

Structures reveal a key mechanism of WAVE Regulatory Complex activation by Rac1 GTPase

3

4 Bojian Ding^{1*}, Sheng Yang^{2*}, Matthias Schaks^{3,4,5}, Yijun Liu², Abbigale Brown²,
5 Klemens Rottner^{3,4,6}, Saikat Chowdhury^{1,7,8#}, Baoyu Chen^{2#}

6

7 Affiliations:

⁸ ¹Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls
⁹ Road, Stony Brook, NY 11794, USA.

10 ²Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa
11 State University, 2437 Pammel Drive, Ames, IA 50011, USA.

12 ³Division of Molecular Cell Biology, Zoological Institute, Technische Universität
13 Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.

14 ⁴Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7,
15 38124 Braunschweig, Germany.

16 ⁵Present address: Soilytix GmbH, Dammtorwall 7A, 20354 Hamburg, Germany

17 ⁶Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106
18 Braunschweig, Germany.

19 ⁷CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India

20 ⁸Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh
21 201002, India

²² *These authors contributed equally to this work

23 [#]Correspondence to: saikat@csirccmb.org; stone@iastate.edu

24 **Abstract**

25 Rho-family GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive
26 Arp2/3-mediated actin polymerization in many essential processes. Rac1 binds to WRC at
27 two distinct sites—the A and D sites. Precisely how Rac1 binds and how the binding
28 triggers WRC activation remain unknown. Here we report WRC structures by itself, and
29 when bound to single or double Rac1 molecules, at ~ 3 Å resolutions by cryogenic-electron
30 microscopy. The structures reveal that Rac1 binds to the two sites by distinct mechanisms,
31 and binding to the A site, but not the D site, drives WRC activation. Activation involves a
32 series of unique conformational changes leading to the release of sequestered WCA (WH2-
33 central-acidic) polypeptide, which stimulates the Arp2/3 complex to polymerize actin.
34 Together with biochemical and cellular analyses, the structures provide a novel
35 mechanistic understanding of how the Rac1-WRC-Arp2/3-actin signaling axis is regulated
36 in diverse biological processes and diseases.

37

38 The Wiskott-Aldrich Syndrome Protein (WASP) family proteins play a central role
39 in promoting Arp2/3-mediated actin assembly in a wide range of processes, including cell
40 migration and intracellular vesicle trafficking^{1,2}. These proteins share a conserved C-
41 terminal WCA (WH2-central-acidic) sequence, which can bind to and stimulate the Arp2/3
42 complex to produce branched actin networks at membranes^{1,2}. Most WASP-family
43 proteins are inhibited in the basal state¹. Inhibition is achieved by keeping their WCA
44 sequence sequestered either *in cis* within a single polypeptide chain, as in WASP and N-
45 WASP, or *in trans* within large multi-protein complexes, as in WAVE and WASH³⁻¹⁰. A
46 variety of upstream signals, including ligand binding (e.g., GTPases, inositol phospholipids,
47 membrane receptors, and scaffolding proteins) and post-translational modifications (e.g.,
48 phosphorylation and ubiquitination), often act cooperatively in the cell to relieve the
49 inhibition and simultaneously recruit WASP-family proteins to their target membrane
50 locations to promote actin polymerization^{8,10-17}.

51 The WASP-family member WAVE exists exclusively in a 400-kDa, hetero-
52 pentamic assembly named the WAVE Regulatory Complex (WRC)¹⁸. Essential to most
53 eukaryotic organisms, the WRC plays a key role in promoting actin polymerization at
54 plasma membranes and producing sheet-like membrane protrusions known as lamellipodia,
55 commonly found at the leading edge of migrating cells^{2,4}. Genetic mutations in various
56 subunits of the WRC are frequently associated with human diseases, including
57 neurodevelopmental disorders, immune syndromes, and many types of cancer¹⁸.

58 WRC by itself exist in an autoinhibited state⁶⁻⁸. Previous crystal structures of a
59 minimal, inhibited WRC (WRC^{xtal}) revealed the overall structural organization and the
60 inhibition mechanism^{8,12}. The studied complex is composed of a trimer formed by WAVE1,

61 Abi2, and HSPC300, and a dimer formed by Sra1 and Nap1 subunits (**Fig. 1A**). WAVE1
62 has a conserved sequence of ~100 amino acids (a.a.) defined as the “meander” sequence,
63 which meanders across the surface of Sra1 as a loose collection of loops and short helices⁸
64 (**Fig. 1A**). The meander region and a conserved surface on Sra1 collectively comprise the
65 WCA-binding site, which sequesters the WCA from accessing the Arp2/3 complex⁸.

66 A large variety of ligands can recruit WRC to membranes through direct
67 interactions and/or simultaneously activate it¹⁸. Among these ligands, the Rho-family
68 GTPase Rac1 is the ubiquitous activator of WRC¹⁸. Prior studies have shown that direct
69 binding of Rac1 to the WRC is necessary and, in many cases, sufficient to drive WRC
70 activation^{5,11,12,19–21}. Determining how Rac1 binds to and activates WRC is key to
71 understanding the regulation and function of WRC-mediated signaling in diverse cellular
72 processes.

73 Previous biochemical and low-resolution cryo-EM studies proposed two distinct
74 Rac1-binding sites on WRC^{8,19}. Both sites were mapped on conserved surfaces of Sra1,
75 which are separated by ~ 100 Å on the opposite ends of the WRC. The site adjacent to the
76 WCA was referred to as the A site, and the one distant from the WCA as the D site¹⁹ (**Fig.**
77 **1A**). The two sites thus allow simultaneous binding of two individual Rac1 molecules,
78 albeit with distinct affinities, with the D site binding ~ 40-100 times stronger than the A
79 site¹⁹. Mutating key residues at either site abolished WRC activation by Rac1 in pyrene-
80 actin polymerization assays, suggesting both sites are critical for WRC activation¹⁹. *In vivo*,
81 however, the A site seemed to play a more important role in promoting lamellipodia
82 formation in both mammalian and amoeba cells, despite its much lower affinity for Rac1²¹.
83 Mutating the A site almost completely abolished lamellipodia formation, while mutating

84 the D site did not eliminate lamellipodia formation, but compromised their general
85 morphology²¹. Without high-resolution structures of the WRC bound to Rac1, it remains
86 unclear how Rac1 binds the two sites and, more importantly, how Rac1 binding triggers
87 WRC activation.

88 Here we report WRC structures determined to ~3 Å resolutions by single-particle
89 cryogenic-electron microscopy (cryo-EM) in three different states: without Rac1, with
90 Rac1 only bound to the D site, and with Rac1 molecules bound to both A and D sites
91 simultaneously. The structures reveal in detail how Rac1 interacts with both sites, and how
92 Rac1-WRC interaction drives WRC activation. We find Rac1 uses two distinct
93 mechanisms to bind the two sites, and only binding to the A site, but not to the D site,
94 directly contributes to WRC activation. Rac1 binding to the A site flattens the interaction
95 surface and allosterically destabilizes a conserved region in the meander sequence of
96 WAVE1 critical for autoinhibition. These conformational changes release the sequestered
97 WCA sequence, making it accessible to Arp2/3. Coupled with biochemical and cellular
98 studies, the new structures resolve a central mechanism of WRC activation, a key step in
99 Arp2/3-mediated actin filament assembly in the cell.

100

101 **Results**

102 **Structural solutions to understand Rac1 binding to WRC**

103 Prior structural studies of WRC led to the identification of the A and D sites, but
104 could not determine the binding or activation mechanism due to several limitations^{8,19}. The
105 crystal structures used a “minimal WRC” (WRC^{xtal}) that lacked the polypeptide region (a.a.
106 187-230 was deleted from WAVE1) necessary for activation, and hence could not be

107 activated by Rac1^{8,19}. The cryo-EM structure of WRC bound to a single Rac1 lacked WCA
108 (WRC^{230ΔWCA-Rac1}), and its limited resolution could not precisely delineate how Rac1 binds
109 to the D site, or whether D site Rac1 binding causes activation¹⁹. Moreover, many questions
110 about the A site remained open due to the lack of structural information, including exactly
111 where the proposed A site is, how Rac1 binds to it, and whether or how A site Rac1 binding
112 activates WRC.

113 Major challenge in addressing the aforementioned questions is the weak affinity
114 between Rac1 and WRC, especially at the A site¹⁹, which prevents the formation of stable
115 Rac1-WRC complexes amenable for structural studies. To overcome this challenge, we
116 developed new strategies here to stabilize Rac1 binding. To optimize Rac1 binding to the
117 D site, we used a different tethering strategy than what was used in WRC^{230ΔWCA-Rac1} in the
118 previous study¹⁹ (**Extended Data Fig. 2A,B**). Firstly, we tethered Rac1 to the C-terminus
119 of Sra1. This avoids tethering Rac1 to WAVE1 as in the previous strategy, which would
120 directly perturb WCA at the C-terminus of WAVE1. Secondly, due to the close proximity
121 of Sra1 C-terminus to the D site, we used a significantly shorter, flexible peptide linker
122 (shorter by 71 a.a.) to tether Rac1 to WRC, which keeps Rac1 closer to the D site (herein
123 referred to as WRC^{D-Rac1}; **Fig. 1B**, red dot). In both the previous¹⁹ and new constructs, we
124 use a Rac1 harboring Q61L/P29S mutations (hereafter referred to as Rac1 or Rac1^{QP}
125 interchangeably), in which Q61L stabilizes GTP binding to Rac1, and P29S (an oncogenic
126 mutation identified in melanoma patients^{22,23}) enhances Rac1 binding to WRC¹⁹.

127 Stabilizing Rac1 binding to the A site was more challenging due to its lower affinity.
128 After exploring several different strategies, one of the approaches favored stable binding
129 of Rac1 to the A site (**Fig. 1C** and **Extended Data Fig. 3**). In this strategy, we inserted a

130 Rac1^{QP} to the middle of a non-conserved surface loop of Sra1, between Y423/S424 of a.a.
131 418-432, using two separate flexible linkers. Additionally, we kept a Rac1 tethered to the
132 C-terminus of Sra1 as in WRC^{D-Rac1}. However, instead of using Rac1^{QP}, we used Rac1^{P29S}
133 for the D site as we found Rac1^{P29S} could be readily loaded with GDP or GTP (or
134 GMPPNP, a nonhydrolyzable GTP analog), while Rac1^{QP} remained locked to GTP in the
135 same condition (**Extended Data Fig. 3E**). This unique feature allowed us to find that 1)
136 Rac1 tethered to the A site was sufficient to activate the WRC (when Rac1^{P29S} at the D site
137 was loaded with GDP); and 2) the D-site bound Rac1 could further improve WRC
138 activation by the A site bound Rac1 (when Rac1^{P29S} at the D site is loaded with GMPPNP)
139 (**Extended Data Fig. 3D**). We refer to this construct as WRC^{AD-Rac1}. In both WRC^{D-Rac1}
140 and WRC^{AD-Rac1}, we did not remove WCA to enhance Rac1 binding, which is contrary to
141 what was previously done for the WRC^{230ΔWCA-Rac1} construct¹⁹. Instead, we kept WCA
142 intact to unbiasedly validate the active state of the WRC-Rac1 complexes, both by activity
143 measurements and by the existence of WCA density in reconstructed maps (**Fig. 1**).

144 Using cryo-EM we determined structures of both WRC^{D-Rac1} and WRC^{AD-Rac1}, as
145 well as WRC^{apo} (WRC without tethered Rac1) to ~3 Å resolutions (**Fig. 1, Extended Data**
146 **Fig. 1-3, and Table S3**). The overall structures of WRC in these three complexes were
147 similar to the previous crystal structure (WRC^{xtal})⁸, with a root-mean-square deviation
148 (r.m.s.d.) of 0.83-1.22 Å (**Extended Data Fig. 1A**). Except for local conformational
149 changes caused by A site Rac1 binding as described in detail below, Rac1 binding to either
150 A or D site did not cause large-scale, global conformational changes to WRC. The
151 additional sequence in WAVE1, a.a. 187-230, which was not included in the previous
152 WRC^{xtal} construct, did not show any density in the cryo-EM reconstructions, suggesting

153 that this region is disordered in WRC. Additionally, the structures unambiguously
154 determined that the N-terminal helix of Sra1 (α A, a.a. 5-22) belonged to the same complex,
155 instead of a neighboring WRC as suggested by the previous structural study using X-ray
156 crystallography⁸ (**Fig. 1A**, dark green, and **Extended Data Fig. 1B,C**).

157 Comparison between the WRC^{apo} , $\text{WRC}^{\text{D-Rac1}}$, and $\text{WRC}^{\text{AD-Rac1}}$ structures clearly
158 reveal that Rac1 binding to the A site, but not the D site, leads to WRC activation. In
159 $\text{WRC}^{\text{D-Rac1}}$, D site Rac1 binding did not cause obvious conformational changes; neither did
160 it destabilize the meander sequence or the W and C helices (**Fig. 1B** vs. **1A** and **Extended**
161 **Data Fig. 2**). By contrast, in $\text{WRC}^{\text{AD-Rac1}}$, the density for the W and C helices and part of
162 the meander region were not observed in the reconstructed map, suggesting that upon Rac1
163 binding to the A site, these sequences were destabilized and released from the WRC (**Fig.**
164 **1C**). Consistent with these observations, the pyrene-actin polymerization assay showed
165 both WRC^{apo} and $\text{WRC}^{\text{D-Rac1}}$ were autoinhibited and could be activated by the addition of
166 free Rac1 (**Fig. 1D,E**, blue curves), whereas $\text{WRC}^{\text{AD-Rac1}}$ was basally active (**Fig. 1F**, solid
167 blue curve). Furthermore, a WRC with Rac1^{P29S} only tethered to the A site, but not the D
168 site (herein referred to as $\text{WRC}^{\text{A-Rac1}}$), was also basally active in a nucleotide-dependent
169 manner (**Extended Data Fig. 3D**). Together, these results confirm that A site binding, but
170 not D site binding, causes WRC activation.

171 It is important to note that densities corresponding to the flexible peptide linkers
172 used to tether Rac1 to WRC were not visible in the reconstructed maps, not did we observe
173 perturbations of local structures surrounding the tethering points (**Extended Data Fig. 2C**
174 and **3C**). These observations indicate the linkers only facilitated binding by increasing the
175 local concentration of Rac1, but did not influence or perturb the native structures or caused

176 artefactual conformational states. Additionally, the poise of Rac1 at both A and D sites is
177 consistent with how GTPases interact with effectors in general and is compatible with
178 WRC orientation at plasma membranes¹⁹ (**Extended Data Fig. 4**). Furthermore, the WRCs
179 used in our structural and biochemical studies behaved similarly during chromatographic
180 purifications, showing no sign of mis-assembly or aggregation (**Table S1, S2; Extended**
181 **Data Fig. 5**). Together with complementary structural, biochemical, and cellular analysis
182 described below, our structures represent the native binding states of Rac1 to WRC.

