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Summary

Humans display remarkable inter-individual variation in immune response when exposed to
identical immune challenges. Yet, our understanding of the genetic and epigenetic factors
contributing to such variation remains limited. Here we carried out in-depth genetic, epigenetic,
and transcriptional profiling on primary macrophages derived from a panel of European and
African-ancestry individuals before and after infection with influenza A virus (IAV). We show that
baseline epigenetic profiles are strongly predictive of the transcriptional response to IAV across
individuals, and that ancestry-associated differences in gene expression are tightly coupled with
variation in enhancer activity. Quantitative trait locus (QTL) mapping revealed highly coordinated
genetic effects on gene regulation with many cis-acting genetic variants impacting concomitantly
gene expression and multiple epigenetic marks. These data reveal that ancestry-associated
differences in the epigenetic landscape are genetically controlled, even more so than variation in
gene expression. Lastly, we show that among QTL variants that colocalized with immune-disease
loci, only 7% were gene expression QTL, the remaining corresponding to genetic variants that
impact one or more epigenetic marks, which stresses the importance of considering molecular

phenotypes beyond gene expression in disease-focused studies.
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Introduction

Inter-individual differences in the transcriptional response of innate immune cells to
infectious agents are common and likely contribute to varying susceptibility to infectious diseases,
inflammation, and autoimmune disorders (Brinkworth and Barreiro 2014; Duffy et al. 2014;
Pennington et al. 2009). Although a substantial fraction of transcriptional heterogeneity in the
response to infection is likely attributable to environmental factors, several studies have shown
that host genetics also plays an important role (Bakker et al. 2018; Nédélec et al. 2016; Piasecka
etal. 2018; Quach et al. 2016; Randolph et al. 2021). For example, it has been shown that ~30%
of the transcriptional differences between European and African ancestry individuals in their
immune responses to influenza A infection can be explained by expression quantitative trait loci
(eQTL) that vary in allele frequency across populations (Randolph et al. 2021). Similar genetic
contributions to ancestry-associated differences in the transcriptional response to intracellular
bacterial pathogens and immune stimuli have been reported. (Nédélec et al. 2016; Barreiro et al.
2012; Quach et al. 2016).

However, much of the variance in immune responses observed at the population level
remains unexplained by genetics alone (Bakker et al. 2018; Piasecka et al. 2018; Aguirre-
Gamboa et al. 2016; Li et al. 2016). Other factors that have been linked to variation in immune
responses include sex, age (Bakker et al. 2018; Piasecka et al. 2018), gut microbiome diversity
(Schirmer et al. 2016), and the social environment (Snyder-Mackler et al. 2016, 2020; Cole 2014).
Although less studied, epigenetic variation is also likely to play an important role in explaining
immune response variance. The most well studied epigenetic responses to immune stimuli
involve the post-translational modification of histone tails at promoter and enhancer regions
(Bierne et al. 2012; Monticelli and Natoli 2013). Histone acetylation is strongly associated with the
activation of many pro-inflammatory genes (Ghisletti et al. 2010; Qiao et al. 2013), whereas
histone deacetylation is often associated with gene repression in the context of inflammation
(Villagra et al. 2009). Moreover, certain inflammatory signals (e.g., B-glucan or Bacillus Calmette—
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Guerin (BCG) vaccination) or even lifestyle factors (e.g., diet) are thought to be able to “educate”
the chromatin state of innate immune cells, notably monocytes/macrophages, resulting in a
stronger transcriptional response during reinfection (Bekkering et al. 2021; Zhang and Cao 2021).
This suggests environmentally-induced epigenetic changes may represent crucial determinants
of an individual’s ability to respond to pathogens.

Although the term epigenetics means “above the genetics”, genetic variation has also
been shown to play a substantial role in the degree of epigenetic variation across individuals
(Chen et al. 2016; Degner et al. 2012; Carja et al. 2017; Husquin et al. 2018.; Kasowski et al.
2013; McVicker et al. 2013; Waszak et al. 2015). In human lymphoblastoid cell lines, genetic
variation has been shown to impact the levels of chromatin accessibility at thousands of enhancer
and promoter elements throughout the genome (Degner et al. 2012). Likewise, genetically
controlled variation in chromatin accessibility has been shown to impact the magnitude of the
response engaged by human macrophages in response to Salmonella (Alasoo et al. 2018). Thus,
it is likely that variation in epigenetic profiles across individuals and populations — whether
genetically controlled or not — can ultimately represent a key contributor to population variation in
innate immune responses and susceptibility to disease. However, despite intense efforts to
generate comprehensive epigenomic atlases across many tissues and cell types (The ENCODE
Project Consortium et al. 2007, 2012; Roadmap Epigenomics Consortium et al. 2015; Fernandez
et al. 2016), there are no comprehensive maps of population level variation in epigenetic levels
in primary innate immune cells before and after infection, preventing the formal evaluation of such
hypotheses.

To address this gap, we carried out an in-depth genetic and epigenetic characterization
of primary macrophages derived from 35 individuals with varying degrees of European and
African ancestry at both baseline and after infection with influenza A. The data generated herein
helps fill a critical gap in biomedical research: the lack of non-European ancestry individuals

among cohorts designed to study immune variance in the general population and in genomic
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studies more generally. All data generated in this study are freely accessible via a custom web-
based browser that enables easy querying and visualization of all the data generated

(https://computationalgenomics.ca/tools/epivar).

Results
Transcriptional and epigenetic response to influenza infection

We infected monocyte-derived macrophages (MDMs) derived from a diverse panel of 35
healthy individuals with influenza A virus (IAV), commonly known as flu. We focused on
macrophages as they are the primary source of type | interferon (IFN) and pro-inflammatory
cytokines during flu infection, and therefore play a central role in viral clearance and the regulation
of the pathology during infection (Meischel et al. 2020; Ichinohe, Pang, and lwasaki 2010; Diebold
et al. 2004). Following 24-hours of flu infection, we collected from matched non-infected (NI) and
infected samples data on (i) gene expression (RNA sequencing), (i) chromatin accessibility
(assay for Transposase-Accessible Chromatin using sequencing; ATAC-seq), (iii) levels of
histone marks associated with promoters (H3K4 trimethylation, or H3K4me3), enhancers (H3K4
monomethylation, or H3K4me1l), and their activation levels (H3K27 acetylation, or H3K27ac), as
well as a general repressive mark (H3K27 trimethylation, or H3K27me3), and (iv) methylation
levels (as measured by whole genome bisulfite sequencing; WGBS) (Fig. 1A). In addition, we
identified genetic variants for each individual using high-coverage (30X) whole genome
sequencing. In total, we obtained over 211 billion reads across the different assays, generating
the most extensive dataset to date of the combined transcriptional and epigenetic response to flu
at the population level (Table S1). All assay-specific quality control metrics, including percentage
of mapped reads, number of CpG sites covered per sample, or the fraction of all mapped reads
that fall into the called peak regions (i.e., FRIP scores) indicate that the data is of high quality

(Table S1).
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We first investigated the impact of flu infection across the different data types. For DNA
methylation, because most CpG sites are fully methylated and static (Pacis et al. 2015), we
focused uniquely on CpG sites overlapping putative regulatory elements as identified by the
chromatin segmentation program ChromHMM (Ernst and Kellis 2012) (~7.3 million CpG sites out
of a total of 19.5 million surveyed across the genome were used in all downstream analyses).
Principal component analysis (PCA) on the matrices of gene expression and peak intensities
revealed a strong infection effect, with NI and flu samples consistently separating on either PC1
or PC2 for most datasets (Fig. S1A). Such separation was not observed for DNA methylation or
H3K27me3. To quantify the impact of flu infection on each of the molecular traits, we calculated
the percent of variance explained (PVE) by infection for each feature in each data type. PVE by
flu infection was highest for gene expression, chromatin accessibility, and H3K27ac histone
modifications (average PVE ranging from 53-47%), followed by changes in H3K4me3 (34%) and
H3K4mel levels (17%). The least dynamic response to flu was observed for repressive marks,
H3K27me3 and DNA methylation, with average PVE values across all features tested of only 5%
and 2%, respectively (Fig. 1B). Consistent with the PVE analyses, 68% of all genes tested
(n=9,607) were found to be differently expressed in response to flu infection (FDR<0.10 with fold
change >|0.5]), Fig. 1C, Table S2). At the epigenetic level, 55% (n=65,427) and 63% (n=29,324)
of regions tested changed chromatin accessibility and H3K27ac levels, respectively, in contrast
to less than 0.02% for methylation and 1% of H3K27me3 levels (FDR<0.10 with fold change
>|0.5]) for all data types or >|0.1| for WGBS). We also see a bias in the direction of the infection
effects across the data types: repressive marks (H3K27me3 and DNA methylation) tend to be
downregulated in response to flu infection (>97% of all significant changes are associated with
H3K27me3 and DNA methylation losses) whereas marks associated with active enhancer and
promoter regions (H3K4mel and H3K4me3) are primarily upregulated (64-90%).

Consistent with previous work (Killip, Fodor, and Randall 2015; Ciancanelli et al. 2016),

we found that genes upregulated in response to flu infection are strongly enriched for gene sets
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involved in interferon a and y responses as well as the activation of inflammatory responses
(normalized enrichment score (NES)>3; FDR<1x10¢; Fig. 1D). Our data shows that epigenetic
changes in response to flu converge to the same pathways, indicating that transcriptional and
epigenetic changes act in a coordinated manner to establish the immune regulatory networks
required for the host response to flu infection. To further investigate the relationship between gene
expression changes and epigenetic changes in response to flu infection, we asked how epigenetic
features nearby genes that are up- or downregulated in response to infection respond. Regulatory
elements nearby upregulated genes (Fig. 1E) show, on average, increased opening of chromatin,
increased activation marks in enhancer and promoters, and a reduction of repressive marks
(P<7.147x10°® for H3K27me3; P<2.2x1076 for all other data types; Fig. 1F for an example at the
NFKBL1 locus). In contrast, regulatory elements near downregulated genes tend to be associated
with closing of chromatin and the loss of activation marks (Fig S1B).

To investigate the role played by transcription factors (TF) to the epigenetic changes
identified in response to IAV infection we used TF footprinting to compute TF activity scores (Fig.
1G, Table S3). TF footprinting characterizes regions where TFs are likely bound based on
chromatin accessibility patterns at known TF motifs. We were particularly interest in TFs which
activity levels change between NI and flu-infected samples (Fig. 1G inlet). We find that many
immune-related TFs, such as those in the Fos/Jun family and Interferon Regulatory Factors (e.g.,
IRF4, IRF8 and IRF9), significantly increase activity after infection (P<1x107°). Of note, we find
that several ETS family members are downregulated in response to flu infection, which is
concordant with ETV7 acting as a negative regulator of the type I IFN response (Froggatt et al.
2021; Pezzé et al. 2021). Unexpectedly, BATF, which is not a classical immune-related TF,
showed the greatest increase in activity upon infection. Our results thus suggest that BATF likely
plays a previously unappreciated role in the macrophage response to flu infection, paralleling its
already established role in the induction of effector programs and epigenetic landscape of CD8"

T cells and innate lymphoid cells infected with flu (Wu et al. 2022; Lee et al. 2021; Scott-Browne
p
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et al. 2016). Collectively, our results show that transcriptional and epigenetic changes in response
to flu infection are highly coordinated and likely driven by the activation of infection-induced TFs

involved in the regulation of antiviral responses.

Ancestry-associated differences across transcriptional and epigenetic responses to
influenza infection

We next investigated ancestry-associated differences across the data types. To do so, we
used the genotype data to estimate genome-wide levels of European and African ancestry in each
sample using ADMIXTURE (v1.3.0) (Alexander, Novembre, and Lange 2009). Consistent with
previous reports (Tishkoff et al. 2009), we found that self-identified African American (AF)
individuals have a high proportion of European ancestry (mean = 28%, range 13%-57%; Fig.
S2A). In contrast, self-identified European Americans (EU) showed virtually undetectable levels
of African admixture (mean = 0.05%, range 0.001%-0.69%; Figure S2A). In all downstream
analyses, African ancestry level was used as a continuous variable unless otherwise noted.

We first identified genes/regions where gene expression, accessibility, histone changes,
or methylation are correlated with quantitative genetic ancestry estimates at baseline, after flu
infection, or both. We termed these genes/regions as “population differentially expressed”
(popDE). Combining both FDR and a multivariate adaptive shrinkage method (mash) (Storey et
al. 2019; Urbut et al. 2019), we identified both shared and condition-specific popDE features for
each data type (conservatively defined as genes/regions significant at a FDR<10% & local false
sign rate (Ifsr) < 10%) (Fig. 2A, Table S4). Mash leverages the correlation structure across
conditions increasing statistical power and enabling the detection of shared popDE effects. We
found that gene expression and H3K4mel levels show the largest proportion of significant
differences between ancestry groups were the most divergent between ancestry groups — 23%
of genes and 21% of H3K4mel peaks tested were classified as popDE across infected and non-
infected macrophages. In contrast, only 1% of promoter-associated H3K4me3 peaks were
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classified as popDE at the same significance thresholds, suggesting that ancestry-associated
differences in gene expression are primarily driven by variation in enhancer activity as opposed
to variation at the level of core promoters. As with flu infection effects, we found that popDE effects
at the transcriptional and epigenetic level were highly coordinated: genes more highly expressed
in individuals with a greater proportion of African ancestry were linked to epigenetic changes
indicative of increased transcriptional activity in African- as compared to European-ancestry
individuals, including increased chromatin accessibility, histone acetylation levels (H3K27ac), as
well as mono- and tri-methylation of H3K4 (Fig. 2B, Fig. S2B).

