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ABSTRACT

Motivation

The cost reduction in sequencing and the extensive genomic characterization of a wide variety
of cancers is expanding the use of tumor sequencing approaches to a wide number of research
groups and to the clinical practice. Although specific pipelines have been generated for the
identification of somatic mutations, their results usually differ considerably, and a common
approach in many projects is to use several callers to achieve a more reliable set of mutations.
This procedure is computationally very expensive and time-consuming, and it suffers from the
same limitations in sensitivity and specificity as other approaches. Expert revision of mutant
calls is therefore required to verify calls that might be used for clinical diagnosis. Machine
learning techniques provide a useful approach to incorporate expert-reviewed information for

the identification of somatic mutations.
Results

We have developed RFcaller, a pipeline based on machine learning algorithms, for the
detection of somatic mutations in tumor-normal paired samples. RFcaller shows high accuracy
for the detection of substitutions and indels from whole genome or exome data. It allows the
detection of mutations in driver genes missed by other approaches, and has been validated by
comparison to deep sequencing and Sanger sequencing. The pipeline is able to analyze a whole

genome in a small period of time, and with a small computational footprint.
Availability and implementation

RFecaller is available at GitHub repository (https://github.com/xa-lab/RFcaller) and DockerHub
(https://hub.docker.com/repository/docker/labxa/rfcaller).

Contact
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Supplementary data is available online.
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Introduction

During the last decade, the introduction of Next Generation Sequencing (NGS) has transformed
the study of cancer, with the identification of hundreds of novel alterations driving tumor
transformation!. Major international cancer projects such as the International Cancer Genome
Consortium (ICGC)? and The Cancer Genome Atlas (TCGA)® have expanded the repertoire of
genes mutated in cancer, as well as the biological processes involved in it*”’. The continuous
reduction in sequencing costs, together with the clinical significance of certain mutations for
prognosis or treatment decisions, has transformed the used of NGS from large sequencing
consortia to small size laboratories and clinical centers. However, the utility of NGS relies on
the availability of somatic mutation calling pipelines with enough sensitivity to detect most
somatic mutations, and high specificity to prevent the calling of artifacts or germline variants

as mutations.

Somatic single nucleotide variants (SSN'Vs) and small insertions/deletions (indels) constitute
the most abundant type of mutation in tumor genomes, and different tools have been developed
in order to call somatic mutations from tumor-normal paired samples. Most state-of-the-art
variant callings are based in traditional statistical methods, such as CaVEMan®, MuTect2’,
MuSE!"?, Strelka2!!, Pindel'? or SMuFin'® among others. However, there is no consensus on
the mutations detected by each caller, with a large number of private calls specific for each
method. These differences are mainly due to the ability of each program to deal with the tumor
heterogeneity and purity, normal contamination, sequencing and mapping artifacts, coverage,
as well as different downstream filtering steps'*. Due to the advantages of some pipelines to
detect specific bona fide mutations, some collaborative projects such as the PanCancer
Analysis of Whole Genomes (PCAWG)’ or the TCGA PanCancer Atlas MC3'®, do not use a
single caller but a combination of algorithms, keeping the intersection between them as the set
of mutations that is more reliable. Despite the utility of this multi-pipeline approach to generate
a consensus set of mutations, this strategy has a very large computational cost, demanding large

servers and consuming up to days for the analysis of a single case.

In addition to classical statistical-based approaches, during the last years there has been an

expansion in the use of machine learning strategies for different purposes'®!’

, including the
development of new variant calling tools. The initial use of these methods was mainly focused
on refinement, taking a list of potential variants extracted with other pipelines to filter and

select a final set of mutations'®2°, However, these approaches still have a negative influence
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on computing time and reproducibility. On the other hand, recently developed pipelines use

21.22 or even neural networks®**** to directly perform variant

other machine learning approaches
calling for somatic mutations, although in some cases the computing or installation

requirements are too complex for a medium-sized laboratory or institution.

Here, we describe RFcaller, an accurate, fast, light computational requirements and easy-to-
use tool that uses read-level features together with machine learning strategies to identify
somatic mutations (SSNVs and indels) from normal-tumor paired samples. Our pipeline has
been trained for whole genome sequencing (WGS) data and its results have been compared
with those obtained by the PCAWG, being very similar to those resulting by combining several

tools.
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Materials and methods

Selection of somatic mutations

For the development of the algorithms, two different set of mutations were used, a training set
and a testing set. To build them, we extracted with bcftools® all possible somatic mutations
from four WGS mantle cell lymphoma (MCL) samples sequenced at 30X coverage (M032 and
M439 for training; M065 and M431 for testing). For the initial training, previously published
mutations?® were defined as true positive mutations. With each iteration, all discordant calls
were manually reviewed by three experts, through visual inspection, and the database was
updated accordingly (Supplementary Table S1). This procedure resulted in the identification
of novel bona fide mutations that would constitute false negatives in the initial set, as well as
the rejection of certain mutations, such as artifacts or germline mutations present in the original
dataset, that would represent false positives, respectively. After several rounds of training the
algorithms and curating the set of mutations, all discordant variants had already been examined,
which allowed us to obtain a reliable dataset for training and testing the final version of the

algorithms.

Algorithm training

To train the algorithms, we used the training set which contained 66,096 potential SSNVs
(Supplementary Table S2) and 931 indels (Supplementary Table S3) for which read-level
features were previously extracted (Supplementary Table S4). These data were used as input
by TPOT?? (v0.11.1), with the default configuration of the TPOTRegressor function, to find
the best pipeline to train the regression algorithms. As a result, an extremely randomized tree
“Extra-Tree” Regressor for SSNVs and a Random Forest Regressor for indels were built. In
both cases, a transformation of the data was carried out before the regression using the

StackingEstimator function.

Once we had the algorithms, the test dataset, with 63,948 SSNVs and 2,506 indels
(Supplementary Table S5), was used to select the best cutoffs for both pipelines. With this
purpose, the result from RFcaller was filtered to get the “QUAL” field for those mutations that
passed all filters (Supplementary Table S6). This parameter is calculated considering the initial
quality from bcftools and the regression value for SSNV and indels, and only the regression

value for homopolymer indels (polyindels):

QUALgyy, = bcftools qual = regression value?
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QUALjpger = beftools qualregression value

QUALpo1yinger = regression value

Then, ROC curves were generated and AUC metrics were calculated using the R package
OptimalCutpoints?® with the MaxEfficiency method. False/True Positive/Negative ratios were
calculated using the formulas described in the ROCR?’ R package.

