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Abstract. Plasmids are mobile genetic elements that can act as mutualists or parasites to their
bacterial hosts depending on their accessory genes and environment. Ecological network theory
predicts that mutualists, such as plasmids with antimicrobial resistance (AMR) genes in the presence
of antimicrobials, should act as generalists, while plasmids without beneficial genes are expected to
be more specialised. Therefore, whether the relationship between plasmid and host is mutualistic or
antagonistic is likely to have a strong impact on the formation of interaction network structures and the
spread of AMR genes across microbial networks. Here we re-analyse Hi-C metagenome data from
wastewater samples and identify plasmid signatures with machine learning to generate a natural host-
plasmid network. We found that AMR-carrying plasmids indeed interacted with more hosts than non-
AMR plasmids (on average 14 versus 3, respectively). The AMR plasmid-host subnetwork showed a
much higher connectedness and nestedness than the subnetwork associated with non-AMR
plasmids. The overall network was clustered around Proteobacteria and AMR-carrying plasmids
giving them a crucial role in network connectivity. Therefore, by forming mutualistic networks with their
hosts, beneficial AMR plasmids lead to more connected network structures that ultimately share a

larger gene pool of AMR genes across the network.

Introduction

Plasmids play a key role in the spread of antimicrobial resistance (AMR) and other genes
(e.g., metal resistance, biodegradation, virulence), both within and between bacterial taxa (Bennett
2008; Martinez 2008; Dang et al. 2017; San Millan 2018; Acman et al. 2020). Understanding the
ecological mechanisms that underpin plasmid transmission within bacterial communities is important
for combating the spread of AMR and associated bacterial epidemics (Dimitriu et al. 2021). However,
our knowledge about plasmid-host interactions is mostly gained from laboratory research on a limited
number of bacteria and plasmids. Therefore, there remains considerable uncertainty surrounding the
role of plasmids within larger communities and the resulting plasmid-host networks in nature. This
limits our understanding of the ecological and evolutionary processes driving plasmid transmission

across natural microbial communities.
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Ecological interaction network analysis can provide crucial insights into community structure
(Kaiser-Bunbury et al. 2017), the speed of disease transmission (Gonzalez-Salazar & Stephens
2012), the dynamics of coevolution (Guimaraes et al. 2017) and community stability (Thébault &
Fontaine 2010; Veron et al. 2018). Recently, the ecological network approach has been applied to
microbiological systems to elucidate the ecological mechanisms that underpin microbial dynamics
(Flores et al. 2013; Weitz et al. 2013; Coyte et al. 2015; Wang et al. 2016). The structure of ecological
interaction networks is often related to the prevalent type of interaction between species, with
antagonistic and mutualistic interactions associated with different network structures (Thébault &
Fontaine 2010; Montesinos-Navarro et al. 2017). Theory predicts that the structure for each network
type leads to increased stability: mutualistic networks tend to be nested with generalists linking the
whole network while antagonistic networks often have a modular structure dominated by specialist
interactions (Thébault & Fontaine 2010). Observation studies support theoretical predictions that
ecological interaction networks dominated by antagonists tend to have fewer generalist interactions
than mutualistic networks (Fontaine et al. 2009; Thébault & Fontaine 2010; Montesinos-Navarro et al.
2017; Newbury et al. in press). Network structure is also influenced by the coevolutionary history of
interacting species, because many interactions are evolutionary constrained (Segar et al. 2020). For
example, due to coevolutionary arms races we can expect interactions in antagonistic networks to be

characterised by stronger phylogenetic signal than in mutualist networks (Rohr & Bascompte 2014).

