = -0.57), while in the branch encompassing both 578 

groups A & B, CSMD3 is even more highly expressed relative to group C (A&B/C z-score = 27.8, 579 

log2FC = 2.02). A weaker, but similarly heritable relationship appears between groups D & E (z-580 

score = 3.8, log2FC = 0.34). Such a heritable but labile expression pattern might indicate flexible 581 

but relatively stable regulation at this locus. Interestingly, such graded but clone-specific 582 

expression patterns were observed with cell type groups in both Apoe and Lmo4 in mouse 583 

neurons (Mold et al., 2022). Alternatively, this lability might be explained by local genomic 584 

instability. In fact, translocations at a breakpoint near CSMD3 have been associated with autism 585 

in multiple de novo cases (Floris et al., 2008), and the CSMD3 locus is implicated in a wide range 586 

of diseases including epilepsy & non-small cell lung carcinoma (Floris et al., 2008; P. Liu et al., 587 

2012; Shimizu et al., 2003). CNAs are particularly common in branch C (Figure 4), bolstering the 588 

likelihood that a translocation event explains reduced expression in that group.  589 

 590 

Even within CNAs, we observe single gene expression changes which deviate strongly from the 591 

expected copy number ratios. An intriguing example is the transcript AC090518.1, which normally 592 

exhibits testis-specific expression, and is located within a short stretch of genes with modestly 593 

elevated expression on chr15 consistent with a CNA (Figure 6g,h; AC090518.1 is located 594 

between MNS1 & ZNF280D). This transcript's markedly increased expression well beyond that of 595 

its neighbors (log2-fold change (A/B) = -3.82, A/B z-score = -28.67), points to a possible 596 
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translocation (or tandem duplication) event, exposing it to a new regulatory context. Chromosomal 597 

rearrangements are a hallmark of cancer progression, and tracking such small-scale events may 598 

reveal the mechanism behind biologically-meaningful expression changes. The genes GNGT1, 599 

C6orf14, and NEAT1, all lie within CNA regions but show heritable expression changes in the 600 

opposite direction of surrounding genes (z-scores -7.40, -4.10, -8.84, respectively, Figure 6h). 601 

Such patterns may indicate expression compensation or selection for particular expression levels. 602 

In fact, both GNGT1 & C6orf141 have been associated with cancer prognosis (Yang et al., 2019; 603 

J.-J. Zhang et al., 2021), with C6orf141 playing a direct role in cell proliferation. GNGT1 was 604 

designated a hub gene in non-small-cell lung cancer, suggesting its misexpression may have 605 

widespread downstream consequences which would also appear heritable. NEAT1, a long non-606 

coding RNA with a known epigenetic role in a variety of cell types, may also stably modify 607 

expression of multiple downstream target genes (Wang et al., 2020).  608 

 609 

Here, lineage relationships enabled us to identify stably-inherited expression changes which may 610 

not otherwise be obvious among non-heritable expression fluctuations. In most cases, however, 611 

it is not possible with this data alone to determine the mechanistic basis for this differential gene 612 

expression (e.g. cis-genetic, trans-genetic vs. epigenetic). We next sought to distinguish between 613 

these possibilities by additionally tethering chromatin accessibility information to this same lineage 614 

tree.  615 
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 616 

Figure 6. Detecting heritable differential expression within lineage-resolved sci-RNA-seq data. (a) A 617 

permutation-based strategy for identifying significantly DE genes. (b) Comparison of DE genes identified 618 
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by the permutation method and/or DESeq2, showing log2-fold change expression on chr3 between 619 

indicated groups A & B. Yellow bar indicates centromere position. (c) Number of DE genes identified using 620 

permutations, DESeq2, or both, across every pairwise comparison (66 total) of sister lineage groups (i.e. 621 

branches sharing an immediate common ancestor in the tree). (d) Left: Heatmaps as described in Figure 622 

4a depicting CNAs on chrs 5,6,10, & X, with lineage groups indicated on tree. Right: Log2-fold changes of 623 

genes on indicated chromosomes between indicated groups, depicting the power to detect DE genes within 624 

CNA regions via the permutation approach across groups of different sizes. (e) Relationship between the 625 

log-scale number of detected DE genes within CNAs and DE gene falling in non-CNA regions per each 626 

sister pair comparison. Size of points represents the mean number of cells in the sister pair. (f) Heatmaps 627 

showing DE expression of GRIA1, CSMD3, AC090518.1, and surrounding genes. (g) Pileup visualizations 628 

of GRIA1, CSMD3, AC090518.1 in groups indicated on the trees in panel f. AC090518.1 is positioned 629 

between MNS1 & ZNF280D. (h) DE genes showing heritable expression patterns which cannot be 630 

explained by detected CNAs. The pair of groups being compared for each plot is indicated on the bottom 631 

right, with groups indicated on the trees in panel f (except for top-right sub-panel, for which pair of groups 632 

is shown in inset tree). 633 

  634 
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 635 

Collecting lineage information alongside single cell chromatin accessibility profiles enables 636 

tethering of gene expression and chromatin accessibility 637 

 638 

Both genetic and epigenetic phenomena can potentially underlie what we observe as heritable 639 

expression changes, and measuring expression alone is often not sufficient to disentangle these 640 

from one another. Coassays of single cell expression and chromatin accessibility may provide 641 

more insight, but contemporary methods result in relatively sparse profiling in any given cell. 642 

However, since heritable states are presumably shared by cells with similar lineage histories, we 643 

can theoretically measure these features independently in clonally related cells and link them 644 

retrospectively based on lineage relationships (Figure 7b). Furthermore, pooling of single cell 645 

chromatin accessibility profiles of closely related cells, as we did with expression profiles, 646 

increases the power to detect changes. To this end, we developed a method to capture lineage-647 

associated transcripts alongside sci-ATAC-seq (Cusanovich et al., 2015, 2018), i.e. to 648 

concurrently profile single cell lineage relationships and chromatin accessibility states (Figure 649 

7a). sci-ATAC-seq is a pool-split approach where genetic material undergoes two rounds of 650 

molecular indexing, such that DNA from each cell is ultimately associated with a unique pair of 651 

indexes. To associate lineage information with sci-ATAC-seq profiles, we devised a strategy to 652 

concurrently index mRNA transcripts containing recorded lineage information at each sci-ATAC-653 

seq indexing round, via reverse transcription and PCR, such that both features can be 654 

retroactively linked to a single cell via index combinations (Figure 7a; Methods).  655 

 656 

We applied this method to the remaining cells from the lineage/expression capture experiment, 657 

and filtered cells to those for which we collected both chromatin accessibility profiles and suitable 658 

lineage information. Since a lineage tree has already been built, lineage profiles captured 659 

alongside sci-ATAC-seq need only be complete enough to accurately place them into existing 660 
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lineage groups. Keeping cells with at least 5 captured targets of which at least one was edited, 661 

with more unambiguous than ambiguous editing events (the latter likely representing doublets), 662 

we retained 12160 cells with lineage information. In this group of cells, a median of 20 unique 663 

targets were captured per cell (Supplementary Figure 5b). We next filtered on chromatin 664 

accessibility profiles. Chromatin fragment lengths exhibited the expected nucleosomal peaks 665 

(Supplementary Figure 5a), and filtering on UMI counts yielded a total of 9014 cells (median 666 

non-mitochondrial UMI count: 1601; mean UMI count: 6491; minimum 32 UMIs, Supplementary 667 

Figure 5a). 668 

 669 

To place these cells into existing clonal groups, we first computed a weighted similarity score 670 

based on lineage profiles for each ATAC-associated cell with each RNA-associated cell. We then 671 

placed cells into existing groups based on nearest neighbors (Figure 7b). Encouragingly, the 672 

relative group sizes of ATAC-associated cells correlated well with the original group sizes 673 

(Supplementary Figure 5c). Moreover, lineage profiles collected alongside accessibility were 674 

visually consistent with those collected alongside expression within tethered groups (Figure 7c). 675 

