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Abstract

Gene expression heterogeneity is ubiquitous within single cell datasets, even among cells of the
same type. Heritable expression differences, defined here as those which persist over multiple
cell divisions, are of particular interest, as they can underlie processes including cell differentiation
during development as well as the clonal selection of drug-resistant cancer cells. However,
heritable sources of variation are difficult to disentangle from non-heritable ones, such as cell
cycle stage, asynchronous transcription, and measurement noise. Since heritable states should
be shared by lineally related cells, we sought to leverage CRISPR-based lineage tracing, together
with single cell molecular profiling, to discriminate between heritable and non-heritable variation

in gene expression. We show that high efficiency capture of lineage profiles alongside single cell
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gene expression enables accurate lineage tree reconstruction and reveals an abundance of
progressive, heritable gene expression changes. We find that a subset of these are likely
mediated by structural genetic variation (copy number alterations, translocations), but that the
stable attributes of others cannot be understood with expression data alone. Towards addressing
this, we develop a method to capture cell lineage histories alongside single cell chromatin
accessibility profiles, such that expression and chromatin accessibility of closely related cells can
be linked via their lineage histories. We call this indirect “coassay” approach "THE LORAX" and
leverage it to explore the genetic and epigenetic mechanisms underlying heritable gene
expression changes. Using this approach, we show that we can discern between heritable gene
expression differences mediated by large and small copy number changes, trans effects, and

possible epigenetic variation.

Introduction

Single cell molecular profiling technologies have revealed extensive gene expression
heterogeneity, even between cells of a single cell type (Y. H. Choi & Kim, 2019; Li et al., 2022;
Muto et al., 2021; O’Leary et al., 2020; Patel et al., 2014; SoRelle et al., 2021). Expression
variation can arise from a number of sources, including transient phenomenon like cell cycle stage
and transcriptional bursting (Tunnacliffe & Chubb, 2020), as well as stable genetic (Ben-David et
al., 2018) or epigenetic (Bonasio et al., 2010) differences within a cell population. Stable sources
of variation are of particular interest as they are “heritable” over multiple cell divisions, and can
thus serve as substrates for selection, altering a cell population over time. Such heritable
phenomena may underlie differentiation during normal organismal development as well as the
acquisition of drug resistance in cancer (Salgia & Kulkarni, 2018). Yet within a set of single cell
gene expression profiles, representing a population snapshot in time, it is difficult to distinguish

between stable and transient expression variation. This is particularly challenging for cells of a
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single cell type, where transient differences may mask heritable variation when performing

clustering analysis to distinguish cell states (Kiselev et al., 2019).

Heritable sources of expression variation have at least one property which distinguishes them
from transient variation: because they are stable over multiple cell divisions, they should be
shared by cells which are closely related by lineage. It follows that if all lineage relationships were
known, we could discern heritable from non-heritable variation by assessing the distribution of
variation across a lineage tree (Figure 1a). While transient variation should be randomly
distributed, stably maintained expression states should cluster together within the tree, i.e.
tracking to a common “founder” event. Thus, lineage histories, coupled to gene expression
profiling, could potentially enable the differentiation of heritable vs. non-heritable sources of

expression variation.

Molecular methods for cell lineage history profiling compatible with concurrent expression profiling
involve either static or progressive genetic barcoding. The static approach introduces short,
transgenic barcodes to proliferating cells, such that closely related descendants share a barcode
sequence (Biddy et al., 2018; Guo et al., 2019; Rodriguez-Fraticelli et al., 2018; Weinreb et al.,
2020). Static barcoding might reveal heritable sources of gene expression that were acquired
close to the time of labeling, but would presumably miss those occurring substantially earlier or
later. In contrast, progressive lineage tracing methods (e.g. GESTALT and related methods),
wherein cells accumulate sequence diversity at multiple genomic locations over time, facilitate
reconstruction of multi-tier lineage trees, and might therefore be more sensitive with respect to
detecting heritable gene expression variation (Alemany et al., 2018; Bowling et al., 2020; Chan et
al., 2019; Hwang et al., 2019; Kalhor et al., 2017, 2018; Loveless et al., 2021; McKenna et al.,
2016; Perli et al., 2016; Raj, Gagnon, et al., 2018; Raj, Wagner, et al., 2018; Spanjaard et al.,

2018; Wagner et al., 2018).
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78
79  Ahigh diversity of labels can be achieved via CRISPR/Cas9, where imperfect double strand break
80 repair via NHEJ can generate a variety of outcomes (referred to here as “edits” or “indels”)
81 (Alemany et al., 2018; Bowling et al., 2020; Chan et al., 2019; Kalhor et al., 2017, 2018; Loveless
82 etal., 2021; McKenna et al., 2016; Perli et al., 2016; Raj, Gagnon, et al., 2018; Raj, Wagner, et
83 al., 2018; Spanjaard et al., 2018; Wagner et al., 2018). Over many cell divisions, the pattern of
84 indels that accumulate at CRISPR/Cas9 targets are informative with respect to the lineage
85 relationships amongst the cells in which they occur. Most strategies reported to date, whether
86 implemented in vitro or in vivo, place several targets in tandem, such that the edits at these
87  multiple targets can be recovered within a single DNA or RNA-derived sequencing read (Alemany
88 et al, 2018; Bowling et al., 2020; Chan et al., 2019; Kalhor et al., 2017, 2018; Loveless et al.,
89  2021; McKenna et al., 2016; Perli et al., 2016; Raj, Gagnon, et al., 2018; Raj, Wagner, et al.,
90 2018; Spanjaard et al., 2018; Wagner et al., 2018).
91
92 In practice, however, there are a number of technical issues that limit this approach. First, arrays
93 of CRISPR/Cas9 targets frequently acquire large deletions when concurrent DSBs at different
94  targets within the array are joined, potentially excising previously recorded information at
95 intervening targets. Second, read length limitations require targets to be placed close to one
96  another, such that the editing of one target risks corrupting adjacent targets. Third, although it is
97  possible to capture CRISPR/Cas9-edited lineage targets as part of a single cell RNA-seq (scRNA-
98 seq) profile, this has usually been inefficient in practice. For example, using InDrops to capture a
99 tandem array of 10 CRISPR targets alongside single cell transcriptomes in juvenile zebrafish
100 brains, Raj et al. (2018) recovered lineage profiles from just 6-28% of cells with expression profiles
101  (Raj, Wagner, et al., 2018). Similarly, using 10X Genomics to capture arrays of 3 CRISPR targets
102  from mouse embryos alongside scRNA-seq (3-15 array integrations per embryo), Chan et al.

103  (2019) recovered at least one edited lineage array from 15-75% of cells per embryo, but just one
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104 target array was captured efficiently (>25% of cells) in 6 of 7 embryos (Chan et al., 2019). In each
105 case, both target design and the method of capturing lineage targets during scRNA-seq likely
106  contributed to the limited recovery.

107

108 Here, we introduce a CRISPR-based lineage tracing approach in which many distinct lineage
109 recording loci are integrated independently throughout the genome. These targets can each
110 accommodate relatively large deletions and insertions. We further show that, with targeted
111 enrichment, they can be captured efficiently alongside transcriptomes via a combinatorial indexing
112  approach (sci-RNA-seq) (Cao et al., 2017, 2019). To analyze data generated from a proof-of-
113 concept in vitro monoclonal expansion, we developed a lineage tree reconstruction algorithm that
114 s robust to missing data and recurrences (i.e. where identical edits occur independently), and
115  validate the algorithm using copy number alterations (CNAs) that are evident in expression data.
116 We show that incorporating lineage relationships into expression analysis reveals abundant
117  heritable expression variation, including instances that are clearly explained by CNAs, but also
118  many which are not.

119

120  Finally, towards investigating the mechanism(s) underlying expression heritability, we develop an

121  approach to capture cell lineage relationships alongside single cell chromatin accessibility. We

122  show that we can link two distinct molecular features—gene expression and chromatin

123  accessibility—via their lineage profiles (Figure 1b). We then use these lineage-tethered features

124  to further distinguish between expression changes which can be explained directly by copy
125 number alterations, ones likely mediated by trans effects of copy number alterations, and ones

126  which are more likely to have resulted from a stable change in cis regulatory state. We term this
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Figure 1. Tethering the molecular profiles of single cells by their lineage histories to investigate
sources of cell state heterogeneity. (a) A framework to distinguish heritable from non-heritable sources
of gene expression variation using lineage relationships. (b) A framework for tethering single cell expression
(scRNA-seq) and chromatin accessibility (scCATAC-seq) measurements via lineage relationships to

investigate the mechanisms underlying heritable expression variation (THE LORAX).
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139 Results
140

141 Concurrent profiling of many independent CRISPR lineage targets and gene expression via single

142 cell combinatorial indexing

143

144  We first set out to design a CRISPR/Cas9-based lineage tracing strategy that addresses
145  outstanding technical challenges. Reconstructing an accurate, multi-tier lineage tree from
146  progressively acquired edits requires the following: (a) multiple editable loci such that successive
147  tagging can occur in a single lineage over time; (b) a high probability of diverse editing outcomes
148 at a single target, such that identical edits at that target are unlikely to occur independently in
149  different cells; (c) controllable editing machinery, such that target capacity is not exhausted quickly
150  after editing onset; (d) permanence of edits, such that they are not likely to be overwritten or lost;
151  and (e) a high rate of capture of editing information alongside single cell profiling of other features.
152  Towards realizing these features, we designed a construct in which individual targets are
153 integrated independently across the genome and captured as separate transcripts (Figure 2a-b).
154  Each target contains a unique identifier sequence, which is positioned such that the target can
155 accommodate up to a 70 bp deletion centered at the cut site without corrupting the identifier, as
156  well as, assuming 300 bp read lengths, insertions of up to 105 bp. The sgRNAs are delivered on
157  the same lentiviral construct as the targets, with targets expressed from a highly active EF-1a
158  promoter to enable lineage capture from mRNA.

159

160 To generate cells with a high capacity for lineage recording, we transduced HEK293 cells at a
161 high multiplicity-of-infection (MOI) with this construct and attempted to establish clonal
162  populations. Even in the absence of editing, most clones grew poorly, with the lentiviral
163 integrations themselves at this high MOI potentially contributing to toxicity. Across 26 clones, we

164  observed integration counts ranging from 2 to 53, with a median of 11 integrations
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165 (Supplementary Fig. 1a). We moved forward with a robust clone bearing 36 unique integrations,
166  as evidenced by the diversity of unique identifier sequences (“target IDs”; Supplementary Fig.
167  1b). To induce editing, we transduced this clone again with a doxycycline-inducible Cas9 lentiviral
168  construct, sorted single cells, and allowed a clonal population to grow from a single founder cell
169  (such that all progeny cells comprise a single lineage tree). Interestingly, only 32 unique target
170 IDs were observed after this second round of cloning, potentially due to karyotypic instability
171  (discussed further below), while one integrant contained a mutation that corrupted its target site
172  (Supplementary Fig. 1b).

173

174  After 35 days of expansion of this clone, with passaging as needed (Methods), a portion of the
175 cells were harvested for single cell expression and lineage analysis, while the remaining cells
176  were frozen down for subsequent profiing of chromatin accessibility. Of note, although
177  doxycycline was not applied, we nonetheless observed diverse and progressive editing with this
178  clone, presumably because of leaky expression of Cas9 (Costello et al., 2019). For concurrent
179  acquisition of whole cell transcriptomes alongside lineage information, we performed 96 x 768
180 sci-RNA-seq, with processing of cells in eight batches during the second indexing step (Cao et
181 al.,, 2017, 2019). To facilitate the efficient recovery of lineage targets from each cell, we introduced
182  asupplemental set of reverse transcription primers during the first round of indexing, and split the
183  material in half prior to indexed PCR during the second round of sci-RNA-seq2, with one half
184  being used for the general transcriptome, and the other half for targeted recovery of the lineage
185  profiles (Methods).

