

1 **A survey of lineage-specific genes in *Triticeae* reveals *de novo* gene evolution from genomic raw
2 material.**

3

4 Manuel Poretti^{1,2}, Coraline R. Praz^{1,3}, Alexandros G. Sotiropoulos¹, Thomas Wicker^{1*}.

5

6 ¹ Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland

7 Current address: ² Department of Biology, University of Fribourg, Fribourg, Switzerland

8 Current address: ³ Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid

9 (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid,

10 Spain

11

12 ***Corresponding author**

13 Thomas Wicker

14 wicker@botinst.uzh.ch

15

16 **Abstract**

17 Plant genomes typically contain ~35,000 genes, almost all belonging to highly-conserved gene families.
18 Only a small fraction are lineage-specific, which are found in only one or few closely related species.
19 Little is known about how genes arise *de novo* in plant genomes and how often this occurs, however
20 they are believed to be important for plants diversification and adaptation. We developed a pipeline to
21 identify lineage-specific genes in *Triticeae*, using newly available genome assemblies of wheat, barley
22 and rye. Applying a set of stringent criteria, we identified 5,942 candidate *Triticeae*-specific genes
23 (TSGs), of which 2,337 were validated as protein-coding genes in wheat. Differential gene expression
24 analyses revealed that stress-induced wheat TSGs are strongly enriched in secreted proteins. Some were
25 previously described to be involved in *Triticeae* non-host resistance and cold adaptation. Additionally,
26 we show that 1,079 TSGs have sequence homology to transposable elements (TEs), ~68% of them
27 deriving from regulatory non-coding regions of *Gypsy* retrotransposons. Most importantly, we
28 demonstrate that these TSGs are enriched in transmembrane domains and are among the most highly
29 expressed wheat genes overall. To summarize, we conclude that *de novo* gene formation is relatively
30 rare and that *Triticeae* probably possess ~779 lineage-specific genes per haploid genome. TSGs which
31 respond to pathogen and environmental stresses, may be interesting candidates for future targeted
32 resistance breeding in *Triticeae*. Finally, we propose that non-coding regions of TEs might provide
33 important genetic raw material for the functional innovation of TM domains and the evolution of novel
34 secreted proteins.

35

36

37 **Keywords**

38 *Triticeae*-specific genes, *de novo* gene evolution, transposable elements, stress adaptation

39 **Introduction**

40 Lineage-specific genes are found only in a single species or in a group of closely related species, and
41 are sometimes also referred to as orphan genes. They are evolutionary novelties that have no sequence
42 homology with any known coding sequences of distantly related species (Tautz & Domazet-Lošo,
43 2011). Lineage-specific genes can evolve from already existing protein-coding sequences (duplication
44 and divergence, horizontal gene transfer) or arise *de novo* from ancestral non-coding regions. Such *de*
45 *novo* genes are characterized by short open reading frames (ORFs), low-expression level and are
46 specific to different tissue, developmental stages and stress conditions (Schlötterer, 2015). For these
47 reasons, they are difficult to identify and to distinguish from pseudo-genes or annotation artifacts.

48 There are two major hypotheses for the evolution of *de novo* genes (Van Oss & Carvunis, 2019). In the
49 “expression-first model”, transcribed non-coding regions (i.e., proto-genes) evolve neutrally and expose
50 genetic variations to selection pressure. Proto-genes might therefore gain adaptive mutations and
51 gradually evolve into more complex and better functional *de novo* genes. On the other hand, the “ORF-
52 first” model postulates that potential ORFs are already present in the genome and become translated
53 after the acquisition of transcriptional factor binding sites. In addition, the “Transmembrane (TM) first”
54 model builds on the expression-first model and proposes that the translation of thymine-rich non-genic
55 regions might favour the emergence of novel adaptive genes that encode proteins with transmembrane
56 domains (Vakirlis *et al.*, 2020). Indeed, the authors demonstrated that novel ORFs with beneficial
57 impact on the fitness of yeast, were enriched in TM domains.

58 Lineage-specific genes represent 10-20% of all annotated genes in sequenced genomes. Even though
59 their function remains mostly unknown, several studies in plants indicated that they may play a role in
60 the adaptation to environmental stresses and in defense responses against pathogens (Khalturin *et al.*,
61 2009; Arendsee *et al.*, 2014). An important class of lineage-specific genes involved in plant-pathogen
62 interactions are small, Cysteine-rich and/or Proline-rich and contain a signal peptide or transmembrane
63 domain (Douchkov *et al.*, 2011).

64 Transposable elements (TEs) make a considerable fraction of all known genomes. They are mobile
65 genetic units that can make copies of themselves and move throughout the genome. TEs are thought to
66 play an important role in the evolution of *de novo* genes, either by providing new promoter elements
67 for already existing ORFs, or by creating new coding-sequences through retroposition, gene capture or
68 exon fusion (Van Oss & Carvunis, 2019). TEs were indeed found to be associated with about half of
69 the identified lineage-specific genes in primates and rice (Toll-Riera *et al.*, 2009; Jin *et al.*, 2019),
70 suggesting that TE-driven gene evolution might be important in all eukaryotes. However, it is still
71 unclear how frequently *de novo* genes actually emerge.

72 The study of *de novo* gene formation in large and TE-rich plant genomes is still in its infancy since only
73 recently, chromosome-scale assemblies of the large *Triticeae* genomes of barley, wheat and rye became
74 available (Mascher *et al.*, 2017; IWGSC *et al.*, 2018; Rabanus-Wallace *et al.*, 2021). Such near-
75 complete genome assemblies are necessary if one wants to study how *de novo* genes evolve from

76 repetitive sequences. The release of *Triticeae* genome sequences provides an attractive system to study
77 the evolution of *de novo* genes because it represents a set of species which are closely enough related
78 so that direct comparison of gene content and collinearity is possible, but yet distant enough to have
79 numerous differences.

80 A number of criteria were defined to assess gene annotation quality of *Triticeae* genomes (Mayer *et al.*,
81 2014; IWGSC *et al.*, 2018). High-confidence (HC) genes were defined by significant blast hits across
82 most of their length to proteins found in other reference genomes such as *Brachypodium* or *Arabidopsis*.
83 Low-confidence (LC) genes do not match these criteria and may include fragments of genes and TEs.
84 In *Triticeae*, approximately 34,000-43,000 high-confidence genes were annotated per haploid genome,
85 and similar numbers of low-confidence genes. It is safe to assume that a large fraction of low-confidence
86 genes are annotation artifacts, but they may nevertheless contain some genuine novel genes, especially
87 if they are supported by transcriptome data. However, it is extremely difficult to prove whether a
88 predicted gene without homologs in other species is indeed real because there are usually very few hints
89 as to its function. In protein coding genes, the ratio of substitution rates at non-synonymous and
90 synonymous sites (dN/dS) can be used as an indication that a candidate gene has acquired a function
91 and is therefore under purifying selection. Furthermore, there has to be evidence that the predicted
92 transcript is actually translated into a protein, for example by the presence of matching peptide
93 sequences in proteomics databases.

94 In this study, we aimed at developing bioinformatics methods to identify candidates for lineage-specific
95 genes in *Triticeae*. In particular, we focused on the identification of genes that originated *de novo*, and
96 we wanted to study how these genes emerged. In total, we identified 5,942 candidate TSGs. In wheat,
97 2,337 were translated and/or supported by both transcriptomic and negative selection evidence, thus
98 leading us to the conclusion that ~779 genes per haploid genome evolved *de novo* in *Triticeae*.
99 Approximately 18% (1,079 TSGs) were derived from TE sequences and, in some cases, we could trace
100 their evolution back to specific events such as gene capture. We highlight TE regulatory regions as
101 important hot-spots for the evolution of *de novo* genes, especially for TSGs encoding transmembrane
102 proteins. Finally, we identified a set of genes that encode putative secreted and/or transmembrane
103 proteins that could play a role in the adaptation of *Triticeae* to environmental and pathogenic stresses.
104 We propose that the approach presented here can be used to identify genuine lineage-specific genes,
105 including some interesting candidates that might be selected for future targeted resistance breeding in
106 *Triticeae*.

107
108

109 **Materials and Methods**

110 **Prediction of *de novo* TSGs**

111 Identification of *de novo* *Triticeae*-specific genes (TSGs) was performed by comparing the previously
112 published high-quality genome annotations (both high-confidence HC and low-confidence LC coding
113 sequences) of three *Triticeae* species, namely wheat (*T. aestivum*, IWGSC RefSeq v1.0; IWGSC *et al.*,
114 2018), rye (*S. cereale*, Lo7 v1; Rabanus-Wallace *et al.*, 2021), and barley (*H. Vulgare*, IBSC v2;
115 Mascher *et al.*, 2017). Our assumption was that coding sequences that are conserved within wheat, rye,
116 and barley, and that can not be found in other plant species, including closely related ones, might represent
117 potential *de novo* *Triticeae* genes.

118 Barley was the first chromosome-scale *Triticeae* genome to be assembled. It was annotated using the
119 PGSB pipeline (initially developed for barley; Mascher *et al.*, 2017), whereas the most recent genomes
120 of wheat and rye were annotated using both the PGSB and the TriAnnot (developed for *Triticeae* and
121 initially used for wheat; Leroy *et al.*, 2012) pipelines. Most importantly, similar criteria (originally
122 described in Mayer *et al.*, 2014 and adapted in IWGSC *et al.*, 2018) were used for classifying the
123 annotated coding sequences into HC and LC genes, therefore making our inter-species comparison less
124 biased towards prediction artifacts. Two closely related outgroup species (*Brachypodium distachyon*
125 v3.2 and rice IRGSP v1.0), and the NCBI and UniprotKb databases were considered for filtering out
126 genes which are not specific to the *Triticeae* clade.

127 Given that automated pipelines generate a large number of erroneous gene predictions, we first checked
128 the integrity of the annotated genes. Only the sequences with an intact open reading frame (ORF;
129 presence of start/stop codons and absence of in-frame stop codons) were considered for further analyses.
130 Then, in order to identify genes that might encode *Triticeae*-specific proteins, we performed Blastp
131 analyses between the protein sequences of *Triticeae* species and the ones of the outgroup species
132 *Brachypodium* and rice. *Triticeae* proteins that had a significant blast hit (evalue 1e-5) with at least one
133 of the two outgroup species were filtered out. Because we are interested in genes that evolved *de novo*
134 and not in genes that diverged from ancestral coding sequences, we selected significant blast hit based
135 on a relaxed threshold. Additionally, taking into account any discrepancies between gene annotations,
136 we check for presence of *Triticeae* genes in the genomes of *Brachypodium* and rice. In order to exclude
137 genes that were not annotated in the outgroup species, but that are actually present in their genomes, we
138 mapped the CDS of *Triticeae* genes against the genomes of *Brachypodium* and rice using GMAP
139 (version 2019-09-12). If $\geq 95\%$ of the CDS, start codon and intact ORF were found in the genome of
140 one of the two outgroup species, the gene was considered as “not *Triticeae* specific” and therefore
141 filtered out.

