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Abstract 

Humans have been shown to strategically explore. They can identify situations in which 

gathering information about distant and uncertain options is beneficial for the future. Because 

primates rely on scare resources when they forage, they are also thought to strategically 

explore, but whether they use the same strategies as humans and the neural bases of strategic 

exploration in monkeys are largely unknown. We designed a sequential choice task to 

investigate whether monkeys mobilize strategic exploration based on whether that information 

can improve subsequent choice, but also to ask the novel question about whether monkeys 

adjust their exploratory choices based on the contingency between choice and information, by 

sometimes providing the counterfactual feedback, about the option not chosen. We show that 

monkeys decreased their reliance on expected value when exploration could be beneficial, but 

this was not mediated by changes in the effect of uncertainty on choices. We found strategic 

exploratory signals in anterior and mid-cingulate cortex (ACC/MCC) and dorsolateral prefrontal 

cortex (dlPFC). This network was most active when a low value option was chosen which 

suggests a role in counteracting expected value signals, when exploration away from value 

should to be considered. Such strategic exploration was abolished when the counterfactual 

feedback was available. Learning from counterfactual outcome was associated with the 

recruitment of a different circuit centered on the medial orbitofrontal cortex (OFC), where we 

showed that monkeys represent chosen and unchosen reward prediction errors. Overall, our 

study shows how ACC/MCC-dlPFC and OFC circuits together could support exploitation of 

available information to the fullest and drive behavior towards finding more information through 

exploration when it is beneficial. 
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Introduction 

In the general theoretical framework of optimal foraging (1), foraging is an optimization problem 

that can be solved by a cost-benefit analysis. In many species, foraging can be accounted for 

by simple behaviors – approach/avoidance of an observed and immediately available source 

of food – that require no mental representations. In those models, exploration is often defined 

as a random process, where noise in behavior can lead animal to change behavior by chance 

(2–6). However, in species relying upon spatially and temporally scattered resources, such as 

fruits, the computation of costs and benefits of foraging should extend in space and time (7) 

Strategic exploration implies a specific representation of potential future action and outcomes, 

which allows to select specific options that would be better over longer time or spatial scale, 

rather than using a general heuristic such as win/stay loose shift. It implies foregoing immediate 

rewards to collect information about delayed, distant or risky rewards. But it is essential to 

maximize rewards over longer time and spatial scale. For frugivores animals such as primates, 

it might be critical for survival. 

Humans have been shown to strategically explore (8–11), but there is little evidence in 

other species. Inspired by Wilson and colleagues’ "horizon" exploration task (8), we developed 

a task to investigate whether monkeys mobilize strategic exploration based on whether that 

information can improve subsequent choice. Importantly non-human primate models provide 

insights into the evolutionary history of cognitive abilities, and of the neuronal architecture 

supporting them (12). Given the rhesus monkeys’ ecology (including feeding), they should also 

be able to use strategic exploration, but the extent to which they can mobilize strategic 

exploration might be different from that of humans. Based on the similarities in circuits 

supporting cognitive control and decision-making processes in humans and macaques (13, 

14), one could further hypothesize that the same neuro-cognitive processes (the same 

computational model) might be recruited but not to the same extent (different weights).  

As in Wilson and colleagues’ original study, we manipulated whether the information 

could be used for future choices by changing the choice horizon (8). On short horizon trials, 

the information provided by the outcome of the choice could only be used for the current choice 
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and was then worthless going forward. On long horizon trials, it could be used to guide a 

sequence of four choices. By comparing exploration in both conditions, we could test whether 

the animals reduced their reliance on value estimates (random exploration) and increased their 

preference for more uncertain options (directed exploration) when gathering information was 

useful for future choices in the long horizon (8). In addition, we manipulated the contingency 

between the choice and the information by varying the type of feedback that monkeys received. 

In one experimental condition, monkeys could only receive information about an option by 

choosing it (partial feedback condition). In the other experimental condition, there was no 

contingency between the choice and the information as they received information about the 

outcome of both the option they chose and the alternative option (complete feedback 

condition). In the latter case, the information about the options could be learned from the 

counterfactual outcomes – the outcome that would have been obtained had a different choice 

been made. This type of feedback is sometimes referred to as “hypothetical” (15) or “fictive” 

feedback (16). With this complete feedback condition, we could probe whether monkeys 

decreased their exploration and relied more on value estimates when information was freely 

available. A strategic explorer would only actively explore – and forgo immediate rewards – 

when it is useful for the future (long horizon) and that it is the only way to obtain information 

(partial feedback). In addition to behavioral data, neural data were collected using fMRI to 

probe the neural substrates of strategic exploration. Our analysis was focused on regions 

previously identified in fMRI studies on reward valuation and cognitive control in monkeys (17–

22). Finally, we took advantage of the different feedback conditions to explore how monkeys 

update their expectations based on new information. Specifically, we investigated the 

behavioral and neural consequences of feedback about the outcome of their choice and – in 

the complete feedback condition – on counterfactual feedback from the alternative. 

We found that rhesus monkeys engaged in strategic exploration by decreasing their 

reliance on expected values when it was useful for the future (long horizon) and that active 

sampling was the only way to obtain information (partial feedback). Additionally, they used 

counterfactual feedback to optimize their choices in a sequence. We found prefrontal strategic 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2022. ; https://doi.org/10.1101/2022.05.11.491468doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491468
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

exploration signals in the ACC/MCC and dlPFC. Complementing this activity at decision, we 

found overlapping chosen and unchosen outcome prediction error signals in the OFC, at the 

time of receiving the outcome. The counterfactual prediction errors in the OFC are particularly 

exciting as they point to the neural system that allowed the macaques to forgo having to make 

exploratory choices in the complete condition, which could also change how the MCC-dlPFC 

network represented the value of the chosen option.
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Results 

Probing strategic exploration in monkeys 

Three monkeys performed a sequential choice task inspired by Wilson and colleagues (8). In 

this paradigm called the horizon task, monkeys were presented with one choice (short horizon) 

or a sequence of four choices (long horizon) between two options (Fig 1A). Each option 

belonged to one side of the screen and the corresponding side on the touch pads. Both types 

of choice sequence (long and short horizon) started with an ‘observation phase’ during which 

monkeys saw four pieces of information randomly drawn from both options and reflecting 

outcome distribution of each option. They received at least one piece of information per option 

(Fig 1B). Each piece of information was presented exactly like subsequent choice outcomes 

as a bar length (equivalent of 0 to 10 drops of juice) drawn from each option’s outcome 

distribution. The animals had been trained that the length of the orange bar on a yellow 

background indicated the number of drops of juice associated with that specific option on a 

given trial (Fig 1B). One option was more rewarding on average than the other. The means of 

the distributions were fixed within a sequence but unknown to the monkey. Monkeys only 

received the reward associated with the option they chose at the end of each choice.  

First, we manipulated whether the information gathered during the first choice could be 

useful in the future. During a session, we varied the number of times monkeys could choose 

between the options (horizon length). The horizon length was visually cued (Fig 1AB). Second, 

we manipulated the contingency between choice and information by varying the type of 

feedback monkeys received after their choices. In the partial feedback condition, they only saw 

the outcome for the option they chose. In the complete feedback condition, they saw the 

outcome of both the option the chose and the alternative option (Fig 1DE). The feedback 

condition was not cued but was fixed during a session. 

To assess monkeys’ sensitivity to the expected value and the uncertainty about the 

options, we set up an ideal observer Bayesian model (see Material and Methods for model 

details), which estimates the probability of observing the next outcome given the current 

information (Fig 1C). This model uses only the visual information available on the screen to 
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infer the true underlying mean value of each options but does not use the horizon nor the 

feedback type as those were irrelevant for this inference. We extracted the expected value 

(peak of the probability distribution of the next observation i.e., most likely next outcome) and 

the uncertainty (variance) of the options from the model to evaluate monkeys’ sensitivity to 

these variables. If monkeys did not engage in strategic exploration, the effect of expected value 

should be unaffected by the manipulations of horizon and feedback as was the case for the 

model.  

 

 

Figure 1: Task and model. (A) During the task, we manipulated whether the information could be used in the future 

by including both long and short horizon sequences. In both trial types monkeys initially received four samples 

(‘observations’) from the unknown underlying reward distributions. In short horizon trials they then made a one-off 

decision between the two options presented on screen (‘choice’). In long horizon trials they could make four 

consecutive choices between the two options (fixed reward distributions). On the first choice (highlighted) the 

information content was equivalent between short and long horizon trials (same number of observations), whereas 

the information context was different (learning and updating is only beneficial in the long horizon trials). (B) Example 

short and long horizon trials. The monkeys first received some information about the reward distributions associated 

with choosing the left and right option. The length of the orange bar indicates the number of drops of juice they 

could have received (0-10 drops). The horizon length of the trial is indicated by the size of the grey area below the 

four initial samples. The monkeys then make one (short horizon) or four (long horizon) subsequent choices. As 
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monkeys progressed through the four choices, more information about the distributions was revealed. Displayed 

here is a partial information trial where only information about the chosen option is revealed. (C) Ideal model 

observer for the options of the example trial shown in B (color code corresponds to the side of the option). The 

distributions correspond to the probabilities to observe the next outcome for each option. The expected value 

corresponds to the peak of the distribution and the uncertainty to the variance. Thick lines correspond to post 

outcome estimate and thin lines to pre-outcome estimates (from the previous trial). (D) We also modulated the 

contingency between choice and information by including different feedback conditions. In the partial feedback 

condition monkeys only receive feedback for the chosen option. In contrast, in the complete feedback condition 

they receive feedback about both options. (E) Example partial and complete feedback trials (both short horizon). 