183

184 **Interactions between Rac1 and the D site of WRC**

185 Both WRC^{D-Rac1} and WRC^{AD-Rac1} show nearly identical structures of Rac1 binding
186 to the D site (0.53 Å r.m.s.d.). Compared to WRC^{apo}, WRC^{D-Rac1} does not show major
187 structural differences (0.46 Å r.m.s.d. over the whole complexes; **Fig. 1A,B**). Importantly,
188 the density for structural elements crucial to WRC activation, including the meander
189 sequence and WCA, remains intact and virtually identical to WRC^{apo}, suggesting that D
190 site Rac1 binding does not directly promote WRC activation (**Fig. 1B**). This is consistent
191 with results from pyrene-actin polymerization assays, which show WRC^{D-Rac1} is
192 autoinhibited (**Fig. 1E**, solid blue curve). That this inhibition can be relieved by free Rac1
193 emphasizes that WRC^{D-Rac1} is a functional complex (**Fig. 1E**, dashed blue curve),

194 The D site engages with Rac1 mainly through a largely hydrophobic surface of ~
195 550 Å² presented by a.a. 961-978 of Sra1, which contains a helix-turn-loop structure
196 formed by the H11b1 helix and the loop between H11b1 and H11a helices (**Fig. 2A,B** and
197 **Extended Data Fig. 3B**). Solvent-exposed residues, including R961, R964, Y967, E974,
198 F975, and H978, form multiple hydrophobic, π-π stacking, and polar interactions with

199 several parts of Rac1, including a small portion (a.a. 36-39) of Switch I motif, the helical
200 part (a.a. 64-66) of Switch II motif, and W56 at the N-terminus of Switch II (**Fig. 2B** and
201 **Extended Data Fig. 6A-D,P**).

202 The peptide backbone of contacting residues in either Sra1 or Rac1 does not show
203 major structural changes upon Rac1 binding, except a shift of ~1-1.5 Å of the helix (a.a.
204 64-70) in Switch II of Rac1 towards Sra1 (**Fig. 2D**, black arrow). Several side chains,
205 however, undergo significant rotations to establish the binding. Among them, the side
206 chains of Y967 on Sra1 and F37 on Rac1 undertake a dramatic rotation of ~ 80° and 110°,
207 respectively, creating a tight π-π stacking between the two residues (**Fig. 2C**, curved arrows,
208 and **Extended Data Fig. 6A**). Further, but less ideal stacking of two additional aromatic
209 residues, Rac1^{W56} and Sra1^{F975}, which flank the Sra1^{Y967}-Rac1^{F37} core, creates an “interlock”
210 to stabilize Rac1 binding (**Fig. 2C,D**, black dotted lines).

211 In addition to the π-π stacking, the conformation of Rac1^{F37} is stabilized by a
212 hydrophobic pocket formed by Rac1^{V36, L67, L70} and Sra1^{P963, I972, Y967, G971, F975} (**Extended**
213 **Data Fig. 6D**). This Sra1^{Y967}-Rac1^{F37} core interaction is further stabilized by several polar
214 interactions at the periphery, including a cation-π interaction between Sra1^{R964} and Rac1^{W56},
215 hydrogen bonding between Sra1^{Y967} and Rac1^{N39} and between Sra1^{H978} and Rac1^{Y64}, and
216 two salt bridges, one between Sra1^{E974} and Rac1^{R66} and the other between Sra1^{R961} and
217 Rac1^{D38} (**Fig. 2B-D**, and **Extended Data Fig. 6A-C,P**). In particular, the guanidino group
218 of Rac1^{R66} swings forward by ~4 Å to engage with Sra1^{E974}, while the side chain of Sra1^{R961}
219 swings away to avoid steric clashes with Rac1 and engage with Rac1^{D38} (**Fig. 2D**, curved
220 arrows, **Extended Data Fig. 6B,C**). These structures are consistent with observations made
221 in prior studies^{19,21}, where substituting the key residues at the D site, including Y967A,

222 G971W, R961D/P963A/R964D, and E974A/F975A/H978A/Q979A, all disrupted Rac1
223 binding to WRC.

224

225 **General overview of Rac1 binding to the A site of WRC**

226 When the A site is occupied by Rac1, we noticed that the A site, the meander region,
227 and the WCA helices have undergone significant local conformational changes. This is in
228 clear contrast to what is observed when Rac1 binds to the D site. Particularly, no densities
229 are observed for WCA helices in WRC^{AD-Rac1}, which indicates Rac1 binding to the A site
230 activates the WRC (**Fig. 1C**). This is consistent with the biochemical observations that
231 WRCs with Rac1 bound to the A site are always active, irrespective of Rac1 binding to the
232 D site (**Fig. 1F** and **Extended Data Fig. 3D**). In the following two sections, we will answer
233 two important questions: 1) how Rac1 binds to the A site; 2) how Rac1 binding leads to
234 WRC activation.

235

236 **Interactions between Rac1 and the A site of WRC**

237 The A site constitutes an extensive surface on the N-terminal region of Sra1 (also
238 called the DUF1394 domain; **Extended Data Fig. 3B**). Distinct from the D site, which is
239 flat, relatively small, and largely hydrophobic, the A site is concave, nearly two times larger
240 ($\sim 1138 \text{ \AA}^2$) than the D site, and mostly positively charged (**Fig. 3A,B**). On the Sra1 side,
241 the binding involves a.a. 91-108 (helix H1b1 and loop L2 that connects H1a to H1b1) and
242 a.a. 176-215 (mainly α B and α C helices) (**Fig. 3A**). On the Rac1 side, the interactions
243 involve the end of the α 1 helix (a.a. 23-25), most of Switch I (a.a. 26-37), the β 2- β 3 beta-
244 sheet connecting Switch I and Switch II (a.a. 38-55), and the beginning of Switch II (a.a.

245 56-70) (**Fig. 3A,B**). Majority of the interactions differ from those between Rac1 and its
246 inhibitor CYRI-B (CYFIP-related Rac1 interactor, or FAM49B), which shares a remote
247 homology with the A site region of Sra1²⁴⁻²⁶ (**Extended Data Fig. 6P-S**).

248 Given the low affinity, it is surprising that A site Rac1 binding is mediated by
249 numerous, mostly polar interactions, including 17 hydrogen bonds, 3 salt bridges, and
250 several hydrophobic interactions (**Fig. 3B** and see **Extended Data Fig. 6E-M,P** for more
251 details). Among them, the interactions clustered around Sra1^{R190} seem to play a particularly
252 important role. Sra1^{R190}, which is strictly conserved in almost all organisms⁸, is anchored
253 within an acidic pocket on the Rac1 surface formed partially by the Switch I loop (**Fig. 3C**).
254 The anchoring of R190 is stabilized by the formation of a salt bridge with Rac1^{E31}, which
255 is further bolstered by many interactions at the ridges of the pocket, including salt bridges
256 between Sra1^{K189} and Rac1^{D38}, and Sra1^{R104} and Rac1^{E31}, hydrogen bonding between
257 Sra1^{K189} and Rac1^{F37 CO}, Sra1^{Y108} and Rac1^{E31}, Sra1^{V96 CO} and Rac1^{G30 NH}, and Sra1^{Q95, V96}
258 ^{CO} and Rac1^{S29} (details of P29S mutation in Rac1 is described in later section), as well as
259 a hydrophobic interaction between Sra1^{F194} and Rac1^{I133} (**Fig. 3C** and **Extended Data Fig.**
260 **6E-G,P**). This Arginine anchor is unique to Sra1 and CYRI-B, as it is not observed in other
261 reported Rac1 binding proteins (**Extended Data Fig. 6S**). Consistent with the structural
262 analysis, mutating R190 to Aspartic acid (R190D) in previous studies disrupted Rac1
263 binding *in vitro* and abolished WRC activity in lamellipodia formation^{8,21}.

264 In addition to R190D, the structure also explains another previously studied
265 mutation at the A site, C179R, which is located distant from R190, but similarly abolished
266 WRC activity^{8,19,21}. Limited to small side chains in all examined organisms⁸, C179 is
267 tightly packed against a concave pocket on Rac1 (**Extended Data Fig. 6N**). Although it

268 does not form any specific interactions with Rac1, mutating C179 to the long-chain residue
269 Arginine would cause steric clashes to disrupt Rac1 binding to the A site.

270 To further understand the contributions of individual interactions, we mutated
271 several additional conserved contacting residues at the A site, including N176W, N183R,
272 S186M, and K189M. They form hydrogen bonds or salt bridges with N52, T24/S41
273 NH/CO, N39 NH/CO, and D38/F37 CO in Rac1, respectively (**Fig. 3B and Extended Data**
274 **Fig. 6G,H,K**). All mutations disrupted WRC activation *in vitro* (**Fig. 3D**) and reduced
275 lamellipodia formation upon re-introduction of corresponding variants into B16-F1
276 *Sra1/Cyfip2* double knock-out (KO) cells²¹ (**Fig. 3E and Extended Data Fig. 7B**). The
277 mutations did not affect WRC purification *in vitro* and rescued WRC expression in the cell
278 (**Extended Data Fig. 5E-J and 7C**), suggesting they did not interfere with protein folding
279 or complex assembly. It is intriguing that the effects of these mutants varied based on their
280 relative location in the A site. N183R and S186M, which are located at the center of A site,
281 strongly impaired WRC function, while N176W and K189M, which are located at the
282 periphery of the A site, had milder effects (**Fig. 3B,D,E**). This suggests individual
283 interactions have different contributions to the overall binding to Rac1, with residues at the
284 center of the A site having major contributions. It is worth noting that the efficiency of
285 these mutants in disrupting WRC's function *in vitro* correlates well with their extent in
286 compromising lamellipodia formation in cells (**Fig. 3D** vs. **E**), thus supporting the fact that
287 the biochemical activity of Rac1 in binding and activating the WRC is directly correlated
288 with WRC activity in promoting lamellipodia formation.

289 In addition to aforementioned mutations, the WRC^{AD-Rac1} structure explains the
290 phenotype of several mutations found in human patients. P29S in Rac1 was initially

291 identified as one of the major somatic mutations in human melanoma, shown to enhance
292 Rac1 binding to various effector proteins, including PAK1 (p21 protein activated kinase
293 1), MLK3 (mixed-lineage kinase 3), and the WRC^{19,22,23}. For this reason, we included the
294 P29S mutation in our constructs in order to strengthen Rac1 binding¹⁹. Our structure shows
295 that P29S provides additional hydrogen bonding with Sra1^{Q95} and Sra1^{V96} CO, which
296 explains why this melanoma-causing mutation promoted WRC binding and activation¹⁹
297 (**Fig. 3B and Extended Data Fig. 6E**).

298 Furthermore, Y108H in the Sra1 homolog Cyfip2 (which shares 88% sequence
299 identity and is analogously incorporated into a WRC) is one of the hotspot mutations found
300 in patients with developmental and epileptic encephalopathy-65 (DEE-65)²⁷. Unlike other
301 hotspot mutations in DEE-65 (described later), Y108H does not seem to directly affect the
302 meander or WCA sequence. Our structure shows that Sra1^{Y108} forms hydrogen bonds with
303 Rac1^{E31} (one of the aforementioned interactions at the ridges of the acidic pocket stabilizing
304 R190 anchoring) (**Fig. 3B,C and Extended Data Fig. 6F**). Replacing this Tyr to a His,
305 which has a similar size as Tyr, but is more polar and positively charged, may further
306 enhance this polar interaction to promote Rac1 binding and WRC activation. Consistent
307 with this prediction, Y108H in Sra1 mildly sensitized WRC activation by Rac1 (**Extended**
308 **Data Fig. 7A**), whereas Y108A slightly reduced the sensitivity (**Fig. 3D and Extended**
309 **Data Fig. 7A**). The effect of Y108H or Y108A was subtle, suggesting the Sra1^{Y108}-Rac1^{E31}
310 interaction has a limited contribution to Rac1 binding. In fact, in our complementation
311 assays using B16-F1 *Sra1/Cyfip2* KO cells, where Rac1 expression was not disrupted²¹,
312 neither Y108H nor Y108A significantly affected WRC-mediated lamellipodia formation
313 (**Fig. 3E and Extended Data Fig. 7B,C**). In contrast, in previously published results using

314 a sensitized cell line, *Sra1/Cyfip2/Rac1/2/3* KO B16-F1 cells (clone #3/4), where Rac1
315 expression was substantially reduced (but not completely eliminated) making lamellipodia
316 formation more sensitive to Rac1-WRC interaction, Y108H mutation indeed enhanced
317 WRC-dependent actin remodeling²⁸. These observations provide an example that even a
318 moderate enhancement of WRC activity in the cell by Y108H mutation can disrupt the
319 finely tuned regulation of Arp2/3-mediated actin assembly, ultimately manifesting as a
320 neurological disease.

321 Having understood the underlying mechanism of Rac1 binding to the A site, we
322 next examine how this binding leads to WRC activation.

323

324 **Rac1 binding to the A site causes activating conformational changes in WRC**

325 Despite the extensive interactions between Rac1 and A site, why does Rac1 bind to
326 the A site with low affinity? By comparing the WRC^{D-Rac1} with WRC^{AD-Rac1} structure, we
327 find that the conformation of the A site in WRC^{D-Rac1} is not compatible with Rac1 binding.
328 In particular, Rac1 binding would directly clash into part of the L2 loop (**Fig. 4A** and
329 **Extended Data Fig. 8A**). To accommodate Rac1 binding, the A site must undergo a major
330 conformational change, which involves flattening the concave binding surface by ~8°.
331 This flattening is caused by an outward rotation of several key structural elements at the A
332 site, including H1b1 helix, N-terminus of H1b2, loop L2, and α B-loop- α C, relative to a
333 pivot axis running roughly through R87 in the L2 loop, K178 in the loop between H2a and
334 α B, and N124 in H1b2, while keeping the neighboring structures beyond the pivot axis,
335 including H1a, most part of H1b2, H2a, H2b, and H8a, unchanged (**Fig. 4A,B**, black arrows,

336 and **Extended Data Fig. 8A-C**). The cost of the A site undergoing this conformational
337 change could antagonize Rac1 binding and reduce Rac1's affinity to the A site significantly.