186

187  These libraries were sequenced, and the resulting reads were adaptor-trimmed, aligned to the
188 reference human genome, and deduplicated. For the single cell transcriptomes, we observed a

189  median of 13,212 UMIls per cell, across 15,525 cells (Figure 2c). For the 31 retained, uncorrupted
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190 lineage targets (Supplementary Fig. 1b), each bearing a unique target ID sequence in the

191 resulting reads, we observed a high rate of capture, with = 25 captured from 59% of cells, = 20

192  from 85% of cells, and = 10 from 99% (Figure 2d). Target capture rates were unevenly distributed

193  across the eight batches of indexed PCR amplification, likely due to slight technical differences
194  (Methods; Supplementary Figure 2a-b). Recovery varied across the integrations as well, with
195 eachtarget ID recovered in a median of 80% of cells (range 50% to 93%) (Figure 2e), presumably
196  due to position effect variegation and/or early karyotypic instability or large deletions associated
197  with more frequently lost targets. Overall, these results indicate that a modified version of sci-
198 RNA-seq can be used to efficiently recover transcriptomes alongside dozens of lineage target
199 integrants from each of many single cells.

200

201 We next performed a series of filtration steps, removing cells with limited lineage information as
202 well as those deemed likely to be doublets. First, cells were filtered to those with at least 10
203 lineage targets recovered, at least one of which was edited. In some cases, an edit could not be
204 resolved, as more than one editing pattern seemed to exist for a given lineage target integrant
205 (Methods). We termed these edits "ambiguous." Cells associated with more ambiguous than
206  unambiguous edits, presumably doublets, were removed, as were cells with excessively high UMI
207  counts (Methods; Supplementary Fig 2c-d). The single cell transcriptomes and associated
208 lineage targets of the remaining 10,234 cells were carried forward for all subsequent analyses.
209

210  Across this entire dataset, we observed 461 unique editing patterns of the common target
211 sequence, of which 182 were independently observed in at least 2 cells in association with the
212  same target ID. The remainder may correspond to real events that occurred late in the expansion

213  and were thus only sampled once, or alternatively PCR or sequencing errors. The 50 most
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214  frequently observed edits, across all cells and target IDs, are shown in Figure 2f. Of note, edits
215  that recur independently as well as edits that occurred early during clonal expansion will both
216  appear “common” by this measure. The three most frequently observed edits, together comprising
217  58% of all edits, appear to be recurrent: they occur in association with the majority of target IDs
218  (Figure 2f), and furthermore correspond to outcomes anticipated to be favored by microhomology
219  (Sfeir & Symington, 2015). Such frequent editing outcomes complicate tree construction, and can
220  be avoided in the future through better target design (W. Chen et al., 2019). However, the clear
221 majority of editing outcomes were only observed in association with a single target ID, consistent
222  with their origination from a single event during the clonal expansion (Figure 2g).

223

224  Unexpectedly, two targets (#30 & #31) contained a large number of ambiguous editing calls—two

225  distinct editing patterns convincingly present in association with the same target ID in the same

226  single cell. This is consistent with a duplication event, i.e. in which the locus in which the target

227 ID resides was duplicated early in the clonal expansion, or more likely during the second round
228  of cloning. Additional evidence, discussed further below, of large-scale CNAs in the transcriptome
229  data, corroborates this hypothesis. Rather than filtering out these targets, we “duplicated” them in
230  silico, parsimoniously distributing the top two edits associated with these target IDs in a given cell,
231 while minimizing the number of independent editing events required to explain them (Methods).
232  As such, in the end, single cell lineage profiles contained 33 unique targets.

233

234

235

236

237
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240  Figure 2. Experimental design, target capture rate and CRISPR editing diversity. (a) Target vector
241 design. A target cassette was integrated into the CROP-seq vector (Datlinger et al., 2017) as shown. (b)

11
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242 Schematic of experimental workflow. Cells were transduced at high MOI with constructs containing an
243 sgRNA and barcoded target sequences, such that many integration events per cell were expected. A single
244 clone was then transduced with a doxycycline-inducible Cas9 vector, single cells were sorted, and a single
245  founder cell was allowed to divide for 35 days while editing occurred. The final cell population was split for
246  either target capture alongside sci-RNA-seq or sci-ATAC-seq. (c¢) Log-scaled boxplot of UMI counts for sci-
247  RNA-seq (not including enriched target UMIs). Box shows median and encompasses counts in the second
248 and third quartiles. Whiskers depict the interquartile range, with outliers shown. (d) Histogram of the number
249  of targets captured per cell. (e) Percent of cells from which each individual target was captured. Targets 30
250 & 31 were duplicated (see text), and hence artificially appear to have a high rate of capture. (f) Left: Top 50
251 most abundant editing patterns. Insertions are shown one base left of the insertion site; “Mu”: multi-base
252  insertion. Middle: Targets at which the editing pattern is observed in at least 20 cells. Right: Log-scaled
253  percentage of all edits represented by the top 50 editing patterns. (g) Proportion of editing patterns
254 observed in 1, 2, 3, or more than 3 targets, if considering editing patterns appearing in at least 2 cells at a
255  single target (left), or at least 20 cells (right).

256
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257 Reconstructing lineage relationships using single cell lineage profiles

258

259  The reconstruction of cell lineage trees from CRISPR-edited targets has proven to be a difficult
260 problem (Gong et al., 2021; Salvador-Martinez et al., 2019). Although phylogenetic reconstruction
261 methods can in principle be applied here, several factors make this practically challenging. First,
262  the amount of information within a lineage profile is limited to the number of targets that are edited
263  and successfully recovered; the inefficient recovery observed in most studies to date results in
264  substantial “missing data”. Second, recurrent events, i.e. the same edit occuring more than once
265 independently at the same target, can be much more likely than in more conventional
266  phylogenetic datasets, further complicating reconstruction. Third, it is computationally impractical
267  to apply many popular phylogenetic algorithms to the large number of cells profiled with CRISPR-
268 based lineage tracing, particularly those relying on generating a subset of all possible trees and
269  choosing the most likely among them. To overcome this, one group employed a greedy approach
270 to split cells into subgroups, generating subtrees of subgroups and merging them at the end
271 (Jones et al., 2020). However, this approach was hindered by missing data in individual cell
272 lineage profiles, which frequently split closely related cells across multiple subgroups.

273

274  On the other hand, CRISPR-based lineage tracing data has one feature which makes it more

275 amenable to step-wise (rather than probabilistic) reconstruction strategies—the starting state of

276  each target, i.e. unedited, is known. Given this, it is at least theoretically possible to employ a
277  divisive, greedy approach to build a highly accurate tree (Figure 3c,d). In the proposed algorithm,
278  all cells begin as a single group, which is split into two groups based on the presence vs. absence
279  of the most common editing pattern associated with a single target. This edit is inferred by its
280 frequency to have occurred earlier than other edits in cells belonging to the group. This splitting

281  step is iterated on each sub-group, and each sub-sub-group, etc., terminating when all unique

13
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282 lineage profiles are represented by individual branches. Subsequently, unsupported bifurcations
283  (those wherein a branch is not defined by a specific editing event(s)) are collapsed, such that
284  more than two branches can arise from a single inferred ancestor.

285

286 The success of this approach is dependent upon two important assumptions: erroneous or

287 missing data is minimal, and convergence events—two or more identical edits occurring

288 independently at a single target site—are rare. We thus set out to optimize the dataset to better

289 fit these assumptions. Sources of erroneous data include PCR and sequencing errors within the
290 target, where a single mismatch in the 70bp (unedited) amplicon would instead appear as a
291  distinct edit. Defining edits is further complicated by the fact that an edit containing both deleted
292  and inserted bases can appear discontinuous when aligned to the reference sequence (e.g. see
293 examples within alignments shown in Figure 2f). To mitigate errors and misalignments, we
294  required that an edit had to begin within 4 bases of the CRISPR cut site, and that all discontinuous
295  segments be within a maximum of 4 bases from each other (Methods). To address missing data,
296  we first defined a similarity metric between cells based on shared edits and used it to identify a
297  set of nearest neighbors for each cell. We then imputed missing and ambiguous edits from these
298 nearest neighbors (Methods). Individual cell lineage profiles for a group of closely related cells
299  with missing and ambiguous data shown (black and red boxes, respectively) are plotted in Figure
300 3e.

301

302  An additional source of error arises from cross-talk between cellular and target indices during
303 PCR amplification, such that a target sequence derived from one cell becomes associated with
304 the profile of another. A single such error might place a cell far from its true lineage via the
305 algorithm described above. However, although these events are undetectable at the single cell

306 level, they are often obvious when examining groups of closely related cells. To take advantage
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307  of this, we sought to pool closely related cells, infer a “consensus” lineage profile for each group
308 (encompassing edits shared by the majority of the group), and generate a preliminary tree of
309 these consensus profiles, such that cells with “contaminating” target sequences would be retained
310 in the group via overall proximity to their neighbors. To identify groups of closely related cells, we
311 again calculated all pairwise similarity scores, and used these as input for hierarchical clustering
312  using Ward's method. We visually determined the number of clusters into which to subdivide cells,
313  using plots such as the one in Figure 3e (right), and computationally inferred a consensus profile
314  for each group. In some cases, where we could explain why an edit did not reach the needed
315  majority for inclusion, automatically inferred consensus profiles were manually corrected
316  (Methods). Finally, we applied the algorithm above to the consensus profiles, generating a
317  lineage tree of subgroups of closely related cells.

318

319  Since cells within each subgroup contain additional edits beyond the shared edits shown in the
320 "consensus" profile, one can in theory iteratively apply this set of steps to each subgroup, and
321  concatenate the resulting subtrees to derive a single cell-resolved lineage tree. Since our
322 downstream intended application involved comparing pooled expression and chromatin
323  accessibility profiles from groups of closely related cells, and we found that particularly small
324  lineage groups were too noisy for meaningful gene expression and chromatin accessibility
325 analysis, we performed such iterative subdivisions for only a subset of the groups.

326

327  For several reasons, we generated an initial tree using only about a quarter of the filtered cells (n
328 =2,419). First, the hierarchical clustering algorithm used for initial subgrouping has O(n?) run time.
329  Second, as described in the previous section, two out of eight batches (1 & 3, Supplementary
330 Figure 2) exhibited the most complete lineage profiles, and we reasoned that these would
331  generate the most accurate cell lineage groups into which the remaining cells could be placed via

332  a nearest neighbors approach. Provided that the terminal lineage groups we generate are large
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333  enough, we can assume close cell relatives of every cell in the dataset are present within this
334  subset of the overall data. Including all cells, the final tree used for downstream analyses
335 contained 42 lineage groups, ranging in size from 34 to 1217 cells (Figure 3e).

336

337  This iterative approach of building and concatenating subtrees from root to tip mitigates the
338  probability that recurrent editing patterns at individual targets grossly impact tree structure. For
339 example, if the same edit occurred in two cells independently at target #2, and if one of these
340 events occurred early enough to define an early bifurcation, all descendants of the other cell would
341 be misplaced early during tree reconstruction when employing a greedy approach. However,
342 initial subgrouping of cells based on the full set of edits they contain prevents this problem when
343 at least one of the edits occurs late enough that it does not define the group as part of its
344  "consensus" lineage profile.

345

346  Nevertheless, CNAs inferred from expression data occurring over the course of this experiment
347  (discussed in detail in the next section) signaled the presence of two convergence events within
348 lineage data impacting our tree structure. In each case, the convergence events were mediated
349 by a very common editing pattern (Figure 2f), and we manually resolved these events to come
350 to the tree structure shown in Figure 3e (Methods). However, it should be emphasized that with
351  the exception of these two manual changes, the tree shown in Fig. 3e was reconstructed solely
352  from lineage profiles, i.e. expression data was not used for lineage inference.

