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 26 

Abstract. Plasmids are mobile genetic elements that can act as mutualists or parasites to their 27 

bacterial hosts depending on their accessory genes and environment. Ecological network theory 28 

predicts that mutualists, such as plasmids with antimicrobial resistance (AMR) genes in the presence 29 

of antimicrobials, should act as generalists, while plasmids without beneficial genes are expected to 30 

be more specialised. Therefore, whether the relationship between plasmid and host is mutualistic or 31 

antagonistic is likely to have a strong impact on the formation of interaction network structures and the 32 

spread of AMR genes across microbial networks. Here we re-analyse Hi-C metagenome data from 33 

wastewater samples and identify plasmid signatures with machine learning to generate a natural host-34 

plasmid network. We found that AMR-carrying plasmids indeed interacted with more hosts than non-35 

AMR plasmids (on average 14 versus 3, respectively). The AMR plasmid-host subnetwork showed a 36 

much higher connectedness and nestedness than the subnetwork associated with non-AMR 37 

plasmids. The overall network was clustered around Proteobacteria and AMR-carrying plasmids 38 

giving them a crucial role in network connectivity. Therefore, by forming mutualistic networks with their 39 

hosts, beneficial AMR plasmids lead to more connected network structures that ultimately share a 40 

larger gene pool of AMR genes across the network.  41 

 42 

Introduction 43 

Plasmids play a key role in the spread of antimicrobial resistance (AMR) and other genes 44 

(e.g., metal resistance, biodegradation, virulence), both within and between bacterial taxa (Bennett 45 

2008; Martínez 2008; Dang et al. 2017; San Millan 2018; Acman et al. 2020). Understanding the 46 

ecological mechanisms that underpin plasmid transmission within bacterial communities is important 47 

for combating the spread of AMR and associated bacterial epidemics (Dimitriu et al. 2021). However, 48 

our knowledge about plasmid-host interactions is mostly gained from laboratory research on a limited 49 

number of bacteria and plasmids. Therefore, there remains considerable uncertainty surrounding the 50 

role of plasmids within larger communities and the resulting plasmid-host networks in nature. This 51 

limits our understanding of the ecological and evolutionary processes driving plasmid transmission 52 

across natural microbial communities. 53 
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Ecological interaction network analysis can provide crucial insights into community structure 54 

(Kaiser-Bunbury et al. 2017), the speed of disease transmission (González-Salazar & Stephens 55 

2012), the dynamics of coevolution (Guimarães et al. 2017) and community stability (Thébault & 56 

Fontaine 2010; Veron et al. 2018). Recently, the ecological network approach has been applied to 57 

microbiological systems to elucidate the ecological mechanisms that underpin microbial dynamics 58 

(Flores et al. 2013; Weitz et al. 2013; Coyte et al. 2015; Wang et al. 2016). The structure of ecological 59 

interaction networks is often related to the prevalent type of interaction between species, with 60 

antagonistic and mutualistic interactions associated with different network structures (Thébault & 61 

Fontaine 2010; Montesinos-Navarro et al. 2017). Theory predicts that the structure for each network 62 

type leads to increased stability: mutualistic networks tend to be nested with generalists linking the 63 

whole network while antagonistic networks often have a modular structure dominated by specialist 64 

interactions (Thébault & Fontaine 2010). Observation studies support theoretical predictions that 65 

ecological interaction networks dominated by antagonists tend to have fewer generalist interactions 66 

than mutualistic networks (Fontaine et al. 2009; Thébault & Fontaine 2010; Montesinos-Navarro et al. 67 

2017; Newbury et al. in press). Network structure is also influenced by the coevolutionary history of 68 

interacting species, because many interactions are evolutionary constrained (Segar et al. 2020). For 69 

example, due to coevolutionary arms races we can expect interactions in antagonistic networks to be 70 

characterised by stronger phylogenetic signal than in mutualist networks (Rohr & Bascompte 2014).  71 