These theories can potentially be applied to bacteria-plasmid networks, because plasmids
have highly variable host ranges (Suzuki et al. 2010; Klimper et al. 2015) and can be parasitic and
mutualistic to their bacterial hosts (Lili et al. 2007; Harrison & Brockhurst 2012). In many cases,
plasmids simply impose a fitness cost on their host, and survive in host communities through the
evolution of a lower fitness cost, high transmission rates, high fidelity of partitioning, and sophisticated
killing systems ensuring their stable presence within bacterial lines (Jensen & Gerdes 1995).
However, plasmids often carry accessory genes, such as AMR genes, that promote the survival of the
host bacteria under certain environmental contexts (Lili et al. 2007; Harrison & Brockhurst 2012).
Plasmids that carry context-dependent beneficial genes may therefore be expected to interact with
more bacterial taxa than those that don't (Fig. 1A-C). This will be driven by both ecological dynamics
(selection for hosts associated with a mutualistic plasmid) and coevolutionary dynamics between

hosts and plasmids leading to the evolution of generalism.
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Over 10,000 plasmids have been described and referenced to date (likely only a small
fraction of real numbers), the majority of which are associated with the bacterial phylum
Proteobacteria, especially Alpha- and Gammaproteobacteria (Redondo-Salvo et al. 2020). Both
specialist and generalist plasmids have been identified, yet an analysis of a subset of described
plasmids suggests that up to 60% of plasmids are associated with multiple bacterial host species, and
that transmission is limited by host phylogeny with only a small number of super-generalist plasmids
(Suzuki et al. 2010; Redondo-Salvo et al. 2020). However, the link between a plasmid’s range of
hosts in a natural microbial community and its likely effect on bacterial host fitness in that community
remains unknown. Note that in this study we distinguish between the concepts of host range and
generalism. Host range, as it has been defined by plasmid biologists, is the ability of a plasmid to
replicate in phylogenetically diverse hosts (i.e., narrow host range versus broad host range). This view
of plasmid host range does not necessarily reflect the actual spread of the plasmid in a bacterial
community (e.g., a broad-host-range plasmid could be found in only one phylogenetically distinct
species of a community and thus be considered a specialist while a narrow-host range plasmid could
be found in many different closely related species and be a generalist plasmid). Hereafter we refer to
generalist plasmids as plasmids that are found in many species within a community, and specialist

plasmids as those that are found in very few host species.

To understand the functional role of plasmids in ecological communities, ranging from soil, to
wastewater, to the gut microbiome, we need to identify interactions between plasmids and their hosts
in their natural environment. Recently, proximity-ligation methods such as Hi-C allow us to overcome
previous sampling limitations and have been used to detect associations between DNA molecules
originating in the same cell within microbial communities (Stalder et al. 2019; Kent et al. 2020; Yaffe &
Relman 2020). Moreover, machine learning techniques that can identify plasmids based on their
genomic signatures, such as GC content and (tetra)nucleotide composition-specific sequences, with
96% accuracy, allowing for the detection of plasmid genomes that have not officially been described
(Krawczyk et al. 2018; Pellow et al. 2020). Together, these novel methods allow us to quantify host
range distributions of plasmids in natural bacterial communities.

Here we apply an ecological network analysis to test the effect of mutualistic interactions on
the structure of a natural plasmid-bacteria network, using plasmid-bacteria interaction data from

Stalder et al. (2019) that used Hi-C to link mobile genetic elements to their bacterial hosts in a
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wastewater sample. Here we advance/expand on that study by using machine learning methods to
identify clusters of plasmid contigs that original from the same cell (hereafter termed ‘putative
plasmids’), and test whether AMR presence on these putative plasmids is associated with altered
interaction distributions with 374 bacterial metagenome-assembled genomes (MAGS).

While plasmids can carry a range of host-beneficial genes, we make the assumption that
putative plasmids that carry AMR genes will be on average more beneficial than those that don't,
because the concentrations of antibiotics in wastewater are likely to confer an advantage to at least
some AMR genes (Karkman et al. 2018). In this context, we predict that plasmids that carry AMR
should interact with more bacterial hosts (i.e., have higher ‘prevalence’; Fig. 1D, see Fig. 1E for
glossary of terms) than plasmids without AMR, and thereby lead to more connected and generalist
networks. Because evolutionary arms races in antagonistic networks tend to generate strong
phylogenetic signal (Rohr & Bascompte 2014), we would also expect that AMR-carrying plasmids to
demonstrate weaker phylogenetic signal than those without AMR genes (Fig. 1D). We further discuss

the potential of network structures in promoting the spread of AMR.