142 Bi-directional Blastn analyses (query coverage 80%, identity 80%) between wheat, barley and rye, were
143 used to identify genes that are homologous between at least two *Triticeae* species, and also to reduce
144 the number of protein sequences to be analysed in the next step.

145 Finally, Blastp (evalue 1e-5) analyses of these *Triticeae* homologs against the non-redundant protein
146 databases of NCBI and UniprotKb were performed to remove any proteins, that were not found in
147 *Brachypodium* or rice, but that could be conserved outside of the *Triticeae* clade. Only genes with
148 protein homology against members of the *Triticeae* clade or genes that do not show any sequence
149 similarity with known proteins, were classified as candidate *de novo* TSGs and retained for further
150 analyses.

151

152 **Transcriptomic analysis**

153 Evidence of expression can be used to discriminate real genes from prediction artifacts. In addition,
154 genes that are differentially expressed between stress conditions, are likely to be functional genes that
155 are integrated into regulatory networks. Based on these assumptions, we measured the expression of
156 the putative *de novo* TSGs under non-stress conditions and checked for differential expression under
157 different abiotic and biotic stress conditions.

158 For quantifying the expression of *de novo* TSGs under non-stress conditions, we used gene expression
159 values (transcripts per million, TPM; expression is normalized for gene length and sequencing depth)
160 that were measured in the wheat lines Chinese Spring and Azhurnaya by Ramírez-González *et al.*
161 (2018). The authors considered RNA-Seq data samples that were collected from 27 different tissues
162 across 25 developmental stages (<http://wheat-expression.com/download>). First, we determined the
163 average expression of each gene, by calculating the mean expression value across different
164 developmental stages. This was done for each individual tissue. According to Ramírez-González *et al.*
165 (2018), genes with an average expression value of >0.5 TPM in at least one tissue were considered as
166 expressed. Secondly, we used these values for estimating the global expression of each gene (i.e., the
167 average expression across all tissues in which a gene is expressed). Finally, we clustered genes in four
168 different categories based on the following expression cut-offs: very weak expression (0.5-5 TPM),
169 weak expression (5-10 TPM), average expression (10-20 TPM), and strong expression (>20 TPM).

170 Differential expression was measured against a broad range of abiotic and biotic stresses (Suppl. table
171 S2). We considered wheat plants infected with major fungal pathogens, such as wheat powdery mildew
172 (PRJNA296894, Praz *et al.*, 2018; PRJNA243835, Zhang *et al.*, 2014), *Zymospetoria tritici*
173 (PRJNA327013, Ma *et al.*, 2018; PRJEB8798, Rudd *et al.*, 2015), *Fusarium graminareum*
174 (PRJNA289545, Gou *et al.*, 2016), *Fusarium pseudograminareum* (PRJNA263755, Ma *et al.*, 2014)
175 and stripe rust (PRJNA243835, Zhang *et al.*, 2014; PRJEB12497, Dobon *et al.*, 2016). PAMP triggered
176 immunity (PTI) response was measured from wheat plants treated with chitin and flagellin 22
177 (PRJEB23056, Ramírez-González *et al.*, 2018), and finally cold (PRJNA253535, Li *et al.*, 2015) was
178 used to quantify abiotic stress responses.

179 *Triticeae* have large polyploid genomes and *de novo* genes are known to be associated with transposable
180 elements (therefore several gene copies may be present at different loci within the genome). The

181 software Salmon (Patro *et al.*, 2017) is an alignment-free method which is known for its high computing
182 efficiency and high accuracy of expression estimates for gene duplicates (Soneson *et al.*, 2015) and
183 isoforms (Sarantopoulou *et al.*, 2021). Indeed, Salmon was shown to outperform “genome alignment-
184 based” approaches (e.g., STAR+featureCounts) for the handling of multi-mapping reads (Soneson *et*
185 *al.*, 2015). For these reasons, we used Salmon for estimating the expression of wheat coding sequences
186 (IWGSC RefSeq v1.0). Salmon was run in mapping-based mode with standard parameters and the
187 estimated number of mapped reads (NumReads) were used for differential expression analysis as
188 previously described by Praz *et al.* (2018). The analysis was performed with the R package edgeR
189 (Robinson *et al.*, 2009). The calcNormFactors function was first used to normalize the estimated
190 number of mapped reads to TMM values (Trimmed Mean of M-values). Only genes with >5 CPM
191 (count per millions) in at least 3 RNA-Seq samples were retained. We used the functions
192 estimateGLMCommonDisp, estimateGLMTrendedDisp, and estimateGLMTagwiseDisp for estimating
193 dispersion, and fitted a negative binomial generalized linear model with the glmFit function. Finally,
194 likelihood ratio test (glmLRT function) was used for determining differential gene expression through
195 different pairwise comparisons. Only genes with a $\log_{2}FC > |1.5|$ and an adjusted *p*-value (FDR) < 0.01
196 were considered as differentially expressed.

197 Finally, we plot a heatmap to compare the response of differentially expressed TSGs across different
198 stress treatments (Fig. 2a). For each gene, we considered the $\log_{2}FC$ value that was calculated between
199 test and control conditions, and the R package pheatmap was used for generating the plot. In order to
200 improve the data visualization, $\log_{2}FC$ values were scaled to Z-scores with the argument scale = “row”.

201

202 **dN/dS and translation evidence**

203 Evidence of translation and/or negative selection pressure are strong indications that a gene is functional
204 and encodes a protein. The codeml program of the PAML package (Yang, 2007) was used for measuring
205 the interspecies selection pressure between homologous TSGs of rye, barley and wheat. The strength
206 of selection pressure was measured as the ratio between nonsynonymous (dN) and synonymous amino
207 acid changes (dS). For selecting TSGs that are under negative selection pressure, we considered the
208 median dN/dS value of all TSGs that are supported by proteomic evidence (i.e., TSGs that are under
209 evolutionary constraints; Suppl. fig. S2). The median of the distribution was found at ~0.53, therefore
210 all TSGs that fall below this value were considered as genuine protein-coding genes. Finally, protein
211 sequences of TSGs were aligned (Blastp, evalue 1e-10) against the wheat proteomic database (UniProt,
212 UP000019116).

213

214 ***In silico* characterization of TSGs**

215 *De novo* genes originate from non-coding sequences and therefore is not possible to infer its function
216 based on sequence homology with previously described genes. In order to investigate the putative
217 function of the identified TSGs, we predicted the presence of conserved domains. The algorithms

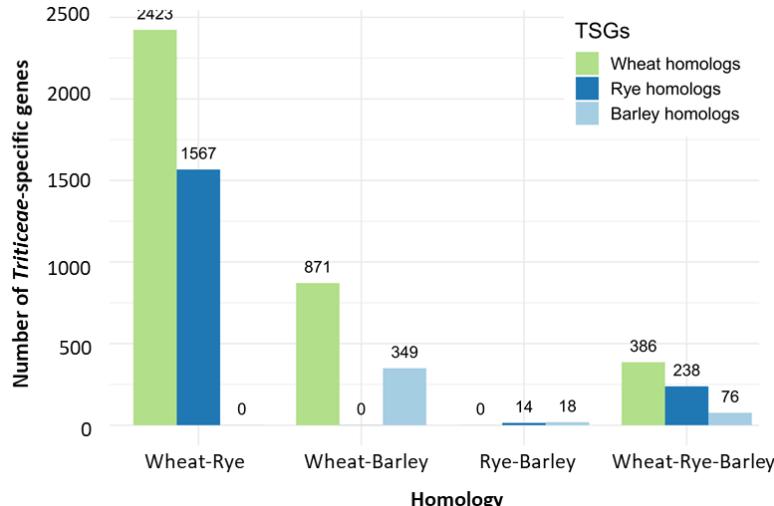
218 SignalP (v5.0) and TMHMM (v2.0) were used to annotate signal peptide (SP) and transmembrane (TM)
219 domain. Given that N-terminal TM domains can be misannotated as SP, we manually curated TSGs
220 that were predicted to contain both domains. More specifically, genes in which i) at least one TM and
221 no SP are predicted, ii) one SP and more TMs are predicted, and ii) the SP have a low probability score
222 (<0.5), were considered as genes encoding transmembrane proteins. Whereas genes in which i) one SP
223 and no TMs, or ii) one SP and one N-terminal TM domain are predicted, were considered as apoplastic
224 proteins (Suppl. fig. S3).

225 Orthofinder (v2.3.12; Emms & Kelly, 2015) was used for clustering groups of orthologous TSGs (i.e.,
226 orthogroups, hereafter called gene families), based on protein sequence homology. Orthofinder was run
227 with standard parameters using the protein sequences (one file per *Triticeae* species) of candidate TSGs.
228 To identify *de novo* genes that might have originated from TEs, we aligned nucleotide and protein
229 sequences of TSGs against consensus TE sequences from the nrTREP database and their derived
230 proteins PTREP (botinst.uzh.ch/en/research/genetics/thomasWicker/trep-db.html). TSGs that have
231 homology (Blastn, identity > 80%) at the nucleotide level, but did not show any similarity (Blastp,
232 evalue 1e-10) with TE proteins, are likely to have originated from TE non-coding regions (e.g., LTRs
233 and TIRs) or through frame-shift mutations in TE coding regions. In order to distinguish them, we
234 further aligned (Blastx, evalue 1e-10) nucleotide sequences of these TSGs against PTREP. Genes with
235 significant Blastx homology against canonical TE proteins likely evolved through frame-shift mutations
236 and were classified as “out-of-frame” TSGs (Table 2).

237

238 **Results**

239 We defined *Triticeae*-specific genes (TSGs) as genes that are annotated in at least two of the main
240 *Triticeae* lineages represented by wheat, rye and barley, but have no homologs outside of the *Triticeae*
241 clade, in particular in the closely related outgroup grasses *Brachypodium distachyon* and rice (Suppl.
242 fig. S1). In this study, we focused exclusively on protein coding genes and excluded non-coding RNAs
243 or small RNAs. For our analyses we used the recently published chromosome-scale genome assemblies
244 of bread wheat, barley and rye (IWGSC *et al.*, 2018; Mascher *et al.*, 2017; Rabanus-Wallace *et al.*,
245 2021). As outgroups we used *B. distachion*, rice, and the plant protein databases of NCBI and
246 UniprotKb. First, we assessed the integrity of the coding sequence (CDS) prediction, by examining
247 whether they indeed represent intact open reading frames (ORFs). In wheat low-confidence genes,
248 approximately 10% contained in-frame stop codons (Suppl. table S1), suggesting the predicted CDS
249 was in the wrong reading frame. These were discarded. Depending on the species, between 2% (wheat)
250 and 44% (barley) of the predicted CDS lacked start or stop codons (Suppl. table S1). Genes missing
251 stop codons were still used for the analysis, the others were discarded. Discrepancies between *Triticeae*
252 gene annotation strategies (see methods) might explain why barley has the largest number of genes with
253 incomplete ORF. To exclude all genes that might have originated in ancestral grasses, we ran sequence
254 similarity searches against the genomes (GMAP, see methods) and the annotated protein sequences
255 (Blastp, e-value $1<10E-5$) of both outgroup species *Brachypodium* and rice. *Triticeae* genes that have
256 sequence homology in at least one of the outgroup species were eliminated. This resulted in a data set
257 of 67,413 candidate TSGs. As expected, the majority (61,508 or ~91%) of these were previously
258 annotated as low confidence genes.