These theories can potentially be applied to bacteria-plasmid networks, because plasmids 72 

have highly variable host ranges (Suzuki et al. 2010; Klümper et al. 2015) and can be parasitic and 73 

mutualistic to their bacterial hosts (Lili et al. 2007; Harrison & Brockhurst 2012). In many cases, 74 

plasmids simply impose a fitness cost on their host, and survive in host communities through the 75 

evolution of a lower fitness cost, high transmission rates, high fidelity of partitioning, and sophisticated 76 

killing systems ensuring their stable presence within bacterial lines (Jensen & Gerdes 1995). 77 

However, plasmids often carry accessory genes, such as AMR genes, that promote the survival of the 78 

host bacteria under certain environmental contexts (Lili et al. 2007; Harrison & Brockhurst 2012). 79 

Plasmids that carry context-dependent beneficial genes may therefore be expected to interact with 80 

more bacterial taxa than those that don’t (Fig. 1A-C). This will be driven by both ecological dynamics 81 

(selection for hosts associated with a mutualistic plasmid) and coevolutionary dynamics between 82 

hosts and plasmids leading to the evolution of generalism.  83 
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Over 10,000 plasmids have been described and referenced to date (likely only a small 84 

fraction of real numbers), the majority of which are associated with the bacterial phylum 85 

Proteobacteria, especially Alpha- and Gammaproteobacteria (Redondo-Salvo et al. 2020). Both 86 

specialist and generalist plasmids have been identified, yet an analysis of a subset of described 87 

plasmids suggests that up to 60% of plasmids are associated with multiple bacterial host species, and 88 

that transmission is limited by host phylogeny with only a small number of super-generalist plasmids 89 

(Suzuki et al. 2010; Redondo-Salvo et al. 2020). However, the link between a plasmid’s range of 90 

hosts in a natural microbial community and its likely effect on bacterial host fitness in that community 91 

remains unknown. Note that in this study we distinguish between the concepts of host range and 92 

generalism. Host range, as it has been defined by plasmid biologists, is the ability of a plasmid to 93 

replicate in phylogenetically diverse hosts (i.e., narrow host range versus broad host range). This view 94 

of plasmid host range does not necessarily reflect the actual spread of the plasmid in a bacterial 95 

community (e.g., a broad-host-range plasmid could be found in only one phylogenetically distinct 96 

species of a community and thus be considered a specialist while a narrow-host range plasmid could 97 

be found in many different closely related species and be a generalist plasmid). Hereafter we refer to 98 

generalist plasmids as plasmids that are found in many species within a community, and specialist 99 

plasmids as those that are found in very few host species. 100 

To understand the functional role of plasmids in ecological communities, ranging from soil, to 101 

wastewater, to the gut microbiome, we need to identify interactions between plasmids and their hosts 102 

in their natural environment. Recently, proximity-ligation methods such as Hi-C allow us to overcome 103 

previous sampling limitations and have been used to detect associations between DNA molecules 104 

originating in the same cell within microbial communities (Stalder et al. 2019; Kent et al. 2020; Yaffe & 105 

Relman 2020). Moreover, machine learning techniques that can identify plasmids based on their 106 

genomic signatures, such as GC content and (tetra)nucleotide composition-specific sequences, with 107 

96% accuracy, allowing for the detection of plasmid genomes that have not officially been described 108 

(Krawczyk et al. 2018; Pellow et al. 2020). Together, these novel methods allow us to quantify host 109 

range distributions of plasmids in natural bacterial communities.  110 

Here we apply an ecological network analysis to test the effect of mutualistic interactions on 111 

the structure of a natural plasmid-bacteria network, using plasmid-bacteria interaction data from 112 

Stalder et al. (2019) that used Hi-C to link mobile genetic elements to their bacterial hosts in a 113 
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wastewater sample. Here we advance/expand on that study by using machine learning methods to 114 

identify clusters of plasmid contigs that original from the same cell (hereafter termed ‘putative 115 

plasmids’), and test whether AMR presence on these putative plasmids is associated with altered 116 

interaction distributions with 374 bacterial metagenome-assembled genomes (MAGs).  117 