Results

The inferred wastewater bacteria-plasmid network was made up of 374 bacterial MAGs
(metagenome-assembled genomes) and 289 putative plasmids. Most MAGs identified belonged to
either the class Betaproteobacteria (Phylum Proteobacteria), Gammaproteobacteria (Phylum
Proteobacteria), Clostridia (Phylum Firmicutes), Bacteroidia (Phylum Bacteroidetes) or Actinobacteria
(Phylum Actinobacteria) (Fig. 2A). Bacterial MAGs associated with an average of 3.5 putative
plasmids (median = 1, min. = 0, max. = 47), whilst putative plasmids associated with an average of
4.5 MAGs (median = 2, min. = 1, max. = 80). Note that this does not equate to one bacterial cell
having 47 plasmids; rather, 47 putative plasmids were found to be associated with that MAG across
its entire population within the wastewater community. While MAG relate to a metagenomic bin that
can be asserted to be a close representation to an actual individual genome, here the quality of most
of the MAG identified (according to genome size and completeness scores computed by CheckM)
does not allow us to do this assumption and rather consider the MAGs not as one bacterial cell’'s

genome, but the genome (or fragment of a genome) of closely related strains within a species.
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144  MAGs that associated with a high number of plasmids were distributed across the phylogenetic tree,
145  although MAGs belonging to Betaproteobacteria, and Gammaproteobacteria tended to associate with
146  a higher number of plasmids (Fig. 2A). Putative plasmids that were associated with AMR genes

147  tended to be more widely distributed across MAGs than those that were not associated with AMR
148 genes (mean AMR = 14, mean no AMR = 3; Wilcoxon W = 1379, p < 0.0001; Fig. 2B).

149  The full network clustered strongly by bacterial taxonomy, with MAGs belonging to Proteobacteria,
150 Firmicutes, and Bacteroidetes largely clustering separately (Fig. 2C). The large majority of AMR

151 plasmids clustered together with Proteobacteria, with classes Betaproteobacteria and

152  Gammaproteobacteria clustering together and sharing most of the AMR plasmids (Fig. 2D).

153

154  we next investigated the role of AMR genes on network structure by comparing sub-networks based
155  on whether putative plasmids associated with AMR or not (Fig. 3). When AMR putative plasmids were
156 excluded (Fig. 3A), networks were more modular (higher number of not linked sub networks) and less
157 nested (see Figure 1E) than networks based on solely AMR putative plasmids (Fig. 3B). Putative
158 plasmids carrying AMR genes further connected Proteobacteria to other phyla linking large parts of
159  the whole network.

160

161  We next visualized the distribution of the 15 most prevalent putative plasmids (super generalists)
162  across the bacterial phylogenetic tree (Fig. 4). The most prevalent putative plasmids were largely
163  shared amongst members of the same phyla, although some were occasionally shared more widely.
164  Putative plasmids that were associated with Proteobacteria were often shared across both Beta- and
165 Gamma-proteobacteria (Fig. 4). Whilst most putative plasmids remain undescribed, plasmid 3 (Fig. 4)
166  was identified as a broad range plasmid belonging to the IncP-B group.

167

168 Lastly, we estimated phylogenetic signal in these super generalists and tested whether AMR

169 presence was associated with phylogenetic signal strength. Phylogenetic signal quantifies the

170 relationship between interaction strength and MAG phylogenetic distance, with high phylogenetic
171  signal indicating that MAGs that are closely related are very likely to have a similar number of

172  interactions with a particular plasmid. Importantly, two main methods are available to quantify

173  phylogenetic signal: the first simply measures autocorrelation between trait differences and
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174  phylogenetic distance (measured by Abouheif's Cpeany; the second applies more complex evolutionary
175 models to test whether distributions match what would be expected if traits coevolved measured by
176  Pagel's A (Munkemiiller et al. 2012). We found that most putative plasmids demonstrated significant
177  phylogenetic signal when measured by both methods (Fig. 5). Contrary to our predictions, putative
178 plasmids carrying AMR had significantly stronger phylogenetic signal than those without when

179 measured by autocorrelation (Fig. 5A) and by an evolutionary model (Fig. 5B), although estimates
180 may be biased by AMR putative plasmids being generally more prevalent than those without AMR
181 (Fig. 5).

