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ABSTRACT 

Motivation 

The cost reduction in sequencing and the extensive genomic characterization of a wide variety 

of cancers is expanding the use of tumor sequencing approaches to a wide number of research 

groups and to the clinical practice. Although specific pipelines have been generated for the 

identification of somatic mutations, their results usually differ considerably, and a common 

approach in many projects is to use several callers to achieve a more reliable set of mutations. 

This procedure is computationally very expensive and time-consuming, and it suffers from the 

same limitations in sensitivity and specificity as other approaches. Expert revision of mutant 

calls is therefore required to verify calls that might be used for clinical diagnosis. Machine 

learning techniques provide a useful approach to incorporate expert-reviewed information for 

the identification of somatic mutations. 

Results 

We have developed RFcaller, a pipeline based on machine learning algorithms, for the 

detection of somatic mutations in tumor-normal paired samples. RFcaller shows high accuracy 

for the detection of substitutions and indels from whole genome or exome data. It allows the 

detection of mutations in driver genes missed by other approaches, and has been validated by 

comparison to deep sequencing and Sanger sequencing. The pipeline is able to analyze a whole 

genome in a small period of time, and with a small computational footprint. 

Availability and implementation 

RFcaller is available at GitHub repository (https://github.com/xa-lab/RFcaller) and DockerHub 

(https://hub.docker.com/repository/docker/labxa/rfcaller). 

Contact 

xspuente@uniovi.es 

Supplementary information 

Supplementary data is available online. 
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Introduction 

During the last decade, the introduction of Next Generation Sequencing (NGS) has transformed 

the study of cancer, with the identification of hundreds of novel alterations driving tumor 

transformation1. Major international cancer projects such as the International Cancer Genome 

Consortium (ICGC)2 and The Cancer Genome Atlas (TCGA)3 have expanded the repertoire of 

genes mutated in cancer, as well as the biological processes involved in it4–7. The continuous 

reduction in sequencing costs, together with the clinical significance of certain mutations for 

prognosis or treatment decisions, has transformed the used of NGS from large sequencing 

consortia to small size laboratories and clinical centers. However, the utility of NGS relies on 

the availability of somatic mutation calling pipelines with enough sensitivity to detect most 

somatic mutations, and high specificity to prevent the calling of artifacts or germline variants 

as mutations. 

Somatic single nucleotide variants (SSNVs) and small insertions/deletions (indels) constitute 

the most abundant type of mutation in tumor genomes, and different tools have been developed 

in order to call somatic mutations from tumor-normal paired samples. Most state-of-the-art 

variant callings are based in traditional statistical methods, such as CaVEMan8, MuTect29, 

MuSE10, Strelka211, Pindel12 or SMuFin13 among others. However, there is no consensus on 

the mutations detected by each caller, with a large number of private calls specific for each 

method. These differences are mainly due to the ability of each program to deal with the tumor 

heterogeneity and purity, normal contamination, sequencing and mapping artifacts, coverage, 

as well as different downstream filtering steps14. Due to the advantages of some pipelines to 

detect specific bona fide mutations, some collaborative projects such as the PanCancer 

Analysis of Whole Genomes (PCAWG)5 or the TCGA PanCancer Atlas MC315, do not use a 

single caller but a combination of algorithms, keeping the intersection between them as the set 

of mutations that is more reliable. Despite the utility of this multi-pipeline approach to generate 

a consensus set of mutations, this strategy has a very large computational cost, demanding large 

servers and consuming up to days for the analysis of a single case. 

In addition to classical statistical-based approaches, during the last years there has been an 

expansion in the use of machine learning strategies for different purposes16,17, including the 

development of new variant calling tools. The initial use of these methods was mainly focused 

on refinement, taking a list of potential variants extracted with other pipelines to filter and 

select a final set of mutations18–20. However, these approaches still have a negative influence 
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on computing time and reproducibility. On the other hand, recently developed pipelines use 

other machine learning approaches21,22 or even neural networks23,24 to directly perform variant 

calling for somatic mutations, although in some cases the computing or installation 

requirements are too complex for a medium-sized laboratory or institution. 

