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Abstract

Background The advancement of high content optical microscopy has enabled the acquisition of very
large 3D image datasets. Image analysis tools and three dimensional visualization are critical for
analyzing and interpreting 3D image volumes. The analysis of these volumes require more computational
resources than a biologist may have access to in typical desktop or laptop computers. This is especially
true if machine learning tools are being used for image analysis. With the increased amount of data
analysis and computational complexity, there is a need for a more accessible, easy-to-use, and efficient
network-based/cloud-based 3D image processing system.
Results The Distributed and Networked Analysis of Volumetric Image Data (DINAVID) system was
developed to enable remote analysis of 3D microscopy images for biologists. DINAVID is a
server/cloud-based system with a simple web interface that allows biologists to upload 3D volumes for
analysis and visualization. DINAVID is designed using open source tools and has two main sub-systems,
a computational system for 3D microscopy image processing and analysis as well as a 3D visualization
system.
Conclusions In this paper, we will present an overview of the DINAVID system and compare it to other
tools currently available for microscopy image analysis.

Introduction1

Recent progress in microscopy technology has enabled the acquisition of large 3D volumetric data [1, 2],2

including 3D multi-spectral data, using fluorescence imaging. The analysis of such data presents several3

challenges. The first major challenge is the accurate quantification of features in objects of interest. For4

example, image analysis tools are commonly used to quantify the amount of fluorescence of different5

protein stains within each cell [3]. CellProfiler [4] and ImageJ [5], which we will discuss in more detail6

below, are examples of such popular image analysis packages frequently utilized in the biology7

community. This first challenge is exacerbated by the characteristics of biological structures, that include8

crowding of structures, blurred boundaries, and various noise types. Nonetheless, the tremendous9

expansion and versatility of machine learning and deep learning has allowed for the development of more10

powerful tools that are capable of extracting and quantifying important biological information such as11

the presence of important proteins. For example, U-Net [6] is a deep learning architecture developed12
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originally for segmentation of biomedical data and is very commonly used for segmentation of microscopy13

images. In fact, both ImageJ [5] and CellProfiler [4] have been making progress in incorporating14

U-Net [6] and other machine learning tools. In some cases manual installation of libraries is needed15

which limits use for non-expert users. In other cases, a user needs to provide a set of original microscopy16

images and corresponding groundtruth images to train the network.17

The second challenge is to obtain representative and effective microscopic visualization and imaging of18

biological structures which are vital for the analysis and understanding of related biological processes [7].19

Traditional 2D visualization often lacks important perspectives, and thus effective 3D visualization is20

needed for a more complete understanding of the data. A variety of ways have been used to achieve 3D21

visualization of an image volume, such as maximum intensity projection (MIP), three-dimension views,22

or cross-sectional views [8]. We will review the commonly used visualization tools in the next section.23

A third challenge is the computational resources needed for large 3D multi-channel image analysis.24

3D microscopy volumes often range in size from several gigabytes (GBs) to terabytes (TBs) of data, and25

consequently require more computational resources (e.g. many GPUs) than a biologist may have access26

to in typical desktop or laptop computers, especially if machine learning tools are being used for image27

analysis. With this increased amount of data analysis and computational complexity, there is a need for28

a more accessible, easy-to-use, and efficient network-based/cloud-based 3D image visualization and29

processing system. Another factor limiting the analysis of image volumes is friendly software. This can30

include unfriendly graphic user interfaces. The need to install multiple software packages, sometimes31

from a command line, can also be a burden to the user experience.32

The Distributed and Networked Analysis of Volumetric Image Data (DINAVID) system was33

developed with these objectives in mind, namely to enable server/cloud-based analysis of microscopy34

images for biologists. The goal is to provide a user-friendly environment with a simple web interface35

system that biologists can use without worrying about managing the computational resources.36

DINAVID is designed to support interactive visualization and exploration of large image volumes.37

DINAVID also supports quantitative analysis through a workflow of image pre-processing, segmentation38

using a variety of different techniques, quantification of the fluorescence of individual cells, and39

interactive data analysis. We will present an overview of DINAVID and compare it to other tools40

currently available for microscopy image analysis below.41

Review of Existing Systems42

We overview below some of the existing systems and tools that are available for a user to analyze43

volumes. Similar comparisons have been made in a review article [26] for freely available software tools44

for single cell analysis. We will differentiate the various systems not only by their capabilities to analyze45