Computational cost

To compare the performance of RFcaller with other state-of-the-art tools, the docker container
corresponding to the four callers used by PCAWG for the detection of SSNVs was downloaded
(https://dockstore.org/organizations/PCAWG/collections/PCAWG). After minor fixes of

broken links in the Sanger and DKFZ tools, all of them were run with the default parameters
for one random donor. In case the tools allowed to choose the number of threads and RAM to
be used, 20 threads and 200 Gb of memory were specified. In addition, because RFcaller allows
multiple samples to be run simultaneously, four cases were run in parallel using the default
parameters to calculate the computational cost. To improve data interpretation, some axes were

broken using the R package ggbreak™®.

PCAWG analysis

To validate that the trained models are applicable for liquid and solid tumors and to compare
the results to those obtained by the PCAWG pipeline, RFcaller was run for the CLLE-ES and
BRCA-EU studies, with an average tumor coverage of 30X and 50X, respectively, and 30X
for normal samples in both. PCAWG BAM files were downloaded from the “collaboratory”
repository using the score-client program (Supplementary Table S7). RFcaller was run with its
default parameters for all samples and the obtained results were combined into a single VCF
file for each study. A custom panel of normals was used to annotate variants in complex
regions. The set of mutations detected by the PCAWG pipeline were extracted from the
controlled consensus callsets for SSNV/Indel. To analyze coding and non-coding mutations,
the Variant Effect Predictor (VEP) tool*! was launched for both datasets using the following

options: --offline --format vcf --dir cache homo sapiens --symbol --

force overwrite --total length --numbers --ccds --canonical --biotype —--pick

--vcf --assembly GRCh37.

To be able to compare both set of mutations in the most accurate manner: (i) dinucleotides and

trinucleotides from RFcaller were split as this feature is not available for PCAWG, (ii) RFcaller
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mutations located in alternative chromosomes and PCAWG’s variants that appear in our
custom dbSNP were removed and (iii) only mutations that passed all filters were studied. For
this comparison, a mutation was considered as subclonal when its variant allele frequency

(VAF) was lower than 0.15, in accordance with the sensitivity of Sanger sequencing.

For the purpose of calculating the precision and recall for both pipelines in each study, 1% or
at least 50 discordant mutations from each section were manually reviewed by a panel of
experts. Thus, a total of five blocks were checked: mutations detected only by RFcaller and
mutations detected between one and four of the callers used by the PCAWG, as the ratio of
false positives may be different between them. The results obtained were then extrapolated to
the whole set of mutations in order to calculate the parameters needed to define precision and
recall for both pipelines. These measures were calculated with the prediction and performance

functions of the R package ROCR?’.

Additionally, two bases upstream and downstream of the mutations were selected to
reconstruct the context and generate a matrix with which extract the mutational signature of
RFcaller and PCAWG-private mutations and those detected by both pipelines. The sigminer’”
R wrapper (nrun = 300 and refit = TRUE) was selected to run the SigProfilerExtractor

framework’”.

Finally, deep sequencing data generated by previous studies*** for some CLLE-ES cases
(Supplementary Table S8) were used to analyze possible subclonal mutations in driver genes.
In order to compare both results, only mutations in CLL driver genes and donors analyzed by
both WGS and deep sequencing were selected. In addition, mutations detected by deep
sequencing were removed from the analysis if they were germline or there was insufficient

coverage or reads supporting the mutation by WGS (Supplementary Table S9).

Sanger validation

To perform verification of private calls obtained from the analysis of CLLE-ES cases, five and
two mutations detected only by RFcaller and PCAWG, respectively, were chosen to be verified
by Sanger sequencing. These positions were chosen because they appeared in known driver
genes for CLL and because tumor and/or normal DNA was available. The list of primers and

melting temperatures are listed in Supplementary Table S10.

Exome analysis
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To test the performance of RFcaller on exome sequencing data, we selected five CLLE-ES
cases previously analyzed by WGS and for which exome data were available (Supplementary
Table S8). RFcaller was run with default parameters and LIKELY GERMINAL variants were
removed. Only mutations within the targeted regions of the exome (Agilent — SureSelect
Human All Exons V4) were taken into account. Finally, for those mutations not detected by
both methods, total coverage and number of mutated reads were extracted in order to determine

the cause for loss.
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Results

RFcaller workflow

An overview of the RFcaller’s workflow is

calling

beftools norm
beftools filter
_—

provided in Figure 1. The pipeline takes as

input the BAM files from the normal-tumor

paired samples and starts performing a basic

variant calling using bcftools (v1.10.2) with

the -P option set to 0.1 to enable calling of
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p/\«p T low frequency variants. Then, indels are
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dimers
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and long-indels (>7bp).

Figure 1. Flowchart of the RFcaller pipeline.

SSNVs and indels have a specific pipeline
where read-level features are extracted for those mutations that meet basic requirements that
can be customized, such as minimum coverage (>7), maximum number of mutated reads in
normal (<3 for SSNVs and <2 for indels) or a minimum number of mutant reads in tumor (>3
for SSNVs and >4 for indels). These filters were chosen because positions that fail to meet
these requirements cannot be confidently classified as bona fide mutations from the available
data. Once all features have been extracted, a CSV file is generated to be used by the algorithm.
The result is a VCF file with mutations that have passed the threshold for the “QUAL” field.

To classify mutations that might be germinal but have passed the previous filters, a 95%
confidence interval is applied to calculate the expected number of mutant reads in normal,
considering: the VAF of the mutation in tumor sample, the expected contamination of tumor
in normal sample defined by the user and the normal coverage. Thus, if the number of mutated
reads in normal is greater than the expected, the position is labeled as

“LIKELY GERMINAL”.
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Finally, the RFcaller pipeline for SSN'Vs searches for dinucleotides or trinucleotides mutations
within the results. With this step, if two mutations are found together in the same allele, they
are merged into a single mutation to be accurate when predicting its functional effected, a step

that is usually missed by most commonly used somatic callers.

