

1 **Membrane-associated shortened Trk receptors promote neuroprotection**
2 **and robust axon regeneration without ligands**

3

4 **Euido Nishijima,^{1,2,6} Sari Honda,^{1,3,6} Yuta Kitamura,^{1,4,6} Kazuhiko Namekata,^{1,6,*} Atsuko Kimura,¹**
5 **Xiaoli Guo,¹ Yuriko Azuchi,¹ Chikako Harada,¹ Akira Murakami,³ Akira Matsuda,³ Tadashi**
6 **Nakano,² Luis F. Parada,⁵ and Takayuki Harada^{1,7,*}**

7

8 ¹Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan

9 ²Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan

10 ³Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo,
11 Japan

12 ⁴Department of Ophthalmology and Visual Science, Chiba University Graduate School of
13 Medicine, Chiba, Japan

14 ⁵Brain Tumor Center and Cancer Biology & Genetics Program, Memorial Sloan Kettering
15 Cancer Center, New York, USA

16 ⁶These authors contributed equally

17 ⁷Lead contact

18 *Correspondence: namekata-kz@igakuken.or.jp (K.N.), harada-tk@igakuken.or.jp (T.H.)

19 **Abstract**

20 Activation of neurotrophic factor signaling is a promising therapy for neurodegeneration.
21 However, limited availability of both ligands and receptors permits only transient activation.
22 In this study, we conquered this problem by inventing a new system that forces membrane
23 localization of the intracellular domain of neurotrophin receptor TrkB, which results in
24 constitutive activation without ligands. Our new system overcomes the small size limitation of
25 the genome packaging in adeno-associated virus and allows high expression of the transgene.
26 Single gene therapy using the modified form of TrkB enhances neuroprotection in mouse models
27 of glaucoma, and stimulates robust axon regeneration after optic nerve injury. Our system may
28 be also applicable to other trophic factor signaling and lead to a significant advance in the field
29 of gene therapy for neurodegenerative disorders.

30

31 **Keywords**

32 neurotrophin receptors, gene therapy, neuroprotection, axon regeneration, glaucoma, retina,
33 optic nerve

34

35 **Introduction**

36 Neurodegenerative diseases are debilitating conditions characterized by cognitive and/or motor
37 impairment due to progressive loss of neural function or neuron death. Among them, glaucoma
38 is the leading cause of irreversible blindness due to optic nerve damage and the death of retinal
39 ganglion cells (RGCs). The optic nerve is composed of RGC axons, which transmit visual
40 information from the eyes to brain targets, such as the superior colliculus (SC) and lateral
41 geniculate nucleus. Presently, the reduction of intraocular pressure (IOP) is the sole evidence-
42 based therapy for glaucoma patients, but it is ineffective in a considerable proportion of
43 glaucoma patients, especially those with normal tension glaucoma (1, 2). Thus, other strategies
44 for suppressing further degeneration of RGCs, such as neuroprotection, have been investigated.
45 Gene therapy is potentially an effective therapeutic approach for neurodegenerative diseases,
46 and tools for delivering genes into injured RGCs have been explored (3, 4). Indeed, adeno-
47 associated virus (AAV) delivery of some trophic factors, such as brain-derived neurotrophic
48 factor (BDNF) or ciliary neurotrophic factor (CNTF), stimulates the protection and axon
49 regeneration of RGCs in a mouse model of optic nerve injury (5-7). However, the concentration
50 of such molecules that are exogenously applied is rapidly decreased by diffusion or metabolism,
51 inhibiting sustained signal transduction. Furthermore, the number of receptors available at the
52 cell surface may limit the strength of signal transduction by such trophic factors. Another
53 problem is that the packaging capacity of AAV is limited to ~4.7 kb, thus some adjustment
54 with the size of promoters and/or molecules will be required to express a large molecule at a
55 high expression level. To overcome these problems, a new idea for effective and continuous
56 stimulation of trophic factor signaling is required. Tropomyosin receptor kinase B (TrkB) is a
57 high-affinity neurotrophin receptor for BDNF that activates several intracellular signaling
58 pathways to promote cell growth and survival upon BDNF binding. Because the extracellular

59 domain of TrkB possesses an autoinhibitory domain (8), we speculate that the membrane-
60 bound intracellular domain of TrkB could induce downstream signaling without BDNF.

61 Protein lipidation, which includes farnesylation, myristylation, palmitoylation, and
62 geranylgeranylation, is a method for localizing proteins at the cell membrane by covalent
63 attachment of a lipophilic group. Of those, farnesylation is a form of posttranslational
64 prenylation modification that involves the attachment of a farnesyl group to the C-terminal
65 cysteine residue of the target protein, facilitating membrane association and protein-protein
66 interactions (9, 10). In this study, we generated a constitutive active form of TrkB by
67 farnesylation of the intracellular domain of TrkB (F-iTrkB). The relatively small size of F-
68 iTrkB allowed for the use of the most powerful form of a CAG promoter in an AAV vector,
69 which generated a high expression of F-iTrkB. A single intraocular injection of AAV-F-iTrkB
70 promoted RGC protection and robust axon regeneration without exogenous BDNF application.
71 Our results indicate that artificial lipidation of the intracellular domains of trophic factor
72 receptors triggers powerful signal transduction, which may be effective as a gene therapy tool
73 for neurodegenerative diseases.

74 **Results**

75 **Membrane anchored intracellular TrkB elicits ligand-independent signaling**

76 We first explored developing constitutively active TrkB. When BDNF binds to TrkB, TrkB
77 dimerizes and transphosphorylates each other, activating downstream signaling pathways, such
78 as Ras-ERK and PI3K-AKT. However, it was previously reported that a TrkB mutant lacking
79 immunoglobulin-domains activated ERK in HEK293 cells without BDNF, but the activity of
80 the TrkB mutant was very low compared with wild-type (WT) TrkB stimulated by BDNF (8).
81 We prepared several TrkB mutants to develop a constitutively active TrkB molecule that
82 induces powerful signal activation (Figure 1A). Analysis of cellular localization revealed that
83 the full-length TrkB (FL-TrkB) was detected at the cell periphery in Neuro2A cells, whereas
84 the intracellular domain of TrkB (iTrkB) and iTrkB with the transmembrane domain (TM-
85 iTrkB) were expressed diffusely in the cytoplasm (Figure 1B). These observations prompted
86 us to design a new TrkB mutant that promotes intracellular membrane anchoring by attaching
87 the farnesylation signal sequence CAAX (F-iTrkB) (Figure 1A). We discovered that F-iTrkB,
88 like FL-TrkB, was localized at the membrane of Neuro2A cells (Figure 1B). We examined the
89 signal transduction activities of these TrkB mutants using immunoblot analysis (Figure 1C).
90 TM-iTrkB and iTrkB failed to activate ERK and AKT, whereas F-iTrkB strongly induced
91 phosphorylation of ERK (pERK) and AKT (pAKT) compared with FL-TrkB alone.
92 Additionally, the levels of pERK and pAKT induced by F-iTrkB were similar to those induced
93 by FL-TrkB stimulated with exogenous BDNF (FL-TrkB+BDNF). Furthermore, F-iTrkB
94 expression increased phosphorylation of other signaling molecules, including Stat1, Stat3,
95 GSK-3 β , and p38, as observed by FL-TrkB+BDNF (Figure 1D). We also discovered that
96 myristoylated iTrkB (M-iTrkB) activates ERK and AKT at similar levels to F-iTrkB (Figure
97 1E).

98 Because F-iTrkB demonstrated powerful activation of multiple downstream signaling
99 without BDNF, we further elucidated its properties. First, we investigated whether the kinase
100 activity of TrkB is essential for F-iTrkB-mediated ERK and AKT activation. Immunoblot
101 analysis revealed that a kinase-dead mutant (F-KD-iTrkB) failed to phosphorylate ERK and
102 AKT, indicating that the kinase activity is essential for F-iTrkB-mediated signal transduction
103 (Figure 2A). We constructed a GST-fused kinase-dead form of F-iTrkB (F-GST-KD-iTrkB) to
104 investigate whether transphosphorylation between F-iTrkB occurs. We discovered that F-GST-
105 KD-iTrkB was phosphorylated at Tyr515 in the presence of F-iTrkB, but not in its absence
106 (Figure 2B), demonstrating that F-iTrkB transphosphorylated F-GST-KD-iTrkB. Additionally,
107 a full-length kinase-dead TrkB (FL-KD-TrkB) was phosphorylated at Tyr515 by F-iTrkB,
108 suggesting that F-iTrkB phosphorylates endogenous WT TrkB (Figure 2C). These results
109 suggest that F-iTrkB transphosphorylates both endogenous WT TrkB and exogenous F-iTrkB
110 at Tyr515. Because BDNF induces TrkB dimerization for transphosphorylation, we
111 investigated whether F-iTrkB forms a dimer using Cos7 cells. A pull-down assay revealed that
112 F-iTrkB does not bind to F-GST-KD-iTrkB (Figure 2D). These results indicate that F-iTrkB
113 does not form a dimer and transphosphorylation of F-iTrkB at Tyr515 was induced by a
114 transient interaction. We also examined whether phosphorylated F-iTrkB is associated with
115 GRB2, Shc, and PLC, like WT TrkB. Immunoblot analysis after a pull-down assay revealed
116 that F-GST-iTrkB was phosphorylated at Tyr515 and bound to GRB2, Shc, and PLC, but not
117 F-GST-KD-iTrkB (Figure 2E). These results indicate that F-iTrkB robustly stimulates
118 downstream signaling without BDNF through the conventional BDNF-TrkB pathway without
119 forming a stable dimer.

120 Since TrkA is also involved in the survival of neurons, such as RGCs (11), we examined
121 the effect of F-iTrkA. F-iTrkA transfection in Neuro2A cells resulted in membrane localization,
122 but not iTrkA (Figure 2F), and F-iTrkA activated downstream signaling like F-iTrkB (Figure

123 2G). Furthermore, we examined cytokine receptors, including gp130 and LIFR. To activate
124 cytokine receptor signaling, including CNTF signaling, gp130 and LIFR form a complex.
125 Therefore, we generated F-igp130 and F-iLIFR plasmid constructs. We discovered that
126 transfection of F-igp130, F-iLIFR, and the combination of both (F-igp130+F-iLIFR) failed to
127 activate ERK and AKT, which function downstream of CNTF signaling (Figure 2H).
128 Collectively, these data demonstrate that membrane localization of the intracellular region of
129 TrkA and TrkB activates their downstream signaling pathways in the absence of ligands.

130

131 **Overexpression of F-iTrkB alters gene expression in retinal ganglion cells**

132 Death of or damage to RGCs is observed in glaucoma, the second leading cause of blindness
133 globally. BDNF-TrkB signaling plays key physiological roles in the protection of neurons,
134 including RGCs, and decreased expression levels of BDNF and TrkB are observed in the optic
135 nerve head tissues from glaucoma patients (12, 13). Indeed, we discovered accelerated
136 glaucomatous RGC and optic nerve degeneration in aged mice that lack TrkB in neurons
137 (TrkB^{c-kit} KO mice) (14) (Figure 3-figure supplement 1). These findings prompted us to
138 investigate the neuroprotective effects of F-iTrkB on RGCs *in vivo*. For this purpose, we
139 prepared an AAV serotype 2-based vector to express F-iTrkB (AAV-F-iTrkB) or GFP (AAV-
140 GFP) as the control (Figure 3A). Two weeks after intraocular injection of AAV-GFP to the
141 WT mice, we detected numerous GFP-positive cells in the retina (Figure 3A). Following the
142 injection of AAV-F-iTrkB into the eye, immunoblot analysis revealed that F-iTrkB expression
143 was detected in the retinal homogenate (Figure 3B). We performed immunohistological
144 analysis to examine the ability of F-iTrkB to phosphorylate ERK and AKT *in vivo*. Two weeks
145 after intravitreal injection of AAV-F-iTrkB, upregulation of pERK and pAKT was observed in
146 cells expressing myc-tagged F-iTrkB (Figure 3C), indicating that F-iTrkB can induce signal
147 transduction *in vivo*.

148 Next, we investigated the effects of F-iTrkB on gene expressions in RGCs. For this, we
149 isolated mRNAs from RGCs using RiboTag mice (15) (Figure 3D). In RiboTag mice, we
150 intravitreally injected AAV-cre, in combination with AAV-F-iTrkB or AAV-GFP for control.
151 The HA-tagged ribosome was purified by immunoprecipitation using an anti-HA antibody, and
152 subsequently, the ribosome-bound RNA was purified. RNA sequence analysis was performed
153 using purified RNA, revealing that numerous gene expressions were altered by F-iTrkB (Figure
154 3E). The number of upregulated genes was 2,871, while the number of downregulated genes
155 was 2,553. Among the upregulated genes, the most enriched 20 Gene Ontology (GO) terms
156 (Figure 3F) and the top 20 most significantly enriched Kyoto Encyclopedia of Genes and
157 Genomes (KEGG) pathways are shown (Figure 3G). The data highlighted pathways associated
158 with metabolic processes, such as mitochondrion, mitochondrial part, cellular metabolic
159 process and metabolic process in GO analysis, and oxidative phosphorylation and metabolic
160 pathways in KEGG analysis, implying that F-iTrkB may affect energy homeostasis in RGCs.
161 Furthermore, gene categories associated with protein degradation and neurodegenerative
162 diseases, such as ubiquitin-mediated proteolysis, proteasome, phagosome, Huntington's
163 disease, and Alzheimer's disease, were identified in the KEGG analysis. These results suggest
164 that F-iTrkB expression may also affect protein degradation and/or neurodegeneration.