Here, we describe RFcaller, an accurate, fast, light computational requirements and easy-to-

use tool that uses read-level features together with machine learning strategies to identify 

somatic mutations (SSNVs and indels) from normal-tumor paired samples. Our pipeline has 

been trained for whole genome sequencing (WGS) data and its results have been compared 

with those obtained by the PCAWG, being very similar to those resulting by combining several 

tools. 
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Materials and methods 

Selection of somatic mutations 

For the development of the algorithms, two different set of mutations were used, a training set 

and a testing set. To build them, we extracted with bcftools25 all possible somatic mutations 

from four WGS mantle cell lymphoma (MCL) samples sequenced at 30X coverage (M032 and 

M439 for training; M065 and M431 for testing). For the initial training, previously published 

mutations26 were defined as true positive mutations. With each iteration, all discordant calls 

were manually reviewed by three experts, through visual inspection, and the database was 

updated accordingly (Supplementary Table S1). This procedure resulted in the identification 

of novel bona fide mutations that would constitute false negatives in the initial set, as well as 

the rejection of certain mutations, such as artifacts or germline mutations present in the original 

dataset, that would represent false positives, respectively. After several rounds of training the 

algorithms and curating the set of mutations, all discordant variants had already been examined, 

which allowed us to obtain a reliable dataset for training and testing the final version of the 

algorithms. 

Algorithm training 

To train the algorithms, we used the training set which contained 66,096 potential SSNVs 

(Supplementary Table S2) and 931 indels (Supplementary Table S3) for which read-level 

features were previously extracted (Supplementary Table S4). These data were used as input 

by TPOT27 (v0.11.1), with the default configuration of the TPOTRegressor function, to find 

the best pipeline to train the regression algorithms. As a result, an extremely randomized tree 

“Extra-Tree” Regressor for SSNVs and a Random Forest Regressor for indels were built. In 

both cases, a transformation of the data was carried out before the regression using the 

StackingEstimator function. 

Once we had the algorithms, the test dataset, with 63,948 SSNVs and 2,506 indels 

(Supplementary Table S5), was used to select the best cutoffs for both pipelines. With this 

purpose, the result from RFcaller was filtered to get the “QUAL” field for those mutations that 

passed all filters (Supplementary Table S6). This parameter is calculated considering the initial 

quality from bcftools and the regression value for SSNV and indels, and only the regression 

value for homopolymer indels (polyindels): 

𝑄𝑈𝐴𝐿ௌே௏  ൌ 𝑏𝑐𝑓𝑡𝑜𝑜𝑙𝑠 𝑞𝑢𝑎𝑙 ∗ 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒ଶ 
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𝑄𝑈𝐴𝐿௜௡ௗ௘௟ ൌ 𝑏𝑐𝑓𝑡𝑜𝑜𝑙𝑠 𝑞𝑢𝑎𝑙௥௘௚௥௘௦௦௜௢௡ ௩௔௟௨௘ 

𝑄𝑈𝐴𝐿௣௢௟௬௜௡ௗ௘௟ ൌ 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 

Then, ROC curves were generated and AUC metrics were calculated using the R package 

OptimalCutpoints28 with the MaxEfficiency method. False/True Positive/Negative ratios were 

calculated using the formulas described in the ROCR29 R package. 

Computational cost 

To compare the performance of RFcaller with other state-of-the-art tools, the docker container 

corresponding to the four callers used by PCAWG for the detection of SSNVs was downloaded 

(https://dockstore.org/organizations/PCAWG/collections/PCAWG). After minor fixes of 

broken links in the Sanger and DKFZ tools, all of them were run with the default parameters 

for one random donor. In case the tools allowed to choose the number of threads and RAM to 

be used, 20 threads and 200 Gb of memory were specified. In addition, because RFcaller allows 

multiple samples to be run simultaneously, four cases were run in parallel using the default 

parameters to calculate the computational cost. To improve data interpretation, some axes were 

broken using the R package ggbreak30. 

PCAWG analysis 

To validate that the trained models are applicable for liquid and solid tumors and to compare 

the results to those obtained by the PCAWG pipeline, RFcaller was run for the CLLE-ES and 

BRCA-EU studies, with an average tumor coverage of 30X and 50X, respectively, and 30X 

for normal samples in both. PCAWG BAM files were downloaded from the “collaboratory” 

repository using the score-client program (Supplementary Table S7). RFcaller was run with its 

default parameters for all samples and the obtained results were combined into a single VCF 

file for each study. A custom panel of normals was used to annotate variants in complex 

regions. The set of mutations detected by the PCAWG pipeline were extracted from the 

controlled consensus callsets for SSNV/Indel. To analyze coding and non-coding mutations, 

the Variant Effect Predictor (VEP) tool31 was launched for both datasets using the following 

options: --offline --format vcf --dir_cache homo_sapiens –-symbol --

force_overwrite --total_length --numbers --ccds --canonical --biotype --pick 

--vcf --assembly GRCh37. 