Together, these data suggest that cells were accurately placed into lineage groups, and thus we 676 

can expect analogous heritable states to be reflected in expression and accessibility 677 

measurements within a group. 678 

 679 
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 680 

 681 

Figure 7. Collecting chromatin accessibility data (via sci-ATAC-seq) alongside lineage profiling, and 682 

evaluating its relationship to expression in closely related cells. (a) A combinatorial indexing strategy 683 
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to concurrently capture chromatin accessibility and lineage mRNA from the same single cell. (b) Schematic 684 

depicting how expression (sci-RNA-seq) and accessibility (sci-ATAC-seq) are linked via lineage 685 

information. Lineage-traced cells are split in half, and lineage profiles are captured separately alongside 686 

each single cell feature. A lineage tree was reconstructed from cells with concurrently profiled expression, 687 

and lineage profiles of cells with concurrent accessibility profiling were used to place cells into previously 688 

defined lineage groups via nearest neighbors. The relationship between expression and accessibility of 689 

closely related cells could then  be evaluated. (c) Lineage profiles of individual cells within four clonally 690 

related groups collected alongside either sci-RNA-seq or sci-ATAC-seq. (d) Heatmaps showing the relative 691 

expression (RNA) and accessibility (ATAC) across the 42 lineage groups, calculated for each gene (RNA), 692 

and for each 1MB bin (ATAC) for five selected chromosomes. Genes & bins are ordered by their 693 

chromosomal position. Dashed boxes indicate chromosomal regions with visually consistent copy number 694 

changes across the tree. (e) Heatmaps showing relative expression for a subset of genes which are both 695 

DE and DA, and including 10 positionally adjacent genes on either side. Associated RNA & ATAC read 696 

pileups are shown in Supplementary Figure 5d. (f) Left: Relationship between expression and accessibility 697 

changes evaluated within gene bodies plus 5kb upstream of the TSS, calculated using the permutation 698 

approach described in Figure 5a. Only genes within CNAs are shown. Each point represents an 699 

expression/accessibility change at a single gene for a pair of sister lineage groups (and thus a gene may 700 

be represented more than once). Points are colored by their DE and DA status. Middle: Analogous to the 701 

left plot, except including only genes outside of CNAs. Labeled genes are referenced in the text. Right: 702 

Overlay of left and middle plots. 10 outlier genes, where noise was likely due to low expression/accessibility, 703 

were removed from the middle and  right plots. (g) Relationship between RNA and ATAC log2-fold change 704 

(as opposed to z-score). Each point represents an expression/accessibility change at a single gene for a 705 

pair of sister lineage groups (and thus a gene may be represented more than once). Outliers discussed in 706 

the text are labeled with gene name and pair of sister groups as indicated on the tree. Because small groups 707 

result in noisy data, comparisons involving at least one small group (<100 cells) were removed. An 708 

expression cut-off was also applied to reduce visual noise, leaving the 45% of comparisons with the highest 709 

expression. (h) Left: Heatmap of relative expression of BCKDHB and surrounding genes, respectively. 710 

Right: Pileup of expression and chromatin accessibility data for the indicated groups (as labeled on tree in 711 
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panel g). Log2-fold change between groups F&G: 1.18 (RNA), -0.06 (ATAC); groups L&N: 1.13 (RNA), -712 

0.12(ATAC). 713 

  714 
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Using lineage-tethered chromatin accessibility and expression profiles to investigate mechanism 715 

of heritable expression 716 

 717 

Although sci-ATAC-seq is primarily used to measure local chromatin accessibility changes, copy 718 

number changes should also be apparent since they affect the amount of DNA available for 719 

tagmentation. Thus, if paired expression and accessibility measurements truly capture closely 720 

related cells, CNAs observed in expression data should also appear in accessibility data. To 721 

visually evaluate CNA concordance, we quantified relative sci-ATAC-seq read counts across 1MB 722 

windows of the genome for each lineage group and generated heatmaps analogous to those 723 

shown in Figure 4. Indeed, we observed striking agreement in CNA patterns between expression 724 

and accessibility data (Figure 7d), further confirming lineage profiles do link close cell relatives. 725 

To determine if CNAs were measurable in accessibility data at the gene level, we evaluated 726 

accessibility within gene bodies, including 5kb upstream of the TSS, once again using the 727 

permutation strategy described in Figure 5a. We found that within CNAs, RNA and ATAC z-728 

scores are strongly correlated at genes which are DE, DA, or both (Pearson's r = .73, Figure 7f, 729 

left panel), while much more limited correlation is observed outside of CNA regions (Pearson's r 730 

= .16, Figure 7f, right panels).  731 

 732 

Since copy number differences are often observable at the gene level in ATAC data, we wondered 733 

if we could use gene body accessibility outside of large CNAs to identify genes whose DE status 734 

is likely due to small genomic amplifications or deletions, affecting one or a few genes. Correlated 735 

DE and DA status may alternatively indicate a regulatory change, but such DA is more likely to 736 

be promoter-specific; in this case, we would expect a higher promoter-specific signal, while 737 

evaluating DA across the whole gene body could dampen such localized signal (Nair et al., 2021). 738 

21 genes outside of CNAs are both DE and DA (Figure 7f'(3"--%0(9$#0%6'(3$="#1()203(1**-(739 
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4$#-"-$)0.( >*,( ,0."-"#1( "#( .2*,)( QRS.;( A#( >$4)'( )2,00( *>( )20.0?MREG, PECR, XRCC5?are 740 

adjacent genes on chr2, with higher expression in group B relative to group A, despite similar 741 

expression outside of this region (Figure 7e; Supplementary Figure 6d). This pattern strongly 742 

suggests that a focal amplification occurred at this locus, explaining the increase in transcript 743 

abundance. Similarly, AC016205.1 on chr18 & TAF1 on chrX are both DE and DA between the 744 

groups indicated in Figure 7e, and also appear within short stretches of genes with elevated 745 

expression. A pileup of ATAC data, showing the positions of Tn5 insertions across TAF1, shows 746 

elevated signal across the whole gene body as well as the neighboring gene OGT, validating our 747 

prediction. A small CNA is also likely on chr3, where elevated expression is observed in DA gene 748 

SERPINI1 and nearby PDCD10 (Figure 7e; Supplementary Figure 6d, SERPINI1 does not 749 

appear on the heatmap due to low expression level.). Although PDCD10 is not significantly DA 750 

by our metrics, it lies in the vicinity of genes which are (Figure 7f, middle panel). Pileup of ATAC 751 

reads in this region supports this prediction, with denser coverage of reads across the gene body 752 

of SERPINI1 in group B (Supplementary Figure 6d, right panel). These data suggest that paired 753 

expression and accessibility data can help identify small copy number changes. 754 

 755 

We next sought to use accessibility data to identify genes whose expression changes are unlikely 756 

to be mediated by copy number changes. If a heritable expression change is triggered by a simple 757 

gene copy number change, we expect a linear fold-change concordance between expression and 758 

gene body accessibility. If, on the other hand, an expression change is due to other factors, such 759 

as abundance of an upstream regulator or change in its regulatory context, these features are not 760 

necessarily expected to be linearly correlated. Though log2-fold changes at single genes between 761 

variable size groups are inherently noisy, especially in ATAC data, outlier DE genes are especially 762 

likely candidates for non-copy number mediated heritable states. We thus further inspected 763 

several such outliers, where expression change greatly exceeds accessibility change (Figure 7g). 764 
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Between groups A & B as indicated in Figure 7g, the expression change in GRIA1 is 19 times 765 

greater than its gene body accessibility change (RNA log2-fold change = -6.04; ATAC log2-fold 766 

change = -.32), suggesting genomic amplification is very unlikely to be the cause of this 767 

expression change. Similarly, the expression changes observed in BCKDHB, CDH12, and 768 

ADGRB3 (Figures 7h, Supplementary Figure 5e,f) between the indicated groups greatly 769 

exceed gene body accessibility changes (log2-fold change shown in figure or legend). The 770 

absence of significant accessibility change in BCKDHB in particular allows us to rule out a focal 771 

amplification of the 3' end of the gene as an explanation for high RNA read coverage specifically 772 

in that region in groups E & F (Figure 7h). A more likely explanation is that a different transcription 773 

termination site was used.  774 

 775 

Beyond copy number changes, heritable changes in accessibility at regulatory regions would 776 

signal an epigenetic origin to expression variation. We thus identified peaks in ATAC data, both 777 

in the entire dataset as well as in lineage-specific subgroups internal to the tree, and looked for 778 