Here, the observation phase shown in (B) is broken up into the components the monkeys see on screen during the 

experiment. Initially, the samples were displayed on screen but a red circle in the center indicates that the monkeys 

could not yet respond. After a delay, the circle disappears, and the monkeys could choose an option. After they 

responded, the chosen side was highlighted (red outline). After another delay, the outcome was revealed. In the 

partial feedback condition (top) only the outcome for the chosen option was revealed. In contrast, in the complete 

feedback condition (bottom) both outcomes were revealed. After another delay the reward for the chosen option 

was delivered in both conditions.  

 

The horizon length and the type of feedback modulate monkeys’ exploration 

We first focused our analysis on the first choice of the trial, as the information about the reward 

probability of two options was identical across horizons and feedback conditions, such that 

choices should only be affected by the contextual manipulations (horizon and feedback type). 

If monkeys were sensitive to whether the information could be used in the future, they would 

explore more in the long compared to the short horizon. This is because information obtained 

early in a trial can only beneficial for subsequent choices in long horizon trials. Moreover, 

exploration should only occur when obtaining information is instrumentally dependent upon it, 

i.e., in the partial feedback condition (Fig 2A).  

We first ensured that monkeys’ choices were influenced by the expected value 

computed by the Bayesian model. We looked at the accuracy (defined as choosing the option 

with the highest expected value according to the model) during the first choice. For the two 

horizon lengths and in both feedback conditions, accuracy was above chance level (t-test 

compared to a distribution with a mean at 0.5: all p<0.001, Fig 2B). Therefore, monkeys used 
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the information provided by the informative observations on each trial to guide their choices. 

Moreover, monkeys also adjusted their choices to variations in expected value, as can be seen 

when pooling together both feedback conditions and horizon lengths (Fig 2C).  

Although monkeys were guided by expected value above chance, they still sometimes 

chose the less valuable option in both conditions and horizons (Fig 2B and C). We examined 

whether monkeys were less driven by expected value on partial feedback long horizon trials, 

as exploration is only sensible on these trials (Fig 2A). To test this hypothesis, we ran a logistic 

regression predicting responses during first choices in the partial and complete conditions. As 

regressors, we added the expected value according to our Bayesian model, the uncertainty 

according to our Bayesian model, the horizon (short/long), and the interactions of expected 

value and uncertainty with horizon. Moreover, we added two potential biases, a side bias and 

tendency to repeat the same action. We fitted regressors to vary by condition (partial or 

complete feedback) and by monkey, and modelled sessions as random effects for each 

monkey, with all regressors included as random slopes. We confirmed that in both feedback 

conditions monkeys tended to choose the option with the highest expected value (p<0.000001 

in the partial condition and p<0.000001 in the complete; one-sided test, based on sample 

drawn from Bayesian posterior, see Material and Methods). We identified that monkeys relied 

more on the difference in expected value in the complete than in the partial feedback condition 

(p=0.0024; one-sided test), and in short horizon than in the long horizon in the partial condition 

only (p=0.0163 in the partial condition and p=0.6598 in the complete; one-sided test). Thus, 

animals engaged in strategic exploration by reducing their reliance on expected value. 

We next looked at the effect of uncertainty.  Exploratory behaviors should be sensitive 

to how much they can reduce uncertain i.e., the animals should optimally pick the most 

uncertain option when they explore (Wilson et al. 2014). We found that monkeys were sensitive 

to uncertainty overall, avoiding options that were more uncertain in the partial and the complete 

feedback conditions (p=0.0081 in the partial condition and p=0.00025 in the complete; one-

sided test) (see Fig S1 for full model fit). This risk aversion was driven by the difference in 

number of information presented as when we restricted our analysis to the trials where they 
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received 2 information about each option, monkeys showed a small preference for the more 

uncertain option (p=0.077 in the partial condition and p=0.066 in the complete; p=0.02 when 

combined; one-sided test) (see Fig S2 for full model fit).  However, we found no statistically 

reliable difference in the sensitivity to the uncertainty across the experimental conditions. 

Therefore, uncertainty did not play a key role in strategic exploration in our task. 

 

 

Figure 2: First choice (A) In our experimental design, on the first choice of a horizon, directed exploration is only 

sensible in long horizon trials in the partial feedback condition. This is because in short horizon trials the information 

gained by exploring is of no use for subsequent choices, so a rational decision-maker would only choose based on 

the expected value of the options. Moreover, in the complete feedback condition all information is obtained 

regardless of which option is chosen, so an ideal observer would again always choose the option with the highest 

expected value. (B) The proportion of trials in which the monkeys chose the option with the higher expected value 

is above chance level (0.5) across both feedback conditions and horizons. (C) Monkeys’ choices are sensitive to 

nuanced differences in expected value. (D) According to the logistic regression model predicting monkeys’ first 

choices in a horizon (see main text and methods for details), monkeys’ first choices are less driven by expected 

value in the partial than in the complete feedback condition. Within the partial feedback condition, they are less 

driven by expected value in long then in short horizon trials. No such difference was found in the complete feedback 

condition. This is evidence that monkeys deliberately modulate their exploration behavior to explore more on partial 

feedback long horizon trials, where exploration is sensible (see (A)). Error bars indicate standard error to the mean 

in B-C and standard deviation in D.  

  

Monkeys learn from chosen and counterfactual feedbacks 

We next assessed whether monkeys used the information they collected during their previous 

choices to update their choice, and how the nature of the feedback affected this process. To 

this end, we focused our analysis on choices from long horizon trials. On such trials, monkeys’ 
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accuracy (defined as choosing the option with the highest expected value according to the 

model) increased as they progressed through the sequence (Fig 3A). They also became more 

and more likely to choose the same option (Fig 3B). We isolated the change in expected value 

compared to the initial ‘observation phase’ (see Material and Methods). We found that 

monkeys were sensitive to the change in expected value both for the chosen option (in the 

partial and complete feedback conditions) and the unchosen option (counterfactual feedback 

in the complete feedback condition only) (Fig 3C).  

We investigated the determinants of these effects by performing a logistic regression 

for all non-first choices. We added regressors for the expected value and uncertainty during 

the observation phase (which served as a baseline for subsequent choices), and regressors 

for the change in these baselines as new information was revealed as they progressed through 

the horizon. We also added three potential biases in choices: a side bias, the tendency to 

repeat the same action, and a bias for choosing the option most often chosen (see Fig S3 for 

full model fit). Just as with the previous regression model for first choices, we again allowed 

regressors to vary by condition and monkey and modelled sessions as random effects. We 

confirmed that monkey remained sensitive to the difference in expected value during the 

observation phase and that guided the first choice (p<0.000001 in the partial condition and p=0 

in the complete; one-sided test). Consistent with the choice behavior on the first choice, 

monkeys relied more on this difference in the complete than in the partial feedback condition 

in subsequent choices (p=0.0192, one-sided test; Fig 3D). Monkeys were biased towards 

repeating the same choice (p<0.000001 in the partial condition and p<0.000001 in the 

complete; one-sided test), but this bias was also more pronounced in the partial feedback 

condition (p=0.0018, one-sided test; Fig 3D) as can already be seen in Fig 3B. Monkeys were 

sensitive to the change in in expected value when the information was related to the chosen 

option (p<0.000001 in the partial condition and p<0.000001 in the complete; one-sided test), 

and equally so in the partial and complete feedback condition (partial > complete: p=0.6913). 

Finally, in the complete feedback condition, monkeys were sensitive to the change in expected 

values obtained from the counterfactual feedback (p<0.000001; one-sided test; Fig 3D).  
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Overall, we found that on top of being more sensitive to the expected value difference 

during the initial evaluation, monkeys were less likely to be biased towards repeating the same 

action when they had counterfactual feedback to further guide their choices in the complete 

feedback condition. They were able to learn about the options, using both the chosen and the 

counterfactual feedback when it was available.  

 

 

Figure 3: Behavioral update (A) As monkeys progressed through the long horizon, they were more likely to choose 

the option with the higher expect reward in both the partial and complete feedback condition. (B) Monkeys were 

sensitive to changes in the expected value compared to the baseline expected value they experienced during the 

observation phase both for the chosen option and (C) the unchosen option. (D) Monkeys were also more likely to 

repeat their choice as they progressed through the long horizon. (E) Results of the single logistic regression model 

predicting 2, 3, and 4th choices in the long horizon. In both the partial and complete feedback monkeys were 

sensitive to the expected value at observation but more so in the complete than the partial feedback condition (left). 