To be able to compare both set of mutations in the most accurate manner: (i) dinucleotides and 

trinucleotides from RFcaller were split as this feature is not available for PCAWG, (ii) RFcaller 
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mutations located in alternative chromosomes and PCAWG’s variants that appear in our 

custom dbSNP were removed and (iii) only mutations that passed all filters were studied. For 

this comparison, a mutation was considered as subclonal when its variant allele frequency 

(VAF) was lower than 0.15, in accordance with the sensitivity of Sanger sequencing.  

For the purpose of calculating the precision and recall for both pipelines in each study, 1% or 

at least 50 discordant mutations from each section were manually reviewed by a panel of 

experts. Thus, a total of five blocks were checked: mutations detected only by RFcaller and 

mutations detected between one and four of the callers used by the PCAWG, as the ratio of 

false positives may be different between them. The results obtained were then extrapolated to 

the whole set of mutations in order to calculate the parameters needed to define precision and 

recall for both pipelines. These measures were calculated with the prediction and performance 

functions of the R package ROCR29. 

Additionally, two bases upstream and downstream of the mutations were selected to 

reconstruct the context and generate a matrix with which extract the mutational signature of 

RFcaller and PCAWG-private mutations and those detected by both pipelines. The sigminer32 

R wrapper (nrun = 300 and refit = TRUE) was selected to run the SigProfilerExtractor 

framework33. 

Finally, deep sequencing data generated by previous studies34,35 for some CLLE-ES cases 

(Supplementary Table S8) were used to analyze possible subclonal mutations in driver genes. 

In order to compare both results, only mutations in CLL driver genes and donors analyzed by 

both WGS and deep sequencing were selected. In addition, mutations detected by deep 

sequencing were removed from the analysis if they were germline or there was insufficient 

coverage or reads supporting the mutation by WGS (Supplementary Table S9). 

Sanger validation 

To perform verification of private calls obtained from the analysis of CLLE-ES cases, five and 

two mutations detected only by RFcaller and PCAWG, respectively, were chosen to be verified 

by Sanger sequencing. These positions were chosen because they appeared in known driver 

genes for CLL and because tumor and/or normal DNA was available. The list of primers and 

melting temperatures are listed in Supplementary Table S10. 

Exome analysis 
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To test the performance of RFcaller on exome sequencing data, we selected five CLLE-ES 

cases previously analyzed by WGS and for which exome data were available (Supplementary 

Table S8). RFcaller was run with default parameters and LIKELY_GERMINAL variants were 

removed. Only mutations within the targeted regions of the exome (Agilent – SureSelect 

Human All Exons V4) were taken into account. Finally, for those mutations not detected by 

both methods, total coverage and number of mutated reads were extracted in order to determine 

the cause for loss. 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2022. ; https://doi.org/10.1101/2022.05.11.491496doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491496
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

Results 

RFcaller workflow 

An overview of the RFcaller’s workflow is 

provided in Figure 1. The pipeline takes as 

input the BAM files from the normal-tumor 

paired samples and starts performing a basic 

variant calling using bcftools (v1.10.2) with 

the -P option set to 0.1 to enable calling of 

low frequency variants. Then, indels are 

normalized, and common SNPs (dbSNP 

v153), and variants within five base pairs of 

an indel, are removed. To increase the speed 

of the pipeline, low quality calls are filtered 

(<15 for SSNVs and <40 for indels). 

Remaining mutations are divided into three 

different files to be processed 

independently: SSNVs, short-indels (<7bp) 

and long-indels (≥7bp). 

SSNVs and indels have a specific pipeline 

where read-level features are extracted for those mutations that meet basic requirements that 

can be customized, such as minimum coverage (≥7), maximum number of mutated reads in 

normal (≤3 for SSNVs and ≤2 for indels) or a minimum number of mutant reads in tumor (≥3 

for SSNVs and ≥4 for indels). These filters were chosen because positions that fail to meet 

these requirements cannot be confidently classified as bona fide mutations from the available 

data. Once all features have been extracted, a CSV file is generated to be used by the algorithm. 

The result is a VCF file with mutations that have passed the threshold for the “QUAL” field. 

To classify mutations that might be germinal but have passed the previous filters, a 95% 

confidence interval is applied to calculate the expected number of mutant reads in normal, 

considering: the VAF of the mutation in tumor sample, the expected contamination of tumor 

in normal sample defined by the user and the normal coverage. Thus, if the number of mutated 

reads in normal is greater than the expected, the position is labeled as 

“LIKELY_GERMINAL”.  