259 As a first selection for candidate TSGs, we performed all vs. all bi-directional Blastn searches between
260 the CDS of wheat, rye and barley and identified the best homologous gene pairs between the three
261 genomes. Here we only kept genes that are annotated in at least two of the three genomes. Finally, we
262 ran an additional Blastp analysis between the identified gene homologs and the protein databases of
263 NCBI and UniprotKb and discarded all genes that had homologs conserved outside of *Triticeae* tribe.
264 In total, we found 5,942 genes that are commonly predicted in at least two of the *Triticeae* species, but
265 not in other plant species outside of the *Triticeae* tribe. This initial dataset of candidate TSGs comprised
266 3,680 genes from wheat, 1,819 from rye 443 from barley (Table 1, Fig. 1).

267 Homology relationships at the protein level between candidate TSGs, were defined using OrthoFinder
268 (Emms & Kelly, 2015). In total, predicted proteins of 2,555 TSGs were clustered into 857 orthogroups
269 (hereafter families) with at least two members each. In the remaining 3,387 unassigned TSGs, no
270 homology at the protein level was observed.

271

272

273

274
275

276 **Fig. 1. Candidate *Triticeae*-specific genes (TSGs) identified between wheat, barley and rye.**

277 Bi-directional Blastn of genes that are not conserved outside of the *Triticeae* clade, resulted in a total
278 of 3,680, 1,819, and 443 genes corresponding to wheat, rye and barley, respectively. TSGs were defined
279 as genes which have homology in at least two *Triticeae* species but are not conserved outside of the
280 *Triticeae* clade. Therefore, the bars show the total number of TSGs per species which are shared
281 between *Triticeae*. Between wheat and rye, for example, 2,423 wheat genes found homology with 1,567
282 rye genes, and none those were annotated in the barley genome. Note that only a small proportion of
283 genes (700 TSGs) were commonly found in all three *Triticeae* species.

284
285

286 **Many candidate TSGs are supported by dN/dS analysis, expression and proteomic data**

287 Since real protein-coding *de novo* genes should be expressed, translated and under purifying selection
288 (McLysaght & Guerzoni, 2015; Prabh & Rödelsperger, 2016) we searched for support in transcriptomic
289 and proteomic data, and calculated the strength of selection between homologs from the three species.
290 For the transcriptomic analysis, we used published expression data (transcript per million TPM values)
291 that was collected in two different wheat lines Azhurnaya and Chinese Spring from a total of 27 tissues
292 and 25 developmental stages (Ramírez-González *et al.*, 2018). Given that many functionally
293 characterized genes are low expressed under normal conditions, the threshold of minimum expression
294 was set at “> 0.5 TPM in at least one tissue” as previously proposed by Ramírez-González *et al.* (2018).
295 Using this threshold, 2,275 out of 3,680 wheat TSGs (~62%) showed expression, with 1,774 being very
296 weakly (0.5-5 TPM), 1,976 weakly (5-10 TPM), 306 average (10-20 TPM), and 266 highly expressed
297 (> 20 TPM) in at least one of the two wheat lines. In a second step, we searched for matching protein
298 sequences in the available proteome database of wheat (UP000019116). In total, we found that 1,890
299 out of 3,680 wheat TSGs (~51%) have strong matches in the proteomic data. Of these, 1,032 wheat
300 TSGs also show transcriptomic evidence in the RNA-Seq data (Table 1).
301 Additionally, we used pairwise comparisons between TSGs from wheat, barley and rye homologs to
302 determine the ratio of substitutions at non-synonymous and synonymous sites ($dN/dS = \omega$). By choosing

303 a stringent cut-off of $\omega = 0.53$ (see methods and Suppl. fig. S2), we found that 2,365 out of 5,942 TSGs
304 (~40%) are under evolutionary constraints; 1,576 TSGs are from wheat, of which 907 (~58%) also show
305 evidence of expression.

306 Experimental evidence of translation is the strongest indication that a gene is real, and it can be used to
307 validate the protein-coding potential of genes. In addition, according to Prabh & Rödelsperger (2016),
308 we also considered TSGs that show both evidence of expression and negative selection (see above) to
309 be real protein-coding genes. Indeed, a large proportion (460 out of 907; 51%) of these “expressed and
310 negatively selected” genes is also supported by proteomic evidence. To summarize, ~64% (2,337 out
311 of 3,680) of the candidate wheat TSGs were translated and/or supported by both evidence of expression
312 and negative selection. These candidate TSGs were therefore validated as genuine protein-coding genes
313 (Table 1). We carefully propose that *Triticeae* may possess ~779 (2,337 genes / 3 subgenomes)
314 lineage-specific genes per haploid genome.

315

316

317 **Table 1. Summary of predicted and *in silico* characterized *Triticeae*-specific genes (TSGs).**
318 Candidate TSGs were identified by selecting all annotated genes that are conserved in at least two
319 *Triticeae* species (wheat, barley and rye), but are not found in other plant species outside of the *Triticeae*
320 clade (see methods). Candidate TSGs were further characterized, by measuring 1) gene expression in
321 wheat under non-stress conditions, 2) sequence homology to the wheat proteomic database (translated
322 TSGs) and 3) evidence of negative selection. Candidate TSGs with experimental evidence of translation
323 and/or evidence of both transcription and negative selection, were considered as “real” protein-coding
324 genes. Therefore, we suggest that *Triticeae* may possess ~779 (2,337 / 3 subgenomes) lineage-specific
325 genes per haploid genome.

326

Gene Category	Wheat	Barley	Rye	Total
Candidate TSGs	3680	443	1819	5942
Negatively selected TSGs	1576	163	626	2365
Expressed TSGs	2275	NA	NA	2275
Translated TSGs	1890	NA	NA	1890
Expr. + Select. TSGs	907	NA	NA	907
Expr. + Transl. TSGs	1032	NA	NA	1032
Translated and/or Expr. + Select. TSGs	2337	NA	NA	2337

327

328

329

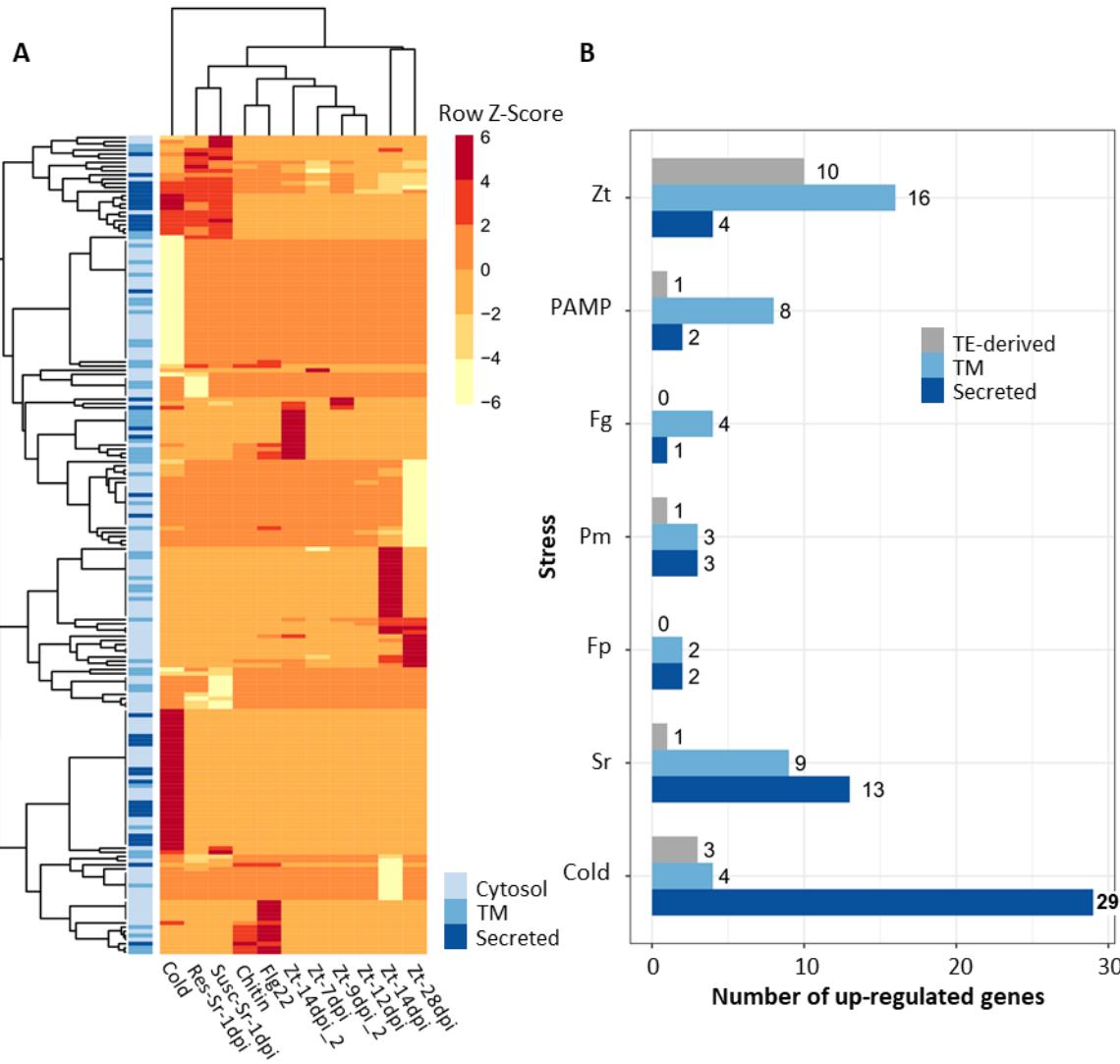
330

331

332

333

334


335 **Stress-induced TSGs are enriched in secreted proteins**

336 Signal peptides (SP) are a subclass of N-terminal transmembrane (TM) domains which mediate the
337 secretion of proteins into the apoplast. In contrast to TM domains, SPs are cleaved off after translocation
338 through the ER membrane. Mature proteins can ultimately be released outside of the cellular membrane
339 through the classical secretory pathway (Wang *et al.*, 2018). However, because of structural similarities
340 between SPs and TM helices, these two N-terminal signaling sequences are often miss-annotated or
341 annotated inter-changeably (Yuan *et al.*, 2003). Indeed, we found that 286 candidate TSGs were
342 ambiguously predicted to encode both N-terminal TM domain and SP (Suppl. fig S3). Manual curation
343 (see methods and suppl. fig S3) revealed that ~37% (2,204 out of 5,942) of our candidate TSGs might
344 encode secretory proteins. Of these, 1,622 and 582 are likely to be located at the plasma membrane or
345 in the apoplast, respectively. Interestingly, we found that 14 of the 35 most abundant TSG families (\geq
346 10 gene members), including the three largest ones, encode putative transmembrane proteins (Suppl.
347 table S5). This suggests that the presence of transmembrane domains might have played an important
348 role in the evolution and diversification of *de novo* genes.