While plasmids can carry a range of host-beneficial genes, we make the assumption that 118 

putative plasmids that carry AMR genes will be on average more beneficial than those that don’t, 119 

because the concentrations of antibiotics in wastewater are likely to confer an advantage to at least 120 

some AMR genes (Karkman et al. 2018). In this context, we predict that plasmids that carry AMR 121 

should interact with more bacterial hosts (i.e., have higher ‘prevalence’; Fig. 1D, see Fig. 1E for 122 

glossary of terms) than plasmids without AMR, and thereby lead to more connected and generalist 123 

networks. Because evolutionary arms races in antagonistic networks tend to generate strong 124 

phylogenetic signal (Rohr & Bascompte 2014), we would also expect that AMR-carrying plasmids to 125 

demonstrate weaker phylogenetic signal than those without AMR genes (Fig. 1D). We further discuss 126 

the potential of network structures in promoting the spread of AMR.  127 

 128 

Results 129 

 The inferred wastewater bacteria-plasmid network was made up of 374 bacterial MAGs 130 

(metagenome-assembled genomes) and 289 putative plasmids. Most MAGs identified belonged to 131 

either the class Betaproteobacteria (Phylum Proteobacteria), Gammaproteobacteria (Phylum 132 

Proteobacteria), Clostridia (Phylum Firmicutes), Bacteroidia (Phylum Bacteroidetes) or Actinobacteria 133 

(Phylum Actinobacteria) (Fig. 2A). Bacterial MAGs associated with an average of 3.5 putative 134 

plasmids (median = 1, min. = 0, max. = 47), whilst putative plasmids associated with an average of 135 

4.5 MAGs (median = 2, min. = 1, max. = 80). Note that this does not equate to one bacterial cell 136 

having 47 plasmids; rather, 47 putative plasmids were found to be associated with that MAG across 137 

its entire population within the wastewater community. While MAG relate to a metagenomic bin that 138 

can be asserted to be a close representation to an actual individual genome, here the quality of most 139 

of the MAG identified (according to genome size and completeness scores computed by CheckM) 140 

does not allow us to do this assumption and rather consider the MAGs not as one bacterial cell’s 141 

genome, but the genome (or fragment of a genome) of closely related strains within a species. 142 

 143 
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MAGs that associated with a high number of plasmids were distributed across the phylogenetic tree, 144 

although MAGs belonging to Betaproteobacteria, and Gammaproteobacteria tended to associate with 145 

a higher number of plasmids (Fig. 2A). Putative plasmids that were associated with AMR genes 146 

tended to be more widely distributed across MAGs than those that were not associated with AMR 147 

genes (mean AMR = 14, mean no AMR = 3; Wilcoxon W = 1379, p < 0.0001; Fig. 2B).  148 

The full network clustered strongly by bacterial taxonomy, with MAGs belonging to Proteobacteria, 149 

Firmicutes, and Bacteroidetes largely clustering separately (Fig. 2C). The large majority of AMR 150 

plasmids clustered together with Proteobacteria, with classes Betaproteobacteria and 151 

Gammaproteobacteria clustering together and sharing most of the AMR plasmids (Fig. 2D).  152 

 153 

We next investigated the role of AMR genes on network structure by comparing sub-networks based 154 

on whether putative plasmids associated with AMR or not (Fig. 3). When AMR putative plasmids were 155 

excluded (Fig. 3A), networks were more modular (higher number of not linked sub networks) and less 156 

nested (see Figure 1E) than networks based on solely AMR putative plasmids (Fig. 3B). Putative 157 

plasmids carrying AMR genes further connected Proteobacteria to other phyla linking large parts of 158 

the whole network. 159 

 160 

We next visualized the distribution of the 15 most prevalent putative plasmids (super generalists) 161 

across the bacterial phylogenetic tree (Fig. 4). The most prevalent putative plasmids were largely 162 

shared amongst members of the same phyla, although some were occasionally shared more widely. 163 