Figure 1. Flowchart of the RFcaller pipeline. 
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Finally, the RFcaller pipeline for SSNVs searches for dinucleotides or trinucleotides mutations 

within the results. With this step, if two mutations are found together in the same allele, they 

are merged into a single mutation to be accurate when predicting its functional effected, a step 

that is usually missed by most commonly used somatic callers. 

 

RFcaller training 

For the initial training step, previous results from the genomic analysis of two mantle cell 

lymphomas26 were used to annotate the set of mutations, and RFcaller was trained with this 

initial dataset. The obtained results were compared with those used for training, and all 

discordant positions were manually reviewed to improve the accuracy of the dataset. These 

steps were repeated until all discrepancies were classified by an expert panel. After that, 2,208 

and 2,901 calls were reviewed for training and testing, respectively, resulting in a high quality 

set of mutations to train and test the final versions of the algorithm (Table1). 

Table 1. Number of total and manually reviewed mutations used for training and testing RFcaller 
TP: Number of True Positive mutations; TN: Number of True Negative mutations 

 
Training set Test set 

SSNV Indel SSNV Indel 

 TP TN TP TN TP TN TP TN 

Manually reviewed 915 730 321 242 924 959 528 490 

Total 8,362 57,734 504 427 6,909 57,039 696 1,810 

 

In order to select the best cutoff for the pipeline, SSNVs, indels and homopolymer indels were 

considered independently as they represent mutations whose detection is influenced by 

different features. The separation between both types of indels (isolated or within a 

homopolymer trait) was introduced due to the bias of the initial calling performed by bcftools 

against indels within homopolymeric tracts, giving very low scores to mutations that otherwise 

appear to be real. Furthermore, different formulas were considered to calculate the “QUAL” 

threshold used by RFcaller (Supplementary Table S11).  

Although the RFcaller score provided high accuracy, we observed that by combining the 

regression obtained by RFcaller with the score given by bcftools, the accuracy was improved 

over each one independently, suggesting both scores complement each other. We did not 

observe major differences between formulas for SSNVs and indels according to the area under 

the curve metric (AUC), so we selected the formulas with the highest F1 score. Thus, the 
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cutoffs were 10.726 for SSNVs, 32.1418 for indels and 0.7723 for homopolymer indels 

(Supplementary Figure S1), which achieved 1.3%, 7.18% and 8% of false positive mutations, 

respectively. We observed that many of the false positives belonged to complex regions like 

microsatellites or GC-rich sites, appearing also in normal samples from other donors. 

Therefore, we used a panel of normals to filter these calls and improve the accuracy of the 

pipeline. 

In terms of the number of variables selected, only 16 and 27 read-level features were considered 

for SSNVs and indels respectively, which helped us to avoid overlapping features that can be 

counterproductive and lead to overfitting. Another important aspect we considered during the 

selection of these features was the difficulty by which they can be extracted, resulting in a fast 

pipeline for medium-size servers. Thus, the analysis of four WGS tumor-normal paired samples 

using 20 threads consumes only ~5 GiB of RAM and takes ~3 hours/case, while using only 10 

processors the analysis is extended up to ~4.5 hours/case (Supplementary Figure S2d). 

When RFcaller was compared with the callers used by PCAWG for the detection of SSNVs, 

only the muse-variant-caller (~2.5 h) was faster than RFcaller (~4.8 h) (Supplementary Figure 

S2), while sanger-variant-caller was the slowest, taking more than 70 h for a single case. In 

terms of memory consumption (RSS), mutect-variant-caller is the most demanding, consuming 

between 100 GiB and 250 GiB during half the time it is running (~5 h). In this case, RFcaller 

and muse-variant-caller consume the least memory with an average of 5 GiB. It is important to 

note that although we have used the SSNVs specific callers, all of them, except MuSE, also 

detect indels, which would imply that RFcaller is the fastest and least resource consuming tool 

for the simultaneous calling of SSNVs and indels. 

 

Validation of RFcaller pipeline: PCAWG analysis 

To test RFcaller against a validated set of cancer WGS cases we used data from the PCAWG 

study belonging to two different projects (CLLE-ES and BRCA-EU), representative of liquid 

and solid tumors, with a total of 89 and 75 cases, respectively (Supplementary Table S8). 