3D volumes but also what biologists would need to manage using the systems tools with emphasis on46

whether the tools are network-based or require download and installation.47

“Local” Image Analysis Systems48

A “local” system is a set of tools that a user would need to install on their local computer to use. Open49

source local image processing packages are preferred by many biologists. Some tools only support 2D50

visualization of 3D volumes. By 2D visualization, we mean that 3D data can be viewed as sequential51

slices in 2D as orthogonal planes. Examples of these are CellProfiler [4, 19], the Volumetric Tissue52

Exploration and Analysis tool (VTEA) [3], and Cellpose [20]. Since cross-sectional viewing could not53

display the objects of interest in 3D, a user needs to observe back and forth along the cross-sections to54

estimate the 3D surface. Thus, true interactive 3D rendering is preferred.55

Examples of free-to-use software that supports interactive 3D rendering include Voxx [27], Agave [18],56

and Open Graphics Library (OpenGL) [28]-based systems such as ImageVis3D [17]. Imaris [21] is a57

commonly used commercial software tool used for microscopy image analysis and visualization. A58

comparison of local-based systems is summarized in Table 1. ImageJ [5] does not support 3D59

visualization natively but provides support for plugins for additional functionality, examples of which60

2/15

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491511doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491511
http://creativecommons.org/licenses/by-nc/4.0/


Table 1. Comparison of Microscopy Image Analysis Tools

Method Local/
Network

2D/3D
Visual-
ization

Upload/
Show
User’s
Volume

Image
Processing
Tools

Segment
Objects

Save
Results

Freeor
Commercial

Allen 3D
Cell

Viewer [9]
Net Yes/Yes No No No No Free

Zeiss
Apeer

Core [10]
Net Yes/Yes Yes Yes No Yes Free

WIPP [11] Net Yes/No Yes Yes Yes Yes Free
BisQue [12] Net Yes/Yes Yes Yes Yes Yes Free
DeepCell

Mes-
mer [13]

Net Yes/No Yes No Yes Yes Free

NucleAIzer [14] Net Yes/No Yes No Yes Yes Free
bioWeb3D [15] Net No/Yes Yes No No No Free

Neuroglancer [16] Net Yes/Yes No No No No Free
ImageVis3D [17] Local Yes/Yes Yes No No No Free

Agave [18] Local Yes/Yes Yes No No No Free
CellProfiler [4, 19] Local Yes/No Yes Yes Yes Yes Free

VTEA [3] Local Yes/Yes Yes Yes Yes Yes Free
Cellpose [20] Local Yes/No Yes Yes Yes Yes Free
Imaris [21] Local Yes/Yes Yes Yes Yes Yes Commercial

ClearVolume [22] Local Yes/Yes Yes Yes No No Free
Napari [23] Local Yes/Yes Yes Yes Yes Yes Free

BigDataViewer [24] Local Yes/No Yes Yes No No Free
ilastik [25] Local Yes/Yes Yes Yes Yes Yes Free
DINAVID Net Yes/Yes Yes Yes Yes Yes Free

include the 3D Viewer plugin [29] and BigDataViewer [24]. Other available tools that do support 3D61

visualization include ClearVolume [22], Napari [23], and ilastik [25].62

These systems all require that the software be downloaded, installed, and maintained on a local63

machine.64

“Network-Based” Image Analysis Systems65

In contrast to “local” systems, by a network-based (or cloud-based) system we mean a system that allows66

a user to process and visualize 3D volumes remotely. This does not require that they install anything on67

their local computational resources. Users access the system via a web interface. Examples of68

network-based systems include Apeer [10] from Zeiss, BisQue [12], DeepCell Mesmer [13], NucleAIzer [14],69

3D Cell Viewer [9] by the Allen Cell Institute, BioWeb3D [15], and Neuroglancer [16]. In addition, for70

the purpose of facilitating the analysis of large size image data, the Web Image Processing Pipeline71

(WIPP) [11] was developed by the National Institute of Standards and Technology (NIST). It was72

recently reported that plugins for cloud-based microscopy image analysis [30] have been developed for73

WIPP. A comparison of network-based systems, along with the local systems, can be found in Table 1.74

Overall, most network-based solutions lack the capability of image analysis while many local-based75

solutions are not as versatile in their visualization functions. DINAVID bridges the gap between these76

two solutions by providing both intuitive visualization tools and several image processing, segmentation,77

and quantitative analysis capabilities.78
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Figure 1. Block diagram of the DINAVID system
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Architecture/Functionalities of DINAVID79