Inflammation levels have consistently been shown to vary between individuals of
European and African ancestry, with an overall tendency for higher inflammation in individuals
with increased African ancestry (Nédélec et al. 2016; Pennington et al. 2009; Quach et al. 2016).
To evaluate if differences in inflammation could result from baseline epigenetic differences
between ancestry groups, we computed a per-sample score of inflammatory activity, the
“inflammation score”, which provides an estimate of the average expression or peak height of all
features (genes or peaks nearby genes) in the Hallmark inflammatory response pathway
(Liberzon et al. 2015). Consistent with previous reports, we found a clear trend towards higher
“inflammation score” at the gene expression level in African ancestry individuals relative to
Europeans in the non-infected condition (1.3-fold, albeit non-significant, P=0.11, Fig 2C). More
strikingly, we also found an epigenetic signature of higher inflammation in individuals of African-
ancestry, relative to European-ancestry individuals. Specifically, we found that increased levels
of African-ancestry were strongly associated with increased levels of chromatin accessibility
(P=1x10%), H3K27ac (P=3x10%), H3K4me1l (P=5x1073), H3K4me3 (P=9x107?) as well as lower
levels of CpG methylation (P=6x107) nearby genes involved in the regulation of inflammatory
responses (Fig. 2C (NI), see Fig. 2SC for similar effects in the flu-infected condition).

Our dataset provides a unigue opportunity to evaluate if baseline differences in epigenetic
landscape contribute to ancestry-associated differences in transcriptional response to flu. To test
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such hypothesis, we started by characterizing genes for which the gene expression response to
infection (i.e., individual-based fold-change) significantly correlated with genetic ancestry
(hereafter referred to as population differently responsive genes; or popDR). We found 2,149
popDR genes (FDR<0.20; Table S4), reinforcing the notion that genetic ancestry has a marked
impact on the transcriptional response to flu (Nédélec et al. 2016; Quach et al. 2016; Randolph
et al. 2021). Focusing on this set of popDR genes and on a curated set of immune pathways
known to be involved in anti-viral responses (Liberzon et al. 2015), we found that (at 24 hours
post-infection) individuals with higher proportions of African ancestry show a significantly stronger

IFN-a response (P=0.004) and weaker IL6/JAK/STAT3 (P=1.5x10°), TNFa (P=3.9x10-4) and

inflammatory (P=0.0372) responses relative to EU individuals (Fig. 2D).

To evaluate if the observed differences in gene expression responses between European
and African-ancestry individuals could stem from baseline differences in epigenetic profiles, we
then used elastic net regression to assess the predictive power of baseline (non-infected)
epigenetic levels to the transcriptional responses of the pathways described above. We found
that the response to all pathways tested could be predicted with high accuracy (R > 0.79, P <
2x10%) by the baseline levels of at least one epigenetic mark. Across the different marks, baseline
levels of H3K27ac showed the most consistent predictive value across all the pathways (R range:
0.51 to 0.83, P < 5x10%, Fig. 2E, Fig. S2D). These results support the idea that an individual’'s
gene expression changes in response to flu infection are, at least in part, driven by the epigenetic

landscape of the genome surrounding the gene prior to infection.

Single nucleotide polymorphisms and short tandem repeats independently drive
differences in regulatory marks
To evaluate the contribution of genetic variation to ancestry-associated differences, we

mapped genetic variants that are associated with variation in gene expression or epigenetic marks
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across individuals (i.e., quantitative trait loci (QTL); hereafter we will refer to the mapping of the
different molecular traits as the following: gene expression (eQTL), chromatin accessibility
(caQTL), H3K4mel (K4melQTL), H3K4me3 (K4me3QTL), H3K27ac (K27acQTL), H3K27me3
(K27me3QTL), and methylation (meQTL)). To map QTL, we used a linear regression model that
accounts for population structure and principal components of the expression data, thus limiting
the effect of unknown confounding factors (see methods for details). Given that our sample size
is too small to robustly detect trans-acting QTL, we focused our analyses on local associations
that, for simplicity, we refer to as cis-QTL, defined as variants located within a gene body/peak or
in the 100 kb flanking the gene/peak of interest. For methylation levels, the window was limited to
+5kb from the CpG site being tested (Banovich et al. 2014; Huan et al. 2019). We leveraged our
deep whole-genome sequencing data to obtain genetic information not only on single nucleotide
polymorphisms (SNPs) but also on short tandem repeats (STRs), which constitute one of the
most polymorphic and abundant types of repetitive elements in the human genome (Ellegren
2004; Gemayel et al. 2010). Across individuals, we identified approximately 7.38 million SNPs
and 440,000 STRs with a minor allele frequency above 5% for SNPs and 10% for STRs, which
were used for QTL mapping. We identified at least one cis-eQTL (FDR<10%) for 3,880 genes
(eGenes) across one or more conditions (28% of all genes tested, Fig. 3A, Fig. S3A, S3B, S3C,
Table S5). eGenes identified in our study were strongly enriched among eGenes previously
reported in macrophages (Nédélec et al. 2016) (5.3-fold enrichment, P <1x10°1%), attesting for the
robustness of our QTL results. Among epigenetic marks, H3K4mel was associated with the
largest proportion of QTL (18.5% of all peaks tested, FDR <10%), followed by chromatin
accessibility (20%) and H3K4me3 (11.6%) (Fig. 3A, Fig. 3SC). For methylation levels, we found
over 43,182 CpG sites associated with at least one meQTL, but, given the large number of CpG
sites tested (over 7 million), the relative number of associations was the smallest of all epigenetic
marks. Strikingly, across all molecular traits tested, 5-33% of features with a cis-QTL were only

identified through their association with STRs and not SNPs (Fig. 3A, Fig. S3C). We next used
11
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variance partitioning to disentangle the relative contribution of STRs and SNPs to variation in
gene expression and epigenetic marks (Fig. 3B, Fig. S3D). Across molecular traits, STRs
contribute, on average, to 4-10% of the cis heritability among genes/peaks associated with at
least one QTL in infected cells, not far from the amount of variance independently explained by
SNPs (9-16%). Similar results were found for non-infected cells (Fig. S3D). Thus, our findings
highlight the unique contribution of STRs to the genetic architecture of human gene regulation.
We found that a large fraction of eGenes (33.3%) were only detectable in the infected
condition (Fig. 3C, Fig. 3D), further reinforcing the pervasive role of gene by environment (GXE)
interactions on human gene expression (Lee et al. 2014; Fairfax et al. 2014; Barreiro et al. 2012;
Nédélec et al. 2016; Quach et al. 2016). Our epigenetic data expands on previous work on gene
expression by showing that that GXE interactions are ubiquitous across the entire gene regulatory
landscape, and not only transcription: across epigenetic marks, 12.2-30.4% of peaks (or CpG
sites) showed an infection-specific QTL. We hypothesized that one potential mechanism
accounting for infection-specific QTLs is that the causal SNPs/STRs disrupt the binding site of
TFs that become more active in response to flu infection. To test this hypothesis, we investigated
if infection-specific QTL were significantly enriched for TF footprints. We found that cis-eQTL and
cis-epigenetic QTL detected only in infected cells were markedly enriched for a diverse array of
immune-activating TF footprints (e.g., IRF and NfK-B family members; Fig 3E, Table S3),
suggesting that many infection-specific QTL are likely to be driven by the differential binding of

infection-induced TFs.

QTL are shared across regulatory marks

To further investigate the connection between genetically regulated variation in epigenetic
marks and gene expression levels, we tested if SNPs that are QTL in one data type are also QTL
for the other data types. Briefly, for each condition, we took all significant SNPs (FDR <.10, Fig.

S3A) for a feature and collected their corresponding p-value for all additional features. We used
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a cutoff of FDR<.10 to define if the SNP is also a significant QTL in other data types. We find
striking patterns of sharing across the data types. For example, in non-infected macrophages, on
average, 60% of QTL identified in one data type are shared with at least one other data type
(ranging from minimum 45% for meQTL and at maximum 76% for K27acQTL (Fig 4A), compared
to a null expectation of only 1.8% (Fig. S4A) when permuting the data; see methods for details).
We find a similar pattern for the QTL identified in the flu-infected condition (Fig. S4B, Fig. S4C,
Fig. S3A).

We found consistent sharing patterns across each of the data types (Fig. 4B (non-
infected), Fig. S4B (flu), Table S6). For example, in the non-infected condition, approximately
36% of eQTL are also caQTL. In fact, caQTL are the most commonly shared QTL type for all
other data types, such that genetic variants impacting gene expression, a histone mark, or
methylation will ~50% of the time (range 36%-69% in the non-infected condition) also be
associated with changes in chromatin accessibility (Fig. 4B, Fig. S4C). When considering genetic
variants that are shared across three or more molecular traits, the most common pattern is sharing
between caQTL, K4melQTL, and meQTL (Fig. 4C, Fig. S4D), suggesting a high-level of co-
regulation of chromatin accessibility, H3K4mel, and methylation levels at enhancers elements
(Examples shown in Fig. 4D). Interestingly, QTL impacting multiple regulatory marks are also
more likely to overlap TF footprints (Fig. 4E), supporting the idea that TFs are the primary
mediators of sequence-specific regulation of gene regulatory programs (Kasowski et al. 2013;
McVicker et al. 2013).

It is commonly believed that increased chromatin accessibility primes immune cells to
respond faster and stronger to an immune challenge or infection (Bekkering et al. 2021; Zhang
and Cao 2019), but the data supporting such a model remains circumstantial. We sought to use
our genetic and epigenetic data to test this model. To do so, we focused on caQTL found in non-

infected cells and their associated genes (i.e., the closest coding gene to the caQTL) and asked
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whether, across the genome, individuals homozygous for the genotype associated with more
open chromatin showed a stronger transcriptional response as compared to individuals
heterozygous or homozygous for the alleles associated with reduced opening. We limited the
analyses to genetically regulated accessibility peaks associated with genes that are upregulated
in response to flu infection, and that are not concomitantly eQTLs to avoid the confounding effect
of baseline differences in gene expression to variation in transcriptional responses. We found that
genetically driven variation in chromatin accessibility levels had no impact on the magnitude of
transcriptional responses upon IAV infection (Figure 4F). This is surprising given that increased
levels of open chromatin were also associated with baseline increased levels of H3K27ac and
H3K4mel (Fig. S4E), all of which have been postulated as “priming marks” for a stronger
transcriptional response to infection. Overall, these data suggest that the relationship between
baseline chromatin accessibility levels and transcriptional response to infectious agents is more

complex than generally believed.

Cis-regulatory variation explains ancestry associated differences to varying extents
across the regulatory marks

We next sought to examine the connection between regulatory QTL and ancestry-
associated differences in gene expression and epigenetic profiles. Consistent with an important
role for genetics in ancestry-associated differences in the gene regulatory landscape, we found
that genes/peaks associated with regulatory QTLs were more likely to be classified as popDE
than expected by chance (Fig. 5A). Interestingly, the strongest enrichments were observed for
epigenetic marks, especially DNA methylation, for which we observed that CpG sites with a
meQTL were >28-fold more likely to be classified as popDE than those without (P<2x10; Fig.
5A). In contrast, the enrichment of popDE genes among genes with an eQTL, albeit significant
(P<3.0x10%), was only 1.2 fold (in NI, 1.5 fold in flu), suggesting a much greater contribution of
genetics to epigenetic variation across populations compared to gene expression.

14


https://doi.org/10.1101/2022.05.10.491413
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.10.491413; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

These enrichments suggest that ancestry-associated differences in gene expression are
likely to be explained, at least in part, by population differences in allele frequencies at causal
QTLs. To test this hypothesis, we calculated, for each of the molecular traits, the correlation
between estimated and predicted genetic ancestry effects. The estimated values were obtained
from our popDE analysis whereas the predicted effects were based on the effect size of the top
SNP/STR for each feature and the dosage genotype for those variants across individuals
(restricted to features with popDE effects). Differences in the genotype distribution between
ancestry groups for the best SNP and STR explain up to 65% of the variance in genetic ancestry
effect sizes across molecular traits (Fig. 5B, Fig. S5A). The strongest genetic contributions were
observed for CpG site methylation and chromatin accessibility, for which the genotype of the best
SNP and STR explain 65% and 52% of the variance in ancestry-associated differences in
methylation and chromatin accessibility, respectively. Conversely, only 13% of the variance in
gene expression differences is explained by the top SNP and STR, suggesting an important
contribution of additional cis-regulatory variants, trans-regulatory variants, or environmental
factors. We also calculated the change in the percent variance explained by genetic ancestry
before and after regressing out the top SNP and STR. We found an analogous pattern: the lead
STR and SNP plays a more significant role in explaining population differences for epigenetic
marks than for gene expression (average of 62% and 49% for methylation and ATAC-seq,
respectively, versus only 34% for RNA-seq, Fig. 5C, Fig. S5B (NI)).