Monkeys tended to repeat previous choices in both conditions but more so in the partial than in the complete 

feedback condition (center left). In both conditions, monkeys were sensitive to the change in expected value 

compared to the observation phase with no significant difference between conditions (center right). In the complete 

feedback condition monkeys were also sensitive to the change compared to baseline of the additional information 

they received. Error bars represent standard error to the mean in A-D and standard deviation in E. * p<0.05, ** 

p<0.01 and *** p<0.001. 
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Strategic exploration signals in ACC/MCC and dlPFC 

To identify brain areas associated with strategic exploration, we ran a two-level multiple 

regression analysis using a general linear model (GLM). For each individual session, we used 

a fixed-effects model. To combine sessions and monkeys, we used random effects as 

implemented in the FMRIB’s Local Analysis of Mixed Effects (FLAME) 1 + 2 procedure from 

the FMRIB Software Library (FSL). Previous electrophysiological studies in non-human 

primates have implicated frontal cortex and striatum as areas related to reward value 

expectation, prediction error and context coding (23–30). Thus, to only look at the regions we 

were interested in and to increase the statistical power of our analysis, we only analyzed data 

in a volume of interest (VOI) covering frontal cortex and striatum (previously used by Grohn et 

al. 2020 (22)). We used data from 75 (41 partial feedback and 34 complete feedback) of the 

81 (41 partial feedback and 40 complete feedback) sessions we had acquired (fMRI data from 

6 sessions were corrupted and unrecoverable). Details of all regressors included in the model 

can be found in the Methods section. In addition to the analysis in the VOI, we examined the 

activity in the functionally and anatomically defined regions of interest (ROIs). These ROIs 

were not chosen a priori but were selected based on the activity in the in the VOI. The goal of 

these analyses was either: i) to examine the effect of a different variable than the one used to 

define the ROI in our VOI, which is an independent test so we could look for statistical 

significance of this different variable on the activity in the ROI, ii) to illustrate an effect revealed 

in the VOI, which is not an independent test, so we did not do any statistical analysis. 

To examine how monkeys use initial information displayed during the observation 

phase of the task differently depending on the horizon and the feedback condition, we 

examined the brain activity when the stimuli were presented on the first choice (‘wait’ period; 

Fig 1D). Crucially, there was no difference in the visual inputs between the partial and the 

complete feedback condition, as the nature of the feedback was not cued and fixed for blocks 

of sessions. We first investigated the main effects of our two manipulations: the overall effect 

of the horizon and feedback type on brain activity.  
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We combined all sessions and looked for evidence of different activations in the long 

and short horizon. We found a significantly greater activity for the long horizon in 3 clusters 

(cluster p < 0.05, cluster forming threshold of z > 2.3; Fig 4A, see Fig S4 for coordinates of 

cluster peaks). One cluster was centered on the pregenual anterior cingulate cortex (pgACC) 

and the striatum and two clusters of activities were centered on the dlPFC and extended in the 

lateral orbito-frontal cortex (lOFC, area 47/12o; see methods for more details about OFC 

subdivisions) one on each hemisphere. In an independent test, we placed ROIs by calculating 

the functional and anatomical overlap for each Brodmann area 24, 46 and 47/12o and 

extracted the t-statistics of the regressor to examine the effect the contingency between choice 

and information (feedback condition). We observe no effect of the feedback type in ACC 

(p=0.19) and lOFC (p=0.53), but we found a main effect of feedback type in the dlPFC (2-way 

ANOVA, F(144, 147)=4.86, p=0.029) and no interaction anywhere (ACC: p=0.29, dlPFC: p=0.9 

and lOFC: p=0.78). This revealed that a subpart of the pgACC and the lOFC were sensitive to 

the horizon length, while the dlPFC showed an additive sensitivity to the horizon length and 

the feedback type, such that it was most activated in the long horizon and partial feedback, 

when exploration is beneficial. 

We next examined the effect of the feedback in our VOI. We found one cluster around 

the MCC that was significantly modulated by the difference between the activity during the 

complete and partial feedback conditions during stimuli presentation on the first choice (Fig 

4C, yellow contrast; see Fig S4 for coordinates of cluster peaks). To examine this effect further, 

and although it is not an unbiased test, we defined an ROI by taking the overlap between our 

functionally defined cluster and Brodmann area 24’. Extracted the t-statistics of each session 

from the regressor from this ROI revealed that the MCC is more active at the time of choice in 

the complete feedback condition but not in the partial feedback condition (Fig 4D). We found 

no interaction between the horizon length and the feedback type in our VOI. Thus, a different 

subpart of the MCC that was sensitive to the horizon length, was sensitive to the type of 

feedback.  
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Behaviorally, we observed that strategic exploration was implemented by decreasing 

the influence of expected value on the choice, we therefore next looked for evidence of different 

expected value signals in the two feedback conditions. We tested the expected value of the 

chosen option, the unchosen option and the difference in expected values between the chosen 

and unchosen options. We only found activity related to the expected value of the chosen 

option. We found 2 clusters of activities bilaterally in the MCC (area 24’) and the left dlPFC 

(area 46) that were modulated by the contingency between choice and information (Fig 4C; 

see Fig S4 for coordinates of cluster peaks). We again placed two ROIs by calculating the 

functional and anatomical overlap for Brodmann areas 24’ and 46 and extracted the t-statistics 

of the regressor. Although this is not an unbiased test, we can see that the MCC and dlPFC 

seemed to be active when an option with a low expected value was chosen, whereas in the 

complete feedback condition, they were more active when choosing high expected value 

options (Fig 4E for illustration). We found however no difference of the strength of this 

sensitivity between short and long horizons. Thus, we found that the availability of the 

counterfactual feedback in the complete feedback condition decreased – and potentially even 

inverted – the sensitivity of the MCC and dlPFC to the expected value of the chosen option. 

Finally, we looked for signals that were related to the expected of the chosen option 

and that were common to both feedback conditions. Consistently with previous studies (31–

34), when we combined the partial and complete feedback conditions session and took all trials 

in the ‘wait’ period, we found a large activation related to the expected value of the chosen 

option (which is the same as the chosen action in our task) spanning from the motor 

cortex/somatosensory cortex, the dlPFC, the OFC and striatum, as well as an inverted signal 

in the visual areas in the whole brain (without mask, Fig S5).  

 Overall, we found that pgACC and MCC reflected the horizon length and the type of 

feedback respectively. The dlPFC was linearly modulated both, with the strongest activation in 

the long horizon and partial feedback, when exploration is beneficial. Additionally, the feedback 

type modulated the effect of the chosen expected value on the activity of the MCC and the 
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dlPFC, such that it was more active for low value choices only when obtaining information was 

contingent on choosing an option. 

 

 

Figure 4: First choice neural results. (A) When combining partial and complete feedback sessions, we found clusters 

for a differential in activity in long horizon than short horizon in the pgACC, the dlPFC and the lateral OFC. 

Cluster p < 0.05, cluster forming threshold of z > 2.3. (B) We placed ROIs (in yellow) in the overlap of the functional 

cluster and anatomical region and extracted t-statistics for the difference between long horizon and short horizon. 

(C) We looked for differences in how the contingency between choice and information (complete vs. partial 

feedback) modulates the initial information that was presented before first choices. Within our VOI, we found clusters 

of activity in MCC both for the main effect of feedback type and how feedback type modulates expected value. We 

also found a cluster of activity in dlPFC in which feedback type modulates expected value activity. (D) We placed 

an ROI (in yellow) in the part of MCC that is activated by the main effect of feedback type and extracted the t-

statistics of the regressor for every session. We found that the effect we observe in the VOI is driven by increased 

activity in the complete feedback condition, whereas there is no activity in the partial feedback condition. (E) We 

also placed ROIs (in yellow) in the parts of MCC and dlPFC where we found significant clusters in the VOI for the 

interaction of feedback type and expected value and extracted the t-statistics for the expected value regressor of 

every session. Plotting these regressors separately for feedback type reveals that both MCC and dlPFC were more 

active when an option with high expected value was chosen in the complete feedback condition, whereas they were 

more active when an option with low expected value was chosen in the partial feedback condition. Error bars 

represent standard error to the mean. * p<0.05. 
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Chosen and counterfactual outcome prediction error signals in the OFC 

We next examined the brain activity when the outcome of the choice is revealed (‘outcome’ 

period in Fig 1D) and monkeys are updating their beliefs about the options. As the sequences 

of events played out differently in the partial and complete feedback conditions, we analyzed 

each dataset separately in regard to feedback. At outcome, the partial feedback condition 

closely resembles previously reported results from fMRI studies in monkeys (20, 22). We 

looked for brain regions with an activity that was modulated by magnitude of the outcome 

prediction error signals, i.e., the difference between the outcome and the expectation (fig S6A). 

Consistently with these studies, we found the expected clusters of activity in the medial 

prefrontal cortex and bilaterally in the motor cortex in our VOI (see fig S6B for outcome-only 

related activity). When we time-locked our search to the onset of the reward (1 s after the 

display of the outcome, on a different GLM), we also found the classic prediction error related 

activity in the ventral striatum at the whole brain level (Fig S6C).  

We then turned to the complete feedback condition, in which we simultaneous 

presented the outcome of the chosen and the unchosen, in order to examine the neural 

substrates involved in learning about counterfactual feedback and the extent to which they 

overlap with learning about chosen feedback. We looked in our VOI for brain regions with an 

activity that was modulated by the prediction error for the chosen option, and the unchosen 

option. We found a cluster of activity around the lateral OFC (lOFC, area 47/12o) that was 

negatively modulated by the prediction error for the chosen option and a cluster of activity 

around the medial orbitofrontal cortex (mOFC, area 14) that was negatively modulated by the 

prediction error of the unchosen option (Fig 5A; see Fig S4 for coordinates of cluster peaks). 