RFcaller results were compared to those mutations labeled as “PASS” by the PCAWG 

mutation calling pipeline. Due to the inherent differences between SSNVs and indels, we 

performed each analysis independently. 
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- Somatic Single Nucleotide Variants 

After merging RFcaller and PCAWG “PASS” mutations, we observed that ~70% of SSNVs 

were detected by both pipelines in both studies. However, and even though the number of 

shared mutations was almost the same, for samples from the CLLE-ES project 11% of 

mutations were detected only by the PCAWG pipeline vs. 16.3% mutations specifically 

detected by RFcaller. For BRCA-EU-derived mutations, only 4.4% mutations were RFcaller-

specific, vs. 25.4% for PCAWG pipeline (Figure 2a). A detailed analysis of those differentially 

called mutations revealed that the mean VAF for SSNVs detected by both pipelines was 0.41 

and 0.27 for CLLE-ES and BRCA-EU, respectively (Figure 2b). However, those detected by 

the PCAWG pipeline but not RFcaller had a mean VAF of 0.16 and 0.10 for CLLE-ES and 

BRCA-EU, respectively (Figure 2b), suggesting that they constitute subclonal mutations. In 

fact, only 29% and 50% of them could be detected by more than two callers in the PCAWG 

pipeline for CLLE-ES and BRCA-EU, respectively (Figure 2c). Furthermore, those SSNVs 

detected by RFcaller but not the PCAWG pipeline had a mean VAF of 0.46 for CLLE-ES and 

0.28 for BRCA-EU, similar to those detected by both pipelines, suggesting that they constitute 

clonal mutations detected by RFcaller. Some of them showed minor tumor in normal 

contamination (1-3 mutant reads), common in hematological tumors, resulting in most callers 

missing these true positive somatic mutations, while RFcaller is able to retain most of them. 

 

Figure 2. Summary of mutations detected by PCAWG and/or RFcaller pipelines for SSNVs and indels. a,d) Classification of 
mutations according to the pipeline that can detect them. Mutations are divided in clonal (VAF≥0.15) and subclonal 
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(VAF<0.15) mutations. b, e) Distribution of the variant allele frequency of the mutations identified by both pipelines, or 
specifically by RFcaller or PCAWG pipeline. c, f) Number of callers detecting each of the PCAWG-private mutations.  

 

To explore the set of discordant mutations between both pipelines, we randomly selected 1-2% 

of the pipeline-private calls (n=776 for CLLE-ES and n=1233 for BRCA-EU) to be manually 

reviewed by a panel of experts (Supplementary Table S12 and Supplementary Figure S3). As 

expected, PCAWG-specific variants detected by four callers are more precise than those 

identified by two tools (Table 2). Surprisingly, the difference in precision for RFcaller-private 

mutations between studies was very high, 98.5% for CLLE-ES and 74.5% for BRCA-EU, 

probably reflecting the fact that RFcaller was trained using a hematological tumor. However, 

despite the apparently higher number of false positives, RFcaller-private calls only represent 

18.3% and 5.9% of the total number of SSNVs detected by RFcaller in the CLLE-ES and 

BRCA-EU projects, respectively. Considering the observed number of false positive calls 

within these sets, the real precision of RFcaller calls for SSNVs is 99.7% and 98.5% for CLLE-

ES and BRCA-EU, respectively, while the precision of the PCAWG pipeline is 97.3% for both 

studies (Figure 3). 

Table 2. Total number of false positive private SSNVs extrapolated after manual revision  
TP: Number of True Positive SSNVs; FP: Number of False Positive SSNVs 

 CLLE-ES BRCA-EU 

 SSNVs TP FP Precision SSNVs TP FP Precision 

2 callers 20956 16097 4859 76.81% 50823 42804 8019 84.22% 

3 callers 5715 5001 714 87.50% 28490 26469 2021 92.91% 

4 callers 2729 2519 210 92.31% 23580 23080 500 97.88% 

RFcaller 41772 41153 619 98.52% 17699 13189 4510 74.52% 

 

To further explore these private mutations, we extracted the mutational signatures 

independently for the set of mutations detected by both pipelines, as well as for those specific 

for each caller (Supplementary Figure S4). We could see that in CLLE-ES study, both 

RFcaller-private SSNVs and those common to both pipelines contained the same signatures 

(SBS1, 5, 8 and 9), while PCAWG-private SSNVs shared 3 signatures (SBS1, 5 and 8), missed 

one (SBS9) and contained two signatures not detected in the common set (SBS23 and 51), 

although affecting a limited number of samples. While on the BRCA-EU study, both pipelines 

missed some signatures present in the common set (2 PCAWG and 4 RFcaller), and both 

detected one and two signatures, respectively, not present in the common. Together, these 
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results suggest that the private mutations detected by RFcaller constitute bona fide calls, with 

a similar profile to those detected by both pipelines. 