349 Differential gene expression analyses can be used to define genes which are likely to be embedded into
350 regulatory networks and therefore to indicate their function (Prabh & Rödelsperger, 2016). Because of
351 the large availability of RNA-Seq datasets for wheat, we focused on the 3,680 candidate TSGs from
352 wheat. The publicly available datasets (Praz *et al.*, 2018; Ma *et al.*, 2018; Ramírez-González *et al.*,
353 2018) include wheat exposed to cold stress, to pathogen associated molecular patterns (PAMP; chitin
354 and flg22) elicitation as well as wheat that was infected with different fungal pathogens (see methods
355 and Suppl. table S2).

356 In total, we found 215 TSGs that were significantly differentially expressed ($\text{Log2FC} > 1.5$, $\text{FDR} <$
357 0.01) in at least one stress treatment, 133 TSGs were up-regulated and 82 were down-regulated. DE
358 genes that belong to the same families, show similar patterns of transcriptomic response, suggesting
359 some degree of functional redundancy within TSG families (Fig. 2A, Suppl. table S3). As we were
360 interested in TSGs that are specifically induced upon stress, we further characterized 133 genes that
361 were up-regulated in at least one treatment. To our surprise, stress-induced TSGs are enriched in
362 secreted proteins, as ~50% of them are predicted to be secreted to the apoplast (35 TSGs) or to localize
363 to the cell membrane (32 TSGs). Most interestingly, specific patterns of gene expression seem to
364 distinguish these two groups: most putative transmembrane proteins are up-regulated by biotic stresses
365 such as *Z. tritici* infection and PAMP (chitin and flg22) treatment, whereas apoplastic proteins are
366 mainly induced by cold stress and stripe rust infection (Fig. 2A-B).

367

368

369 **Fig. 2. Transcriptomic analysis of differentially expressed *Triticeae*-specific genes (TSGs).**

370 **(A)** Heatmap showing the transcriptomic response of differentially expressed (DE) TSGs. The R
371 package edgeR was used for the DE analysis of candidate TSGs. Only genes that were significantly up-
372 regulated ($\log_{2}\text{FC} > |1.5|$ and adjusted p -value $\text{FDR} < 0.01$) and only the treatments that showed high
373 transcriptomic response, were visualized in the heatmap. The R function pheatmap was used to scale
374 the $\log_{2}\text{FC}$ values into Z-scores and to draw the plot. In addition, DE genes were annotated based on
375 on the predicted cellular localization (transmembrane or secreted apoplastic proteins). **(B)** Bar plot
376 showing the number of secreted, transmembrane (TM) and TE-derived genes that are up-regulated upon
377 stress. Zt: *Z. tritici*; PAMP: pathogen associated molecular patterns; Fg: *F. graminareum*; Fp: *F.*
378 *pseudograminareum*; Pm: powdery mildew; Sr: stripe rust.

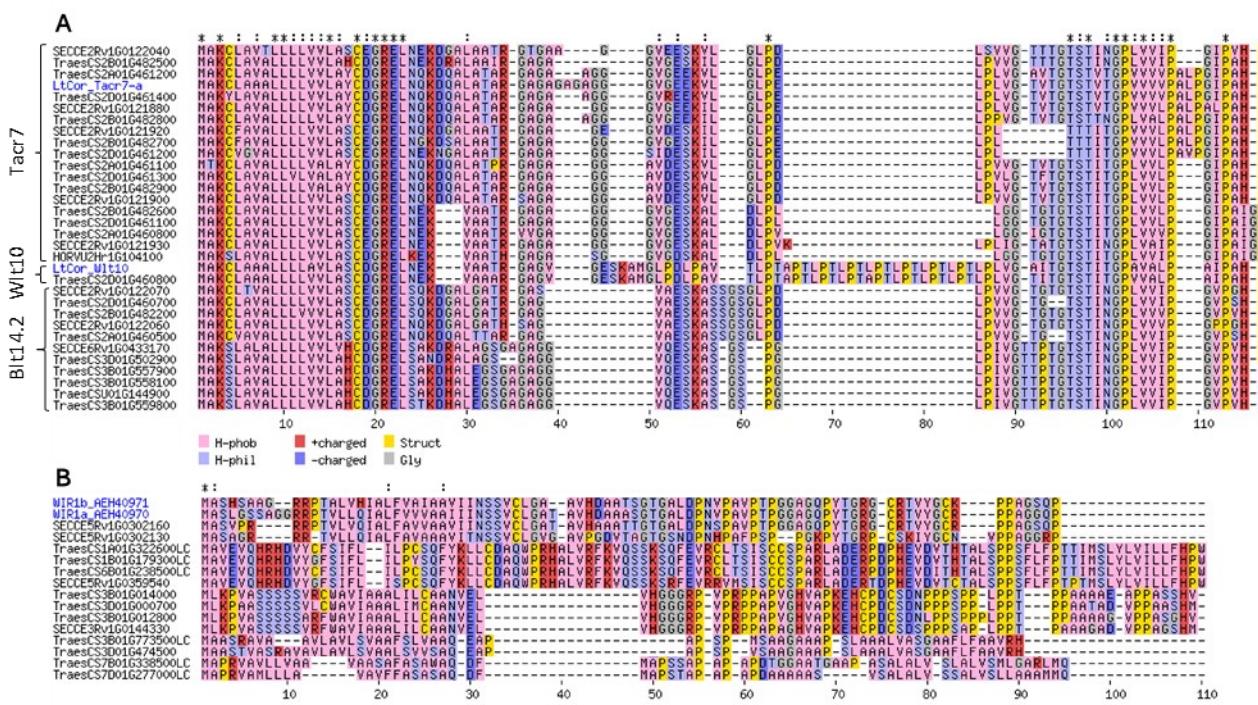
379

380

381

382

383


384

385

386 **TSGs are involved in climate adaptation and non-host resistance of *Triticeae* species**

387 Interestingly, 23 out of 29 apoplastic TSGs that are induced by cold stress, belong to the “low-
388 temperature or cold-responsive” *Lt-Cor* gene family (Fig. 3A). *Lt-Cor* genes are cereal-specific glycine-
389 rich proteins which are known for increasing freezing tolerance and therefore being involved in the low-
390 temperature acclimation of cereals (Ohno et al., 2001; Pearce et al., 1998). Based on sequence homology
391 we clustered these genes in three subgroups (Fig. 3A): 8 wheat TSGs that show strong similarity to
392 barley and rye members of the *lt14* gene family (Dunn et al., 1990), 2 wheat TSGs that contain a stretch
393 of contiguous repeats of a “LPT” triplets which is characteristic of the wheat homolog *Wlt10* (Ohno et
394 al., 2001), and 13 wheat TSGs that belong to the *Tacr7* family (Gana et al., 1997). Furthermore, we
395 found that 12 of these genes (many of which belonging to the *Tacr7* family) show up-regulation after
396 both cold stress and stripe rust infection (particularly at 1 dpi; Fig. 2A). Stripe rust is specialized to
397 infect wheat at cool temperatures (Gaudet et al., 2011), therefore further suggesting that TSGs of the
398 *Lt-Cor* gene family are involved in stress responses against cold and cold-adapted fungal pathogens.
399 In contrast to “apoplastic” TSGs, membrane-localized TSGs encode a set of very diverse proteins which
400 were classified into 24 different gene families. In particular two membrane-localized TSGs
401 (TraesCS5B01G045100, TraesCS5D01G050200) stood out for showing the strongest stress response:
402 they are up-regulated in response to several hemibiotrophic and biotrophic fungal pathogens (*Fusarium*,
403 powdery mildew and stripe rust) and also after exposure to PAMPs (chitin and flg22). These genes
404 encode proteins with strong homology to the two *WIR1* (Wheat-Induced Resistance 1) proteins
405 *TaWIR1a* (GenBank accession AEH40970.1) and *TaWIR1b* (GenBank accession AEH40971.1; Fig.
406 3B). The *WIR1* gene family is known to confer non-host resistance against a wide range of fungal
407 pathogens, and it was suggested to be involved in basal resistance of cereals (Tufan et al., 2012). In
408 addition to the already described wheat (*TaWIR1a/b*; Tufan et al. 2012) and barley (*HvWIR1*; Douchkov
409 et al., 2011) homologs, we also identified two novel *WIR1* genes in rye (SECCE5Rv1G0302160 and
410 SECCE5Rv1G0302130, Fig. 3B). Furthermore, we identified 12 novel *WIR1*-like proteins which
411 contain transmembrane domains, have similar Proline- and Glycine-rich motifs, and are also induced
412 after *Z. tritici* and PAMP treatments (Fig. 3B).