DA peaks within 5kb of TSSs or within the gene body between every pair of sister groups near 779 

genes found to be DE. We did not observe any DA peaks in these regions. Consistent with this, 780 

Kiani et al. recently showed that accessibility and expression changes are not well correlated in 781 

single gene perturbation experiments (Kiani et al., 2022). Others have observed a similar lack of 782 

concordance between accessibility changes and expression level (Hota et al., 2020; Y. Zhang et 783 

al., 2020).   784 

 785 

Together, these data illustrate the potential of lineage-based coupling of expression and 786 

accessibility data to help distinguish between potential mechanistic explanations for heritable 787 

expression changes.    788 

 789 

  790 
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Discussion 791 

 792 

Here, we have shown how tethering single cell expression and chromatin accessibility profiles via 793 

lineage relationships facilitates the detection and characterization of heritable gene expression 794 

changes. Surprisingly, even in a non-differentiating cell line, we observed abundant, 795 

progressively-acquired 20,")$:%0(089,0.."*#(42$#10.;(V*30(-">>0,0#)"$%%&(089,0..0-(10#0.(2$-(796 

$#(*:/"*7.(10#0)"4(*,"1"#?4*9&(#73:0,(42$#10.("39$4)"#1(37%)"9%0($-W$40#)(10#0.'(+2"%0(3$#&(797 

*)20,.(.2*+0-(.)$:%0'(%"#0$10P$..*4"$)0-(089,0.."*#(:7)(+")2(%0..(4%0$,(*,"1"#.;(O20(089%$#$)"*#.(798 

>*,()2".(%$))0,(category might include epigenetic changes within nearby regulatory sites, changes 799 

in abundance of upstream regulators, the acquisition of new regulatory contexts via genomic 800 

rearrangements, and/or focal genetic changes, amplifications, or deletions. Above, we have 801 

shown that our approach of profiling multiple features in closely related cells can, at least in some 802 

cases, be used to distinguish between these possibilities. 803 

 804 

Clonal tracking, achieved via various methods across diverse systems, has revealed the presence 805 

of biologically important heritable states. For example, combining Luria-Delbrück fluctuation 806 

analysis with RNA-seq, Shaffer et al. found rare, but clonally stable expression states which 807 

predisposed cancer cells to drug resistance (Shaffer et al., 2020). Intriguingly, these states were 808 

in some cases reversible, suggesting an epigenetic origin. Goyal et al. confirmed the presence of 809 

clone-specific responses of cancer cells to various drug treatments using a clonal barcoding 810 

approach (FateMap) (Goyal et al., 2021). Mold et al.(3$-0(7.0(*>(X#$)7,$%X(4%*#$%(:$,4*-0.?OP811 

40%%(,0409)*,.( "#( %&392*4&)0.?$#-(>*7#-()2$)(4%*#$%( %&392*4&)0.(,0.9*#-0-(3*,0(."3"%$,%&()*(812 
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/$44"#$)"*#( )2$#(3*,0( -".)$#)%&( ,0%$)0-( 40%%.( (Mold et al., 2022). Using an in vivo transgenic 813 

barcoding strategy (TREX, (Ratz et al., 2021)), they found that in mouse neurons, gene 814 

expression states mimicked clonal structure, even among different clones of the same cell type. 815 

Finally, He et al. investigated the timing of cell fate restriction in organoids with iTracer, a system 816 

which includes an initial and an induced round of clonal barcoding (He et al., 2021). These studies 817 

present intriguing examples of heritable expression but are limited in terms of fully distinguishing 818 

between potential underlying causes.  819 

 820 

We envision that THE LORAX may be applied to such systems, enhancing our ability to detect 821 

heritable events and explain their mechanistic origins. First, progressive lineage labeling 822 

increases the likelihood of detecting rare heritable events, as finer-scale, temporally-resolved 823 

clonal labeling produces more homogenous clones. Progressive labeling may be particularly 824 

useful for detecting events which are stable over multiple cell divisions but reversible, since both 825 

the acquisition and reversal may be captured via a finely-tuned lineage recording system.  826 

Second, the addition of a chromatin accessibility measurement alongside clonal labels may help 827 

resolve the mechanisms behind clonal expression stability. Genetically-mediated expression 828 

variation is likely during cancer progression, where copy number changes ((Harbers et al., 2021), 829 

loss of heterozygosity (Nichols et al., 2020), and chromothripsis (Cortés-Ciriano et al., 2020)?830 

+"-0.9,0$-( >,$130#)$)"*#( $#-( ,0$..03:%&( *>( 10#0)"4(3$)0,"$%?$,0( 4*33*#%&( *:.0,/0-;(<0(831 

2$/0(.2*+#($:*/0( )2$)(.742(0/0#).(3$&(:0( "#>0,,0-(7."#1(*7,($99,*$42;(Y#( )20(*)20,(2$#-'(832 

3&,"$-( 09"10#0)"4( 42$#10.( $44*39$#&( 40%%( >$)0( 4*33")30#)( -7,"#1( *,1$#*"-( $#-( *,1$#".3(833 

-0/0%*930#)'($#-(4*#47,,0#)(%"#0$10(),$4"#1($#-(ZRS($#-(SOSQ(9,*>"%"#1("#(4%*.0%&(,0%$)0-(40%%.(834 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2022. ; https://doi.org/10.1101/2022.05.12.491602doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.12.491602
http://creativecommons.org/licenses/by/4.0/


43 

3$&("%%73"#$)0()20(*,-0,(*>(0/0#).(+2"42(1"/0(,".0()*(9,*1,0.."/0(40%%()&90(-"/0,10#40((Thomas et 835 

al., 2011). In these systems and others where cell state diversification is taking place, it is likely 836 

that lineage-resolved ATAC-seq will show clone-specific enhancer and promoter accessibility 837 

changes beyond what we observed here, which may explain heritable expression variation. In 838 

fact, profiling clonal T-cell populations expanded in vitro using bulk ATAC- and RNA-seq, Mold et 839 

al. found clone-specific accessibility changes at regulatory regions, with enrichment near clonally 840 

differentially expressed genes (Mold et al., 2022).  841 

 842 

Our work presents some advances in CRISPR-based lineage tracing, and also highlights some 843 

fresh challenges. First, encoding lineage at many independently-integrated loci rather than at 844 

tandem loci expressed as a single transcript eliminates the chance that a large deletion removes 845 

neighboring CRISPR targets, supports larger deletions, and enables efficient capture of larger 846 

insertions. These features in turn reduce both the rate of missing lineage information and the 847 

probability of convergence events. Second, we show that NN-based inference of missing data in 848 

individual cells and subsequent pooling of cells to generate "consensus" profiles prior to lineage 849 

reconstruction (and iteratively generating subtrees from these consensus groups) reduces the 850 

likelihood of misplaced cells early in the reconstruction process. Though we demonstrate the 851 

usefulness of this approach when a "greedy" algorithm is used for reconstruction, it is applicable 852 

even to methods which primarily use traditional phylogenetic reconstruction approaches (e.g. 853 

maximum likelihood) (Gong et al., 2021; Jones et al., 2020; Konno et al., 2022), since the sheer 854 

number of cells often makes early "greedy" subgrouping necessary. Finally, these lineage 855 

recording and analysis approaches are compatible with other recent advances in lineage 856 

recording technology, like DNA Ticker Tape (J. Choi et al., 2021), where successive insertions as 857 

a single locus greatly simplify ordering of lineage-encoding events. Integrating multiple such loci 858 
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would enable higher resolution trees, and the approaches presented here can be used to order 859 

events occurring at distinct recording loci, where event ordering is not so straightforward. 860 

 861 

Our work also highlights some unresolved challenges within the CRISPR-based lineage tracing 862 

field. First, fine control of editing rate remains elusive; we observed abundant editing in some 863 

lineages, while most targets in others remained unused. Loss or silencing of the Cas9-expressing 864 

genomic locus might explain lineage-specific reductions in editing efficiency, while position effect 865 

variegation in cutting or editing rates might explain variation in usage or recovery across targets. 866 