RFcaller training

For the initial training step, previous results from the genomic analysis of two mantle cell

26 were used to annotate the set of mutations, and RFcaller was trained with this

lymphomas
initial dataset. The obtained results were compared with those used for training, and all
discordant positions were manually reviewed to improve the accuracy of the dataset. These
steps were repeated until all discrepancies were classified by an expert panel. After that, 2,208
and 2,901 calls were reviewed for training and testing, respectively, resulting in a high quality

set of mutations to train and test the final versions of the algorithm (Tablel).

Table 1. Number of total and manually reviewed mutations used for training and testing RFcaller
TP: Number of True Positive mutations; TN: Number of True Negative mutations

Training set Test set
SSNV Indel SSNV Indel
TP ™ | TP TN TP ™ | TP TN
Manually reviewed 915 730 1 321 242 924 959 | 528 490
Total | 8,362 57734 | 504 427 6,909 57,039 | 696 1,810

In order to select the best cutoff for the pipeline, SSNVs, indels and homopolymer indels were
considered independently as they represent mutations whose detection is influenced by
different features. The separation between both types of indels (isolated or within a
homopolymer trait) was introduced due to the bias of the initial calling performed by bcftools
against indels within homopolymeric tracts, giving very low scores to mutations that otherwise
appear to be real. Furthermore, different formulas were considered to calculate the “QUAL”

threshold used by RFcaller (Supplementary Table S11).

Although the RFcaller score provided high accuracy, we observed that by combining the
regression obtained by RFcaller with the score given by bceftools, the accuracy was improved
over each one independently, suggesting both scores complement each other. We did not
observe major differences between formulas for SSNVs and indels according to the area under

the curve metric (AUC), so we selected the formulas with the highest F1 score. Thus, the

10
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cutoffs were 10.726 for SSNVs, 32.1418 for indels and 0.7723 for homopolymer indels
(Supplementary Figure S1), which achieved 1.3%, 7.18% and 8% of false positive mutations,
respectively. We observed that many of the false positives belonged to complex regions like
microsatellites or GC-rich sites, appearing also in normal samples from other donors.
Therefore, we used a panel of normals to filter these calls and improve the accuracy of the

pipeline.

In terms of the number of variables selected, only 16 and 27 read-level features were considered
for SSNVs and indels respectively, which helped us to avoid overlapping features that can be
counterproductive and lead to overfitting. Another important aspect we considered during the
selection of these features was the difficulty by which they can be extracted, resulting in a fast
pipeline for medium-size servers. Thus, the analysis of four WGS tumor-normal paired samples
using 20 threads consumes only ~5 GiB of RAM and takes ~3 hours/case, while using only 10

processors the analysis is extended up to ~4.5 hours/case (Supplementary Figure S2d).

When RFcaller was compared with the callers used by PCAWG for the detection of SSNVs,
only the muse-variant-caller (~2.5 h) was faster than RFcaller (~4.8 h) (Supplementary Figure
S2), while sanger-variant-caller was the slowest, taking more than 70 h for a single case. In
terms of memory consumption (RSS), mutect-variant-caller is the most demanding, consuming
between 100 GiB and 250 GiB during half the time it is running (~5 h). In this case, RFcaller
and muse-variant-caller consume the least memory with an average of 5 GiB. It is important to
note that although we have used the SSNVs specific callers, all of them, except MuSE, also
detect indels, which would imply that RFcaller is the fastest and least resource consuming tool

for the simultaneous calling of SSNVs and indels.

Validation of RFcaller pipeline: PCAWG analysis

To test RFcaller against a validated set of cancer WGS cases we used data from the PCAWG
study belonging to two different projects (CLLE-ES and BRCA-EU), representative of liquid
and solid tumors, with a total of 89 and 75 cases, respectively (Supplementary Table S8).
RFcaller results were compared to those mutations labeled as “PASS” by the PCAWG
mutation calling pipeline. Due to the inherent differences between SSNVs and indels, we

performed each analysis independently.

11
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- Somatic Single Nucleotide Variants

After merging RFcaller and PCAWG “PASS” mutations, we observed that ~70% of SSNVs
were detected by both pipelines in both studies. However, and even though the number of
shared mutations was almost the same, for samples from the CLLE-ES project 11% of
mutations were detected only by the PCAWG pipeline vs. 16.3% mutations specifically
detected by RFcaller. For BRCA-EU-derived mutations, only 4.4% mutations were RFcaller-
specific, vs. 25.4% for PCAWG pipeline (Figure 2a). A detailed analysis of those differentially
called mutations revealed that the mean VAF for SSNVs detected by both pipelines was 0.41
and 0.27 for CLLE-ES and BRCA-EU, respectively (Figure 2b). However, those detected by
the PCAWG pipeline but not RFcaller had a mean VAF of 0.16 and 0.10 for CLLE-ES and
BRCA-EU, respectively (Figure 2b), suggesting that they constitute subclonal mutations. In
fact, only 29% and 50% of them could be detected by more than two callers in the PCAWG
pipeline for CLLE-ES and BRCA-EU, respectively (Figure 2¢). Furthermore, those SSNVs
detected by RFcaller but not the PCAWG pipeline had a mean VAF of 0.46 for CLLE-ES and
0.28 for BRCA-EU, similar to those detected by both pipelines, suggesting that they constitute
clonal mutations detected by RFcaller. Some of them showed minor tumor in normal
contamination (1-3 mutant reads), common in hematological tumors, resulting in most callers

missing these true positive somatic mutations, while RFcaller is able to retain most of them.
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Figure 2. Summary of mutations detected by PCAWG and/or RFcaller pipelines for SSNVs and indels. a,d) Classification of
mutations according to the pipeline that can detect them. Mutations are divided in clonal (VAF>0.15) and subclonal
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(VAF<0.15) mutations. b, e) Distribution of the variant allele frequency of the mutations identified by both pipelines, or
specifically by RFcaller or PCAWG pipeline. c, f) Number of callers detecting each of the PCAWG-private mutations.