353

354
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362  Figure 3. Cell lineage tree reconstruction. (a) Visualization of cell lineage profiles. Each unique editing
363

pattern is assigned a unique color. (b) Preprocessing of lineage data. Missing data are imputed from
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364  nearest neighbors and pairwise similarity scores are computed from corrected lineage profiles. Similarity
365 scores are used to generate a hierarchically clustered tree, grouping related cells. This tree is subdivided
366 into groups of related cells and consensus lineage profiles are generated for each lineage group. The
367  consensus profiles are then used to reconstruct a preliminary cell lineage tree via a greedy approach. (c,d)
368 Summary and example of a greedy approach to reconstruct a cell lineage tree. This greedy approach can
369  be performed iteratively on groups of cells within a lineage group to generate a tree with individual cells at
370 the leaves. (e) Left: Tree of cell lineage groups ("consensus" editing patterns shown as rows; each column
371 represents a unique target site). Each color represents a unique editing pattern. White: unedited target.
372  Black: targets with missing data for a majority of cells in the group. Number of cells represented by each
373  consensus cell is shown. Inset (right) shows the editing patterns for all 100 cells assigned to lineage group
374  #24. Black: missing targets. Red: ambiguous targets.
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390 Chromosome copy number alterations inferred from sci-RNA-seq recapitulate the lineage-inferred

391  tree structure

392

393 We reasoned that heritable variation in gene expression patterns should visually correlate with
394  tree structure, whereas non-heritable variation should not (Figure 1a). To explore this, we
395  aggregated single cell expression profiles within each of the 42 groups described above, and
396 plotted relative group expression as a heatmap (Figure 4). Unexpectedly, when genes were
397 arranged by their genomic location, we observed large, continuous stretches of down- or
398 upregulated genes, strong evidence of partial or full chromosomal gain or loss events. HEK293s
399  are pseudotriploid and known to be karyotypically unstable, and an active CRISPR/Cas9 system
400 may also contribute to instability (Y.-C. Lin et al., 2014).

401

402  As CNAs are themselves heritable genomic events, we saw an opportunity to use them to validate
403 our CRISPR-inferred tree structure. Strikingly, where present, CNAs were generally concordant
404  with the tree structure inferred from lineage data. In particular, with the exception of full
405 chromosome gains or losses, most CNAs appear to have arisen from a single founder event
406 (Figure 4). As described in the previous section and Methods, on two occasions, CNAs were
407  used to resolve ambiguity in the lineage data due to convergence events. However, the remaining
408 CNAs shown in Figure 4 were not used for lineage reconstruction and, importantly, we observed
409 no instances of CNAs contradicting CRISPR-derived lineage relationships.

410

411
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424  Allelic ratios further inform chromosome copy number dynamics across lineages

425

426  We next wondered whether we could use lineage-resolved expression data to investigate allele-
427  specific copy number dynamics. Indeed, although we made no direct measurement of copy
428 number, we found that in many cases we could infer copy number based on SNP ratios in sci-
429 RNA-seq data (Figure 5a). For example, if a chromosome shows heterozygosity at known SNPs,
430 and we observe allelic ratios of 1:2 across these positions, this chromosome is likely to be present
431 in three copies, while a 1:1 allelic ratio would suggest two or four copies, and a 1:3 allelic ratio
432  would suggest four copies. On the other hand, a paucity of SNPs would suggest regional or
433 chromosome-wide loss-of-heterozygosity, in which case copy number could not be inferred by
434  this method.

435

436  We first performed such an analysis on each chromosome using expression data from all cells.
437  Since each genomic position is represented sparsely in sc-RNA-seq data, we divided the genome
438 into 5Mb bins, identified coordinates which appeared to be heterozygous in our data (most
439 frequent base present at in <85% of reads), subsetted these to include only those positions which
440  overlapped known human SNPs (i.e. those appearing in dbSNP), and combined counts for SNPs
441  within each 5Mb bin. For this last step, because phasing information was not available, we simply
442  assumed the more abundant alleles at each SNP within a bin were on the same haplotype for
443  binning purposes (as would be expected if homologs existed in unbalanced ratios, at least
444  provided counts are sufficiently high). We then calculated a "major" (most abundant) allele
445  frequency for each bin and plotted these by relative genomic position (Figure 5a,b). Figure 5b
446  shows several examples of this approach for chromosomes with stable copy number in our
447  dataset, revealing there to be 3 copies of chr19, 4 copies of chr18, and 2 or 4 copies of chr17. Of
448 note, because our heuristic always places the most abundant allele on the same haplotype, we

449  expect a major allele frequency above 1/2 for cases where haplotypes exist in equal copies, e.qg.
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450 as we infer for chr17. On the other hand, chr14 exhibited very low overall heterozygosity at known
451  SNPs together with an unstable ratio, suggesting loss-of-heterozygosity. Consistent with this
452  prediction, the "minor" alleles inferred in chr14 and other chromosomes which exhibit this unstable
453  pattern (Supplementary Figure 3a) often do not match known variants founds in the human
454  population , in contrast with inferred minor alleles in chromosomes exhibiting heterozygosity
455  (Supplementary Figure 3b). Major allele frequency plots for all chromosomes are shown in
456  Supplementary Figure 3a.

457

458 We next applied this approach to subgroups of the tree to investigate copy number dynamics
459  during the monoclonal expansion. For example, this analysis revealed a partial loss of an extra
460 copy of the short arm of chr3 impacting only a subgroup of related cells (Figure 5c, left panel).
461  Of note, the inferred breakpoint is slightly shifted from the centromere, such that several genes
462  on the short arm are retained. We calculated a binned major allele frequency for the subgroups
463 indicated in Figure 5c (left panel), using the major haplotypes we inferred from all cells (Figure
464  5c, right panel). Subgroup copy number analysis (Figure 5c, right panel) of groups 1-9 (top,
465 purple) agrees with the predicted ancestral state, whereas the major allele frequency in groups
466  10-19 has dropped between 1/2 & 2/3 across the whole chromosome. Since heterozygosity
467  appears preserved on the left arm, we infer that the partial chromosome (i.e. a copy of the short
468 arm of chr3) was lost in groups 10-19, relative to the ancestral state.
469

470 A similar analysis suggested more complex copy number dynamics for chr11, for which multiple
471  full and partial chromosome copy number changes appear to occur at different parts of the lineage
472  (Figure 5d, left panel). Performing a subgroup analysis, we observe a pattern consistent with at
473 least three independent full chromosomal losses (Figure 5d, middle panel). Intriguingly, these
474  resultin different allelic ratios, with loss-of-heterozygosity in two groups (Figure 5d, green & blue),

475 and maintained heterozygosity in one (beige). Overall, these analyses highlight the potential of
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476  high-resolution, progressive lineage histories to disambiguate copy number alterations, including

477  but not limited to recurrent gains and losses.
478

479
480
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Figure 5. Lineage-resolved allelic ratios inform complex chromosome copy number dynamics . (a)

A strategy to infer copy number using SNPs from sc-RNA-seq data. First, haplotypic imbalance is assumed
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485 and haplotypes are inferred based on base abundance at known SNPs, using all cells. We can then use
486 these to infer the ancestral (or most observed) copy number. Using these haplotypes, we can perform this
487  analysis on subsets of the tree to infer whole or partial chromosome gains or losses. (b) Copy number
488 analysis described in panel a for chr19, chr18, chr17, & chr14, using all cells. Point fill color represents the
489  number of SNPs found to be heterozygous in that bin, signaling the reliability of this analysis at that location.
490  Yellow line shows the centromere position. (¢) Subgroup copy number analysis of chr3. Left: expression
491 heatmap as described in Figure 4. Middle: Copy number analysis of chr3 for indicated subgroups. Right:
492  schematic of inferred haplotype dynamics. Point fill color represents the number of observed heterozygous
493  SNPs per bin detected when pooling all cells, not just subgroup cells. Yellow line shows the centromere
494  position. (d) Subgroup copy number analysis of chr11. Left: expression heatmap as described in Figure 4.
495  Middle: Copy number analysis of chr11 for indicated subgroups. Right: Schematic of inferred haplotype
496  dynamics. Point fill color represents the number of observed heterozygous SNPs per bin detected when
497 pooling all cells, not just subgroup cells. Yellow line shows the centromere position.

498
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499

500 Heritable expression changes unexplained by CNAs are observed throughout the tree

501

502  Within genomic regions exhibiting large-scale CNAs, copy number change is the obvious

503 mechanism for differential expression of genes in the impacted region. But other phenomena—

504 e.g. epigenetic changes, changes in the levels of upstream regulators, focal CNAs and

505 translocations—might induce heritable expression changes as well. To explore contributions from

506  such sources, we set out to systematically identify examples of heritable expression variation

507  across the tree that were not obviously explained by CNAs.

508
509 To this end, we first inferred the boundaries of CNA events between every pair of sister branches
510 (defined as those that share an immediate common ancestor in the tree) using a combination of

511  expression heatmaps (as shown in Figures 4, 6f), and pairwise log-fold change plots, where

512  stretches of differential expressed (DE) genes are visible (Figure 6d; Supplementary Figure 5).

513  We then sought to evaluate DE between every pair of sister branches, using DE within CNAs as

514  ground truth for sensitivity. Applying DEseq2, which models data as a negative binomial

515  distribution, we observed a substantial number of false negatives—genes within CNAs which

516 were not detected as DE—even between large groups of cells (Figure 6b, top panel;

517  Supplementary Figure 4a). We thus sought to develop a strategy which would be sensitive to

518 small-magnitude expression changes, while also being robust to large differences in the number
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519  of cells between the groups being compared (Figure 6a; Methods). As a first step, cells from
520 each pair of sister branches are permuted 10,000 times, in each instance creating two groups of
521  the original sizes. For each permuted set, we calculate the log2-fold change for each gene. We
522  then use permuted expression ratios to (a) generate an expected distribution which we can use
523  to calculate a z-score associated with the observed fold change; and (b) rank against the observed
524  expression ratio to assign significance. For a set of genes evaluated for a pair of groups, if none
525  are significantly DE, the distribution of observed ranks is expected to be uniformly distributed; on
526  the other hand, if there are DE genes, we expect to observe their enrichment at the extremes of
527  the rank list. Using an FDR of 5%, we can calculate a set of "significant" ranks (and thus genes)
528 for each pair of groups being compared.

529

530 This permutation strategy detected a substantial fraction of genes within CNA regions as
531 differentially expressed (Figure 6b,c; Supplementary Figure 5). Genes within CNAs across all
532  pairwise comparisons were more likely to be identified by our approach, with lowly-expressed
533 genes within CNAs more likely to be missed by DESeq2 (Supplementary Figure 4a;
534  Supplementary Figure 5). For example, between groups A & B, 85% of expressed genes (see
535 Methods for filtering criteria) within the CNA region on chromosome 3 were identified as DE using
536  our approach, compared with 49% detected by DESeq2 (Supplementary Figures 4a, 5). Unless
537  otherwise stated, here we will refer to DE genes as those identified by the permutation approach
538 atan FDR of 5%.

539

540  As expected, statistical power decreases with group size, but we nonetheless detected some DE
541  genes within CNAs even between smaller groups (Figure 6d; comparisons G/H; J/K). For
542  example, between group J & K (as labeled in Figure 6d), containing 234 and 276 cells,
543  respectively, we detect a subset of CNA-associated genes across several chromosomes

544  (Supplementary Figure 4c), including TRIO, SRPK2, & FGF13 (log2-fold changes of -.22, .36,
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545 & -.59, respectively). The allelic chromosome copy number analysis presented in Figure 5
546  suggests a copy number change from 4 to 5 on chr5 (TRIO) & from 3 to 2 on chr7 (SRPK2)
547  between these two groups. Since no heterozygosity is observed on chrX, and thus we cannot
548 infer absolute copy number change for FGF13.

549

550 In total, across 66 pairwise comparisons, we detected 11,454 DE genes using the permutation
551  approach. Of these, 4,810 (42%) were detected using DESeq2, which detected an additional 520
552  genes not detected by our approach (Figure 6c; Supplementary Figure 5). Surprisingly, 48% of
553  DE genes detected by permutation analysis could not be directly explained by large-scale CNAs
554  (Supplementary Figure 5). The heritable nature of these expression changes may be a product
555  of smaller scale copy number changes , focal genetic or epigenetic differences,or trans-effects
556  mediated by heritable events elsewhere in the genome (e.g. CNAs or other). Interestingly, when
557  quantified by sister branch pair comparisons, the number of DE genes that we detected outside
558 CNA regions was well correlated with the number of genes within CNAs (Pearson's r of log-
559  transformed numbers of genes within vs. outside of CNAs = .90, Figure 6e), suggesting CNA-
560 mediated expression changes might contribute to heritable gene expression variation through
561 trans-acting effects. However, this relationship may largely be explained by the increased
562  statistical power to detect DE genes in larger groups (Pearson's r of log-transformed number of
563 genes outside of CNAs vs. group size = .76, Figure 6e; Supplementary Figure 4b).