 

Figure 3. Accuracy of RFcaller and PCAWG pipelines for SSNVs and indels against CLLE-ES and BRCA-EU datasets. 
RFcaller shows a higher recall in both SSNVs and indels for CLLE-ES, whereas in BRCA-EU the PCAWG manages to detect 
a higher number of mutations. The precision of the two pipelines is similar in all conditions. 

 

- Small insertions/deletions 

The analysis of small indels revealed that there were more differences between pipelines than 

those seen for SSNVs. In this regard, only ~50% of indels were detected by both RFcaller and 

PCAWG pipelines, however for CLLE-ES RFcaller-private calls represented 39.1% of the total 

number of indels whereas only 11.5% of them were PCAWG-specific. In contrast, in BRCA-

EU, RFcaller and PCAWG-private mutations accounted for 13.8% and 31.4% respectively 

(Figure 2d). Moreover, among them, less than 45% of PCAWG-private indels were detected 

by more than two callers (Figure 2f), reflecting the difficulty to identify somatic indels in tumor 

samples. 

To further explore pipeline-private indels, we selected at least 50 indels from each group for 

expert review (n=283 for CLLE-ES and n=429 for BRCA-EU) (Supplementary Table S12 and 

Supplementary Figure S3). We observed that the precision within PCAWG-private indels was 

very high, varying between 70% and 99% depending on the number of individual callers 

supporting the call (Table 3). In contrast, the precision observed for RFcaller was 89%, despite 

the fact that the total number of indels detected by this pipeline was much higher. Similar to 
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SSNVs, the observed VAF was slightly higher in CLLE-ES compared to BRCA-EU (0.42 vs 

0.29), probably reflecting higher tumor purity. Nonetheless, we did not observed differences 

in VAF between pipeline-private indels (Figure 2e), suggesting that pipeline-specific mutations 

were not due to clonality, as they were for SSNVs, but to other factors such as alignment issues, 

size of the indel, the presence of microsatellites or if they were within homopolymer tracks. 

Despite the higher precision obtained by the PCAWG pipeline for indel calling, this might be 

at the expense of a larger number of false negative calls in otherwise clonal and bona fide 

somatic indels, as shown by the number of true positive calls detected by RFcaller (Figure 3).  

Table 3. Total number of false positive indels extrapolated after manual revision 
TP: Number of True Positive indels; FP: Number of False Positive indels 

 CLLE-ES BRCA-EU 

 Indels TP FP Precision Indels TP FP Precision 

1 caller 392 276 116 70.37% 1125 1008 117 89.57% 

2 callers 1044 1002 42 96.00% 3046 2792 254 91.67% 

3 callers 546 495 51 90.74% 2133 2097 36 98.31% 

4 callers 211 207 4 98.18% 1184 1174 10 99.14% 

RFcaller 7335 6916 419 94.29% 3257 2721 536 83.54% 

 

In the case of mutational signatures detected for indels (Supplementary Figure S4), private 

calls from both pipelines contained most of the mutational signatures present in common 

mutations, while in the case of RFcaller-private indels, 3 signatures not present in the common 

set were detected for both CLLE-ES and BRCA-EU studies. 

 

Exome analysis 

RFcaller was trained with WGS data, but as the features used for the prediction are at read 

level, this pipeline could also be used for exome analysis. In order to test the ability of RFcaller 

to detect mutations by WES, exomes from five cases previously analyzed by WGS were run 

with default parameters. Results were compared with those obtained by RFcaller and PCAWG 

in the WGS analysis after filtering for mutations within target regions in WES. Thus, 63% 

(n=110) of mutations detected by WES were also detected by WGS. Additionally, we were 

able to identify 47 novel mutations for which there was neither coverage nor any mutated read 

in WGS (Figure 4a). When we made the comparison in the opposite direction, we found that 

55% (n=136) of the mutations detected by WGS did not appear by WES. However, 93% 

(n=126) of these missing mutations had no coverage or any mutated read in the exome or were 
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clearly germinal (Figure 4b). Only 10 mutations detected by WGS had enough coverage in 

WES and were not detected, constituting false negatives (RFcaller exome recall = 94%). 

Similarly, considering the 17 mutations that were labeled as germinal by WGS but detected by 

WES as false positives, RFcaller achieves a precision of 90% (Supplementary Files). 

 

 

Figure 4. Comparison of mutations detected by analysis of WGS and WES in selected donors. Comparison is limited to exomic 
regions. a) Mutations detected by WES and analysis of their status in WGS. b) Mutations detected by WGS and analysis of 
their status in WES samples. 