165

166 **F-iTrkB protects RGCs in mouse models of glaucoma**

167 To investigate the neuroprotective effects of increased TrkB signaling on RGCs, we first
168 employed a mouse model of normal tension glaucoma, glutamate/aspartate transporter
169 (GLAST) knockout (KO) mice. In GLAST KO mice, RGC degeneration occurs between three
170 and five weeks of age while maintaining normal intraocular pressure (IOP) (16, 17). The
171 relatively fast disease time-course is an advantage when evaluating novel therapies and in this
172 study, we injected AAV-F-iTrkB into the eyeball on postnatal day 10 and examined its effects

173 at three, five, and 12 weeks. IOP was comparable in GLAST KO and WT mice, and intraocular
174 injection of AAV-F-iTrkB did not affect IOP (Figure 4A). We then performed immunostaining
175 of retinal flat mounts using an anti-RBPMS antibody (as a pan RGC marker) and counted the
176 number of RBPMS-positive cells, namely, RGCs (18). AAV-F-iTrkB treatment significantly
177 enhanced the survival of RGCs in 5- and 12-week-old GLAST KO mice (Figure 4B). When
178 we examined retinal morphology *in vivo* using optical coherence tomography (OCT), we
179 discovered that the thickness of the ganglion cell complex (GCC), which contains the RGC
180 layer, was thicker in AAV-F-iTrkB-treated GLAST KO mice than in control mice (Figure 4C).
181 Moreover, visual responses measured by multifocal electroretinography (mfERG) were higher
182 in AAV-F-iTrkB-treated mice than in control mice (Figure 4D). These data indicate that
183 intraocular injection of AAV-F-iTrkB protects RGCs from death and mitigates retinal
184 degeneration and functional decline in GLAST KO mice.

185 Next, we examined the therapeutic effects of AAV-F-iTrkB in a mouse model of high IOP
186 glaucoma. To induce high IOP, we injected silicone oil into the anterior chamber of WT mice
187 to prevent aqueous humor outflow (19). Consistent with the previous report, IOP was elevated
188 chronically from one week after the silicone oil injection (Figure 4E). We injected AAV-F-
189 iTrkB two weeks before the silicone oil injection and analyzed the effects on RGCs four weeks
190 after the induction of high IOP. Compared with a severe RGC loss observed in the control
191 group, AAV-F-iTrkB significantly increased the number of surviving RGCs (Figure 4F). Due
192 to silicone oil interference, we were unable to obtain reliable data from OCT and mfERG.
193 Collectively, these results suggest that AAV-F-iTrkB could be effective in preventing or
194 slowing the progression of glaucoma associated with both high and normal IOP.

195

196 **F-iTrkB protects RGCs following optic nerve injury**

197 Furthermore, we examined the effects of AAV-F-iTrkB on RGCs in an acute injury model, the
198 optic nerve crush (ONC) model. ONC was performed two weeks after intravitreal
199 administration of AAV-F-iTrkB, and the number of RGCs was counted in retinal flat mount
200 preparation. Two weeks after ONC, there was a greater number of RGCs in AAV-F-iTrkB-
201 treated mice than in control mice (Figure 5A). These data indicated that AAV-F-iTrkB was
202 also effective in protecting RGCs in an acute retinal degeneration model. Consistent with the
203 reduced number of RGCs, we discovered that synaptic connections, visualized by
204 immunostaining with PSD95 and VGLUT1, also decreased in the control group, but the extent
205 of reduction was milder in AAV-F-iTrkB-treated mice (Figure 5B). The reduced number of
206 synaptic connections could be attributed to cell death and dendritic degeneration. Therefore,
207 we examined the effects of AAV-F-iTrkB on RGC dendritic degeneration. Dendrite
208 morphology was visualized by labeling RGCs with AAV-GFP. We focused on α RGC
209 dendrites rather than dying RGCs because α RGCs are known to be resistant to ONC-mediated
210 cell death (20). RGC dendrites were double-labeled with AAV-GFP and anti-Neurofilament-
211 H (NF-H) antibody, a marker for α RGCs (20) (Figure 5C). Three weeks after ONC, dendrite
212 retraction was observed in α RGCs of the control group, but the extent of retraction was lesser
213 in α RGCs of the AAV-F-iTrkB-treated group (Figure 5D). The total dendritic length, area, and
214 the number of branches significantly decreased after ONC, but AAV-F-iTrkB treatment
215 alleviated these effects (Figure 5E). Sholl analysis revealed that the number of intersections
216 following ONC was significantly higher in AAV-F-iTrkB-treated dendrites than in control
217 dendrites (Figure 5F). These findings indicate that AAV-F-iTrkB treatment minimizes ONC-
218 induced retraction of α RGC dendrites. Accordingly, retinal responses were higher in the AAV-
219 F-iTrkB-treated group than in the AAV-control-treated group after ONC (Figure 5G). These
220 data indicate that AAV-F-iTrkB protects RGC dendrites and synaptic connections after ONC.
221

222 **F-iTrkB promotes RGC axon regeneration in an ONC model**

223 Next, we examined the effects of AAV-F-iTrkB on RGC axon regeneration. Two weeks after
224 AAV injection, ONC was performed and Alexa Fluor 647-labeled cholera toxin subunit B
225 (CTB647)-labeled regenerated RGC axons were analyzed. A larger volume of CTB647-labeled
226 regenerated RGC axons was observed in the AAV-F-iTrkB-treated group two weeks after ONC,
227 and this effect was even greater four weeks after ONC (Figure 6A). Four weeks after ONC,
228 some of the regenerated axons reached the optic chiasm, which is approximately 4 mm away
229 from the crush site (Figures 6A and 6B). TrkB activation is widely known to induce
230 downstream signaling pathways, including the PI3K-AKT and Ras-ERK pathways, which are
231 inhibited by PTEN and NF1, respectively. Previous studies have revealed that PTEN deletion
232 induced optic nerve regeneration after ONC (21), but the effects of NF1 deletion are unknown.
233 Therefore, we induced PTEN or NF1 deletion by injecting AAV-cre into the eyes of
234 PTEN^{flox/flox} or NF1^{flox/flox} mice, respectively, two weeks before ONC. We discovered that
235 AAV-F-iTrkB treatment resulted in greater RGC axon regeneration than PTEN deletion
236 (Figures 6A and 6B). These data indicate that F-iTrkB is more powerful than unleashing
237 endogenous levels of PI3K signaling by removing its suppressor PTEN. However, NF1, a Ras-
238 GAP that suppresses Ras signaling, had no effects on RGC axon regeneration (Figures 6A and
239 6B), indicating that NF1 is not a major Ras-GAP in RGCs.

240 We injected AAV-F-iTrkB three minutes after ONC to assess its potential for clinical use.
241 AAV-F-iTrkB significantly stimulated the optic nerve regeneration compared with AAV-
242 control, although the effect was not as significant as the pre-administration, and it was similar
243 to PTEN deletion (Figures 6C and 6D). We also examined the ability of AAV-F-iTrkA to
244 stimulate RGC axon regeneration because F-iTrkA strongly activated its downstream signaling
245 pathways *in vitro* (Figure 2G). Intravitreal administration of AAV-F-iTrkA promoted RGC
246 axon regeneration to a similar level as AAV-F-iTrkB (Figures 6E and 6F), indicating that

247 AAV-F-iTrkA is as effective as AAV-F-iTrkB. Collectively, these data demonstrate that AAV-
248 F-iTrkB treatment can protect neurons from disease and injury and mediate robust axon
249 regeneration.

250

251 **F-iTrkB promotes RGC axon regeneration in an optic tract transection model**

252 As shown above, F-iTrkB induced robust axon regeneration; however, regenerated axons that
253 reached the optic chiasm were sparse, making it difficult to determine if F-iTrkB can repair the
254 visual pathway effectively after injury. Hence, we employed an optic tract transection model
255 in which the distance between the injury site and the axonal projection site is significantly
256 shorter than in the ONC model. For this, RGC axons in adult mice were cut near the SC (22)
257 (Figure 7A). The CTB647-labeled optic tract was shown in a 3D image via tissue clearing
258 (Figure 7B) and in frozen sections (Figure 7C). In the injured mice, the optokinetic responses
259 (OKR) were lost ten weeks after injury (Figure 7D). Unlike the ONC model, optic tract
260 transection did not induce retinal function loss (Figure 7E), or RGC death (Figure 7F) for at
261 least 12 weeks after injury. AAV-control or AAV-F-iTrkB was injected intravitreally two
262 weeks before optic tract transection, and regenerating axons were visualized with CTB647. No
263 CTB647-labeled axons were detected in the SC of control mice, but CTB647-labeled axons
264 were observed in the SC of AAV-F-iTrkB-treated mice (Figure 7G). We measured OKRs 10–
265 12 weeks after injury and discovered that optokinetic acuity was slightly higher in the AAV-
266 F-iTrkB-treated group than in the control group (Figure 7H). These data indicate that AAV-F-
267 iTrkB can promote RGC axon regeneration even when the injury site is far from the cell body.

268 **Discussion**

269 In this study, we developed a gene therapy tool, F-iTrkB, which enhances TrkB signaling in
270 neurons in the absence of ligands. Forced localization of iTrkB to the plasma membrane
271 mimicked the activity of FL-TrkB in response to BDNF stimulation. F-iTrkB activates
272 downstream signaling by transphosphorylating each other without forming a stable dimer. The
273 attachment of a farnesyl group to the intracellular domain activated the downstream signaling
274 cascades of TrkB and TrkA. Furthermore, myristylation, in which a myristoyl group was
275 attached to the N-terminal glycine residue of iTrkB, resulted in a similar significant stimulation
276 of the TrkB signaling pathway. However, the kinase-dead form of F-iTrkB (F-KD-iTrkB)
277 failed to activate ERK and AKT signaling. These data indicate that the orientation of the iTrkB
278 molecule at the plasma membrane has no effect on signal activation, but the kinase activity is
279 essential. The kinase activity is required for F-iTrkB transphosphorylation at Tyr515, causing
280 F-iTrkB to interact with the adaptor proteins Shc and GRB2. This interaction is known to
281 induce multiple complex formations with Ras and PI3K, followed by activation of the Ras-
282 ERK and PI3K-AKT signaling, both of which play crucial roles in neuroprotection and axon
283 regeneration (23-27). Indeed, both F-iTrkB and F-iTrkA successfully activated these signals *in*
284 *vitro*, and optic nerve regeneration was observed *in vivo* with intraocular injection of AAV-F-
285 iTrkB and AAV-F-iTrkA. These findings imply that the signal transduction cascade of F-iTrkB
286 and F-iTrkA is similar to that of endogenous TrkB and TrkA when stimulated with their ligands.

287 Intraocular AAV-F-iTrkB administration suppressed RGC death in two mouse models of
288 glaucoma and after ONC. Recent studies have revealed that TrkB expression is reduced in aged
289 human and marmoset glaucoma eyes (12, 28). TrkB expression is also reduced in axotomized
290 RGCs in rats, and TrkB gene delivery enhances RGC survival, especially in combination with
291 BDNF application (29). These data indicate that increased TrkB signaling in RGCs could be
292 an effective therapy for glaucoma. However, maintaining a continued supply of BDNF is

293 impractical. In this study, we discovered that AAV-F-iTrkB expression changes numerous
294 gene expressions in RGCs, including genes associated with energy metabolism. Regulation of
295 energy balance is crucial in protecting injured or dying cells and axon regeneration. RGC
296 protection was observed in the high IOP glaucoma model six weeks after AAV-F-iTrkB
297 injection and in GLAST KO mice even after ten weeks, suggesting long-term beneficial effects
298 of a single injection of AAV-F-iTrkB. In addition to the loss of RGC soma, dendrite length and
299 dendritic arbor are reduced in glaucomatous primate RGCs (30, 31). For this, we show that
300 AAV-F-iTrkB protects RGC dendrites from retraction and preserves synapses in a mouse ONC
301 model. These results indicate that AAV-mediated delivery of F-iTrkB could be effective in
302 preventing further RGC death or decreasing the rate of functional decline in glaucoma.
303 Although little is known about the regeneration of mammalian dendrites after injury, recent
304 studies revealed that activating the insulin-dependent PI3K-AKT-mTOR pathway promotes
305 dendrite regeneration in adult mouse RGCs (32). It is interesting to note that F-iTrkB also
306 activates the PI3K-AKT-mTOR pathway, but dendrite regeneration was not apparent after
307 ONC. These findings imply that fine-tuning the correct combination of various signaling
308 pathways is critical. Future studies will focus on the effects of constitutive activation of the
309 insulin receptor signaling on dendrite regeneration and explore the potential of combination
310 therapy with AAV-F-iTrkB.

311 Adult CNS axons do not usually regenerate after injury, but recent studies indicate that
312 genetic manipulation can put neurons into a regenerative state, implying that CNS axon
313 regeneration is possible (33). Although long-distance RGC axon regeneration accompanied by
314 the recovery of visually guided behavior after ONC has been reported (34, 35), regenerating
315 axons to reach beyond the optic chiasm has been extremely challenging (21, 36, 37). According
316 to some reports, this is due to altered expression levels of guidance cues in the adult-injured
317 CNS, resulting in the misguidance of regenerating axons (38). Literature review indicates that

318 the discovery of the effects of PTEN deletion on axon regeneration was a breakthrough in this
319 field (21), and subsequent studies attempted to achieve greater length and intensity of axon
320 regeneration primarily using combinatory approaches, such as PTEN deletion with
321 manipulation of other genes, including SOCS3 (36), Lin28 (39), and ATF3 (40). We discovered
322 that intraocular injection of AAV-F-iTrkB alone into WT mice induced robust axon
323 regeneration, with some axons reaching optic chiasm four weeks after ONC. This powerful
324 regeneration may be induced because AAV-F-iTrkB could activate Ras-ERK and PI3K-AKT
325 signaling, both of which are involved in promoting axon regeneration. Furthermore, recent
326 studies identified Stat3 as a key molecule in inflammatory stimulation-mediated
327 neuroprotection and axon regeneration in the optic nerve and spinal cord (41, 42). We
328 discovered that F-iTrkB induced powerful activation of Stat3 *in vitro*, implying that F-iTrkB
329 expression may induce an inflammatory stimulated state in RGCs. F-iTrkB-mediated Stat3
330 signaling may synergistically work with Ras-ERK and PI3K-AKT signaling to promote
331 powerful neuroprotection and axon regeneration. Such a high degree of regeneration by a single
332 gene manipulation is remarkable, and although direct comparison of efficacy across different
333 approaches is difficult due to differences in experimental settings, we believe that the
334 regenerative ability of AAV-F-iTrkB competes with the best available at present.