338 Another major conformational change occurring simultaneously when Rac1 binds
339 to the A site is the release of the C-terminal half of the meander sequence in WAVE1 (after
340 Q130, except part of the α 4 which is accounted for by a poorly defined density in WRC^{AD-}
341 Rac^1), together with the W and C helices (**Fig. 4B**, dark magenta vs. light pink). The release
342 of W and C helices explains why WRC^{AD-Rac1} is basally activated (**Fig. 1C,F**). In addition
343 to the release of the C-terminal half of the meander sequence and WCA, the α 2 helix of
344 WAVE1 in the N-terminal half of the meander sequence partially unfolds and collapses
345 towards where the W helix is originally located (**Fig. 4B**). Since α 2 interacts with the W
346 helix, which contributes to the sequestering of WCA, we believe the unfolding of α 2 is a
347 result of WCA release, leading to loss of support for the α 2 conformation.

348 Without a direct interaction, how does Rac1 binding to the A site allosterically
349 release the meander sequence or WCA? Among the A-site elements that undergo rotations,
350 H1b1 and L2 (a.a. 87-114) directly associate with the α 4-loop- α 5 component (a.a. 132-
351 152) of the meander sequence in WAVE1 through a largely hydrophobic surface of \sim 686
352 \AA^2 (**Fig. 4B** and **Extended Data Fig. 8C-E**). The rotation of H1b1 and L2 would
353 simultaneously push α 4-loop- α 5 to rotate around the pivot axis, which aligns to a critical
354 region of the meander sequence near residues P131 and Y151 (**Fig. 4B** and **Extended Data**
355 **Fig. 8B,C**). At this region, Y151 inserts into a deep hydrophobic pocket formed by highly
356 conserved residues from both Sra1 and WAVE1, analogous to a key being inserted into a
357 lock (**Fig. 4C**, top). Based on this analogy, we herein refer to this region as the "Tyrosine
358 lock". Half of the Tyrosine lock is contributed by Sra1, including W86/R87/S88/C89 from

359 the L2 loop and F686 from the H8a helix, while the other half comes from WAVE1,
360 including P131/P132/P133/L134 preceding α 4 and L148 in α 5 (Fig. 4C). In particular,
361 P131/P132/P133 (or PPP) forms a rigid stereotypical left-handed polyproline II helix (PPII
362 helix) that lines up the binding pocket (Fig. 4C). Rotating one side of the Tyrosine lock
363 (including S88, C89 in Sra1 and the rigid PPII helix in WAVE1), while keeping the other
364 side stationary (including W67, R87, and F686 in Sra1), would pinch the Tyrosine lock
365 and destabilize the binding of Y151 (Extended Data Movie 1).

366 The sequence immediately following Y151 (a.a. 151-161, herein referred to as the
367 “stem”) forms a series of highly conserved interactions with Sra1 and the C helix⁸ (Fig.
368 4D), which are critical for keeping the meander sequence and WCA sequestered. Many
369 missense mutations, either identified in *Cyfip2* from human patients or previously designed
370 based on the crystal structure (WRC^{xtal}; PDB: 3P8C) to disrupt WRC autoinhibition, are
371 located in the Tyrosine lock region and the “stem” regions (Fig. 4D, indicated by red and
372 yellow dots, respectively)^{8,27,29,30}. Single point mutation in these regions was typically
373 sufficient to cause disease or autoactivation of WRC, suggesting the interactions in the
374 Tyrosine lock and the “stem” region are highly cooperative^{8,21,28}. Releasing Y151 from the
375 Tyrosine lock would disrupt the overall conformation of the “stem” sequence, subsequently
376 leading to WCA release and WRC activation.

377 The above analysis suggests Rac1 binding to the A site acts as an allosteric
378 competitor of Y151 in the Tyrosine lock. Given this model, if we disrupt the Tyrosine lock,
379 we should see enhanced Rac1 binding to the A site. To test this model, we designed three
380 separate mutations to disrupt the Tyrosine lock from different angles and then used GST-
381 Rac1 to pull down various WRC^{D-Rac1} that carry these mutations. Note in WRC^{D-Rac1} the D

382 site is occupied by Rac1, which allows us to specifically measure Rac1 binding to the A
383 site. The first mutation, Δ PPP, replaces the rigid PPII helix on the WAVE1 side of the
384 Tyrosine lock with a flexible peptide linker. The second mutation is a phosphomimetic
385 mutation, Y151E, in WAVE1. Y151 is strictly conserved from animals to plants and is
386 known to be phosphorylated by the Abl kinase in cells to promote WRC-mediated actin
387 polymerization and lamellipodia formation³¹⁻³³. In a previous study, Y151E (or Y150D in
388 WAVE2) or a mutation disrupting the binding pocket (F686E), was shown to activate the
389 WRC both *in vitro* and in cells⁸. The third mutation is R87C in Sra1, which is a hotspot
390 mutation in *Cyfip2* in human patients with DEE-65 and was shown to activate WRC in
391 cells²⁷⁻²⁹. R87C should disrupt the Tyrosine lock from the Sra1 side (**Fig. 4C**). As expected,
392 the wild type (WT) WRC^{D-Rac1} showed marginal binding to GST-Rac1 due to the low
393 affinity of Rac1 to the A site in inhibited WRC. By contrast, all the above three mutations
394 significantly promoted the binding (**Fig. 5A-B**) and caused autoactivation of WRC in
395 pyrene-actin polymerization assays (**Fig. 5C**).

396 Together, our analysis explains how Rac1 binding to the A site promotes WRC
397 activation through an allosteric competition mechanism. This mechanism is analogous to
398 a “door wedge” model (**Fig. 5D** and **Extended Data Movie 1**). In the basal state, the wedge
399 (Y151) is inserted in the door hinge (Tyrosine lock) to stabilize the closed conformation.
400 To activate WRC, Rac1 binding must push the door (the A site together with α 4-loop- α 5
401 of WAVE1) to swing around the hinge, which will pinch out the wedge, leading to the
402 collective release of the attached “stem” region and WCA. The “tug of war” between the
403 wedge and Rac1 binding determines the equilibrium between the closed and open
404 conformations of the WRC and hence its activity level, while further phosphorylation of

405 Y151 by Abl can act synergistically with Rac1 to shift the equilibrium (more details in
406 Discussion).

407

408 **Discussion**

409 Signaling from Rac1 GTPase to the WRC and Arp2/3 plays a central role in
410 promoting actin cytoskeletal assembly in various important processes^{2,4,12,18}. Nevertheless,
411 how Rac1 binds to and activates WRC has remained a major conundrum for the last two
412 decades. Here, our structural, biochemical, and cellular analyses have resolved this central
413 mechanism, revealing precisely how Rac1 binds to both A and D sites through two distinct
414 surfaces and how Rac1 binding to the A site stimulates WRC activation. Distinct from two
415 other members of the WASP-family protein, WASP and N-WASP, in which the Rho-
416 GTPase Cdc42 releases the inhibited WCA through a direct competition mechanism³,
417 WAVE in the WRC is activated by an allosteric competition mechanism analogous to a
418 “door wedge” model, in which Rac1 binding to the A site drives conformational changes
419 that propagate to the Tyrosine lock region to destabilize meander binding and release WCA
420 (**Fig. 5D and Extended Data Movie 1**).

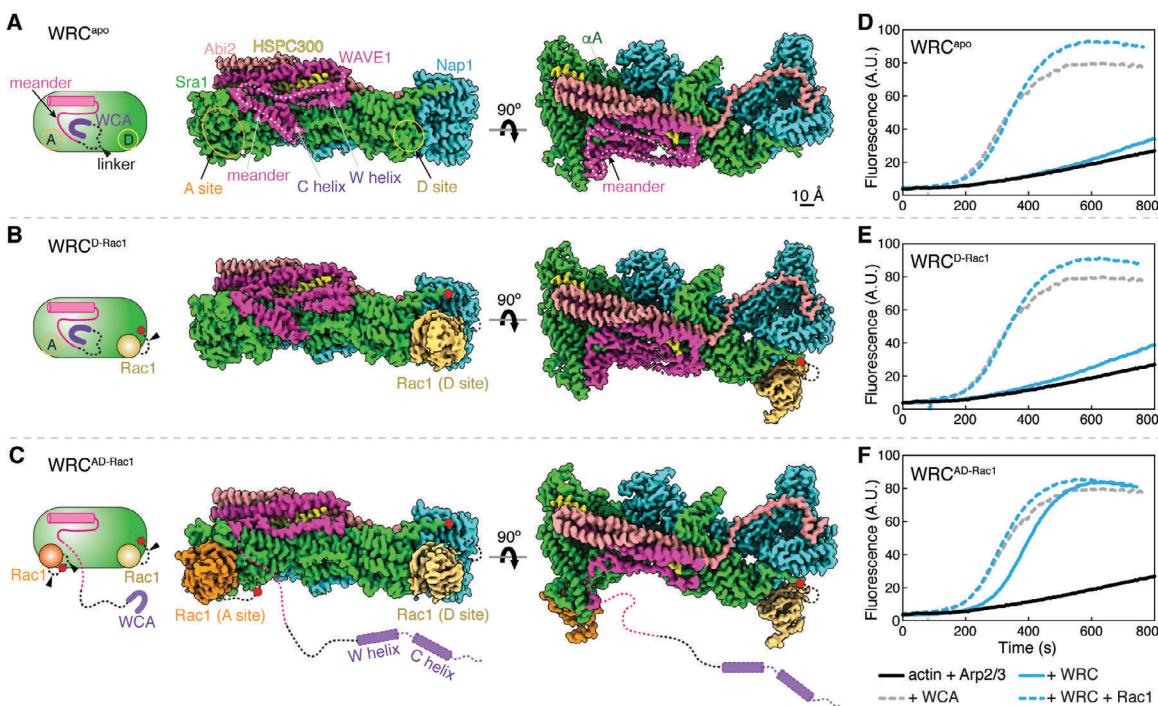
421 Among the many ligands of the WRC, Rac GTPases are the ubiquitous activator¹⁸.
422 Determining the activation mechanism by Rac1 gives insights into how other WRC ligands,
423 such as inositol phospholipids, kinases, Arf GTPases, and membrane receptors, may work
424 together with Rac to spatiotemporally control WRC activity in diverse processes¹⁸. For
425 example, phosphorylation of WAVE2^{Y150} and WAVE3^{Y151} (equivalent to WAVE1^{Y151}) by
426 the Abl kinase promotes WRC-mediated actin polymerization and lamellipodia
427 formation³¹⁻³³. Our data reveal that Abl and Rac1 utilize the same mechanism to promote

428 WRC activation. Y151 is entirely buried in the Tyrosine lock in the basal state and only
429 becomes accessible to Abl kinases when the A site Rac1 releases it. Once phosphorylated,
430 Y151 can no longer antagonize Rac1 binding. Instead, the phosphorylated Y151 will
431 sustain WRC activation until it is reversed by a phosphatase (**Fig. 5D**). The crosstalk
432 between phosphorylation, dephosphorylation, and Rac1 binding can provide an intricate
433 mechanism for cells to control both the strength and duration of WRC activation. A similar
434 mechanism was previously proposed for WASP and N-WASP³⁴.

435 The structural model also depicts how WRC can be possibly oriented on
436 membranes to interact with other molecules. WRC has an acidic and a basic surface
437 (**Extended Data Fig. 4B**). When binding to two Rac1 molecules, WRC can readily
438 associate with acidic phospholipids on the membrane through the basic side. This
439 orientation allows both Rac1 molecules to be anchored to the lipid bilayer through their
440 prenylated basic tails, while the WCA can be readily released towards Arp2/3 in the
441 cytoplasm. It is known that acidic phospholipids, such as PIP₃, cooperate with Rac1 to
442 activate WRC¹⁴. The synergy could be achieved by increasing membrane recruitment of
443 the WRC and/or simultaneously stabilizing a conformation compatible with Rac1 binding
444 (such as capturing the released, positively charged α 6 helix of the meander region).

445 In addition, other membrane-associated proteins are thought to cooperate with Rac1
446 to promote WRC activity, including many proteins that contain a short peptide motif named
447 WIRS (WRC interacting receptor sequence)¹² and the Arf1 GTPase¹¹. While the WIRS
448 peptide does not activate WRC, sequences flanking the WIRS motif were shown to
449 modulate WRC activity¹². It is possible that these sequences act through secondary, weak
450 interactions with structural elements important for Rac1-mediated activation, including the

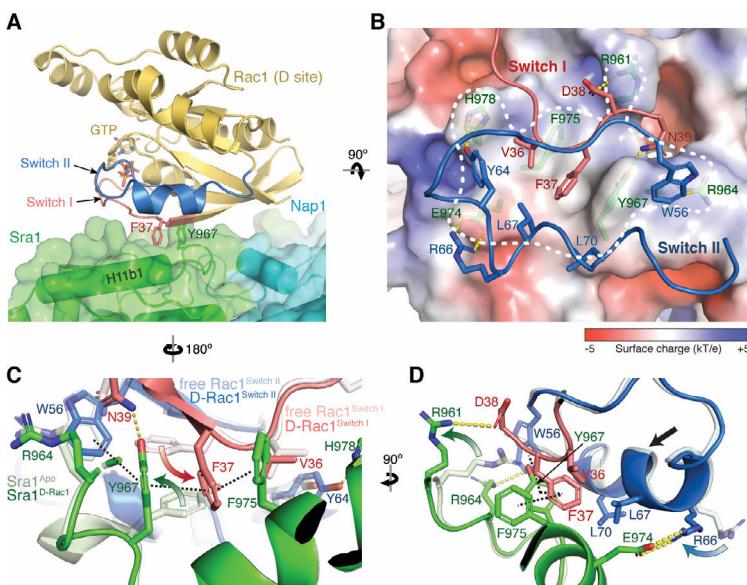
451 A site, the meander sequence, and the Tyrosine lock. Knowing how Rac1 activates the
452 WRC will help dissecting the contributions of other WRC ligands (e.g., Arf1 GTPase and
453 various membrane receptors).


454 Our data also shed light on how various disease-related mutations influence WRC
455 activation. Many missense mutations that cause the neurodevelopmental disorder DEE-65
456 are clustered around the A site and the Tyrosine lock region (Fig. 4E), which was
457 previously named the “*Cyfip2* hotspot #1”¹⁸. Our data suggest all known mutations in this
458 region increase WRC activity, either by destabilizing the Tyrosine lock or the “stem”
459 region (such as R87C), or by promoting Rac1 binding (such as Y108H). It is remarkable
460 that Y108H only mildly increases the sensitivity of the WRC for Rac1, underscoring the
461 importance of precisely controlling WRC activity in the cell. Our structure also reveals
462 how the melanoma-causing mutation, Rac1^{P29S}, enhances WRC activation by facilitating
463 its binding to the A site. Together, these data emphasize the need of developing inhibitors
464 that can target Rac1-mediated WRC activation for the treatment of related diseases.