These clusters intersected in the central part of the OFC (cOFC, area 13). Prediction error 

activity should show both an effect of outcome and expectation, with opposite signs. To 

independently test whether observed effects were prediction errors, rather than being driven 

by the outcome or the expectation alone, we extracted the t-statistics for both outcome and 

expectation in ROI defined by their outcome related activity only and looked for a modulation 
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by the expectations (Fig S7). Again, we defined ROIs based the functional modulation by the 

magnitude of the chosen outcome and anatomical overlap. For the chosen outcome, we found 

that lOFC did not show a significant positive expectation for the chosen outcome (p=0.1083) 

(Fig 5C). We found that the somatosensory cortex (area 3) showed a strong positive chosen 

outcome signal and as well as a positive modulation by the chosen expectation (T(33)=2.5246, 

p=0.017) and the ventrolateral prefrontal cortex (vlPFC) (area 45) had no sensitivity for the 

chosen expectation (p=0.95) (Fig S7B). Using the same procedure with the unchosen 

outcome, we found that the cOFC showed a positive expectation about the unchosen outcome 

(T(33)=2.2617, p=0.0304), as well as a negative modulation by the chosen outcome (T(33)=-

2.8761, p=0.007) and a positive modulation by the expectation about the chosen outcome 

(T(33)=2.5560, p=0154). We found a similar pattern in the mOFC (unchosen expectation: 

T(33)= 2.5130, p=0.017; chosen outcome: T(33)=-2.2455, p=0.0316; chosen expectation: 

T(33)=2.8729, p=0.0071). The ventral-medial prefrontal cortex (area 10m according to the 

atlas we used (Reveley et al. 2017) but has been called 14m (Mackey et al. 2010)) showed a 

negative modulation of its activity by the unchosen and the chosen (T(33)=-3.079, p=0.004) 

outcomes but no sensitivity to the expectations. Overall, we found that the cOFC and mOFC 

both showed prediction error related activity for both the chosen and the unchosen outcomes, 

and with the same sign. 

To test the OFC prediction error effects even further, we ran an exploratory correlational 

analysis, between the ROIs based the prediction error signal (t-statistic) and session specific 

t-statistic of the behavioral effect of the change in expected value on choices (estimated with 

a separate GLM for each session with the same regressors as in Fig 5B). We wanted to see 

whether the strength of the counterfactual outcome prediction error in the brain is predictive of 

how much an animal uses it in a particular session. Only in mOFC (and not cOFC) did we see 

the expected – albeit modest – correlation between increased negative counterfactual 

prediction error signals and increased behavioral impact of the counterfactual information (Fig 

5D, ß=-0.1701±0.0971, T(32)=-1.7507, p=0.0448, one-sided test).  
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Figure 5: Prediction error neural results. (A) In complete feedback sessions only, we found clusters for inverted 

prediction error activity in the central part of OFC (area 13), extending into lateral OFC (area 47/12o). We also found 

inverted prediction error activity in the central OFC (area 13) and medial OFC (area 14) for the unchosen, 

counterfactual reward. (B) Brain-behavior correlational analysis between the prediction error signal in the medial 

OFC (t-statistic) and session specific t-statistic of the behavioral effect of the change in expected value on choices 

(estimated with a separate GLM for each session). (C) We placed ROIs (in yellow) in the overlap of the functional 

cluster modulated by the magnitude of the chosen outcome and anatomical region. We extracted t-statistics for 

reward and expectation, both of the chosen and unchosen option. Prediction error activity should evoke both a 

reward and an expectation response with opposite signs. We did not found evidence for outcome expectation of 

the chosen option. (D) When defining the ROIs (in yellow) according to the response to the magnitude of unchosen 

outcome, we find evidence for a classic reward prediction error and a counterfactual prediction error about the 

unchosen option both in central OFC and medial OFC: we observe activity related both to the obtained and the 

unobtained reward, and also activity related both the chosen and unchosen outcome expectation. Error bars 

represent standard error to the mean. * p<0.05, ** p<0.01.
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Discussion  

Weighing up exploration to gather new information with exploitation of your current knowledge 

is a key consideration for humans and animals alike. Inspired by recent work carefully 

dissociating value driven exploration from simple lack of exploitation (8), we designed the 

horizon task to look at the behaviors and neural correlates of goal-directed evaluation of 

strategic exploration in rhesus monkeys. While strategic value driven exploration is important 

to optimize the behavior in time, it is equally important to be able to learn from observations 

related to choices not taken. In particular, being able to process counterfactual information 

during learning is key to optimize exploration for only the kind of situations when active 

sampling is necessary.  

 

Strategic exploration as a reduction of the effect of expected value on choices  

We know that monkeys can seek information before committing to a choice or to increase 

confidence about their decision (35–37). However, we showed for the first time that monkeys 

could identify situations in which a strategic exploratory choice would lead to gaining 

information that would be beneficial for future decisions. Indeed, their choices were least 

influenced by expected value in the long horizon partial feedback condition, which is when 

there should be a drive to explore. This suggests that monkeys had a representation of the 

significance of the information and used it to plan future actions. Our results demonstrate that 

they could discern both whether information will be useful in the future (greater exploration in 

long horizon) and that choosing an option is instrumental to get information about it (greater 

exploration in the partial feedback condition).  

Exploration during value-based decision making has been conceived in different ways 

in the past. A simple way to account for exploration is the “epsilon-greedy strategy”, in which 

a small fraction of choices is made towards the non-most rewarded option (2, 5). Along the 

same line, another way to formalize exploratory choices is through the noise or (inverse) 

temperature in the softmax choice-rule, which predicts that there are more exploratory choices 

when the expected values of the options are close (2–6). This process is also called random 
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exploration because the relaxation of the effect of expected value on choices could allow 

stumbling upon better options by chance (8, 11). This form of exploration is negatively 

correlated with accuracy. Therefore, without varying the other features such as the usefulness 

of information for the future and the contingency between choice and information, it is 

impossible to know whether monkeys made a mistake or were exploring the non-most 

rewarded option to obtain information about it.  

Here we show that monkeys, like humans, can perform sophisticated choices that take 

into account the prospective value of discovering new information about the options (38). Our 

results revealed that foraging behaviors in macaques do not only rely on simple heuristics (e.g., 

win-stay/loose shift), but is also based on strategic exploration. To some extent it mirrors 

anticipatory switch to exploitative behavior once enough information has been learned about 

the information, even when the expected outcome has not yet been obtained (39).  It also adds 

to recent works showing that complex socio-cognitive processes thought to be uniquely human 

such as mentalizing or recursive reasoning could be identified in rhesus monkeys (40, 41). 

However, contrary to humans, monkeys only adapted by reducing their reliance on expected 

value (i.e., exploitative value) on choices. Humans also increase their preference for the most 

uncertain option when exploration is useful for the future (8), suggesting species-specificity in 

exploratory strategy.  

 

Use of counterfactual feedback in subsequent choices 

We next investigated whether and how the availability of the counterfactual feedback impacted 

their subsequent choices in the long horizon. First, we found that having more information 

about the options in the complete feedback condition improved accuracy. In general, monkeys 

were more sensitive to the initial expected values of the options when there was no contingency 

between choice and information, in the complete feedback condition, but then utilized the 

feedback about the chosen option to the same degree in both conditions. However, in the 

complete feedback condition monkeys additionally also used the counterfactual feedback 

about the unchosen option to update their preference. Our results confirm that rhesus 
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macaques are sensitive not only from direct reinforcers (i.e., the reward they obtain) but also 

counterfactual information (15, 16, 21, 42). In fact, to the best of our knowledge, our study is 

the first to show that they can learn directly – via prediction errors – from counterfactual 

feedback i.e., information about not experienced outcomes and links it to OFC activity. 

Identifying that an alternative action could have led to a better outcome and acting upon it has 

been shown to modulate OFC activity in rodents (43), suggesting that this ability was present 

in the last common ancestor to primates and rodents 100M years ago.   

The availability of counterfactual feedback also helped compensate for the repetition 

bias that monkeys displayed during the performance of the sequence. This form of 

engagement can also be considered in terms of the exploration/exploitation trade-off, where 

exploiting corresponds to staying with the current or default option: monkeys committed to an 

option at the beginning of the trial and only changed option if there were sufficient evidence 

that it was worth it. Consistently, humans and animals show a tendency to over-exploit 

compared to the optimal policy in various tasks (44–46). In general, there seems to be a cost 

associated with switching from the on-going representation or strategy to a new one (47–50). 

In our task, switching options also requires minimal physical effort as the monkeys are 

positioned in the sphinx position in the scanner. Additional information about the options, 

particularly about the alternative option, seems to encourage the re-evaluation of the default 

strategy of persevering with the current option, enhance behavioral flexibility and increases the 

willingness to bear the cost associated with the physical resetting required by switching target. 