The basic components of the DINAVID system are shown in Figure 1, which includes volume uploading,80

visualization, pre-processing, segmentation, and quantification. We will discuss each of the components81

in this section.82

File Uploading and Downloading83

DINAVID supports the upload of a single 3D composite .tiff volume. The maximum number of channels84

supported is 19. Currently DINAVID supports volumes of up to 200GB. A user may also download their85

segmentation and quantification results. Upload/download speed is governed by the user’s network86

connection. The currently deployed version of DINAVID is connected to Internet2 [31].87

2D and 3D Visualization88

DINAVID supports both 2D and 3D visualization. As noted above by “2D visualization of 3D volumes”,89

we mean that a 3D volume can be viewed as sequential slices in 2D as orthogonal planes, and by 3D90

visualization we mean true interactive volume rendering. In the case of 2D visualization DINAVID91

displays a slice from a 3D section of the selected channels. Each channel in a 2D slice is assigned a92

default color. Alternatively, each user can assign a color to each channel individually from a provided93

color table. The maximum possible intensity in each channel is assigned to the selected color, while lower94

intensity values are assigned to colors that are scaled according to the ratio of their relative intensity95

values to the maximum possible intensity. A maximum projection of each channel is then used to96

generate the final color image that is displayed.97

Users are able to scroll through single slices of a 3D volume. Users are also able to select a98

rectangular subregion to view the selected region at a higher magnification.99

DINAVID also has the capability of interactively adjusting the gamma, brightness, and offset for each
of the individual channels, defined by:

IAdjusted(x, y) = max(min(B × Iorig(x, y)

255

γ

+ C), 0), 1)× 255 (1)

where B, C, and γ denote the brightness, offset and gamma, respectively, and Iorig(x, y) is the intensity100

of the image before adjusting B, C, and γ.101

For 3D visualization, DINAVID is able to render the subregion, selectable by the user, as a 3D102

alpha-blended volume rendering. To facilitate interactive rendering, the size of the subregion is limited,103

and users must select 3 of the available channels to render as the 3 channels of an RGB volume. In104

addition to the brightness, offset, and gamma controls as described above, the user is also able to adjust105

the density of the volume rendering.106

Finally, users can hide and show the panels displaying parameter settings to maximize the107

visualization region of a microscopy volume.108

Image Pre-Processing109

DINAVID supports many pre-processing operations. A user can select any combination of the operations110

or repeat them as needed. The main goal in this step is to reduce noise and to eliminate background111

effects. For a detailed description of the available pre-processing steps, please refer to Appendix B.112

Segmentation113

Since cell boundaries are typically poorly defined in tissues, one approach is to segment nuclei rather114

than cells [3]. Biologists then characterize and classify cells on the basis of the fluorescence in the115

user-defined regions surrounding the nuclei [32]. DINAVID adopts this approach for segmentation. The116

nuclei segmentation tools currently available are 3D watershed [33], 2D watershed with joining [3], and a117
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deep learning-based method known as DeepSynth [7]. Currently, five pre-trained versions (five inference118

models) of DeepSynth [7] are available for users in DINAVID.119

Since some pre-processing operations and segmentation require long execution times, working directly120

on an entire image volume is often impractical or time consuming, especially for large volumes. A better121

practice is to first test the analysis on a sub-volume that shows results quickly before proceeding to122

process an entire volume. DINAVID is equipped with a previewing function for the pre-processing and123

segmentation steps that permits the previewing of the image processing or segmentation steps on user124

selected nuclei channels and regions of interest. This allows for users to rapidly test different image125

processing and segmentation settings.126

Quantification127

As described previously, nuclei rather than cells are segmented as the cell boundaries are typically poorly128

defined in tissues [3]. DINAVID can examine the voxels from different channels in a user-defined region129

surrounding each nucleus and then estimates and visualizes multiple statistics. We define “the region130

around the nucleus” of each nucleus as the voxels that are at a user-defined distance away from the131

boundary of the nucleus. Using the segmented nuclei masks, voxels surrounding each nucleus are132

extracted using morphological dilation. Nuclei masks of each cell are dilated by a user-defined size. The133

difference between the resulting dilated mask and the original nuclei mask represents the region around134

the nucleus. The statistics include minimum intensity, maximum intensity, mean intensity, standard135

deviation of intensity, sum of intensity, and number of voxels, for each channel in the user-defined region.136