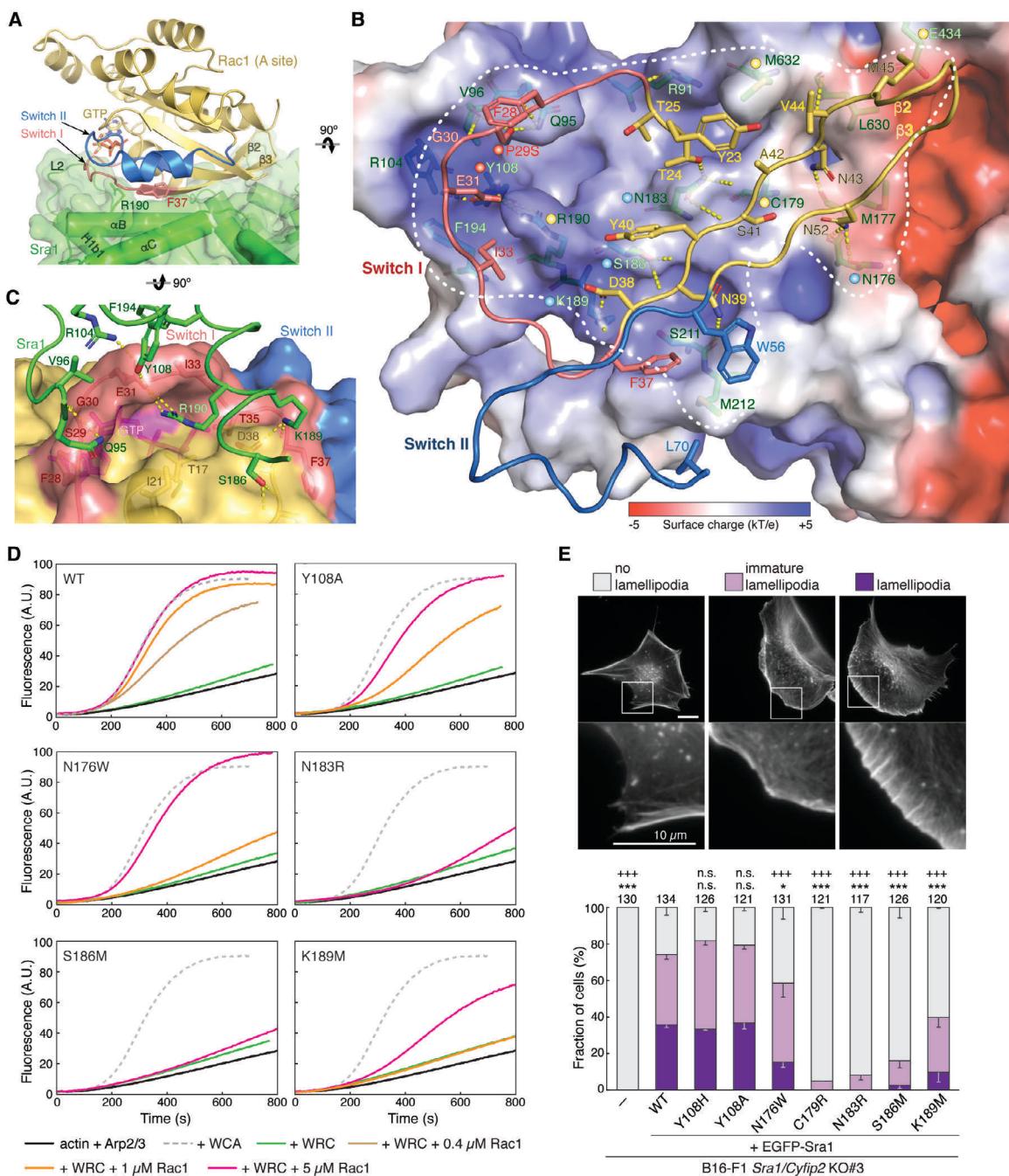
465 Our data clearly support that D site Rac1 binding does not directly activate WRC.
466 We posit that the D site Rac1 binding has at least two major functions. First, the D site can
467 facilitate membrane recruitment of the WRC due to its high affinity. Second, D site Rac1
468 binding may enhance A site Rac1 binding. Several pieces of evidence support this notion.
469 First, the previously measured binding isotherms of GST-Rac1 binding to the WRC
470 suggested cooperativity between A and D sites¹⁹. Second, mutating the D site was shown
471 to abolish WRC activation in pyrene-actin assembly assays¹⁹—it is possible that without
472 D site Rac1 binding, A site affinity is too low to show activation in these assay conditions.
473 This is consistent with our new results, showing that while the WRC with Rac1 tethered to

474 the A site is basally active, the activity can be further promoted by D site Rac1 binding
475 (**Extended Data Fig. 3D**).

476 Lastly, the WRC^{AD-Rac1} structure clearly reveals the similarities and differences
477 between Rac1 binding to the A site of Sra1 and the recently discovered Rac1 inhibitor,
478 CYRI-B^{24,26}. CYRI-B and the A site region (designated as the DUF1394 domain) share
479 little homology in sequence (21% identity)²⁵, but high similarity in structure (3.7 Å
480 r.m.s.d.) (**Extended Data Fig. 6P-S**). Our structure reveals that Rac1 has a similar
481 orientation in binding to both Sra1 A site and CYRI-B surfaces, which are both positively
482 charged (**Fig. 3B** vs. **Extended Data Fig. 6Q**). Nevertheless, except for a few conserved
483 residues sharing a similar mechanism to bind Rac1, including the Arginine (Sra1^{R190} vs.
484 CYRI-B^{R161}) anchoring into the negatively charged pocket on Rac1 (**Fig. 3C** vs. **Extended**
485 **Data Fig. 6S**), most other interactions are largely different, with the Sra1 A site involving
486 more extensive interactions.


487 In summary, our work delineates the binding and activation mechanism of WRC
488 by Rac1 GTPase. It clearly demonstrates that Rac1's engagement to the A site and not just
489 to the D site leads to activation of WRC and suggests possible cooperativity between the
490 two sites. The later needs to be clearly established by future studies. Besides providing a
491 structural perspective for several disease mutations, this study provides a mechanistic
492 foundation for understanding how small GTPases can trigger the activation of WRC and
493 regulate the WRC-Arp2/3-actin signaling axis.

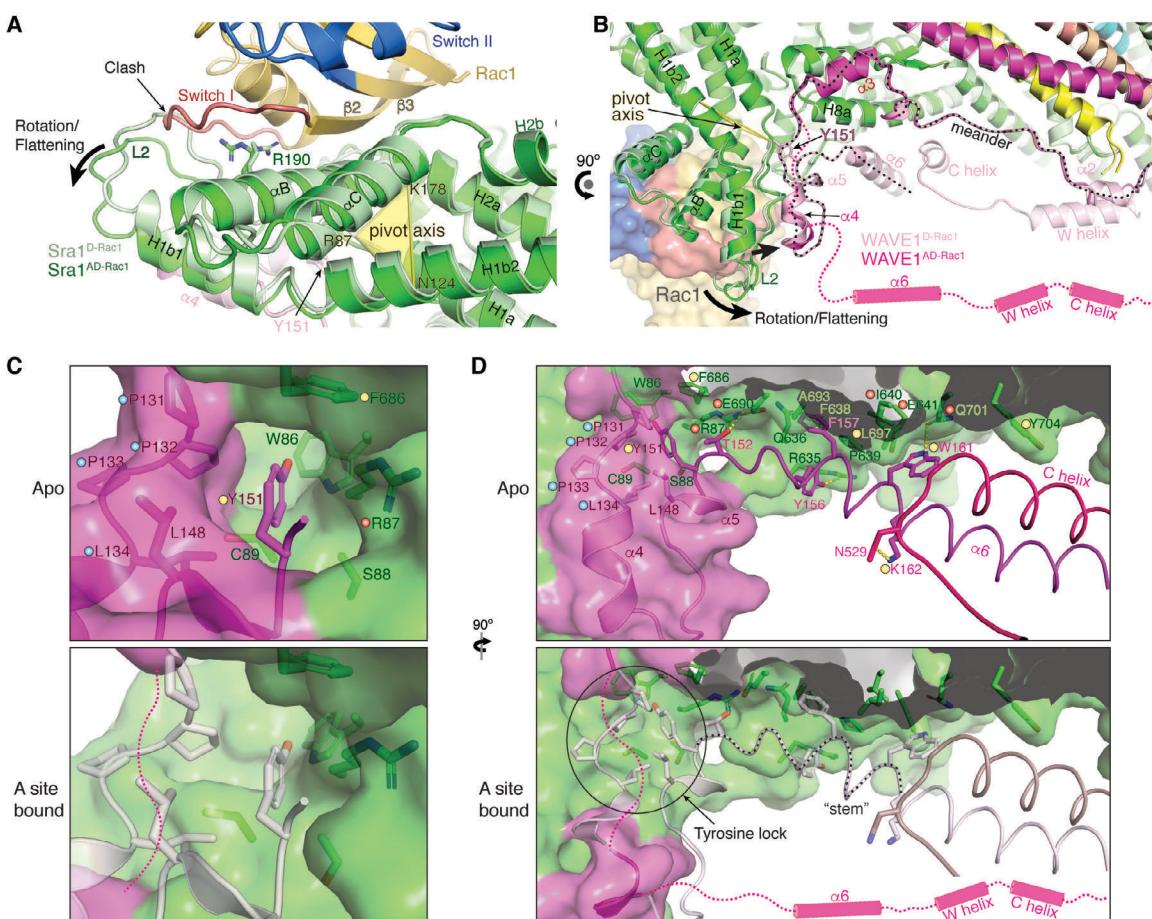
494


495 **Figure 1. Cryo-EM structures of the WRC in different Rac1-bound states. (A-C)**
496 Schematic and cryo-EM density of the indicated WRCs. Black dotted lines indicated by
497 arrowheads are flexible peptide linkers tethering Rac1 to the WRC. The meander sequence
498 is traced by white dotted lines. Other dotted lines and cylinders in the WRC^{AD-Rac1} structure
499 refer to sequences of which the densities are not observed in WRC^{AD-Rac1}, but present in
500 WRC^{apo} and WRC^{D-Rac1}. Red dots indicate locations to which Rac1 is tethered. (D-F)
501 Pyrene-actin polymerization assays measuring activities of the indicated WRCs used in
502 cryo-EM. Reactions use the NMEH20GD buffer (see Methods) and contain 3.5 μ M actin
503 (5% pyrene-labeled), 10 nM Arp2/3 complex, 100 nM WRC230WCA or WAVE1 WCA,
504 and/or 6 μ M Rac1^{QP}. Results are representative of at least 2 independent repeats.

505

506

507 **Figure 2. Interactions mediating Rac1 binding to the D site. (A)** Side view of the overall
508 structure of Rac1 (cartoon, gold) binding to the D site (semitransparent surface, green).
509 F37 and Y967 side chains are shown as reference points. **(B)** Top view and semitransparent
510 surface charge representation of the D site (calculated using APBS in Pymol³⁵), showing
511 key interactions between Sra1 and Rac1. Yellow dotted lines indicate polar interactions.
512 White dashed line indicates binding surface boundary. For clarity, the backbones of Switch
513 I and II are shown as loops. **(C-D)** Structural comparison of Rac1 and the D site in the
514 bound (dark colors) and unbound (light colors, PDB 3SBD for Rac1) states. Curved arrows
515 indicate side chain flipping upon Rac1 binding. Straight arrow indicates translation of
516 polypeptide backbone. Black dashed lines indicate the interdigitated π-π stacking.



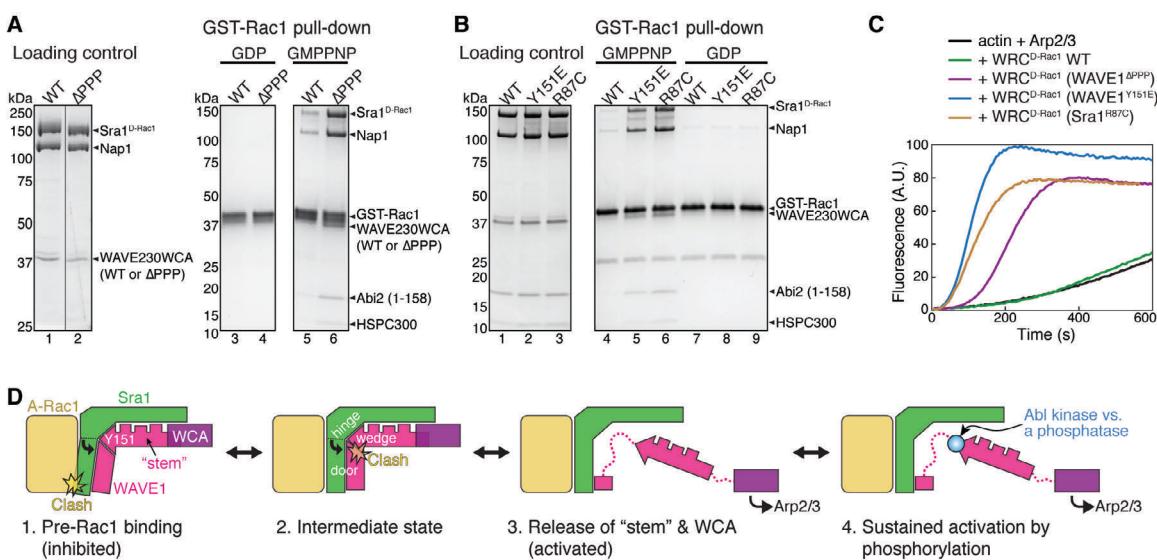
517

518 **Figure 3. Interactions mediating Rac1 binding to the A site. (A)** Side view of the overall
 519 structure of Rac1 binding to the A site, using the same color scheme as in Figure 2. F37
 520 and Y967 side chains are shown as reference points. **(B)** Top view and semitransparent
 521 surface charge representation of the A site, showing key interactions between Sra1 and
 522 Rac1. Yellow dotted lines indicate polar interactions. White dashed line indicates binding

523 site boundary. For clarity, the backbone of Rac1 Switch I— β 2— β 3—Switch II sequence
524 mediating the binding is shown as loops. Dots of different colors indicate residues of which
525 mutations were involved in human disease (red), previously designed and shown to disrupt
526 Rac1 binding (yellow), or newly introduced in this work (blue). **(C)** Semitransparent
527 surface representation of the Rac1 surface, showing how Sra1^{R190} fits into a deep pocket in
528 Rac1 and how it is supported by interactions surrounding the rim of the pocket. **(D)** Pyrene-
529 actin polymerization assays measuring the activities of WRCs carrying indicated mutations
530 at the A site. Reactions use the NMEH20GD buffer (see Methods) and contain 3.5 μ M
531 actin (5% pyrene-labeled), 10 nM Arp2/3 complex, 100 nM WRC230WCA or WAVE1
532 WCA, and/or indicated amounts of Rac1^{QP}. **(E)** Representative fluorescence images and
533 quantification of lamellipodia formation in B16-F1 *Sra1/Cyfip2* double KO#3 cells
534 transfected with indicated EGFP-Sra1 variants and stained by phalloidin for F-actin.
535 Statistical significance was assessed from 3 repeats for differences between cells
536 transfected with WT (wild type) vs. no (-) or indicated mutant constructs concerning cell
537 percentages displaying “no lamellipodia” phenotype (* p < 0.05; *** p < 0.001) and with
538 “lamellipodia” phenotype (+++ p < 0.001). n.s.: not statistically significant. Error bars
539 represent standard errors of means. Cell numbers used for the quantification are shown on
540 top of each column.