335 A reason for the limited regenerative ability of optic nerve axons could be due to variation
336 in RGC subtypes. To date, over 40 RGC subtypes have been identified, and their responses to
337 injury vary (43-45). It is plausible that the RGC subtype with the highest intrinsic potential for
338 axon regeneration has a low chance of survival after ONC or low AAV infectivity. Therefore,
339 additional studies are required to understand this process better and increase the number of
340 regenerating axons by AAV-F-iTrkB. One possible approach is the combination of AAV-F-
341 iTrkB with other strategies. Currently, the long-term delivery of CNTF by an intravitreal
342 implant with encapsulated cells secreting CNTF is in phase II clinical trials for glaucoma

343 (ClinicalTrials.gov Identifier: NCT02862938). CNTF promotes RGC axon regeneration and
344 protects RGCs (6). Since F-igp130 and F-iLIFR failed to activate CNTF receptor signaling,
345 combinatory treatment with a CNTF implant and AAV-F-iTrkB injection could produce
346 synergistic effects that may be effective in a clinical setting. There was a concern that
347 constitutive activity of TrkB could result in tumor growth, but the intravitreal administration
348 of AAV-F-iTrkB did not have abnormal cell growth or negative side effects. With clinical
349 applications in mind, future studies will investigate the use of inducible systems, such as a
350 light-switchable transgene system and a tamoxifen-inducible Cre/loxP system. For long-term
351 observation, we intend to examine the effectiveness of AAV-F-iTrkB gene therapy in
352 marmoset models of ONC and glaucoma (28). The powerful axon regeneration by F-iTrkB
353 encourages the idea that iTrkB may also be effective in treating spinal cord injury. It has been
354 observed that the expression of truncated forms of TrkB (without the intracellular catalytic
355 tyrosine kinase domain) is significantly increased after spinal cord injury, suggesting that this
356 increased expression could limit the availability of BDNF to facilitate axon regeneration (46).
357 Since AAV-F-iTrkB can stimulate intracellular signaling without ligands, F-iTrkB may induce
358 axon regeneration regardless of the increased expression of truncated forms of TrkB.

359 Conclusively, a single delivery of AAV-F-iTrkB to the retina protected RGCs in animal
360 models of glaucoma and induced robust axon regeneration after axon injury (Figure 7-figure
361 supplement 1). The powerful therapeutic effects achieved with a single dose is a great
362 advantage because it eliminates tissue damage caused by frequent injections. With further
363 characterization and enhancement of delivery, AAV-F-iTrkB may become an effective gene
364 therapy tool for axonal damage and some neurodegenerative diseases, including glaucoma.

365 Materials and Methods

366 Key resources table

Reagent or resource	Designation	Source or reference	Identifiers
Antibody	Alexa Fluor 488 Donkey anti-Guinea Pig	Jackson immuno Research	AB_2340472
Antibody	Alexa Fluor 488 Donkey anti-Mouse	Thermo Fisher	A21202
Antibody	Alexa Fluor 488 Donkey anti-Rabbit	Thermo Fisher	A21206
Antibody	Alexa Fluor 568 Goat anti-Mouse	Thermo Fisher	A11004
Antibody	Alexa Fluor 568 Goat anti-Rabbit	Abcam	ab175471
Antibody	Alexa Fluor 647 Donkey anti-Rabbit	Abcam	ab150075
Antibody	Guinea pig anti-RBPMS	MERCK	ABN1376
Antibody	anti-actin	BD Bioscience	612656
Antibody	anti-BNPI	Santa Cruz	#sc-377425
Antibody	anti-c-Myc	Santa Cruz	sc-40
Antibody	anti-ERK2	BD Bioscience	610103
Antibody	anti-GRB2	Transduction	G16720(610112)
Antibody	anti-HA	Biologend	901533
Antibody	anti-Neurofilament H (clone SMI32)	Biologend	#801702
Antibody	anti-Akt	Cell Signaling Technology	#9272
Antibody	anti-GSK-3β	MERCK	07-1413
Antibody	anti-p38	Cell Signaling Technology	#4511S
Antibody	anti-Phospho 44/42 MAPK (Erk1/2)	Cell Signaling Technology	#4695
Antibody	anti-Phospho Akt (Ser473)	Cell Signaling Technology	#9271
Antibody	anti-Phospho GSK-3β (Ser9)	Cell Signaling Technology	#9336
Antibody	anti-Phospho Stat3 (Ser727)	Bios Antibodies	bs-3429R
Antibody	anti-Phospho-p38 MAPK (T180/Y182)	Santa Cruz	sc-535
Antibody	anti-Phospho-Stat1 (Tyr701)	Cell Signaling Technology	#7649
Antibody	anti-Phospho-TrkB(Y515)	Bioworld Technology	BS4200
Antibody	anti-PSD95	Santa Cruz	#sc-377425
Antibody	anti-Stat1	Cell Signaling Technology	#9172
Antibody	anti-Stat3	Cell Signaling Technology	#12640
Chemicals	Glutathione sepharose4B resin	Thermo Fisher Scientific	17-0756-01
Recombinant protein	Alexa-Fluor 647 conjugated cholera toxin beta subunit	Thermo Fisher Scientific	C34778
cell line	Human: HEK293T cells	TAKARA	632273
cell line	Neuro2A cells	ATCC	CCL-131
cell line	Cos-7 cells	ATCC	CRL-1651
Strain, strain background (Mus musculus)	Mice: PTEN flox/flox	Jackson	4597
Strain, strain background (Mus musculus)	Mice: TrkB flox/flox, c-kit-Cre+	Harada et al., 2011	N/A
Strain, strain background (Mus musculus)	Mice: Ribo-Tag	Jackson	11029
Recombinant DNA	pITrkB-WPRE-hGH	Visual Research Project	N/A
Recombinant DNA	pF-iTrkA-WPRE-hGH	Visual Research Project	N/A
Recombinant DNA	pF-iTrkB-WPRE-hGH	Visual Research Project	N/A
Recombinant DNA	pF-igp130-WPRE-hGH	Visual Research Project	N/A
Recombinant DNA	pF-iLIFR-WPRE-hGH	Visual Research Project	N/A
Recombinant DNA	pF-KD-iTrkB-WPRE-hGH	Visual Research Project	N/A
Recombinant DNA	pTM-iTrkB-WPRE-hGH	Visual Research Project	N/A
Recombinant DNA	pGST-F-KD-iTrkB-WPRE-hGH	Visual Research Project	N/A
Recombinant DNA	pRC2-mi342	TAKARA	6652
Recombinant DNA	pHelper	TAKARA	6652
Recombinant DNA	pAAV-CAG-F-iTrkB-WPRE-hGH	Visual Research Project	N/A
Recombinant DNA	pAAV-CAG-F-iTrkA-WPRE-hGH	Visual Research Project	N/A
Recombinant DNA	pAAV-CAG-GFP-WPRE-hGH	Visual Research Project	N/A
Recombinant DNA	pAAV-CB-F-GFP-WPRE-hGH	Visual Research Project	N/A
Recombinant DNA	pAAV-CAG-Cre	Visual Research Project	N/A
Software	Image J	NIH, Bethesda, Maryland	https://imagej.nih.gov/ij/
Software	Imaris	Bitplane	Imaris x64 Ver.9.2.1
Software	Adobe Photoshop CC	Adobe	https://www.adobe.com/products/photoshop.html
Software	Bowtie v2.2.3	Langmead & Salzberg, 2012	http://bowtie-bio.sourceforge.net/index.shtml
Software	TopHat v2.0.12	Kim et al., 2012	https://ccb.jhu.edu/software/tophat/index.shtml
Software	HTSeq v0.6.1	Anders et al., 2015	https://htseq.readthedocs.io/en/master/
Software	DESeq R package	Anders & Huber, 2010	http://bioconductor.org/packages/release/bioc/html/DESeq.html
Software	KOBAS	Mao et al., 2005	http://kobas.cbi.pku.edu.cn/kobas3/downl/oad/
Software	JMP ver15.2.0	SAS Institute Inc	https://www.jmp.com/ja_jp/home.html
Other	FV3000	OLYMPUS	N/A
Other	Optomotory	CerebralMechanics Inc.	1070
Other	VERIS 6.0 system	Electro-Diagnostic Imaging	https://www.veris-edi.com/

368 **Animals.** Experiments were performed using C57BL/6J, RiboTag (15), TrkB^{flox/flox};c-kit-Cre
369 (TrkB^{c-kit} KO) (14), GLAST KO (17), PTEN^{flox/flox}, and NF1^{flox/flox} mice (47). RiboTag and
370 PTEN^{flox/flox} mice were purchased from The Jackson Laboratory. The animals were treated in
371 accordance with the Tokyo Metropolitan Institute of Medical Science Guidelines for the Care
372 and Use of Animals. All animal experiments were approved by the Institutional Animal Care
373 and Use Committee of the Tokyo Metropolitan Institute of Medical Science (18041).

374

375 **Plasmids.** A plasmid encoding human TrkB was purchased from OriGene Technologies. TrkB
376 mutants were generated by site-directed mutagenesis. The farnesylation-signal of K-Ras or
377 myristoylation signal of Annexin was used for membrane localization (48-50). GRB2, Shc,
378 PLC, TrkA, gp130, and LIFR constructs were obtained from mouse brain cDNA by PCR.

379

380 **Transfection and Immunoblot Analysis.** Transient transfection in Cos-7 cells or Neuro2A
381 cells was performed using Polyethylenimine HCl Max (Polyscience). After transfection for 20
382 h, the cells were lysed in SDS-PAGE loading buffer. For signal transduction analysis, cells
383 were serum-starved for 1.5 h before cell lysis. The samples were subjected to immunoblot
384 analysis using antibodies listed in Key resources table. Quantitative analysis was carried out
385 using ImageJ version 2.0.0 (51).

386

387 **Pull-Down Assay.** Cos-7 cells transfected with plasmids of interest were lysed with a lysis
388 buffer (25 mM Tris pH 7.4, 150 mM NaCl, 1% Triton X-100), and centrifuged at 16,000 × g
389 for 10 min. The supernatant was incubated with Glutathione Sepharose 4B resin (Thermo
390 Fisher Scientific) for 30 min at 4°C with gentle agitation. After washing, the precipitated
391 samples were subjected to immunoblot analysis.

392

393 **Preparation of AAV.** AAVs were produced and purified as described previously (52, 53).
394 Briefly, HEK293 cells were transiently transfected with the AAV vector, pRC2-mi342 and
395 pHelper plasmids (TAKARA). Seventy-two hours after transfection using Polyethylenimine
396 HCl Max, the cells were harvested by scraping, followed by three cycles of freeze-thawing.
397 Cell debris was pelleted with $5,000 \times g$ for 20 min, and supernatant were treated with
398 Benzonase (200 U/ml; Merck) in the presence of 5 mM MgCl₂ at 37°C for 1 h. The
399 Benzonase-treated viral solution was run on an iodixanol gradient. Purified AAV vectors were
400 washed with Hanks' balanced salt solution (HBSS) and concentrated using a VIVASPIN 20,
401 100 kDa MWCO (Sartorius Stedim Lab). Virus titers were determined by quantitative PCR.

402
403 **Purification of RGC-Specific RNA.** RiboTag mice were injected intravitreally with AAV-
404 Cre for labeling of RGCs. Subsequently, AAV-F-iTrkB were injected intravitreally.
405 Purification of RGC ribosomes was performed as described previously (54, 55), with minor
406 modifications. The mice were perfused transcardially with ice-cold phosphate buffered saline
407 (PBS), and retinas were dissected. Six retinas were pooled as one sample and were
408 homogenized with a Dounce homogenizer in a homogenization buffer (50 mM Tris-HCl, pH
409 7.5, 100 mM KCl, 12 mM MgCl₂, 1% Nonidet P-40, 1 mM DTT, 200 U/ml RNAsin, 100 µg/ml
410 cycloheximide, 1 mg/ml heparin). The homogenates were centrifuged at $15,000 \times g$ at 4°C for
411 15 min. The supernatant was incubated with a mouse monoclonal anti-HA antibody (1:50;
412 Biolegend) at 4°C for 16 h. Ribosomes bound to an anti-HA antibody was purified using
413 protein G magnetic beads (GE Healthcare). The RNA bound to ribosomes was purified with
414 RNeasy Protect Mini Kit (QIAGEN) according to the manufacturer's instructions.

415
416 **RNA-Sequencing and Analysis.** Sequencing and analysis of the purified RNA was performed
417 by the Novogene NGS Analysis Service (Novogene). Briefly, sequencing libraries were

418 generated using a NEBNext Ultra™ RNA Library Prep Kit for Illumina (New England
419 Biolabs) and index codes were added to attribute sequences to each sample. Clustering of the
420 index-coded samples was performed on a cBot Cluster Generation System using a PE Cluster
421 Kit cBot-HS (Illumina). After cluster generation, the library preparations were sequenced on
422 an Illumina platform and 125-bp/150-bp paired-end reads were generated.

423 An index of the reference genome was built using Bowtie v2.2.3 (56) and paired-end clean
424 reads were aligned to the reference genome using TopHat v2.0.12 (57). HTSeq v0.6.1 (58) was
425 used to count the read numbers mapped to each gene. Differential expression analysis of two
426 conditions/groups (two biological replicates per condition) was performed using the DESeq R
427 package 1.18.0 (59). *P*-values were adjusted using the Benjamin-Hochberg method. An
428 adjusted *P*-value of 0.005 and \log_2 (fold change) of 1 were set as the threshold for significantly
429 different expression. GO analysis was performed separately for up- and down-regulated gene
430 lists using DAVID Bioinformatics Resources 6.8 (<https://david.ncifcrf.gov>). KOBAS (60) was
431 used to test the statistical enrichment of differential expressed genes in KEGG pathways.