564

565 The most striking heritable expression change which cannot be explained by an obvious CNA
566  was observed in GRIA1, a glutamate receptor subunit on chr5 (Figure 6f-h, z-score = 28.2, log2
567 fold-change (FC) = 3.32, between the indicated groups). Markedly elevated expression is
568  observed in lineage groups 11-15 relative to the rest of the tree (with elevated expression in group
569 16 likely due to misplaced cells). Though we cannot conclusively determine from this data alone

570 whether this expression change is caused by genetic (e.g. focal amplification) or epigenetic
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571 factors, it is notable that GRIAT is located in a replication transition zone in various cell lines,
572  potentially predisposing it to structural instability (Watanabe et al., 2014). Additional examples of
573  genes exhibiting differential gene expression patterns that track closely with the lineage-derived
574  tree structure appear throughout the tree (Supplementary Figure 4d).

575

576  Another intriguing example, where multiple expression levels appear to have been stably inherited
577 is observed in CSMD3, on chr8 (Figure 6f-h). Group B expression is markedly elevated over its
578  sister group A (A/B z-score = -7.30, log2FC = -0.57), while in the branch encompassing both
579  groups A & B, CSMD3 is even more highly expressed relative to group C (A&B/C z-score = 27.8,
580 log2FC = 2.02). A weaker, but similarly heritable relationship appears between groups D & E (z-
581  score = 3.8, log2FC = 0.34). Such a heritable but labile expression pattern might indicate flexible
582  but relatively stable regulation at this locus. Interestingly, such graded but clone-specific
583  expression patterns were observed with cell type groups in both Apoe and Lmo4 in mouse
584  neurons (Mold et al., 2022). Alternatively, this lability might be explained by local genomic
585 instability. In fact, translocations at a breakpoint near CSMD3 have been associated with autism
586  in multiple de novo cases (Floris et al., 2008), and the CSMD3 locus is implicated in a wide range
587  of diseases including epilepsy & non-small cell lung carcinoma (Floris et al., 2008; P. Liu et al.,
588  2012; Shimizu et al., 2003). CNAs are particularly common in branch C (Figure 4), bolstering the
589 likelihood that a translocation event explains reduced expression in that group.

590

591 Even within CNAs, we observe single gene expression changes which deviate strongly from the
592  expected copy number ratios. An intriguing example is the transcript AC090518. 1, which normally
593  exhibits testis-specific expression, and is located within a short stretch of genes with modestly
594  elevated expression on chr15 consistent with a CNA (Figure 6g,h; AC090518.1 is located
595 between MNS1 & ZNF280D). This transcript's markedly increased expression well beyond that of

596 its neighbors (log2-fold change (A/B) = -3.82, A/B z-score = -28.67), points to a possible
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597 translocation (or tandem duplication) event, exposing it to a new regulatory context. Chromosomal
598 rearrangements are a hallmark of cancer progression, and tracking such small-scale events may
599 reveal the mechanism behind biologically-meaningful expression changes. The genes GNGT1,
600 Cé6orf14, and NEATT, all lie within CNA regions but show heritable expression changes in the
601  opposite direction of surrounding genes (z-scores -7.40, -4.10, -8.84, respectively, Figure 6h).
602  Such patterns may indicate expression compensation or selection for particular expression levels.
603 Infact, both GNGT1 & C6orf141 have been associated with cancer prognosis (Yang et al., 2019;
604 J.-J. Zhang et al., 2021), with C6orf141 playing a direct role in cell proliferation. GNGT1 was
605 designated a hub gene in non-small-cell lung cancer, suggesting its misexpression may have
606  widespread downstream consequences which would also appear heritable. NEAT1, a long non-
607 coding RNA with a known epigenetic role in a variety of cell types, may also stably modify
608  expression of multiple downstream target genes (Wang et al., 2020).

609

610  Here, lineage relationships enabled us to identify stably-inherited expression changes which may
611 not otherwise be obvious among non-heritable expression fluctuations. In most cases, however,
612 itis not possible with this data alone to determine the mechanistic basis for this differential gene
613  expression (e.g. cis-genetic, trans-genetic vs. epigenetic). We next sought to distinguish between
614  these possibilities by additionally tethering chromatin accessibility information to this same lineage

615 tree.
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616
617  Figure 6. Detecting heritable differential expression within lineage-resolved sci-RNA-seq data. (a) A

618  permutation-based strategy for identifying significantly DE genes. (b) Comparison of DE genes identified
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619 by the permutation method and/or DESeq2, showing log2-fold change expression on chr3 between
620 indicated groups A & B. Yellow bar indicates centromere position. (¢) Number of DE genes identified using
621 permutations, DESeq2, or both, across every pairwise comparison (66 total) of sister lineage groups (i.e.
622  branches sharing an immediate common ancestor in the tree). (d) Left: Heatmaps as described in Figure
623  4a depicting CNAs on chrs 5,6,10, & X, with lineage groups indicated on tree. Right: Log2-fold changes of
624  genes onindicated chromosomes between indicated groups, depicting the power to detect DE genes within
625  CNA regions via the permutation approach across groups of different sizes. (e) Relationship between the
626  log-scale number of detected DE genes within CNAs and DE gene falling in non-CNA regions per each
627 sister pair comparison. Size of points represents the mean number of cells in the sister pair. (f) Heatmaps
628  showing DE expression of GRIA1, CSMD3, AC090518.1, and surrounding genes. (g) Pileup visualizations
629 of GRIA1, CSMD3, AC090518.1 in groups indicated on the trees in panel f. AC090518.1 is positioned
630 between MNS1 & ZNF280D. (h) DE genes showing heritable expression patterns which cannot be
631 explained by detected CNAs. The pair of groups being compared for each plot is indicated on the bottom
632 right, with groups indicated on the trees in panel f (except for top-right sub-panel, for which pair of groups
633  is shown in inset tree).

634
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635

636 Collecting lineage information alongside single cell chromatin accessibility profiles enables

637 tethering of gene expression and chromatin accessibility

638

639 Both genetic and epigenetic phenomena can potentially underlie what we observe as heritable
640 expression changes, and measuring expression alone is often not sufficient to disentangle these
641  from one another. Coassays of single cell expression and chromatin accessibility may provide
642  more insight, but contemporary methods result in relatively sparse profiling in any given cell.
643 However, since heritable states are presumably shared by cells with similar lineage histories, we
644  can theoretically measure these features independently in clonally related cells and link them
645 retrospectively based on lineage relationships (Figure 7b). Furthermore, pooling of single cell
646  chromatin accessibility profiles of closely related cells, as we did with expression profiles,
647 increases the power to detect changes. To this end, we developed a method to capture lineage-
648  associated transcripts alongside sci-ATAC-seq (Cusanovich et al., 2015, 2018), ie. to
649  concurrently profile single cell lineage relationships and chromatin accessibility states (Figure
650 7a). sci-ATAC-seq is a pool-split approach where genetic material undergoes two rounds of
651 molecular indexing, such that DNA from each cell is ultimately associated with a unique pair of
652 indexes. To associate lineage information with sci-ATAC-seq profiles, we devised a strategy to
653  concurrently index mRNA transcripts containing recorded lineage information at each sci-ATAC-
654 seq indexing round, via reverse transcription and PCR, such that both features can be
655 retroactively linked to a single cell via index combinations (Figure 7a; Methods).

656

657  We applied this method to the remaining cells from the lineage/expression capture experiment,
658  and filtered cells to those for which we collected both chromatin accessibility profiles and suitable
659 lineage information. Since a lineage tree has already been built, lineage profiles captured

660 alongside sci-ATAC-seq need only be complete enough to accurately place them into existing
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661 lineage groups. Keeping cells with at least 5 captured targets of which at least one was edited,
662  with more unambiguous than ambiguous editing events (the latter likely representing doublets),
663  we retained 12160 cells with lineage information. In this group of cells, a median of 20 unique
664  targets were captured per cell (Supplementary Figure 5b). We next filtered on chromatin
665  accessibility profiles. Chromatin fragment lengths exhibited the expected nucleosomal peaks
666 (Supplementary Figure 5a), and filtering on UMI counts yielded a total of 9014 cells (median
667  non-mitochondrial UMI count: 1601; mean UMI count: 6491; minimum 32 UMIs, Supplementary
668  Figure 5a).

669

670 To place these cells into existing clonal groups, we first computed a weighted similarity score
671  based on lineage profiles for each ATAC-associated cell with each RNA-associated cell. We then
672 placed cells into existing groups based on nearest neighbors (Figure 7b). Encouragingly, the
673 relative group sizes of ATAC-associated cells correlated well with the original group sizes
674 (Supplementary Figure 5c). Moreover, lineage profiles collected alongside accessibility were
675  visually consistent with those collected alongside expression within tethered groups (Figure 7c¢).
676  Together, these data suggest that cells were accurately placed into lineage groups, and thus we
677 can expect analogous heritable states to be reflected in expression and accessibility
678  measurements within a group.

679
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Figure 7. Collecting chromatin accessibility data (via sci-ATAC-seq) alongside lineage profiling, and

evaluating its relationship to expression in closely related cells. (a) A combinatorial indexing strategy
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684  to concurrently capture chromatin accessibility and lineage mRNA from the same single cell. (b) Schematic
685  depicting how expression (sci-RNA-seq) and accessibility (sci-ATAC-seq) are linked via lineage
686 information. Lineage-traced cells are split in half, and lineage profiles are captured separately alongside
687 each single cell feature. A lineage tree was reconstructed from cells with concurrently profiled expression,
688 and lineage profiles of cells with concurrent accessibility profiling were used to place cells into previously
689  defined lineage groups via nearest neighbors. The relationship between expression and accessibility of
690 closely related cells could then be evaluated. (c) Lineage profiles of individual cells within four clonally
691 related groups collected alongside either sci-RNA-seq or sci-ATAC-seq. (d) Heatmaps showing the relative
692  expression (RNA) and accessibility (ATAC) across the 42 lineage groups, calculated for each gene (RNA),
693 and for each 1MB bin (ATAC) for five selected chromosomes. Genes & bins are ordered by their
694  chromosomal position. Dashed boxes indicate chromosomal regions with visually consistent copy number
695 changes across the tree. (e) Heatmaps showing relative expression for a subset of genes which are both
696 DE and DA, and including 10 positionally adjacent genes on either side. Associated RNA & ATAC read
697  pileups are shown in Supplementary Figure 5d. (f) Left: Relationship between expression and accessibility
698 changes evaluated within gene bodies plus 5kb upstream of the TSS, calculated using the permutation
699  approach described in Figure 5a. Only genes within CNAs are shown. Each point represents an
700  expression/accessibility change at a single gene for a pair of sister lineage groups (and thus a gene may
701 be represented more than once). Points are colored by their DE and DA status. Middle: Analogous to the
702 left plot, except including only genes outside of CNAs. Labeled genes are referenced in the text. Right:
703 Overlay of left and middle plots. 10 outlier genes, where noise was likely due to low expression/accessibility,
704  were removed from the middle and right plots. (g) Relationship between RNA and ATAC log2-fold change
705 (as opposed to z-score). Each point represents an expression/accessibility change at a single gene for a
706 pair of sister lineage groups (and thus a gene may be represented more than once). Outliers discussed in
707 the text are labeled with gene name and pair of sister groups as indicated on the tree. Because small groups
708 result in noisy data, comparisons involving at least one small group (<100 cells) were removed. An
709 expression cut-off was also applied to reduce visual noise, leaving the 45% of comparisons with the highest
710  expression. (h) Left: Heatmap of relative expression of BCKDHB and surrounding genes, respectively.

711 Right: Pileup of expression and chromatin accessibility data for the indicated groups (as labeled on tree in
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712  panel g). Log2-fold change between groups F&G: 1.18 (RNA), -0.06 (ATAC); groups L&N: 1.13 (RNA), -
713 0.12(ATAC).