413

414

415 **Fig. 3. Multiple alignment of predicted protein sequences of known stress-induced *Triticeae*-**

416 specific gene (TSG) families. (A) “Low-temperature or cold-responsive” *Lt-Cor* gene family;

417 previously characterized proteins (TraesCS2A01G460600: Wlt10, AAF75555.1;

418 TraesCS2B01G483000: *Tacr7-a* allele, AWT24553.1) are highlighted in blue. (B) “Wheat-Induced

419 Resistance 1” WIR1-like proteins; previously characterized WIR1 proteins (TraesCS5B01G045100:

420 TaWIR1a, AEH40970.1; TraesCS5D01G050200: TaWIR1b, AEH40971.1) are highlighted in blue.

421

422

423 Several TSGs are derived from non-coding regions of transposable elements

424 Because previous studies suggested transposable elements (TEs) to be involved in many ways in the

425 evolution of lineage-specific genes (Toll-Riera *et al.*, 2009; Tautz & Domazet-Lošo, 2011; McLysaght

426 & Guerzoni, 2015; Jin *et al.*, 2019), we were particularly interested in TSGs deriving from such

427 repetitive elements. We found that approximately 18% of TSGs (1,079 out of 5,942) show nucleotide

428 sequence homology to TEs (Table 2). Interestingly, the majority of these genes (1,067 out of 1,079;

429 99%) do not encode any canonical TE proteins (Table 2). More than ~95% of TGS in barley (119 out

430 121) and wheat (841 out of 880) are located in non-coding portions of TEs. In rye ~46% (36 out of 78)

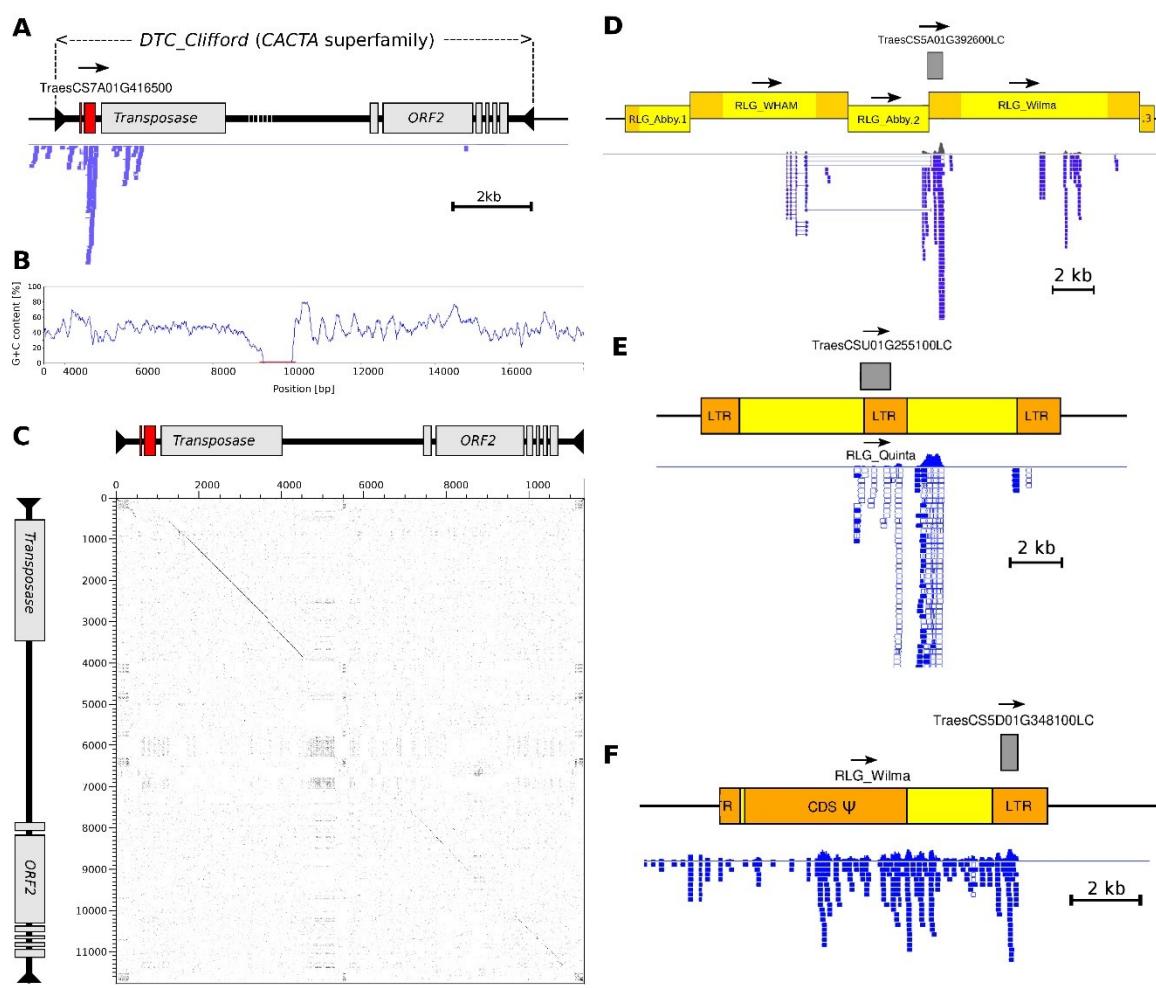
431 are predicted in alternative frames of canonical TE proteins and ~51% (40 out of 78) are found in the

432 non-coding regions of TEs. Taken together, these data suggest that sequence divergence from non-

433 coding regions and frame-shift mutations in existing ORFs (particularly in rye) might be an important

434 source of novel gene evolution from *Triticeae* TEs.

435 Out of 1,079 TE-derived TSGs, we identified 25 differentially expressed genes. In total, 9 of them were


436 down-regulated, whereas 12 were induced by fungal pathogens, 3 by cold stress and 1 by PAMP

437 treatment (Fig. 2B). Despite the low number, we found that 37.5% (6 out of 16) of these up-regulated

438 TSGs encode TM domains and are all induced by *Z. tritici* infection (Fig. 2B). This further suggests
439 that TM-encoding TSGs are particularly involved in biotic stress responses. The up-regulated TE-
440 derived genes were analysed with special scrutiny, through detailed annotation of the regions containing
441 the predicted genes and analysis of expression data. These genes are members of 8 different families
442 (TE1 through TE8), that include a total of 107 TSGs. The gene families have between 2 (TE3) and 57
443 members (TE7). Detailed analysis was performed of those family members that show differential
444 expression. Gene families TE1 through TE4 encode proteins with predicted transmembrane domains,
445 while T5 through TE8 encode no identifiable protein domains.

446 For gene family TE2, we have the most complete understanding of its evolution. TE2 is a gene family
447 of 15 genes in wheat and 2 in barley. All genes are predicted upstream of the transposase gene in *CACTA*
448 transposons of the *DTC_Clifford* family (Fig. 4A), eight are expressed under non-stress conditions in
449 wheat, and three are induced upon infection with *Zymoseptoria* and one after PAMP elicitation. The
450 example of *TraesCS7A01G416500* shows that expression is limited to the region of the predicted gene
451 plus its upstream region, while the rest of the *DTC_Clifford* element is transcriptionally silent (Fig. 4A).
452 Our data indicate that the existence of this gene family is the result of a sequence capture event. We
453 propose that the *DTC_Clifford* family captured two probably non-coding sequences and fused them to
454 a TE2 family proto-gene. This presumably occurred in the *Triticeae* ancestor, because *DTC_Clifford*
455 transposons from wheat and barley all contain that segment, while in contrast, the closest *DTC_Clifford*
456 homologs in oat do not (Fig. 4C). Interestingly, we found the putative progenitor sequences in the oat
457 genome: the 5'half of the proto-gene is present in two copies on chromosomes 6C and 7D, while
458 homologs of the 3' half are found in five copies on chromosomes 1A, 3A, 4A, 5A and 5D. The captured
459 sequences also contain a lower G/C content than the surrounding sequences (Fig. 4B). The newly
460 captured and fused sequence was then amplified along with the *DTC_Clifford* elements. From these
461 ancestor sequence, putatively functional TE2 family genes evolved both in wheat and barley.

462 Families TE1, TE5 and TE7 are derived LTR sequences of *Gypsy* retrotransposons (Fig. 4D-F). Gene
463 predictions in such highly abundant sequences are notoriously suspicious. Nevertheless, at least some
464 copies have specific and unique characteristics: gene *TraesCS5A01G392600LC* is predicted across the
465 boundary of two LTR retrotransposons, where an *RLG_Wilma* retrotransposon inserted into an
466 *RLG_Abbi* retrotransposon (Fig. 4D). Because retrotransposons insert mostly randomly, such TE-
467 junctions are highly specific. Interestingly, RNA-seq data shows gene expression across that junction
468 and only for the region of the predicted gene while most of the surrounding TE sequences are
469 transcriptionally silent (Fig. 4D). Similarly, *TraesCSU01G255100LC* is located in an *RLG_Quinta*
470 tandem repeat (i.e., a recombined element with 3 LTRs and 2 internal domains; Fig. 4E). Expression is
471 only found in the region of the predicted gene as well as the *gag* region of one internal domain, but not
472 in the rest of recombined elements (Fig. 4E). These data suggest that these genes are indeed functional
473 *de novo* genes.

474

475

476 **Fig. 4. Genomic and transcriptomic analysis of TE-derived *de novo* genes which are induced upon**
477 **infection with *Zymoseptoria*.** (A) Sequence organization of TE2 gene family members. The predicted
478 gene *TraesCS7A01G416500* (exons as red boxes) is located just upstream of the CDS for transposase
479 inside CACTA transposons of the *DTC_Clifford* family. Mapped transcriptome reads are shown in blue
480 underneath the map, confirming the predicted exon/intron structure. (B) Plot of G/C content in 100 bp
481 windows with a 10 bp sliding step. Note that the region of the predicted gene has a lower gene content
482 than the surrounding sequence. (C) Dot plot comparison between *DTC_Clifford* from wheat (horizontal)
483 and its closest homolog from oat (vertical). The region containing the predicted gene is absent from the
484 oat homolog, indicating that the sequence was captured by *DTC_Clifford* in the *Triticeae* lineage. (D-F)
485 Examples of differentially expressed genes located in LTRs or retrotransposons. The position of the
486 predicted gene is indicated with a grey box above the map, and mapped transcriptome reads are shown
487 in blue underneath the map. Despite the overall high copy number of the retrotransposons, unique
488 sequence combinations can arise through nested insertions (D), duplications (E) or deletions that
489 truncate elements (F).

490

491

492

493

494 **Transmembrane domains are derived from repetitive AT-rich regions**

495 The majority (1,000 out 1,079; ~93%) of TE-derived TSGs were found inside or close to regulatory
496 regions such as long terminal repeats (LTRs) and terminal inverted repeats (TIRs, Table 2). LTRs and
497 TIRs are known to contain short but highly conserved sequences that are important for the transcription
498 and mobilization of TEs (e.g., AT-rich regions at the termini of LTRs and TIRs, and poly-adenylation
499 signals; Benachenhou *et al.*, 2013; Wicker *et al.*, 2007). Of these 1,000 genes from non-coding regions
500 of TEs (961 being LC), we found that 216 (21.6%) are predicted to encode at least one transmembrane
501 domain. In contrast, only 9.5% of the overall wheat LC genes encode predicted transmembrane domains
502 (Table 2).