432

433 **Immunostaining of Retinal Flat Mounts and Quantification of RGC Number.** Mice were
434 perfused with 4% paraformaldehyde (PFA), and the eyes were enucleated. The removed retinas
435 were first incubated for 2 h in a blocking solution containing with 5% horse serum and 1%
436 Triton X-100 in PBS (pH 7.4). The retinas were then incubated for 24 h with primary
437 antibodies: anti-pERK antibody (1:1000, Cell Signaling), pAKT antibody (1:1000, Cell
438 Signaling) or anti-RBPMS antibody (1:1000, MERCK); followed by incubation with
439 fluorescent-labeled secondary antibodies (Key resources table) at room temperature for 2 h.
440 Images were obtained using the FV3000 confocal microscope (Olympus) or All-in-One
441 fluorescence microscope BZ-X800 (Keyence). The number of RBPMS-positive cells in

442 representative areas (0.04 mm^2) were counted manually and the average density of RGCs/ mm^2
443 was calculated (18).

444

445 **Retrograde Labeling of RGCs.** Retrograde labeling of RGCs was conducted as described
446 previously (61). Briefly, 1% Fluoro-gold (Fluorochrome) dissolved in PBS was injected into
447 the SC using a microsyringe. At 10 days after injection, the mice were sacrificed, and the eyes
448 were enucleated. The retinas were flat-mounted on microscope slides for examination under a
449 BZ-X800 fluorescence microscope (Keyence).

450

451 **OCT Imaging.** OCT (RS-3000; Nidek) imaging was performed as described previously (17).
452 All line scan images were taken at a distance of three-disc diameters from the optic disc and
453 the average thickness of the GCC (from the inner limiting membrane to the outer boundary of
454 the inner plexiform layer) were measured in retinal images obtained by circular-scanning
455 around the optic disc.

456

457 **mfERG.** mfERG was performed using a VERIS 6.0 system (Electro-Diagnostic Imaging) as
458 described previously (16, 17). Briefly, the visual stimulus consisted of seven hexagonal areas
459 scaled with eccentricity. The stimulus array was displayed on a high-resolution black-and-
460 white monitor driven at a frame rate of 100 Hz. The second-order kernel was analysed as
461 reported previously (16).

462

463 **Induction of IOP Elevation by Intracameral Injection of Silicone Oil.** Injection of silicone
464 oil was performed as described previously (19). Briefly, mice were anaesthetized with an
465 intraperitoneal injection of a mixture of medetomidine, midazolam and butorphanol. A 33G
466 needle was tunnelled through the layers of the cornea to reach the anterior chamber without

467 injuring lens or iris. Silicone oil (1,000 mPa.s, Alfa Aesar) was injected slowly into the anterior
468 chamber until the oil droplet expanded to cover most areas of the iris.

469

470 **ONC.** The mice were anaesthetized with isoflurane during ONC. The optic nerve was exposed
471 intraorbitally and crushed for 5 s at 0.5 mm from the posterior pole of the eyeball with fine
472 surgical forceps (48, 62).

473

474 **RGC Dendritic Arbor Imaging.** AAV-GFP was administered intravitreally at 2.0×10^9 vector
475 genomes/retina so that the neighbouring RGC dendrites do not overlap with each other. At 2
476 weeks after AAV-GFP injection, the mice were perfused with 4% PFA, and retinas were
477 immunostained with an anti-NF-H antibody (SMI32 clone, 1:1000; Biolegend) for detection
478 of α RGC. To visualize GFP-labeled dendrites clearly, the immunostained retinal flat mounts
479 were immersed in 85% glycerol (62) and imaged with an FV3000 confocal microscope
480 (Olympus). The obtained *z*-stack images were reconstituted as a 3D images using Imaris
481 software ver 9.2.1 (Bitplane). GFP-labeled dendrites were traced using the Imaris filament
482 tracing function.

483

484 **Quantification of RGC Synapses.** To visualize RGC dendrites in the inner retinal layer,
485 retinal flat mounts were incubated with anti-BNPI (VGLUT1, 1:1000; Santa Cruz) and anti-
486 PSD95 (1:1000; Cell Signaling) antibodies for 48 h at 4°C with gently agitation, followed by
487 incubation with fluorescent-labeled secondary antibodies (Key resources table). Images were
488 obtained with a FV3000 confocal microscope (Olympus). To reconstruct high resolution 3D
489 images, scans were taken at 0.5- μ m intervals with 30 images per focal plane using a 100 \times
490 objective lens. The number of double-immunolabeled synapses in 3D images were analysed
491 using Imaris.

492

493 **Quantification of Regenerating Axons.** To visualize regenerating axons in the optic nerve, 2
494 μ l of CTB647 (Thermo Fisher) was injected intravitreally at 2 days before sacrifice. Frozen
495 sections of the optic nerves (14 μ m thickness) were obtained by cryosectioning, and CTB647-
496 positive axons was counted manually at 500, 1500, 2500, 3500 and 4500 μ m distal to the lesion
497 site. The total number of regenerating axons at different sites in the optic nerve was calculated
498 from the obtained data (48).

499

500 **Optic Tract Transection.** Optic tract transection was conducted as described previously (22).
501 Briefly, the mice were anaesthetized, shaved, disinfected, and placed in a stereotaxic apparatus.
502 A small incision was made on the scalp and a bone flap was created over the SC. The optic
503 tract was cut with a sharp knife at 3.5 mm posterior to the bregma on the midline to 4 mm
504 posterior to the bregma and 2 mm lateral to the midline at a depth of 2.5 mm (Figure 7A). An
505 antibacterial ointment was applied and the skin was sutured with a 6-0 silk thread.

506

507 **3D Visualization of the Visual Pathway.** To visualize the visual pathway in the mouse brain,
508 2 μ l of CTB647 was injected intravitreally. At 2 days after injection, the mice were perfused
509 transcardially with PBS followed by a fixation buffer [4% PFA in 0.1 M phosphate buffer (pH
510 7.4)]. The whole brain was dissected out and post-fixed with a fixation buffer overnight at 4°C.
511 Tissue clearing was performed by using the 3DISCO method with some modifications (63).
512 Briefly, the brain was incubated in 50% tetrahydrofuran (THF) in distilled water for 12 h, 70%
513 THF for 12 h, 80% THF for 12 h, 100% THF for 3 \times 12 h, and in dibenzyl ether for 2–3 h before
514 imaging. The cleared brain was immersed in dibenzyl ether (refractive index = 1.562) and
515 imaged with a light sheet fluorescence microscope (MVX10-LS; Olympus) (64). We used a 2 \times
516 objective lens with a 640-nm laser and bandpass filter (660/750 nm). Approximately 500

517 images were collected by scanning the sample in the *z*-direction with an 8- μ m step size. The
518 obtained *z*-stack images were reconstituted as 3D images using Imaris software (ver 9.2.1).

519
520 **Visual Behaviour Test.** OKRs were analysed using OptoMotry (CerebralMechanics) to
521 measure the highest spatial frequency of the grating tracked, as described previously (22). The
522 mice were placed on an elevated platform surrounded by four computer monitors displaying
523 black-and-white bars. If the head of the mouse moved in concert with the gratings, the trial was
524 scored as ‘tracked’. The optokinetic acuity was determined using an automated staircase
525 procedures. The injured eye refers to the left eye contralateral to the injured right SC. The test
526 normally lasted for 5 min.

527
528 **Statistical Analysis.** Statistics were performed using JMP 15.2.0 software (SAS Institute).
529 Data are represented as mean \pm SEM. Data significance was determined using two-tailed
530 Student’s *t* tests, or one-way ANOVA with Tukey–Kramer post hoc test. Statistical
531 significance is reported as significant at $P < 0.05$.

532
533
534 **Acknowledgements**
535 We would like to thank Jun Horiuchi, Emiko Wakatsuki, Takahiko Noro, Naoki Kiyota, Kaori
536 Segura, Sayaka Ihara, Keiko Okabe, Tomoko Hara, Mayumi Kunitomo, and Yuan Zhu for their
537 technical support and useful discussions. This work was supported in part by Japan Society for
538 the Promotion of Science (JSPS) KAKENHI Grants-in-Aid for Scientific Research
539 (JP21K20979 and JP22K16985 to E.N.; JP20K18404 and JP22K16961 to Y.K.; JP20K07751
540 to K.N.; JP20K09820 to A.K.; JP21K09688 to X.G.; JP19K09943 and JP22K09804 to C.H.;
541 JP21H04786 to T.H.; JP19KK0229 to T.N. and T.H.; JP21H02819 and JP21K18279 to K.N.

542 and T.H.); and the Takeda Science Foundation, the Suzuken Memorial Foundation, the Naito
543 Foundation, and the Uehara Memorial Foundation (T.H.).

544

545 **Author contributions**

546 K.N. and T.H. designed research; E.N., S.H., Y.K., K.N., A.K., X.G., Y.A., and C.H. performed
547 research and analysed data; A. Murakami, A. Matsuda, and T.N. contributed to study
548 discussions and manuscript revisions; L.F.P. contributed new reagents/analytic tools; and E.N.,
549 K.N., A.K., L.F.P., and T.H. wrote the paper.

550

551 **Declaration of interests**

552 A patent based on the results in this manuscript was filed by the Tokyo Metropolitan Institute
553 of Medical Science (K.N. and T.H. are co-inventors).

554

555 **Data availability**

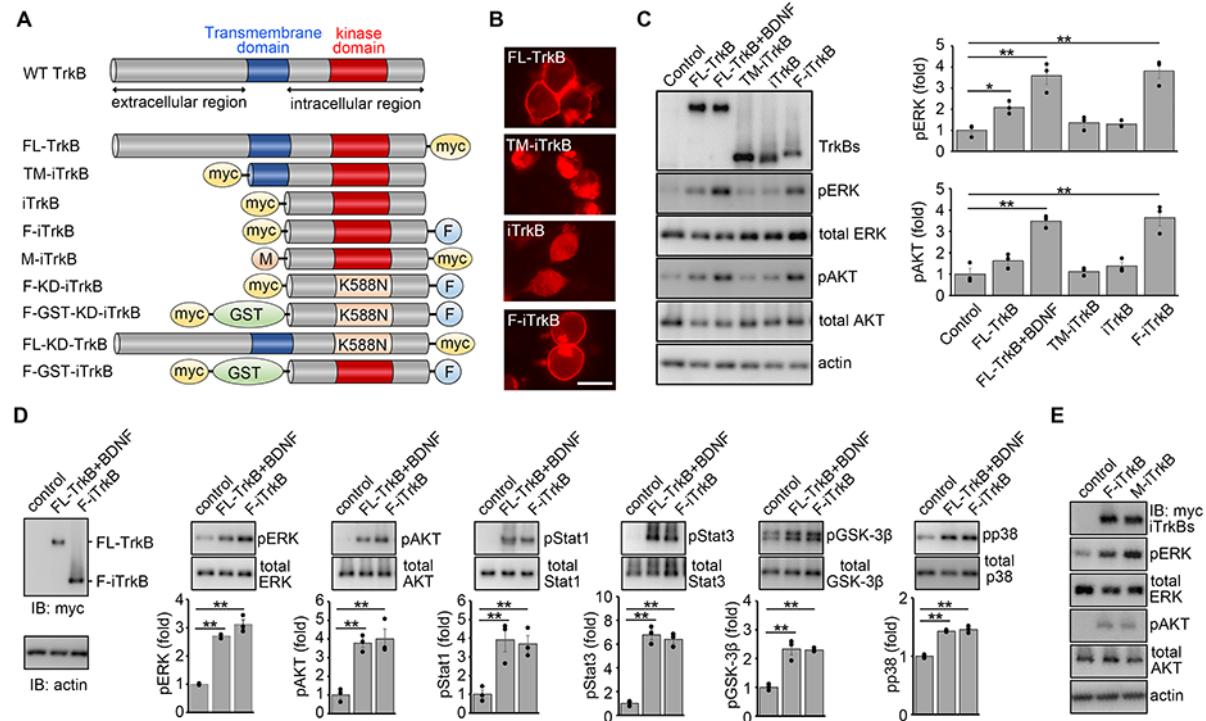
556 Source data are included in the Source Data files.

557

558 References

- 559 1. M. Malihi, E. R. Moura Filho, D. O. Hodge, A. J. Sit, Long-term trends in glaucoma-
560 related blindness in Olmsted County, Minnesota. *Ophthalmology* **121**, 134-141 (2014).
- 561 2. Y. Yokoyama *et al.*, Characteristics of patients with primary open angle glaucoma and
562 normal tension glaucoma at a university hospital: a cross-sectional retrospective study.
563 *BMC Res. Notes* **8**, 360 (2015).
- 564 3. D. M. O'Connor, N. M. Boulis, Gene therapy for neurodegenerative diseases. *Trends
565 Mol. Med.* **21**, 504-512 (2015).
- 566 4. A. M. Wilson, A. Di Polo, Gene therapy for retinal ganglion cell neuroprotection in
567 glaucoma. *Gene Ther.* **19**, 127-136 (2012).
- 568 5. R. Ren, Y. Li, Z. Liu, K. Liu, S. He, Long-term rescue of rat retinal ganglion cells and
569 visual function by AAV-mediated BDNF expression after acute elevation of intraocular
570 pressure. *Invest. Ophthalmol. Vis. Sci.* **53**, 1003-1011 (2012).
- 571 6. S. G. Leaver *et al.*, AAV-mediated expression of CNTF promotes long-term survival
572 and regeneration of adult rat retinal ganglion cells. *Gene Ther.* **13**, 1328-1341 (2006).
- 573 7. V. Pernet, A. Di Polo, Synergistic action of brain-derived neurotrophic factor and lens
574 injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo.
575 *Brain* **129**, 1014-1026 (2006).
- 576 8. J. Dewitt *et al.*, Constitutively active TrkB confers an aggressive transformed
577 phenotype to a neural crest-derived cell line. *Oncogene* **33**, 977-985 (2014).
- 578 9. E. C. Lerner *et al.*, Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic
579 Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes. *J.
580 Biol. Chem.* **270**, 26802-26806 (1995).
- 581 10. L. P. Wright, M. R. Philips, Thematic review series: lipid posttranslational
582 modifications. CAAX modification and membrane targeting of Ras. *J. Lipid Res.* **47**,
583 883-891 (2006).
- 584 11. T. Harada, C. Harada, L. F. Parada, Molecular regulation of visual system development:
585 more than meets the eye. *Genes Dev.* **21**, 367-378 (2007).
- 586 12. V. Gupta *et al.*, BDNF impairment is associated with age-related changes in the inner
587 retina and exacerbates experimental glaucoma. *Biochim. Biophys. Acta* **1842**, 1567-
588 1578 (2014).
- 589 13. A. Kimura, K. Namekata, X. Guo, C. Harada, T. Harada, Neuroprotection, growth
590 factors and BDNF-TrkB signalling in retinal degeneration. *Int. J. Mol. Sci.* **17** (2016).
- 591 14. C. Harada *et al.*, Glia- and neuron-specific functions of TrkB signalling during retinal
592 degeneration and regeneration. *Nat. Commun.* **2**, 189 (2011).
- 593 15. E. Sanz *et al.*, Cell-type-specific isolation of ribosome-associated mRNA from complex
594 tissues. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 13939-13944 (2009).
- 595 16. T. Harada *et al.*, The potential role of glutamate transporters in the pathogenesis of
596 normal tension glaucoma. *J. Clin. Invest.* **117**, 1763-1770 (2007).