 

Strategic exploration signals in ACC/MCC and dlPFC  

Using fMRI, we investigated the neural correlates of the assessment of the possibility to use 

the information collected during the choice in the future, manipulated through horizon length, 

as well as the assessment of the contingency between choice and information, manipulated 

through the availability of the counterfactual outcome. Modulation of activity associated with 

exploratory behavior in an uncertain environment has been recorded in humans and monkeys 

in both the ACC and the MCC (5, 24, 39, 51–53) but here we found interesting anatomical 
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distinctions. We found that the pgACC was more active when the information could be used in 

the future in the long horizon. In humans, the pgACC activity has been shown to scale with the 

use prospective value more to guide choices (38). Thus, the pgACC might be critical to 

organize the behavior in the long run, beyond the immediate choice. The activity of a separate 

anatomical region of the MCC was modulated by the feedback type. The MCC has been shown 

to encode the decision to obtain information about the state of the world (54) and to integrate 

information about the feedback to adapt the behavior (55). Here we show that activity in the 

MCC was modulated prospectively by the feedback type. This activation was greater when 

more information was going to be provided i.e., in the complete feedback condition. Thus, the 

MCC could be involved in anticipating more learning or regulating exploration prospectively 

based on the feedback that will be received. Critically, the dlPFC displayed an additive effect 

of the usefulness of exploration for the future and the contingency between choice and 

information. It was most active when both were true, and exploration was sensible. Moreover, 

in the complete feedback condition, the MCC and the dlPFC were more active when the 

expected value of the chosen option was high. Such modulation is in line with studies in 

monkeys and humans showing that neuronal activity in the MCC and the dlPFC does correlate 

with actions’ values (25, 56–60). When the unchosen outcome was not available, MCC and 

dlPFC were more active when the expected value of the chosen option was low, which is 

consistent with the pursuit of an exploration strategy. Overall, the coordinated roles of ACC 

and MCC participate to the regulation of exploratory /exploitative behaviors, not only in rhesus 

macaque but also in humans (61).    

Computational modelling of the activity in ACC/MCC and dlPFC suggest that ACC/MCC 

could regulate decision variables in the dlPFC based on the strategic assessment for 

exploration (62). Noradrenaline has been shown to modulate the noise in the decision process 

which could fuel random exploration and potentially give a mechanism for modulation of 

exploratory activity (9, 46, 63, 64). Importantly, ACC/MCC also more generally interacts with 

other frontal lobe regions as well as monoamine systems and in particular the noradrenergic 

system making it a feasible mechanism for changing exploratory behaviors (65). Specifically, 
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a network consisting of the MCC, the dlPFC and potentially the locus coeruleus could support 

the relaxation of the effect of expected value on choices based on the context. Altogether, 

these results illustrate how ACC/MCC and dlPFC might dynamically switch modes to pursue 

different goals depending on the task demands (24, 39, 53). Future studies will aim at testing 

whether switching mode is dependent on noradrenergic inputs and which causal role both 

regions play in changing into and out of strategic exploration.  

 

Update signals for chosen and counterfactual outcomes in OFC  

Being able to process counterfactual information during learning is key to reduce costly 

exploration to only the kind of situations when active sampling is necessary. Doing so requires 

an ability to process abstract information and learn from it similarly to experienced outcomes, 

without confusion between the two, which our monkeys achieved. Neurally, we found classic 

activations in the partial feedback condition in response to the magnitude of the outcome and 

the prediction error of the chosen option. At reward delivery, we observed a prediction error 

signal in ventral striatum, which has previously been reported in neurophysiological studies 

(66). We also observed prediction error activity at outcome in MCC, which had been shown 

previously in neurophysiological recordings (67). We also found that the prediction error for the 

chosen outcome modulated the activity of the OFC, but further examination showed that the 

lOFC was mostly sensitive to the chosen outcome. Previous studies have shown the lOFC 

involvement in learning and using choice-outcome associations to guide behavior (68–71), and 

causal studies demonstrated its role in credit assignment (72–76). Here, in the presence of 

two outcomes – two stimuli – OFC could be crucial to integrate the information specifically 

related the chosen option. We also revealed that the central and medial OFC carried clear 

chosen prediction error signals. 

However, our results go beyond chosen prediction error signals and add two additional 

dimensions to our understanding of how brains process counterfactual information during 

exploration and learning. Firstly, we were able to map out for the first-time counterfactual 

prediction error signals in monkeys in the cOFC and mOFC. Importantly, by using fMRI we 
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could establish its specificity within the prefrontal cortex. In particular, we found signals for that 

counterfactual and the chosen outcomes but not the expectations in the vmPFC (10/mc14m). 

This adds to our knowledge, of modulation of activity by counterfactual outcomes in gambling 

tasks had been reported in macaque lateral prefrontal cortex, MCC and OFC (15, 16). 

Secondly, we found in the mOFC a relationship between the strength of the counterfactual 

prediction error signal and the extent to which the counterfactual outcomes influenced future 

choices (Fig 5). Encoding of the counterfactual outcome has also been observed in humans 

mOFC (77–79), and lesion of the mOFC in patients had been associated with an inability to 

use counterfactual information to guide future decisions (80). Those results are compatible 

with the proposed broader role of the mOFC in representing abstract values (81–83). Here we 

show that it represents the comparison of the obtained counterfactual information with the 

expected counterfactual information. We found that the representation of the prediction error 

for the chosen and unchosen outcomes had the same sign at the time of outcome, which leads 

us to postulate that this update mechanism is independent of the frame of the decision (79, 83, 

84). 

Having identified the orbitofrontal source of counterfactual prediction errors’ in 

macaques opens up further possibilities to directly interfere with the neural processes in each 

system to see the effect it has on this complex adaptation of the animals’ exploratory strategy. 

Furthermore, knowing how the brains of non-human primates might solve this complex 

sequential exploration task also sheds light on the building behavioral and neural blocks of 

reward exploration, learning and credit assignment.  

 

Conclusion 

Here we showed that monkeys are able to assess the contingency between choice and 

information and the usefulness of information for the future when making strategic exploratory 

decisions. Different subparts of the ACC and MCC related to the assessment of these variables 

for strategic exploration, and the dlPFC represented them both additively, such that it was most 

active when exploration was beneficial. Only when the only way to obtain information was to 
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explore did MCC and dlPFC show increased activity with less exploitative choices. This 

suggests a role in suppressing expected value signals when value guided exploration should 

to be considered. Importantly, to limit costly exploration to when it is necessary being able to 

process counterfactual information is key. We showed, monkeys could do this potentially by 

representing chosen and unchosen reward prediction errors in central and medial OFC. 

Furthermore, the strength of this signal in the mOFC was shown to be correlated with future 

decisions taken. Overall, our study shows how ACC/MCC-dlPFC and OFC circuits together 

might support exploitation of available information to the fullest and drive behavior towards 

finding more information when it is beneficial.  
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Materials and Methods  

Monkeys  

Three male rhesus monkeys were involved in the experiment (Monkey M: 14kg, 7 years old, 

monkey S: 12kg, 7 years old and monkey E: 11 kg, 7 years old). They were kept on a 12-hour 

light dark cycle, with access to water 12–16 hours on testing days and with free water access 

on non-testing days. All procedures were conducted under licenses from the United Kingdom 

(UK) Home Office in accordance with the UK The Animals (Scientific Procedures) Act 1986.  

 

Task 

During the task, monkeys sat in the sphinx position in a primate chair (Rogue Research, 

Petaluma, CA) in a 3T clinical horizontal bore MRI scanner. They faced an MRI-compatible 

screen (MRC, Cambridge) placed 30cm in front of the animal. Visual stimuli were projected on 

the screen by a LX400 projector (Christie Digital Systems). Monkeys were surgically implanted 

under anesthesia with an MRI-compatible cranial implant (Rogue Research) in order to prevent 

head movements during data acquisition. Two custom-built infrared sensors were placed in 

front of their left and right hands that corresponded to the stimuli on the screen. Blackcurrant 

juice rewards were delivered from a tube positioned between the monkey’s lips. The behavioral 

paradigm was controlled using Presentation software (Neurobehavioral systems, Inc, CA, 

USA).  

The task consisted of making choices between two options by responding on either the left or 

right touch sensor to select the left or right stimulus respectively. A trial consisted of a given 

number of choices (determined by the horizon length) between these two options (Fig 1A). 

Each option corresponded to one side for the entire trial (Fig 1B). After each choice, monkeys 

received a reward associated with the chosen option (Fig 1E). The reward was between 0 and 

10 drops (0.5mL of juice per drop) and was sampled from a Gaussian distribution with a 

standard deviation of 1.5 and mean between 3 and 7. The means of the underlying distribution 

were different for the two options and remained the same during a trial, such that one option 

was always better than the other. After each choice, monkeys also received a visual feedback 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2022. ; https://doi.org/10.1101/2022.05.11.491468doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491468
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 

on the reward (Fig 1E). This feedback was in the form of was an orange rectangle displayed 

in a yellow rectangular window, such that the wider the orange rectangle, the greater the 

amount of juice (Fig 1B). It remained on the screen for the remainder of the trial.  

At the beginning of each trial, prior to making their first choice, monkeys received 4 informative 

observations in total, which consisted of information about the reward they would have gotten 

if they had chosen the option (Fig 1B). This was displayed in the same manner as reward 

feedback and also remained on screen during the duration of the trial. For each informative 

observation, a non-informative observation was presented for the other option (Fig 1B). The 

non-informative observation was a white rectangle crossed by black diagonals. Half of the trials 

started with an equal amount of information about the two options (2 informative and 2 non 

informative observations for each option), and the other half with an unequal (3 informative 

and 1 non-informative observations). The order and side were randomly determined. 

A critical parameter was the number of choices in each trial (horizon length). In short horizon 

trials, monkeys were only allowed 1 choice before a new trial with new stimuli started, whereas 

in long horizon trials, they were allowed to make 4 choices between the options. Horizon 

conditions were blocked (5 consecutive trials of equal horizons) and alternated in the session.  

A second key manipulation was whether feedback was received only for the option they chose 

(partial feedback condition) or whether they received information about both the reward they 

received for the chosen option and the reward they would have received for selecting the 

alternative option (complete feedback condition) (Fig 1E).  