Putative plasmids that were associated with Proteobacteria were often shared across both Beta- and 164 

Gamma-proteobacteria (Fig. 4). Whilst most putative plasmids remain undescribed, plasmid 3 (Fig. 4) 165 

was identified as a broad range plasmid belonging to the IncP-β group. 166 

 167 

Lastly, we estimated phylogenetic signal in these super generalists and tested whether AMR 168 

presence was associated with phylogenetic signal strength. Phylogenetic signal quantifies the 169 

relationship between interaction strength and MAG phylogenetic distance, with high phylogenetic 170 

signal indicating that MAGs that are closely related are very likely to have a similar number of 171 

interactions with a particular plasmid. Importantly, two main methods are available to quantify 172 

phylogenetic signal: the first simply measures autocorrelation between trait differences and 173 
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phylogenetic distance (measured by Abouheif’s Cmean); the second applies more complex evolutionary 174 

models to test whether distributions match what would be expected if traits coevolved measured by 175 

Pagel’s λ (Münkemüller et al. 2012). We found that most putative plasmids demonstrated significant 176 

phylogenetic signal when measured by both methods (Fig. 5). Contrary to our predictions, putative 177 

plasmids carrying AMR had significantly stronger phylogenetic signal than those without when 178 

measured by autocorrelation (Fig. 5A) and by an evolutionary model (Fig. 5B), although estimates 179 

may be biased by AMR putative plasmids being generally more prevalent than those without AMR 180 

(Fig. 5).  181 

 182 

DISCUSSION 183 

The wastewater network analysis demonstrates that while the natural plasmid-host 184 

community is dominated by specialist putative plasmids, those carrying AMR genes tend to be more 185 

generalist and markedly increase the connectivity of the network. As predicted, the network structure 186 

for the AMR plasmid-host subnetwork differed substantially from the non-AMR plasmid network. The 187 

AMR plasmid – host network showed a high degree of generalism and nestedness, with an overall 188 

high level of connectedness. Extrapolations from ecological network theory (Thebault & Fontaine 189 

2010) and experimental data (Heß et al. 2021; Newbury et al. in press) suggest that this pattern can 190 

be explained by the two different types of plasmids in this network: (1) Costly, more specialised 191 

plasmids and (2) beneficial, more generalist plasmids. It is reasonable to think that AMR genes can 192 

be directly beneficial in the wastewater environment because they can confer a selective advantage 193 

even in the presence of low concentrations of antibiotics and other biocides (Murray et al. 2018). Even 194 

if not directly beneficial in the current wastewater environment experienced by these organisms, AMR 195 

genes will almost certainly have provided a benefit in the environments they originate from, such as 196 

hospitals and a community of people consuming various antibiotics. This may have led to interactions 197 

that evolved to be more generalised (Guimarães Jr et al. 2011; Nuismer et al. 2013).). 198 

 199 

It is not known precisely why mutualistic networks (e.g., seed dispersal, pollination, symbiosis) often 200 

show greater generalism than antagonistic networks (e.g., herbivory and parasitism), with mechanism 201 

largely inferred from theory alone. It may be purely short-term ecological consequences, with the 202 

greater fitness of mutualistic partners leading to the subsequent spread of mutualists to new species. 203 
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More generalism may also lead to greater stability in communities dominated by mutualistic 204 

interaction (i.e., species are less likely to go extinct, resulting in changes in network properties), while 205 

generalism decreases stability of antagonistic communities (Thébault & Fontaine 2010). Theory also 206 

suggests that coevolution may drive this pattern under the assumption that trait matching (e.g., 207 

attack-defence traits) determines the strength of antagonistic interactions while trait differences (e.g., 208 

barriers for transmission) determine mutualistic interactions (Nuismer et al. 2013; de Andreazzi et al. 209 

2020). While it is impossible to deduce mechanism from our correlational study, recent experiments 210 

and theory work using simplified bacteria-plasmid networks demonstrates that short-term growth rate 211 

advantages conferred by a beneficial plasmid can result in greater plasmid ecological generalism 212 