- 597 17. H. Sano *et al.*, Differential effects of N-acetylcysteine on retinal degeneration in two
598 mouse models of normal tension glaucoma. *Cell Death Dis.* **10**, 75 (2019).
- 599 18. S. Honda *et al.*, Survival of alpha and intrinsically photosensitive retinal ganglion cells
600 in NMDA-induced neurotoxicity and a mouse model of normal tension glaucoma.
Invest. Ophthalmol. Vis. Sci. **60**, 3696-3707 (2019).
- 601 19. J. Zhang *et al.*, Silicone oil-induced ocular hypertension and glaucomatous
602 neurodegeneration in mouse. *Elife* **8** (2019).
- 603 20. X. Duan *et al.*, Subtype-specific regeneration of retinal ganglion cells following
604 axotomy: effects of osteopontin and mTOR signaling. *Neuron* **85**, 1244-1256 (2015).
- 605 21. K. K. Park *et al.*, Promoting axon regeneration in the adult CNS by modulation of the
606 PTEN/mTOR pathway. *Science* **322**, 963-966 (2008).
- 607 22. F. Bei *et al.*, Restoration of visual function by enhancing conduction in regenerated
608 axons. *Cell* **164**, 219-232 (2016).
- 609 23. D. J. Creedon, E. M. Johnson, J. C. Lawrence, Mitogen-activated protein kinase-
610 independent pathways mediate the effects of nerve growth factor and cAMP on
611 neuronal survival. *J. Biol. Chem.* **271**, 20713-20718 (1996).
- 612 24. Y. Zhou, V. Pernet, W. W. Hauswirth, A. Di Polo, Activation of the extracellular signal-
613 regulated kinase 1/2 pathway by AAV gene transfer protects retinal ganglion cells in
614 glaucoma. *Mol. Ther.* **12**, 402-412 (2005).
- 615 25. Q. Wang *et al.*, Optical control of ERK and AKT signaling promotes axon regeneration
616 and functional recovery of PNS and CNS in Drosophila. *Elife* **9** (2020).
- 617 26. R. D. Almeida *et al.*, Neuroprotection by BDNF against glutamate-induced apoptotic
618 cell death is mediated by ERK and PI3-kinase pathways. *Cell Death Differ.* **12**, 1329-
619 1343 (2005).
- 620 27. M. Berry, Z. Ahmed, P. Morgan-Warren, D. Fulton, A. Logan, Prospects for mTOR-
621 mediated functional repair after central nervous system trauma. *Neurobiol. Dis.* **85**, 99-
622 110 (2016).
- 623 28. T. Noro *et al.*, Normal tension glaucoma-like degeneration of the visual system in aged
624 marmosets. *Sci. Rep.* **9**, 14852 (2019).
- 625 29. L. Cheng, P. Sapieha, P. Kittlerova, W. W. Hauswirth, A. Di Polo, TrkB gene transfer
626 protects retinal ganglion cells from axotomy-induced death in vivo. *J. Neurosci.* **22**,
627 3977-3986 (2002).
- 628 30. A. J. Weber, P. L. Kaufman, W. C. Hubbard, Morphology of single ganglion cells in
629 the glaucomatous primate retina. *Invest. Ophthalmol. Vis. Sci.* **39**, 2304-2320 (1998).
- 630 31. A. J. Weber, C. D. Harman, Structure-function relations of parasol cells in the normal
631 and glaucomatous primate retina. *Invest. Ophthalmol. Vis. Sci.* **46**, 3197-3207 (2005).
- 632 32. J. Agostinone *et al.*, Insulin signalling promotes dendrite and synapse regeneration and
633 restores circuit function after axonal injury. *Brain* **141**, 1963-1980 (2018).
- 634 33. P. R. Williams, L. I. Benowitz, J. L. Goldberg, Z. He, Axon regeneration in the
635 mammalian optic nerve. *Annu. Rev. Vis. Sci.* **6**, 195-213 (2020).
- 636


- 637 34. S. de Lima *et al.*, Full-length axon regeneration in the adult mouse optic nerve and
638 partial recovery of simple visual behaviors. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 9149-
639 9154 (2012).
- 640 35. J. H. Lim *et al.*, Neural activity promotes long-distance, target-specific regeneration of
641 adult retinal axons. *Nat. Neurosci.* **19**, 1073-1084 (2016).
- 642 36. F. Sun *et al.*, Sustained axon regeneration induced by co-deletion of PTEN and SOCS3.
643 *Nature* **480**, 372-375 (2011).
- 644 37. M. Leibinger *et al.*, Boosting central nervous system axon regeneration by
645 circumventing limitations of natural cytokine signaling. *Mol. Ther.* **24**, 1712-1725
646 (2016).
- 647 38. R. Conceicao *et al.*, Expression of developmentally important axon guidance cues in
648 the adult optic chiasm. *Invest. Ophthalmol. Vis. Sci.* **60**, 4727-4739 (2019).
- 649 39. X. W. Wang *et al.*, Lin28 signaling supports mammalian PNS and CNS axon
650 regeneration. *Cell Rep.* **24**, 2540-2552 e2546 (2018).
- 651 40. C. Kole *et al.*, Activating transcription factor 3 (ATF3) protects retinal ganglion cells
652 and promotes functional preservation after optic nerve crush. *Invest. Ophthalmol. Vis.*
653 *Sci.* **61**, 31 (2020).
- 654 41. M. Leibinger, A. Andreadaki, H. Diekmann, D. Fischer, Neuronal STAT3 activation is
655 essential for CNTF- and inflammatory stimulation-induced CNS axon regeneration.
656 *Cell Death Dis.* **4**, e805 (2013).
- 657 42. M. Leibinger *et al.*, Transneuronal delivery of hyper-interleukin-6 enables functional
658 recovery after severe spinal cord injury in mice. *Nat. Commun.* **12**, 391 (2021).
- 659 43. T. Baden *et al.*, The functional diversity of retinal ganglion cells in the mouse. *Nature*
660 **529**, 345-350 (2016).
- 661 44. B. A. Rheaume *et al.*, Single cell transcriptome profiling of retinal ganglion cells
662 identifies cellular subtypes. *Nat. Commun.* **9**, 2759 (2018).
- 663 45. N. M. Tran *et al.*, Single-cell profiles of retinal ganglion cells differing in resilience to
664 injury reveal neuroprotective genes. *Neuron* **104**, 1039-1055 (2019).
- 665 46. D. J. Liebl, W. Huang, W. Young, L. F. Parada, Regulation of Trk receptors following
666 contusion of the rat spinal cord. *Exp. Neurol.* **167**, 15-26 (2001).
- 667 47. Y. Zhu *et al.*, Ablation of NF1 function in neurons induces abnormal development of
668 cerebral cortex and reactive gliosis in the brain. *Genes Dev.* **15**, 859-876 (2001).
- 669 48. K. Namekata *et al.*, Dock3 induces axonal outgrowth by stimulating membrane
670 recruitment of the WAVE complex. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 7586-7591
671 (2010).
- 672 49. B. M. Wice, J. I. Gordon, A strategy for isolation of cDNAs encoding proteins affecting
673 human intestinal epithelial cell growth and differentiation: characterization of a novel
674 gut-specific N-myristoylated annexin. *J. Cell Biol.* **116**, 405-422 (1992).
- 675 50. H. Jiang *et al.*, Protein lipidation: Occurrence, mechanisms, biological functions, and
676 enabling technologies. *Chem. Rev.* **118**, 919-988 (2018).

- 677 51. C. T. Rueden *et al.*, ImageJ2: ImageJ for the next generation of scientific image data.
678 *BMC Bioinformatics* **18**, 529 (2017).
- 679 52. T. Udagawa *et al.*, FUS regulates AMPA receptor function and FTLD/ALS-associated
680 behaviour via GluA1 mRNA stabilization. *Nat. Commun.* **6**, 7098 (2015).
- 681 53. S. Zolotukhin *et al.*, Recombinant adeno-associated virus purification using novel
682 methods improves infectious titer and yield. *Gene Ther.* **6**, 973-985 (1999).
- 683 54. N. Itoh *et al.*, Cell-specific and region-specific transcriptomics in the multiple sclerosis
684 model: Focus on astrocytes. *Proc. Natl. Acad. Sci. U. S. A.* **115**, E302-E309 (2018).
- 685 55. X. Guo *et al.*, ASK1 signaling regulates phase-specific glial interactions during
686 neuroinflammation. *Proc. Natl. Acad. Sci. U. S. A.* **119**, e2103812119 (2022).
- 687 56. B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. *Nat. Methods*
688 **9**, 357-359 (2012).
- 689 57. D. Kim *et al.*, TopHat2: accurate alignment of transcriptomes in the presence of
690 insertions, deletions and gene fusions. *Genome Biol.* **14**, R36 (2013).
- 691 58. S. Anders, P. T. Pyl, W. Huber, HTSeq--a Python framework to work with high-
692 throughput sequencing data. *Bioinformatics* **31**, 166-169 (2015).
- 693 59. S. Anders, W. Huber, Differential expression analysis for sequence count data. *Genome*
694 *Biol.* **11**, R106 (2010).
- 695 60. X. Mao, T. Cai, J. G. Olyarchuk, L. Wei, Automated genome annotation and pathway
696 identification using the KEGG Orthology (KO) as a controlled vocabulary.
Bioinformatics **21**, 3787-3793 (2005).
- 697 61. Y. Azuchi *et al.*, Role of neuritin in retinal ganglion cell death in adult mice following
698 optic nerve injury. *Sci. Rep.* **8**, 10132 (2018).
- 700 62. K. Namekata *et al.*, DOCK8 is expressed in microglia, and it regulates microglial
701 activity during neurodegeneration in murine disease models. *J. Biol. Chem.* **294**, 13421-
702 13433 (2019).
- 703 63. A. Erturk *et al.*, Three-dimensional imaging of solvent-cleared organs using 3DISCO.
Nat. Protoc. **7**, 1983-1995 (2012).
- 705 64. X. Luo *et al.*, Three-dimensional evaluation of retinal ganglion cell axon regeneration
706 and pathfinding in whole mouse tissue after injury. *Exp. Neurol.* **247**, 653-662 (2013).