A trial would proceed as follows (Fig 1E, timings in table 1): After an inter-trial interval during 

which the screen was black, the stimuli were displayed, consisting of a large grey rectangle 

and the 4 horizontal bars of feedback information (Fig 1BE). The length of the grey rectangle 

corresponded to the length of the horizon, which each line corresponding to a choice, simulated 

or actual. Informative or non-informative stimuli were displayed on the first four lines. After the 

display of the stimuli, a red dot at the center of the screen disappeared and monkeys were 

then allowed to choose between the two options by touching the corresponding sensor (in less 

than 5000ms or the trial restarted). A red rectangular frame appeared around the line on the 
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side of the chosen option. After a delay, the outcome – the reward feedback – was displayed 

inside the rectangle. In complete feedback condition only, the reward that would have been 

gained on the other side (informative stimulus) was also displayed at the same moment. After 

an additional delay, a white star appeared on the screen and the reward was delivered. After 

the end of the reward delivery, the star disappeared. In short horizon blocks, a new trial started 

after the inter-trial interval delay. In long horizon trials, the red dot appeared and then monkeys 

could choose among the options. The events leading to the reward were similar than for the 

first choice, but the delays were shorter. At the end of the fourth choice, a new trial started. 

The feedback condition monkeys were in was not explicitly cued but instead fixed both within 

and across several sessions (6 to 10 consecutive sessions). Sessions after a switch from one 

feedback condition to the other were included in the analysis since it only took one choice for 

monkeys to know the feedback condition.  

Choice ITI Go delay Outcome delay Reward delay ICI 

1st  
4000 ± 

1000ms 1500 ±500ms 

(1500 ± 200ms 

for monkey E) 

3500 ± 500ms 

1000ms 

2500 

±500ms 

2nd to 4th  N/A 1500 ±500ms 
1500 

±500ms 

 

Table 1: Timings 

Monkey M performed 14 sessions in the partial feedback condition and 13 (2 were 

corrupted and unrecoverable for fMRI analysis) in the complete feedback condition, monkey S 

performed 13 and 12 (3 corrupted sessions) sessions in each condition respectively and 

monkey E performed 14 and 15 (1 corrupted session) sessions in each condition. Sessions 

with less than 50 trials completed for the horizon task or with more than 80% bias for one side 

were removed from the analyses.  
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Training  

All monkeys followed the following training procedure, which lasted several months in a testing 

room mimicking the actual scanner room: First, they learned the meaning of the informative 

observation stimuli by choosing between a rewarded (1 to 10 drops) and a non-rewarded (0 

drop) observation stimulus, and then between different rewarded (0 to 10 drops) observation 

stimuli. They next learnt to associate an option with an expected value by choosing between a 

non-rewarded option (0 drop) and a rewarded option, and then between rewarded options in 

the long horizon and partial feedback condition. We then introduced blocks of small and long 

horizon trials. Monkeys were then tested in the scanner room. They all had previous 

experience of awake behaving testing in the scanner. We discarded the first scanning session 

and then analyzed the following ones if they corresponded to our inclusion criterions in terms 

of number of trials and spatial bias. Monkey M and S were introduced to the complete feedback 

condition during the training procedure; monkey E experienced it for the first time during 

testing.     

 

Bayesian expectation model 

We analyzed the behavior using an ideal Bayesian model which estimated the most likely next 

outcome given the previous observations about the options. Outcomes were randomly drawn 

form a distribution of mean 𝜇 and fixed standard deviation. P(x|𝜇) is the probability that an 

outcome x would be observed given that it came from a distribution of mean 𝜇. Since outcomes 

were independently dram from a distribution of mean 𝜇, the probability of observing a set of 

outcomes {x1…xn} was: 

P({x1…xn} |𝜇) = ∏ 𝑃(𝑥!|𝜇)"
!#$  

Using Bayes’ rule, we computed the probability that this observation was generated by a 

distribution of mean 𝜇: 

P(𝜇 |{𝑥$…𝑥"}) = %({(!…("}|,)%(,)
%({(!…("})

 = ∏ %((#|,)"
#$!

∑ ∏ %((#|,%)"
#

&
%
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For each observation, we computed the probability of a new observation: 

P(𝑥"0$ |{𝑥$…𝑥"}) = ∑ 𝑃(𝑥"0$|1
2#$ 𝜇2)𝑃(𝜇2|{𝑥$…𝑥"}) 

Thus, we can compute the probability distribution of the future outcomes given a set of 

observations (Fig 1C shows how the distributions change with new observations). 

In our model, the expected value (EV) of an option is the mean of the probability distribution of 

the set of observations. The uncertainty (U) about what the next outcome was represented by 

the variance of the distribution. In general, the more informative observations the subject has 

access to for an option, the closer the expected value to the actual mean of the underlying 

distribution and the smaller the uncertainty about this quantity. The weight of the expected 

value controls a specific form of exploration: the reward-based exploration. Reducing this 

parameter allows exploring options by relaxing the tendency to choose the most rewarded 

option.  

 

Choice model fit 

We first focused our analysis on the first choice of the trial because it was similar in terms of 

information content (4 informative observations) across horizon lengths and feedback 

conditions. Contrary to subsequent choices in the long horizon, the expected value and the 

uncertainty about the expected value (which decreases with the number of informative 

observations, from 1 to 3) associated with each option were uncorrelated on the first choice. 

Indeed, in the partial feedback condition, if the option with the higher expected value is chosen 

more often, the uncertainty about its expected value decreases specifically, inducing a 

correlation between expected value and uncertainty about it. For these first trials 𝑡, we model 

the probability of picking the option that is presented on the right side of the screen as 

𝑃(𝑟𝑖𝑔ℎ𝑡3) = 𝜎(𝑏45 + 𝑏65𝑅𝐵3 + 𝑏789!:8"ℎ𝑜𝑟𝑖𝑧𝑜𝑛3 + 𝑏;<𝐸𝑉3 + 𝑏=𝑈3 + 𝑏;6789!:8"𝐸𝑅3ℎ𝑜𝑟𝑖𝑧𝑜𝑛3

+ 𝑏=789!:8"𝑈3ℎ𝑜𝑟𝑖𝑧𝑜𝑛3) + 𝑒3 

using logistic regression. Here, 𝜎 is the sigmoid function, 𝑅𝐵3 is a categorical predictor that 

control for a repetition bias, 𝐸𝑉3 and 𝑈3 denote the difference between the expected value / 
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uncertainty of the options on the right and left side of the screen, ℎ𝑜𝑟𝑖𝑧𝑜𝑛3 is a categorical 

predictor for whether trial 𝑡 is a short or long horizon trial, and 𝑒3 is the residual.  

For the remaining trials (second, third, and fourth choice in the long horizon), we are interested 

in whether the animals change their behavior as new information becomes available. We 

model these trials as 

𝑃(𝑟𝑖𝑔ℎ𝑡3) = 𝜎(𝑏45 + 𝑏65𝑅𝐵3 + 𝑏∆?78@A"∆𝐶ℎ𝑜𝑠𝑒𝑛3 + 𝑏BC@AD!"A;6𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐸𝑉3

+ 𝑏∆;6E78@A"∆𝐸𝑉𝑐ℎ𝑜𝑠𝑒𝑛3 + 𝑏BC@AD!"A=𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑈3 + 𝑏∆=E78@A"∆𝑈𝑐ℎ𝑜𝑠𝑒𝑛3

+ 𝑏∆;6F"E78@A"∆𝐸𝑉𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛3 + 𝑏∆=F"E78@A"∆𝑈𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛3) + 𝑒3 . 

For this logistic regression, we used an additional bias: ∆𝐶ℎ𝑜𝑠𝑒𝑛, that corresponds to the 

number of times the option on the right was chosen during the trial. Here, 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐸𝑉3 and 

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑈3 are the difference between the expected value / uncertainty of the right and the left 

option at the first trial within the horizon. As such, these regressors capture the impact the 

initial information displayed on screen has on subsequent choices. ∆𝐸𝑉𝑐ℎ𝑜𝑠𝑒𝑛3  and 

∆𝑈𝑐ℎ𝑜𝑠𝑒𝑛3 capture the difference between the initial baseline and the information presented 

at the current trial based on the choices the animal has made. That is, these regressors capture 

the update of outcome expectation and uncertainty between the right and the left option 

compared to the first choice based on the consequent rewards the animals experienced.  

In our complete feedback condition, the animals can also learn about the reward they would 

have gotten, had they chosen the other option. This is not captured by ∆𝐸𝑉𝑐ℎ𝑜𝑠𝑒𝑛3  and 

∆𝑈𝑐ℎ𝑜𝑠𝑒𝑛3 as these regressors only take the experienced (i.e., obtained) reward into account. 

To see how the unobtained reward affects choices, we included the regressors ∆𝐸𝑉𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛3 

and ∆𝑈𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛3. These regressors are computed as the difference between the full outcome 

expectation and uncertainty (based on both the obtained and unobtained reward), and the 

outcome expectation and uncertainty for the obtained reward only. Just as with the ∆𝐸𝑉𝑐ℎ𝑜𝑠𝑒𝑛3 

and ∆𝑈𝑐ℎ𝑜𝑠𝑒𝑛3, these regressors are also again constructed as the difference between the 

right and left option, and with the baseline subtracted. 
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To fit these models, we used STAN (https://mc-stan.org) and brms with the default priors (85, 

86). For each model, we ran 12 chains, each with 1000 iterations after a warm-up of 1000 

samples. We allowed all regressors to vary by condition (partial and complete) and animal (3 

animals) as fixed effects. We modelled testing sessions as random effects with different 

Gaussians for each animal. That is, for each regressor and each animal we estimated the 

Gaussian distribution that session-level regressors are most likely drawn from. Group-level 

estimates of the coefficients were obtained by averaging across animals and/or conditions. To 

determine statistical significance, we counted the number of samples of the posterior that are 

greater/smaller than 0. 