To determine if the ancestry-associated differences in immune-related pathway activity
we observed (Fig. 2C) remain significant after removing the effect of the best SNP and STR, we
performed gene set enrichment analysis and compared the enrichments both before and after
removing the top genetic effects (Fig. 5D). For the epigenetic effects (with the exception of
H3K4mel), any baseline significant enrichment is reduced or eliminated, indicating that the top
SNP and STR are important contributors to the differences in pathway activity detected between

ancestry groups. For example, the observed enrichments of open chromatin and H3K27
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acetylation levels near genes involved in inflammatory responses among individuals with
increased African ancestry (FDR<1x10°) completely disappeared (FDR>0.5) when the QTL
effects were regressed out. Accounting for cis-acting genetic effects is also enough to eliminate
the transcriptional differences in inflammatory response to IAV infection identified between
individuals of European and African ancestry (Porigina = 0.03 (Fig. 2D) ; Pecis-regressed = 0.434 (Fig
S5Q)). In sharp contrast, the ancestry-associated differences in type-I interferon response remain
unaltered when regressing out the effects of cis eQTL (Poriginat = 0.004 (Fig. 2D) ; Pcis-regressed =
0.006 (Fig S5C)), suggesting that the ancestry-associated differences in interferon signaling are
likely to be driven by environmental differences that correlate with genetic ancestry rather than by

cis genetic variation.

Epigenetic variants provide insight into immune-related disease risk

To evaluate the impact of regulatory QTL on susceptibility to immune-related disorders,
we first assessed the colocalization (Giambartolomei et al. 2014; Wallace 2020) between
regulatory QTL hits and 14 publicly available genome-wide association study (GWAS) hits for 11
immune-related diseases. For each trait, we identified the lead GWAS SNPs with p-values below
1x10° and defined a “locus” as a 100kb (5 kb window for methylation QTL) centered around the
lead GWAS SNP, removing the HLA region from the analysis. We find that many epigenetic
variants colocalize with variants implicated in immune-related traits (Fig. 6A, Fig. S6A, Table S7),
most of which would have been missed when considering eQTL alone. Indeed, across all
colocalized variants, only 7% were eQTL, the remaining corresponding to genetic variants that
impact one or more epigenetic marks but not gene expression levels (e.g., Fig. 6B).

We used Stratified LD score regression (S-LDSC) (Finucane et al. 2015; Gazal et al. 2017;
Bulik-Sullivan et al. 2015) to partition the heritability of complex traits and estimate heritability
enrichment for each type of molecular QTL. S-LDSC is a tool for assessing how the heritability of
a complex trait is partitioned among functional features, while controlling for LD, allele frequency
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and other baseline features. We first estimated how much heritability can be explained by each
type of molecular QTL and find that chromatin accessibility and methylation QTL explain the
largest percentage of heritability relative to the other data types (Fig. 6C, Fig. S6B).

We next investigated the enrichment of heritability for each molecular QTL type, estimating
heritability enrichment as a ratio of the proportion of heritability explained by a particular class of
regulatory QTLs divided by the proportion of SNPs that belonged to that class. We found a
significant enrichment of heritability across most diseases and QTL-types tested, with the
strongest enrichments observed for K27acQTL and K4me3QTL and susceptibility to Crohn’s
disease and ulcerative colitis (up to 32-fold, Fig. 6D, Fig. S6C), suggesting that genetically driven
epigenetic variation in macrophages plays an important role in susceptibility to gut inflammatory
disorders.

Lastly, we applied S-PrediXcan to identify genes for which the component of gene expression
or epigenetic values determined by an individual's genetic profile (i.e., the regulatory QTLs
identified herein) differed between cases and controls for the immune-related diseases described
above (Gamazon et al. 2015). Again, we found that genetically driven differences in epigenetic
marks were more frequently associated with disease status across various immune-related
diseases as compared to genetically encoded variation in gene expression levels (Fig. 6E, Fig.
S6D, Table S8 provides the full results of S-PrediXcan analyses across all molecular traits and
11 immune-related diseases). For IBD, for example, we found 23 genes putatively associated
with disease susceptibility via changes in gene expression versus 178 genes (~8-fold more) when
focusing on genetically encoded epigenetic differences. In sum, our results consistently highlight
the link between genetically encoded epigenetic variation and susceptibility to immune-related

disorders.

Discussion

17


https://doi.org/10.1101/2022.05.10.491413
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.10.491413; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Together, our results provide an extensive characterization of the gene regulatory
landscape associated with variation in the immune response to flu infection between individuals
of European and African ancestry. Our findings expand on previous work measuring genetic
ancestry effects on the gene expression response to pathogens or immune stimuli (Nédélec et al.
2016; Quach et al. 2016; Randolph et al. 2021) by showing that many of the ancestry-associated
differences in transcriptional responses to pathogens are accompanied by epigenetic differences
between ancestry groups. Similar to previous findings, we found that increased levels of African
ancestry are associated with a gene expression signature of increased inflammation both before
and after flu infection (Brinkworth and Barreiro 2014; Pennington et al. 2009; Nédélec et al. 2016).
Remarkably, we found that this signature of increased inflammatory potential among African
ancestry individuals is even more accentuated when looking at the epigenetic landscape
surrounding inflammation-associated genes. Other key pathways involved in the innate immune
response to pathogens (e.g. Type-I interferon or TNFA signaling via NFKB) also emerged as
significantly different from both an epigenetic perspective as well as in their gene expression
response to flu infection between individuals of European and African ancestry. Given the central
role these pathways play in the host pathogen response, our findings have potential clinical
implications not only for influenza infection but also for other infectious agents.

Since samples were derived from individuals with unknown life histories and
environmental exposures, the ancestry-related differences we observed could be derived from a
combination of environmental and genetic factors. The integration of ancestry-effects on gene
regulation with QTL analyses allowed us to demonstrate that cis-genetic variants account, in large
part, for the identified ancestry-associated differences in inflammatory response. In stark contrast,
ancestry-associated differences in type-l interferon response — one of the pathways most
commonly identified as divergent between European and African ancestry individual (Randolph
et al. 2021; Quach et al. 2016) — do not appear to be explained by differences in allele frequency
of cis genetic variants. These data suggest, therefore, that variation in interferon responses is
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likely environmentally driven or explained by trans genetic variants that we are unpowered to
identify in this study. More generally, we show that genetics contributes more to epigenetic
variation at the population level than it does towards variation in gene expression, corroborating
previous findings only focused on population variation in DNA methylation levels (Carja et al.
2017; Husquin et al. 2018). We speculate that this finding reflects a more direct causal role of
variation in TF binding to epigenetic variation versus gene expression levels that often require the
combined action of several transcriptional regulators and regulatory elements. In general, our
data points to a driving role for differential TF binding in many of the molecular QTL identified
(especially the epigenetic QTL), suggesting that additional effort should be invested to developing
large scale datasets of TF-binding QTL, which as of now remain scarce and limited to very few
TFs (Kasowski et al. 2013; Ding et al. 2014; Tehranchi et al. 2016).

Our data raises questions about the commonly accepted notion that increased chromatin
accessibility at baseline allows for a stronger transcriptional response to infection (Bekkering et
al. 2021; Zhang and Cao 2021). Although we cannot exclude the possibility that this is true at a
limited number of loci (Alasoo et al. 2018), we show that this is not a generalizable feature across
the genome. We show that an increase in chromatin accessibility prior to infection —coupled with
higher levels of other activation marks, such as H3K4mel and H3K27ac — is not in itself sufficient
to “prime” cells to respond differently to a pathogenic attack. It is therefore likely that enhancer
priming requires, in addition to epigenetic modification, active changes in the baseline activity of
particular TFs as well as changes to the metabolic state of macrophages (Fanucchi et al. 2021).
Our conclusion, however, has to be considered within the limitations of our experiment; notably
the fact that we have only measured transcriptional responses at a single time point (24 hours
post infection) and that we are limited in our ability to link specific enhancers to the genes that
they regulate.

Finally, our results indicate that epigenetic QTL are a powerful means to identify the
mechanisms of disease-associated genetic variation. About 90% of GWAS variants map to non-
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coding regions of the genome, suggesting that they likely affect traits through gene regulation
(Hindorff et al. 2009). Despite immense efforts to characterize eQTL across thousands of
individuals, tissue types and experimental conditions (GTEx Consortium 2017; Vdsa et al. 2021),
only ~40% of GWAS variants colocalize with eQTLs (GTEx Consortium 2020). The modest
overlap between GWAS loci and eQTLs is often attributed to the fact that many of the GWAS
variants may only have an impact on gene expression during development, in specific cell types,
or under environmental/experimental conditions not yet profiled. Our data indicates that
epigenetic QTLs help fill this gap, by providing a means to markedly increase the number that
colocalize (by about 10-fold) between GWAS variants and regulatory variants beyond those
identified using eQTLs alone. We caution interpreting epigenetic variation as the causal
mechanism behind variation in disease traits. We speculate, instead, that these epigenetic QTLs
allow for the identification of sites associated with variation in TF binding. Therefore, they may
serve as a proxy for genetic variation that, under particular environmental conditions, will have an
impact on gene expression levels (Figure S7E for a schematic model). Collectively, our data
indicates that our understanding of disease etiology, genetic heritability, and disease risk can be

greatly increased by considering molecular traits beyond gene expression.
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Figure 1. Flu infection remodels the epigenetic landscape of human macrophages. (A)
Study design schematic. Monocyte-derived macrophages from 35 individuals were exposed to
influenza A virus or media, for 24 hours. DNA collection and libraries for 7 types of regulatory
marks were prepared and sequenced. Figure was created using BioRender.com (B) The
distribution of the percent variance explained by infection for each feature in each data type. The
mean is represented by the black lollipop. (C) Proportion and number of features significantly
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upregulated and downregulated in response to flu infection (FDR<.10, beta = £ 0.1 for WGBS and
+ 0.5 for all other data types). (D) Hallmark pathways enriched among genes nearby epigenetic
features (or the actual gene in case of gene expression) that respond to flu infection. Pathways
shown have Benjamini-Hochberg adjusted P < 0.001 in at least 1 data type and a |normalized
enrichment score| > 1.5 in at least 2 data types. Blue marks upregulation for that data type and
red downregulation. (E) Distribution depicting the relationship between gene expression changes
and epigenetic changes in response to flu infection. Mean is represented by the black line.
Upregulated genes are defined as genes with beta > 0.5 and FDR<.01. Epigenetic changes are
those with FDR<.01, with the exception of methylation changes for which we use a less stringent
threshold (FDR<.20) due to the relatively smaller number of changes. A similar plot for
downregulated genes can be found in Fig S1B. (F) The region surrounding NFKB1, an example
of a region where gene expression and epigenetic changes occur in a coordinated fashion. (G)
Transcription factor activity changes after flu infection. Upper right plot shows an example of a
footprint centered on thelRF4 motif. The footprint is stronger in the flu-infected condition indicating
higher levels of IRF4 activity after flu infection. Mean activity across the samples (x-axis) is plotted

in the main plot. The size of the dots reflects significance levels.
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Figure 2. Ancestry-associated differences in the gene regulatory response to flu infection.
(A) Proportion and number of popDE features that are either condition-specific (FDR<.10 and
Ifsr<.10 in only one condition) or shared (FDR<.10 and Ifsr<.10 in both conditions). (B) Distribution
depicting the relationship between popDE genes and popDE epigenetic changes. Genes more
highly expressed in individuals with high proportions of African ancestry (fold change> 0.5, FDR<
0.10) are nearby popDE epigenetic regions showing increased levels of chromatin accessibility,
H3K27ac, H3K4mel and H3K4me3 in individuals with increased African ancestry. Black lines
represent means. (C) Distributions of individual mean score for the Hallmark “inflammatory
pathway”. A higher score value indicates a stronger expression of genes or epigenetic marks
nearby genes within this inflammatory response pathway. P values were calculated using a
Wilcoxon rank sum test. (D) Boxplots of individual transcriptional response scores for 6 immune
response pathways. Pathway response levels were measured as the difference in the per
individual pathways’ score between the flu-infected and non-infected conditions. (E) Pearson’s

correlation of observed and predicted transcriptional response scores.
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Figure 3. Cis-regulatory variation drives ancestry-associated differences in the
transcriptional and epigenetic response to flu infection. (A) Proportion and number of
genes/features associated with at least one SNP or STR QTL (in flu-infected samples, see Fig.
S3C for the non-infected samples). Shared QTL were defined as those genes/features associated
with a QTL at an FDR<.10 when performing the QTL mapping against SNPs and STRs
separately. SNP- or STR-specific are those only identified as significant (FDR<0.1) against either
SNPs or STRs (B) The mean percent variance explained by the top SNP and STR across all
features in the flu-infected condition. Both is the sum of the PVE of the top SNP and top STR (C)
Pie charts showing the percentage of condition specific (FDR<.10 and Ifsr <.10 in only one
condition with either SNP or STR) and shared QTL (FDR<.10 and Ifsr <.10 in both conditions with
either SNP or STR) across the data types. (D) Far left - An example of a flu-infected specific STR-
eQTL. Middle left - An example of a flu-infected specific SNP-caQTL. Middle right - An example