(Newbury et al. in press). Specifically, if a plasmid increases the frequency of its host, the plasmid 213 

then has greater opportunities to be transmitted to other host taxa. While the distribution of hosts of a 214 

plasmid can be influenced by factors affecting its ability to transfer into a new host, after entry it is 215 

primarily the plasmid-encoded replication system and its interaction with host factors that determines 216 

the ability of a plasmid to survive in that host (del Solar et al. 1996; Toukdarian 2004). This suggests 217 

that increased ecological generalism of beneficial plasmids could in turn promote greater evolutionary 218 

generalism as a consequence of mutualistic coevolution for plasmid maintenance occurring between 219 

plasmids and the multiple hosts they interact with (Harrison & Brockhurst 2012).   220 

 221 

We predicted that plasmids with AMR would show lower phylogenetic signal than those without, 222 

because mutualists tend to evolve weaker phylogenetic signal than antagonists (Rohr & Bascompte 223 

2014). Yet, we found the opposite: plasmids with AMR genes showed higher phylogenetic signal 224 

when measured by both autocorrelation and evolutionary models. This finding may either reflect that 225 

AMR plasmids can still be parasitic in some contexts, and therefore require hosts to carefully control 226 

plasmid entry and maintenance in a way that might evolutionarily constrain interactions. Another 227 

possibility is that AMR plasmids are indeed generally beneficial, yet if most plasmids are parasitic this 228 

would still promote the evolution of specific interactions between bacterial and mutualists that act to 229 

constrain interactions within phylogenies (Thrall et al. 2007). In general, whilst most putative plasmids 230 

were highly specialist, super generalist putative plasmids were still largely shared within phyla, and 231 

only rarely interacted with bacterial hosts outside of the dominant host phylum. This pattern was 232 

irrespective of whether they carried AMR genes or not. This indicates strong barriers to plasmid 233 
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transmission between phyla (Redondo-Salvo et al. 2020), yet not between different classes within 234 

phyla. For example, Gamma- and Proteo-bacteria appeared to freely share putative plasmids and did 235 

not form separate clusters within networks. 236 

 237 

While greater generalism associated with AMR plasmids obviously has important implications for the 238 

spread of the specific AMR genes encoded by the plasmids, it is also likely to affect the spread of 239 

additional AMR genes, even those not currently under selection. First, a new AMR gene that gets 240 

incorporated into a generalist plasmid will have more chance to spread. Second, generalist plasmids, 241 

are more likely to acquire additional AMR genes (e.g., by transposition), given the greater diversity of 242 

hosts they interact with. Generalist plasmids and in particular generalist plasmids with AMR were 243 

mostly associated with Proteobacteria, although plasmid hubs were found across bacterial classes. 244 

Generalist AMR plasmids assumed a central role in the overall network by linking Proteobacteria to 245 

other classes, although these interactions were relatively rare, and these generalist plasmids may 246 

contribute to the spread of AMR gene transfer in general between different classes of bacteria. This 247 

might reflect greater selection for AMR in Proteobacteria because many common human pathogens 248 

are found in the Proteobacteria. 249 

 250 

Our approach advances on the analysis from Stalder et al. (2019) by utilizing novel machine learning 251 

methods to identify undescribed plasmid signatures. Whilst this method considerably increases our 252 

understanding of how undescribed plasmids contribute to interaction network structure, we assume 253 

that connected clusters of sequences represent one plasmid. Yet, it is possible that these clusters in 254 

fact represent multiple co-occurring plasmids, or, conversely, that some sequences treated as 255 

separate plasmids are in fact part of the same plasmid. Nevertheless, our sensitivity analyses suggest 256 

that our results and interpretations are robust to changes to methodology. An additional limitation to 257 

our approach is that some shared genes or mobile elements between different plasmids could have 258 

amplified the connections of generalist putative plasmids to more hosts. We strived to remove any 259 