707

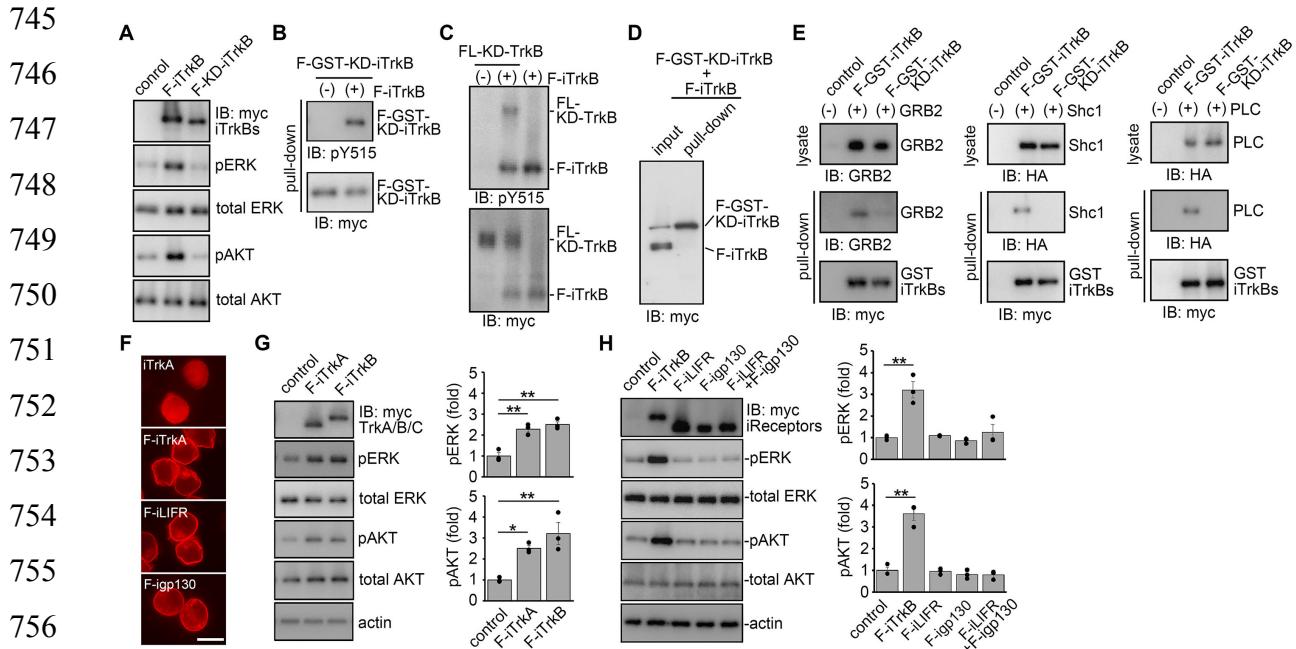
708 **Figures and Legends**

709

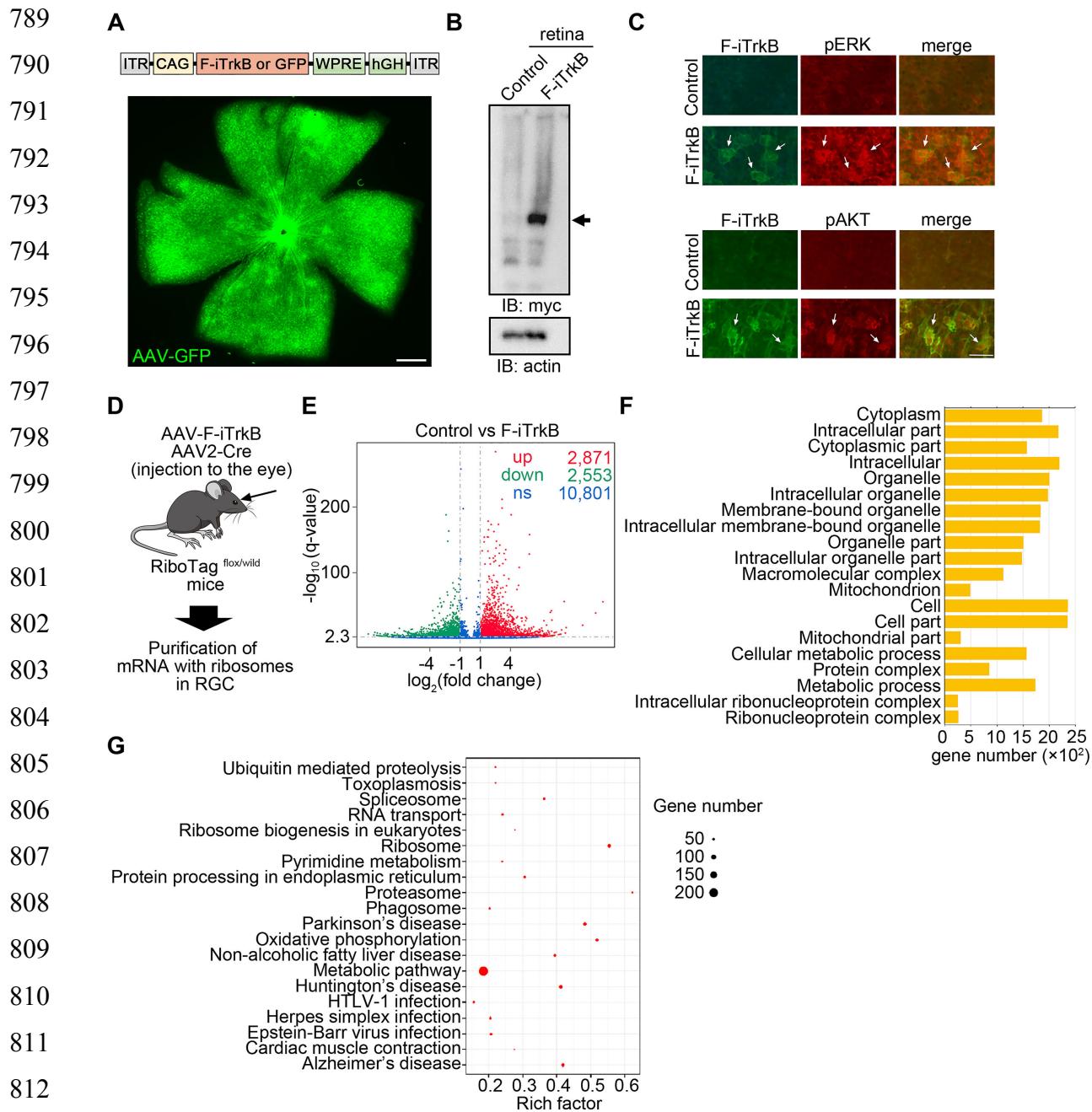
720

721 **Figure 1. Farnesylated intracellular domain of TrkB activates downstream signaling**
722 **without ligands.**

723 **(A)** Schematic diagram of TrkB constructs used in this study. TM, transmembrane domain;
724 myc, myc-tag; F, farnesylation signal; GST, Glutathione S-transferase; K588N, substitution of
725 lysine with asparagine at position 588, to generate a kinase dead form.


726 **(B)** Cellular localization of TrkB mutants. Immunostaining of myc-tagged TrkB mutants in
727 Neuro2A cells transfected with the indicated plasmids. Full-length (FL)-TrkB and farnesylated
728 intracellular domain of TrkB (F-iTrkB) were localized at the peripheral region. (Scale bar: 25
729 μm.)

730 **(C)** Activation of ERK and AKT by TrkB mutants. Immunoblot analysis of ERK and AKT
731 phosphorylation in Cos-7 cells transfected with the indicated plasmids. Representative
732 immunoblot images (left) and quantification of the relative levels of phosphorylated ERK


733 (pERK) and AKT (pAKT) (right). The one-way ANOVA with Tukey-Kramer post hoc test
734 was used. $n = 3$ per experimental condition. $**P < 0.01$; $*P < 0.05$.

735 **(D)** Comparison of ligand-stimulated FL-TrkB and F-iTrkB in activation of downstream
736 signaling. Immunoblot analysis of several signal proteins in Cos-7 cells transfected with FL-
737 TrkB with BDNF stimulation for 20 min (FL-TrkB+BDNF), or F-iTrkB. TrkBs and actin
738 expression are shown (left). pERK, pAKT, pStat1, pStat3, pGSK-3 β and pp38 were detected
739 in both groups. Representative immunoblot images are shown (top), and the relative levels of
740 phosphorylated proteins were quantified (bottom). The one-way ANOVA with Tukey-Kramer
741 post hoc test was used. $n = 3$ per experimental condition. $**P < 0.01$.

742 **(E)** The effect of myristoylation and farnesylation on the activity of iTrkB. Cos-7 cells were
743 transfected with myristoylated iTrkB (M-iTrkB) or F-iTrkB. pERK and pAKT were detected
744 from both mutants.

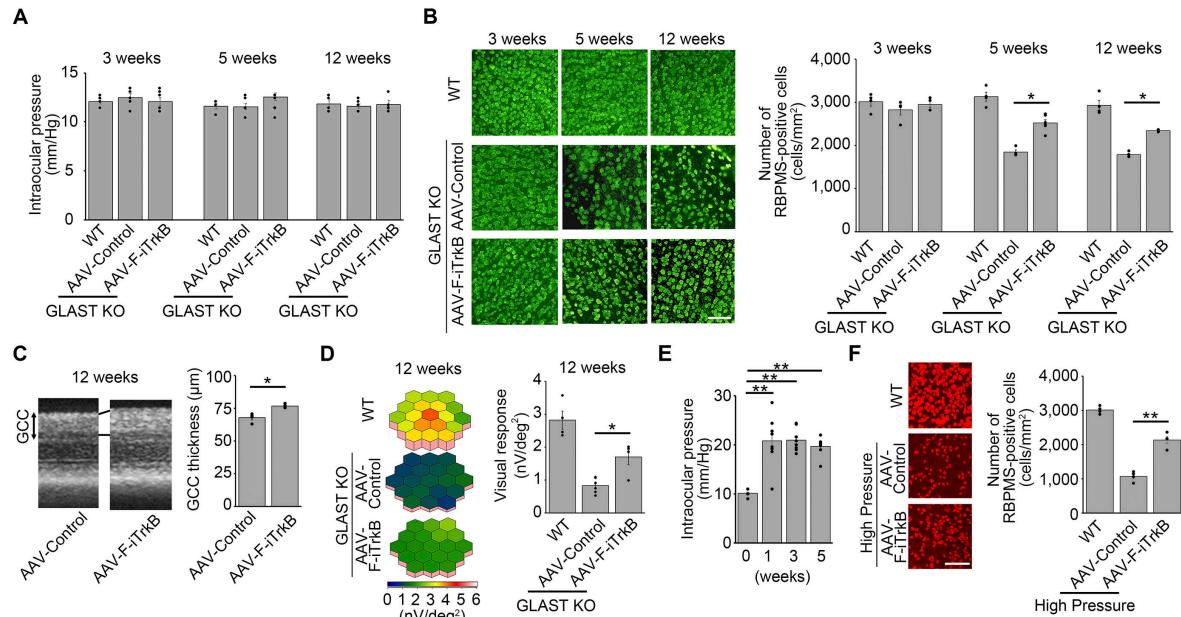
773 (E) Interaction of F-iTrkB with GRB2, Shc and PLC. Cos-7 cells were cotransfected with F-
774 GST-iTrkB and GRB2 (left), HA-tagged Shc1 (middle), or HA-tagged PLC (right), followed
775 by a GST-pull down assay. The pull-down sample was subjected to immunoblot analysis.
776 (F) Cellular localization of iTrkA, F-iTrkA, F-igp130 and F-iLIFR. Immunostaining of myc-
777 tagged proteins in Neuro2A cells transfected with the indicated plasmids. Farnesylated proteins
778 were localized at the peripheral region. (Scale bar: 25 μ m.)
779 (G) F-iTrkA-mediated activation of ERK and AKT. Immunoblot analysis of ERK and AKT
780 phosphorylation in Cos-7 cells transfected with F-iTrkA or F-iTrkB. Representative images
781 (left) and quantification of the relative levels of pERK and pAKT (right). The one-way
782 ANOVA with Tukey-Kramer post hoc test was used. $n = 3$ per experimental condition. ** $P <$
783 0.01; * $P < 0.05$.
784 (H) Absence of signal activation by farnesylated intracellular domain of cytokine receptors.
785 Immunoblot analysis of ERK and AKT phosphorylation in Cos-7 cells transfected with F-
786 iLIFR and F-igp130 and a mixture of the two plasmids. Representative images (left) and
787 quantification of the relative levels of pERK and pAKT (right). The one-way ANOVA with
788 Tukey-Kramer post hoc test was used. $n = 3$ per experimental condition. ** $P < 0.01$.

813
814
815 **Figure 3 with 1 supplement. Intravitreal injection of AAV-F-iTrkB alters gene
816 expressions in RGCs.**

817 **(A)** Schematic diagram of the plasmid construction for AAV (top). AAV transduction of cells
818 in the mouse retina. AAV-GFP was intravitreally injected to WT mice. Two weeks after
819 injection, GFP expression was detected in the flat-mounted retina (bottom). (Scale bar: 300
820 $\mu\text{m}.$)

821 (B) Expression of F-iTrkB in the mouse retina. AAV-F-iTrkB was intravitreally injected to
822 WT mice. Two weeks after injection, expression of myc-tagged F-iTrkB were detected in
823 retinal homogenates by immunoblotting.

824 (C) F-iTrkB-mediated ERK and AKT activation in RGCs. Double-immunostaining of retinal
825 flat mounts using anti-myc (for F-iTrkB; green) and anti-pERK (top, red) or anti-pAKT
826 (bottom, red) antibodies. (Scale bar: 25 μ m.)


827 (D) Schematic diagram of the protocol for purification of RGC-specific RNA.

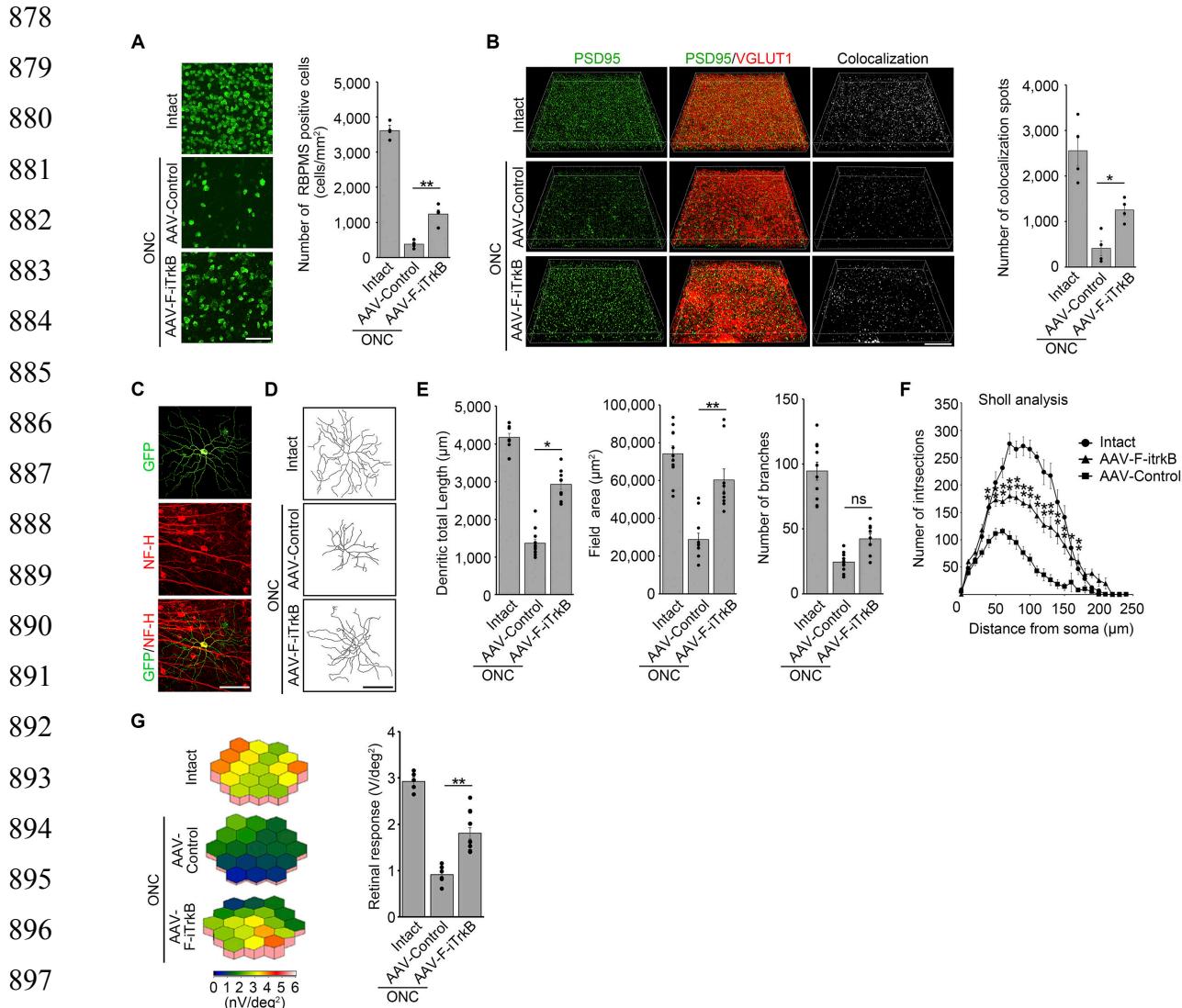
828 (E) Volcano plots of gene expression in RGCs infected with AAV-F-iTrkB. The red dots
829 represent significantly upregulated genes, the green dots represent significantly downregulated
830 genes ($|\log_2(\text{Fold Change})| > 1$ and q value < 0.005), and the blue dots represent gene
831 expressions with no significant difference between the treatment group (AAV-F-iTrkB) and
832 the control group (AAV-Control).