541

543 **Figure 4. Rac1 binding to the A site drives a conformational change to release WCA.**


544 **(A-B)** Overlay of WRC^{AD-Rac1} (dark colors) and WRC^{D-Rac1} (light colors) structures
545 showing conformational changes of the A site upon Rac1 binding. Sequences of which
546 the densities are not observed in WRC^{AD-Rac1} structure, but are present in WRC^{D-Rac1} are
547 indicated by magenta dashed lines and cylinders. The meander region in WAVE1 is
548 traced by the black dotted line. **(C-D)** Comparison of the Tyrosine lock and “stem”
549 (traced by the black dotted line) region before and after Rac1 binding to the A site.
550 Structures in light colors are from the unbound state in WRC^{D-Rac1} and used as reference
551 point for the A-site bound state. Residues critical for stabilizing the Tyrosine lock and
552 “stem” components are labeled and shown in sticks. Dots of different colors indicate

Ding et al

553 residues of which mutations were involved in human disease (red), previously designed

554 and shown to disrupt WRC inhibition (yellow), or newly introduced in this work (blue).

555

556

557 **Figure 5. An allosteric competition model explains WRC activation by Rac1 binding**
558 **to the A site. (A-B)** Coomassie blue-stained SDS-PAGE gels showing GST-Rac1^{P29S}
559 (loaded with GDP or GMPPNP) pull-down of WRC^{D-Rac1} bearing the indicated mutations:
560 WAVE1^{ΔPPP} in (A) (replacing ¹³¹PPPLNI¹³⁶ with a GSGSGS linker) and WAVE1^{Y151E} or
561 Sra1^{R87C} in (B). **(C)** Pyrene-actin polymerization assays measuring the activities of WRC^{D-}
562 ^{Rac1} used in (A-B). Reactions use the NMEH20GD buffer and contain 3.5 μ M actin (5%
563 pyrene-labeled), 10 nM Arp2/3 complex, and 100 nM WRC^{D-Rac1} carrying indicated
564 mutations. **(D)** A “door wedge” model describing the allosteric competition mechanism
565 underlying WRC activation by Rac1 binding to the A site. WRC activation requires Rac1
566 binding to the A site to swing the door (A site in Sra1 and α 4-loop- α 5 in WAVE1) against
567 the wedge (Y151 and the “stem” sequence) inserted into the door hinge. The “tug-of-war”
568 between Rac1 binding and the Tyrosine lock determines the activity level of the WRC.
569 Phosphorylation (blue dot) of the released Y151 further shifts the equilibrium to provide
570 an additional control of the strength and duration of WRC activation.

571

572

573 **References**

574 1. Campellone, K. G. & Welch, M. D. A nucleator arms race: cellular control of actin
575 assembly. *Nat Rev Mol Cell Biol* **11**, 237–251 (2010).

576 2. Alekhina, O., Burstein, E. & Billadeau, D. D. Cellular functions of WASP family
577 proteins at a glance. *J. Cell Sci.* **130**, 2235–2241 (2017).

578 3. Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K.
579 Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome
580 protein. *Nature* **404**, 151–158 (2000).

581 4. Takenawa, T. & Suetsugu, S. The WASP-WAVE protein network: Connecting the
582 membrane to the cytoskeleton. *Nat. Rev. Mol. Cell Biol.* **8**, 37–48 (2007).

583 5. Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M. & Kirschner, M. W.
584 Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck.
585 *Nature* **418**, 790–793 (2002).

586 6. Ismail, A. M., Padrick, S. B., Chen, B., Umetani, J. & Rosen, M. K. The WAVE
587 Regulatory Complex is Inhibited. *Nat. Struct. Mol. Biol.* **16**, 561–563 (2009).

588 7. Derivery, E., Lombard, B., Loew, D. & Gautreau, A. The Wave complex is
589 intrinsically inactive. *Cell Motil. Cytoskelet.* **66**, 777–790 (2009).

590 8. Chen, Z. *et al.* Structure and Control of the Actin Regulatory WAVE Complex.
591 *Nature* **468**, 533–538 (2010).

592 9. Jia, D. *et al.* WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome
593 protein (WASP) family are controlled by analogous structurally related complexes.
594 *Proc. Natl. Acad. Sci.* **107**, 10442–10447 (2010).

595 10. Padrick, S. B. *et al.* Hierarchical Regulation of WASP/WAVE Proteins. *Mol. Cell*

596 32, 426–438 (2008).

597 11. Koronakis, V. *et al.* WAVE regulatory complex activation by cooperating
598 GTPases Arf and Rac1. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 14449–14454 (2011).

599 12. Chen, B. *et al.* The WAVE regulatory complex links diverse receptors to the actin
600 cytoskeleton. *Cell* **156**, 195–207 (2014).

601 13. Chen, B. *et al.* Rac1 GTPase activates the WAVE regulatory complex through two
602 distinct binding sites. *Elife* **6**, e29795 (2017).

603 14. Lebensohn, A. M. & Kirschner, M. W. Activation of the WAVE complex by
604 coincident signals controls actin assembly. *Mol. Cell* **36**, 512 (2009).

605 15. Hao, Y. H. *et al.* Regulation of WASH-dependent actin polymerization and protein
606 trafficking by ubiquitination. *Cell* **152**, 1051–1064 (2013).

607 16. Prehoda, K. E., Scott, J. A., Mullins, R. D. & Lim, W. A. Integration of multiple
608 signals through cooperative regulation of the N- WASP-Arp2/3 complex. *Science*
609 (80-.). **290**, 801–806 (2000).

610 17. Abdul-Manan, N. *et al.* Structure of Cdc42 in complex with the GTPase-binding
611 domain of the ‘Wiskott-Aldrich syndrome’ protein. *Nature* (1999)
612 doi:10.1038/20726.

613 18. Rottner, K., Stradal, T. E. B. & Chen, B. WAVE regulatory complex. *Curr. Biol.*
614 **31**, R512–R517 (2021).

615 19. Chen, B. *et al.* Rac1 GTPase activates the WAVE regulatory complex through two
616 distinct binding sites. *Elife* **6**, (2017).

617 20. Chen, X. J. *et al.* Ena/VASP proteins cooperate with the WAVE complex to
618 regulate the actin cytoskeleton. *Dev. Cell* **30**, 569–584 (2014).

619 21. Schaks, M. *et al.* Distinct Interaction Sites of Rac GTPase with WAVE Regulatory
620 Complex Have Non-redundant Functions in Vivo. *Curr. Biol.* **28**, (2018).

621 22. Krauthammer, M. *et al.* Exome sequencing identifies recurrent somatic RAC1
622 mutations in melanoma. *Nat Genet* **44**, 1006–1014 (2012).

623 23. Hodis, E. *et al.* A landscape of driver mutations in melanoma. *Cell* **150**, 251–263
624 (2012).

625 24. Kaplan, E., Stone, R., Hume, P. J., Greene, N. P. & Koronakis, V. Structure of
626 CYRI-B (FAM49B), a key regulator of cellular actin assembly. *Acta Crystallogr.*
627 *Sect. D Struct. Biol.* **76**, (2020).

628 25. Fort, L. *et al.* Fam49/CYRI interacts with Rac1 and locally suppresses protrusions.
629 *Nat. Cell Biol.* **20**, (2018).

630 26. Yelland, T. *et al.* Structural Basis of CYRI-B Direct Competition with
631 Scar/WAVE Complex for Rac1. *Structure* **29**, (2021).

632 27. Zweier, M. *et al.* Spatially clustering de novo variants in CYFIP2, encoding the
633 cytoplasmic FMRP interacting protein 2, cause intellectual disability and seizures.
634 *Eur. J. Hum. Genet.* **27**, 747–759 (2019).

635 28. Schaks, M., Reinke, M., Witke, W. & Rottner, K. Molecular Dissection of
636 Neurodevelopmental Disorder-Causing Mutations in CYFIP2. *Cells* **9**, (2020).

637 29. Nakashima, M. *et al.* De novo hotspot variants in CYFIP2 cause early-onset
638 epileptic encephalopathy. *Ann. Neurol.* **83**, 794–806 (2018).

639 30. Begemann, A. *et al.* New insights into the clinical and molecular spectrum of the
640 novel CYFIP2-related neurodevelopmental disorder and impairment of the WRC-
641 mediated actin dynamics. *Genet. Med.* **23**, (2021).

642 31. Leng, Y. *et al.* Abelson-interactor-1 promotes WAVE2 membrane translocation
643 and Abelson-mediated tyrosine phosphorylation required for WAVE2 activation.
644 *Proc. Natl. Acad. Sci. U. S. A.* **102**, 1098–1103 (2005).

645 32. Stuart, J. R., Gonzalez, F. H., Kawai, H. & Yuan, Z. M. c-Abl interacts with the
646 WAVE2 signaling complex to induce membrane ruffling and cell spreading. *J.*
647 *Biol. Chem.* **281**, (2006).

648 33. Sossey-Alaoui, K., Li, X. & Cowell, J. K. c-Abl-mediated phosphorylation of
649 WAVE3 is required for lamellipodia formation and cell migration. *J. Biol. Chem.*
650 **282**, (2007).

651 34. Torres, E. & Rosen, M. K. Contingent phosphorylation/dephosphorylation
652 provides a mechanism of molecular memory in WASP. *Mol Cell* **11**, 1215–1227
653 (2003).

654 35. Jurrus, E. *et al.* Improvements to the APBS biomolecular solvation software suite.
655 *Protein Sci.* **27**, (2018).

656

657 **Methods**

658 **Protein purification**

659 All WRC constructs used in this work were derived from WRC^{apo} (also called
660 WRC230WCA or WRC230VCA¹⁹) by standard molecular biology procedures and were
661 verified by Sanger sequencing. WRC230WCA contains human full-length Sra1, full-
662 length Nap1, WAVE1(1-230)-(GGS)₆-WCA(485-559), Abi2(1-158), and full-length
663 HSPC300. Other WRCs contain modified subunits (see **Table S1, S2** for detailed protein
664 sequences and WRC compositions). Briefly, WRC^{D-Rac1} was created by tethering
665 Rac1^{Q61L/P29S}(1-188) to the C-terminus of Sra1 using a (GGS)₄ peptide linker. WRC^{AD-Rac1}
666 was created from WRC^{D-Rac1 P29S} by inserting (GGS)₆-Rac1^{Q61L/P29S}(1-188)-(GS)₆ between
667 Y423 and S424 of Sra1. WRC^{D-Rac1/ΔPPP} was made from WRC^{D-Rac1} by replacing
668 ¹³⁷PPPLNI²³⁰ in WAVE1 with a GSGSGS linker. WRC^{D-Rac1/Y151E} and WRC^{D-Rac1/R87C} were
669 made from WRC^{D-Rac1} by introducing Y151E and R87C to Sra1, respectively.

670 All WRCs were expressed and purified from the Tni insect cells (for Sra1 and Nap1,
671 Expression Systems) and *E. coli* (for WAVE1, Abi2, and HSPC300) through multiple
672 chromatographic steps, essentially as previously described for WRC230WCA and
673 WRC230ΔWCA-Rac1^{19,36}. A gel filtration step by a 24-ml Superdex200 (Cytiva) was
674 always used as the final, polishing step of purification to exchange buffer and evaluate the
675 purity, assembly, and potential aggregation in each preparation. All WRC constructs
676 appeared to be properly assembled into stable complexes, behaving similarly to
677 WRC230WCA during each step of the reconstitution, showing no noticeable signs of
678 aggregation or misfolding (**Extended Data Fig. 5**). All other proteins were purified using
679 previously established procedures, including GST-Rac1 and untagged Rac1 WT or mutants

680 carrying P29S or P29S/Q61L, Arp2/3 complex, actin, WAVE1 WCA, TEV protease, and
681 HRV 3C protease¹⁹. Note Rac1^{Q61L/P29S} constitutively binds to GTP without noticeable
682 hydrolysis during long-term storage. The bound GTP cannot be exchanged with other
683 nucleotides (such as GDP) using standard EDTA-chelating procedures even at 37 °C
684 (**Extended Data Fig. 3E**). Therefore, all constructs containing Rac1^{Q61L/P29S} were used as
685 the GTP form without being reloaded to other nucleotides.

686 **Nucleotide test of Rac1 GTPases**

687 Rac1^{QP} and Rac1^{P29S} (100 μl, 150-200 μM) were first loaded with GTP or GDP by
688 using previous EDTA-chelating procedures¹⁹. The proteins were then desalted into the QA
689 buffer (20 mM Tris-HCl, pH 8) through a 5-mL HiTrap Desalting column (Cytiva) and
690 then denatured by 5 volumes of 8 M urea for 30 min. The denatured protein samples were
691 filtered through a centrifugal concentrator with a molecular weight cut-off (MWCO) of 10
692 kDa. The collected flow-through, which contained the released nucleotides but not protein,
693 was loaded onto a 1-mL HiTrap Q column at a flow rate of 1 mL/min and eluted with 25
694 mL of buffer developed along a gradient of 50-500 mM KCl. Pure GTP and GDP were
695 injected into the column separately as controls.

696 **GST pull-down assay**

697 GST pull-down assays were performed as previously described¹⁹. Briefly, 100-200
698 pmol of GST tagged proteins as bait and 100-200 pmol of WRCs as prey were mixed with
699 20 μL of Glutathione Sepharose beads (Cytiva) in 1 mL of binding buffer containing 10
700 mM HEPES pH 7, 50 mM NaCl, 5% (w/v) glycerol, 2 mM MgCl₂, and 5 mM β-
701 mercaptoethanol at 4 °C for 30 min, followed by three washes, each time using 1 mL of the

702 binding buffer. Bound proteins were eluted with GST elution buffer (100 mM Tris-HCl pH
703 8.5, 2 mM MgCl₂, and 30 mM reduced glutathione) and examined by SDS-PAGE.