Second, though we observed a great diversity of editing patterns, they are not evenly distributed, 867 

with the top three edits frequently occurring independently. This phenomenon can in part be 868 

addressed with careful target design to avoid regions of microhomology (W. Chen et al., 2019; 869 

Sfeir & Symington, 2015).  Third, though the design of our construct allows for large indels relative 870 

to other methods, relying on double strand break repair for editing diversity still presents a risk 871 

that a recorded event will not be reliably captured due to indel size. Finally, frequent DSBs (which 872 

may themselves be contributing to the CNAs observed here), and the persistently high expression 873 

of transgenes (which are prone to silencing) may not be compatible with organismal or ES cell-874 

derived systems. Excitingly,  these challenges are addressed in large part by DNA Ticker Tape, 875 

which leverages prime editing to introduce diverse insertional edits to a target site in an ordered 876 

manner, without requiring double-stranded breaks (J. Choi et al., 2021). 877 

 878 

The logical core of THE LORAX–pooling cells based on genetically-encoded labels captured 879 

alongside multiple genomic and/or epigenetic features to evaluate the relationship between those 880 

features–is broadly applicable to any system amenable to genetic barcoding. Systems where 881 

static barcodes (e.g. CellTag (Guo et al., 2019)) are used to interrogate clone-specific 882 

heterogeneity, are an obvious candidate, but labels need not necessarily mark clonal populations. 883 

For example, sgRNAs in CRISPR perturbation screens can be used to tether multiple single cell 884 
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molecular measurements. Importantly, combinatorial indexing approaches are not required here, 885 

as both short barcode integrants and sgRNAs can now be captured alongside scRNA-seq (Biddy 886 

et al., 2018; Dixit et al., 2016; Guo et al., 2019; Rodriguez-Fraticelli et al., 2018; Weinreb et al., 887 

2020) and scATAC-seq (Pierce et al., 2021; Replogle et al., 2020; Rubin et al., 2019) via droplet-888 

based methods.  889 

 890 

In some applications, THE LORAX has several advantages over traditional co-assays of 891 

expression and accessibility where both features are measures in the same single cells (Cao et 892 

al., 2018; S. Chen et al., 2019; L. Liu et al., 2019; Ma et al., 2020; Xing et al., 2020; Zhu et al., 893 

2019), as well as computational integration methods which merge single cell expression and 894 

accessibility datasets (Y. Lin et al., 2021; Stuart et al., 2019). First, existing co-assay methods are 895 

relatively low resolution compared with methods which profile each feature separately; thus, 896 

associating single-feature profiles via lineage relationships improves resolution at the single cell 897 

level. Second, by aggregating profiles of closely related cells, we achieve higher statistical power 898 

to detect even rare, heritable events. Third, though computational integration is possible in 899 

datasets composed of a variety of cell types, it is less feasible in ones composed of different cell 900 

states where well-separated clusters are not expected and stochastic factors often drive within-901 

cluster positioning. THE LORAX enables overlaying of expression and accessibility datasets 902 

without making a priori assumptions about their relationship, as is necessary during computational 903 

integration.  904 

 905 

A#(.733$,&'(+0(2$/0(.2*+#()2$)(5$6(9,*1,0.."/0(,04*,-"#1(*>(%"#0$10("#>*,3$)"*#($4,*..(-".)"#4)(906 
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 913 

 914 

  915 
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Materials and Methods 916 

 917 

CRISPR lentiviral target construct & Cas9 construct generation 918 

 919 

Target/sgRNA construct: In order to integrate CRISPR targets and sgRNAs into the genome, we 920 

modified the CROPseq vector (Datlinger et al., 2017) (Addgene ID 86708), which expresses an 921 

sgRNA and a PolII transcript. We integrated a CRISPR target construct after the WPRE, such 922 

that it is expressed off the PolII promoter (sequence and location shown below). Target constructs 923 

were identical except for a unique 10bp barcode. sgRNAs matched the targets and were thus 924 

identical across all uniquely-barcoded constructs. A primer binding site was placed 35bp 925 

upstream of the CRISPR cut site, such that the target accommodates a 70bp deletion. The 926 

sequencing and computational processing scheme enables capture of insertions of >105 bp. (see 927 

Computational processing and edit calling from lineage target sequencing data)) 928 

 929 

Target insert: 930 

TCCAAGCTCCATAGGTCCAACTCAAGCTTAGTTCCTATACTGATTCCAAGCCATGGTACCAT931 

AGCAGATGATCCATTTAGAGCCTGGCTGGTCTCCTGGGAGGTCAACCTTGGAGACTAAGA932 

CCTTACGNNNNNNNNNN 933 

 934 

Unique target barcode 935 

gRNA binding site 936 

Forward primer binding site 937 

 938 

Position of insertion after WPRE between sequences shown: 939 

TCCCCGCGTCGACTT[INSERTION SITE]TAAGACCAATGACTT 940 

 941 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2022. ; https://doi.org/10.1101/2022.05.12.491602doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.12.491602
http://creativecommons.org/licenses/by/4.0/


48 

Primer binding sites: 942 

Forward: CTGATTCCAAGCCATGGTAC 943 

Reverse: GACTTACAAGGCAGCTGTAG 944 

 945 

A modified version of the doxycycline-inducible SpCas9 lentiviral plasmid 946 

(https://www.addgene.org/50661/) was used in this experiment. This construct contains an auxin 947 

inducible mAID sequence (cloned from pMK288 (mAID-Bsr), Plasmid #72826, Addgene) This 948 

degron sequence was not used in this experiment. Doxycycline was not used to induce this 949 

construct -- instead, we relied on known leaky expression to achieve a low level of editing. The 950 

full construct sequence is available on Benchling.   951 

 952 

Cell line generation 953 

 954 

HEK293 (ATCC, CRL-1573) were first transduced with the barcoded target/sgRNA modified 955 

CROPseq vector at high MOI and single cells were sorted to grow clonal populations. Targets 956 

were counted by PCR amplifying and sequencing the unique barcodes. A clone containing 31 957 

unique barcodes was chosen.  958 

 959 

To induce editing, cells were transduced with the doxycycline-inducible Cas9 lentiviral construct 960 

described above, selected for Cas9 integration using Blastocidin, and single cell sorted such that 961 

all profiled cells arose from a single founder cell. The Cas9 construct was not induced with 962 

doxycycline; instead, we made use of its known propensity for leaky expression without induction 963 

to produce slow editing. After 35 days in culture (DMEM), passaged every 2-3 days using trypsin, 964 

editing efficiency was evaluated by bulk PCR of the target regions, and a single clonal edited 965 

population was chosen for further exploration. A portion of the resulting cells were collected and 966 
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processed immediately in a target+sci-RNA-seq capture experiment, and a portion was frozen in 967 

liquid nitrogen for later target+sci-ATAC-seq processing. 968 

 969 

Capture of CRISPR targets alongside sci-RNA-seq 970 

 971 

The sci-RNA-seq 2-level protocol for methanol-fixed cells described in Cao et al. 2017 (Cao et 972 

al., 2017) was modified to concurrently capture CRISPR target mRNAs. A single 96 well plate 973 

was used for the first round of indexing, and 8 96-well plates were used in the second round, with 974 

25 cells sorted into each well. 975 

 976 

The following modifications were made: 977 

(1) To index the lineage target mRNA during the first round of indexing, we added a 1um of 10uM 978 

indexed target-specific reverse transcription primer in addition to the oligo-dT primers.   979 

 980 

Reverse transcription primer sequence: 981 

ACGACGCTCTTCCGATCTNNNNNNNNTTGGTAGTCG ctacagctgccttgtaagtc 982 

 983 

UMI 984 

RT index (well-specific sequence) 985 

 986 

(2) After Tn5 tagmentation, lysis, and ampure bead purification, cDNA was eluted in 10ul of buffer 987 