To explore the set of discordant mutations between both pipelines, we randomly selected 1-2%
of the pipeline-private calls (n=776 for CLLE-ES and n=1233 for BRCA-EU) to be manually
reviewed by a panel of experts (Supplementary Table S12 and Supplementary Figure S3). As
expected, PCAWG-specific variants detected by four callers are more precise than those
identified by two tools (Table 2). Surprisingly, the difference in precision for RFcaller-private
mutations between studies was very high, 98.5% for CLLE-ES and 74.5% for BRCA-EU,
probably reflecting the fact that RFcaller was trained using a hematological tumor. However,
despite the apparently higher number of false positives, RFcaller-private calls only represent
18.3% and 5.9% of the total number of SSNVs detected by RFcaller in the CLLE-ES and
BRCA-EU projects, respectively. Considering the observed number of false positive calls
within these sets, the real precision of RFcaller calls for SSNVs is 99.7% and 98.5% for CLLE-
ES and BRCA-EU, respectively, while the precision of the PCAWG pipeline is 97.3% for both
studies (Figure 3).

Table 2. Total number of false positive private SSNVs extrapolated after manual revision
TP: Number of True Positive SSNVs; FP: Number of False Positive SSNVs

CLLE-ES BRCA-EU

SSNVs TP FP | Precision | SSNVs TP FP ! Precision
2 callers | 20956 16097 4859 76.81% 50823 42804 8019 84.22%
3 callers 5715 5001 714 87.50% 28490 26469 2021 92.91%
4 callers 2729 2519 210 92.31% 23580 23080 500 97.88%
RFcaller | 41772 41153 619 98.52% 17699 13189 4510 74.52%

To further explore these private mutations, we extracted the mutational signatures
independently for the set of mutations detected by both pipelines, as well as for those specific
for each caller (Supplementary Figure S4). We could see that in CLLE-ES study, both
RFcaller-private SSNVs and those common to both pipelines contained the same signatures
(SBS1, 5, 8 and 9), while PCAWG-private SSNVs shared 3 signatures (SBS1, 5 and 8), missed
one (SBS9) and contained two signatures not detected in the common set (SBS23 and 51),
although affecting a limited number of samples. While on the BRCA-EU study, both pipelines
missed some signatures present in the common set (2 PCAWG and 4 RFcaller), and both

detected one and two signatures, respectively, not present in the common. Together, these
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results suggest that the private mutations detected by RFcaller constitute bona fide calls, with

a similar profile to those detected by both pipelines.

S8NVs SSNVs
CLLE-ES BRCA-EU
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Figure 3. Accuracy of RFcaller and PCAWG pipelines for SSNVs and indels against CLLE-ES and BRCA-EU datasets.
RFcaller shows a higher recall in both SSNVs and indels for CLLE-ES, whereas in BRCA-EU the PCAWG manages to detect
a higher number of mutations. The precision of the two pipelines is similar in all conditions.

- Small insertions/deletions

The analysis of small indels revealed that there were more differences between pipelines than
those seen for SSN'Vs. In this regard, only ~50% of indels were detected by both RFcaller and
PCAWG pipelines, however for CLLE-ES RFcaller-private calls represented 39.1% of the total
number of indels whereas only 11.5% of them were PCAWG-specific. In contrast, in BRCA-
EU, RFcaller and PCAWG-private mutations accounted for 13.8% and 31.4% respectively
(Figure 2d). Moreover, among them, less than 45% of PCAWG-private indels were detected
by more than two callers (Figure 2f), reflecting the difficulty to identify somatic indels in tumor

samples.

To further explore pipeline-private indels, we selected at least 50 indels from each group for
expert review (n=283 for CLLE-ES and n=429 for BRCA-EU) (Supplementary Table S12 and
Supplementary Figure S3). We observed that the precision within PCAWG-private indels was
very high, varying between 70% and 99% depending on the number of individual callers
supporting the call (Table 3). In contrast, the precision observed for RFcaller was 89%, despite
the fact that the total number of indels detected by this pipeline was much higher. Similar to

14


https://doi.org/10.1101/2022.05.11.491496
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.11.491496; this version posted May 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

SSNVs, the observed VAF was slightly higher in CLLE-ES compared to BRCA-EU (0.42 vs
0.29), probably reflecting higher tumor purity. Nonetheless, we did not observed differences
in VAF between pipeline-private indels (Figure 2¢), suggesting that pipeline-specific mutations
were not due to clonality, as they were for SSN'Vs, but to other factors such as alignment issues,
size of the indel, the presence of microsatellites or if they were within homopolymer tracks.
Despite the higher precision obtained by the PCAWG pipeline for indel calling, this might be
at the expense of a larger number of false negative calls in otherwise clonal and bona fide

somatic indels, as shown by the number of true positive calls detected by RFcaller (Figure 3).

Table 3. Total number of false positive indels extrapolated after manual revision
TP: Number of True Positive indels; FP: Number of False Positive indels

CLLE-ES BRCA-EU

Indels TP FP Precision | Indels TP FP Precision

lcaller | 392 276 116 | 7037% | 1125 1008 117 | 89.57%
dcallers | 1044 1002 42 | 96.00% | 3046 2792 254 | 91.67%
Bcallers | 546 495 51 | 90.74% | 2133 2097 36 98.31%
dcallers | 211 207 4 | 98.18% | 1184 1174 10 | 99.14%
RFcaller | 7335 6916 419 | 94.20% | 3257 2721 536 | 83.54%

In the case of mutational signatures detected for indels (Supplementary Figure S4), private
calls from both pipelines contained most of the mutational signatures present in common
mutations, while in the case of RFcaller-private indels, 3 signatures not present in the common

set were detected for both CLLE-ES and BRCA-EU studies.