182

183 DISCUSSION

184 The wastewater network analysis demonstrates that while the natural plasmid-host

185 community is dominated by specialist putative plasmids, those carrying AMR genes tend to be more
186 generalist and markedly increase the connectivity of the network. As predicted, the network structure
187  for the AMR plasmid-host subnetwork differed substantially from the non-AMR plasmid network. The
188 AMR plasmid — host network showed a high degree of generalism and nestedness, with an overall
189  high level of connectedness. Extrapolations from ecological network theory (Thebault & Fontaine
190 2010) and experimental data (HeR et al. 2021; Newbury et al. in press) suggest that this pattern can
191  be explained by the two different types of plasmids in this network: (1) Costly, more specialised

192  plasmids and (2) beneficial, more generalist plasmids. It is reasonable to think that AMR genes can
193  be directly beneficial in the wastewater environment because they can confer a selective advantage
194  eveninthe presence of low concentrations of antibiotics and other biocides (Murray et al. 2018). Even
195 if not directly beneficial in the current wastewater environment experienced by these organisms, AMR
196  genes will almost certainly have provided a benefit in the environments they originate from, such as
197  hospitals and a community of people consuming various antibiotics. This may have led to interactions
198 that evolved to be more generalised (Guimarées Jr et al. 2011; Nuismer et al. 2013).).

199

200 Itis not known precisely why mutualistic networks (e.g., seed dispersal, pollination, symbiosis) often
201  show greater generalism than antagonistic networks (e.g., herbivory and parasitism), with mechanism
202 largely inferred from theory alone. It may be purely short-term ecological consequences, with the

203  greater fitness of mutualistic partners leading to the subsequent spread of mutualists to new species.
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More generalism may also lead to greater stability in communities dominated by mutualistic
interaction (i.e., species are less likely to go extinct, resulting in changes in network properties), while
generalism decreases stability of antagonistic communities (Thébault & Fontaine 2010). Theory also
suggests that coevolution may drive this pattern under the assumption that trait matching (e.g.,
attack-defence traits) determines the strength of antagonistic interactions while trait differences (e.qg.,
barriers for transmission) determine mutualistic interactions (Nuismer et al. 2013; de Andreazzi et al.
2020). While it is impossible to deduce mechanism from our correlational study, recent experiments
and theory work using simplified bacteria-plasmid networks demonstrates that short-term growth rate
advantages conferred by a beneficial plasmid can result in greater plasmid ecological generalism
(Newbury et al. in press). Specifically, if a plasmid increases the frequency of its host, the plasmid
then has greater opportunities to be transmitted to other host taxa. While the distribution of hosts of a
plasmid can be influenced by factors affecting its ability to transfer into a new host, after entry it is
primarily the plasmid-encoded replication system and its interaction with host factors that determines
the ability of a plasmid to survive in that host (del Solar et al. 1996; Toukdarian 2004). This suggests
that increased ecological generalism of beneficial plasmids could in turn promote greater evolutionary
generalism as a consequence of mutualistic coevolution for plasmid maintenance occurring between

plasmids and the multiple hosts they interact with (Harrison & Brockhurst 2012).

We predicted that plasmids with AMR would show lower phylogenetic signal than those without,
because mutualists tend to evolve weaker phylogenetic signal than antagonists (Rohr & Bascompte
2014). Yet, we found the opposite: plasmids with AMR genes showed higher phylogenetic signal
when measured by both autocorrelation and evolutionary models. This finding may either reflect that
AMR plasmids can still be parasitic in some contexts, and therefore require hosts to carefully control
plasmid entry and maintenance in a way that might evolutionarily constrain interactions. Another
possibility is that AMR plasmids are indeed generally beneficial, yet if most plasmids are parasitic this
would still promote the evolution of specific interactions between bacterial and mutualists that act to
constrain interactions within phylogenies (Thrall et al. 2007). In general, whilst most putative plasmids
were highly specialist, super generalist putative plasmids were still largely shared within phyla, and
only rarely interacted with bacterial hosts outside of the dominant host phylum. This pattern was

irrespective of whether they carried AMR genes or not. This indicates strong barriers to plasmid
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transmission between phyla (Redondo-Salvo et al. 2020), yet not between different classes within
phyla. For example, Gamma- and Proteo-bacteria appeared to freely share putative plasmids and did

not form separate clusters within networks.