EB (Qiagen). Then half of the contents of each well were transferred to a second 96 well plate. In 988 

one plate, PCR and sequencing of the transcriptome was performed as described. The other plate 989 

was used for amplification of the lineage targets, with well-specific primers indexed to match well-990 

specific transcriptome indices.  991 

 992 
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Lineage targets were PCR amplified using the KAPA HiFi HotStart ReadyMix (Roche, KK2602) 993 

with primer sequences below and elongation time of 1 minute and an annealing temperature of 994 

65°C. All other steps were consistent with the KAPA protocol provided by manufacturer.  995 

 996 

PCR primers: 997 

Forward (unindexed): 998 

CAAGCAGAAGACGGCATACGAGATTTGGTAGTCGGTGACTGGAGTTCAGACGTGTGCTCT999 

TCCGATCTCTGATTCCAAGCCATGGTAC 1000 

Reverse (indexed):  1001 

AATGATACGGCGACCACCGAGATCTACACTTCTACCTCAACACTCTTTCCCTACACGACGC1002 

TCTTCCGATCT 1003 

 1004 

PCR index (well-specific sequence) 1005 

PCR index (plate-specific sequence) 1006 

 1007 

After PCR, all wells were pooled and a 0.8x AMPureXP bead cleanup was performed prior to 1008 

sequencing. 1009 

 1010 

(3) Paired-end sequencing of the lineage target PCR products was performed using a 300bp 1011 

Illumina sequencing kit (Miseq), with 148 bases sequences from each end (along with standard 1012 

10bp index reads, which are associated with the second round of indexing). The first index as 1013 

well as the UMI appear in R1 and are parsed during downstream computational processing. 10% 1014 

PhiX was added for sequencing to address sequence homogeneity.  1015 

 1016 

Capture of CRISPR targets alongside sci-ATAC-seq 1017 

 1018 
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The concurrent lineage target + chromatin accessibility capture protocol builds upon the 2-level 1019 

sci-ATAC-seq protocol presented in Cusanovich et al. (2015) (Cusanovich et al., 2015). The 1020 

following modifications were made: 1021 

 1022 

(1) Lysis buffer was supplemented with SuperaseIN (ThermoFisher AM2694).  1023 

 1024 

(2) Reverse transcription of lineage target mRNA:For s first round of lineage target indexing, 1025 

reverse transcription was performed prior to tagmentation in the first set of wells. After lysis, 5000 1026 

nuclei (2ul) were distributed per well of a 96 well plate, along with reagents for the first step of 1027 

reverse transcription: 0.25ul dNTPs (10mM)  & 1ul of indexed the reverse transcription primer 1028 

described above (at 2uM). The plate was then incubated at 55C for 5 minutes, and immediately 1029 

chilled on ice. Reagents from the SuperScriptIV (ThermoFisher, 18090010) kit were then added 1030 

to each well (1ul buffer, .25ul DTT, .25ul SSIV enzyme, .25ul RNAseOUT (ThermoFisher, 1031 

10777019). The plate was then incubated at 55C for 10 minutes, and immediately chilled on ice. 1032 

 1033 

(3) Buffer exchange following reverse transcription: 60ul of nuclei lysis buffer was added to each 1034 

well. Nuclei were then pelleted by centrifugation at 300g for 5 minutes in 4°C. 57ul were then 1035 

carefully removed from each well, taking care not to disturb the pellet. 1036 

 1037 

(4) After sorting nuclei (25 nuclei per well) into a solution containing SDS & inclubating to insure 1038 

Tn5 inactivation and lysis, the contents of each well are split in half across two plates. One plate 1039 

underwent indexed DNA PCR amplification in accordance with the sci-ATAC-seq protocol; the 1040 

other underwent a 2X AmpureXP bead purification to remove SDS, followed by PCR amplification 1041 

as described above. Primer cleanup and sequencing of lineage target amplicons was performed 1042 

as described above. 1043 

 1044 
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Initial computational processing of sci-RNA-seq data 1045 

 1046 

Sequencing was performed as previously described (Cao et al., 2017). Reads were adapter-1047 

trimmed using trim_galore and aligned to the reference genome (hg38) using STAR. Non-unique 1048 

mappers were removed. Reads were then deduplicated using a custom script 1049 

(190223_sciRNA_remove_duplicates.cpp), taking into account both UMIs and cell indices to call 1050 

a duplicated read. Only cells with at least 2048 deduplicated non-mitochondrial UMIs were used 1051 

for subsequent analyses.  1052 

 1053 

A custom script (190704_process_sciRNA_mapped_file.cpp) was used to map reads to genes. 1054 

Reads which overlapped multiple genes but only fell in an exon in one gene were counted towards 1055 

that gene.  1056 

 1057 

RNA processing to generate the cell by gene raw counts file is implemented in script 1058 

190807_sciRNA_wrapper_ALL.txt, with user-defined UMI cutoff of 2^11.  1059 

 1060 

Computational processing and edit calling from lineage target sequencing data 1061 

 1062 

Targets were enriched from the cDNA as described above and sequences on the Illumina 1063 

Nextseq or Miseq 300 cycle kit, with paired end sequencing. Read pairs (150b from each end on 1064 

Miseq; 148 from each end on Nextseq) were merged using PEAR. Since large insertions can 1065 

possibly result in pairs which do not overlap, we took reads which were unable to be merged and 1066 

looked for features (common sequence near barcode, primer binding sites) which indicated reads 1067 

from the correct location. We then pasted the pairs into a single read, and used the combined 1068 

insertion sequence in our analysis. Thus, insertions of >105bp could be captured, as long as the 1069 

amplicon could cluster efficiently on the sequencer chip.  1070 
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 1071 

Merged reads contain UMIs (first 8bp), reverse transcription index (index #1 of combinatorial 1072 

indexing - next 10bp), and a target ID (obtained by searching for flanking sequences). These 1073 

features were first extracted from the reads 1074 

(191203_CROPt_make_UMI_RT_BC_seq_output_file.cpp, within wrapper script 1075 

191203_CROPt_Step2_collapse_UMIs_wrapper.txt), and the remaining sequences were 1076 

collapsed by UMIs (191203_CROPt_collapse_by_UMIs.cpp, run within 1077 

191203_CROPt_Step2_collapse_UMIs_wrapper.txt) and aligned to the reference sequence 1078 

using needleall (http://emboss.sourceforge.net/apps/release/6.6/emboss/apps/needleall.html) 1079 

with default settings. To remove PCR amplification or sequencing errors being interpreted as a 1080 

CRISPR edit, we devised a strategy to disentangle likely editing from technical errors in 1081 

sequences where indels or mismatches appeared discontinuous and/or did not overlap the 1082 

CRISPR cut site. Beginning at the cut site and moving in either direction, each part of a real "edit" 1083 

had to be within 4 bases of the last position of an edit. This reduces the possibility that a technical 1084 

error will be counted towards an edit, while allowing for some edits which appear discontinuous. 1085 

These likely result from complex events in which bases were both deleted and inserted, with small 1086 

fragments of insertions mapping to the reference sequence of the deleted region.  1087 

 1088 

Editing at each target in each  cell was then evaluated. An unambiguous target was defined as 1089 

one which either contained no discrepant editing patterns, or if multiple editing patterns were 1090 

observed, had more than one UMI (unique transcript) associated with the "real" editing pattern, 1091 

and no more than 1 of the other (assumed to be either a stray transcript picked up during 1092 

processing or a product of template switching during PCR). If more than one edit was associated 1093 

with more than one UMI, the target was termed "ambiguous." If each edit was only associated 1094 

with one UMI, the target also was termed "ambiguous." For the two duplicated targets, if 1095 

ambiguous editing patterns were distributed in silico as described below. 1096 
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 1097 

The above steps are implemented in wrapper script 1098 

191205_local_target_analysis_all_UPDATED.txt. 1099 

 1100 

Evaluating CRISPR target capture rates and filtering cells based on target capture and 1101 

expression 1102 

 1103 

The dual sci-RNA-seq + target capture was performed in eight batches. The median number of 1104 

targets captured varied by batch (Supplementary Figure 2). This discrepancy was traced to the 1105 

batch of Tn5 buffer used in each batch: more recently made batches as well as the commercial 1106 

batch (as opposed to older buffer made internally) produced more efficient Tn5 integration into 1107 

cDNA (readily observed in difference of sci-RNA-seq median library size). Since Tn5 integration 1108 

occurs prior to separating the samples for separate RNA and target processing, a smaller cDNA 1109 

fragment size means that Tn5 is more likely to integrate within a target region (downstream of the 1110 