These statistics are entered into a downloadable spreadsheet for external analysis or can be displayed as137

2D scatter plots where each point on the scatter plot represents a single nucleus. The axes of the scatter138

plot can be set to any two of the six measured statistics of any channel.139

DINAVID allows users to draw a rectangular region of interest (ROI) in the image volume, the nuclei140

within this ROI are then displayed in the scatter plot. Alternatively, users can also draw a rectangular141

ROI in the scatter plot, and the relevant nuclei will be highlighted in the original image volume. This142

permits users to be able to determine the quantity and location of a specific type of cell inside the143

imaged biostructure [3, 34], based on the six statistics.144

Using DINAVID145

Users interact with DINAVID via a web interface and are required to log in using the credentials that146

are supplied to them upon request. The user interface is easy to use and understand and is customizable.147

A user does not need to download and maintain components of DINAVID since all processing and data148

handling is done on the server/cloud. Users can upload an image volume for processing and visualization.149

Figure 2 shows an example DINAVID interface for selecting the parameters for 2D visualization. After150

the user chooses the desired channel with corresponding color to visualize a volume in Figure 2(a), the151

changes in brightness, gamma, and offset to the images will be reflected in shown Figure 2(b). Figure152

2(c) depicts the menu of processing steps that the user may choose to apply to the uploaded image. The153

number of steps and the sequence of processing is customizable. Figure 2(d) shows an example of a slice154

where the background was subtracted using median filtering. Figure 3 shows an example interface for 3D155

rendered visualization with a GUI for parameter tuning appearing on the right. The user can adjust the156

rendered volume and its appearance interactively in real-time. An example quantitative analysis after157

nuclei segmentation is shown in Figure 4. Using the segmentation result obtained from watershed [33], a158

scatter plot is generated by specifying the statistics, which can be minimum intensity, maximum159

intensity, mean intensity, standard deviation of intensity, sum of intensity, or number of voxels, to plot160

on the vertical and horizontal axes. The corresponding nuclei from the selected region of interest are161

then overlaid on the original image.162
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Figure 2. Examples of 2D image processing and visualization in DINAVID (a) Panel to adjust
visualization parameters, (b) 2D Image visualization, (c) Panel to select image processing steps and
adjust parameters, (d) An example of a slice after a median background subtraction operation

Conclusion163

In this paper, we described the DINAVID system that was designed and developed, using open source164

tools, for the analysis and visualization of 3D microscopy volumes. The goal is to provide a system165

capable of analyzing large 3D microscopy volumes using sophisticated machine learning methods that166

biologists can use without worrying about managing computational resources. The results can also be167

visualized in 2D or 3D. We also compared DINAVID to existing systems and feel that the approaches we168
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Figure 3. Example of a 3D Visualization. Users are able to adjust the brightness, gamma, and offset
of each of the displayed channels in RGB. Users can also zoom in and rotate the volume.

have taken eases the burden on users and provides them with an extensible set of tools for 3D volume169

analysis. The source code and user access to DINAVID are available upon request.170

In the future we will deploy more image analysis tools on DINAVID including additional machine171

learning architectures for microscopy image analysis. One example that can be added in the future is the172

ability to provide a way for a user to upload training data into DINAVID so that the machine learning173

models can be retrained. We also plan to add features to DINAVID to process more types of microscopy174

image data, such as cell classification, transformer based segmentation, and supporting additional175

bio-imaging formats beyond 3D composite TIFFs or collections of 2D slices. We are also investigating176

adding online transfer learning tools that will allow users to investigate their own types of data by177

training machine learning methods.178
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Figure 4. Examples of quantitative image analysis in DINAVID with scatter-plot and plotting gated
nuclei (a) Example segmentation using watershed [33], (b) Panel for quantitative scatter plot settings, (c)
Scatter plot of nuclei, (d) Mapping of gated nuclei.

9/15

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491511doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491511
http://creativecommons.org/licenses/by-nc/4.0/


Appendix

Appendix A: DINAVID System: The Details Inside

One can request access to the DINAVID system by sending an email to
imart@ecn.purdue.edu. The DINAVID source code package is also available upon request to

imart@ecn.purdue.edu. The source code package includes installation scripts and a list of the
appropriate dependencies. Several tutorials are also included along with a complete description of how
the DINAVID system works.