 

MRI data acquisition and pre-processing  

Imaging data were acquired using a 3T clinical MRI scanner and an 8-cm-diameter four-

channel phased-array receiver coil in conjunction with a radial transmission coil (Windmiller 

Kolster Scientific, Fresno, CA). Structural images were collected under general anesthesia, 

using a T1-weighted MP-RAGE sequence (resolution = 0.5 × 0.5 × 0.5mm, repetition time (TR) 

= 2.05 s, echo time (TE) = 4.04ms, inversion time (TI) = 1.1s, flip angle = 8 ̊). Three structural 

images per subject were averaged. Intramuscular injection of 10 mg/kg ketamine, 0.125–0.25 

mg/kg xylazine, and 0.1 mg/kg midazolam were used to induce anesthesia. Functional MRI 

data were collected while the subjects performed the task with a gradient-echo T2* echo planar 

imaging (EPI) sequence (resolution = 1.5 × 1.5 × 1.5mm, interleaved slice acquisition, TR = 

2.28s, TE = 30ms, flip angle = 90 ̊). To help image reconstruction, a proton-density-weighted 

image was acquired using a gradient-refocused-echo (GRE) sequence (resolution = 1.5 × 1.5 

× 1.5 mm, TR = 10 ms, TE = 2.52 ms, flip angle = 25 ̊) at the end of the session.  

fMRI data were pre-processed according to a dedicated nonhuman primate fMRI pre-

processing pipeline (22, 87, 88) combining FMRIB Software Library (FSL), Advanced 

Normalization Tools (ANTs), and Magnetic Resonance Comparative Anatomy Toolbox (MrCat; 

https://github.com/ neuroecology/MrCat) tools. In brief, T2* EPI data were reconstructed using 

an offline SENSE algorithm (Offline_SENSE GUI, Windmiller Kolster Scientific, Fresno, CA). 
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Time-varying spatial distortions due to body movement were corrected by non-linear 

registration (restricted to the phase encoding direction) of each slice and each volume of the 

time series to a reference low noise EPI image for each session. The distortion corrected and 

aligned session-wise images were first registered to the animal structural image and then to a 

group specific template in CARET macaque F99 space. Finally, the functional images were 

temporally filtered (high-pass temporal filtering, 3-dB cutoff of 100s) and spatially smoothed 

(Gaussian spatial smoothing, full-width half maximum of 3m).  

 

fMRI analysis 

We conducted our fMRI analysis using a hierarchical GLM (FSLREF). Specifically, we first 

fitted each individual session (in session space) using FSL’s fMRI Expert Analysis Toolbox 

(FEAT). We then warped the session-level whole-brain maps into F99 standard space, before 

combining them using FEAT’s FLAME 1+2 random effects procedure. Here, we used contrast 

to obtain separate estimates for the partial and complete sessions, the difference between 

partial and complete sessions, and their average. To determine statistical significance, we 

used a cluster-based approach with standard thresholding criteria of z>2.3 and p<0.05. To 

increase power, we ran this cluster-correction only in an a priori mask of the frontal cortex that 

was previously used in Grohn et al. 2020 (22).  

On the session level, we included 58 regressors for the partial feedback sessions, and 73 

(including the same 58 regressors as in the partial feedback condition) for the complete 

feedback sessions. On top of these regressors we also included nuisance regressors that 

indexed head motion and volumes with excessive noise. All regressors were convolved with 

an HRF that was modelled as a gamma function (mean lag = 3, standard deviation = 1.5 s), 

convolved with a boxcar function of 1 s.  

The two main periods of the task we were interested in were when the stimuli first appeared 

on screen, and when the outcome appeared on subsequent choices in the long horizon trials. 

At stimulus onset we included a constant and regressors for the expected value of the chosen 

and unchosen options, and also regressors for the uncertainty of the chosen and unchosen 
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option. To allow us to examine the effects of these five regressors on first choices in short and 

long horizons, and subsequent choices within the long horizon, we up each regressor by 

horizon and choice number (first choice short horizon, first choice long horizon, second choice 

long horizon, third choice long horizon, and fourth choice long horizon) for a total of 25 

regressors. At outcome we included another constant, the expected value of the chosen and 

unchosen options, the reward obtained on this trial, the absolute value of the prediction error 

of this trial (|reward - expected value|), and the update in uncertainty on this trial. Again, all of 

these regressors were split up by horizon and choice number, for a total of 30 regressors at 

outcome. On top of these regressors of interest we also included 3 control regressors: the log 

response time at stimulus onset, a constant at decision, and the response side (left or right) at 

decision. In the complete feedback condition, we included additional regressors: at outcome, 

we added regressors for the reward of the unchosen option, the absolute prediction error for 

the unchosen option, and the update in uncertainty for the unchosen option. Splitting these 

regressors up by horizon and choice within a horizon yields an additional 15 regressors.  

Having split up all regressors this way into choice horizon and number of choices within a 

horizon, we used planned contrasts combining them again to answer our questions of interest. 

At stimulus onset we were only interested in first choices, as this allowed us to compare 

whether the animals represented expected value and uncertainty differently depending on 

condition (partial or complete feedback) and/or choice horizon (long and short). We thus 

constructed contrasts adding up and subtracting the first choices on long and short horizons 

for the constant, the expected value and the uncertainty. At outcome we were interested in 

reward effects and updates to the expected value of stimuli. As this should happen not just 

after first choices in a horizon but all choices, we used contrast to construct (weighted) 

averages of our regressors combining all choices within horizons. Moreover, to look at the 

effect of (signed) prediction errors, we use contrasts that subtract the expectation from the 

reward.  

To visualize the cluster-corrected effects we find in our mask of the frontal cortex, we use an 

atlas of the macaque brain (89) to identify the regions where we observe activity. We then 
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create ROIs by calculating the overlap of the anatomical region according to the atlas (dilated 

with a kernel of 3x3x3 voxels), and the functional activation we found. By extracting the average 

t-statistics in this region we are able to visualize the effects we found, and also examine the 

individual components that contributed the effects (e.g., the reward and outcome expectation 

for prediction errors). 

To best describe the localization of orbitofrontal activities, we considered 3 orbital subdivisions 

based on their respective position on the orbital surface. Lateral to the lateral orbitofrontal 

sulcus is the lateral OFC; medial to the medial orbitofrontal sulcus is the medial OFC. In 

between the two sulci is a region we referred to as the central OFC. Such parcellation 

resembles subdivisions considered in humans and rodents (72, 90, 91), although alternative 

labels have been proposed (70). 

To best describe the localization of cingulate activities we considered a dissociation between 

anterior and mid-cingulate subdivisions as proposed by Vogt and colleagues (92, 93).
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Figure captions 

Figure 1: Task and model.  

(A) During the task, we manipulated whether the information could be used in the future by 

including both long and short horizon sequences. In both trial types monkeys initially received 

four samples (‘observations’) from the unknown underlying reward distributions. In short 

horizon trials they then made a one-off decision between the two options presented on screen 

(‘choice’). In long horizon trials they could make four consecutive choices between the two 

options (fixed reward distributions). On the first choice (highlighted) the information content 

was equivalent between short and long horizon trials (same number of observations), whereas 

the information context was different (learning and updating is only beneficial in the long 

horizon trials). (B) Example short and long horizon trials. The monkeys first received some 

information about the reward distributions associated with choosing the left and right option. 

The length of the orange bar indicates the number of drops of juice they could have received 

(0-10 drops). The horizon length of the trial is indicated by the size of the grey area below the 

four initial samples. The monkeys then make one (short horizon) or four (long horizon) 

subsequent choices. As monkeys progressed through the four choices, more information about 

the distributions was revealed. Displayed here is a partial information trial where only 

information about the chosen option is revealed. (C) Ideal model observer for the options of 

the example trial shown in B (color code corresponds to the side of the option). The 

distributions correspond to the probabilities to observe the next outcome for each option. The 

expected value corresponds to the peak of the distribution and the uncertainty to the variance. 

Thick lines correspond to post outcome estimate and thin lines to pre-outcome estimates (from 

the previous trial). (D) We also modulated the contingency between choice and information by 

including different feedback conditions. In the partial feedback condition monkeys only receive 

feedback for the chosen option. In contrast, in the complete feedback condition they receive 

feedback about both options. (E) Example partial and complete feedback trials (both short 

horizon). Here, the observation phase shown in (B) is broken up into the components the 

monkeys see on screen during the experiment. Initially, the samples were displayed on screen 
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but a red circle in the center indicates that the monkeys could not yet respond. After a delay, 

the circle disappears, and the monkeys could choose an option. After they responded, the 

chosen side was highlighted (red outline). After another delay, the outcome was revealed. In 

the partial feedback condition (top) only the outcome for the chosen option was revealed. In 

contrast, in the complete feedback condition (bottom) both outcomes were revealed. After 

another delay the reward for the chosen option was delivered in both conditions.  