714
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715 Using lineage-tethered chromatin accessibility and expression profiles to investigate mechanism

716 of heritable expression

717

718  Although sci-ATAC-seq is primarily used to measure local chromatin accessibility changes, copy
719  number changes should also be apparent since they affect the amount of DNA available for
720  tagmentation. Thus, if paired expression and accessibility measurements truly capture closely
721 related cells, CNAs observed in expression data should also appear in accessibility data. To
722  visually evaluate CNA concordance, we quantified relative sci-ATAC-seq read counts across 1MB
723  windows of the genome for each lineage group and generated heatmaps analogous to those
724  shown in Figure 4. Indeed, we observed striking agreement in CNA patterns between expression
725  and accessibility data (Figure 7d), further confirming lineage profiles do link close cell relatives.
726  To determine if CNAs were measurable in accessibility data at the gene level, we evaluated
727  accessibility within gene bodies, including 5kb upstream of the TSS, once again using the
728  permutation strategy described in Figure 5a. We found that within CNAs, RNA and ATAC z-
729  scores are strongly correlated at genes which are DE, DA, or both (Pearson's r = .73, Figure T7f,
730 left panel), while much more limited correlation is observed outside of CNA regions (Pearson's r
731  =.16, Figure 7f, right panels).

732

733  Since copy number differences are often observable at the gene level in ATAC data, we wondered
734  if we could use gene body accessibility outside of large CNAs to identify genes whose DE status
735 s likely due to small genomic amplifications or deletions, affecting one or a few genes. Correlated
736  DE and DA status may alternatively indicate a regulatory change, but such DA is more likely to
737  be promoter-specific; in this case, we would expect a higher promoter-specific signal, while

738  evaluating DA across the whole gene body could dampen such localized signal (Nair et al., 2021).

739 21 genes outside of CNAs are both DE and DA (Figure 7f, middle panel), making them good
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740  candidates for residing in short CNAs. In fact, three of these—MREG, PECR, XRCC5—are

741 adjacent genes on chr2, with higher expression in group B relative to group A, despite similar
742  expression outside of this region (Figure 7e; Supplementary Figure 6d). This pattern strongly
743  suggests that a focal amplification occurred at this locus, explaining the increase in transcript
744  abundance. Similarly, AC016205.1 on chr18 & TAF1 on chrX are both DE and DA between the
745  groups indicated in Figure 7e, and also appear within short stretches of genes with elevated
746  expression. A pileup of ATAC data, showing the positions of Tn5 insertions across TAF1, shows
747  elevated signal across the whole gene body as well as the neighboring gene OGT, validating our
748  prediction. A small CNA is also likely on chr3, where elevated expression is observed in DA gene
749  SERPINI1 and nearby PDCD10 (Figure 7e; Supplementary Figure 6d, SERPINI/1 does not
750  appear on the heatmap due to low expression level.). Although PDCD10 is not significantly DA
751 by our metrics, it lies in the vicinity of genes which are (Figure 7f, middle panel). Pileup of ATAC
752  reads in this region supports this prediction, with denser coverage of reads across the gene body
753  of SERPINI1 in group B (Supplementary Figure 6d, right panel). These data suggest that paired
754  expression and accessibility data can help identify small copy number changes.

755

756  We next sought to use accessibility data to identify genes whose expression changes are unlikely
757  to be mediated by copy number changes. If a heritable expression change is triggered by a simple
758  gene copy number change, we expect a linear fold-change concordance between expression and
759  gene body accessibility. If, on the other hand, an expression change is due to other factors, such
760  as abundance of an upstream regulator or change in its regulatory context, these features are not
761 necessarily expected to be linearly correlated. Though log2-fold changes at single genes between
762  variable size groups are inherently noisy, especially in ATAC data, outlier DE genes are especially
763 likely candidates for non-copy number mediated heritable states. We thus further inspected

764  several such outliers, where expression change greatly exceeds accessibility change (Figure 7g).
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765  Between groups A & B as indicated in Figure 7g, the expression change in GRIA1 is 19 times
766  greater than its gene body accessibility change (RNA log2-fold change = -6.04; ATAC log2-fold
767 change = -.32), suggesting genomic amplification is very unlikely to be the cause of this
768  expression change. Similarly, the expression changes observed in BCKDHB, CDH12, and
769 ADGRB3 (Figures 7h, Supplementary Figure 5e,f) between the indicated groups greatly
770 exceed gene body accessibility changes (log2-fold change shown in figure or legend). The
771  absence of significant accessibility change in BCKDHB in particular allows us to rule out a focal
772  amplification of the 3' end of the gene as an explanation for high RNA read coverage specifically
773 inthatregion in groups E & F (Figure 7h). A more likely explanation is that a different transcription
774  termination site was used.

775

776  Beyond copy number changes, heritable changes in accessibility at regulatory regions would
777  signal an epigenetic origin to expression variation. We thus identified peaks in ATAC data, both
778 in the entire dataset as well as in lineage-specific subgroups internal to the tree, and looked for
779 DA peaks within 5kb of TSSs or within the gene body between every pair of sister groups near
780  genes found to be DE. We did not observe any DA peaks in these regions. Consistent with this,
781 Kiani et al. recently showed that accessibility and expression changes are not well correlated in
782  single gene perturbation experiments (Kiani et al., 2022). Others have observed a similar lack of
783  concordance between accessibility changes and expression level (Hota et al., 2020; Y. Zhang et
784  al., 2020).

785

786  Together, these data illustrate the potential of lineage-based coupling of expression and
787  accessibility data to help distinguish between potential mechanistic explanations for heritable
788  expression changes.

789

790
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791  Discussion

792

793  Here, we have shown how tethering single cell expression and chromatin accessibility profiles via
794  lineage relationships facilitates the detection and characterization of heritable gene expression

795 changes. Surprisingly, even in a non-differentiating cell line, we observed abundant,

796  progressively-acquired heritable expression changes. Some differentially expressed genes had

797  an obvious genetic origin—copy number changes impacting multiple adjacent genes, while many

798  others showed stable, lineage-associated expression but with less clear origins. The explanations

799 for this latter category might include epigenetic changes within nearby regulatory sites, changes

800 in abundance of upstream regulators, the acquisition of new regulatory contexts via genomic
801 rearrangements, and/or focal genetic changes, amplifications, or deletions. Above, we have
802  shown that our approach of profiling multiple features in closely related cells can, at least in some
803 cases, be used to distinguish between these possibilities.

804

805  Clonal tracking, achieved via various methods across diverse systems, has revealed the presence
806  of biologically important heritable states. For example, combining Luria-Delbriick fluctuation
807  analysis with RNA-seq, Shaffer et al. found rare, but clonally stable expression states which
808 predisposed cancer cells to drug resistance (Shaffer et al., 2020). Intriguingly, these states were
809 in some cases reversible, suggesting an epigenetic origin. Goyal et al. confirmed the presence of

810  clone-specific responses of cancer cells to various drug treatments using a clonal barcoding

811  approach (FateMap) (Goyal et al., 2021). Mold et al. made use of 'natural' clonal barcodes—T-

812  cell receptors in lymphocytes—and found that clonal lymphocytes responded more similarly to
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813  vaccination than more distantly related cells (Mold et al., 2022). Using an in vivo transgenic

814  barcoding strategy (TREX, (Ratz et al., 2021)), they found that in mouse neurons, gene
815  expression states mimicked clonal structure, even among different clones of the same cell type.
816  Finally, He et al. investigated the timing of cell fate restriction in organoids with iTracer, a system
817  which includes an initial and an induced round of clonal barcoding (He et al., 2021). These studies
818  present intriguing examples of heritable expression but are limited in terms of fully distinguishing
819  between potential underlying causes.

820

821  We envision that THE LORAX may be applied to such systems, enhancing our ability to detect
822  heritable events and explain their mechanistic origins. First, progressive lineage labeling
823 increases the likelihood of detecting rare heritable events, as finer-scale, temporally-resolved
824  clonal labeling produces more homogenous clones. Progressive labeling may be particularly
825  useful for detecting events which are stable over multiple cell divisions but reversible, since both
826 the acquisition and reversal may be captured via a finely-tuned lineage recording system.
827  Second, the addition of a chromatin accessibility measurement alongside clonal labels may help
828 resolve the mechanisms behind clonal expression stability. Genetically-mediated expression

829  variation is likely during cancer progression, where copy number changes ((Harbers et al., 2021),

830 loss of heterozygosity (Nichols et al., 2020), and chromothripsis (Cortés-Ciriano et al., 2020)—

831  widespread fragmentation and reassembly of genetic material—are commonly observed. We

832  have shown above that such events may be inferred using our approach. On the other hand,

833 myriad epigenetic changes accompany cell fate commitment during organoid and organism

834  development, and concurrent lineage tracing and RNA and ATAC profiling in closely related cells
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835 may illuminate the order of events which give rise to progressive cell type divergence (Thomas et

836 al., 2011). In these systems and others where cell state diversification is taking place, it is likely
837  that lineage-resolved ATAC-seq will show clone-specific enhancer and promoter accessibility
838 changes beyond what we observed here, which may explain heritable expression variation. In
839 fact, profiling clonal T-cell populations expanded in vitro using bulk ATAC- and RNA-seq, Mold et
840  al. found clone-specific accessibility changes at regulatory regions, with enrichment near clonally
841  differentially expressed genes (Mold et al., 2022).

842

843  Our work presents some advances in CRISPR-based lineage tracing, and also highlights some
844  fresh challenges. First, encoding lineage at many independently-integrated loci rather than at
845 tandem loci expressed as a single transcript eliminates the chance that a large deletion removes
846  neighboring CRISPR targets, supports larger deletions, and enables efficient capture of larger
847 insertions. These features in turn reduce both the rate of missing lineage information and the
848  probability of convergence events. Second, we show that NN-based inference of missing data in
849 individual cells and subsequent pooling of cells to generate "consensus" profiles prior to lineage
850 reconstruction (and iteratively generating subtrees from these consensus groups) reduces the
851 likelihood of misplaced cells early in the reconstruction process. Though we demonstrate the
852  usefulness of this approach when a "greedy" algorithm is used for reconstruction, it is applicable
853 even to methods which primarily use traditional phylogenetic reconstruction approaches (e.qg.
854  maximum likelihood) (Gong et al., 2021; Jones et al., 2020; Konno et al., 2022), since the sheer
855 number of cells often makes early "greedy" subgrouping necessary. Finally, these lineage
856 recording and analysis approaches are compatible with other recent advances in lineage
857  recording technology, like DNA Ticker Tape (J. Choi et al., 2021), where successive insertions as

858  a single locus greatly simplify ordering of lineage-encoding events. Integrating multiple such loci
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859  would enable higher resolution trees, and the approaches presented here can be used to order
860 events occurring at distinct recording loci, where event ordering is not so straightforward.

861

862  Our work also highlights some unresolved challenges within the CRISPR-based lineage tracing
863 field. First, fine control of editing rate remains elusive; we observed abundant editing in some
864 lineages, while most targets in others remained unused. Loss or silencing of the Cas9-expressing
865  genomic locus might explain lineage-specific reductions in editing efficiency, while position effect
866  variegation in cutting or editing rates might explain variation in usage or recovery across targets.
867  Second, though we observed a great diversity of editing patterns, they are not evenly distributed,
868  with the top three edits frequently occurring independently. This phenomenon can in part be
869  addressed with careful target design to avoid regions of microhomology (W. Chen et al., 2019;
870  Sfeir & Symington, 2015). Third, though the design of our construct allows for large indels relative
871 to other methods, relying on double strand break repair for editing diversity still presents a risk
872  that arecorded event will not be reliably captured due to indel size. Finally, frequent DSBs (which
873  may themselves be contributing to the CNAs observed here), and the persistently high expression
874  of transgenes (which are prone to silencing) may not be compatible with organismal or ES cell-
875 derived systems. Excitingly, these challenges are addressed in large part by DNA Ticker Tape,
876  which leverages prime editing to introduce diverse insertional edits to a target site in an ordered
877  manner, without requiring double-stranded breaks (J. Choi et al., 2021).

878

879  The logical core of THE LORAX—pooling cells based on genetically-encoded labels captured
880  alongside multiple genomic and/or epigenetic features to evaluate the relationship between those
881  features—is broadly applicable to any system amenable to genetic barcoding. Systems where
882  static barcodes (e.g. CellTag (Guo et al., 2019)) are used to interrogate clone-specific
883  heterogeneity, are an obvious candidate, but labels need not necessarily mark clonal populations.