704 **Pyrene-actin assembly assay**

705 Actin polymerization assays were performed as previously described with some
706 modifications¹⁹. Each reaction (120 μ L) contained 3 - 4 μ M actin (5% pyrene-labeled), 10
707 nM Arp2/3 complex, 100 nM WRC230WCA and its variants or WAVE1 WCA, and
708 desired concentrations of untagged Rac1^{Q61L/P29S}(1-188) in NMEH20GD buffer (50 mM
709 NaCl, 1 mM MgCl₂, 1 mM EGTA, 10 mM HEPES pH7.0, 20% (w/v) glycerol, and 1 mM
710 DTT) or KMEI20GD buffer (50 mM KCl, 1 mM MgCl₂, 1 mM EGTA, 10 mM Imidazole
711 pH7.0, 20% (w/v) glycerol, and 1 mM DTT). We noticed that compared to KMEI20GD
712 buffer, NMEH20GD buffer tended to facilitate ligand-WRC interaction and actin
713 polymerization, which allowed us to reduce protein concentration and reaction time.
714 Pyrene-actin fluorescence was recorded every 5 seconds at 22 °C using a 96-well flat-
715 bottom black plate (Greiner Bio-OneTM) in a Spark plate reader (Tecan), with excitation at
716 365 nm and emission at 407 nm (15 nm bandwidth for both wavelengths).

717 **Sample preparation for electron microscopy**

718 WRC^{apo} and WRC^{D-Rac1} samples were diluted into a buffer containing 10 mM
719 HEPES-KOH (pH 7.0), 50 mM KCl, 1 mM MgCl₂, 1 mM DTT, and 5% (v/v) glycerol to a
720 final concentration of 1.2 μ M. WRC^{AD-Rac1} sample was diluted using the same buffer to
721 0.4 μ M final concentration. 3.5 μ l of each sample were applied to freshly glow discharged
722 (using air at 19mA for 120s in Pelco EasiGlow (Ted Pella)) 300 mesh UltrAuFoil R1.2/1.3
723 holey gold grids (Quantifoils). Grids were manually blotted using Whatman 1 filter paper
724 for ~5 s to remove excess sample and immediately plunged into liquid ethane at -179°C.

725 Sample vitrification were carried out using a custom-built manual plunge freezing device,
726 and the entire process was performed in a 4 °C cold room with relative humidity maintained
727 between 90% and 95%.

728

729 **Electron microscopy data acquisition**

730 Cryo-EM data were acquired on a 200kV Talos Arctica (Thermo Fisher Scientific)
731 transmission electron microscope. Dose-fractionated movies were collected using a Falcon
732 3EC direct electron detector (Thermo Fisher Scientific) in electron counting mode. For all
733 the three sample datasets, each micrograph comprised of 62 dose-fractionated movie
734 frames acquired over 40 s. Cumulative exposure dose per micrograph are 44.06 e⁻/Å² for
735 the WRC^{apo} dataset, 45.27 e⁻/Å² for the WRC^{D-Rac1} dataset, and 41.34 e⁻/Å² for the WRC^{AD-}
736 ^{Rac1} dataset. Automated data acquisitions were performed using EPU (Thermo Fisher
737 Scientific), and 2,913 micrographs, 2,512 micrographs and 1,285 micrographs were
738 collected for the WRC^{apo}, WRC^{D-Rac1} and WRC^{AD-Rac1} datasets, respectively. All datasets
739 were acquired at a nominal magnification of 120,000x corresponding to a physical pixel
740 size of 0.8757 Å/pixel. Data were collected with nominal defocus varying between -0.6
741 and -1.2 μm for the WRC^{apo} dataset, between -0.5 and -1.0 μm for the WRC^{D-Rac1} dataset,
742 and between -0.8 and -1.2 μm for the WRC^{AD-Rac1} dataset. Due to preferred-orientation of
743 Rac1 bound WRC complexes in vitreous ice, the WRC^{D-Rac1} and WRC^{AD-Rac1} datasets had
744 ~15% and ~30% respectively of the micrographs collected by tilting of specimen to 36°
745 (alpha-tilt).

746 **Electron Microscopy data processing**

747 For WRC^{apo} dataset, beam induced motion-correction and dose-weighting to
748 compensate for radiation damage over spatial frequencies, were perform using UCSF
749 motioncor2 program³⁷ implemented in the RELION v3.0.6 image processing suite³⁸.
750 Contrast Transfer Function (CTF) parameters were estimated for the motion corrected,
751 dose-weighted summed micrographs using Gctf³⁹. 2,796 micrographs with estimated
752 defocus values below -2.1 μ m, were selected for further processing. 2,006,821 particles
753 were picked using reference-free Laplacian-of-Gaussian auto-picking program in RELION.
754 These picked particles were extracted with a box size of 424 pixels and binned by a factor
755 of four (to 106 pixels box, with pixel size of 3.5 $\text{\AA}/\text{pixel}$) for 2D classification, which was
756 performed using Cryosparc v2⁴⁰. Multiple rounds of 2D classification were performed to
757 remove 2D class averages containing particles which were either aggregates, or false
758 picked features, or did not contain features with well-defined secondary structures, or were
759 significantly off centered. Metadata for the clean stack of 957,365 particles selected from
760 Cryosparc 2D classification were converted to the RELION star format using
761 *csparc2star.py* script (written by Dr. Daniel Asarnow). These particles were then re-
762 extracted after four-fold binning from 512 pixels box (0.8757 $\text{\AA}/\text{pixel}$) to 128 pixels box
763 (3.5 $\text{\AA}/\text{pixel}$) in RELION for faster computation. A D-site Rac1 tethered WRC Cryo-EM
764 map (EMDB-6642)¹⁹, which was rescaled and padded to 128 pixels box (3.5 $\text{\AA}/\text{pixel}$), was
765 used as initial 3D reference map. After one round of 3D refinement, a three-class 3D
766 classification was performed to further sort out heterogeneity. 349,065 particles belonging
767 to the best resolved 3D class were selected for further processing. Another round of 3D
768 refinement was performed using these selected particles, and then the resulting particles
769 were re-extracted unbinned after re-centering picked co-ordinates from micrographs, with

770 a box size of 512pixels (0.8757 Å/pixel). Multiple 3D refinements (without and with
771 masks) were performed with these particles to improve alignments and 3D angular
772 assignments. For accurate per-particle CTF estimation and per-particle motion correction,
773 CTF refinement was performed, followed by Bayesian polishing within RELION v3.0.7.
774 This resulted in improvement of resolution of the reconstructed map from 3.8 Å to 3.0 Å.
775 A three-step CTF refinement was performed in RELION v3.1 to further improve the
776 accuracy of CTF parameters and correct for higher-order imaging aberrations. Following
777 this step, 3D refinement further improved the resolution of the map to 2.9 Å. To further
778 sort out local structural heterogeneity, a three-class 3D classification without alignment
779 (clustering) was performed, and the best resolved class with the intact complex was
780 selected for further processing. 95,319 particles from this selected class were refined to a
781 resolution of 3.0 Å. Local resolution for the reconstructed map was estimated using
782 RELION v3.0.7. This indicated that the core of the WRC^{apo} complex was resolved to ~2.8
783 Å and the most flexible regions had a resolution close to 4.5 Å. 3DFSC server³⁹
784 (<https://3dfsc.salk.edu>) was used for the estimation of directional Fourier Shell Correlation
785 (FSC). Signal-subtracted focused 3D refinements were performed in RELION v3.0.7 by
786 dividing the full complex into three slightly overlapping sub-regions. This helped in
787 improving the map quality for the peripheral flexible regions. Focused unsharpened maps
788 and their respective half maps were individually fitted and resampled relative to the full
789 map in UCSF Chimera⁴¹. Composite half maps were generated from the half maps of the
790 individual focused regions by using the “*vop maximum*” function within UCSF Chimera.
791 The final sharpened composite map for the WRC^{apo} complex was generated from these

792 composite half maps by post-processing within RELION. The resulting map was sharpened
793 with a B factor of -35 Å².

794 For WRC^{D-Rac1}, the general processing scheme is similar to the one described above
795 for WRC^{apo}. 1,765,193 particles from 2,434 selected micrographs (based on CTF
796 estimation result) were extracted with an unbinned box size of 512 pixels, and subsequently
797 binned by a factor of four. Multiple iterations of 2D classification were performed using
798 Cryosparc v2. 856,797 particles from 2D classes with well-defined secondary structures
799 were selected and were imported into RELION. These particles were re-extracted with an
800 unbinned box of 512 pixels and further binned by a factor of four. The resulting particles
801 were subjected to a 3-classes 3D classification. 218,612 particles from the best 3D class
802 were selected and then re-extracted unbinned with recentering of picked coordinates, with
803 a box size of 512 pixels. Multiple rounds of 3D refinement were performed both prior and
804 after CTF refinement and Bayesian Polishing, leading to a reconstructed map with a
805 resolution at 3.1 Å (at 0.143 FSC). 3D clustering (classification without particle
806 realignment) was performed with these particles for further sorting out local heterogeneity
807 and any mis-aligned particles. 87,810 particles were selected for subsequent 3D
808 refinements from the best 3D class. The final reconstructed WRC^{D-Rac1} map was at 3.0 Å
809 (at 0.143 FSC) resolution. Local resolution for the reconstructed map was estimated using
810 RELION v3.0.7. The result indicated that the core of the WRC^{D-Rac1} complex was resolved
811 to ~2.8 Å and the most flexible regions had a resolution close to 4.5 Å. 3DFSC server
812 (<https://3dfsc.salk.edu>) was used for estimation of directional Fourier Shell Correlation
813 (FSC). To improve the map quality for peripheral flexible regions of the complex, focused
814 3D refinement with signal-subtraction were performed as described for WRC^{apo} data

815 processing. The focused maps were then used to generate the composite map. The final
816 map was sharpened with a B factor of -39 Å².

817 For WRC^{AD-Rac1} dataset, complete image processing was performed using
818 Cryosparc v2. To correct for beam-induced motion, full-frame motion correction followed
819 by patch motion corrections were performed. CTF parameters for these micrographs were
820 estimated using Patch CTF estimation program was used to accurately estimate local CTF
821 parameters. Twenty two micrographs were removed due to poor CTF fitting, and 1,263
822 micrographs were kept for subsequent processing. Template-free Gaussian blob picker was
823 used to pick 666,417 particles from these micrographs. Picked particles were extracted
824 unbinned with a box size of 512 pixels, and then binned by a factor of four. One round of
825 2D classification was performed to remove particles from 2D classes that did not represent
826 intact complex, aggregated, or had non-particle features. 657,065 particles from the
827 selected 2D classes were subjected to heterogenous refinement with 3, 4, 5 and 6 classes
828 in Cryosparc. 227,361 particles from the best 3D classes were re-extracted unbinned with
829 a box size of 512 pixels. The resulting stack of particles were subjected to homogeneous
830 refinement, and the resulting reconstruction reached 3.2 Å resolution. To accurately correct
831 for local beam induced motion and per-particle CTF estimation, the selected particles were
832 subjected to local motion correction followed by global and local CTF refinement. One
833 round of homogeneous refinement with the optimized particle set yielded a 3D
834 reconstruction at a resolution of 3.0 Å. A three-class ab-initio reconstruction was used to
835 further fish-out the best particles that are representative of the full complex. 139,296
836 particles belonging to the best resolved class from the ab-initio reconstruction were then
837 subjected to final 3D reconstruction (one-class heterogeneous refinement) which reached

838 3.0 Å resolution. Local resolution for the reconstructed map was estimated using Cryosparc
839 v2, and showed the core of the WRCA^{AD-Rac1} complex was resolved to ~2.5 Å and the most
840 flexible region had a resolution close to 4.5 Å. 3DFSC server (<https://3dfsc.salk.edu>) was
841 used for estimation of directional Fourier Shell Correlation (FSC). To improve the map
842 quality of various flexible regions, local 3D refinements with masks applied on specific
843 regions were performed. The resulting focused maps were then stitched as described before
844 to generate the final map. The final map was sharpened with a B factor of -59 Å².

845 **Atomic model building**

846 Crystal structure of WRC (WRC^{xtal}) (PDB 3P8C), and Rac1 (PDB 3SBD) were
847 used as initial models. These models were rigid-body docked into the corresponding
848 regions in the reconstructed maps of WRC^{apo}, WRC^{D-Rac1} and WRC^{AD-Rac1} using UCSF
849 Chimera. Flexible fitting of the docked models into the maps were performed using
850 Namdinator⁴² (<https://namdinator.au.dk>), and generated composite initial model for each
851 complex. The missing portions in the fitted models were manually built using COOT⁴².
852 Mutation of residues in the Rac1 molecules and bound nucleotides or nucleotide analogues
853 and divalent cations were manually edited in COOT. These models were then subjected to
854 repeated iterations of real-space refinement in Phenix⁴³ to fix geometry outliers and clash
855 issues. Manual editing of the model in COOT further improved model accuracy. The
856 atomic models were validated using the Molprobity server⁴⁴
857 (<http://moprobity.biochem.duke.edu/>) as well as the PDB Validation server⁴⁵
858 (www.wwpdb.org).

859 **Cell culture and co-immunoprecipitation**

860 B16-F1-derived *Sra1/Cyfip2* KO cells (clone #3) were previously described²¹, and
861 maintained in DMEM (4.5 g/l glucose; Invitrogen) supplemented with 10% FCS (Gibco),
862 2 mM glutamine (Thermo Fisher Scientific) and penicillin (50 Units/ml)/streptomycin (50
863 µg/ml) (Thermo Fisher Scientific). Cells were routinely transfected in 6 well plates
864 (Sarstedt), using 1 µg DNA in total and 2 µl JetPrime per well.

865 pEGFP-C2-Sra1 (CYFIP1) and derived C179R and Y108H mutant constructs were
866 described previously^{21,28} and correspond to the splice variant *CYFIP1a*, sequence AJ567911,
867 of murine origin. Various point mutations in the A site were introduced by site-directed
868 mutagenesis. The identity of all DNA constructs was verified by sequencing.

869 For EGFP-immunoprecipitation experiments, B16-F1-derived cell lines ectopically
870 expressing EGFP-tagged variants of Sra1 were lysed with lysis buffer (1% Triton X-100,
871 140 mM KCl, 50 mM Tris/HCl pH 7.4/ 50 mM NaF, 10 mM Na₄P₂O₇, 2 mM MgCl₂ and
872 Complete Mini, EDTA-free protease inhibitor [Roche]). Lysates were cleared and incubated
873 with GFP-Trap agarose beads (Chromotek) for 60 min. Subsequently, beads were washed
874 three times with lysis buffer lacking protease inhibitor and Triton X-100, mixed with SDS-
875 PAGE loading buffer, boiled for 5 min, and examined by Western Blotting using primary
876 antibodies against CYFIP1/2 (Sra-1/PIR121)⁴⁶, Nap1⁴⁶, and WAVE²¹, and corresponding
877 HRP-conjugated secondary antibodies (Invitrogen). Chemiluminescence signals were
878 obtained upon incubation with ECL™ Prime Western Blotting Detection Reagent (Cytiva),
879 and recorded with ECL Chemocam imager (Intas, Goettingen, Germany).