of a non-infected specific STR- K27acQTL. Far right - An example of a flu-infected specific
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meQTL. (E) The enrichment of TF binding sites across flu-infected specific SNP-QTL. Immune-

related TF cluster names are highlighted.
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Figure 4. Overlap of regulatory QTLs along the cascade of gene regulatory elements. (A)
The number of overlaps for each QTL type in the non-infected condition. In this figure, one (dark
green) means that the QTL is only a QTL for that datatype alone. More than one overlap means
that the QTL is shared with at least one other datatype, with 6 referring to cases where the QTL
is shared across all datatypes. (B) The percentage of QTL in one data type that are also QTL for
another data type at baseline (NI condition). The starting QTL (rows) are the QTL that are tested

for sharing while the overlapping QTL (columns) are the percentage of each starting QTL that are
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shared with that datatype. For example, 36% of eQTL are also caQTL (row 1), while only 8% of
caQTL are also eQTL (row 2). The color of each circle corresponds to the percentage of sharing.
(C) The top patterns for QTL integration for each data type at baseline (NI condition). The size of
the bar represents the percentage of significant QTL (FDR<.10) that share the pattern reported
by the dots. (D) Examples of SNPs that are shared QTL. Grayed out plots are molecular QTL that
are not significant at FDR<.10. Left: rs4945097 is a QTL for chromatin accessibility, H3K4mel
and methylation. Center: rs6546698 is a QTL for chromatin accessibility, H3K27ac, H3K4mel
and methylation. Right: rs1994292 is a QTL for all 7 data types. Notably, the T allele is associated
with higher expression of UNC5C and epigenetic marks indicative of activated regions of the
genome. (E) QTL enrichments (x axis) in actively regulated TF binding sites annotated by ATAC-
seq footprinting. Error bars show 95% confidence intervals. QTLs that are shared across multiple
data types are more likely to be enriched among TF footprints. (F) Association between
genetically encoded baseline differences in chromatin accessibility and the magnitude of
transcriptional response to 1AV infection. Left- Meta caQTL plot at baseline condition across all
caQTLs identified. For each caQTL locus, individuals were binned based on their genotype:
homozygous for the genotype associated with more closed chromatin (most closed),
heterozygous (intermediate), or homozygous for the allele associated with increased chromatin
accessibility (most open). The light blue line marks the mean for each genotype and the gray
dotted line is the median across all genotypes. We focused specifically on caQTLs nearby
upregulated genes (n= 681 caQTLs associated with 506 genes) and that did not impact baseline
expression levels (as shown in the middle plot). Right- Genotypes for chromatin accessibility

levels at baseline have no impact on the transcriptional response of nearby genes.
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Figure 5. Cis-regulatory variation contributes to ancestry-associated differences. (A) The
enrichment of QTL in popDE features across the data types. Log2 fold enrichments and a 95%
confidence interval are plotted. (B) (Left) Examples of the correlation between the observed and
predicted betas for popDE features (FDR<.10, Pearson’s correlation coefficient reported). (Right)
Bar plot summarizing the correlation between observed and predicted betas for popDE features
(FDR<.10) across all marks in the non-infected condition. (C) Violin plot of the percent variance
explained by the top SNP- and STR-QTL on ancestry effects for each feature in each data type
in the flu-infected condition. Median PVE indicated by the black line. (D) Gene set enrichment
using the popDE results originally and after regressing out the top cis-SNP and cis-STR for each
feature. Immune-related pathways from the Hallmark gene sets are shown. Blue indicates that
the genes or features associated with genes in the pathway are more highly expressed in
individuals with high levels of African ancestry. Red indicates increased expression in individuals

of primarily European ancestry.
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Figure 6. Variants controlling epigenetic marks affect immune-related disease traits. (A)
Summary of colocalization results for immune related diseases. Points represent the number of
significant hits defined as PP3+PP4 > 0.5 and PP4/(PP3+PP4) > 0.8 in either condition. (B) An
example of a region in the flu-infected condition where a caQTL colocalizes with the GWAS
variant for Crohn’s disease (the purple diamond), but the eQTL does not. P=0.01 is
represented by the dotted line. The color of the points represents the r2, the measure of linkage
disequilibrium between the SNPs. (C) Bar plots, with standard error, representing the percent of
heritability explained by each of the molecular QTL in the non-infected condition. (D) Examples

of heritability enrichment results. A 95% confidence interval is displayed. Enrichment results for
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the full 14 GWAS studies are shown in Fig. 6SD. (E) Manhattan plot showing an example of the
PrediXcan results for inflammatory bowel disease susceptibility loci. Each point represents a
gene or peak that is significantly associated with the disease trait. Peaks are assigned to the
closest gene and labels denote genes present in the Gene Ontology immune response set

(Lovering et al. 2008). The dotted line marks the P=0.05 Bonferroni corrected P value cutoff.
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STAR METHODS
Detailed methods are provided in the online version of this paper and include the following:

e KEY RESOURCES TABLE
e RESOURCE AVAILABILITY
o Lead contact
o Materials availability
o Data and code availability
e EXPERIMENTAL MODEL AND SUBJECT DETAILS
Sample collection
Monocytes isolation and macrophages generation
Infection of macrophages
gDNA extraction
Whole genome sequencing (WGS)
Whole genome bisulfite sequencing (WGBS)
RNA extraction
RNA sequencing (RNA-seq)
ATAC-seq
ChIPmentation
e QUANTIFICATION AND STATISTICAL ANALYSIS
WGS processing and genotyping
Estimation of genome-wide admixture levels
RNA-seq data processing
ChlPmentation and ATAC-seq data processing
Filtering phenotype data
Partitioning the genome using ChromHMM
Whole genome bisulfite sequencing data processing
Infection effects: Infection-Related Differential Effects
Percent Variance Explained by Infection
GSEA of Infection effects and popDE effects
Relationship between expression and epigenetic changes in response to infection
Transcription Factor activity scores
Correcting for technical effects in popDE, popDR and mapping analysis
Detection of population differentially expressed (popDE) features
Detection of population differentially responsive features
Calculation of pathway activity scores across individuals
Elastic net regression to predict transcriptional response based on baseline
epigenetic data
Relationship between ancestry-associated gene expression and epigenetic
differences
SNP genotype-phenotype association analysis
STR calling and filtering
STR genotype — phenotype analysis
SNP v. STR analysis
Identification of condition-specific and shared QTL
Enrichment of TF Binding Sites among condition-specific SNP QTL
QTL integration across the data types
Enrichment of TF Binding Sites among shared QTL
Relationship between epigenetic QTL at baseline and transcriptional response
Enrichment of QTL within popDE features
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o Calculating DeltaPVE of Admixture
o Calculation of predicted and observed population differences

o Evaluating the impact of the top SNP and STR on popDE effects through GSEA
o Colocalization analysis

o Imputation of SNPs for heritability analysis

o Fine-mapping molecular QTLs

o Heritability and enrichment analysis of GWAS summary statistics using S-LDSC
o Estimation of the association between genomic marks and immune disease
ADDITIONAL RESOURCES

o EpiVar browser

SUPPLEMENTAL INFORMATION

Supplementary Information includes 6 figures and 8 tables.
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STAR METHODS

KEY RESOURCES TABLE
TBD

RESOURCE AVAILABILITY
Lead contact

Reagent and resource requests should be addressed and will be fulfilled by the Lead Contacts,
Luis Barreiro (lbarreiro@uchicago.edu) and Guillaume Bourque (quil.bourque@mcaqill.ca).

Materials availability
This study did not generate new unique reagents.
Data and code availability

Sequence data has been deposited at the European Genome-phenome Archive (EGA), under
accession numbers EGAD00001008422 (RNA-seq, ATAC-seq and ChIPmentation) and
EGADO00001008359 (WGS and WGBS). We also constructed a versatile QTL browser
(https://computationalgenomics.ca/tools/epivar), which allows users to explore and visualize
mapped QTLs for gene expression, chromatin accessibility, histone modifications and DNA
methylation.

All original code is currently available at
https://github.com/katiearacena/EU_AF_ancestry flu_code and will be deposited at Zenodo by
the date of publication.

Any additional information required to reanalyze the data reported in this paper is available from
the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample collection

Buffy coats from 39 healthy donors were obtained from the Indiana Blood Center (Indianapolis,
IN, USA). A signed written consent was obtained from each participant and the project was
approved by the ethics committee at the CHU Sainte-Justine (protocol #4022). All individuals
recruited in this study were males, self-identified as African-American (AF) (n = 19) or European-
American (EU) (n = 20) between the age of 18 and 54 years old. The average age across AF and
EU samples was similar (38.7 years for AF versus 38.6 years for EU). We only collected male
samples to avoid the potentially confounding effects of sex-specific differences in immune
responses to infection. Only individuals self-reported as currently healthy and not under
medication were included in the study. In addition, each donor’s blood was tested for Hepatitis B,
Hepatitis C, Human Immunodeficiency Virus (HIV), and West Nile Virus, and only samples

negative for all of the tested pathogens were used.

Monocytes isolation and macrophages generation

Blood mononuclear cells were isolated by Ficoll-Paque centrifugation. Monocytes were purified
from peripheral blood mononuclear cells (PBMC) by positive selection with magnetic CD14
MicroBeads (Miltenyi Biotech) using the autoMACS Pro Separator. The purity of the isolated
monocytes was verified using an antibody against CD14 (BD Biosciences) and only samples
showing > 90% purity were used to differentiate into macrophages. To generate the monocytes-
derived macrophages (MDM), the cells were cultured for 6 days in RPMI-1640 (Fisher)
supplemented with 10% heat-inactivated FBS (FBS premium, US origin, Wisent), L-glutamine
(Fisher), gentamicin (10ug/mL LifeTechologies) and M-CSF (20ng/mL; R&D systems) and

incubated at 37°C and 5% CO.. Cell cultures were fed every 2 days with complete medium.

Infection of macrophages
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On day 6, the macrophages were harvested with CellStripper (Corning), counted, replated with
the fresh media (previously mentioned) without antibiotic and incubated overnight. The next day,
the cells were infected at a multiplicity of infection (MOI) of 0.1 for Influenza A virus strain PR8WT
(Flu). A control group of non-infected macrophages (NI) was treated the same way but with only
medium without virus. For some samples, we added Mock at the same volume as for the Flu and

NI conditions. 24 hr post-infection, the cells were collected for downstream experiments.

gDNA extraction
Genomic DNA extraction was performed on 0.6 to 7 million (from NI or Flu macrophages) using
the DNeasy Blood & Tissue kit (Qiagen). The genomic DNA was quantified using Quant-iT

PicoGreen ds DNA Assay Kit (ThermoFisher Scientific).

Whole genome sequencing (WGS)

Libraries were generated from 400 ng of genomic DNA fragmented to 300—400 bp peak sizes
using the Covaris focused-ultrasonicator E210. Library preparation was done using NxSeq
AmpFREE Low DNA Library Kit (Lucigen) according to the manufacturer’s instructions. The
libraries were size selected using Ampure XP Beads (Beckman Coulter) and quantified using the
KAPA Library Quantification kit - Universal (KAPA Biosystems). Sequencing of the WGS libraries

was performed on the Illumina HiSegX system using 150-bp paired-end sequencing.

Whole genome bisulfite sequencing (WGBS)

Libraries were generated from 1500 ng of genomic DNA spiked with 0.1% (w/w) unmethylated A
DNA (Roche Diagnostics) fragmented to 300—400 bp peak sizes using the Covaris focused-
ultrasonicator E210. Library preparation was done using NxSeq AmpFREE Low DNA Library Kit
(Lucigen) according to manufacturer’s instructions, followed by bisulfite conversion with the EZ-
DNA Methylation Gold Kit (Zymo Research) according to the manufacturer’s protocol. Libraries
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were amplified by 6 cycles of PCR using the Kapa Hifi Uracil + DNA polymerase (KAPA
Biosystems) according to the manufacturer’'s protocol. The amplified libraries were size selected
using Ampure XP Beads (Beckm an Coulter) and quantified using the KAPA Library Quantification
kit - Universal (KAPA Biosystems). Sequencing of the WGBS libraries was performed on the

Illumina HiSegX system using 150-bp paired-end sequencing.

RNA extraction

Macrophages were directly lysed from the culture plate with 1mL of Qiazol from 0.5 to 2.5 million
cells (NI, Flu and Mock) and extracted using the miRNeasy kit (QIAGEN) following the
manufacturer instruction. RNA integrity was assessed with the Agilent 2100 Bioanalyzer System

(Agilent Technologies).

RNA sequencing (RNA-Seq)

RNA library preparations were carried out on 100-500 ng of RNA with RIN 1.2 to 9.8 using the
lllumina TruSeq Stranded Total RNA Sample preparation kit, according to manufacturer's
protocol. The libraries were size-selected using Ampure XP Beads (Beckman Coulter) and
quantified using the KAPA Library Quantification kit - Universal (KAPA Biosystems). Sequencing
of the RNA-Seq libraries was performed on the Illlumina NovaSeq 6000 system using 100-bp

paired-end sequencing.