884  For example, sgRNAs in CRISPR perturbation screens can be used to tether multiple single cell
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885  molecular measurements. Importantly, combinatorial indexing approaches are not required here,
886  as both short barcode integrants and sgRNAs can now be captured alongside scRNA-seq (Biddy
887 et al., 2018; Dixit et al., 2016; Guo et al., 2019; Rodriguez-Fraticelli et al., 2018; Weinreb et al.,
888  2020) and scATAC-seq (Pierce et al., 2021; Replogle et al., 2020; Rubin et al., 2019) via droplet-
889  based methods.

890

891 In some applications, THE LORAX has several advantages over traditional co-assays of
892  expression and accessibility where both features are measures in the same single cells (Cao et
893 al., 2018; S. Chen et al., 2019; L. Liu et al., 2019; Ma et al., 2020; Xing et al., 2020; Zhu et al.,
894  2019), as well as computational integration methods which merge single cell expression and
895  accessibility datasets (Y. Lin et al., 2021; Stuart et al., 2019). First, existing co-assay methods are
896 relatively low resolution compared with methods which profile each feature separately; thus,
897  associating single-feature profiles via lineage relationships improves resolution at the single cell
898 level. Second, by aggregating profiles of closely related cells, we achieve higher statistical power
899 to detect even rare, heritable events. Third, though computational integration is possible in
900 datasets composed of a variety of cell types, it is less feasible in ones composed of different cell
901 states where well-separated clusters are not expected and stochastic factors often drive within-
902 cluster positioning. THE LORAX enables overlaying of expression and accessibility datasets
903  without making a priori assumptions about their relationship, as is necessary during computational
904 integration.

905

906 In summary, we have shown that (a) progressive recording of lineage information across distinct

907 genomic loci, and their high rate of recovery alongside sci-RNA-seq, enables accurate

908 reconstruction of cell lineage trees; (b) aggregating expression profiles of closely related cells
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909 reveals abundant, and progressively acquired heritable expression variation, even in non-

910 differentiating cells; and (c) we can investigate the relationship between multiple features—like

911 expression and chromatin accessibility—by tethering them via concurrently captured lineage

912  profiles.

913
914

915
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916 Materials and Methods

917

918 CRISPR lentiviral target construct & Cas9 construct generation

919

920 Target/sgRNA construct: In order to integrate CRISPR targets and sgRNAs into the genome, we
921 modified the CROPseq vector (Datlinger et al., 2017) (Addgene ID 86708), which expresses an
922 sgRNA and a Polll transcript. We integrated a CRISPR target construct after the WPRE, such
923 thatitis expressed off the Polll promoter (sequence and location shown below). Target constructs
924  were identical except for a unique 10bp barcode. sgRNAs matched the targets and were thus
925 identical across all uniquely-barcoded constructs. A primer binding site was placed 35bp
926  upstream of the CRISPR cut site, such that the target accommodates a 70bp deletion. The
927  sequencing and computational processing scheme enables capture of insertions of >105 bp. (see

928 Computational processing and edit calling from lineage target sequencing data))

929

930 Target insert:

931 TCCAAGCTCCATAGGTCCAACTCAAGCTTAGTTCCTATACTGATTCCAAGCCATGGTACCAT
932 AGCAGATGATCCATTTAGAGCCTGGCTGGTCTCCTGGGAGGTCAACCTTGGAGACTAAGA
933 CCTTACG

934

935

936 gRNA binding site

937  Forward primer binding site

938

939  Position of insertion after WPRE between sequences shown:

940 TCCCCGCGTCGACTT[INSERTION SITE]TAAGACCAATGACTT

941

47


https://doi.org/10.1101/2022.05.12.491602
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.12.491602; this version posted May 12, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

942  Primer binding sites:

943  Forward: CTGATTCCAAGCCATGGTAC

944  Reverse: GACTTACAAGGCAGCTGTAG

945

946 A modified version of the doxycycline-inducible SpCas9 lentiviral plasmid

947  (https://www.addgene.org/50661/) was used in this experiment. This construct contains an auxin

948 inducible mAID sequence (cloned from pMK288 (mAID-Bsr), Plasmid #72826, Addgene) This
949  degron sequence was not used in this experiment. Doxycycline was not used to induce this
950 construct -- instead, we relied on known leaky expression to achieve a low level of editing. The
951  full construct sequence is available on Benchling.

952

953  Cell line generation

954

955 HEK293 (ATCC, CRL-1573) were first transduced with the barcoded target/sgRNA modified
956 CROPseq vector at high MOI and single cells were sorted to grow clonal populations. Targets
957  were counted by PCR amplifying and sequencing the unique barcodes. A clone containing 31
958  unique barcodes was chosen.

959

960 To induce editing, cells were transduced with the doxycycline-inducible Cas9 lentiviral construct
961  described above, selected for Cas9 integration using Blastocidin, and single cell sorted such that
962 all profiled cells arose from a single founder cell. The Cas9 construct was not induced with
963  doxycycline; instead, we made use of its known propensity for leaky expression without induction
964  to produce slow editing. After 35 days in culture (DMEM), passaged every 2-3 days using trypsin,
965 editing efficiency was evaluated by bulk PCR of the target regions, and a single clonal edited

966  population was chosen for further exploration. A portion of the resulting cells were collected and
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967  processed immediately in a target+sci-RNA-seq capture experiment, and a portion was frozen in
968 liquid nitrogen for later target+sci-ATAC-seq processing.

969

970 Capture of CRISPR targets alongside sci-RNA-seq

971

972  The sci-RNA-seq 2-level protocol for methanol-fixed cells described in Cao et al. 2017 (Cao et
973 al., 2017) was modified to concurrently capture CRISPR target mRNAs. A single 96 well plate
974  was used for the first round of indexing, and 8 96-well plates were used in the second round, with
975 25 cells sorted into each well.
976

977  The following modifications were made:

978 (1) Toindex the lineage target mRNA during the first round of indexing, we added a 1um of 10uM
979 indexed target-specific reverse transcription primer in addition to the oligo-dT primers.

980

981 Reverse transcription primer sequence:

982 ACGACGCTCTTCCGATCT TTGGTAGTCG ctacagctgccttgtaagtc

983

984

985 RT index (well-specific sequence)

986

987  (2) After Tn5 tagmentation, lysis, and ampure bead purification, cDNA was eluted in 10ul of buffer
988 EB (Qiagen). Then half of the contents of each well were transferred to a second 96 well plate. In
989 one plate, PCR and sequencing of the transcriptome was performed as described. The other plate
990 was used for amplification of the lineage targets, with well-specific primers indexed to match well-
991  specific transcriptome indices.

992
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Lineage targets were PCR amplified using the KAPA HiFi HotStart ReadyMix (Roche, KK2602)
with primer sequences below and elongation time of 1 minute and an annealing temperature of

65°C. All other steps were consistent with the KAPA protocol provided by manufacturer.

PCR primers:

Forward (unindexed):
CAAGCAGAAGACGGCATACGAGATTTGGTAGTCGGTGACTGGAGTTCAGACGTGTGCTCT
TCCGATCTCTGATTCCAAGCCATGGTAC

Reverse (indexed):
AATGATACGGCGACCACCGAGATCTACACTTCTACCTCAACACTCTTTCCCTACACGACGC

TCTTCCGATCT

PCR index (well-specific sequence)

PCR index (plate-specific sequence)

After PCR, all wells were pooled and a 0.8x AMPureXP bead cleanup was performed prior to

sequencing.

(3) Paired-end sequencing of the lineage target PCR products was performed using a 300bp
lllumina sequencing kit (Miseq), with 148 bases sequences from each end (along with standard
10bp index reads, which are associated with the second round of indexing). The first index as
well as the UMI appear in R1 and are parsed during downstream computational processing. 10%

PhiX was added for sequencing to address sequence homogeneity.

Capture of CRISPR targets alongside sci-ATAC-seq
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1019  The concurrent lineage target + chromatin accessibility capture protocol builds upon the 2-level
1020  sci-ATAC-seq protocol presented in Cusanovich et al. (2015) (Cusanovich et al., 2015). The
1021  following modifications were made:

1022

1023 (1) Lysis buffer was supplemented with SuperaselN (ThermoFisher AM2694).

1024

1025 (2) Reverse transcription of lineage target mRNA:For s first round of lineage target indexing,
1026 reverse transcription was performed prior to tagmentation in the first set of wells. After lysis, 5000
1027  nuclei (2ul) were distributed per well of a 96 well plate, along with reagents for the first step of
1028 reverse transcription: 0.25ul dNTPs (10mM) & 1ul of indexed the reverse transcription primer
1029 described above (at 2uM). The plate was then incubated at 55C for 5 minutes, and immediately
1030 chilled on ice. Reagents from the SuperScriptlV (ThermoFisher, 18090010) kit were then added
1031 to each well (1ul buffer, .25ul DTT, .25ul SSIV enzyme, .25ul RNAseOUT (ThermoFisher,
1032  10777019). The plate was then incubated at 55C for 10 minutes, and immediately chilled on ice.
1033

1034  (3) Buffer exchange following reverse transcription: 60ul of nuclei lysis buffer was added to each
1035  well. Nuclei were then pelleted by centrifugation at 300g for 5 minutes in 4°C. 57ul were then
1036  carefully removed from each well, taking care not to disturb the pellet.

1037

1038  (4) After sorting nuclei (25 nuclei per well) into a solution containing SDS & inclubating to insure
1039  Tnb5 inactivation and lysis, the contents of each well are split in half across two plates. One plate
1040 underwent indexed DNA PCR amplification in accordance with the sci-ATAC-seq protocol; the
1041 other underwent a 2X AmpureXP bead purification to remove SDS, followed by PCR amplification
1042 as described above. Primer cleanup and sequencing of lineage target amplicons was performed
1043  as described above.

1044
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1045 Initial computational processing of sci-RNA-seq data

1046

1047  Sequencing was performed as previously described (Cao et al., 2017). Reads were adapter-
1048 trimmed using trim_galore and aligned to the reference genome (hg38) using STAR. Non-unique
1049 mappers were removed. Reads were then deduplicated using a custom script
1050 (190223 _sciRNA_remove_duplicates.cpp), taking into account both UMIs and cell indices to call
1051  a duplicated read. Only cells with at least 2048 deduplicated non-mitochondrial UMIs were used
1052  for subsequent analyses.

1053

1054 A custom script (190704 _process_sciRNA_mapped_file.cpp) was used to map reads to genes.
1055 Reads which overlapped multiple genes but only fell in an exon in one gene were counted towards
1056 that gene.

1057

1058 RNA processing to generate the cell by gene raw counts file is implemented in script
1059 190807 _sciRNA wrapper_ ALL.txt, with user-defined UMI cutoff of 2711.

1060

1061 Computational processing and edit calling from lineage target sequencing data

1062

1063 Targets were enriched from the cDNA as described above and sequences on the lllumina
1064 Nextseq or Miseq 300 cycle kit, with paired end sequencing. Read pairs (150b from each end on
1065 Miseq; 148 from each end on Nextseq) were merged using PEAR. Since large insertions can
1066  possibly result in pairs which do not overlap, we took reads which were unable to be merged and
1067 looked for features (common sequence near barcode, primer binding sites) which indicated reads
1068 from the correct location. We then pasted the pairs into a single read, and used the combined
1069 insertion sequence in our analysis. Thus, insertions of >105bp could be captured, as long as the

1070  amplicon could cluster efficiently on the sequencer chip.
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1071

1072  Merged reads contain UMIs (first 8bp), reverse transcription index (index #1 of combinatorial
1073 indexing - next 10bp), and a target ID (obtained by searching for flanking sequences). These
1074  features were first extracted from the reads
1075 (191203_CROPt_make_UMI_RT_BC_seq_output_file.cpp, within wrapper script
1076  191203_CROPt_Step2_collapse_UMIs_wrapper.txt), and the remaining sequences were
1077  collapsed by UMis (191203_CROPt_collapse_by UMIls.cpp, run within
1078 191203_CROPt_Step2_collapse_UMIs_wrapper.txt) and aligned to the reference sequence

1079 using needleall (http://emboss.sourceforge.net/apps/release/6.6/emboss/apps/needieall.html)

1080  with default settings. To remove PCR amplification or sequencing errors being interpreted as a
1081 CRISPR edit, we devised a strategy to disentangle likely editing from technical errors in
1082 sequences where indels or mismatches appeared discontinuous and/or did not overlap the
1083 CRISPR cut site. Beginning at the cut site and moving in either direction, each part of a real "edit"
1084  had to be within 4 bases of the last position of an edit. This reduces the possibility that a technical
1085  error will be counted towards an edit, while allowing for some edits which appear discontinuous.
1086  These likely result from complex events in which bases were both deleted and inserted, with small
1087 fragments of insertions mapping to the reference sequence of the deleted region.