Exome analysis

RFcaller was trained with WGS data, but as the features used for the prediction are at read
level, this pipeline could also be used for exome analysis. In order to test the ability of RFcaller
to detect mutations by WES, exomes from five cases previously analyzed by WGS were run
with default parameters. Results were compared with those obtained by RFcaller and PCAWG
in the WGS analysis after filtering for mutations within target regions in WES. Thus, 63%
(n=110) of mutations detected by WES were also detected by WGS. Additionally, we were
able to identify 47 novel mutations for which there was neither coverage nor any mutated read
in WGS (Figure 4a). When we made the comparison in the opposite direction, we found that
55% (n=136) of the mutations detected by WGS did not appear by WES. However, 93%

(n=126) of these missing mutations had no coverage or any mutated read in the exome or were
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clearly germinal (Figure 4b). Only 10 mutations detected by WGS had enough coverage in
WES and were not detected, constituting false negatives (RFcaller exome recall = 94%).
Similarly, considering the 17 mutations that were labeled as germinal by WGS but detected by
WES as false positives, RFcaller achieves a precision of 90% (Supplementary Files).

a Context for WES mutations b Context for WGS mutations in exome region
1204 1204

#Mutations

Figure 4. Comparison of mutations detected by analysis of WGS and WES in selected donors. Comparison is limited to exomic
regions. a) Mutations detected by WES and analysis of their status in WGS. b) Mutations detected by WGS and analysis of
their status in WES samples.

Detection and verification of mutations in driver genes

From the above data we can conclude that RFcaller has a similar accuracy to detect SSNVs,
and an increased sensitivity to detect indels at the cost of a smaller specificity. To explore if
these differences might allow the detection of previously missed mutations with potential
clinical impact, we analyzed somatic mutations on the set of driver genes previously described
in these two tumor types (Knisbacher, B et al. 2022 (in press))*® (Supplementary Table S13).
This analysis resulted in the identification of 155 coding mutations in driver genes in the CLLE-
ES project and 162 in the BRCA-EU study. Out of those calls, 83% of them were shared
between both pipelines, while 53 (17%) in 35 driver genes, were pipeline-specific
(Supplementary Table S14).

Those pipeline-specific mutations were manually reviewed, resulting in the identification of
19 clonal mutations detected by RFcaller (12 SSNVs and 7 indels) vs. 4 clonal SSNVs detected
by the PCAWG pipeline in CLLE-ES. For the BRCA-EU project, 8 clonal mutations were
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detected by RFcaller (5 SSNVs and 3 indels) vs. 4 clonal detected by PCAWG pipeline (3
SSNVs and 1 indel).

For seven private calls detected in the CLLE-ES study (5 by RFcaller, and 2 by the PCAWG
pipeline), tumor and normal DNA was available for verification by Sanger sequencing, except
two cases in which only tumor DNA was available (Supplementary Table S8). This analysis
resulted in the verification of all RFcaller-private calls (Supplementary Figure S5), as well as
one of the PCAWG-private SSNVs. The last call could not be verified because it was a
subclonal mutation with a very low VAF (8.7%), that falls below the detection limit of this

technique.

To further perform an orthogonal validation of these pipelines, we took advantage of a previous
study in which 26 CLL driver genes had been analyzed by deep-sequencing in some of the
CLL cases used by PCAWG****, A total of 77 mutations, excluding germline calls, were
detected in 28 cases, for which enough coverage was available in WGS to make a call
(Supplementary Table S9). Due to the high depth of sequencing, VAF was very variable (range
0.0029 to 0.9665), therefore, mutations were classified as clonal if VAF>0.15 (n=44, median
0.43), and subclonal if VAF<0.15 (n=33, median 0.03). As expected, most subclonal mutations
could not be detected from WGS data, as each pipeline was only able to detect 6/33 subclonal
mutations (18%). By contrast, most clonal mutations detected by deep sequencing could be
also identified by RFcaller (39/44, 89%), while the performance of the PCAWG pipeline was
slightly lower (31/44, 70%). The mutations specifically detected by RFcaller affected NOTCH 1
(3),ATM (2), TP53, RPS15, MGA and DDX3X, some of which have been associated with poor
prognosis and whose presence might impact clinical decisions. The PCAWG pipeline was able
to identify a mutation in 4 7M that was not detected by RFcaller due to a very low VAF (0.065).
Together, these results support the utility of RFcaller to identify novel clonal driver mutations

of potential clinical value.
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Discussion

The application of NGS techniques for clinical diagnosis in tumor samples requires procedures
that provide enough sensitivity and specificity, while at the same time do not require large
computing resources to achieve the analysis in a reasonable amount of time. To increase
accuracy, a final step of manual review through visual inspection is usually carried out for
mutations that might be clinical informative. This manual revision increases the specificity, but
at the cost of a labor intensive process. Recent advances in machine learning approaches are
suitable to incorporate features that experts consider when distinguishing between bona fide
mutations and false positives. However, most available programs that use machine learning
approaches for somatic mutation calling have been trained with high depth of coverage WES

20,21

using in silico or orthogonal validated mutations??> and cannot be used for whole genome

analysis.

In this work, we have taken advantage of a manually curated dataset of real mutations with
features that an expert curator might consider when manually reviewing a mutation in a
research or clinical context. Thus, we have achieved a very high sensitivity to detect SSNVs
and small indels, while at the same time maintaining a low footprint, with low CPU and RAM
consumption, being able to analyze a whole genome in less than 5 hours. Moreover, although

it has been trained with WGS data, it has shown a good performance in exome samples.

On the other hand, even though our selected features are often used by similar programs, they
process SSNVs and indels in the same manner, when clearly the two types of mutations have
different characteristics. In this regard, we analyzed SSNVs and indels separately, which
allowed us to detect indels with higher accuracy without affecting the ability to detect SSNVs.
Indeed, we have shown that RFcaller performance is similar to that of a combination of
complex pipelines used in the PCAWG project to detect clonal mutations, with the ability to
detect new ones, some of them in driver genes, what might contribute to improve the detection
of actionable mutations’’. Furthermore, we showed that RFcaller is able to detect mutations
even in the presence of some tumor contamination in the normal sample, a common problem
in some hematological tumors that might lead to false negatives with other pipelines. Finally,
we have demonstrated that most RFcaller false negatives were subclonal mutations with very
low VAF, whose analysis might require additional tools and might not be as critical for taking

clinical decision.
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In conclusion, we have developed a pipeline called RFcaller, that is provided under a Docker
system, which allows its easy and fast installation without version incompatibilities. This tool
allows the identification of clonal mutations with the same efficiency as state-of-the-art

pipelines, but with a smaller footprint in computing resources.
Data availability

RFcaller and the scripts used to train the algorithms are available at the GitHub repository

(https://github.com/xa-lab/RFcaller), and a docker with all the requirements and necessary files

to run the pipeline has been built to improve reproducibility and facilitate the use of the

program (https://hub.docker.com/repository/docker/labxa/rfcaller). Additionally, the scripts

with the files we have used to obtain the results shown above can be found in the supplementary

material.
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Supplementary Figure Legends

Supplementary Figure S1. ROC curves for each mutation type with RFcaller results for the
test data set using the formulas with the best F1 score. Cutoffs were obtained with the

MaxEfficiency criterion.