such genomic elements, such as transposons, AMR, metal resistance, biocide resistance and 260 

virulence, yet it is possible that at least some super generalist putative plasmids may be a product of 261 

other plasmid accessory genes commonly shared among different plasmids of this bacterial 262 

community. Future advances in Hi-C technology paired with long-read sequencing methods will 263 
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further our ability to distinguish and describe plasmids in natural communities using high throughput 264 

sequencing technology. Lastly, this is a correlational study and AMR presence and generalism may 265 

also be driven by host taxa. Indeed, proteobacteria are a very ecologically diverse phylum (Woese 266 

1987), so they may be more likely to be associated with promiscuous plasmids carrying genes 267 

beneficial in a range of hostile environments. Therefore, to fully understand the ecological and 268 

evolutionary dynamics under varying plasmid-host interaction type we need experimental approaches 269 

that measure fitness consequences and link those to changes in observed network structures.   270 

 271 

By conducting ecological network analyses on a wastewater Hi-C metagenome, we have been able to 272 

describe a natural plasmid-host network. The patterns we observe are consistent with theory. First, 273 

networks are primarily driven by specialism, consistent with a predominantly parasitic impact of 274 

plasmids in the absence of carriage of beneficial accessory genes. Second, greater prevalence of 275 

AMR genes – which are often transferred by plasmids – in generalist and abundant plasmids lead to a 276 

more connected network. Third, this offers a large potential for sharing of a few generalist plasmids 277 

across the network, promoting inter-class HGT and indirect network interactions. Further work is 278 

clearly required to determine the generality of our findings and the mechanisms underpinning them.  279 

This includes other types of networks, such as bacteria-bacteriophage (Flores et al. 2013), where 280 

interactions while primarily antagonistic can also be mutualistic (Harrison & Brockhurst 2017; 281 

Wendling et al. 2021). A closer look at the types of plasmids that cause higher network 282 

connectedness would also help understand the drivers of AMR spread in various environments. 283 

 284 

Materials and Methods  285 

Processing data 286 

Generating bacterial MAG data 287 

Hi-C metagenome data from Stalder et al. was assembled into MAGs using an updated algorithm of 288 

ProxiMeta™ on April 4th 2021 (Phase Genomics, Inc. 2021). This generated 374 MAGs analyzed in 289 

this study. We assigned MAG taxonomy by running MAGs through Phylophlan (Asnicar et al. 2020), 290 

which calls MASH for taxonomic assignment, and used taxonomy as a proxy for phylogeny (Table 291 

S1). 292 

  293 
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Contig filtering 294 

The raw Hi-C data from one wastewater sample contains over 2.5 million contigs representing DNA 295 

fragments from diverse organisms. Because we are interested specifically in links between bacteria 296 

and plasmids, we initially filtered out contigs that were 1) identified as transposons, and 2) were not 297 

identified as either a MAG, a plasmid, or carrying other AMR, virulence, metal and biocide genes. 298 

Transposons and IS elements were identified by performing a homology search with BLASTp on 299 

predicted gene from all contigs using an e-value < 0.01 against all known transposase proteins from 300 

the databases from IS finder (Siguier et al. 2006) available from 301 

https://github.com/thanhleviet/ISfinder-sequences/blob/master/README.md and from Tn3 302 

Transposon Finder (Ross et al. 2021) available from 303 

https://tncentral.proteininformationresource.org/TnFinder.html. Protein-coding genes were predicted 304 

from all contigs using prodigal in metagenomic mode using the option ‘-p meta’ available from 305 

https://github.com/hyattpd/Prodigal (Hyatt et al. 2010). Contigs with gene coding for antimicrobial 306 

resistance, virulence factors, metal resistance or resistance to biocides were identified using AMR 307 

finder plus (Feldgarden et al. 2019), using ‘-n’ and ‘–-plus’ parameters.  308 

 309 

Identifying putative plasmids 310 

All remaining contigs were run through PlassClass (Pellow et al. 2020) using default parameters to 311 

distinguish between contigs that were of chromosomal or plasmid origin. This method performs better 312 

on short reads < 1000 bp than other machine learning algorithms such as Plasflow (Krawczyk et al. 313 