 

Detection and verification of mutations in driver genes 

From the above data we can conclude that RFcaller has a similar accuracy to detect SSNVs, 

and an increased sensitivity to detect indels at the cost of a smaller specificity. To explore if 

these differences might allow the detection of previously missed mutations with potential 

clinical impact, we analyzed somatic mutations on the set of driver genes previously described 

in these two tumor types (Knisbacher, B et al. 2022 (in press))36 (Supplementary Table S13). 

This analysis resulted in the identification of 155 coding mutations in driver genes in the CLLE-

ES project and 162 in the BRCA-EU study. Out of those calls, 83% of them were shared 

between both pipelines, while 53 (17%) in 35 driver genes, were pipeline-specific 

(Supplementary Table S14). 

Those pipeline-specific mutations were manually reviewed, resulting in the identification of 

19 clonal mutations detected by RFcaller (12 SSNVs and 7 indels) vs. 4 clonal SSNVs detected 

by the PCAWG pipeline in CLLE-ES. For the BRCA-EU project, 8 clonal mutations were 
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detected by RFcaller (5 SSNVs and 3 indels) vs. 4 clonal detected by PCAWG pipeline (3 

SSNVs and 1 indel). 

For seven private calls detected in the CLLE-ES study (5 by RFcaller, and 2 by the PCAWG 

pipeline), tumor and normal DNA was available for verification by Sanger sequencing, except 

two cases in which only tumor DNA was available (Supplementary Table S8). This analysis 

resulted in the verification of all RFcaller-private calls (Supplementary Figure S5), as well as 

one of the PCAWG-private SSNVs. The last call could not be verified because it was a 

subclonal mutation with a very low VAF (8.7%), that falls below the detection limit of this 

technique.  

To further perform an orthogonal validation of these pipelines, we took advantage of a previous 

study in which 26 CLL driver genes had been analyzed by deep-sequencing in some of the 

CLL cases used by PCAWG34,35. A total of 77 mutations, excluding germline calls, were 

detected in 28 cases, for which enough coverage was available in WGS to make a call 

(Supplementary Table S9). Due to the high depth of sequencing, VAF was very variable (range 

0.0029 to 0.9665), therefore, mutations were classified as clonal if VAF≥0.15 (n=44, median 

0.43), and subclonal if VAF<0.15 (n=33, median 0.03). As expected, most subclonal mutations 

could not be detected from WGS data, as each pipeline was only able to detect 6/33 subclonal 

mutations (18%). By contrast, most clonal mutations detected by deep sequencing could be 

also identified by RFcaller (39/44, 89%), while the performance of the PCAWG pipeline was 

slightly lower (31/44, 70%). The mutations specifically detected by RFcaller affected NOTCH1 

(3), ATM (2), TP53, RPS15, MGA and DDX3X, some of which have been associated with poor 

prognosis and whose presence might impact clinical decisions. The PCAWG pipeline was able 

to identify a mutation in ATM that was not detected by RFcaller due to a very low VAF (0.065). 

Together, these results support the utility of RFcaller to identify novel clonal driver mutations 

of potential clinical value. 
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Discussion 

The application of NGS techniques for clinical diagnosis in tumor samples requires procedures 

that provide enough sensitivity and specificity, while at the same time do not require large 

computing resources to achieve the analysis in a reasonable amount of time. To increase 

accuracy, a final step of manual review through visual inspection is usually carried out for 

mutations that might be clinical informative. This manual revision increases the specificity, but 

at the cost of a labor intensive process. Recent advances in machine learning approaches are 

suitable to incorporate features that experts consider when distinguishing between bona fide 

mutations and false positives. However, most available programs that use machine learning 

approaches for somatic mutation calling have been trained with high depth of coverage WES 

using in silico20,21 or orthogonal validated mutations22 and cannot be used for whole genome 

analysis. 

In this work, we have taken advantage of a manually curated dataset of real mutations with 

features that an expert curator might consider when manually reviewing a mutation in a 

research or clinical context. Thus, we have achieved a very high sensitivity to detect SSNVs 

and small indels, while at the same time maintaining a low footprint, with low CPU and RAM 

consumption, being able to analyze a whole genome in less than 5 hours. Moreover, although 

it has been trained with WGS data, it has shown a good performance in exome samples.  

On the other hand, even though our selected features are often used by similar programs, they 

process SSNVs and indels in the same manner, when clearly the two types of mutations have 

different characteristics. In this regard, we analyzed SSNVs and indels separately, which 

allowed us to detect indels with higher accuracy without affecting the ability to detect SSNVs. 