Supplementary Figure S2. Representation of a) the time it takes for each caller to complete a
case. b, ¢) CPU and memory (RSS) usage for the duration of the pipelines (RSS memory was
limited to 200Gb when the caller allowed it). d) memory (RSS) usage of RFcaller pipeline

when it is run with 10 or 20 threads for four independent cases simultaneously.

Supplementary Figure S3. IGV screenshots corresponding to representative examples of

mutations detected specifically by RFcaller o by the PCAWG pipelines.

Supplementary Figure S4. Mutational signatures extracted for CLLE-ES and BRCA-EU
studies using the set of mutations detected by both pipelines and RFcaller and PCAWG-private

mutations independently.

Supplementary Figure S5. Electropherograms corresponding to Sanger verification of private

mutations detected by RFcaller and PCAWG in CLL driver genes.
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SSNV in BRCA-EU detected by RFcaller
1:208913599 (DO217788)

P3L1 p222 p2ll pl3.l qu:I:-:IEI-:-:E-:-:-:qu Q217 a23.2 q24.3 q25.3 q3L.3 q322 qdl Q422 qf

51 bp
B bp

chrl

§36.23 p36.12 p34.3 p33  pI2l

208,913,610 bp. 202,913,620 bp.
1 Il

208,913,590 bp
1

1208913595 DO217788_norm.
Coverage

1208513539 DO217788_norm.
Lbam

1208513539 DO217788_tumor
overage

1208913599 DO217788_tumor
“bam

Sequence - MAAACACACCAATCAGCACCCTGTGTCTAGCTCAGGGTTTGTGAATGCACCA

RefSeq Genes

Indel in BRCA-EU detected by RFcaller
9:132202147 (DO218168)

chrg
P23l p22.3 p2L3

p2L1 pi3.2  pil2 q12 q13 q21.13  q21.32 q222 q2233 q3L2 q32  q33.2 11 q34

51 bp
3 132,202,130 bp 132,202,150 bp 132,202,160 bp
1 | 1 1 | | 1 Il |

132,202,170 bp,
1

3132202147_D0218168_normm.
Coverage

9.132202147_DO218168_norm,
Lbam

3.132202147_DO218168_turnoi
overage

9.132202147_DO218168 tumor
bam

AGGCAGGCAGGGCTTTCCTTCTTGATTCCTTCCTTCCTTCCTTCCTTCCT

Sequence -

RefSeq Genes

5 104660256_DO51989_normal
overage

5_104660256_DO51389_normal
“bam

5_104660256_DO51389_tumor.
verage

5 104660256_DO51989_turnor.
bam

Sequence -

RefSeq Genes

SSNV in CLLE-ES detected by RFcaller
5:104660256 (DO51989)

mm
Pl4.3  pi33 pi3d qllI  ql2l q13.2 ql4l ql43 qi5 q2l2 Q222 G232 q3L1 q3L3 Gq33.1 3¢ a35.2

PI5.31

51 bp
104,660,251
1

104,660,240 bp. 104,660,250 bp. 104,660,260 bp.
1 1 Il

CAAACATTGTACATATGACTAAGATTTATTTATGGTTATTTACCAAATATA

8 119643300_DOE513_normal t
verage

8 119643300_DOES513_normal.
bam

8 119643300_DOES513 tumor.b
erage

8 119643300_DO6513_tumor.b
am

Sequence -
RefSeq Genes

Indel in CLLE-ES detected by RFcaller
8:119643300 (DO6513)

TATATATATATAACCAGGTATGTGTGTATATATATATATACATATATATAT

SAMD12-AS1

Supplementary Figure 3
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SSNV in BRCA-EU detected by 2 callers (PCAWG) SSNV in CLLE-ES detected by 2 callers (PCAWG)
12:103953372 (DO218573) 4:64270670 (DO6549)

chr12 chra
mm
p12.2 pil23 plll  ql2 ql3.12 qi3.3 qla.2 qi5  q2L2 2132 22 G232 Q2411 q24.22  q24.32 pI61 p15.31  pl5d  pl3 pll qiz a13.2 q2Ll q21.3 q22.3 G925 26 q28.1 q28.3  q3L22 q321 Q323 q34.2 o3

P13.32 pl3.2

51 bp
64,270,650 bp 64,270,660 bp 64,270,670 bp 64,270,630 bp 64,270,690 bp
1 Il 1 1 Il 1

51 bp

103,953,350 bp. 103,953,360 bp. 103,953,370 bp. 103,953,320 bp. 103,953,390 bp
1 1 1 1 1 1 1 1 1 1 1

4_64270670_DOE543_normal b:

12 103953372 DO218573_norn
erage

Coverage

4_64270670_D06543_normal b

12_108953372_D0218573_nomn
am

albam

4_64270670_D06543_tumor.ba

12_103953372_D0218573 tumn:
rage

Coverage

12_103953372 DOZ18573 tumy 4_64270670_DO6543,_tumor.ba
m

rbam

- MTTCAAGCTTCCATGGGGGTTATTGGAGATTTTATCCCATGGATAAAGAGG

Sequence - AGAAAACAGCAGACTCAAAAACCCCGTGACATCCCTGAGCATCTCGACATG Sequence

RefSeq Genes

LINC02401

Indel in BRCA-EU detected by 2 callers (PCAWG) Indel in CLLE-ES detected by 2 callers (PCAWG)
4:28466 (DO218159) 7:84543525 (DO6934)

chra chr7
Imm_:_:m-_-% T - I = N Dm
P61 p15.31  plsl  pl3 pll qi2 a13.2 q21.1 q21.3 q22.3 425 q26 q28.1 q28.3 q3L22 q321 q32.3 q34.2 p22.1  p2L.2 p153 pla3 pldl  pl22  plll  qll22 211 a21.2  q221  q3l.1 q3L31 q321 q33 q34 a36.1