880 **Fluorescence microscopy, phalloidin staining, and quantification**

881 B16-F1-derived cell lines expressing indicated EGFP-tagged CYFIP1 constructs or
882 untransfected control cells were seeded onto laminin-coated (25 µg/ml), 15 mm-diameter

883 glass coverslips and allowed to adhere for about 24 hours prior to fixation. Cells were fixed
884 with pre-warmed, 4% paraformaldehyde (PFA) in PBS for 20 min, and permeabilized with
885 0.05% Triton-X100 in PBS for 30 sec. The actin cytoskeleton was subsequently stained using
886 ATTO-594-conjugated phalloidin (ATTO TEC GmbH, Germany). Samples were mounted
887 using VectaShield Vibrance antifade reagent and imaged using a $\times 63/1.4\text{NA}$ Plan
888 apochromatic oil objective.

889 For assessment of lamellipodia formation, cells were randomly selected and
890 categorized in a blinded manner as follows: “no lamellipodia” if no phalloidin-stained
891 peripheral lamellipodia-like actin meshwork was visible, “immature lamellipodia” if the
892 lamellipodia-like actin meshwork was small, narrow, or displayed multiple ruffles, and
893 “lamellipodia” if the lamellipodia-like actin meshwork appeared to be fully developed²¹.

894 **Statistical analysis**

895 To assess statistical significance, one-way ANOVA with Dunnett’s post-hoc test was
896 applied to compare multiple groups with one control group. Statistical analyses were
897 performed using Prism 6.01. An error probability below 5% ($p < 0.05$; * in Figure panels)
898 was considered to indicate statistical significance. ** and *** indicated p -values ≤ 0.01 and
899 ≤ 0.001 , respectively.

900 **Data and materials availability**

901 Cryo-EM reconstructed maps for WRC^{apo}, WRC^{D-Rac1} and WRC^{AD-Rac1} were deposited in
902 the Electron Microscopy Data Bank under accession IDs EMD-26732, EMD-26733, and
903 EMD-26734 respectively, and corresponding atomic models were deposited in the Protein
904 Data Bank with accession IDs 7USC, 7USD, and 7USE respectively.

905

906 **Acknowledgements**

907 Electron Microscopy data were collected at the Stony Brook University Cryo-EM center,
908 which is supported by the National Institutes of Health (S10 OD012272). This work was
909 also supported by funding from by the National Institutes of Health (R35-GM128786) and
910 start-up funds from the Iowa State University and the Roy J. Carver Charitable Trust to
911 B.C., by Stony Brook University start-up funds to S.C., and by the Deutsche
912 Forschungsgemeinschaft (DFG), Research Training Group GRK2223, and individual grant
913 RO2414/8-1 to K.R.

914 **Author contributions**

915 B.C. conceived the project and supervised cloning, mutagenesis, protein expression,
916 purification and biochemical experiments performed by S.Y., Y.L. and A.B. Cryo-EM
917 sample preparation, grid vitrification, data collection, atomic-model building were
918 performed by B.D. under the supervision of S.C. K.R. oversaw the cell biology work and
919 cellular imaging performed by M.S. Structural analysis were performed by B.C., B.D., S.C.,
920 and S.Y. B.C. drafted the manuscript and prepared the figures with assistance from all the
921 authors.

922 **Competing interests**

923 The authors declare no competing interests.

924 **Additional Information**

925 Correspondence and request for materials should be addressed to stone@iastate.edu or
926 saikat@csircmb.org

927

928 **Table S1. DNA constructs and WRC assemblies used in this study**

Name	Description	Source/reference
Individual proteins and WRC subunits		
Sra1	His6-Tev-hSra1 (1-1253, full length) in pAV5a vector, His6-Tev finally removed	(Ismail et al., 2009) ⁶
Sra1 ^{D-Rac1}	His6-Tev-Sra1-(GGS) ₄ -Rac1 ^{Q61L/P29S} (1-188) in pAV5a vector, His6-Tev finally removed	This study
Sra1 ^{A-Rac1}	His6-Tev-Sra1 Y423-[(GGS) ₆ -Rac1 ^{P29S} (1-188)-(GS) ₆]-S424 (Rac1 is inserted in a loop of Sra1 between Y423/S424), in pAV5a vector, His6-Tev finally removed	This study
Sra1 ^{AD-Rac1}	His6-Tev-Sra1 Y423-[(GGS) ₆ -Rac1 ^{Q61L/P29S} (1-188)-(GS) ₆]-S424 - (GGS) ₄ -Rac1 ^{P29S} (1-188), in pAV5a vector, His6-Tev finally removed	This study
Sra1 ^{N183R}	N183R in Sra1	This study
Sra1 ^{S186M}	S186M in Sra1	This study
Sra1 ^{K189M}	K189M in Sra1	This study
Sra1 ^{Y108A}	Y108A in Sra1	This study
Sra1 ^{Y108H}	Y108H in Sra1	This study
Sra1 ^{N176W}	N176W in Sra1	This study
Sra1 ^{R87C, D-Rac1}	R87C in Sra1 ^{D-Rac1}	This study
Nap1	His6-Tev-hNap1 (1-1128, full length), in pAV5a vector, His6-Tev finally removed	(Ismail et al., 2009) ⁶
WAVE1 (1-230)	MBP-Tev-hWAVE1 (1-230) in pMalC2Tev vector, MBP-Tev finally removed	(Chen et al., 2017) ¹⁹
WAVE1 (1-230)-WCA	MBP-Tev-hWAVE1 (1-230)-(GGS) ₆ -WCA(485-559) in pMalC2Tev vector, MBP-Tev finally removed	(Chen et al., 2017) ¹⁹
WAVE1(1-230)-Rac1	MBP-Tev-WAVE1 (1-230)-(GGS) ₆ -Rac1 ^{Q61L/P29S} (1-188) in pMalC2Tev vector, MBP-Tev finally removed	(Chen et al., 2017) ¹⁹
WAVE1 ^{APP}	¹³¹ PPPLNI ¹³⁶ replaced by (GS) ₃ in WAVE1 (1-230)-WCA	This study
WAVE1 ^{Y151E}	Y151E in WAVE1 (1-230)-WCA	This study
Abi2 (1-158)	MBP-Tev-hAbi2 (1-158) in pMalC2Tev vector, MBP-Tev finally removed	(Ismail et al., 2009) ⁶
HSPC300	MBP-Tev-hHSPC300 (1-79, full length) in pMalC2Tev vector, MBP-Tev finally removed	(Ismail et al., 2009) ⁶
WCA	hWAVE1(485-559) in pET11a vector	(Ismail et al., 2009) ⁶
GST-Rac1 ^{P29S}	GST-Tev-Rac1 ^{P29S} (1-188) in pGEXTev vector	(Chen et al., 2017) ¹⁹
GST-Rac1 ^{QP}	GST-Tev-Rac1 ^{Q61L/P29S} (1-188) in pGEXTev vector	(Chen et al., 2017) ¹⁹
Untagged Rac1	Rac1 ^{Q61L/P29S} (1-188) in pET11a vector	This study
EGFP-mCyfip1	EGFP-mCyfip1 in pEGFP vector	(Schaks et al., 2018) ²¹
EGFP-mCyfip1 ^{C179R}	EGFP-mCyfip1 ^{C179R} in pEGFP vector	(Schaks et al., 2018) ²¹
EGFP-mCyfip1 ^{Y108H}	EGFP-mCyfip1 ^{Y108H} in pEGFP vector	(Schaks et al., 2020) ²⁸
EGFP-mCyfip1 ^{Y108A}	EGFP-mCyfip1 ^{Y108A} in pEGFP vector	This study
EGFP-mCyfip1 ^{N176W}	EGFP-mCyfip1 ^{N176W} in pEGFP vector	This study
EGFP-mCyfip1 ^{N183R}	EGFP-mCyfip1 ^{N183R} in pEGFP vector	This study
EGFP-mCyfip1 ^{S186M}	EGFP-mCyfip1 ^{S186M} in pEGFP vector	This study
EGFP-mCyfip1 ^{K189M}	EGFP-mCyfip1 ^{K189M} in pEGFP vector	This study
Assembled WRC (refer to the above table for subunit information)		
WRC ^{230WCA} , or WRC ^{apo}	Sra1, Nap1, WAVE1 (1-230)-WCA, Abi2 (1-158), and HSPC300	(Chen et al., 2017) ¹⁹
WRC ^{D-Rac1}	Sra1 ^{D-Rac1} , Nap1, WAVE1 (1-230)-WCA, Abi2 (1-158), and HSPC300	This study
WRC ^{A-Rac1}	Sra1 ^{A-Rac1} , Nap1, WAVE1 (1-230)-WCA, Abi2 (1-158), and HSPC300	This study
WRC ^{AD-Rac1}	Sra1 ^{AD-Rac1} , Nap1, WAVE1 (1-230)-WCA, Abi2 (1-158), and HSPC300	This study

WRC ^{N183R}	Sra1 ^{N183R} , Nap1, WAVE1 (1-230)-WCA, Abi2 (1-158), and HSPC300	This study
WRC ^{S186M}	Sra1 ^{S186M} , Nap1, WAVE1 (1-230)-WCA, Abi2 (1-158), and HSPC300	This study
WRC ^{K189M}	Sra1 ^{K189M} , Nap1, WAVE1 (1-230)-WCA, Abi2 (1-158), and HSPC300	This study
WRC ^{Y108A}	Sra1 ^{Y108A} , Nap1, WAVE1 (1-230)-WCA, Abi2 (1-158), and HSPC300	This study
WRC ^{Y108H}	Sra1 ^{Y108H} , Nap1, WAVE1 (1-230)-WCA, Abi2 (1-158), and HSPC300	This study
WRC ^{N176W}	Sra1 ^{N176W} , Nap1, WAVE1 (1-230)-WCA, Abi2 (1-158), and HSPC300	This study
WRC ^{D-Rac1, R87C}	Sra1 ^{R87C, D-Rac1} , Nap1, WAVE1 (1-230)-WCA, Abi2 (1-158), and HSPC300	This study
WRC ^{D-Rac1, ΔPPP}	Sra1 ^{D-Rac1} , Nap1, WAVE1 ^{ΔPPP} , Abi2 (1-158), and HSPC300	This study
WRC ^{D-Rac1, Y151E}	Sra1 ^{D-Rac1} , Nap1, WAVE1 ^{Y151E} , Abi2 (1-158), and HSPC300	This study
WRC ²³⁰	Sra1, Nap1, WAVE1 (1-230), Abi2 (1-158), and HSPC300	(Chen et al., 2017) ¹⁹
WRC ^{230, D-Rac1}	Sra1 ^{D-Rac1} , Nap1, WAVE1 (1-230), Abi2 (1-158), and HSPC300	This study
WRC ^{230, A-Rac1}	Sra1 ^{A-Rac1} , Nap1, WAVE1 (1-230), Abi2 (1-158), and HSPC300	This study
WRC ^{230ΔWCA-Rac1}	Sra1, Nap1, WAVE1(1-230)-Rac1, Abi2 (1-158), and HSPC300	(Chen et al., 2017) ¹⁹

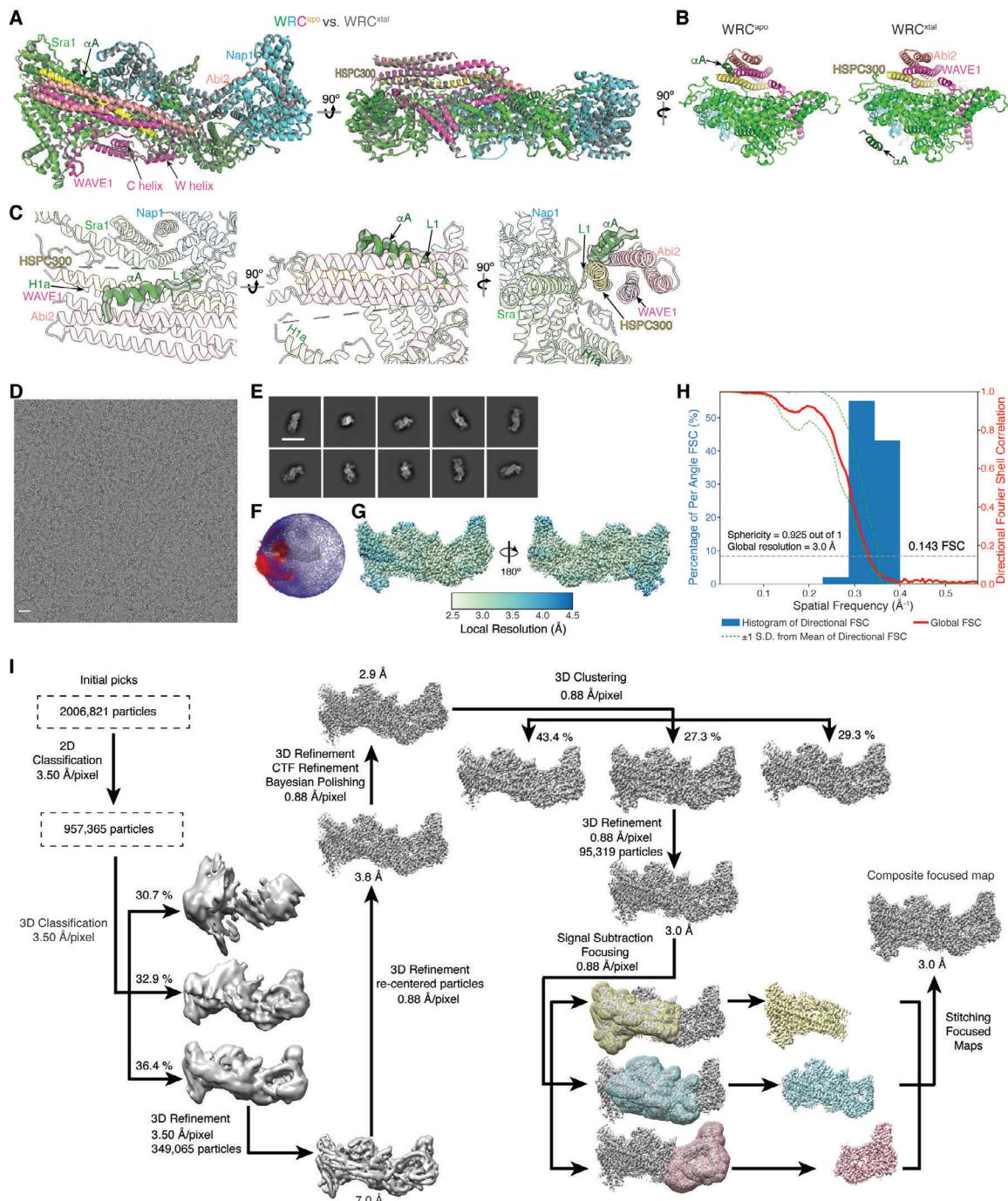
929

930 **Table S2. Amino acid sequences of recombinant proteins used in this study**

931 Only sequences in the final product (i.e., after protease cleavage to remove the affinity
932 tag) are shown and are annotated by corresponding colors.