Indeed, we have shown that RFcaller performance is similar to that of a combination of 

complex pipelines used in the PCAWG project to detect clonal mutations, with the ability to 

detect new ones, some of them in driver genes, what might contribute to improve the detection 

of actionable mutations37. Furthermore, we showed that RFcaller is able to detect mutations 

even in the presence of some tumor contamination in the normal sample, a common problem 

in some hematological tumors that might lead to false negatives with other pipelines. Finally, 

we have demonstrated that most RFcaller false negatives were subclonal mutations with very 

low VAF, whose analysis might require additional tools and might not be as critical for taking 

clinical decision. 
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In conclusion, we have developed a pipeline called RFcaller, that is provided under a Docker 

system, which allows its easy and fast installation without version incompatibilities. This tool 

allows the identification of clonal mutations with the same efficiency as state-of-the-art 

pipelines, but with a smaller footprint in computing resources. 

Data availability 

RFcaller and the scripts used to train the algorithms are available at the GitHub repository 

(https://github.com/xa-lab/RFcaller), and a docker with all the requirements and necessary files 

to run the pipeline has been built to improve reproducibility and facilitate the use of the 

program (https://hub.docker.com/repository/docker/labxa/rfcaller). Additionally, the scripts 

with the files we have used to obtain the results shown above can be found in the supplementary 

material. 
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Supplementary Figure Legends 

Supplementary Figure S1. ROC curves for each mutation type with RFcaller results for the 

test data set using the formulas with the best F1 score. Cutoffs were obtained with the 

MaxEfficiency criterion. 

Supplementary Figure S2. Representation of a) the time it takes for each caller to complete a 

case. b, c) CPU and memory (RSS) usage for the duration of the pipelines (RSS memory was 

limited to 200Gb when the caller allowed it). d) memory (RSS) usage of RFcaller pipeline 

when it is run with 10 or 20 threads for four independent cases simultaneously. 

Supplementary Figure S3. IGV screenshots corresponding to representative examples of 

mutations detected specifically by RFcaller o by the PCAWG pipelines. 

Supplementary Figure S4. Mutational signatures extracted for CLLE-ES and BRCA-EU 

studies using the set of mutations detected by both pipelines and RFcaller and PCAWG-private 

mutations independently. 

Supplementary Figure S5. Electropherograms corresponding to Sanger verification of private 

mutations detected by RFcaller and PCAWG in CLL driver genes. 
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SSNV in BRCA-EU detected by 2 callers (PCAWG) 
12:103953372 (DO218573)

SSNV in CLLE-ES detected by 2 callers (PCAWG) 
4:64270670 (DO6549)

Indel in BRCA-EU detected by 2 callers (PCAWG) 
4:28466 (DO218159)

Indel in CLLE-ES detected by 2 callers (PCAWG) 
7:84543525 (DO6934)
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SSNV in BRCA-EU detected by 3 callers (PCAWG) 
10:63068530 (DO218121)

SSNV in CLLE-ES detected by 3 callers (PCAWG) 
6:95285154 (DO52710)

Indel in BRCA-EU detected by 3 callers (PCAWG) 
17:60371919 (DO218167)

Indel in CLLE-ES detected by 3 callers (PCAWG) 
3:166732323 (DO6492)
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SSNV in BRCA-EU detected by 4 callers (PCAWG) 
12:65503347 (DO218333)

SSNV in CLLE-ES detected by 4 callers (PCAWG) 
1:73783544 (DO6350)

Indel in BRCA-EU detected by 4 callers (PCAWG) 
14:23091909 (DO218611)

Indel in CLLE-ES detected by 4 callers (PCAWG) 
4:94350835 (DO6432)
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Mutation in a driver gene (PIK3CA) detected by RFcaller (BRCA-EU)

3:178936082 (DO218121)

Mutation in a driver gene (DDX3X) detected by RFcaller (CLLE-ES)

X:41205532 (DO6390)

 

Mutation in a driver gene (CBFB) detected by PCAWG (BRCA-EU)

16:67063717 (DO218121)

Mutation in a driver gene (EGR2) detected by PCAWG (CLLE-ES)

10:64573332 (DO6561)
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Supplementary Figure 4
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RFcaller-private SSNV RFcaller-private indel

RFcaller-private SSNV RFcaller-private indel

Supplementary Figure 5
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RFcaller-private SSNV PCAWG-private SSNV

PCAWG-private SSNV
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