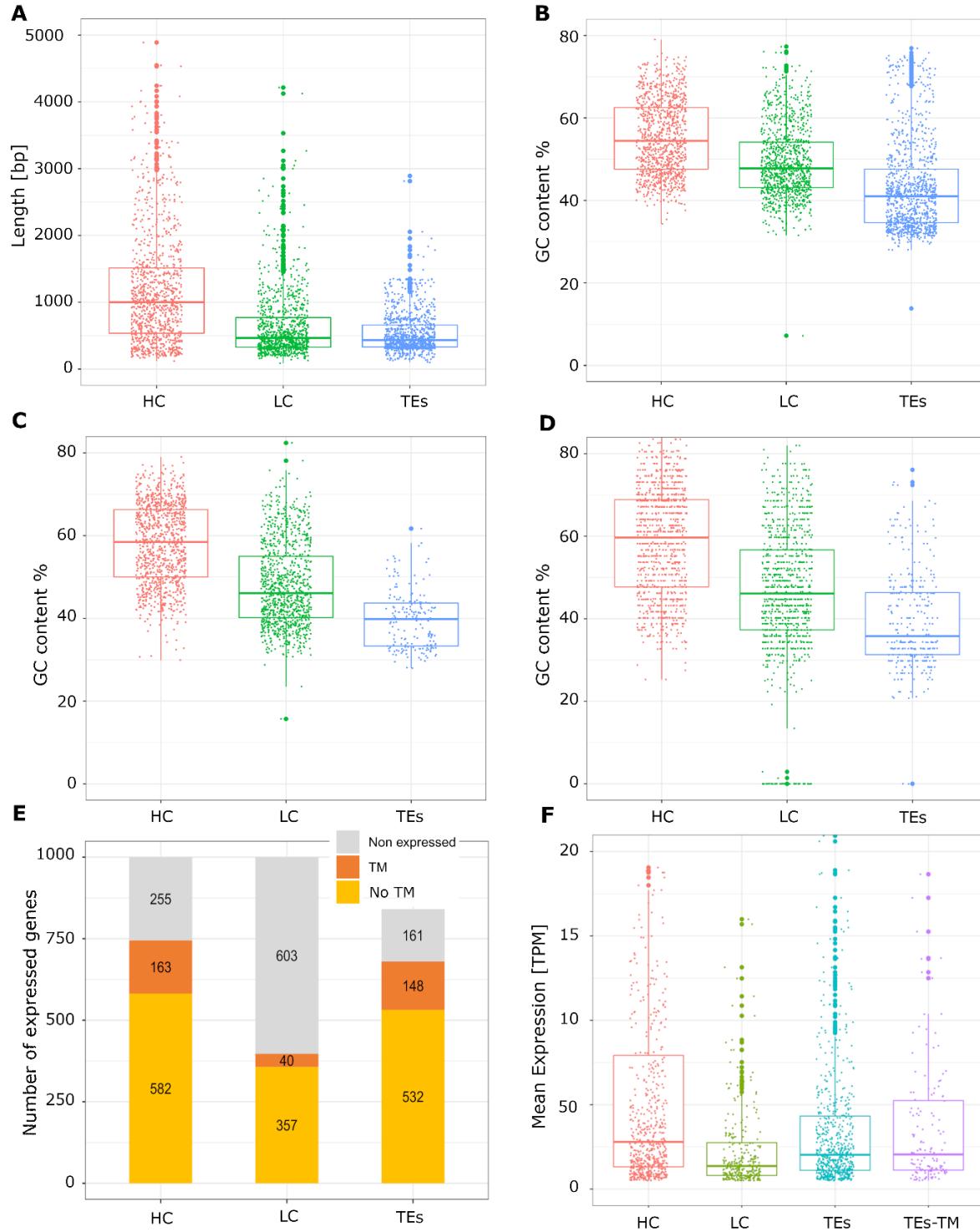
503

504 **Table 2. Number of *Triticeae*-specific genes (TSGs) that are associated to transposable elements**
505 **(TEs).** Here we summarize the number of TSGs that show homology at the DNA and protein level with
506 TEs. The majority are found in non-coding regions (e.g., TIRs and LTRs) or are out-of-frame with
507 canonical TE proteins (transposases, integrases, etc.). In addition, we indicate the number of TSGs
508 which are predicted to encode at least one transmembrane domain (TM).

	Wheat	Barley	Rye	Total
DNA homology	880	121	78	1079
Protein homology	9	1	2	12
“Out-of-frame” TSGs	30	1	36	67
“Out-of-frame” TSGs - TM	6	0	29	35
“Non-coding regions” TSGs	841	119	40	1000
“Non-coding regions” TSGs - TM	180	30	6	216

509

510


511 Interestingly, these TM-encoding genes have unusually low GC contents (Fig. 5C-D). Although LC
512 genes have a generally lower GC content than HC genes, the TE-derived genes (which mostly are LC
513 genes) are among those with the lowest values (Fig. 5B). Similarly, the TM-encoding TE-derived genes
514 have much lower GC contents than TM-encoding HC and LC genes (Fig. 5C). Indeed, AT-rich
515 sequences are generally likely to give rise to ORF encoding transmembrane domains, as the
516 hydrophobic amino acids are mostly encoded by codons with at least 2 Adenines or Thymines (Prilusky
517 & Bibi, 2009; Vakirlis *et al.*, 2020). Since non-coding regions of TEs tend to be AT-rich, we propose
518 that novel ORFs evolving from them are more likely to encode a transmembrane domain.

519 Moreover, we observed that wheat TSGs from TEs non-coding regions are strongly supported by
520 transcriptomic data. Approximately 81% (680 out of the 841) of them show expression in at least one
521 wheat line (Fig. 5E), and their average expression level is higher than in most LC genes and it resembles
522 that of HC genes (Fig. 5F). The overall fraction of expressed TE-derived genes is much higher than in
523 LC genes (397 out of 1,000 randomly-selected LC genes, ~40%) and even higher than in HC genes
524 (745 out of 1,000 randomly-selected HC genes, ~75%; Fig. 5E). Surprisingly, some of these genes,

525 especially the ones encoding TM domains, showed among the highest expression levels of all wheat
526 genes (Fig. 5F).

527 To summarize, our results indicate that the vast majority of TE-derived TSGs are located in non-coding
528 regions of TEs. These genes are enriched in TM-encoding domains and are strongly supported by
529 transcriptomic data, therefore supporting their functionality and protein-coding potential. For these
530 reasons, we suggest that TEs non-coding regions might promote the origination of functional *de novo*
531 genes by providing genomic raw material from which TM-encoding ORFs can evolve.

532

533

534

535 **Fig. 5. Transcriptomic and GC-content analyses of TSGs coming from TE non-coding regions.**
 536 Comparison between 1,000 *Triticeae*-specific genes (TSGs) derived from transposable elements (TEs)
 537 non-coding regions and 1,000 randomly selected low-confidence (LC) and high-confidence (HC) genes.
 538 (A) Size comparison, (B) overall GC-content, (C) GC-content of genes that encode transmembrane
 539 (TM) domains (D) GC-content from the region encoding the TM domains. (E) Number of expressed
 540 genes in wheat. Orange: TM-encoding genes; yellow: non TM-encoding genes; grey: remaining non-
 541 expressed genes. (F) Average expression value in the wheat line *Chinese spring* (see methods). TEs-
 542 TM: TE-derived genes encoding TMs.

543 **Discussion**

544 *Triticeae* form an ideal model system to study the evolution of *de novo* genes for several reasons: (i)
545 they are closely enough related so that direct comparison of gene content and collinearity is possible,
546 but yet distant enough to have numerous differences, (ii) chromosome scale genome assemblies and
547 genome annotations of closely related outgroup species (*B. distachyon* and rice) are available, and (iii)
548 up to 85% of the genome consists of transposable elements (TE) which were shown to be main drivers
549 of genomic diversity in *Triticeae* (Wicker et al., 2017, 2018). Furthermore, as all crop plants, *Triticeae*
550 are under evolutionary pressure to adapt to pathogens and changing environmental conditions.

551 Lineage-specific *de novo* genes have by definition no homologs outside of their respective taxonomic
552 group. Thus, the most challenging aspect is to distinguish potential real genes from annotation artifacts.
553 We therefore defined a set of stringent criteria to identify candidate *de novo* genes. Our first filtering
554 step was to only consider genes with intact open reading frames, and whose nucleotide and protein
555 sequences have no homologs in plant species outside of the *Triticeae* clade, in particular in the closely
556 related *B. distachion* and rice. Using nucleotide sequence homology between *Triticeae* species (wheat,
557 barley and rye) as an additional criterion, eliminated over 90% of the annotated low-confidence genes
558 and resulted in the final set of 5,942 candidate TSGs. We used additional filters such as signatures of
559 purifying selection, and evidence for transcription and translation to further measure the protein-coding
560 potential of these candidate TSGs. Our approach differed from that in a recent study (Ma et al., 2020)
561 which identified 3,812 candidate TSGs using expressed sequence tags (ESTs), but did not further verify
562 for their protein-coding potential. ESTs do not cover the transcriptome as well as RNA-seq data (Ping
563 et al., 2012; Lowe et al., 2017), especially for lineage-specific genes, which are often expressed at low
564 levels or only under specific conditions. Furthermore, in contrast to Ma et al. (2020), we considered it
565 crucial to include TE-derived TSGs, because studies in primates and rice have shown that over 50% of
566 lineage-specific genes have homology to TEs (Toll-Riera et al., 2009; Jin et al., 2019). Indeed, we
567 found that ~18% of our identified TSGs are derived from TEs (mostly from non-coding regions),
568 indicating that also in *Triticeae* TEs might be an important contributor to *de novo* gene evolution.
569 Finally, we validated the protein-coding potential of most wheat TSGs, and we cautiously propose that
570 *Triticeae* may contain roughly 779 lineage-specific genes per haploid genome.

571

572 It is very difficult to predict the function of *de novo* genes due to lack of sequence homology to
573 functionally described genes. Because we were interested in the identification of TSGs that might be
574 involved in responses to diseases or adaptation to environmental conditions, we used RNA-Seq data
575 from wheat plants that were either infected with fungal pathogens, artificially treated with PAMPs or
576 exposed to cold temperature. Interestingly, we found that up-regulated TSGs are enriched in genes
577 encoding proteins with signal peptides and transmembrane domains, suggesting them to be
578 transmembrane or apoplastic proteins. The apoplast is the interface between the plant cell membrane
579 and many microbial parasites, and it is also the place where most freezing related responses take place

580 (Kuwabara & Imai, 2009). Thus, it makes sense for novel genes encoding secreted and transmembrane
581 proteins to be functionally selected during stress responses. In fact, similar results were found in yeast
582 where adaptive (fitness-enhancing) sequences were enriched in TM domains, leading to the
583 development of the “TM-first” model of *de novo* gene evolution (Vakirlis et al., 2020). Our results
584 therefore indicate that similar mechanisms may be at play in *Triticeae*, and that they might have
585 evolved lineage-specific regulatory networks, that induce the secretion of proteins in response to cold
586 stress and/or different specialized fungal pathogens.