833 (F) Gene Ontology (GO) analysis of differentially expressed genes between AAV-Control or
834 AAV-F-iTrkB-treated RGCs. The most enriched 20 GO terms among the upregulated genes
835 are shown.

836 (G) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially
837 expressed genes between AAV-Control and AAV-F-iTrkB-treated RGCs. The top 20 most
838 significantly enriched KEGG pathways are shown.

839
840
841
842
843
844
845

851
852


853 **Figure 4. AAV-F-iTrkB prevents RGC degeneration in experimental models of glaucoma.**

854 **(A)** Intraocular pressure (IOP) of WT or GLAST KO mice at 3, 5 and 12 weeks old. AAV-F-
855 iTrkB was intravitreally injected in GLAST KO mice at 10 days old. $n = 4-6$ mice per group.
856 **(B)** AAV-F-iTrkB-mediated RGC protection in GLAST KO mice. RGCs were detected by
857 immunostaining of RBPMS in GLAST KO mice. AAV-F-iTrkB was intravitreally injected in
858 GLAST KO mice at 10 days old. Representative images (left) and quantification of RGCs
859 (right). The one-way ANOVA with Tukey-Kramer post hoc test was used. $n = 4-6$ mice per
860 group. $*P < 0.05$. (Scale bar: 100 μ m.)

861 **(C)** Optical coherence tomography (OCT) of GLAST KO mouse retinas with or without AAV-
862 F-iTrkB treatment. Cross-sectional images of the retinas in GLAST KO mice at 12 weeks old
863 with or without intravitreal injection of AAV-F-iTrkB (left) and quantification of the ganglion
864 cell complex (GCC) thickness (right). Two-tailed unpaired Student's *t* test was used. $n = 4-6$
865 mice per group. $*P < 0.05$.

866 **(D)** Multifocal electroretinography (mfERG) of GLAST KO mice with or without AAV-F-
867 iTrkB treatment. Retinal responses of GLAST KO mice at 12 weeks old with or without

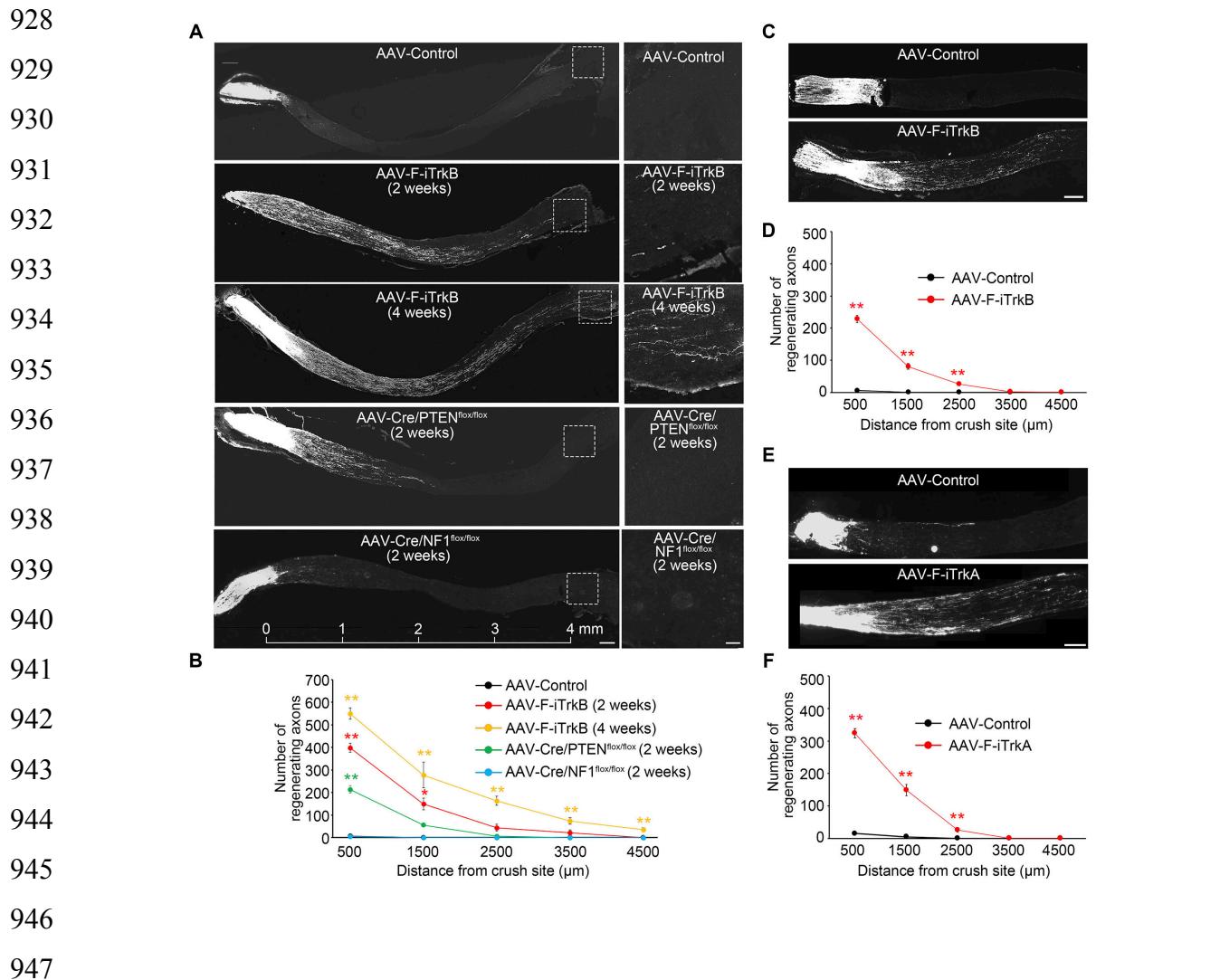
868 intravitreal injection of AAV-F-iTrkB are presented with 3D plots images (left) and
869 quantitative analyses of the retinal response amplitude are shown (right). The one-way
870 ANOVA with Tukey-Kramer post hoc test was used. $n = 4$ -6 mice per group. ${}^*P < 0.05$.
871 (E) IOP in WT mice with silicone oil-induced ocular hypertension. IOP is elevated from 1
872 week after the injection of silicone oil into the anterior chamber of the mouse eyes. The one-
873 way ANOVA with Tukey-Kramer post hoc test was used. $n = 8$ mice per group. ${}^{**}P < 0.01$.
874 (F) AAV-F-iTrkB-mediated RGC protection in mice with high IOP. RGCs were detected by
875 immunostaining of RBPMS in WT mice at 4 weeks after silicone oil-injection. Representative
876 images (left) and quantification of RGCs (right). The one-way ANOVA with Tukey-Kramer
877 post hoc test was used. $n = 4$ mice per group. ${}^{**}P < 0.01$. (Scale bar: 100 μ m.)

Figure 5. AAV-F-iTrkB prevents RGC degeneration in optic nerve crush injury model.

(A) F-iTrkB-mediated RGC protection following optic nerve crush (ONC). AAV-F-iTrkB was intravitreally injected in WT mice at 2 weeks before ONC. RGCs were detected by immunostaining of RBPMS at 2 weeks after ONC. Representative images (left) and quantification of the RGC number (right) in intact or injured retinas treated with AAV-Control or AAV-F-iTrkB. The one-way ANOVA with Tukey-Kramer post hoc test was used. $n = 4$ mice per group. ** $P < 0.01$. (Scale bar: 100 μ m.)

(B) F-iTrkB-mediated synapse protection after ONC. Glutamatergic synapses were visualised in flat-mounted retinas using antibodies against PSD95 and VGLUT1, post- and pre-synaptic

909 markers, respectively. Representative images (left) and quantitative analysis of pre- and post-
910 synaptic co-localized spots (right) in intact or injured retinas treated with AAV-Control or
911 AAV-F-iTrkB. The one-way ANOVA with Tukey-Kramer post hoc test was used. $n = 4$ mice
912 per group. $*P < 0.05$. (Scale bar: 30 μm .)

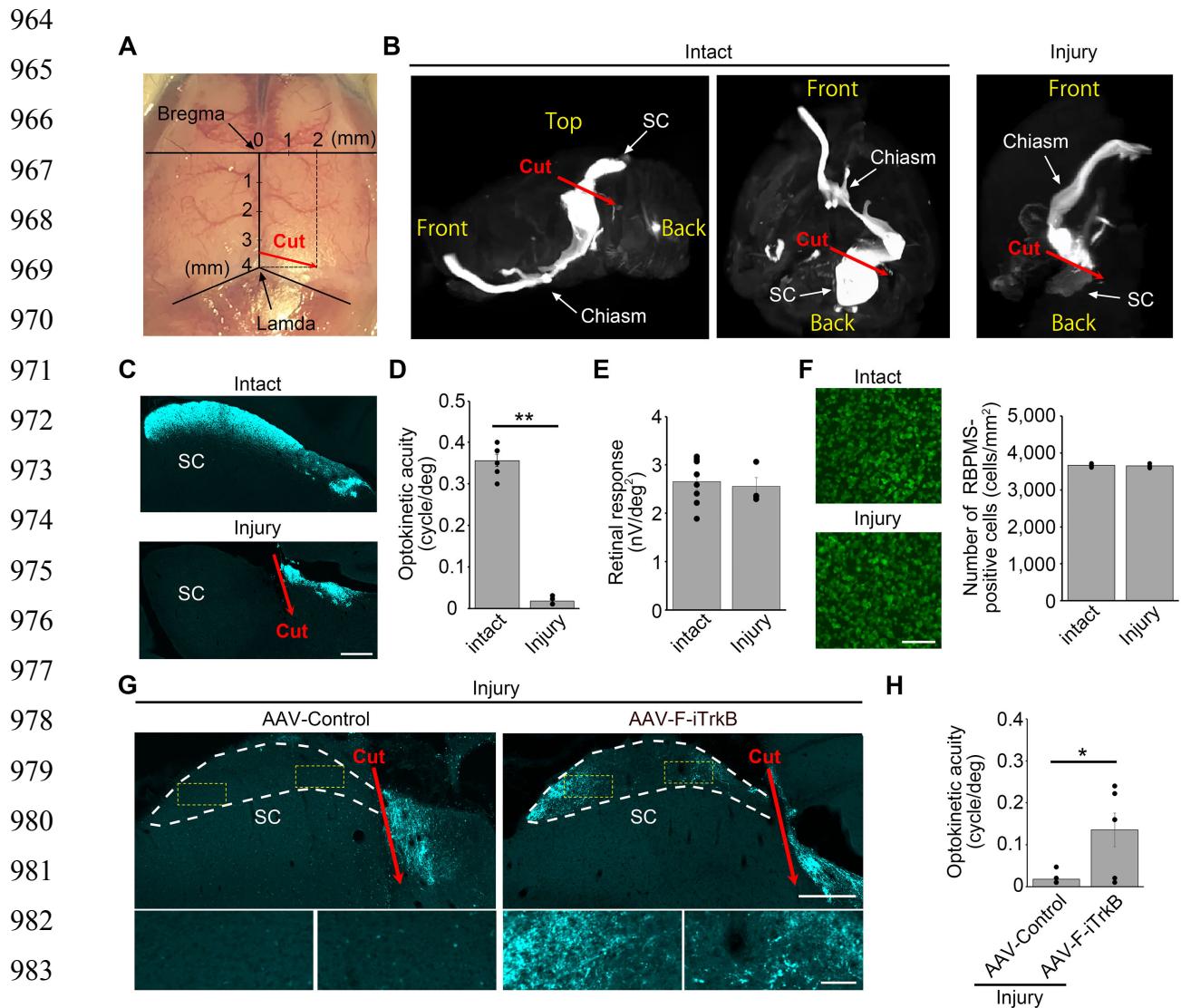

913 **(C)** Representative images of α RGC morphology. α RGC in the retinal flat mount was double-
914 labeled with AAV-GFP and an anti-Neurofilament-H (NF-H) antibody. (Scale bar: 50 μm .)

915 **(D)** Representative images of α RGC dendritic arbors from intact or injured retinas treated with
916 AAV-Control or AAV-F-iTrkB. (Scale bar: 50 μm .)