DINAVID supports the integration of new image analysis methods for both pre-processing and
segmentation. Note if a machine learning tool is to be added, DINAVID does not support training
techniques and it is assumed that a pre-trained model (inference model) is to be added. New image
analysis methods can be added to DINAVID as long as they are implemented in Python and properly
modified so that the input and output directories are consistent with DINAVID. Any inputs or
parameters that are user-provided need to be added as an option to the user interface. The source code
package has complete instructions for adding new functions to DINAVID.

The hardware that we have for the current version of DINAVID is as follows:
Hardware Configuration

• CPU: Intel Core i7-6900K

• RAM: 128GB

• GPU: NVIDIA Titan XP 12GB RAM per GPU (4 GPUs)

• Storage Driver: 1TB SSD + 10TB HDD

Note that DINAVID system can also be used with a cheaper GPU card for the image analysis.

Appendix B: Description of Available Pre-Processing Methods

Here we describe the existing pre-processing methods available in the current version of DINAVID. For
Gaussian filtering, used to smooth or blur an image, we allow the user to adjust the filter kernel size
using the parameter σ that controls the width of Gaussian kernel. The median filter can also be used to
remove noise from the image by adjusting the window size of the kernel. Median background subtraction
is used to remove the background from an image by subtracting a median filtered image from the
original image. Thresholding is also available including simple thresholding and Otsu’s method [35].
Clamping removes low intensity values in the image. Pixels whose intensity is lower than the threshold
are set to 0, while pixels whose intensity is greater than the threshold remains the same.

Two dimensional morphological operations for binary images, such as erosion, dilation, opening, and
closing, are available to determine how local content of the image is shaped relative to a given flat
structuring element [36]. The structuring element is defined by its shape and size. In addition, rolling
ball [37] is one of the options made available for background subtraction. We use a Python version
implemented by [38], wherein users can adjust the radius of the ball used for background subtraction.
All functions, with the exception of rolling ball subtraction, are implemented via OpenCV [39].

Availability and requirements

Project name: DINAVID
Project home page: https://engineering.purdue.edu/~micros/
DINAVID home page: https://photon.ecn.purdue.edu/~micros/

To request an account to use the DINAVID system please send an email to:
imart@ecn.purdue.edu.

Source Code: The DINAVID source code is available upon request to:
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imart@ecn.purdue.edu
Operating system: Linux
Programming language: Python, Java, JavaScript, HTML, CSS
Other requirements: Python Libraries Required: amqp, asgiref, asn1crypto, billiard, celery, certifi,
cffi, chardet, click, click-didyoumean, click-repl, cryptography, cycler, Cython, dataclasses, decorator,
Django, django-jquery, funcsigs, future, h5py, idna, imageio, importlib-metadata, iniconfig, intel-openmp,
kiwisolver, kombu, ldap3, matplotlib, mkl, mod-wsgi, networkx, numpy, opencv-python, Pillow, pip,
prompt-toolkit, pyasn1, pycparser, pyparsing, python-dateutil, pytz, PyWavelets, scikit-image, scipy,
setuptools, six, sqlparse, tbb, tifffile, torch, torchfile, torchvision, typing-extensions, vine, wcwidth, wheel,
zipp
License: The source code is distributed under Creative Commons license
Attribution-NonCommercial-ShareAlike - CC BY-NC-SA

The source code is available on request to imart@ecn.purdue.edu. The source code package includes
installation scripts and list of the appropriate dependencies.
Any restrictions to use by non-academics: You may not use the source code for commercial
purposes as determined by Creative Commons licenses CC BY-NC-SA as indicated above.

Abbreviations

DINAVID - Distributed and Networked Analysis of Volumetric Image Data; 3D - Three Dimensional; 2D
- Two Dimensional; MB - Megabyte; GB - Gigabyte; TB - Terabyte; GPU - Graphics Processing Unit;
WIPP - Web Image Processing Pipeline; NIST - National Institute of Standards and Technology; CNN -
Convolutional Neural Network; WebGL - Web Graphics Library; Mb/s - Megabit per Second; HTML -
Hypertext Markup Language; CSS - Cascading Style Sheets; AJAX - Asynchronous JavaScript and
XML; ROI - Region of Interest; GUI - Graphical User Interface;
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