587 Interestingly, the majority of the identified apoplastic TSGs, have similarity to previously described
588 *Triticeae*-specific *Lt-Cor* (low-temperature or cold-responsive) genes, that are involved in cold
589 tolerance in wheat (Ohno et al., 2001). Some are known to be bifunctional as they also show antifungal
590 activity against cold-adapted plant pathogens such as snow molds and stripe rust (Kuwabara and Imai,
591 2009; Gaudet et al., 2011). The *Triticum aestivum cold-regulated 7 (TaCr7)* gene family, for example,
592 was shown to be up-regulated in wheat lines containing the leaf rust resistance genes *Lr34* (Hulbert et
593 al., 2007). Indeed, we identified 13 apoplastic TSGs that have homology to the *TaCr7* gene family and
594 that show significant up-regulation in both cold stressed and stripe rust infected wheat plants.

595 Additionally, we identified novel transmembrane proteins that have similarity with the *Wheat-Induced*
596 *Resistance 1 (WIR1)* gene family. As demonstrated by our transcriptomic analysis, members of this
597 gene family are induced by a broad range of plant pathogens. In particular, *TaWIR1* (also found in our
598 survey) inhibits the secondary hyphae growth of the non-adapted pathogen *Magnaporthe oryzae* (Tufan
599 et al., 2012), and it was proposed to play an important role in non-host resistance. Finally, we showed
600 that, compared to apoplastic TSGs, membrane-localized TSGs are under stronger diversifying selection.
601 This is reminiscent of the co-evolutionary arms race between plant and pathogens, and further indicates
602 the role of novel transmembrane proteins in the regulation of biotic stress responses.

603 To summarize, we identified *Triticeae*-specific genes that were previously described to be involved in
604 *Triticeae* responses to cold and fungal pathogens. The fact that we were able to identify multiple
605 previously undescribed *WIR1* and *Lt-Cor*-like genes, validates our approach of TSG identification and
606 suggests that several candidate TSGs might be involved in important *Triticeae* adaptations. Importantly,
607 since homology is restricted to the signal peptide and structural amino acids such as Cysteine and
608 Proline, sequence similarity was too weak to be found by simple homology search. Only once we
609 classified the candidate TSGs into families and we quantified their transcriptional response to stresses,
610 similarities with *Lt-Cor* and *WIR* proteins became apparent. We propose that these TSGs identified here
611 are interesting candidates for future functional studies on non-host resistance and response to
612 environmental stress in *Triticeae*.

613

614 Three main mechanisms have been described for the evolution of lineage-specific genes from TEs,
615 namely exonization, domestication of TE proteins, and capture and rearrangement of gene fragments

616 (Jin *et al.*, 2019). However, it is still unclear to what extent do TEs contribute to the evolution of *de*
617 *novo* genes, and what molecular mechanisms underlie this process. In total, ~18% (1,079 out of 5,942)
618 of our candidate TSGs have homology to TEs at the DNA level. Only 12 of them showed significant
619 protein sequence homology and 67 are found in alternative frames of TE proteins, suggesting that *de*
620 *novo* evolution from non-coding sequences, rather than mere domestication of existing TE proteins,
621 might be the main path for the evolution of TE-derived genes in *Triticeae*. Similar results were found
622 in rice where most TE-derived lineage-specific genes were shown to originate *de novo* through rapid
623 sequence divergence (Jin *et al.*, 2019). In contrast, 93% of TE-derived lineage-specific genes in
624 primates were shown to be exonized from *SINE* retrotransposons, which contain potential splice sites
625 (Krull *et al.* 2005).

626 In total 764 (~71%) of TE-derived TSGs described here were derived from LTR-retrotransposons of
627 the *Gypsy* superfamily (Suppl. table S4). The next most represented TE superfamilies are *CACTA*
628 transposons (122 genes) and *Copia* retrotransposons (83 genes). These results are consistent with
629 previous findings (Sun *et al.* 2015; Jin *et al.* 2019) and highlight the importance of LTR retrotransposons
630 and *CACTA* elements in the evolution of *de novo* genes in *Triticeae*.

631 Due to the rapid evolution of intergenic and non-coding sequences in *Triticeae*, it is very difficult to
632 trace the evolution of a particular *de novo* gene to its very origins. However, we were able to largely
633 resolve the origin of the *CACTA*-derived gene family TE2. Since all copies of the *CACTA* element
634 (*DTC_clifford* family) from wheat and barley contained the complete CDS and only fragments of the
635 CDS were found at different loci in the oat genome (none of them was associated to TEs), we propose
636 that *CACTA* transposon in the *Triticeae* ancestor captured two non-coding, single-copy sequences into
637 its promoter region. This proto-gene had the good “fortune” to be inside a highly proliferating *CACTA*
638 element, as it could multiply, diversify and be transcribed along with the TE, until a new protein-coding
639 transcript could emerge. In support of this hypothesis, previous studies have shown that DNA
640 transposons can create lineage-specific genes through recombination of captured sequences (Jiang *et*
641 *al.*, 2004; Lai *et al.*, 2005) and *CACTAs* have been correlated to recent gene duplications in wheat
642 (Daron *et al.*, 2014). Gene duplication has long been known to be important for adaptive evolutionary
643 novelties (Panchy *et al.* 2016). Finally, all members of this gene family are derived from an AT-rich
644 non-coding region and encode a N-terminal TM domain, further suggesting that the presence of a
645 signaling domain, might be important for the selection of the newly evolved gene.

646

647 Approximately 93% of TE-derived *de novo* genes are localized inside or near regulatory regions such
648 as long terminal repeats (LTRs) or terminal inverted repeats (TIRs). We found this subset of TSGs
649 coming from TE non-coding regions being of particular interest. In fact, their GC content was
650 particularly low, they were enriched in TM-encoding domains, and despite the majority of them (96%)
651 being low-confidence genes, their expression profile in wheat (total number of expressed genes and
652 average expression value) was similar to that of high-confidence genes. Vakirlis *et al.* (2020) showed

653 that intergenic thymine-rich regions are hotspots for the emergence of adaptive membrane proteins, and
654 since TE regulatory regions are usually AT-rich, such derived *de novo* proteins are therefore likely to
655 contain transmembrane domains. Taken together, our results suggest that highly conserved AT-rich
656 motifs might be functionally innovated into TM-domain encoding proteins and that TEs might be an
657 important source of novel adaptive transmembrane proteins in *Triticeae*.

658

659 To conclude, in our study we developed an approach for the identification and characterization of *de*
660 *novo* genes in *Triticeae*. We identified a total of 5,942 candidate *Triticeae*-specific genes (TSGs), of
661 which ~60% were validated as protein-coding genes in wheat. This not only supports our approach but
662 suggest that *de novo* gene formation is relatively rare and that *Triticeae* may possess approximately 779
663 lineage-specific genes per haploid genome. We demonstrated that 50% of stress-upregulated TSGs
664 encode signaling sequences, the majority being related to important gene families involved in *Triticeae*
665 adaptations to cold and fungal pathogens. This highlights the importance/need of novel secreted proteins
666 in *Triticeae* stress adaptations. Finally, we show that TEs are responsible for ~18% of our candidate
667 TSGs, and we propose that functional innovation of TM domains from TE non-coding regions might
668 be an important mechanism by which novel ORFs are selected and consequently evolve into adaptive
669 stress-responsive TSGs.

670

671

672 **Acknowledgements**

673 This work was supported by the Swiss National Foundation grant 31003A_163325.

674

675 **Author Contributions**

676 MP and TW wrote and edited the manuscript, designed the study, and coordinated the research. MP and
677 CP designed the pipeline. MP, TW, CP and AS performed bioinformatic analyses.

678

679 **Data Availability**

680 The wheat genome annotation (IWGSC RefSeq v1.0) is openly available in the IWGSC Data Repository
681 at <https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations>. The rye genome annotation
682 (Lo7 v1) is openly available via e!DAL at 10.5447/ipk/2020/29. The Barley genome annotation (IBSC
683 v2) is openly available on the Ensembl Plants server (https://plants.ensembl.org/Hordeum_vulgare).
684 The wheat gene expression values can be found on the Wheat Expression Browser at <http://www.wheat-expression.com/download>. Transcriptomic raw data are openly available on NCBI under bioproject
685 codes PRJEB8798, PRJNA289545, PRJNA263755, PRJNA243835, PRJEB12497, PRJEB23056,
686 PRJNA253535, PRJNA296894, PRJNA427159, and PRJNA327013.

688 **References**

689 **Arendsee ZW, Li L, Wurtele ES.** 2014. Coming of age: Orphan genes in plants. *Trends in Plant*
690 *Science* **19**: 698–708.

691 **Daron J, Glover N, Pingault L, Theil S, Jamilloux V, Paux E, Barbe V, Mangenot S, Alberti A,**
692 **Wincker P, et al.** 2014. Organization and evolution of transposable elements along the bread wheat
693 chromosome 3B. *Genome biology* **15**: 546.

694 **Dobon A, Bunting DCE, Cabrera-Quio LE, Uauy C, Saunders DGO.** 2016. The host-pathogen
695 interaction between wheat and yellow rust induces temporally coordinated waves of gene expression.
696 *BMC Genomics* **17**: 380.

697 **Douchkov D, Jhrde A, Nowara D, Himmelbach A, Lueck S, Niks R, Schweizer P.** 2011.
698 Convergent evidence for a role of WIR1 proteins during the interaction of barley with the powdery
699 mildew fungus Blumeria graminis. *Journal of Plant Physiology* **168**: 20–29.

700 **Dunn MA, HUGHES MA, PEARCE RS, JACK PL.** 1990. Molecular Characterization of a Barley
701 Gene Induced by Cold Treatment. *Journal of Experimental Botany* **41**: 1405–1413.

702 **Emms DM, Kelly S.** 2015. OrthoFinder: solving fundamental biases in whole genome comparisons
703 dramatically improves orthogroup inference accuracy. *Genome Biology* **16**: 157.

704 **Gana JA, Sutton F, Kenefick DG.** 1997. cDNA structure and expression patterns of a low-
705 temperature-specific wheat gene tacr7. *Plant Molecular Biology* **34**: 643–650.

706 **Gaudet DA, Wang Y, Frick M, Puchalski B, Penniket C, Ouellet T, Robert L, Singh J, Laroche**
707 **A.** 2011. Low temperature induced defence gene expression in winter wheat in relation to resistance
708 to snow moulds and other wheat diseases. *Plant Science* **180**: 99–110.

709 **Gou L, Hattori J, Fedak G, Balcerzak M, Sharpe A, Visendi P, Edwards D, Tinker N, Wei Y-M,**
710 **Chen G-Y, et al.** 2016. Development and Validation of *Thinopyrum elongatum* -Expressed Molecular
711 Markers Specific for the Long Arm of Chromosome 7E. *Crop Science* **56**: 354–364.