917 **(E)** Quantitative analysis of the dendrite length (left), field area (middle), and the number of
918 branches (right) in α RGCs from intact or injured retinas treated with AAV-Control or AAV-F-
919 iTrkB. The one-way ANOVA with Tukey-Kramer post hoc test was used. $n = 9-11$ cells per
920 group. $**P < 0.01$; $*P < 0.05$. ns, not statistically significant.

921 **(F)** Sholl analysis of dendrite morphology as a function of distance from the cell soma in intact
922 or injured retinas treated with AAV-Control or AAV-F-iTrkB. The one-way ANOVA with
923 Tukey-Kramer post hoc test was used. $n = 9-10$ cells per group. $**P < 0.01$; $*P < 0.05$.

924 **(G)** Retinal responses of mice with intact or injured retinas treated with AAV-Control or AAV-
925 F-iTrkB, measured by mfERG. The 3D plots (left) and quantitative analyses of the retinal
926 response amplitude (right). The one-way ANOVA with Tukey-Kramer post hoc test was used.
927 $n = 5-12$ per group. $**P < 0.01$.

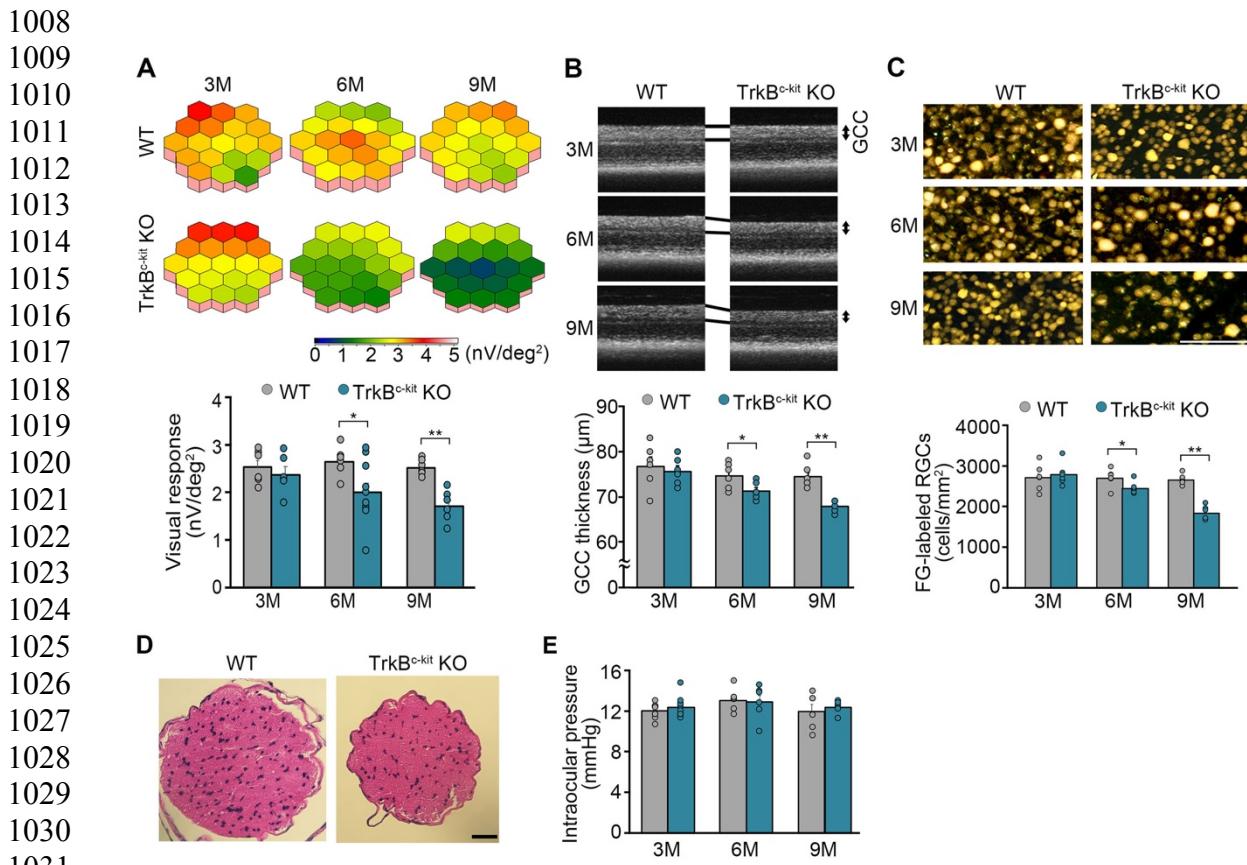

Figure 6. AAV-F-iTrkB promotes robust optic nerve regeneration.

(A) Representative images of optic nerve sections demonstrating CTB647-labeled regenerating axons in WT mice treated with AAV-F-iTrkB at 2 weeks and 4 weeks after ONC, and in PTEN KO and NF1 KO mice at 2 weeks after ONC (left). Scale bar, 200 μ m. Magnification of the boxed areas (right). (Scale bar: 50 μ m.)

(B) Quantification of regenerating axons in the optic nerve shown in (A). The one-way ANOVA with Tukey-Kramer post hoc test was used. $n = 4$ mice per group. ** $P < 0.01$.

(C) Representative images of optic nerve sections demonstrating CTB647-labeled regenerating axons in mice that received AAV-F-iTrkB injection intravitreally at 3 min after ONC. (Scale bar: 200 μ m.)

958 (D) Quantification of regenerating axons in the optic nerve shown in (C). Two-tailed unpaired
959 Student's *t* test was used. $n = 4$ mice per group. ** $P < 0.01$.
960 (E) Representative images of optic nerve sections demonstrating CTB647-labeled regenerating
961 axons in mice treated with AAV-F-iTrkB at 2 weeks after ONC. (Scale bar: 200 μm .)
962 (F) Quantification of regenerating axons in the optic nerve shown in (E). Two-tailed unpaired
963 Student's *t* test was used. $n = 4$ mice per group. ** $P < 0.01$.

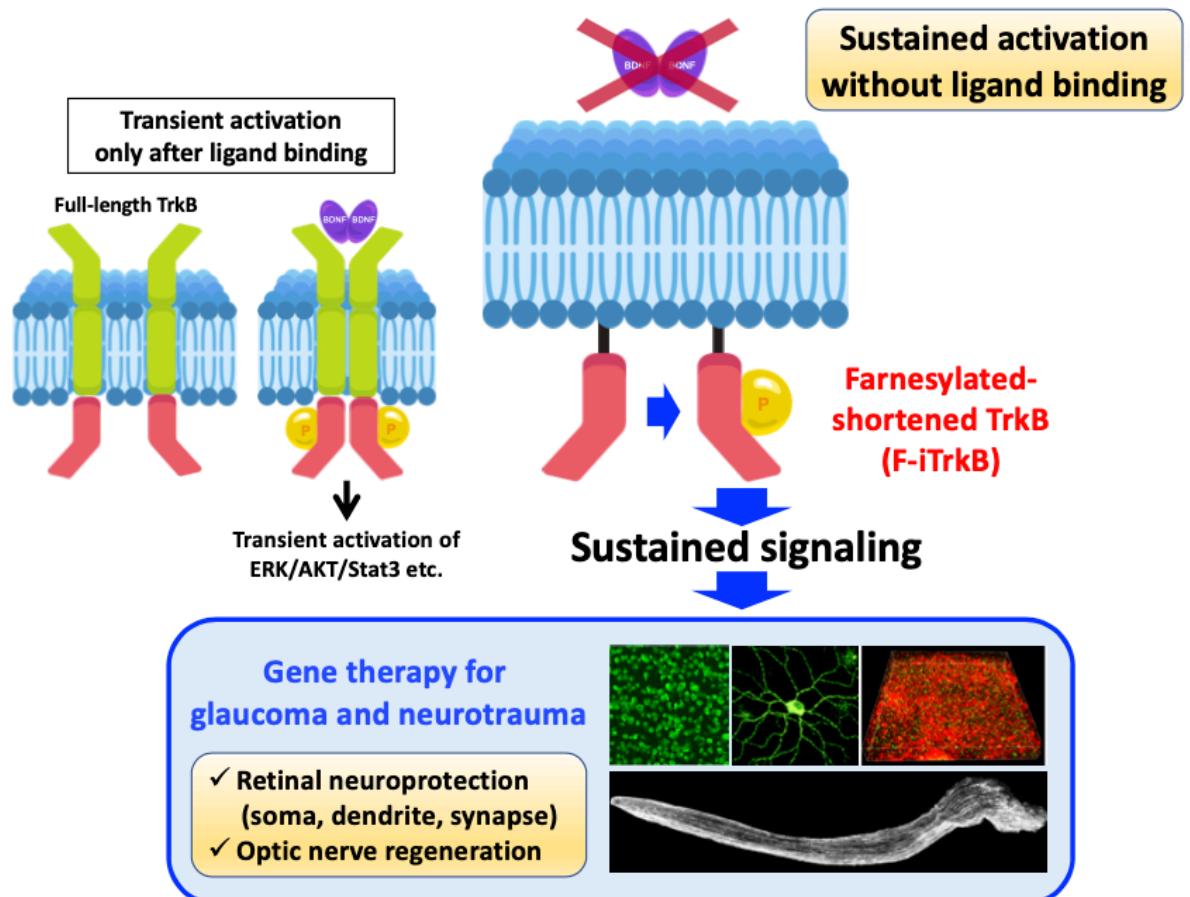

Figure 7 with 1 supplement. AAV-F-iTrkB promotes axon regeneration in an optic tract transection model.

(A) A photograph indicating the position of surgical incision for optic tract transection.

(B) Representative images of the optic tract traced with CTB647 in the intact brain and in the brain that received optic tract transection (injured brain). CTB647 was injected intravitreally and the optic tract from the eye to the superior colliculus (SC) in the brain was made visible by a tissue clearing technique.

(C) Representative images of sagittal brain sections demonstrating CTB647-labeled axons near the SC in intact and injured brains. (Scale bar: 300 μ m.)

995 (D) Optokinetic acuity of intact mice or mice with optic tract transection (injured mice). Two-
996 tailed unpaired Student's *t* test was used. $n = 4$ -6 mice per group. ** $P < 0.01$.
997 (E) Averaged retinal responses measured by mfERG in intact and injured mice. $n = 4$ -8 mice
998 per group.
999 (F) Representative images of retinal flat mounts immunostained with an anti-RBPMS antibody
1000 in intact and injured mice at 12 weeks after injury (left). (Scale bar: 100 μ m.) Quantification
1001 of the number of RBPMS-positive cells (right). $n = 4$ -5 mice per group.
1002 (G) Representative images of sagittal brain sections demonstrating CTB647-labeled
1003 regenerating axons near the SC in mice treated with AAV-Control or AAV-F-iTrkB (top). The
1004 SC areas were marked with the white dotted lines. (Scale bar: 300 μ m.) Magnifications of the
1005 boxed areas in yellow are shown at the bottom. (Scale bar: 50 μ m.)
1006 (H) Optokinetic acuity of intact or injured mice treated with AAV-Control or AAV-F-iTrkB.
1007 Two-tailed unpaired Student's *t* test was used. $n = 6$ mice per group. * $P < 0.05$.



1033 **Figure 3-figure supplement 1. Neuron-specific TrkB deficiency leads to glaucomatous
1034 retinal and optic nerve degeneration in aged mice.**

1035 (A) 3D plots of averaged retinal responses as examined by multifocal electroretinography
1036 (mfERG) in WT and TrkB^{c-kit} KO mice at 3, 6, and 9 months (M) of age (upper panel), and
1037 quantitative analysis of the visual responses (lower panel). Visual responses in TrkB^{c-kit} KO
1038 mice were comparable to those in WT mice at 3 M, but they were significantly reduced by 6
1039 and 9 M compared with WT mice. The one-way ANOVA with Tukey-Kramer post hoc test
1040 was used. $n = 6-10$ per group. $**P < 0.01$; $*P < 0.05$.

1041 (B) Optical coherence tomography (OCT) of WT and TrkB^{c-kit} KO mouse retinas (upper panel),
1042 and evaluation of the thickness of the ganglion cell complex (GCC) at 3, 6, and 9 M of age
1043 (lower panel). Imaging with OCT revealed that GCC thickness in TrkB^{c-kit} KO mice decreased

1044 progressively with time, whereas there was no change in WT mice. The one-way ANOVA with
1045 Tukey-Kramer post hoc test was used. $n = 6$ per group. $**P < 0.01$; $*P < 0.05$.
1046 (C) Retrograde labelling of retinal ganglion cells (RGCs) in WT and TrkB^{c-kit} KO mice (upper
1047 panel), and quantitative analysis of Fluorogold (FG)-labelled RGCs (lower panel) at 3, 6, and
1048 9 M of age. RGC number in TrkB^{c-kit} KO mice was significantly decreased compared with WT
1049 mice at 6 and 9 M. The one-way ANOVA with Tukey-Kramer post hoc test was used. $n = 6$
1050 per group. $**P < 0.01$; $*P < 0.05$. (Scale bar: 100 μm .)
1051 (D) Hematoxylin and eosin staining of WT and TrkB^{c-kit} KO mouse optic nerves. Thinning of
1052 the optic nerve was observed in TrkB^{c-kit} KO mice at 9 M. (Scale bar: 25 μm .)
1053 (E) Intraocular pressure of WT and TrkB^{c-kit} KO mice. Both WT and TrkB^{c-kit} KO mice at 3, 6,
1054 and 9 M showed no changes in intraocular pressure with aging. $n = 6-10$ per group.

1055

1056

1057 **Figure 7-figure supplement 1. Schematic model of sustained activation of TrkB signaling**

1058 **without BDNF.**

1059 AAV-mediated delivery of farnesylated-shortened TrkB (F-iTrkB) induced sustained
1060 activation of the downstream signaling of full-length TrkB (ERK/AKT/Stat3 etc.) in retinal
1061 ganglion cells (RGCs) without BDNF. Intraocular injection of AAV-F-iTrkB induced RGC
1062 protection and robust optic nerve regeneration in mouse models of glaucoma and optic nerve
1063 injury.