5' primer binding site), thus preventing that target from being captured. Thus, optimization of buffer 1111 

composition might address this issue. 1112 

 1113 

To filter out presumed doublets, both target editing and expression data were used 1114 

(Supplementary Figure 2). Cells were called "Singlet" of "Doublet" based on fraction of 1115 

ambiguous targets (those with more ambiguous than non-ambiguous targets were considered 1116 

doublets). For doublet cells, the sci-RNA-seq UMI count distributions were shifted, indicating that 1117 

high count cells are likely doublets. In addition to removing cells defined as doublets by target 1118 

editing patterns, we thus additionally removed cells which were above 1.8x the median sci-RNA-1119 

seq UMI count for each batch (Supplementary Figure 2c).  1120 

 1121 

Tree-building algorithm steps 1122 
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 1123 

(1) Computationally split duplicated targets 1124 

Two targets (#30 & 31) were consistently associated with two editing patterns within a single cell, 1125 

strongly suggesting that the section of chromosome on which these targets reside underwent a 1126 

duplication event in an early cell division (or in an ancestor of the founder cell of this population). 1127 

Because editing patterns at these targets clearly contained early editing events which were 1128 

informative of tree structure, we decided to computationally split each target into two separate 1129 

targets. For each target, we first generated a list of pairs of edits which were commonly found 1130 

together in a single cell. Since these had to have occurred at two different targets, we constrained 1131 

a set of editing patterns to one target and a set to the other. Editing patterns which were frequently 1132 

found alongside an unedited target (indicating that just a single target of the pair was editing in 1133 

that subset of cells) or on their own (indicating no duplication or a loss of the duplicated target) 1134 

were randomly assigned to the first target of the pair. Thus, a list of allowed "edits" was generated 1135 

for each target in the pair. If a cell contained edits on either list, they were distributed accordingly 1136 

between the pair of targets. The final dataset thus contains a total of 33 targets per cell.  1137 

 1138 

(2) Infer missing data 1139 

While a subset of missing data reflects true loss of either the target itself (due to a large deletion 1140 

or a CNA) or an editing pattern which makes the target hard to capture (e.g. a very large insertion), 1141 

some targets are stochastically not captured during mRNA processing. We thus attempted to infer 1142 

these edits using a nearest neighbors approach. Since batch 1 had the most complete lineage 1143 

data, for correcting missing data from other batches we combined them with batch 1 cells and 1144 

performed the following steps. We first calculated similarity scores between every pair of cell 1145 

lineage profiles using an additive approach. For each target with matching editing patterns a score 1146 

of 5 would be added to the total; for each target that was unedited in both lineage profiles, a score 1147 

of 1 would be added. Targets which did not match (or contained missing or ambiguous data in 1148 
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either cell) received a score of zero. Based on these similarity scores, we defined a set of "nearest 1149 

neighbor" cells for each cell, and used these to computationally infer missing data for each cell. 1150 

Specifically, for each cell, for each missing or ambiguous target, we used the most common 1151 

editing pattern in its closest set of neighbors at that target to infer the missing edit. If the majority 1152 

of neighbors also had missing data at this target, this likely reflects a true loss at this target, and 1153 

thus was left uncorrected. 1154 

 1155 

Steps 1 & 2 above are implemented in 1156 

200713_wrapper_for_wrapper_for_AMBcorr_Xcorr_step.txt. 1157 

 1158 

(3) Generate initial groups of related cells using hierarchical clustering. 1159 

We generated a similarity matrix using the similarity score described above, and hierarchically 1160 

clustered cells via Ward's method (Ward2 in "hclust" package in R). Duplicated targets described 1161 

in "Computationally split duplicated targets" (targets 30-33) were not used for similarity 1162 

calculations as they were found to bias groupings. Trees generated via hierarchical clustering are 1163 

not consistent with progressive CRISPR-based editing events, but do a reasonable job of placing 1164 

similar cells next to one another. Hierarchically clustered trees can be split automatically into a 1165 

desired number of groups, but we found that for downstream applications, it was best to manually 1166 

determine how to split the tree since in some cases groups of very different sizes were desired. 1167 

We thus generated plots of the hierarchically clustered tree (resembling the inset in Figure 3e but 1168 

containing the full tree) and manually chose the break points at which groups should be split. We 1169 

generated plots of both the lineage profile in which we had inferred missing data as in step 2, and 1170 

of the raw data, and consulted both to ensure missing data inference appeared accurate. 1171 

Importantly, these groups were chosen with the intention that some would be split further in a 1172 

subsequent step: as long as cells appeared confidently as close relatives, they were kept in a 1173 
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single group at this stage. This procedure generated 94 groups. Groups with less than three cells 1174 

were removed to be placed into larger groups at a subsequent step, leaving 45 groups remaining.  1175 

 1176 

Groups were evaluated visually as implemented in 200811_combine_like_cells_for_loop.R, 1177 

200219_make_LG_group_plots_for_combined_cell_groups.R, & 1178 

200225_plot_many_LG_on_one_plot_from_Refcell_list.R.    1179 

 1180 

(4) Generate a "consensus" lineage profile for each group.  1181 

A consensus editing pattern at a target was defined as one which appeared in at least 75% of 1182 

cells in that group. A single consensus lineage profile was first generated automatically using this 1183 

definition for each group. We then manually corrected these profiles to account for known sources 1184 

of missing data which may contribute to an editing pattern being captured at fewer than 75% of 1185 

cells. For example, large insertions and deletions are captured less efficiently, and thus a target 1186 

in which contains >25% of missing data, but the remaining cells contain a consistent large 1187 

insertion or deletion, we can plausibly infer that that editing pattern is likely present in all cells.  1188 

 1189 

(5) Generate a preliminary lineage tree of consensus cells via an iteratively applied greedy 1190 

approach 1191 

If no data were missing and no convergence (identical edits occuring at a single target 1192 

independently) were present, one could theoretically build a perfect tree using the greedy 1193 

approach shown in Figure 3c. First, we identify the most abundant editing pattern at a single 1194 

target in the tree, and split the consensus cells into two groups based on the presence or absence 1195 

of this editing pattern. This defines the first branch point. We then apply this approach to the two 1196 

new subgroups, and iteratively apply it to all subsequent groups to generate a bifurcating tree with 1197 

leaves being defined by a single consensus lineage profile (implemented in 1198 

201109_building_a_tree_3_record_all_changes.cpp). We then collapse any bifurcations which are not 1199 
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supported (when a branch is formed which is not defined by a specific editing event), such that 1200 

greater than two branches can arise from a single node (201109_AUTO_collapse_bifurcations.R).  1201 

 1202 

Though the consensus editing patterns are not perfect with regards to the above algorithm (there 1203 

are several instances of convergence, and some missing data), the pooling of related cells to 1204 

increase confidence of consensus editing patterns makes the algorithm above a viable approach. 1205 

We thus applied it to the preliminary group of consensus lineage profiles to generate a preliminary 1206 

tree. 1207 

 1208 

As described above, some groups could be subdivided further. We thus applied the above 1209 

algorithm to subgroups of the tree, by taking all cells within a single consensus lineage profile, 1210 

subdividing them into smaller "consensus" groups (beginning with hierarchical reclustering), and 1211 

generating a subtree as described above. These subtrees were then combined to form the larger 1212 

tree.  1213 

 1214 

Importantly, this approach of successive tree and subtree generation allows us to deliberately 1215 

leave out potentially problematic targets, and to choose different sets of targets for each subtree 1216 

reconstruction. For example, since targets 30-33 contained missing data which may have been 1217 

the product of edit pattern distribution to resolve target duplication, we removed these for the initial 1218 

hierarchical clustering which generated cell groups, but used this information for consensus 1219 

lineage profile calling and greedy tree generation.       1220 

 1221 

Though branching order correctly describes the order of editing events, the depth of the branching 1222 

events shown in Figure 3e does not necessarily indicate a true temporal relationship. Depth on 1223 

the tree correlates with the number of edits which occurred over the course of that branch's 1224 
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formation but should not be interpreted as temporal relationships as a consistent editing rate 1225 

cannot be assumed.  1226 

 1227 

(6) Visualizing preliminary trees for manual correction of missing data and resolution of 1228 

convergence events. 1229 

  1230 

Visualizing these trees at various stages allowed us to refine the trees further by helping to resolve 1231 

previously unclear editing patterns within some consensus cells. For example, the edit at target 1232 