ATAC-seq

ATAC-seq library preparation was performed using the Omni-ATAC protocol (Corces et al. 2017).
50,000 macrophages (from NI, Flu and Mock conditions) were resuspended in 1 ml of cold ATAC-
se( resuspension buffer (RSB; 10 mM Tris-HCI pH 7.4, 10 mM NacCl, and 3 mM MgCl; in water).
Cells were centrifuged at 500 g for 5 min in a pre-chilled (4 °C) fixed-angle centrifuge. After

centrifugation, supernatant was aspirated and cell pellets were then resuspended in 50 ul of
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ATAC-seq RSB containing 0.1% IGEPAL, 0.1% Tween-20, and 0.01% digitonin by pipetting up
and down three times. This cell lysis reaction was incubated on ice for 3 min. After lysis, 1 ml of
ATAC-seq RSB containing 0.1% Tween-20 (without IGEPAL and digitonin) was added, and the
tubes were inverted to mix. Nuclei were then centrifuged for 10 min at 500 rcf in a pre-chilled (4
°C) fixed-angle centrifuge. Supernatant was removed and nuclei were resuspended in 50 uL
transposition mix (2x TD Buffer, 100 nM final transposase, 16.5 uL PBS, 0.5 uL 1% digitonin, 0.5
uL 10% Tween-20, 5 uL H20) . Transposition reactions were incubated at 37 °C for 30 min in a
thermomixer with shaking at 1000 rpm. Reactions were cleaned up with Zymo DNA Clean and
Concentrator 5 columns. Primers (i5 and i7) were added by amplification (12 cycles) using
NEBNext 2x MasterMix. Sequencing of the ATAC-seq libraries was performed on the lllumina

NovaSeq 6000 system using 100-bp paired-end sequencing.

ChIPmentation

Crosslink step

For ChlIPmentation, 1 to 5 million macrophages (from NI, Flu and Mock conditions) were
washed in cold PBS prior proceed the cross-linking of DNA with formaldehyde (0.75%) by shaking
the tube for 10 min at RT and adding Glycine (125nM) for additional 5 min. Cells were washed
with cold PBS and centrifuged for 5 minutes at 2500 xg at 4°C. The supernatant was discarded
and the cell pellet immediately frozen at -80°C.

After cell lysis, sonication of nuclei was performed on a BioRuptor UCD-300 targeting 150-
500 bp size. Immunoprecipitation of the histone marks H3K27ac, H3K4mel, H3K27me3 and
H3K4me3 was performed following the Auto-ChlPmentation protocol for Histones (Diagenode inc,
Denville, USA) according to the manufacturer’s instructions. The libraries were size selected using
Ampure XP Beads (Beckman Coulter) and quantified using the KAPA Library Quantification kit -
Universal (KAPA Biosystems). Sequencing of the ChIPmentation libraries was performed on the

lllumina NovaSeq 6000 system using 100-bp paired-end sequencing
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QUANTIFICATION AND STATISTICAL ANALYSIS

WGS processing and genotyping

Raw reads were trimmed using Skewer (Jiang et al. 2014) and the resulting reads were aligned
to the hgl9 human reference genome using BWA-MEM (H. Li and Durbin 2009).
Insertion/deletion realignment and base quality score recalibration were performed using GATK
(McKenna et al. 2010) and duplicates  were marked using Picard
(http://broadinstitute.github.io/picard/). We used GATK’s HaplotypeCaller to perform SNV and
INDEL calling. We filtered the joint genotyped file to exclude non-autosomal and non-biallelic
variants. Additionally, we removed SNPs that had a call rate of <90% across all samples, that
deviated from Hardy—Weinberg equilibrium at p < 10, and with minor allele frequency less than
5%. We used the resulting 7,383,243 SNPs in QTL mapping and other downstream analyses. We
annotated the SNPs using dbSNP (human_9606 b151 GRCH37p13) (Sherry ST, Ward MH,

Kholodov M, Baker J, Phan L, Smigielski EM 2001).

Estimation of genome-wide admixture levels

We used the clustering algorithm ADMIXTURE (v1.3.0) to calculate the percentage of African and
European ancestry in each individual (Alexander, Novembre, and Lange 2009). Notably, we only
obtained genotyping data for 17/19 self-identified African individuals and 18/20 European
individuals, thus, we only calculated admixture estimates for samples we had data (h=35). We
included Yoruba (YRI) and European (CEU) individuals from the 1000 Genomes reference panel
and estimated ancestry proportions using K=2 ancestral clusters. We applied Genotype
Harmonizer (Deelen et al. 2014) to align and combine the 1000 genomes reference data. We
used 362,075 unlinked SNPs (r> between all pairs < 0.1) to estimate genetic ancestry.

ADMIXTURE analyses showed that 3 AF individuals were likely mislabeled by the blood center
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as they presented 99.9% of European ancestry. Ancestry labels were adjusted accordingly
resulting in 14 African American and 21 European American individuals. Estimated ancestry
proportions for each individual were used to calculate population differences unless specified

otherwise.

RNA-seq data processing

Adaptor sequences and low-quality score bases (Phred score < 30) were first trimmed using
Trimmomatic (Bolger, Lohse, and Usadel 2014). The resulting reads were aligned to the hg19
human reference genome assembly, using STAR (Dobin et al. 2013). Read counts are obtained
using HTSeq (Anders, Pyl, and Huber 2015) with parameters -m intersection-nonempty -

stranded=yes.

ChIPmentation and ATAC-seq data processing

ChlPmentation and ATAC-seq reads were first trimmed for adapter sequences and low-quality
score bases using Trimmomatic (Bolger, Lohse, and Usadel 2014). The resulting reads were
mapped to the human reference genome (hgl9) using BWA-MEM (H. Li and Durbin 2009) in
paired-end mode at default parameters. Only reads that had a unique alignment (mapping quality
> 20) were retained and PCR duplicates were marked wusing Picard tools
(https://broadinstitute.github.io/picard/). Peaks were called using MACS2 software suite (Y.

Zhang et al. 2008).

Filtering phenotype data
In our RNAseq dataset, we excluded any genes that did not have an average RPKM > 2 in Flu or
non-infected samples. For the CHIPseq and ATACseq datasets, we calculated median peak size

and required 50% of median value overlap for peaks to be called as the same peak between

samples using bedtools merge (Quinlan and Hall 2010). We then filtered to exclude peaks that
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were not present in =2 50% of Flu or non-infected samples, and those that fall within blacklisted

regions (Amemiya, Kundaje, and Boyle 2019). The number of features remaining after these

thresholds are present in the table below.

Data Median | 50% of | Total # of | >500, NI | 2509 Flu | Feature | Feature
peak median samples conditio | conditio | S S
size for peak | included N N BEFOR | AFTER
merging | In , threshol | threshol E , filtering
analysis d d filtering
RNAseq N/A N/A 70 N/A N/A 57905 14122
ATACseq 608 304 70 18/35 18/35 974189 118201
H3K27ac 349 174.5 58 15/29 15/29 608338 | 46657
H3K27me3 | 592 296 56 14/28 14/28 694827 | 70675
H3K4mel | 498 249 60 15/30 15/30 749325 113584
H3K4me3 | 843 421.5 54 14/27 14/27 144765 25568

We used featureCounts to calculate the number of reads for each genomic feature for each
sample (Liao, Smyth, and Shi 2014). We used the resulting counts matrices for all downstream

analyses.

Partitioning the genome using ChromHMM

We generated genome-wide, gene regulatory annotation maps for noninfected and flu infected
MDMs using the ChromHMM chromatin segmentation program (Ernst and Kellis 2012). We used
samples for which there was data for all 4 histone marks (n= 27 samples, 10 AF, 17 EU) and 7
emission states. We used ChromHMM profiles from the Roadmap Epigenetics project to annotate

our results (Roadmap Epigenomics Consortium et al. 2015).

Whole genome bisulfite sequencing data processing
Adaptor sequences and low-quality score bases were first trimmed using Trimmomatic (Bolger,
Lohse, and Usadel 2014). The resulting reads were mapped to the human reference genome

39


https://doi.org/10.1101/2022.05.10.491413
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.10.491413; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(hg19) and lambda phage genome using Bismark (Krueger and Andrews 2011), which uses a
bisulfite converted reference genome for read mapping. Only reads that had a unique alignment
were retained and PCR  duplicates were marked using Picard tools
(https://broadinstitute.github.io/picard/). Methylation levels for each CpG site were estimated by
counting the number of sequenced C (‘methylated’ reads) divided by the total number of reported
C and T (‘unmethylated’ reads) at the same position of the reference genome using Bismark’s
methylation extractor tool. We performed a strand-independent analysis of CpG methylation
where counts from the two Cs in a CpG and its reverse complement (position on the plus strand
and position i+1 on the minus strand) were combined and assigned to the position of the C in the
plus strand. To assess MethylC-seq bisulfite conversion rate, the frequency of unconverted
cytosines (C basecalls) at lambda phage CpG reference positions was calculated from reads
uniquely mapped to the lambda phage reference genome.

We obtained methylation counts for 19,492,906 loci. Due to the high coverage of the data,
we opted to not perform smoothing. To reduce the total number of statistical tests performed, we
limited our analyses to CpG sites in open chromatin regions using ChromHMM data (states E3-
E7). We also excluded C nucleotides that overlapped with SNPs identified in the whole genome
sequencing data for our samples. After these filtering steps we analyzed methylation levels across

7,463,164 CpG sites.

Infection effects: Infection-Related Differential Effects

We used all samples we had collected data for, not just those with genotyping data to calculate
infection effects. Note that this only increased the sample size for RNAseq data (from n=35 to
n=39 individuals). The sample size for all other data types remained the same. For RNAseq,
ATACseq and CHIPseq datasets, we calculated normalization factors to scale the raw library
sizes using calcNormFactors in edgeR (v 3.28.1) (Robinson, McCarthy, and Smyth 2010). We
used the voom function in limma (v 3.42.2) to apply these factors, estimate the mean-variance
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relationship and convert raw read counts to logCPM values. Because samples were sequenced
on different flowcells at different times (i.e., hereafter defined as “Batch”) we regressed out these
putative batch effects by fitting a linear model that estimates the technical effect of sequencing
batch on the different datasets. We kept the residuals from this model (i.e, batch-corrected
“expression” estimates) using the residuals.MArraLM function.

To calculate global infection effects for RNAseq, ATACseq and CHIPseq datasets, batch-
corrected read counts of samples corresponding to the same individual were compared in a paired
design by introducing individuals as additional covariates. The following model was run using
limma for each data type independently:

M, : EGL ) Bo (i, ) + eV (i, ) if Condition = NI
L EIIT By (6, ) + Bru (0) + €7 (i, j) if Condition = flu

Here, E(i,j) represents the batch-corrected estimate of each feature i for individual j and B0(i,j)

represents the intercept corresponding to feature i and individual j (i.e., the expectation of gene

or peaks i's expression level in the non-infected sample for individual j). Bflu(i) is the effect of flu

infection on feature i.

We performed 1000 permutations obtained by randomly reshuffling the condition labels in each

condition in order to estimate FDR using the gvalue R package (v 2.18.0) (Storey et al. 2019).

Identification of differentially methylated loci

We identified differentially methylated loci (DML) in response to flu infection using the R package
DSS and a fixed effects model (Park and Wu 2016). We used the DMLfit. multiFactor function in
DSS, using the same model described above (M1). We performed 10 permutations and FDR

correction using the same approach detailed above.
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Percent Variance Explained by Infection

The R package relaimpo (v 2.2-3) was used in order to calculate the relative contribution of each
predictor in the infection effects linear models to the R2. (Grémping 2006). The same batch
corrected counts matrices and weights were used as before with the exception of the methylation
loci, which were additionally filtered to remove sites that did not have coverage 24 sequence
reads in at least half of the non-infected or Flu-infected samples and those with O variation across
all NI or Flu samples. DSS accounts for both low coverage and variation which is why these sites

were previously included in the model. The same model (M1) was run for all datatypes.

GSEA of Infection effects and popDE effects

The R package fgsea (Korotkevich et al. 2021) was used to perform gene set enrichment analysis
(GSEA) to determine which biological pathways were enriched or depleted among DE
genes/regions and popDE genes/regions. We connected CpG loci, CHIPseq peaks, and
ATACseq peaks to the nearest gene using the R package ChlPseeker (Yu, Wang, and He 2015)
(using the default parameters). For GSEA each gene can only be included once. Thus, in
situations where more than one peak was mapped to the same gene, we kept the peak with the
highest t-statistic when modeling flu-infection effects or popDE effects. For the WGBS infection
effects we used the difference between CpG methylation in the flu-infected and non-infected
conditions to perform GSEA since the Wald test statistic from the model does not indicate the
direction of the effect. For the WGBS popDE GSEA the Wald test statistic was used. GSEA were

performed against the Hallmark gene set (Liberzon et al. 2015).