While greater generalism associated with AMR plasmids obviously has important implications for the
spread of the specific AMR genes encoded by the plasmids, it is also likely to affect the spread of
additional AMR genes, even those not currently under selection. First, a new AMR gene that gets
incorporated into a generalist plasmid will have more chance to spread. Second, generalist plasmids,
are more likely to acquire additional AMR genes (e.g., by transposition), given the greater diversity of
hosts they interact with. Generalist plasmids and in particular generalist plasmids with AMR were
mostly associated with Proteobacteria, although plasmid hubs were found across bacterial classes.
Generalist AMR plasmids assumed a central role in the overall network by linking Proteobacteria to
other classes, although these interactions were relatively rare, and these generalist plasmids may
contribute to the spread of AMR gene transfer in general between different classes of bacteria. This
might reflect greater selection for AMR in Proteobacteria because many common human pathogens

are found in the Proteobacteria.

Our approach advances on the analysis from Stalder et al. (2019) by utilizing novel machine learning
methods to identify undescribed plasmid signatures. Whilst this method considerably increases our
understanding of how undescribed plasmids contribute to interaction network structure, we assume
that connected clusters of sequences represent one plasmid. Yet, it is possible that these clusters in
fact represent multiple co-occurring plasmids, or, conversely, that some sequences treated as
separate plasmids are in fact part of the same plasmid. Nevertheless, our sensitivity analyses suggest
that our results and interpretations are robust to changes to methodology. An additional limitation to
our approach is that some shared genes or mobile elements between different plasmids could have
amplified the connections of generalist putative plasmids to more hosts. We strived to remove any
such genomic elements, such as transposons, AMR, metal resistance, biocide resistance and
virulence, yet it is possible that at least some super generalist putative plasmids may be a product of
other plasmid accessory genes commonly shared among different plasmids of this bacterial

community. Future advances in Hi-C technology paired with long-read sequencing methods will
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further our ability to distinguish and describe plasmids in natural communities using high throughput
sequencing technology. Lastly, this is a correlational study and AMR presence and generalism may
also be driven by host taxa. Indeed, proteobacteria are a very ecologically diverse phylum (Woese
1987), so they may be more likely to be associated with promiscuous plasmids carrying genes
beneficial in a range of hostile environments. Therefore, to fully understand the ecological and
evolutionary dynamics under varying plasmid-host interaction type we need experimental approaches

that measure fitness consequences and link those to changes in observed network structures.

By conducting ecological network analyses on a wastewater Hi-C metagenome, we have been able to
describe a natural plasmid-host network. The patterns we observe are consistent with theory. First,
networks are primarily driven by specialism, consistent with a predominantly parasitic impact of
plasmids in the absence of carriage of beneficial accessory genes. Second, greater prevalence of
AMR genes — which are often transferred by plasmids — in generalist and abundant plasmids lead to a
more connected network. Third, this offers a large potential for sharing of a few generalist plasmids
across the network, promoting inter-class HGT and indirect network interactions. Further work is
clearly required to determine the generality of our findings and the mechanisms underpinning them.
This includes other types of networks, such as bacteria-bacteriophage (Flores et al. 2013), where
interactions while primarily antagonistic can also be mutualistic (Harrison & Brockhurst 2017;
Wendling et al. 2021). A closer look at the types of plasmids that cause higher network

connectedness would also help understand the drivers of AMR spread in various environments.

Materials and Methods
Processing data

Generating bacterial MAG data

Hi-C metagenome data from Stalder et al. was assembled into MAGs using an updated algorithm of
ProxiMeta™ on April 4th 2021 (Phase Genomics, Inc. 2021). This generated 374 MAGs analyzed in
this study. We assigned MAG taxonomy by running MAGs through Phylophlan (Asnicar et al. 2020),
which calls MASH for taxonomic assignment, and used taxonomy as a proxy for phylogeny (Table