2018). To be conservative, only contigs where 95% of sequence signatures were classified as 314 

plasmid signatures. Only one of these was identified as a well-characterised broad-range plasmid 315 

(IncP-β group). Contigs with gene coding for antimicrobial resistance, virulence factors, metal 316 

resistance or resistance to biocides were not treated as belonging to plasmids because, like 317 

transposons, they can be shared across multiple plasmids and therefore hinder the identification of 318 

unique plasmid signatures. Because the contigs identified as plasmids were mostly constituted by 319 

short contigs (the median length was 379 bp) and plasmids are likely to be > 1000 bp long, we 320 

reasoned that for a contig to belong to a plasmid it should be found to be consistently connected to at 321 

least one other. In order to account for this, we retained only plasmid contigs that were linked to other 322 

plasmid contigs at least five times (n = 841 contigs). We then performed a cluster analysis on these 323 
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plasmid contigs using the Walktrap clustering algorithm using the igraph::walktrap.community function 324 

and with a step length of 4 (Csardi & Nepusz 2006). This clustering step identified 331 plasmid 325 

clusters which we treated as putative plasmids.   326 

 327 

We conducted several quality checks to assess the reliability of these cluster of contigs we called 328 

putative plasmids. We first checked the total length of plasmid contigs. The average total length 329 

(4,200 bp) and the general distribution (median = 1,300 bp, min = 500 bp, max. = 78,700 bp) were 330 

below typical plasmid length found in natural communities suggesting those clusters of plasmids 331 

contigs were part of plasmids but we did not assemble complete plasmids (Dunivin et al. 2019). Of 332 

these, 39 clusters were found not to associate with any MAGs and were excluded. In addition, we 333 

used BLASTn (Megablast against the non-redundant nucleotide database) to manually check the 334 

gene content of 132 contigs (out of 841) that were part of putative plasmid clusters that were 335 

subsequently found to associate with over 10% of MAGs. Thirty-three contigs were removed at this 336 

stage for having genes that could plausibly be associated with transposons or bacterial 337 

chromosomes. Lastly, associations characterised by only one Hi-C link were considered unreliable 338 

and removed. After this quality filtering, 289 putative plasmid clusters made up of 729 contigs were 339 

retained for analysis (Fig. S1a). The remaining putative plasmids we classified as associating with an 340 

AMR gene if at least one contig within the cluster was connected to an AMR contig at least twice (Fig. 341 

S1b). Hi-C link counts were then normalised Hi-C by both MAG abundance and by putative plasmid 342 

size.  343 

 344 

Analysis  345 

An adjacency matrix was generated from the processed Hi-C association data, and data was handled 346 

using the packages phyloseq and igraph. Networks were visualized using the ggnetwork (Briatte 347 

2020) using graphopt layout. Network statistics for the five major host classes were generated with 348 

the bipartite::networklevel function (Dormann et al. 2009). Phylogenetic trees and their attributes were 349 

visualized with the ggtree package (Yu et al. 2017). Phylogenetic signal was estimated using the 350 

phylosignal::phylosignal function (Keck et al. 2016), applying two different measures: Abouheif’s 351 

Cmean, which calculates autocorrelation between phylogenetic distance and trait distributions, and 352 

Pagel’s λ, which uses a Brownian motion (BM) model of trait evolution. We chose these two metrics 353 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491481doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491481
http://creativecommons.org/licenses/by-nc-nd/4.0/


because they perform the best out of a number of metrics available, and are also insensitive to branch 354 

length (Münkemüller et al. 2012), therefore are appropriate to use on our phylogenetic tree based on 355 

taxonomy. To test whether plasmids with and without AMR genes differ in their phylogenetic signal, 356 

be performed a t-test. 357 

 358 

The Rmarkdown report is available at  https://github.com/Riselya/Plasmid-networks. Sequencing data 359 

are available in FASTQ format at SRA accession PRJNA506462. Processed data and scripts for 360 

linking contigs to genome clusters using Hi-C data are available at https://osf.io/ezb8j/. 361 