Relationship between expression and epigenetic changes in response to infection
To evaluate the relationship between gene expression changes and epigenetic changes in

response to flu infection we connected peaks and CpG loci to the nearest gene using the R
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package ChlPseeker using the same parameters as detailed previously (Yu, Wang, and He
2015).

We first subset on upregulated genes defined as those genes with beta> 0.5 & FDR < .01.
Additionally, we subset to include only epigenetic marks that change in response to flu infection
using FDR < .20 for CpG loci and FDR<.01 for all other marks. We then evaluate in which direction
the epigenetic features associated with genes upregulated in response to flu infection change.
The same analysis is done using downregulated genes (beta < -0.5 and FDR < .01). We used a
Wilcoxon test to determine significance levels using peaks for all genes (not just those

upregulated and downregulated) as the null.

Transcription Factor activity scores

Footprints were called using HINT-ATAC from the Regulatory Genomics Toolbox (Z. Li et al.
2019) on the subset of peak regions called using MACS2 (Y. Zhang et al. 2008). Footprint calling
was performed by first merging aligned ATACseq reads within each condition using samtools
merge,sort,index. A meta-footprint set was created for each pair by merging the respective
footprint calls with bedtools merge (Quinlan and Hall 2010). Using this meta-footprint set,
transcription factor motif matching was performed on the subset of regions falling within meta-
footprints.

Motif matching was done using the JASPAR CORE Vertebrates set of curated position
frequency matrices (Sandelin et al. 2004). Because of similarity across TF motifs, we chose to
group TFs into clusters based on similarity. To do this, we first computed pairwise TOMTOM
(Gupta et al. 2007) E value metrics to assess motif similarity. The log10 E values were then used
as distance metrics for hierarchical clustering (base R; hclust(method="ward.D2")). A cutoff height
of 10 (base R; cutree(h=10)) was used to define TF motif clusters, resulting in a total of 200

clusters which were used for the TF enrichment analysis described later.
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Using the set of motif match regions for each TF, motif count enrichment was performed
using the rgt-motifanalysis enrichment function. Background regions were defined as all meta-
footprints. Foreground regions are the footprints overlapping regions of the genome of interest. A
two-sided Fisher’s exact test was computed from the output frequencies of motif occurrences
within the foreground and background regions (base R; fisher.test(alternative="two.sided”)). P
values were corrected using the Benjamini Hochberg method (Benjamini and Hochberg 1995).

Using the set of motif match regions for each TF, activity analysis was performed with the
RGT differential function. The activity score metric is described further in (Z. Li et al. 2019).
Parameters for footprinting, motif matching, and differential activity analysis were set as default.
Activity statistics were calculated per sample between conditions using the ATACseq profiles of
each sample independently. Combined activity scores were computed as the mean across
samples, and meta p-values were calculated by Fisher's combined probability test (python

scipy.stats.combine_pvalues) to summarize across all samples.

Correcting for technical effects in popDE, popDR and QTL mapping analysis

All popDE, popDR and QTL mapping analyses were performed on count matrices corrected for
age and potential sequencing batch effects. Age and batch correction were done separately for
NI and Flu-infected samples. We started by calculating normalization factors to scale the raw
library sizes using calcNormFactors in edgeR (v 3.28.1) (Robinson, McCarthy, and Smyth 2010).
Then, we used the voom function in limma (v 3.42.2) to apply these factors, estimate the mean-
variance relationship and convert raw read counts to logCPM values. Batch effects, which are
categorical variables, were regressed out using ComBat from the sva Bioconductor, fitting a
model that also includes age (mean centered) and admixture. We subsequently regressed out

age effects using limma.

Detection of population differentially expressed (popDE) features
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Using the age and batch corrected matrices described above, we used limma to detect the effect
of African admixture for RNAseq, ATACseq and CHIPseq datasets using the following nested

model for each data type independently:

Bo () + BYLG) - AF(j) + €MI(i,j) if Condition = NI

M3 E(0,j)~ {,Bo(i) + B (D) + BIEW) - AF() + €™ (i, j) if Condition = flu

Here, E(i,j) represents the age and batch corrected estimate of feature i for individual j, 8o(i) is

the global intercept accounting for the expected expression of feature i in a 100% European-

ancestry non-infected individual, ,82{,(1’) and [fﬁu (i) indicate the effects of African admixture on
feature i within each condition. The model was fit using limma and the estimates of ﬁﬁ';(i) and

ﬁ;”(i) of the genetic ancestry effects were extracted across all features. We used 1000

permutations obtained by randomly reshuffling admixture estimates in order to estimate FDR, as
described in detail above.

Because of the different nature of the methylation data (i.e., percentage methylation per
CpG site instead of counts) we used DSS (Dispersion Shrinkage for Sequencing data) instead of
limma to model population differentially methylated loci. DSS is specifically designed for the
analyses of bisulfite sequencing (BS-seq) differential methylation. The core of DSS is a procedure
based on Bayesian hierarchical model to estimate and shrink CpG site-specific dispersions, then
conduct Wald tests for detecting differential methylation. We used the same model as M2
described above but including age and batch as covariables. We permuted the 10 times by
shuffling the admixture estimates to obtain null p value distributions for FDR calculations.

To increase our power to detect condition and shared effects we applied Multivariate
Adaptive Shrinkage in R (mashr v0.2.28) (Urbut et al. 2019) to the outputs of the popDE effects

for each data type independently. For each condition, effect sizes were obtained from limma and
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standard error of the effect size was calculated by multiplying the square root of the posterior
variance (s2.post) of each feature by the unscaled standard deviation for the effect size of interest
for that feature (stdev.unscaled). NI and Flu effect sizes and standard error of effect sizes were
formatted into n x m matrices, where: n = number of features for each data type, m = 2 conditions
(NI'and Flu).

We estimated the null correlation of the data using the
“estimate_null_correlation_function” in mashr. We included canonical covariance and data-driven
covariance matrices. The data-driven covariance matrix is the top 5 PCs from a PCA performed
on the significant (local false sign rate (Ifsr) < .05) signals identified in the condition-by-condition
model learned from our data in the mash model fit. We then fit the mash model using the mash
function. For the methylation data we made some modifications to the mash procedure. First, we
removed any NAs from the DSS results, resulting from insufficient coverage at a particular CpG
site. As described above, DSS uses a Wald statistical test to test each gene/CpG site for
differential methylation, so we used the Wald test statistic as the effects, setting all standard errors
to 1. Instead of using all the tests to estimate the null correlation structure like the other datasets,
we obtained a random subset of 200,000 tests and applied the estimate_null_correlation_simple
function. As with the other data types, we included canonical covariance and data-driven
covariance matrices and fit the mash model on all the tests performed.

After running mash, we conservatively used both gvalue and local false sign rate (Ifsr) to
determine if popDE effects were condition-specific (i.e., only showing an effect in the non-infected
or flu-infected conditions) or shared (i.e., showing an effect in both conditions). Specifically, we
require popDE features to have both FDR <.10 and Ifsr < .10 in only one condition to be
considered condition specific. popDE features are shared if FDR < .10 and Ifsr <.10 in both

conditions.

Detection of population differentially responsive features
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We used the age and batch corrected count matrices and weights to model the effects of African
admixture on the intensity of the response to flu infection (popDR effects). We build individual-
wise fold-change (FC) matrices by subtracting non-infected counts from flu-infected counts for
each individual (Flu-NI) using weights calculated using the same method as in Harrison et al.
2019. Specifically, given the fold-change entry of: FC = EF* — EN| we calculate expected
variance of the FC: g2(FC) = a2(E/™) + g2(EN"). Within condition weights are: wy; = 1/52(EM)
and wgy, = 1/02(E™), thus the fold change weight:
_ 1 _ 1
CreTFe T 1 1

Wynr  Ofy
We subset the fold-change matrices to only those features with FDR<.10 for infection

effects, since if a feature is not significantly differentially expressed, it cannot be differentially
responsive. We then used limma with weights and modeled the effect of admixture on fold

changes:

Ms3:E(, j)~{Bar (D) - AF () + (i, J)

Here, E(i,j) represents the fold change for feature i for individual j and Bar(i) signifies the effects
of African admixture on feature i. For the WGBS, we constructed individual-wise fold-change
matrices and subset on CpG sites with FDR < .20 for infection effects. The model used was the
same as M3 but including age and batch which for the methylation data are not corrected for a
priori.

For all data types we performed 1000 permutations obtained by randomly reshuffling

admixture estimates in order to estimate FDR, as described previously.

Calculation of pathway activity scores across individuals
We used the R packages Gene set variation analysis (GSVA), which estimates variation of

pathway activity, to calculate individual mean scores for several Hallmark pathways and
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combinations of gene sets (Hanzelmann, Castelo, and Guinney 2013). The input for GSVA is a
matrix of counts and database of gene sets. To apply GSVA to the popDE results, we first
obtained all features that are popDE (FDR <.10) in at least one of the conditions. We took the
mean of features (peaks or CpG sites) which shared the same closest gene such that there was
only 1 value for each gene listed in the Hallmark pathway set. We split the batch and age corrected
counts matrix by condition. We then applied the gsva function to each matrix, calculating an
individual mean score for each gene set. We used an analogous workflow to calculate individual
mean response scores for gene sets using the popDR (FDR<.20) results. The only modification
is that we used the fold-change matrices instead of the batch and age corrected counts.

To evaluate the effect of the top SNP and STR on these pathway scores we used an
analogous workflow as described above but with the following modifications. We first subset on
features associated with genes that were included in any of the immune response pathways
tested. We also filtered out the few features that did not have both a SNP and STR associated
with the feature. We then obtained the residuals after removing the top SNP and STR effects and
followed the same steps as detailed above for the popDR features to calculate ancestry scores.

without the effects of the top SNP and STR.

Elastic net regression to predict transcriptional response based on baseline epigenetic
data

We used the glmnet R package (Friedman, Hastie, and Tibshirani 2010) to build an elastic net
model to determine if epigenetic features at baseline can predict transcriptional response to flu.
Because the number of features is much larger than the number of samples, glmnet uses an
elastic net penalty to shrink predictor coefficients toward 0. Optimal alpha parameters were
identified by grid searching across a range of alphas from 0 (equivalent to ridge regression) to 1
(equivalent to Lasso) by increments of 0.1. We defined the optional alpha as the value that

maximized R2 between predicted and true transcriptional response values across samples. We
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set the regularization parameter lambda to the value that minimized mean-squared error during
n-fold internal cross-validation.

To generate predicted transcriptional responses for a given sample, we used a leave-one-
out cross-validation approach. Specifically, we separate the samples into training (n-1 individuals)
and test (1) samples, where n is the sample size. Training samples were scaled independently
of the test sample in each leave-one-out model to avoid bleed-through of information from the test
data into the training data. To do so, for each of the datasets, we first quantile normalized the
counts data for each feature (or methylation ratios in the case of methylation data) within each
sample to a standard normal distribution. Training samples were then separated from the test
sample and the normalized counts for each feature (e.g., peak intensity for ATAC-seq data) in the
training set were quantile normalized across samples to a standard normal distribution. To predict
the transcriptional response in the test sample, we compared read counts for each feature in the
test sample to the empirical cumulative distribution function for the training samples (at the same
feature) to estimate the quantile in which the training sample methylation ratio fell. The training
sample was then assigned the same quantile value from the standard normal distribution using
the function gnorm in R. A few specific settings were required for the methylation data. First, raw
methylation counts were filtered to remove sites that did not have coverage =24 sequence reads
in at least half of the non-infected or Flu-infected samples and those with O variation across all NI
samples. Moreover, due to restrictions of the cv.gimnet function, we also removed any CpG sites

that had any missing data for any individual, resulting in an input set of 5,528,187 CpG sites.

Relationship between ancestry-associated gene expression and epigenetic differences

Similar to the analysis described in “Relationship between expression and epigenetic changes in
response to infection” we wanted to evaluate if there is a relationship between ancestry-
associated gene expression differences and ancestry-associated epigenetic differences. We
subset on popDE genes that are higher expressed in individuals with African Ancestry (beta >
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0.5, FDR< 0.1) and evaluated how popDE (FDR<0.1) epigenetic differences corresponding to
these genes behave. The same is done for popDE features that are higher expressed in primarily
European Ancestry individuals (beta < -0.5, FDR < 0.1). A Wilcoxon test was used to determine

significance.

SNP genotype-phenotype association analysis

We used the R package Matrix eQTL (Shabalin 2012) to examine the associations between SNP
genotypes and multiple phenotypes of interest (gene expression, chromatin accessibility, DNA
methylation levels, and histone marks) in each condition separately. To increase the power to
detect cis-QTL, we accounted for unmeasured-surrogate confounders by performing principal
component analysis (PCA) on the age and batch corrected expression/peak/methylation
matrices. The number of PCs chosen for each data type empirically led to the identification of the

largest QTL in each condition and are reported in the table below.