51 bp

bp 28,450 bp 28,450 bp 26,470 bp 28,430 bp 26,490 by 13,500 bp
1 1 1 1 1 1 1 1 1 1 1 1 1

784543525 DO6334_normalb:

4_28466_D0218153_normal bar
erage

rage

7_84543525_DOE334_normal b

4_28466_D0218159_normal ba
am

m

7.84543525_DO6334_tumor.ba

4_28466_D0218155 tumor.barr
rage

7.84543525_DO6334_tumor.ba

4_28466_DO218159_turnor.bar
m

- MTAGAAAATCAAAGAAGACTAATCTGAAAAAAATTACTTCTATATGGCAAT

Sequence = MCTGTCTCTTTCTGTCCCTCTCTCTCTCCTTTATCTTTAATTTTTGTATTA ‘Sequence
RefSeq Genes

RefSeq Genes
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SSNV in BRCA-EU detected by 3 callers (PCAWG)
10:63068530 (DO218121)

chrl

P3L1 p222 p2ll pl3.l qumdz Q217 a23.2 q24.3 4253 q3lL.3 q322 qdl Q22 af

§36.23 p36.12 p34.3 p33  pI2l

51 bp
180,331,650 bp 120,331,660 bp 120,331,691
1 1 Il 1 1

120,331,670 bp. 180,331,630 bp.
1 1

1180331666 DO218173_norm.
Coverage

1.180831666_DO218173_norm.
Lbam

1.180331666_DO218173_tumor
overage

1180331666 DO218173_tumor
“bam

Sequence -

TGCTTTAATAATTAGAATTCATATTCAAGTGCTAGTATGTTCTTTTATGGA

RefSeq Genes

ACEDE

Indel in BRCA-EU detected by 3 callers (PCAWG)
17:60371919 (DO218167)

chrl7
p13.2 pl13.1 P12 pll.2 pll.l qll.2 ql2 q21.1 q21.31 q21.33 q22 q23.1 q23.3 q24.2 q25.1 q25.3
51bp
60,371,900 bp. 60,371,910 bp 60,371,920 bp. 60,371,930 bp. 60,371,940 bp
1 1 1 1 1 1 1 1 1

17_60371913 DO218167_norm.
Coverage

17_6071913 DOZ18167_normm. |

Lbam

17_60371319_DO218167_tuma
overage

17_60371519_DO218167_tumor
_bamn

Sequence -

RefSeq Genes

TCTCATGTTATCTTTCTTTTATATATTTTTTTGAGACAGAGT CTCGCTCTG

6 95285154_D052710_normalt
verage

6_95285154_D052710_normal.
bam

£.95285154_D052710_tumer.b
erage

£ 95285154_DO52710_tumor.b
am

Sequence -

RefSeq Genes

3.166732323_DO6432_normalt
verage

3166732323 DOE492_normal.
bam

3.166732323_D06492_tumor.b
erage

3166732323 DO6492_tumor.b
am

Sequence -

RefSeq Genes

SSNV in CLLE-ES detected by 3 callers (PCAWG)
6:95285154 (DO52710)

chré
P51 p23 p22.2 p2L31 paL1 pl2.2 pIL1 ql2 qi3 qia.l  qI5 = qle.2  q21  q22.2 q22.32 q23.3 Q243 q253 %7
51 bp
5,205,130 bp 95,285,140 bp 95,205,150 bp 95,205,160 bp 95,205,170 bp 35,
1 1 Il 1 1 1 L 1 1

RGCAGTTTAAGTAATAACAGACAAAATCTACGTGAAAAAATAAACATGTTT

Indel in CLLE-ES detected by 3 callers (PCAWG)
3:166732323 (DO6492)

chr3
Pp26.1 Pp24.3 P23 p22.1 p21.2 pla.2 P13 pl2.2 qlll ql2.3 ql3.2 q2L1 q22.2 924 q25.2 q26. q26.32 q27.3 q2!
51bp
166,732,300 bp 166,732,310 bp. 166,732,320 bp 166,732,330 bp 166,732,340 bp
1 1 1 1 1 1} 1 1

CATGACAAATTCTTAGAAATACAGTTAAAAAAAATTTCAGATATTTGCAGT
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SSNV in BRCA-EU detected by 4 callers (PCAWG)
12:65503347 (DO218333)

mm
p12.2 pil23 plll  ql2 ql3.12 qi3.3 qld.2 qi5  q2L2 2132 22 G232 Q2411 q24.22  q24.32

P13.32 pl3.2

65,503,340 bp 65,503,370 bp

65,503,360 bp
1

12 65503347_D0218333_norm.
Coverage

12_65503347_D0218333_norm.
Lbam

v
12_65503347_D0218333_tumor

overage

__-____-_‘_

12 65503347_D0218333_tumor
“bam

Sequence - [CCCAGCTGGTGACTTCCTGAAGCCAGTTAGATCAGTTAAAGCTTGTATTCT
RefSeq Genes
WIFL

Indel in BRCA-EU detected by 4 callers (PCAWG)
14:23091909 (DO218611)

:I:I:PC!:_:-:_:_:-:_:-:_:_:_:-:_ZIZ
P12 pil2z plll qil. al2  q13.1  q2l1 a21.3 q22.2 q23.1  q23.3 q24.2 q3L1 q3L3 q32.12 q32.2  q32.

51 bp
23,091.910 bp.