1088

1089  Editing at each target in each cell was then evaluated. An unambiguous target was defined as
1090 one which either contained no discrepant editing patterns, or if multiple editing patterns were
1091  observed, had more than one UMI (unique transcript) associated with the "real" editing pattern,
1092 and no more than 1 of the other (assumed to be either a stray transcript picked up during
1093  processing or a product of template switching during PCR). If more than one edit was associated
1094  with more than one UMI, the target was termed "ambiguous." If each edit was only associated
1095 with one UMI, the target also was termed "ambiguous." For the two duplicated targets, if

1096  ambiguous editing patterns were distributed in silico as described below.
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1097

1098 The above steps are implemented in wrapper script
1099 191205 local_target_analysis_all_ UPDATED.txt.

1100

1101  Evaluating CRISPR target capture rates and filtering cells based on target capture and
1102  expression

1103

1104  The dual sci-RNA-seq + target capture was performed in eight batches. The median number of
1105 targets captured varied by batch (Supplementary Figure 2). This discrepancy was traced to the
1106  batch of Tn5 buffer used in each batch: more recently made batches as well as the commercial
1107  batch (as opposed to older buffer made internally) produced more efficient Tn5 integration into
1108 cDNA (readily observed in difference of sci-RNA-seq median library size). Since Tn5 integration
1109  occurs prior to separating the samples for separate RNA and target processing, a smaller cDNA
1110  fragment size means that Tn5 is more likely to integrate within a target region (downstream of the
1111 5'primer binding site), thus preventing that target from being captured. Thus, optimization of buffer
1112  composition might address this issue.

1113

1114  To filter out presumed doublets, both target editing and expression data were used
1115  (Supplementary Figure 2). Cells were called "Singlet" of "Doublet" based on fraction of
1116  ambiguous targets (those with more ambiguous than non-ambiguous targets were considered
1117  doublets). For doublet cells, the sci-RNA-seq UMI count distributions were shifted, indicating that
1118  high count cells are likely doublets. In addition to removing cells defined as doublets by target
1119  editing patterns, we thus additionally removed cells which were above 1.8x the median sci-RNA-
1120  seq UMI count for each batch (Supplementary Figure 2c).

1121

1122  Tree-building algorithm steps
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1123

1124 (1) Computationally split duplicated targets

1125  Two targets (#30 & 31) were consistently associated with two editing patterns within a single cell,
1126  strongly suggesting that the section of chromosome on which these targets reside underwent a
1127  duplication event in an early cell division (or in an ancestor of the founder cell of this population).
1128 Because editing patterns at these targets clearly contained early editing events which were
1129 informative of tree structure, we decided to computationally split each target into two separate
1130 targets. For each target, we first generated a list of pairs of edits which were commonly found
1131  together in a single cell. Since these had to have occurred at two different targets, we constrained
1132  aset of editing patterns to one target and a set to the other. Editing patterns which were frequently
1133  found alongside an unedited target (indicating that just a single target of the pair was editing in
1134  that subset of cells) or on their own (indicating no duplication or a loss of the duplicated target)
1135  were randomly assigned to the first target of the pair. Thus, a list of allowed "edits" was generated
1136  for each target in the pair. If a cell contained edits on either list, they were distributed accordingly
1137  between the pair of targets. The final dataset thus contains a total of 33 targets per cell.

1138

1139  (2) Infer missing data

1140  While a subset of missing data reflects true loss of either the target itself (due to a large deletion
1141 or a CNA) or an editing pattern which makes the target hard to capture (e.g. a very large insertion),
1142  some targets are stochastically not captured during mRNA processing. We thus attempted to infer
1143  these edits using a nearest neighbors approach. Since batch 1 had the most complete lineage
1144  data, for correcting missing data from other batches we combined them with batch 1 cells and
1145  performed the following steps. We first calculated similarity scores between every pair of cell
1146 lineage profiles using an additive approach. For each target with matching editing patterns a score
1147  of 5 would be added to the total; for each target that was unedited in both lineage profiles, a score

1148  of 1 would be added. Targets which did not match (or contained missing or ambiguous data in
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1149  either cell) received a score of zero. Based on these similarity scores, we defined a set of "nearest
1150 neighbor" cells for each cell, and used these to computationally infer missing data for each cell.
1151  Specifically, for each cell, for each missing or ambiguous target, we used the most common
1152  editing pattern in its closest set of neighbors at that target to infer the missing edit. If the majority
1153  of neighbors also had missing data at this target, this likely reflects a true loss at this target, and
1154  thus was left uncorrected.

1155

1156  Steps 1 & 2 above are implemented in
1157 200713 _wrapper_for_wrapper_for AMBcorr_Xcorr_step.txt.

1158

1159 (3) Generate initial groups of related cells using hierarchical clustering.

1160  We generated a similarity matrix using the similarity score described above, and hierarchically
1161  clustered cells via Ward's method (Ward2 in "hclust" package in R). Duplicated targets described
1162 in "Computationally split duplicated targets" (targets 30-33) were not used for similarity
1163  calculations as they were found to bias groupings. Trees generated via hierarchical clustering are
1164  not consistent with progressive CRISPR-based editing events, but do a reasonable job of placing
1165  similar cells next to one another. Hierarchically clustered trees can be split automatically into a
1166  desired number of groups, but we found that for downstream applications, it was best to manually
1167  determine how to split the tree since in some cases groups of very different sizes were desired.
1168  We thus generated plots of the hierarchically clustered tree (resembling the inset in Figure 3e but
1169  containing the full tree) and manually chose the break points at which groups should be split. We
1170  generated plots of both the lineage profile in which we had inferred missing data as in step 2, and
1171 of the raw data, and consulted both to ensure missing data inference appeared accurate.
1172  Importantly, these groups were chosen with the intention that some would be split further in a

1173  subsequent step: as long as cells appeared confidently as close relatives, they were kept in a
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1174  single group at this stage. This procedure generated 94 groups. Groups with less than three cells
1175  were removed to be placed into larger groups at a subsequent step, leaving 45 groups remaining.
1176

1177  Groups were evaluated visually as implemented in 200811_combine_like_cells_for_loop.R,
1178  200219_make_LG_group_plots_for_combined_cell_groups.R, &
1179 200225 plot_many_LG_on_one_plot_from_Refcell_list.R.

1180

1181  (4) Generate a "consensus" lineage profile for each group.

1182 A consensus editing pattern at a target was defined as one which appeared in at least 75% of
1183  cells in that group. A single consensus lineage profile was first generated automatically using this
1184  definition for each group. We then manually corrected these profiles to account for known sources
1185  of missing data which may contribute to an editing pattern being captured at fewer than 75% of
1186  cells. For example, large insertions and deletions are captured less efficiently, and thus a target
1187 in which contains >25% of missing data, but the remaining cells contain a consistent large
1188 insertion or deletion, we can plausibly infer that that editing pattern is likely present in all cells.
1189

1190 (5) Generate a preliminary lineage tree of consensus cells via an iteratively applied greedy
1191 approach

1192 If no data were missing and no convergence (identical edits occuring at a single target
1193 independently) were present, one could theoretically build a perfect tree using the greedy
1194  approach shown in Figure 3c. First, we identify the most abundant editing pattern at a single
1195  targetin the tree, and split the consensus cells into two groups based on the presence or absence
1196  of this editing pattern. This defines the first branch point. We then apply this approach to the two
1197  new subgroups, and iteratively apply it to all subsequent groups to generate a bifurcating tree with
1198 leaves being defined by a single consensus lineage profile (implemented in

1199  201109_building_a_tree_3_record_all_changes.cpp). We then collapse any bifurcations which are not
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1200 supported (when a branch is formed which is not defined by a specific editing event), such that
1201  greater than two branches can arise from a single node (201109_AUTO_collapse_bifurcations.R).
1202

1203  Though the consensus editing patterns are not perfect with regards to the above algorithm (there
1204 are several instances of convergence, and some missing data), the pooling of related cells to
1205 increase confidence of consensus editing patterns makes the algorithm above a viable approach.
1206  We thus applied it to the preliminary group of consensus lineage profiles to generate a preliminary
1207  tree.

1208

1209 As described above, some groups could be subdivided further. We thus applied the above
1210  algorithm to subgroups of the tree, by taking all cells within a single consensus lineage profile,
1211 subdividing them into smaller "consensus" groups (beginning with hierarchical reclustering), and
1212  generating a subtree as described above. These subtrees were then combined to form the larger
1213  tree.

1214

1215 Importantly, this approach of successive tree and subtree generation allows us to deliberately
1216 leave out potentially problematic targets, and to choose different sets of targets for each subtree
1217  reconstruction. For example, since targets 30-33 contained missing data which may have been
1218  the product of edit pattern distribution to resolve target duplication, we removed these for the initial
1219  hierarchical clustering which generated cell groups, but used this information for consensus
1220 lineage profile calling and greedy tree generation.

1221

1222  Though branching order correctly describes the order of editing events, the depth of the branching
1223  events shown in Figure 3e does not necessarily indicate a true temporal relationship. Depth on

1224 the tree correlates with the number of edits which occurred over the course of that branch's
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1225 formation but should not be interpreted as temporal relationships as a consistent editing rate
1226  cannot be assumed.

1227

1228 (6) Visualizing preliminary trees for manual correction of missing data and resolution of
1229 convergence events.

1230

1231  Visualizing these trees at various stages allowed us to refine the trees further by helping to resolve
1232  previously unclear editing patterns within some consensus cells. For example, the edit at target
1233  26in groups 33-42 is a large insertion which is not efficiently captured. The majority of cells within
1234  groups 33-40 contained missing data at this target, while a subset contained the insertion. But
1235 based on the edit in target 31, it appears most likely that all cells actually did contain the insertion
1236  attarget 26, but it was not captured well. We thus manually corrected targets at which events like
1237  these appeared to be the case.

1238

1239  Visualization of intermediate trees also helped to resolve convergence events. Though few
1240  convergence events (defined as the same edit occurring multiple times independently at the same
1241  target) impacted the automatically-generated tree structure as earlier subdivisions isolated these
1242  events from one another, this was not the case in a few places in the tree. In these cases, a group
1243  which visually appears to be closely related to another group because of subsequent shared edits
1244 s separated from it in early divisions. These events were manually corrected as well.

1245

1246 In two instances, several convergence events were also resolved by shared CNAs between
1247  groups. This was rare; with the exception of the instances described below, expression data was
1248 not used for tree reconstruction

1249
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1250 Change 1: A single discrepancy (copy number pattern on chromosomes 5 & 11) revealed a
1251 convergence event whereby a common editing pattern occurring independently (target #7, teal
1252  edit) forced groups together improperly. Instead, a common CNV pattern at chromosomes 5 & 11
1253  strongly suggested that groups 16-19 shared a common ancestor. A change was made
1254  accordingly, slightly increasing tree resolution.

1255

1256 Change 2: CNVs on chromosomes 6 & 11 also allowed for better resolution of groups 38-42,
1257  where a combination of factors including a convergence event of a commonly observed edit and
1258 alarge insertion event frequently manifesting as missing data made it challenging to resolve tree
1259  structure.

1260

1261 We found for downstream analysis that small groups reduced power below the level at which
1262  meaningful expression and accessibility differences could be detected. We thus recombined
1263  some closely related groups such that the minimum number of cells per group is 34.