 

Figure 2: First choice behavior 

(A) In our experimental design, on the first choice of a horizon, directed exploration is only 

sensible in long horizon trials in the partial feedback condition. This is because in short horizon 

trials the information gained by exploring is of no use for subsequent choices, so a rational 

decision-maker would only choose based on the expected value of the options. Moreover, in 

the complete feedback condition all information is obtained regardless of which option is 

chosen, so an ideal observer would again always choose the option with the highest expected 

value. (B) The proportion of trials in which the monkeys chose the option with the higher 

expected value is above chance level (0.5) across both feedback conditions and horizons. (C) 

Monkeys’ choices are sensitive to nuanced differences in expected value. (D) According to the 

logistic regression model predicting monkeys’ first choices in a horizon (see main text and 

methods for details), monkeys’ first choices are less driven by expected value in the partial 

than in the complete feedback condition. Within the partial feedback condition, they are less 

driven by expected value in long then in short horizon trials. No such difference was found in 

the complete feedback condition. This is evidence that monkeys deliberately modulate their 

exploration behavior to explore more on partial feedback long horizon trials, where exploration 

is sensible (see (A)). Error bars indicate standard error to the mean in B-C and standard 

deviation in D. 

 

Figure 3: Behavioral update 

(A) As monkeys progressed through the long horizon, they were more likely to choose the 
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option with the higher expect reward in both the partial and complete feedback condition. (B) 

Monkeys were sensitive to changes in the expected value compared to the baseline expected 

value they experienced during the observation phase both for the chosen option and (C) the 

unchosen option. (D) Monkeys were also more likely to repeat their choice as they progressed 

through the long horizon. (E) Results of the single logistic regression model predicting 2, 3, 

and 4th choices in the long horizon. In both the partial and complete feedback monkeys were 

sensitive to the expected value at observation but more so in the complete than the partial 

feedback condition (left). Monkeys tended to repeat previous choices in both conditions but 

more so in the partial than in the complete feedback condition (center left). In both conditions, 

monkeys were sensitive to the change in expected value compared to the observation phase 

with no significant difference between conditions (center right). In the complete feedback 

condition monkeys were also sensitive to the change compared to baseline of the additional 

information they received. Error bars represent standard error to the mean in A-D and standard 

deviation in E. * p<0.05, ** p<0.01 and *** p<0.001. 

 

Figure 4: First choice neural results 

(A) When combining partial and complete feedback sessions, we found clusters for a 

differential in activity in long horizon than short horizon in the pgACC, the dlPFC and the lateral 

OFC. Cluster p < 0.05, cluster forming threshold of z > 2.3. (B) We placed ROIs (in yellow) in 

the overlap of the functional cluster and anatomical region and extracted t-statistics for the 

difference between long horizon and short horizon. (C) We looked for differences in how the 

contingency between choice and information (complete vs. partial feedback) modulates the 

initial information that was presented before first choices. Within our VOI, we found clusters of 

activity in MCC both for the main effect of feedback type and how feedback type modulates 

expected value. We also found a cluster of activity in dlPFC in which feedback type modulates 

expected value activity. (D) We placed an ROI (in yellow) in the part of MCC that is activated 

by the main effect of feedback type and extracted the t-statistics of the regressor for every 

session. We found that the effect we observe in the VOI is driven by increased activity in the 
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complete feedback condition, whereas there is no activity in the partial feedback condition. (E) 

We also placed ROIs (in yellow) in the parts of MCC and dlPFC where we found significant 

clusters in the VOI for the interaction of feedback type and expected value and extracted the 

t-statistics for the expected value regressor of every session. Plotting these regressors 

separately for feedback type reveals that both MCC and dlPFC were more active when an 

option with high expected value was chosen in the complete feedback condition, whereas they 

were more active when an option with low expected value was chosen in the partial feedback 

condition. Error bars represent standard error to the mean. * p<0.05. 

 

Figure 5: Prediction error neural results 

A) In complete feedback sessions only, we found clusters for inverted prediction error activity 

in the central part of OFC (area 13), extending into lateral OFC (area 47/12o). We also found 

inverted prediction error activity in the central OFC (area 13) and medial OFC (area 14) for the 

unchosen, counterfactual reward. (B) Brain-behavior correlational analysis between the 

prediction error signal in the medial OFC (t-statistic) and session specific t-statistic of the 

behavioral effect of the change in expected value on choices (estimated with a separate GLM 

for each session). (C) We placed ROIs (in yellow) in the overlap of the functional cluster 

modulated by the magnitude of the chosen outcome and anatomical region. We extracted t-

statistics for reward and expectation, both of the chosen and unchosen option. Prediction error 

activity should evoke both a reward and an expectation response with opposite signs. We did 

not found evidence for outcome expectation of the chosen option. (D) When defining the ROIs 

(in yellow) according to the response to the magnitude of unchosen outcome, we find evidence 

for a classic reward prediction error and a counterfactual prediction error about the unchosen 

option both in central OFC and medial OFC: we observe activity related both to the obtained 

and the unobtained reward, and also activity related both the chosen and unchosen outcome 

expectation. Error bars represent standard error to the mean. * p<0.05, ** p<0.01.
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Supplementary material 

 

Supplementary Figure 1. Full model fit of the model predicting choosing the right option on screen on first choices 

(shown in Fig 2 D and descripted in detail in the Methods section). (A) Predictors are from left to right: Intercept 

(i.e., a side bias), repetition bias (RB), expected value of difference between right and left according to our Bayesian 

model (EV), uncertainty difference between right and left according to our Bayesian model (U), horizon length (short 

horizon is positive, long horizon is negative), the interaction between horizon and expected value (horizonXER), 

and the interaction between horizon and uncertainty (horizonXU). The distributions are the posteriors of the 

parameter estimates, shown both for each monkey individually and averaged over animals. Fits from the partial 

feedback sessions are shown on the left, and from the complete feedback sessions on the right. (B) Data from the 

same fit as in (A) but now summed up over both partial and complete feedback sessions. (C) Data from the same 

fit as in (A) but now we computed the difference between partial and complete feedback sessions. (D) One-sided 

p-values for all parameters are computed as the number of samples of the posterior greater than 0. To compute the 

p-value for effects smaller than 0, the p-values in the table can be subtracted from 1.   
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Supplementary Figure 2. The same model as in Supplementary Figure 1 but only fit to trials during which the 

available choices on screen were the same on each side (2 and 2). All conventions are the same as in 

Supplementary Figure 1. 

 

 

Supplementary Figure 3. Full model fit of predicting choosing the right option on screen during subsequent choices 

in the long horizon (choices 2-4; shown in Fig 3 E and described in detail in the Methods section). (A) Predictors 

are from left to right: Intercept (i.e. a side bias), repetition bias (RB), the change in expected value between the right 
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and left option revealed by choices made during this horizon, compared to the initial expected value for this horizon, 

i.e. the baseline (deltaERchosen), the change in expected value between the right and left option revealed by 

feedback about the unchosen option, compared to the initial expected value for this horizon (deltaERcounterfactual), 

the difference in initial expected value between the right and left option available, i.e. the expected value difference 

at first choice (baselineU), the change in uncertainty between the right and left option revealed by choices made 

during this horizon, compared to the initial uncertainty for this horizon (deltaUchosen), the change in uncertainty 

between the right and left option revealed by feedback about the unchosen option, compared to the initial uncertainty 

for this horizon (deltaUcounterfactual), the difference in initial uncertainty between the right and left option available, 

i.e. the uncertainty difference at first choice (baselineU), the difference between how often the right option has been 

chosen over the left option during this horizon (deltaChosen). All other conventions are the same as in 

Supplementary Figure 1, also for panels B-D.  

 

 

Supplementary Figure 4. Tables showing the peaks of all significant clusters found within our frontal masks that 

are reported in the main text. Coordinates are given in the F99 standard space.  

 

 

Supplementary Figure 5. Expected value of the chosen option Without mask and when taking the activity before 

the choice in all trials (not just first choice trials), we observed large activations related to the expected value of the 
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chosen option (which is the same as the chosen action in our task) spanning from the motor cortex/somatosensory 

cortex, the dorsolateral prefrontal cortex, the OFC and striatum, as well as an inverted signal in the visual areas 

(Cluster p < 0.05, cluster forming threshold of z > 2.3). 

 

 

Supplementary Figure 6. Outcome prediction error and magnitude in the partial feedback condition. (A) In the 

partial feedback condition and at the time of outcome, we found 3 clusters of activity that were positively modulated 

by the chosen option prediction error in the medial prefrontal cortex and bilaterally in the somatosensory and motor 

cortex in our VOI (Cluster p < 0.05, cluster forming threshold of z > 2.3). (B) We found the same 3 clusters when 

we looked for a positive modulation by the magnitude of the chosen outcome. We additionally found 1 cluster of 

activity in the right lateral OFC that was negatively modulated by the magnitude of the chosen outcome. (C) When 

we time-locked our search to the onset of the reward (1 s after the display of the outcome, with a different GLM), 

we found the same clusters as in A, as well as the classic prediction error related activity in the ventral striatum and 

a negative prediction error in visual areas (not shown) at the whole brain level. 

 

 

Supplementary Figure 7. Chosen and unchosen outcome magnitude in the complete feedback condition. (A) In 

complete feedback sessions only, we found clusters for inverted chosen outcome magnitude activity in the right 

lateral OFC (47/12o) and bilaterally in the ventrolateral prefrontal cortex and 2 clusters in the somatosensory/motor 
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cortex (3). (B) We found a cluster of activity for the inverted unchosen outcome magnitude in the central and medial 

OFC and the ventromedial prefrontal cortex.  
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