s1).
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Contig filtering

The raw Hi-C data from one wastewater sample contains over 2.5 million contigs representing DNA
fragments from diverse organisms. Because we are interested specifically in links between bacteria
and plasmids, we initially filtered out contigs that were 1) identified as transposons, and 2) were not
identified as either a MAG, a plasmid, or carrying other AMR, virulence, metal and biocide genes.
Transposons and IS elements were identified by performing a homology search with BLASTp on
predicted gene from all contigs using an e-value < 0.01 against all known transposase proteins from
the databases from IS finder (Siguier et al. 2006) available from
https://github.com/thanhleviet/ISfinder-sequences/blob/master/README.md and from Tn3
Transposon Finder (Ross et al. 2021) available from

https://tncentral.proteininformationresource.org/TnFinder.html. Protein-coding genes were predicted

from all contigs using prodigal in metagenomic mode using the option ‘-p meta’ available from

https://github.com/hyattpd/Prodigal (Hyatt et al. 2010). Contigs with gene coding for antimicrobial

resistance, virulence factors, metal resistance or resistance to biocides were identified using AMR

finder plus (Feldgarden et al. 2019), using ‘-n’ and ‘—plus’ parameters.

Identifying putative plasmids

All remaining contigs were run through PlassClass (Pellow et al. 2020) using default parameters to
distinguish between contigs that were of chromosomal or plasmid origin. This method performs better
on short reads < 1000 bp than other machine learning algorithms such as Plasflow (Krawczyk et al.
2018). To be conservative, only contigs where 95% of sequence signatures were classified as
plasmid signatures. Only one of these was identified as a well-characterised broad-range plasmid
(IncP-B group). Contigs with gene coding for antimicrobial resistance, virulence factors, metal
resistance or resistance to biocides were not treated as belonging to plasmids because, like
transposons, they can be shared across multiple plasmids and therefore hinder the identification of
unique plasmid signatures. Because the contigs identified as plasmids were mostly constituted by
short contigs (the median length was 379 bp) and plasmids are likely to be > 1000 bp long, we
reasoned that for a contig to belong to a plasmid it should be found to be consistently connected to at
least one other. In order to account for this, we retained only plasmid contigs that were linked to other

plasmid contigs at least five times (n = 841 contigs). We then performed a cluster analysis on these
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plasmid contigs using the Walktrap clustering algorithm using the igraph::walktrap.community function
and with a step length of 4 (Csardi & Nepusz 2006). This clustering step identified 331 plasmid

clusters which we treated as putative plasmids.

We conducted several quality checks to assess the reliability of these cluster of contigs we called
putative plasmids. We first checked the total length of plasmid contigs. The average total length
(4,200 bp) and the general distribution (median = 1,300 bp, min = 500 bp, max. = 78,700 bp) were
below typical plasmid length found in natural communities suggesting those clusters of plasmids
contigs were part of plasmids but we did not assemble complete plasmids (Dunivin et al. 2019). Of
these, 39 clusters were found not to associate with any MAGs and were excluded. In addition, we
used BLASTn (Megablast against the non-redundant nucleotide database) to manually check the
gene content of 132 contigs (out of 841) that were part of putative plasmid clusters that were
subsequently found to associate with over 10% of MAGs. Thirty-three contigs were removed at this
stage for having genes that could plausibly be associated with transposons or bacterial
chromosomes. Lastly, associations characterised by only one Hi-C link were considered unreliable
and removed. After this quality filtering, 289 putative plasmid clusters made up of 729 contigs were
retained for analysis (Fig. S1a). The remaining putative plasmids we classified as associating with an
AMR gene if at least one contig within the cluster was connected to an AMR contig at least twice (Fig.
S1b). Hi-C link counts were then normalised Hi-C by both MAG abundance and by putative plasmid

size.

Analysis

An adjacency matrix was generated from the processed Hi-C association data, and data was handled
using the packages phyloseq and igraph. Networks were visualized using the ggnetwork (Briatte
2020) using graphopt layout. Network statistics for the five major host classes were generated with
the bipartite::networklevel function (Dormann et al. 2009). Phylogenetic trees and their attributes were
visualized with the ggtree package (Yu et al. 2017). Phylogenetic signal was estimated using the
phylosignal::phylosignal function (Keck et al. 2016), applying two different measures: Abouheif's
Cuean, Which calculates autocorrelation between phylogenetic distance and trait distributions, and

Pagel’s A, which uses a Brownian motion (BM) model of trait evolution. We chose these two metrics
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354  because they perform the best out of a number of metrics available, and are also insensitive to branch
355  length (Miinkemiiller et al. 2012), therefore are appropriate to use on our phylogenetic tree based on
356 taxonomy. To test whether plasmids with and without AMR genes differ in their phylogenetic signal,
357  be performed a t-test.