23,091,890 bp. 23,091,900 bp 23,091,920 bp. 23,091,930 bp
1 1 1 1

14_23091303 DO218611_norm.
Coverage

14_23091503_DO218611_norm.
Lbam

14_23091309_DO218611_turno
overage

14_23091309_DO218611_tumor
_bamn

Sequence = MTGTTTGGGGGTGAGAGGGAATGTCATTTTTTGTTTCCAAACATATCAATT

RefSeq Genes

SSNV in CLLE-ES detected by 4 callers (PCAWG)
1:73783544 (DO6350)

chrl

T T W W W T W T T N DO
p36.23 p36.12 p34.3 33 p32d  p3L1 p222 p2ld pl3.l qll qiz  q2lZ q23.2 Q243 q25.3 q3L3 Q322 qdl  qa22  qF

51 bp

3,783,520 bp. 73,783,530 bp 73,783,540 bp. 73,783,550 bp.
1 1 1 Il 1 1 1 L 1 1

1.73783544_DOE350_normalb:
erage

1.73783544_D06350_normal b
am

0
1_73783544_DO6350_tumor.ba

rage

1_73783544_DOB350_turnor. ba _
m

Sequence - GATAAAACATCACAAATTGGGTGGCTTAAAACAACAGAAATATATTATGTC
RefSeq Genes
LINCO1360

Indel in CLLE-ES detected by 4 callers (PCAWG)
4:94350835 (D0O6432)

chra
pl6.1 pl15.31  plsl  pl3 pll qiz q13.2 q2L1 q21.3 quzz 425 q26 q28.1 q28.3 q3L22 q32.1 q32.3 q34.2 #

51 bp

94,350,830 bp
1

erage

4.34350835_D06432_normal.b
am

4.94350835_DOE432_tumor.ba
rage

4_94350835_D06432_tumor.ba
m

AGAAAGCCAGAACCCAGGAAAATGGAAAAAAAGGAGGAATAAGTGGACTA

Sequence -

RefSeq Genes
GRID2



https://doi.org/10.1101/2022.05.11.491496
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mutation in a driver gene (PIK3CA) detected by RFcaller (BRCA-EU) Mutation in a driver gene (DDX3X) detected by RFcaller (CLLE-ES)
3:178936082 (DO218121) X:41205532 (DO6390)

chr3 chix
p26.1  p24.3  p23 p221 p22 plez pI3 plZ2 qlL1 ql23 ql3.2 q2Ll 222 424 G25.2 G201 q26.32 q27.3 Q2 $22.32 p22.2 p2212  p2L2  pil4 pIL23 pll2l  ql2 ql3.2 q2L1 q2L31 a2l a23 @24 q25 a26.2 a27.1 a28
51 bp 51 bp
172,936,060 bp 175,936,070 bp 172,936,000 bp 175,936,090 bp. 175,936,100 bp 41,205,510 bp 41,205,520 bp 41,205,530 bp 41205500 bp 41,205,550 bp
I 1 I 1 I | 1 I L 1 L 1 1 1 1 1 I
3178936082 D0218121_nerm. |[(27% ¥_41205532_D06390_normalb:  |°*
Coverage erage
3.178936082_D0218121,_normm. %_41205532_DOE330_normalb
Lbam am
3.178936082_00218121 tumar 127601 X_41205532 DO6330_tumorba  [1°7 €
overage rage
¥_41205532_D06390_tumor.ba
3.178936082_D0218121_tumor - "
bam
Sequence - Sequence = MGTGGAGACCAAAAAGGGTGCAGATTCTCTGGAGGATTTCTTATACCATGA
v T K K G A ) E F Y H E
RefSeq Genes RefSeq Genes = : = = =
PIKSCA Doxax
chrle chr10
| | T I W e 1 =
p13.3  pl3.2 pl3.1z  plz3 pl21  pilz plLl Q112 Q121 qiz.2 a2l @221 q22.3 a23.2  q2al pI5.1 P13 pl2.31  pll23  plll  qll22  q2L1 @213 @222 q23.1  q23.32 q24.2 4251 4253  q26.13 qZ6,
51 bp 51 bp
» 67,063,700 bp 67,063,710 bp. 67,063,720 bp 67,063,730 bp 67,063,740 bp. sasma bp ) ses7a0 bp sasTa bp ) sasm0 bp 54573350 bp )
1 I | 1 1 1 L 1 |
16 67068717_00218121_norm. [~ 10_64573332_DO6561_normalt 10”5
Coverage verage
18 e roozislataein = 10_64573332_DOESE1_normal.
Lbam barn
10_64573332_DOESEL tumorb 0160
erage
16.67063717_00218121_tumor  [°7 <)
overage — -
-
u e — - V-] 10_64573332_DOESEL_tumor.b
— e —— - am -
16_67065717_D0218121_tumor -— - -
barn -
- —
Sequence -
Sequence - CTGCCGCGACGGCCGCTCGGAAATCGTAAGTCGGCTGGCCCGGGGCGCGCG Rt
efSeq Genes
RefSeq Genes EGR2
cBFB
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SSNVs

Somatic Mutations per Megabase
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RFcaller-private SSNV

Normal Tumor

ACTCCACACAGGTCCTGTGEGAGAGGG ACTCCACACAGGTCCTGEGTGGAGAGGG

ADAMTS4
1:161166093 C>A
DO6552 VAF=0.464

RFcaller-private SSNV

Normal Tumor

CCTGCTGAAGAAGCAGCACGAAAGAGAGA CCTGCTGAAGAAGCAGCATGAAAGAGAGA

CREB1
2:208442348 C>T
DO6558 VAF=0.694

—
—_—

ITPKB
1:226827324 CT>C
DO52712 VAF=0.143

NFKBIE
6:44232738 TGTAAST
DO7172 VAF=0.154

RFcaller-private indel

Tumor

6 TTTTGGTCTTCTTGAAGTCCCGGG6 TTCACGG TG

RFcaller-private indel

Normal

Tumor

GG6AGATGTAAGTGAGTGCTTCCAGC 6 GAGATGTAAGTGAGTGC TTCCAGC

N A ﬁ 20\WA,

WIS TGTAAGTGAGTGCTTCCAGC
delGTAA TG TGAGTGCTTCCAGCTGCT

1

Supplementary Figure 5
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RFcaller-private SSNV

Normal Tumor

AAAACAAGGTTTCAATAACCAGCCTGE AAAACAAAGTTTCAATAACCAGCCTG

MED12
X:70339253 G>A
DO6558 VAF=0.375

M AN

IKBKB

8:42163889 A>C
DO7084 VAF=0.0877 | \

PCAWG-private SSNV

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

SETD2
3:47088090 G>A
DO6934 VAF=0.25

TG GATATACTG AAGACTTGGCT GGG

PCAWG-private SSNV

Normal Tumor

TG GATATACTGAAGACTTGGCTG GG
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