1264

1265 In the end, the final tree contained 42 lineage groups.

1266

1267  (7) Integrating remaining cells into pre-defined consensus lineage groups

1268  About a quarter of the cells (batches 1 & 3) were used to construct the original tree. Some of
1269 these which formed a group of 1 or two cells in step 3 were removed to be placed into larger
1270  groups later, along with the remaining three quarters of the cells w/ lineage profiles. We placed
1271  cells into their most closely related groups by calculating similarity scores described above(see

1272  (2) Inferring missing data above) on uncorrected lineage profiles with cells already in the tree, and

1273  placing new cells into the group in which they had the highest similarity scores. If a cell had
1274  identical similarity scores w/ cells from multiple groups, it was placed into the group in which it

1275  had the most neighbors.
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1276

1277  Final lineage groups were evaluated visually, by plotting lineage profiles of all cells in a single
1278  group and visually confirming shared editing patterns.

1279

1280 Tree lineage profile visualizations

1281
1282  Tree visualizations were generated using custom code (
1283 200807_AUTO_tree_custom_visualization_organized.R, internally running

1284  200806_make_coordinates_for_tree_plot.cpp), which converted tree structure into line segment
1285 coordinates which can be plotted in a ggplot space alongside visual lineage profiles. Input files
1286  are provided (tree_file_LIinRNA, lineage_profiles_ wRNA.txt).

1287

1288  Visualizing single lineage groups (Figure 7c) implemented in
1289 211129 _CopyForFigsRNA_Uncorr_AUTO_tree_custom_visualization_organized.R (RNA) &
1290 211129 _CopyForFigsATAC_Uncorr_AUTO_tree_custom_visualization_organized.R (ATAC).
1291

1292  Permutation Analysis for DE gene identification

1293

1294  DE genes were identified using the following procedure.

1295

1296  First, raw counts were scaled to 10,000 reads per cell. Then, for each pair of sister groups within
1297 the tree (defined as those that share an immediate common ancestor branch), cells were
1298  permuted into two groups of the original sizes 10,000 times and the log-fold change for each gene
1299  was calculated. Only genes which were expressed in at least 10% of cells in either group were
1300 kept for downstream analysis. The measured (real) mean expression ratio for each gene was

1301  ranked against the permuted values, for a total of 10,001 values. Z-scores are calculated here as
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1302 the distance of the real log ratio from the mean divided by the standard deviation of the permuted
1303  values.

1304

1305 To account for differences in group sizes across the tree, as well as large CNVs, we evaluated
1306  genes on each chromosome in each pair of groups separately to determine the rank cutoff values
1307  associated with significant DE. We chose a false discovery rate cutoff of 5%.

1308

1309 Rank cutoff values for each chromosome-group pair combination were determined as follows. If
1310 no genes on a chromosome were differentially expressed, we would expect a uniform rank
1311 distribution for 1 to 10,001. Thus, the expected number of genes observed at any given rank value
1312 is the total number of filtered genes on chromosome/10,001, referred to here as the baseline
1313  value. If true DE genes are present, we should observe an enrichment of genes at either or both
1314  ends of the distribution, manifesting as higher counts and denser coverage.

1315

1316  An FDR value for each rank position can be determined simply by subtracting the baseline value
1317  from the total gene count at each rank. Since those genes of rank 1 or 10001 are most likely to
1318  be true positives, we begin at the ends and move inward to identify a group of ranks which
1319  together produce an FDR of <= 5%.

1320

1321 The procedure to determine significant ranks is implemented as follows. We begin at rank 1 or
1322 10001, choosing the one with the highest observation count, and calculate the FDR associated
1323  with that rank. If it is smaller than 5%, we compare the next most extreme ranks (2 or 10001 if
1324 rank 1 was already used), and again choose the one with the highest gene count. We calculate
1325 the total FDR encompassing both rank positions and continue this procedure iteratively, until the
1326  FDR reaches 5%. All genes with the ranks identified by this procedure are considered DE.

1327
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Genes which were lowly expressed in both groups being compared (defined as those for which
the percent of cells expressing the gene, calculated separately and then summed between the

two groups, is <10%) were removed from the final analysis.

Procedure implemented in A 210327 _perm_qgsub_script.sh &

210330_process_permutation_table_log_version.cpp.

sci-RNA-seq visualization

For heatmap plotting, counts per gene were pooled by lineage group, and a mean was calculated
for each gene using the total number of cells as the denominator. Genes with low total counts
across the dataset were removed. Specifically, a lowly expressed gene was defined as one which
was expressed at a mean of .5 counts per cell or less in all lineage groups. For each retained
gene, the lineage group mean was divided by the mean expression in all cells of that gene, and
a log2 was taken to center around 0. For visualization scaling purposes, values above or below 1
& -1 (Figure 4) and 1.5 and -1.5 (all other figures), respectively, were changed to those values.
Visualization implemented in

201117_AUTO_NewGroups_BETTER long_AlIChr_heatmap_plot.R.

Pileups were plotted using ArchR (Granja et al., 2021).

SNP-based copy number analysis

To identify variable genomic positions from expression data, a 4 column file was generated for

each chromosome from the STAR alignment output file, including cell name, mapping position,

CIGAR string, and sequence, and the frequency of each base was calculated as implemented in
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1354 201114_wrapper_for_ASEs_for_lineage_groups.txt. Counts were generated for all cells as well
1355 as subsets of groups. Variable positions were retained and SNP info was added to via code
1356 191018_add_snp_info_to_ASE_file.cpp, using as input a tab-delimited file generated from a vcf
1357 file, containing five files: chromosome, position, rs_id, major allele, minor allele. Plots were
1358 generated in 200203_ASE_calc_major_freq.R.

1359

1360 sci-ATAC-seq processing

1361

1362  For processing sci-ATAC-seq sequencing reads, we first compare observed and expected lists of
1363  single cell indices, correcting any indices with a likely off-by-one error. All reads are then adaptor
1364  trimmed using trimmomatic (parameters: TRAILING:3 SLIDINGWINDOW:4:10 MINLEN:20), and
1365  all reads associated with a single cell are then aligned to the genome using bowtie2 (hg38 genome
1366 build). Reads are then deduplicated by UMIs using a custom script
1367  (191226_CROPt_process_atac_bedfile.cpp). Both cell by gene and cell by interval counts were
1368 generated using a custom script (191226_CROPt_make_cell_by_interval_count_file.cpp). During
1369 analysis, count files were converted into the 10X Genomics format for compatibility with other
1370  analysis tools.

1371

1372  For heatmap plotting, counts per gene/interval were pooled by lineage group, and a mean was
1373  calculated for each gene using total number of UMIs (as opposed to total number of cells) as the
1374  denominator to account for a large spread of total observed UMIs per cell. Each value was then
1375 scaled by the median of the total read count for all genes/bins. Genes & bins with low total counts
1376  across the dataset were removed (those whose scaled values were below 120 per 1MB bin, or
1377  below 5 per gene, in all groups). For each retained gene/interval, the lineage group mean was
1378  divided by the mean accessibility of all cells at that gene/interval, and a log was taken to center

1379 around 0. For visualization scaling purposes, values above or below .9 & -.9 respectively were
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1380 changed to those values. This was implemented in
1381 210222_ATAC_process_bin_counts_by_groups_play_w_scaling.R.

1382

1383  Differential accessibility was evaluated using the permutation approach described above, with
1384  mean counts per a group again calculated with total number of UMIs (as opposed to total number
1385  of cells) as the denominator.

1386

1387  Pileups were plotted using ArchR (Granja et al., 2021). For DA analysis at peaks, a set of peaks
1388 was determined using ArchR, using both the whole dataset as well as successive subgroups
1389  moving across the tree. The union of these peaks was then overlapped with DE genes (including
1390 5kb upstream) and DA at these peaks was again evaluated using the permutation approach.
1391

1392

1393
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1394 Data & Code Availability

1395

1396 Raw and processed data and code are available on GEO (GSE201339) & Github
1397  (https://github.com/minkinaa/TheLorax). See README on Github for further details.
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1682 Supplementary Figure 1. Evaluating lentiviral target integrations. (a) Number of unique target IDs
1683  across 26 clones derived from high MOI transduction of HEK293 cells. Box shows median and
1684  encompasses counts in the second and third quartiles. Whiskers depict the interquartile range. (b)
1685  Frequency of each unique target ID within the unedited clone used for the main experiment. As discussed
1686 in the text, this clone was “re-cloned” following transduction with doxycycline-inducible Cas9 lentiviral
1687  construct, such that a single founder cell generated the tree. Four target IDs that were abundant after the
1688 first round of cloning were unobserved after this re-cloning step (red bars), while an additional one was
1689  corrupted by a mutation and therefore also excluded (red bar with asterisk). The remaining 31 abundant
1690 target IDs were carried forward in the analyses, with two of these “duplicated” in silico to account for their
1691 inferred duplication just before or during the clonal expansion.
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1699  Supplementary Figure 2. Batch-specific evaluation of target capture. (a) Distribution of the number of
1700 targets captured per cell, per batch (out of 31). (b) Gray: Number of targets captured per cell across
1701 batches; Purple: number of targets captured per cell in batch #1. (¢) Distribution of transcriptome UMIs per
1702  cell, per indexed PCR batch ("plate"), with UMI cut-off for doublet removal shown by red lines. Cells with

1703  UMI counts > 1.8X the median UMI count for each batch were removed from the analysis. Singlets and
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1704  doublets inferred from collisions in lineage data. “Singlet (confident)” corresponds to cells which can
1705 confidently be called as singlets based on the number of non-ambiguous editing events observed.In panels
1706  a & c, boxes show median and encompass counts in the second and third quartiles, while whiskers depict
1707  the interquartile range.
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1710 Supplementary Figure 3. Allelic-ratio-based copy number analysis for all chromosomes. (a) Analysis
1711 described in Figure 5a-b, performed on all cells for all chromosomes. Point fill color represents the number
1712  of SNPs found to be heterozygous in that bin, signaling the reliability of this analysis at that location. Yellow

1713 line indicates the centromere position. (b) Percent of inferred major and minor alleles at variable positions
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1714  in the data (filtered as described in Figure 5a) which match SNP bases found in humans at those positions
1715  (dbSNPs). For simplicity, only single-base SNPs with at most two common alleles in the population were
1716  considered.
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1721 Supplementary Figure 4. Differentially expressed genes within and outside of detected CNAs
1722 observed across sister lineage group comparisons. (a) DE genes detected by the permutation
1723  approach vs. DESeq2. The left plots show log2-fold changes, while the right plots show the "shrunken"
1724  log2-fold changes calculated by DESeq2, which takes absolute expression level into account, and corrects
1725  for higher variance at low expression levels. (b) Relationship between group size (mean of the two groups

1726  being compared) and DE genes not associated with a CNA. (c¢) DE genes detected within CNA regions on
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1727  chrs 5, 7, and X, between the indicated groups (234 and 276 cells, respectively). (d) Heatmaps showing
1728  single genes (middle of each plot) which exhibit heritable expression patterns consistent with the tree
1729  structure. Surrounding genes are not DE, suggesting these patterns are not due to CNAs, although we
1730  cannot rule out highly focal amplifications with gene expression data alone.
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1735
1736  Supplementary Figure 5. Global DE between select pairs of sister groups. Log2-fold change for
1737  expressed genes across all chromosomes between select pairs of sister lineage groups. Groups that are

1738 compared in each plot are indicated on the trees at the left with green and purple boxes. Colors indicate by
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1739  which method (if any) a gene was found to be differentially expressed. Inferred CNAs are shown as light
1740  green boxes.
1741
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Supplementary Figure 6. Evaluating lineage-linked chromatin accessibility and expression. (a)

Histogram of sci-ATAC-seq fragment lengths across all cells (left) and a boxplot of sci-ATAC-seq reads per

cell (right). (b) Histogram of the number of targets captured per cell included in the analysis. (c) Correlation

of group sizes collected along sci-RNA-seq and sci-ATAC-seq. Each point represents a single lineage

group. Group sizes were normalized to a total cell count of 10,000 for each feature. (d) Read pileups for

RNA (top) and ATAC (bottom) data for the lineage groups and genes indicated on the tree. Associated heat
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1751 maps shown in Figure 7e. (e) Left: Heatmap of relative expression of CDH12 and surrounding genes Right:
1752  Pileup of expression and chromatin accessibility data for the indicated groups (as labeled on tree in Figure

1753  79g) at the CDH12 locus. (f) Same as panel e, but for ADGRBS3.
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