26 in groups 33-42 is a large insertion which is not efficiently captured. The majority of cells within 1233 

groups 33-40 contained missing data at this target, while a subset contained the insertion. But 1234 

based on the edit in target 31, it appears most likely that all cells actually did contain the insertion 1235 

at target 26, but it was not captured well. We thus manually corrected targets at which events like 1236 

these appeared to be the case. 1237 

 1238 

Visualization of intermediate trees also helped to resolve convergence events. Though few 1239 

convergence events (defined as the same edit occurring multiple times independently at the same 1240 

target) impacted the automatically-generated tree structure as earlier subdivisions isolated these 1241 

events from one another, this was not the case in a few places in the tree. In these cases, a group 1242 

which visually appears to be closely related to another group because of subsequent shared edits 1243 

is separated from it in early divisions. These events were manually corrected as well. 1244 

 1245 

In two instances, several convergence events were also resolved by shared CNAs between 1246 

groups. This was rare; with the exception of the instances described below, expression data was 1247 

not used for tree reconstruction.  1248 

 1249 
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Change 1: A single discrepancy (copy number pattern on chromosomes 5 & 11) revealed a 1250 

convergence event whereby a common editing pattern occurring independently (target #7, teal 1251 

edit) forced groups together improperly. Instead, a common CNV pattern at chromosomes 5 & 11 1252 

strongly suggested that groups 16-19 shared a common ancestor. A change was made 1253 

accordingly, slightly increasing tree resolution. 1254 

 1255 

Change 2: CNVs on chromosomes 6 & 11 also allowed for better resolution of groups 38-42, 1256 

where a combination of factors including a convergence event of a commonly observed edit and 1257 

a large insertion event frequently manifesting as missing data made it challenging to resolve tree 1258 

structure. 1259 

 1260 

We found for downstream analysis that small groups reduced power below the level at which 1261 

meaningful expression and accessibility differences could be detected. We thus recombined 1262 

some closely related groups such that the minimum number of cells per group is 34. 1263 

 1264 

In the end, the final tree contained 42 lineage groups.  1265 

 1266 

(7) Integrating remaining cells into pre-defined consensus lineage groups  1267 

About a quarter of the cells (batches 1 & 3) were used to construct the original tree. Some of 1268 

these which formed a group of 1 or two cells in step 3 were removed to be placed into larger 1269 

groups later, along with the remaining three quarters of the cells w/ lineage profiles. We placed 1270 

cells into their most closely related groups by calculating similarity scores described above(see 1271 

(2) Inferring missing data above) on uncorrected lineage profiles with cells already in the tree, and 1272 

placing new cells into the group in which they had the highest similarity scores. If a cell had 1273 

identical similarity scores w/ cells from multiple groups, it was placed into the group in which it 1274 

had the most neighbors. 1275 
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 1276 

Final lineage groups were evaluated visually, by plotting lineage profiles of all cells in a single 1277 

group and visually confirming shared editing patterns.  1278 

 1279 

Tree lineage profile visualizations 1280 

 1281 

Tree visualizations were generated using custom code (1282 

200807_AUTO_tree_custom_visualization_organized.R, internally running 1283 

200806_make_coordinates_for_tree_plot.cpp), which converted tree structure into line segment 1284 

coordinates which can be plotted in a ggplot space alongside visual lineage profiles. Input files 1285 

are provided (tree_file_LinRNA, lineage_profiles_wRNA.txt). 1286 

 1287 

Visualizing single lineage groups (Figure 7c) implemented in 1288 

211129_CopyForFigsRNA_Uncorr_AUTO_tree_custom_visualization_organized.R (RNA) & 1289 

211129_CopyForFigsATAC_Uncorr_AUTO_tree_custom_visualization_organized.R (ATAC). 1290 

 1291 

Permutation Analysis for DE gene identification 1292 

 1293 

DE genes were identified using the following procedure.  1294 

 1295 

First, raw counts were scaled to 10,000 reads per cell. Then, for each pair of sister groups within 1296 

the tree (defined as those that share an immediate common ancestor branch), cells were 1297 

permuted into two groups of the original sizes 10,000 times and the log-fold change for each gene 1298 

was calculated. Only genes which were expressed in at least 10% of cells in either group were 1299 

kept for downstream analysis. The measured (real) mean expression ratio for each gene was 1300 

ranked against the permuted values, for a total of 10,001 values. Z-scores are calculated here as 1301 
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the distance of the real log ratio from the mean divided by the standard deviation of the permuted 1302 

values. 1303 

 1304 

To account for differences in group sizes across the tree, as well as large CNVs, we evaluated 1305 

genes on each chromosome in each pair of groups separately to determine the rank cutoff values 1306 

associated with significant DE. We chose a false discovery rate cutoff of 5%.  1307 

 1308 

Rank cutoff values for each chromosome-group pair combination were determined as follows. If 1309 

no genes on a chromosome were differentially expressed, we would expect a uniform rank 1310 

distribution for 1 to 10,001. Thus, the expected number of genes observed at any given rank value 1311 

is the total number of filtered genes on chromosome/10,001, referred to here as the baseline 1312 

value. If true DE genes are present, we should observe an enrichment of genes at either or both 1313 

ends of the distribution, manifesting as higher counts and denser coverage.  1314 

 1315 

An FDR value for each rank position can be determined simply by subtracting the baseline value 1316 

from the total gene count at each rank. Since those genes of rank 1 or 10001 are most likely to 1317 

be true positives, we begin at the ends and move inward to identify a group of ranks which 1318 

together produce an FDR of <= 5%. 1319 

 1320 

The procedure to determine significant ranks is implemented as follows. We begin at rank 1 or 1321 

10001, choosing the one with the highest observation count, and calculate the FDR associated 1322 

with that rank. If it is smaller than 5%, we compare the next most extreme ranks (2 or 10001 if 1323 

rank 1 was already used), and again choose the one with the highest gene count. We calculate 1324 

the total FDR encompassing both rank positions and continue this procedure iteratively, until the 1325 

FDR reaches 5%. All genes with the ranks identified by this procedure are considered DE.  1326 

 1327 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2022. ; https://doi.org/10.1101/2022.05.12.491602doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.12.491602
http://creativecommons.org/licenses/by/4.0/


63 

Genes which were lowly expressed in both groups being compared (defined as those for which 1328 

the percent of cells expressing the gene, calculated separately and then summed between the 1329 

two groups, is <10%) were removed from the final analysis. 1330 

 1331 

Procedure implemented in A_210327_perm_qsub_script.sh & 1332 

210330_process_permutation_table_log_version.cpp. 1333 

 1334 

sci-RNA-seq visualization 1335 

 1336 

For heatmap plotting, counts per gene were pooled by lineage group, and a mean was calculated 1337 

for each gene using the total number of cells as the denominator. Genes with low total counts 1338 

across the dataset were removed. Specifically, a lowly expressed gene was defined as one which 1339 

was expressed at a mean of .5 counts per cell or less in all lineage groups.  For each retained 1340 

gene, the lineage group mean was divided by the mean expression in all cells of that gene, and 1341 

a log2 was taken to center around 0. For visualization scaling purposes, values above or below 1 1342 

& -1 (Figure 4) and 1.5 and -1.5 (all other figures), respectively, were changed to those values. 1343 

Visualization implemented in 1344 

201117_AUTO_NewGroups_BETTER_long_AllChr_heatmap_plot.R. 1345 

 1346 

Pileups were plotted using ArchR (Granja et al., 2021). 1347 

 1348 

SNP-based copy number analysis 1349 

 1350 

To identify variable genomic positions from expression data, a 4 column file was generated for 1351 

each chromosome from the STAR alignment output file, including cell name, mapping position, 1352 