Analysis Condition Regressed PCs
eQTL Non-infected lto4
Flu-infected lto 4
caQTL Non-infected 1to3
Flu-infected 1to3
H3K27acQTL Non-infected 1
Flu-infected 1
H3K27me3QTL Non-infected 1
Flu-infected lto2
H3K4melQTL Non-infected 1to2
Flu-infected lto4
H3K4me3QTL Non-infected 1to 2
Flu-infected lto2
meQTL Non-infected None
Flu-infected None
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Mapping was performed combining individuals in order to increase power, thus, we
included the first eigenvector obtained from a PCA on the SNP genotype data as a covariate in
our linear model to correct for population structure. For gene expression, chromatin accessibility

and histone QTL mapping we used the following model:

My:E(i, )~Bgenotype - genotype(j) + EV1(j) + €V'(i, ) if Condition = NI

E(l.;j)~ﬂ£élftlotype - genotype(j) + EV1(j) + &™(i,)) if Condition = flu

Here, E(i,j) represents the batch and age corrected expression estimates with PCs regressed for
feature i and individual j. EV1 is the first eigenvector derived from the PCA on the SNP genotype
data. Local associations (i.e., putative cis QTL) were tested against all SNPs located within the
peak or 100Kb upstream and downstream of each peak.

Some modifications were made when performing QTL mapping using methylation
proportions due to the nature of the data. First, we quantile normalized across each CpG site
using the ggnorm function in R. Since we do not previously account for age and batch as for the
other data types, we included mean-centered age and batch as covariates in our model in addition
to the first eigenvector obtained from the PCA on the SNP genotype data for the meQTL analysis.
Finally, we used a window size of 5kb up and downstream of each CpG site. We did so both to
limit the number of tests and because previous studies show that SNPs associated with variation
in methylation tend to be located very close to the CpG that they associate with (Banovich et al.
2014; McClay et al. 2015; Huan et al. 2019).

For all data sets, we recorded the strongest association (minimum p-value) for each
gene/region/CpG site, which we used as statistical evidence for the presence of at least one QTL
for each of the loci tested. We permuted the genotypes ten times, re-performed the linear
regressions, and recorded the minimum p-value for each gene/region/CpG site for each

permutation. We used the R package qvalue (Storey et al. 2019) to estimate FDR using the
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permuted p-values as our null expectation. In all cases, we assume that alleles affect phenotype
in an additive manner.

In addition to gvalue, we also applied Multivariate Adaptive Shrinkage in R (mashr v0.2.28)
(Urbut et al. 2019) to the outputs of the QTL mapping results for each data type independently.
For each condition, full Matrix eQTL outputs are loaded (every SNP-feature pair tested). We
obtained the effect sizes and the standard error of the effect size, calculated by dividing the beta
by the t statistic. For each feature, we chose a single, top cis-SNP, defined as the SNP with the
lowest pvalue across the two conditions. We recorded the corresponding effect sizes and
standard errors of these betas for these top cis-SNPs and defined these as our set of “strong”
tests. Additionally, we randomly sampled 200,000 rows from all the SNP-feature pairs (including
both null and non-null tests). We estimated the null correlation structure using the set of random
tests using the zero_Bhat_Shat_reset=2.22044604925031e-16 flag. The data driven covariance
matrices were learned using the set of strong tests. We then fit the mash model to the random
subset using canonical and data-driven covariance matrices. Lastly, we calculated the posterior

summaries for the strong test subset using the fit from the random subset.

STR calling and filtering

To robustly genotype the highly repetitive STR variants in our samples, we employed the HipSTR
algorithm (v0.6.2) (Willems et al. 2017) which accounts for potential sequencing errors of STR
introduced through PCR due to the highly repetitive nature of these sequences. Briefly, HipSTR
models the PCR stutter noise of the repetitive sequence at each STR locus and determines the
most likely STR allele using population-scale data and phased SNP scaffolds. We genotyped a
set of 1,504,432 GRCh37 autosomal STRs smaller than 100 using
GRCh37.hipstr_reference.bed.gz. We filtered the calls using HipSTR’s supplied script with the

recommended thresholds (min-call-qual=0.9, max-call-flank-indel=0.15, max-call-stutter=0.15, --
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min-call-allele-bias=-2, min-call-strand-bias=-2) to remove unreliable calls. This resulted in

1,465,954 robustly genotyped STRs.

STR genotype — phenotype analysis

We use the additive length of both alleles on a STR locus as the genotype to test STR genotype-
phenotype association. Each STR locus can have more than three genotypes due to the
multiallelic nature of STR length. To ensure that we were only using high quality STR calls, we
further filtered the 1,465,954 aforementioned STR set to exclude STRs with call rate < 90% across
all samples and STRs with minor allele frequency less than 10%. After filtering, we obtained
442,509 STRs used as input for Matrix-eQTL analysis.

STR-QTL mapping was performed with the same inputs and parameters as the SNP-QTL
mapping analysis described above. As with the SNP-QTL analysis, we accounted for
unmeasured-surrogate confounders by PCA on the age and batch corrected expression matrices.
The number of PCs chosen for each data type empirically led to the identification of the largest

QTL in each condition for the STR mapping analysis are reported below.

STR PCs reg table

eQTL Non-infected 1to3
Flu-infected lto7
caQTL Non-infected 1to5
Flu-infected 1to5
H3K27acQTL Non-infected 1to3
Flu-infected lto2
H3K27me3QTL Non-infected 1to3
Flu-infected 1to 3
H3K4melQTL Non-infected lto4
Flu-infected lto5
H3K4me3QTL Non-infected 1to3
Flu-infected lto4
meQTL Non-infected None
Flu-infected None
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SNP v. STR analysis

We used a linear model to evaluate the proportion of variance explained (PVE) by the top SNP
and top STR on a feature for each genomic phenotype using the R package relaimpo (Gromping
2006). We used a model analogous to QTL mapping adapted to the requirements of relaimpo.
The expression values and regressors used to model PVE are closely matched to the ones used
for QTL mapping. We used the same batch corrected counts as described in the section “Infection
effects: Infection-Related Differential Effects”, moving age to the regressor in the model such that
the relative importance of the variants could be compared in situations that a feature/gene was
only associated with either an SNP- or STR-QTL (i.e., relaimpo requires at least two variables to
be included in the model). For DNA methylation data, we used unadjusted, quantile normalized
expression value and model it with batch, age, genotype of best associated SNP, and genotype
of best associated STR. The relative importance of each regressor to the total variance of the
linear model was then reported using the calc.relimp function. We chose to report the Img relative
importance metric as recommended by the package, which outputs the R? of each regressor

partitioned by averaging over orders.

Identification of condition-specific and shared QTL

As in the popDE analysis, we use both gvalue and Ifsr to determine if QTL are condition-specific
(i.e., only showing an effect in the non-infected or flu-infected conditions) or shared (i.e., showing
an effect in both conditions). Specifically, we require SNP/STR-feature pairs to have both FDR
<.10 and Ifsr < .10 in only one condition to be considered condition specific. If either the SNP-
feature or STR-feature pair was found to be condition specific using these thresholds, the feature
was classified as condition specific. QTL were classified as shared if FDR < .10 and Ifsr <.10 in

both conditions for either the SNP or STR.
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Enrichment of TF binding sites among condition-specific SNP QTL

To investigate if condition-specific SNP QTL overlap transcription factor footprints at a significantly
higher rate than non-QTL SNP-feature pairs, we used transcription factor footprints detailed in
the previous section “Transcription factor activity scores”. Briefly, we overlapped TF footprints
with TF motifs and corresponding cluster information. For each data type and condition, we
extracted the best SNP for each condition-specific QTL (detailed in “Identification of condition-
specific and shared QTL”) and marked if it overlapped with a TF footprint for each of the 200
clusters. This resulted in a matrix containing either 0 (no overlap) or 1 (overlap) for each of the
200 clusters. We collected the same information for the best SNP of all SNP-feature pairs that
were not significant (FDR 2 .10) for that condition, which we used as the background set (for
WGBS we randomly sampled 500k from the non-significant pairs). We then performed a logistic
regression in R for each cluster to determine if there is a relationship between QTL type (condition-

specific v. non-significant SNP-feature pairs) and if the SNP falls within a TF footprint.

QTL integration across the data types

To determine if SNPs that are QTL (FDR <.10) in one data type are also QTL for other data types
we performed the following steps for each data type in each condition: i) collect all significant
SNP-gene pairs FDR<.10 (not just the “best” SNPs) for the data type ii) for each of the 6 additional
data types, select the top p-value for each feature using the list of significant SNPs for each
feature iii) use this top p-value to determine if the SNP is a QTL for the additional data types. By
performing this analysis from the perspective of each data type, we ask what percent of QTL are
specific to data type or shared among patterns of data types.

To derive a null expectation for the observed overlaps we did the following. Take as an
example the expected overlap between eQTLs and the other 6 additional epigenetic QTLs. First,
we collected the list of all SNPs that are eQTL (FDR<.10) in the original data. Then, we asked
how many of these are also significant for each of the 6 additional data types but using the p-
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values derived from the permuted results (described in “SNP genotype-phenotype association
analysis”). Ultimately, by doing so, we are testing how often we expect to see an overlap between,
in this example, an eQTL and other epigenetic QTL just based on the number of association tests

performed. These analyses were performed from the perspective of each data type separately.

Enrichment of TF Binding Sites among shared QTL

To test if shared QTL are more likely to disrupt TF binding than those that are not shared, we
modified the QTL integration pipeline to collect all p-values for each feature using the list of
significant SNPs rather than just the top p-value. We then used each p-value to determine if the
SNP is a QTL for the additional data types. For each condition, we took the union across all data
types of the SNPs that were shared in 0, 1, etc. data types. For each union set, we marked if each
SNP overlapped with any TF footprint. We also collected this information for all SNPs that were
tested for QTL mapping to use as the background set. We then performed a logistic regression
in R for each union set against the background set to determine if there is a relationship between

the number of QTL a SNP is shared across and if the SNP falls within a TF footprint.

Relationship between epigenetic QTL at baseline and transcriptional response

For each data type separately, we tested the relationship between epigenetic QTL at baseline
and transcriptional response. We created a meta genotype for each QTL (using the best SNPs
only). We extracted the direction of the effect size from the QTL mapping results at baseline and
categorized the 3 possible genotypes as either low/low, low/high, or high/high depending on the
direction of the effect. Using the closest gene for the feature, we matched the meta genotype for
each individual to the gene expression fold changes quantile normalized to a standard normal
distribution. We also tested the relationship between epigenetic QTL and gene expression at
baseline and after flu infection using the same steps as above but matching with quantile
normalized expression at baseline or after flu infection.
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Enrichment of QTL within popDE features

We tested for an enrichment of QTL among popDE features within each condition. For each
condition, we created two vectors: i) a popDE feature vector, where significant features (FDR<.10)
were coded as 1 and non-significant features were coded as 0, and ii) a QTL vector, where we
extracted the top SNP and STR for each feature and indicated the presence of a significant QTL
if either the top SNP or STR feature pair was significant (FDR<.10) by coding a 1. Non-significant
variant-feature pairs were coded as 0. A logistic regression was performed using the popDE
feature and QTL vectors using glm in R (popDE_status[0,1] ~ QTL_status[0,1]). The odds ratios

were converted to log2 fold enrichments with a 95% confidence interval for plotting.

Calculating DeltaPVE of Admixture
To evaluate the impact of genetic variation on population differences we calculated APVE of
admixture for the significant popDE features (FDR<.10) that have both an associated SNP and
STR (i.e., a SNP or STR within the QTL mapping window size for each data type). To calculate
APVE of admixture we first calculated the effect of admixture towards the total variance for each
batch-corrected feature using the R package relaimpo (Gromping 2006) and the following model:
R? = PVEqge + PVEaamixture
Age was included in the model so that the relative importance of admixture could be compared.
We then regressed out the effects of the top SNP and STR:

R* = PVEgge + PVEgamixture + PVEtop snp for feature + PVEtop sTR for feature
We then calculated the APVE of admixture, which is PVE original - PVE variants regressed / PVE

original.

Calculation of predicted and observed population differences
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We estimated the predict cis-genetic population differences across the data types by comparing
predicted and observed population differences. For each data type and condition, we extracted
significant (FDR <.10) popDE features. We ran a model with inputs analogous to QTL mapping
for each data type, butincluding both SNPs and STRs in the model, in addition to PC1 of the SNP
genotype data. Only features that had both a SNP and STR tested were included. For WGBS
data, age and batch are also included as regressors since they are not adjusted for in the input
file. We regressed out the same number of expression PCs as in “STR PCs reg table”. This
resulted in QTL effect sizes with both variants considered. We then computed the predicted
“expression” of each feature considering the QTL effect size of the top cis SNP for that feature
from both the SNP and STR mapping analyses and an individual’s genotype dosage (a vector of
0, 1, or 2 for SNP effect size, and a vector denoting the total length of the STR for the STR

analysis). For each feature i, individual j:

predicted expression;= SNP QTL effect size; * genotype; + STR QTL effect size;* genotype;

We modeled the predicted expression values using a model analogous to the popDE model (Y ~
Admixture) in each condition separately since the same features are not always popDE in both
conditions. The previously described popDE outputs were used as the observed population

differences.