 362 
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Figures 565 

  566 

 567 

Figure 1. Predictions for plasmid-host network structure. A-C) Three different hypothetical 568 

network structures based on 20 bacterial taxa and 60 plasmids, assuming some level of phylogenetic 569 

signal in interaction strength. In each network, 40 out of the 60 plasmids are highly specialist (light 570 

blue) and interact with only one bacterial taxa. Network structure changes dramatically if the 571 

remaining twenty plasmids are A) also specialist; B) generalist but limited to specific clades (royal 572 

blue); or C) super generalist (navy blue) with weak interactions across other clades. Ecological theory 573 

suggests that antagonistic networks tend to be made up of high number of specialists that lead to 574 

networks with many separate compartments, high in modularity, and low in nestedness. On the 575 

contrary, mutualist networks are structured by generalists and form networks that have few 576 

compartments, and low in modularity, and high in nestedness. D) Because antimicrobial resistance 577 

(AMR) genes are likely to have beneficial effects on bacterial fitness within the context of a 578 

wastewater community, we predict that plasmids that carry AMR genes are likely to have higher 579 

prevalence and lower phylogenetic signal than plasmids without AMR genes. Because increases in 580 

prevalence of at least some plasmids lead to more connected networks (A-C), plasmids with AMR 581 

should lead to more connected networks. E) Glossary of terms used throughout the article. 582 
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 585 

Figure 2. MAG-putative plasmid networks based on normalised Hi-C linkage. A) Distribution of 586 

number of plasmids per MAG, split by bacterial class; B) Number of MAG associations per putative 587 

plasmid, split by whether plasmids were associated with antimicrobial resistance genes (AMR); C) 588 

The full MAG-putative plasmid network made up of 374 MAGs and 289 putative plasmids, with MAGs 589 

coloured by phylum and plasmids represented by stars; D) Same network as C) but coloured by class 590 

and the position of AMR plasmids highlighted in yellow. Nodes are sized by their network degree. 591 
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 594 

 595 
Figure 3. AMR genes and network structure. Sub-networks and network statistics representing 596 

MAG Hi-C associations with A) plasmids without AMR and B) plasmid with AMR. Stars represent 597 

plasmids and circles MAGs, with AMR plasmids highlighted in yellow. Nodes are sized by their 598 

network degree. 599 
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 602 

Figure 4. Phylogenetic distributions of the most prevalent plasmids across 374 MAGs. 603 

Phylogenetic weighted distributions of the 15 most prevalent putative plasmids (i.e. plasmids with 604 

associations to the highest number of MAGs), ordered by how many MAGs they associate with. Bar 605 

length represents interaction strength (i.e. the number of normalised Hi-C links). Putative plasmids 606 

with AMR are highlighted yellow. 607 
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 626 
 627 

Figure 5. Phylogenetic signal and AMR presence. Phylogenetic signal for the 15 most prevalent 628 

putative plasmids separated by AMR presence, applying a) Abouheif’s Cmean, which estimates 629 

autocorrelation between trait similarity and phylogenetic distance, and b) Pagel’s λ, which applies a 630 

model of trait evolution. Points are labelled by the plasmid ID (corresponding to Fig. 4), sized by their 631 

prevalence, and coloured by whether estimates for phylogenetic signal are statistically significant.  632 
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Supplementary material  635 

 636 
Figure S1. Putative plasmid clusters (n = 289 clusters built from 729 contigs) that were retained for 637 

analysis. Each node represents a contig identified as having a 95% probability of belonging to a 638 

plasmid by PlassClass, coloured by a) its cluster membership based on the walktrap method, and b) 639 

whether it is associated with AMR (yellow). Only associations based on at least 5 Hi-C links are 640 

included. 641 
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