CIGAR string, and sequence, and the frequency of each base was calculated as implemented in 1353 
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201114_wrapper_for_ASEs_for_lineage_groups.txt. Counts were generated for all cells as well 1354 

as subsets of groups. Variable positions were retained and SNP info was added to via code 1355 

191018_add_snp_info_to_ASE_file.cpp, using as input a tab-delimited file generated from a vcf 1356 

file, containing five files: chromosome, position, rs_id, major allele, minor allele. Plots were 1357 

generated in 200203_ASE_calc_major_freq.R.  1358 

 1359 

sci-ATAC-seq processing 1360 

 1361 

For processing sci-ATAC-seq sequencing reads, we first compare observed and expected lists of 1362 

single cell indices, correcting any indices with a likely off-by-one error. All reads are then adaptor 1363 

trimmed using trimmomatic (parameters: TRAILING:3 SLIDINGWINDOW:4:10 MINLEN:20), and 1364 

all reads associated with a single cell are then aligned to the genome using bowtie2 (hg38 genome 1365 

build). Reads are then deduplicated by UMIs using a custom script 1366 

(191226_CROPt_process_atac_bedfile.cpp). Both cell by gene and cell by interval counts were 1367 

generated using a custom script (191226_CROPt_make_cell_by_interval_count_file.cpp). During 1368 

analysis, count files were converted into the  10X Genomics format for compatibility with other 1369 

analysis tools. 1370 

 1371 

For heatmap plotting, counts per gene/interval were pooled by lineage group, and a mean was 1372 

calculated for each gene using total number of UMIs (as opposed to total number of cells) as the 1373 

denominator to account for a large spread of total observed UMIs per cell. Each value was then 1374 

scaled by the median of the total read count for all genes/bins. Genes & bins with low total counts 1375 

across the dataset were removed (those whose scaled values were below 120 per 1MB bin, or 1376 

below 5 per gene, in all groups). For each retained gene/interval, the lineage group mean was 1377 

divided by the mean accessibility of all cells at that gene/interval, and a log was taken to center 1378 

around 0. For visualization scaling purposes, values above or below .9 & -.9 respectively were 1379 
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changed to those values. This was implemented in 1380 

210222_ATAC_process_bin_counts_by_groups_play_w_scaling.R. 1381 

 1382 

Differential accessibility was evaluated using the permutation approach described above, with 1383 

mean counts per a group again calculated with total number of UMIs (as opposed to total number 1384 

of cells) as the denominator.  1385 

 1386 

Pileups were plotted using ArchR (Granja et al., 2021). For DA analysis at peaks, a set of peaks 1387 

was determined using ArchR, using both the whole dataset as well as successive subgroups 1388 

moving across the tree. The union of these peaks was then overlapped with DE genes (including 1389 

5kb upstream) and DA at these peaks was again evaluated using the permutation approach.  1390 

 1391 

 1392 

  1393 
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Data & Code Availability 1394 

 1395 

Raw and processed data and code are available on GEO (GSE201339) & Github 1396 

(https://github.com/minkinaa/TheLorax). See README on Github for further details. 1397 

 1398 
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Supplementary Figures 1677 

 1678 

 1679 

 1680 

 1681 

Supplementary Figure 1. Evaluating lentiviral target integrations. (a) Number of unique target IDs 1682 

across 26 clones derived from high MOI transduction of HEK293 cells. Box shows median and 1683 

encompasses counts in the second and third quartiles. Whiskers depict the interquartile range. (b) 1684 

Frequency of each unique target ID within the unedited clone used for the main experiment. As discussed 1685 

in the text, this clone was “re-cloned” following transduction with doxycycline-inducible Cas9 lentiviral 1686 

construct, such that a single founder cell generated the tree. Four target IDs that were abundant after the 1687 

first round of cloning were unobserved after this re-cloning step (red bars), while an additional one was 1688 

corrupted by a mutation and therefore also excluded (red bar with asterisk). The remaining 31 abundant 1689 

target IDs were carried forward in the analyses, with two of these “duplicated” in silico to account for their 1690 

inferred duplication just before or during the clonal expansion.  1691 

 1692 

 1693 
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 1695 

 1696 

 1697 

 1698 

Supplementary Figure 2. Batch-specific evaluation of target capture. (a) Distribution of the number of 1699 

targets captured per cell, per batch (out of 31). (b) Gray: Number of targets captured per cell across 1700 

batches; Purple: number of targets captured per cell in batch #1. (c) Distribution of transcriptome UMIs per 1701 

cell, per indexed PCR batch ("plate"), with UMI cut-off for doublet removal shown by red lines. Cells with 1702 

UMI counts > 1.8X the median UMI count for each batch were removed from the analysis. Singlets and 1703 
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doublets inferred from collisions in lineage data. “Singlet (confident)” corresponds to cells which can 1704 

confidently be called as singlets based on the number of non-ambiguous editing events observed.In panels 1705 

a & c, boxes show median and encompass counts in the second and third quartiles, while whiskers depict 1706 

the interquartile range. 1707 
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 1709 

Supplementary Figure 3. Allelic-ratio-based copy number analysis for all chromosomes. (a) Analysis 1710 

described in Figure 5a-b, performed on all cells for all chromosomes. Point fill color represents the number 1711 

of SNPs found to be heterozygous in that bin, signaling the reliability of this analysis at that location. Yellow 1712 

line indicates the centromere position. (b) Percent of inferred major and minor alleles at variable positions 1713 
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in the data (filtered as described in Figure 5a) which match SNP bases found in humans at those positions 1714 

(dbSNPs). For simplicity, only single-base SNPs with at most two common alleles in the population were 1715 

considered.   1716 

 1717 
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 1719 

 1720 

Supplementary Figure 4. Differentially expressed genes within and outside of detected CNAs 1721 

observed across sister lineage group comparisons. (a) DE genes detected by the permutation 1722 

approach vs. DESeq2. The left plots show log2-fold changes, while the right plots show the "shrunken" 1723 

log2-fold changes calculated by DESeq2, which takes absolute expression level into account, and corrects 1724 

for higher variance at low expression levels. (b) Relationship between group size (mean of the two groups 1725 

being compared) and DE genes not associated with a CNA. (c) DE genes detected within CNA regions on 1726 
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chrs 5, 7, and X, between the indicated groups (234 and 276 cells, respectively). (d) Heatmaps showing 1727 

single genes (middle of each plot) which exhibit heritable expression patterns consistent with the tree 1728 

structure. Surrounding genes are not DE, suggesting these patterns are not due to CNAs, although we 1729 

cannot rule out highly focal amplifications with gene expression data alone.   1730 

 1731 

 1732 
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 1734 

 1735 

Supplementary Figure 5. Global DE between select pairs of sister groups. Log2-fold change for 1736 

expressed genes across all chromosomes between select pairs of sister lineage groups. Groups that are 1737 

compared in each plot are indicated on the trees at the left with green and purple boxes. Colors indicate by 1738 
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which method (if any) a gene was found to be differentially expressed. Inferred CNAs are shown as light 1739 

green boxes. 1740 
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 1742 

 1743 

 1744 

Supplementary Figure 6. Evaluating lineage-linked chromatin accessibility and expression. (a) 1745 

Histogram of sci-ATAC-seq fragment lengths across all cells (left) and a boxplot of sci-ATAC-seq reads per 1746 

cell (right). (b) Histogram of the number of targets captured per cell included in the analysis. (c) Correlation 1747 

of group sizes collected along sci-RNA-seq and sci-ATAC-seq. Each point represents a single lineage 1748 

group. Group sizes were normalized to a total cell count of 10,000 for each feature. (d) Read pileups for 1749 

RNA (top) and ATAC (bottom) data for the lineage groups and genes indicated on the tree. Associated heat 1750 
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maps shown in Figure 7e. (e) Left: Heatmap of relative expression of CDH12 and surrounding genes Right: 1751 

Pileup of expression and chromatin accessibility data for the indicated groups (as labeled on tree in Figure 1752 

7g) at the CDH12 locus. (f) Same as panel e, but for ADGRB3.  1753 
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