358

359  The Rmarkdown report is available at https:/github.com/Riselya/Plasmid-networks. Sequencing data

360 are available in FASTQ format at SRA accession PRINA506462. Processed data and scripts for
361 linking contigs to genome clusters using Hi-C data are available at https://osf.io/ezb8j/.
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Figure 1. Predictions for plasmid-host network structure. A-C) Three different hypothetical
network structures based on 20 bacterial taxa and 60 plasmids, assuming some level of phylogenetic
signal in interaction strength. In each network, 40 out of the 60 plasmids are highly specialist (light
blue) and interact with only one bacterial taxa. Network structure changes dramatically if the
remaining twenty plasmids are A) also specialist; B) generalist but limited to specific clades (royal
blue); or C) super generalist (navy blue) with weak interactions across other clades. Ecological theory
suggests that antagonistic networks tend to be made up of high number of specialists that lead to
networks with many separate compartments, high in modularity, and low in nestedness. On the
contrary, mutualist networks are structured by generalists and form networks that have few
compartments, and low in modularity, and high in nestedness. D) Because antimicrobial resistance
(AMR) genes are likely to have beneficial effects on bacterial fitness within the context of a
wastewater community, we predict that plasmids that carry AMR genes are likely to have higher
prevalence and lower phylogenetic signal than plasmids without AMR genes. Because increases in
prevalence of at least some plasmids lead to more connected networks (A-C), plasmids with AMR

should lead to more connected networks. E) Glossary of terms used throughout the article.
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586  Figure 2. MAG-putative plasmid networks based on normalised Hi-C linkage. A) Distribution of
587  number of plasmids per MAG, split by bacterial class; B) Number of MAG associations per putative
588  plasmid, split by whether plasmids were associated with antimicrobial resistance genes (AMR); C)
589  The full MAG-putative plasmid network made up of 374 MAGs and 289 putative plasmids, with MAGs
590 coloured by phylum and plasmids represented by stars; D) Same network as C) but coloured by class
591  and the position of AMR plasmids highlighted in yellow. Nodes are sized by their network degree.
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596  Figure 3. AMR genes and network structure. Sub-networks and network statistics representing
597  MAG Hi-C associations with A) plasmids without AMR and B) plasmid with AMR. Stars represent
598  plasmids and circles MAGs, with AMR plasmids highlighted in yellow. Nodes are sized by their
599  network degree.
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603  Figure 4. Phylogenetic distributions of the most prevalent plasmids across 374 MAGs.
604  Phylogenetic weighted distributions of the 15 most prevalent putative plasmids (i.e. plasmids with
605  associations to the highest number of MAGSs), ordered by how many MAGs they associate with. Bar
606  length represents interaction strength (i.e. the number of normalised Hi-C links). Putative plasmids
607  with AMR are highlighted yellow.
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Figure 5. Phylogenetic signal and AMR presence. Phylogenetic signal for the 15 most prevalent

putative plasmids separated by AMR presence, applying a) Abouheif’'s Cican, Which estimates

autocorrelation between trait similarity and phylogenetic distance, and b) Pagel's A, which applies a

model of trait evolution. Points are labelled by the plasmid ID (corresponding to Fig. 4), sized by their

prevalence, and coloured by whether estimates for phylogenetic signal are statistically significant.
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637  Figure S1. Putative plasmid clusters (n = 289 clusters built from 729 contigs) that were retained for
638  analysis. Each node represents a contig identified as having a 95% probability of belonging to a
639  plasmid by PlassClass, coloured by a) its cluster membership based on the walktrap method, and b)
640  whether it is associated with AMR (yellow). Only associations based on at least 5 Hi-C links are
641  included.
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