Evaluating the impact of the top SNP and STR on popDE effects through GSEA

For each data type, we extracted popDE features that were significant in either the NI or flu
condition and ran the same model as described in M2 but adding the top SNP and STR for each
condition within the model. We used 5 permutations obtained by randomly reshuffling admixture

estimates in order to estimate FDR, as described in detail above. We then ran GSEA as described
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in “GSEA of Infection effects and popDE effects” to compare the size and direction of ancestry-

associated effects both before and after regressing out the top SNP and STR for each data type.

Colocalization analysis
We tested colocalization between the molecular QTLs and 14 well-powered GWAS including 6

unigue autoimmune diseases and 4 unique inflammatory diseases (average N: 120132):

Trait N PMID

Allergy and eczema 456899 29892013
Multiple sclerosis 115635 31604244
Rheumatoid arthritis 103638 24390342
Allergic diseases 242569 29083406
Adult-onset Asthma 327253 30929738
Atopic dermatitis 40835 26482879
[IBDGC — Crohn’s disease 20883 26192919
[IBDGC - Inflammatory bowel disease 34652 26192919
IIBDGC - Ulcerative colitis 27432 26192919
Systemic lupus erythematosus 10995 27399966
Asthma 142486 29273806
Crohn’s disease 40266 28067908
Inflammatory bowel disease 59957 28067908
Ulcerative colitis 58341 28067908

We first identified each lead GWAS SNP with P-value below 1e-05 and defined a locus as
a 1Mb window centered around the lead GWAS SNP. A GWAS locus was moved from COLOC
analysis if its lead SNP overlaps the HLA region (chr6: 25Mb-35Mb). Colocalization test was only
performed when the most significant QTL of a feature falls within a defined window (100Kb for
RNA-seq, ATAC-seq, H3K27ac, H3K27me3, H3K4mel and H3K4me3, and 5Kb for WGBS)
around the lead GWAS SNP. We used “coloc.signals” function from COLOC package (v5.1.0)
with default priors (Giambartolomei et al. 2014; Wallace 2020) We defined colocalization as

PP3+PP4 > 0.5 and PP4/(PP3+PP4) > 0.8.
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Imputation of SNPs for heritability analysis

We performed imputation using the same 7,383,243 SNPs for QTL mapping in order to eliminate
missing genotypes, as required by the heritability analyses described below. Briefly, we used
Genotype harmonizer (Deelen et al. 2014) to harmonize the strand with the 1000 Genomes
reference panel. We used SHAPEIT to phase the haplotypes (Loh et al. 2016) prior to imputation
with IMPUTE v2 using one phased reference panel (1000 Genomes) (Howie, Donnelly, and
Marchini 2009). We imputed each chromosome in 5 MB intervals and used the “pgs_miss” flag to

replace only the missing genotypes.

Fine-mapping molecular QTLs

To better identify likely causal variants, we performed fine-mapping of molecular QTLs using the
Bayesian statistical fine-mapping tool SuUSIE (Wang et al. 2020). We used SuSiE with individual-
level phenotype and genotype data and set the maximal causal variants per region parameter L
=3.

We fine-mapped molecular QTLs with distance-based informative prior inclusion probability,
so that a SNP close to a gene or peak would have a higher prior probability of being a causal
variant. In specific, we separated molecular QTLs into distance bins, with six distance bins
(<500bp, 500bp-1kb, 1kb-2kb, 2kb-5kb, 5kb to 10kb, and 10kb-100kb) for eQTL, caQTL and
histone QTLs, and four distance bins (<500bp, 500bp-1kb, 1kb-2kb, and 2-5kb) for methylation
QTL. We used the Bayesian statistical tool Torus (Wen 2016) to estimate the enrichment for the
distance bins, compute SNP-level priors using the estimated distance enrichment estimates for

each locus.

Heritability and enrichment analysis of GWAS summary statistics using S-LDSC
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To patrtition the heritability of complex traits and estimate heritability enrichment for each type of
molecular QTLs we used Stratified LD score regression which assesses how the heritability of a
complex trait is partitioned among functional features, while controlling for LD, allele frequency
and other baseline features (S-LDSC) (Finucane et al. 2015; Gazal et al. 2017; Bulik-Sullivan et
al. 2015) S-LDSC estimates the heritability enrichment as a ratio of the proportion of heritability
explained by an annotation divided by the proportion of SNPs in that annotation.

For the enrichment analysis, we constructed a continuous annotation using the posterior
inclusion probability (PIP) from SuSiE fine-mapping with distance-based prior. We applied S-
LDSC separately for each type of molecular QTL annotations. In our S-LDSC analysis, we
adjusted for various baseline annotations of SNPs using a generic baseline LD model, including
gene annotations (coding, UTRs, intron, promoter), MAF bins and LD-related annotations. We did
not include functional annotations such as enhancer markers in our baseline model, because
these annotations are likely correlated with our QTL features of interest and may bias our
estimated enrichment.

To estimate heritability explained by molecular QTLs, we constructed a binary annotation
containing all SNPs with SNP-level FDR < 10% since the GWAS (same as detailed above in
“Colocalization analysis”) used have only been performed on SNPs. We note that the exact values
of the heritability estimates may be biased as we have only 35 individuals from a mixture of
European and African populations, but the relative heritability estimates should reflect the relative

contributions of different molecular QTLs to these complex traits.

Estimation of the association between genomic marks and immune disease

We used S-PrediXcan (Gamazon et al. 2015) to estimate the association between immune
system disorders and the expression of genes and epigenetic marks. S-PrediXcan requires
prediction models that describe the association between an aggregate of SNPs and the
expression of nearby genomic marks. However, instead of explicitly predicting the genetically
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determined component of expression, it requires only the summary statistics of GWAS studies to
assess the association between a genomic mark and a disorder. We trained a set of prediction
models of gene and epigenetic mark expression in both non-infected and flu-infected conditions
using the same genotype and phenotype data used for QTL mapping. We used summary
statistics from the same 14 GWAS studies previously described to identify the genes and
epigenetic marks involved in these disorders. We used the beta and p-value of SNPs from the
GWAS summary statistics when available in order to compute the association between the
molecular traits and disorders. Otherwise, we used odd ratios. We apply Bonferroni correction to
determine the condition and data type specific p-value cut off and identify genes and epigenetic
marks that are significantly associated with the immune disorders. We mapped the epigenetic
marks to their closest genes using the annotatePeak function of CHIPseeker using the same

parameters previously described.
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Supplementary Figure 1: Genome-wide impact of flu infection across regulatory marks. (A)

Principal Component Analysis read counts showing for all data types the separation of NI and Flu

samples along the two main axes of variation. (B) Distribution depicting the relationship between

gene expression changes and epigenetic changes in response to flu infection as seen in Figure

1E but here focusing on epigenetic changes nearby genes that are downregulated in response to

infection. Downregulated genes are defined as genes with beta < -0.5 and FDR<.01. Epigenetic

changes are those with FDR<.01, except for methylation changes (FDR<.20).
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Supplementary Figure 2: Classification of ancestry-associated differences. (A) Quantitative
genetic ancestry proportions partitioned into European (dark blue) and African (turquoise)
components for each individual. (B) Distributions of individual mean scores of inflammatory
pathways in the flu-infected condition comparable to Figure 2C which shows non-infected
condition distributions. A higher score indicates a strong expression of genes or epigenetic marks
nearby genes within the Hallmark inflammatory response pathway. (C) Distribution depicting the
relationship between popDE genes and popDE epigenetic changes. Genes more highly
expressed in individuals with high proportions of European ancestry (fold change < -0.5, FDR<
0.10) are nearby popDE epigenetic regions (FDR <.10) that show increased levels of chromatin

accessibility, H3K27ac, H3K4mel and H3K4me3 in individuals with increased European ancestry

64


https://doi.org/10.1101/2022.05.10.491413
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.10.491413; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

levels. Black lines represent means. (D) The distribution of Spearman’s correlation between the

predicted and observed mean scores for the various pathways using different alphas.
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Supplementary Figure 3: QTL mapping of the different molecular traits. (A) Proportion and
number of SNP-QTL at a significance threshold of FDR <.10 in each condition (B) Proportion and
number of STR-QTL at a significance threshold of FDR<.10 in each condition. (C) Proportion and
number of genes/features associated with at least one SNP or STR QTL in non-infected
macrophages. Shared QTL were defined as those genes/features associated with a QTL at an
FDR<.10 when performing the QTL mapping against SNPs and STRs separately. SNP- or STR-

specific are those only identified as significant (FDR<0.1) against either SNPs or STRs. (D) The
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mean percent variance explained by the top SNP and STR across all features in the non-infected
condition. Both is the sum of the PVE of the top SNP and top STR (E) The enrichment of TF

binding sites across non-infected specific SNP-QTL. TF clusters are shown.
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Supplementary Figure 4: Overlap of QTL across molecular traits. (A) Left: The number of

overlaps for each QTL type for the permuted analysis in the non-infected condition. More than

one overlap indicates the QTL is shared with at least one other datatype. Center: The number of
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overlaps for each QTL type in the flu-infected condition. Right: The number of overlaps for each
QTL type for the permuted analysis in the flu-infected condition. (B) The percentage of QTL in
one data type that are also QTL for another data type in the flu-condition. The starting QTL (rows)
are the QTL that are tested for sharing while the overlapping QTL (columns) are the percentage
of each starting QTL that are shared with that datatype. The color of each circle corresponds to
the percentage of sharing. (C) QTL sharing patterns for those QTL overlapping 2= data types) in
the non-infected condition. Y axis the proportion of overlapping QTL (i.e., the denominator is the
number of QTL that are shared in at least 2 or more data types). (D) QTL sharing patterns for
those QTL overlapping 3= data types) in the non-infected condition highlighting that caQTL,
K4mel QTL and meQTL are the most commonly shared. The Y axis is the same as described in
(C) above. (E) Association between genetically encoded baseline differences in chromatin
accessibility and baseline differences in other epigenetic marks. Left- Meta caQTL plot (at
baseline condition) across caQTLs for accessibility regions associated with up-regulated genes
(n=681 caQTLs associated with 506 genes). Individuals with genotypes associated with increased
chromatin accessibility also show significantly increased levels of H3K4mel and H3K27ac

(P<2.2x10%%), and to a lesser extent, a reduction in the repressive mark H3K27me3 (P<1.15x10-

10) .
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Supplementary Figure 5: Calculating the contribution of cis-acting regulatory variants to
ancestry-associated differences. (A) Correlations between the observed and predicted betas
for significant population differentially expressed (popDE) features (FDR<.10) for each of the data

types in both conditions (Pearson’s correlation coefficient reported). (B) Boxplot of the APVE of
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admixture for each feature in each data type in the non-infected condition (flu-infected condition
shown in Fig5C). (C) Boxplots of individual transcriptional response scores after regressing out

the effects of the top SNP and STR in each condition for the 6 immune response pathways.
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Supplementary Figure 6: Epigenetic QTLs overlap with genetic variants associated with

immune-related diseases. (A) Summary of colocalization results for duplicated immune related
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diseases (11 diseases were investigated through 14 GWAS). Points represent the number of
significant hits defined as PP3+PP4 > 0.5 and PP4/(PP3+PP4) > 0.8 in either condition. (B) Bar
plots, with standard error, representing the percent of heritability explained by each of the
molecular QTL in all conditions. (C) Heritability enrichment results for all 14 GWAS. A 95%
confidence interval is displayed. (D) Summary of PrediXcan results. Each point represents the
total number of genes (Bonferroni corrected p=0.05) associated with the disease trait in either
condition. A gene is only counted once even if multiple peaks are associated with the gene. (E)
Schematic depicting the proposed hypothesis that epigenetic QTL may act as a proxy for genetic
variation that under particular environmental conditions has an impact on gene expression levels.
Blue boxes represent gene exons and green peaks represent ATACseq peaks. A genetic variant
at the QTL location impacts TF binding, such that differential binding of the TF is associated with
variation in chromatin accessibility (i.e., an caQTL). If the activity of this enhancer requires the
recruitment of an additional TF (here labelled “environment-induced TF”) only induced in response
to specific environmental/developmental conditions, the caQTL will not be associated with
variation in gene expression levels. Yet, this caQTL will be a proxy for a genetic variant that on
the “right environment” will ultimately be associated with an eQTL. Under this model, epigenetic
QTLs that colocalize with GWAS variants (but not with eQTLS) can be thought of as a means to
identify genetic variants that have an impact on gene expression in a yet unmeasured

environment.
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Supplemental Table descriptions

Table S1. Description of the samples and libraries generated for this study, related to STAR
methods

Table S2. List of differentially expressed, accessible and methylated features in response to flu
infection, related to Figure 1.

Table S3: Transcription Factor activity scores and TF enrichment results in condition specific
QTL

Table S4. List of population differentially expressed and responsive features, related to Figure
2.

Table S5. List of cis regulatory QTLs identified in non-infected and flu-infected macrophages
using both SNPs and STRs, related to Figure 3.

Table S6. QTL integration results, related to Figure 4.

Table S7. Colocalization results for 14 immune related GWAS, related to Figure 6.

Table S8. Predixcan results for 14 immune related GWAS, related to Figure 6.

Note: Only CpG sites with FDR<.50 in one condition are reported in Tables S2 and S4 and
those with FDR <.10 in Table S5 due to file size limitations. Full methylation analysis results

available upon request.
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