712 **Hulbert SH, Bai J, Fellers JP, Pacheco MG, Bowden RL.** 2007. Gene expression patterns in near
713 isogenic lines for wheat rust resistance gene Lr34/Yr18. *Phytopathology* **97**: 1083–1093.

714 **IWGSC, Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Choulet F,**
715 **Distelfeld A, et al.** 2018. Shifting the limits in wheat research and breeding using a fully annotated
716 reference genome. *Science* **361**.

717 **Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR.** 2004. Pack-MULE transposable elements mediate
718 gene evolution in plants. *Nature* **431**: 569–573.

719 **Jin GH, Zhou YL, Yang H, Hu YT, Shi Y, Li L, Siddique AN, Liu CN, Zhu AD, Zhang CJ, et al.**
720 **2019.** Genetic innovations: Transposable element recruitment and de novo formation lead to the birth
721 of orphan genes in the rice genome. *Journal of Systematics and Evolution*: jse.12548.

722 **Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TCG.** 2009. More than just orphans: are
723 taxonomically-restricted genes important in evolution? *Trends in Genetics* **25**: 404–413.

724 **Krull M, Brosius J, Schmitz J.** 2005. Alu-SINE exonization: En route to protein-coding function.

725 **Molecular Biology and Evolution** **22**: 1702–1711.

726 **Kuwabara C, Imai R. 2009.** Molecular basis of disease resistance acquired through cold acclimation
727 in overwintering plants. *Journal of Plant Biology* **52**: 19–26.

728 **Lai J, Li Y, Messing J, Dooner HK. 2005.** Gene movement by Helitron transposons contributes to
729 the haplotype variability of maize. *Proceedings of the National Academy of Sciences of the United
730 States of America* **102**: 9068–9073.

731 **Leroy P, Guilhot N, Sakai H, Bernard A, Choulet F, Theil S, Reboux S, Amano N, Flutre T,
732 Pelegrin C, et al. 2012.** TriAnnot: A versatile and high performance pipeline for the automated
733 annotation of plant genomes. *Frontiers in Plant Science* **3**: 5.

734 **Li Q, Zheng Q, Shen W, Cram D, Brian Fowler D, Wei Y, Zou J. 2015.** Understanding the
735 biochemical basis of temperature-induced lipid pathway adjustments in plants. *Plant Cell* **27**: 8–103.

736 **Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. 2017.** Transcriptomics technologies. *PLoS
737 Computational Biology* **13**.

738 **Ma X, Keller B, McDonald BA, Palma-Guerrero J, Wicker T. 2018.** Comparative transcriptomics
739 reveals how wheat responds to infection by Zymoseptoria tritici. *Molecular Plant-Microbe
740 Interactions* **31**: 420–431.

741 **Ma J, Stiller J, Zhao Q, Feng Q, Cavanagh C, Wang P, Gardiner D, Choulet F, Feuillet C,
742 Zheng Y-L, et al. 2014.** Transcriptome and Allele Specificity Associated with a 3BL Locus for
743 Fusarium Crown Rot Resistance in Bread Wheat (M Zhou, Ed.). *PLoS ONE* **9**: e113309.

744 **Ma S, Yuan Y, Tao Y, Jia H, Ma Z. 2020.** Identification, characterization and expression analysis of
745 lineage-specific genes within Triticeae. *Genomics* **112**: 1343–1350.

746 **Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V,
747 Dockter C, Hedley PE, Russell J, et al. 2017.** A chromosome conformation capture ordered
748 sequence of the barley genome. *Nature* **544**: 427–433.

749 **Mayer KFX, Marcussen T, Sandve SR, Heier L, Pfeifer M, Kugler KG, Zhan B, Spannagl M,
750 Pfeifer M, Jakobsen KS, et al. 2014.** A chromosome-based draft sequence of the hexaploid bread
751 wheat (*Triticum aestivum*) genome Ancient hybridizations among the ancestral genomes of bread
752 wheat Genome interplay in the grain transcriptome of hexaploid bread wheat Structural and functional
753 pa. *Science* **345**: 1250092.

754 **McLysaght A, Guerzoni D. 2015.** New genes from non-coding sequence: The role of de novo
755 protein-coding genes in eukaryotic evolutionary innovation. *Philosophical Transactions of the Royal
756 Society B: Biological Sciences* **370**.

757 **Ohno R, Takumi S, Nakamura C. 2001.** Expression of a cold-responsive LT-Cor gene and
758 development of freezing tolerance during cold acclimation in wheat (*Triticum aestivum* L.). *Journal
759 of Experimental Botany* **52**: 2367–2374.

760 **Van Oss SB, Carvunis AR. 2019.** De novo gene birth. *PLoS Genetics* **15**.

761 **Panchy N, Lehti-Shiu M, Shiu SH. 2016.** Evolution of gene duplication in plants. *Plant Physiology*

762 **171**: 2294–2316.

763 **Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017.** Salmon provides fast and bias-
764 aware quantification of transcript expression. *Nature Methods* **14**: 417–419.

765 **Ping J, Wang YJ, Yu Y, Li YX, Li X, Hao P. 2012.** A comparative analysis of tissue gene
766 expression data from high-throughput studies. *Chinese Science Bulletin* **57**: 2920–2927.

767 **Prabh N, Rödelsperger C. 2016.** Are orphan genes protein-coding, prediction artifacts, or non-
768 coding RNAs? *BMC Bioinformatics* **17**: 226.

769 **Praz CR, Menardo F, Robinson MD, Müller MC, Wicker T, Bourras S, Keller B. 2018.** Non-
770 parent of Origin Expression of Numerous Effector Genes Indicates a Role of Gene Regulation in Host
771 Adaption of the Hybrid Triticale Powdery Mildew Pathogen. *Frontiers in plant science* **9**: 49.

772 **Prilusky J, Bibi E. 2009.** Studying membrane proteins through the eyes of the genetic code revealed
773 a strong uracil bias in their coding mRNAs. *Proceedings of the National Academy of Sciences of the*
774 *United States of America* **106**: 6662–6666.

775 **Rabanus-Wallace MT, Hackauf B, Mascher M, Lux T, Wicker T, Gundlach H, Baez M,**
776 **Houben A, Mayer KFX, Guo L, et al. 2021.** Chromosome-scale genome assembly provides insights
777 into rye biology, evolution and agronomic potential. *Nature Genetics* **53**: 564–573.

778 **Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M,**
779 **Jacobs J, Van Ex F, Pasha A, et al. 2018a.** The transcriptional landscape of polyploid wheat.
780 *Science* **361**.

781 **Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M,**
782 **Jacobs J, Van Ex F, Pasha A, et al. 2018b.** The transcriptional landscape of polyploid wheat.
783 *Science* **361**.

784 **Robinson MD, McCarthy DJ, Smyth GK. 2009.** edgeR: A Bioconductor package for differential
785 expression analysis of digital gene expression data. *Bioinformatics* **26**: 139–140.

786 **Rudd JJ, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A, Devonshire J, Lysenko A,**
787 **Saqi M, Desai NM, Powers SJ, et al. 2015.** Transcriptome and Metabolite Profiling of the Infection
788 Cycle of *Zymoseptoria tritici* on Wheat Reveals a Biphasic Interaction with Plant Immunity Involving
789 Differential Pathogen Chromosomal Contributions and a Variation on the Hemibiotrophic Lifestyle
790 Definition. *Plant Physiology* **167**: 1158–1185.

791 **Sarantopoulou D, Brooks TG, Nayak S, Mrčela A, Lahens NF, Grant GR. 2021.** Comparative
792 evaluation of full-length isoform quantification from RNA-Seq. *BMC Bioinformatics* **22**: 1–24.

793 **Schlötterer C. 2015.** Genes from scratch - the evolutionary fate of de novo genes. *Trends in Genetics*
794 **31**: 215–219.

795 **Soneson C, Love MI, Robinson MD. 2015.** Differential analyses for RNA-seq: transcript-level
796 estimates improve gene-level inferences. *F1000Research* **4**: 1521.

797 **Sun W, Zhao XW, Zhang Z. 2015.** Identification and evolution of the orphan genes in the domestic
798 silkworm, *Bombyx mori*. *FEBS Letters* **589**: 2731–2738.

799 **Tautz D, Domazet-Lošo T. 2011.** The evolutionary origin of orphan genes. *Nature Reviews Genetics*
800 **12:** 692–702.

801 **Toll-Riera M, Bosch N, Bellora N, Castelo R, Armengol L, Estivill X, Mar Albà M. 2009.** Origin
802 of primate orphan genes: A comparative genomics approach. *Molecular Biology and Evolution* **26:**
803 603–612.

804 **Tufan HA, McGrann GRD, Maccormack R, Boyd LA. 2012.** TaWIR1 contributes to post-
805 penetration resistance to Magnaporthe oryzae, but not Blumeria graminis f. sp. tritici, in wheat.
806 *Molecular Plant Pathology* **13:** 653–665.

807 **Vakirlis N, Acar O, Hsu B, Castilho Coelho N, Van Oss SB, Wacholder A, Medetgul-Ernar K,**
808 **Bowman RW, Hines CP, Iannotta J, et al. 2020.** De novo emergence of adaptive membrane
809 proteins from thymine-rich genomic sequences. *Nature Communications* **11:** 1–18.

810 **Wang X, Chung KP, Lin W, Jiang L. 2018.** Protein secretion in plants: conventional and
811 unconventional pathways and new techniques. *Journal of Experimental Botany* **69:** 21–37.

812 **Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González RH, de Oliveira R,**
813 **Mayer KFX, Paux E, Choulet F. 2018.** Impact of transposable elements on genome structure and
814 evolution in bread wheat. *bioRxiv:* 1–18.

815 **Wicker T, Schulman AH, Tanskanen J, Spannagl M, Twardziok S, Mascher M, Springer NM,**
816 **Li Q, Waugh R, Li C, et al. 2017.** The repetitive landscape of the 5100 Mbp barley genome. *Mobile*
817 *DNA* **8:** 1–16.

818 **Yang Z. 2007.** PAML 4: Phylogenetic analysis by maximum likelihood. *Molecular Biology and*
819 *Evolution* **24:** 1586–1591.

820 **Yuan Z, Davis MJ, Zhang F, Teasdale RD. 2003.** Computational differentiation of N-terminal
821 signal peptides and transmembrane helices. *Biochemical and Biophysical Research Communications*
822 **312:** 1278–1283.

823 **Zhang H, Yang Y, Wang C, Liu M, Li H, Fu Y, Wang Y, Nie Y, Liu X, Ji W. 2014.** Large-scale
824 transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and
825 powdery mildew. *BMC Genomics* **15:** 898.

826

827