933

>Sra1 GAMAAQVTLEDALSNVDLLEELPLPDQQCIEPPPSSLLYQPNFNTNFEDRNAFVTGIAIRYIEQATVHSSMNEMLEEGQEYAVMLYWRSCSRAIPQVKCNEQPNRVEIYEKTVEVLEPEVTKLMNMFYQRNAIERFCGEVRLCHAERRKDFVSEAYLITLGKFINMFAVLD ELKNMKCSVNDHSAYKRAAQFLRKMDPQSIQESQNLSMFLANHNKITQLQQQLEVISGYEELLADIVNLCVDYYENRMLTPSE KHMLLKVMGFGLYMDGSVSNIYKLDACKRNLKSKIDKYFKQLQVPLFGDMQIELARYIKTSAYEENKSRWTCTSSGSSPQYNIC EQMIQIREDHMRFISELARYNSEVTGSGRQEAKTDAEYRKLFDLALQGLQLLSQWSAHMVEVSWKLVHPTDKYSNKDCPDSAE EYERATRNYTSEEKFALVEVIAIMKGLQVLMGRMESVFNHAIHRTVYAAALQDFSQVTLREPLRQAIKKKNVIQSVLQAIRKTVCD WETGHEPFNDPALGRGEKDPKSGFDIKVPRRAVGPSSTQLYMVRTMLESLIADKSGSKKTLRSSLEGPTILDIEKFHRESFFYTHLIN FSETLQCCDLSQLWFREFFLETMGRRIQFPIEMSPWILTDHILETKEASMMEVLYSLDDLYNDSAHYALTRFNQFLYDEIEAE VNLCFDQFVYKLADQIFAYYKVMAGSLLDKRIRSECKNQGATIHLPPSNRYETLLKQRHVQLLGRSIDLNRLITQRVSAAMYKSLE LAIGRFSEEDLTSIVELDGLLEINRMTHKLLSRYLTLDGF DAMFREANHNSAPYGRITLHVFWELNYDFLPNYCYNGSTNRFVRTV LPFSQEFQRDKQPNAQPQYLGSKALNLAYSSIYGSYRNFVGPQHFCVIRCLLGYQGIAVVMEEELLKVKVKSLLQGTILQYVKTLMEV MPKICRCLPRHEYGSPGILEFFHQLKDIVAYELKTVCFQNLIREVGNAILFCCLLIEQSLSLLEEVCDLLHAAPFQNIILPRVHVKEGER LDAKMKRLESKYAPLHLVPLIERLGTPOQIAIAREGDLLTKERLCCGLSMFEVILTRIRSLDDPIWRGPLPSNGVMHVDECVEFHR LWSAMQFVYCIIPVGTHEFTVEQCFGDGLHWAGCMIVVLLGQQRRAVLDFCYHLLKVQKHDGKDEIIKNVPLKKMVERIRKFQILND EITIILDKYLKSGDGEGETPVEHVRCFQPPIHQSCLASS
>Sra1^{D-Rac1}, or Sra1-(GGS)₄-Rac1^{Q61L/P29S} (1-188) GAMAAQVTLEDALSNVDLLEELPLPDQQCIEPPPSSLLYQPNFNTNFEDRNAFVTGIAIRYIEQATVHSSMNEMLEEGQEYAVMLYWRSCSRAIPQVKCNEQPNRVEIYEKTVEVLEPEVTKLMNMFYQRNAIERFCGEVRLCHAERRKDFVSEAYLITLGKFINMFAVLD ELKNMKCSVNDHSAYKRAAQFLRKMDPQSIQESQNLSMFLANHNKITQLQQQLEVISGYEELLADIVNLCVDYYENRMLTPSE KHMLLKVMGFGLYMDGSVSNIYKLDACKRNLKSKIDKYFKQLQVPLFGDMQIELARYIKTSAYEENKSRWTCTSSGSSPQYNIC EQMIQIREDHMRFISELARYNSEVTGSGRQEAKTDAEYRKLFDLALQGLQLLSQWSAHMVEVSWKLVHPTDKYSNKDCPDSAE EYERATRNYTSEEKFALVEVIAIMKGLQVLMGRMESVFNHAIHRTVYAAALQDFSQVTLREPLRQAIKKKNVIQSVLQAIRKTVCD WETGHEPFNDPALGRGEKDPKSGFDIKVPRRAVGPSSTQLYMVRTMLESLIADKSGSKKTLRSSLEGPTILDIEKFHRESFFYTHLIN FSETLQCCDLSQLWFREFFLETMGRRIQFPIEMSPWILTDHILETKEASMMEVLYSLDDLYNDSAHYALTRFNQFLYDEIEAE VNLCFDQFVYKLADQIFAYYKVMAGSLLDKRIRSECKNQGATIHLPPSNRYETLLKQRHVQLLGRSIDLNRLITQRVSAAMYKSLE LAIGRFSEEDLTSIVELDGLLEINRMTHKLLSRYLTLDGF DAMFREANHNSAPYGRITLHVFWELNYDFLPNYCYNGSTNRFVRTV LPFSQEFQRDKQPNAQPQYLGSKALNLAYSSIYGSYRNFVGPQHFCVIRCLLGYQGIAVVMEEELLKVKVKSLLQGTILQYVKTLMEV MPKICRCLPRHEYGSPGILEFFHQLKDIVAYELKTVCFQNLIREVGNAILFCCLLIEQSLSLLEEVCDLLHAAPFQNIILPRVHVKEGER LDAKMKRLESKYAPLHLVPLIERLGTPOQIAIAREGDLLTKERLCCGLSMFEVILTRIRSLDDPIWRGPLPSNGVMHVDECVEFHR LWSAMQFVYCIIPVGTHEFTVEQCFGDGLHWAGCMIVVLLGQQRRAVLDFCYHLLKVQKHDGKDEIIKNVPLKKMVERIRKFQILND EITIILDKYLKSGDGEGETPVEHVRCFQPPIHQSCLASSGGSGGSGGSGSMAQAIKVVGDDGAVGKTCLLISYTTNAFSGEYIPTVFDNSANVMDGKPVNLGLWDTAGLEDYDRLRPLSYQPQTDVFLICFSLVSPASFENVRKWPYPEVRHHCPNTIILVGTKLDRDDKDT IEKLKEKKLPTITYPQGLAMAKEIGAVKYLECSALTQRGLKTVFDEAIRAVLCPPPVKKRKRK
>Sra1^{A-Rac1} or Sra1 Y423-[(GGS)₆-Rac1^{P29S} (1-188) - (GS)₆]-S424 GAMAAQVTLEDALSNVDLLEELPLPDQQCIEPPPSSLLYQPNFNTNFEDRNAFVTGIAIRYIEQATVHSSMNEMLEEGQEYAVMLYWRSCSRAIPQVKCNEQPNRVEIYEKTVEVLEPEVTKLMNMFYQRNAIERFCGEVRLCHAERRKDFVSEAYLITLGKFINMFAVLD ELKNMKCSVNDHSAYKRAAQFLRKMDPQSIQESQNLSMFLANHNKITQLQQQLEVISGYEELLADIVNLCVDYYENRMLTPSE KHMLLKVMGFGLYMDGSVSNIYKLDACKRNLKSKIDKYFKQLQVPLFGDMQIELARYIKTSAYEENKSRWTCTSSGSSPQYNIC EQMIQIREDHMRFISELARYNSEVTGSGRQEAKTDAEYRKLFDLALQGLQLLSQWSAHMVEVSWKLVHPTDKYSNKDCPDSAE GGSGGSGSMAQAIKVVGDDGAVGKTCLLISYTTNAFSGEYIPTVFDNSANVMDGKPVNLGLWDTAGQEDYDRLRPLSYQPQTDVFL ICFSLVSPASFENVRKWPYPEVRHCPNTIILVGTKLDRDDKDTIEKLCKKLTPTYQPGIAMAKEIGAVKYLECSALTQRGLK TVFDEAIRAVLCPPPKRKRKGGSGGSGGSGS SNKCDPSAEEYERATRNYTSEEKFALVEVIAIMKGLQVLMGRMESVFNHAI RHTVYAAALQDFSQVTLREPLRQAIKKKNVIQSVLQAIRKTVCDWETGHEPFNDPALGRGEKDPKSGFDIKVPRRAVGPSSTQLYMVR TMLESLIADKSGSKKTLRSSLEGPTILDIEKFHRESFFYTHLINSETLQCCDLSQLWFREFFLETMGRRIQFPIEMSPWILTD HILETKEASMMEVLYSLDLYNDSAHYALTRFNQFLYDEIEAEVNLCFDQFVYKLADQIFAYYKVMAGSLLDKRIRSECKNQGAT IHLPPSNRYETLLKQRHVQLLGRSIDLNRLLTQRVSAAMYKSLLELAIGRFSEEDLTSIVELDGLLEINRMTHKLLSRYLTLDGF DAM FREANHNVSAFYGRITLHVFWELNYDFLPNYCYNGSTNRFVRTVLPFSQEFQRDKQPNAQPQYLGSKALNLAYSSIYGSYRNFVGP PHFQVICRLLGYQGIAVVMEEELLKVKVKSLLQGTILQYVKTLMEVMPKICRCLPRHEYGSPGILEFFHQLKDIVAYELKTVCFQNL EVGNAILFCCLLIEQSLSLLEEVCDLLHAAPFQNIILPRVHVKEGERLDAKMKRLESKYAPLHLVPLIERLGTPOQIAIAREGDLLTKER LCCGLSMFEVILTRIRSLDDPIWRGPLPSNGVMHVDECVEFHR LWSAMQFVYCIIPVGTHEFTVEQCFGDGLHWAGCMIVVLLGQQR RFAVLDFCYHLLKVQKHDGKDEIIKNVPLKKMVERIRKFQILND EITIILDKYLKSGDGEGETPVEHVRCFQPPIHQSCLASS
>Sra1^{AD-Rac1} Sra1 Y423-[(GGS)₆-Rac1^{Q61L/P29S} (1-188) - (GS)₆]-S424- (GGS)₄-Rac1^{P29S} (1-188) . Note the DNA sequence for the second Rac1 (D site Rac1) is from a synthetic gene optimized for insect cell expression, which shares 76% sequence identity with the first Rac1 from the original human sequence to avoid unexpected recombination during cloning and protein expression.


<p>GAMAAQVTLEDALSNVDLLEELPLPDQQPCIEPPPSSLQYPNFNTNFEDRNAFVTGIARYIEQATVHSSNEMLEEGQEYAVMLYT WRSCSRAIPOVKCNEQPNRVEIYEKTVEVLEPEVTKLMNFMYFQRNAIERFCGEVRLCHAERRKDFVSEAYLITLGKFINMFAVID ELKNMKCSVNDHSAYKRAAQFLRKMDPQSIQESQNLMSFLANHNKITQSLQQQLEVISGYEELLADIVNLCVDYYENRMLTPSE KHMLLVGFGLYLMDGSVSNIYKLDACKRINLSKIDKYFKLQVVLFGDMQIELARYIKTSAYEENKSRWTCTSSGSSPQYNIC EQMIQIREDHMRFISELARYNSEVVTGSGRQEAKTDAEYRKLFDLALQGLQLSQWSAHMVEVSWKLVHPTDKYGSGGSGGGSG GGGGSGGSMQAIKCVVGDGAVGKTCLLISYTTNAFSGEYIPTVFDNYSANVMVGDGPVNGLWDTAGLEDYDRLRPLSYQPQTDVFL ICFSLVSPASFENVRACKWYPEVRHCPNTPILVGTKLDDRDKDIEKLKEKKLTPITYPQGLAMAKEIGAVKYLECSALTQRGLK TVFDEAIRAVLCPPPVKRK GGGGSGGSNNKDCPDSAEYERATRNYTSEEKFALVEVIAMIKGLQVLMGRMESVFNHAI RHTVYALQDFSQVTLREPLQAIKKKNNVQSLQVQIYKTRNFKLQVPLFGDMQIELARYIKTSAYEENKSRWTCTSSGSSPQYNIC TMLESLIADKSGSKTLLRSSLLEGPTILDIEKFHRESFFYTHLINFSETLQQCDLSQWLWREFFLELTMRRIQFPIEMMSMPWILTD HILETKEASMEYVLYSLDLYNDSAHYALTRNFKLQVPLFGDMQIELARYIKTSAYEENKSRWTCTSSGSSPQYNIC IHLPPSNRYETLLKQRHVQLLGRSIDLNRLITQRVSAAMYKSLAIGRFSEEDLTSIVELDGLLEINRMTHKLLSRYLTLDGF FREANHNVSAPYGRITLHVFWELNYDFLPNVCYNGSTNRVFTLVPFSQEFQDRKQPNQAPQYIHLGSKALNLYASSIYGSYRNFVGP PHFQVICRLLGQYQIAVVMEEELLKVVKSLLQGTIQLQVKTLMEVMPKICRCLPRHEYGSPGILEFFHQLKDIVEYAEKTVCFQNL EVGNAILFCCLIEQSLSLEEVCDLHAAFPQNIPLRVHVKEGERLDAKMKRLESKYAPLHVPLIERLGTPOQIAIAREGDLLTKE LCCGLSMFEVILTRIRSLDDPIWRGPLPSNGVMHDECVEFHR RFAVLDFCYHLLKVQKHDGKDEIIKNVPLKKMVERIRKFQILND GGGGSGGSMQAIKCVVGDGAVGKTCLLISYTTNAFSGEYIPTVFDNYSANVMVGDGPVNGLWDTAGLEDYDRLRPLSYQPQTDVFL FSLVSPASFENVRACKWYPEVRHCPNTPILVGTKLDDRDKDIEKLKEKKLTPITYPQGLAMAKEIGAVKYLECSALTQRGLKTV FDEAIRAVLCPPPVKRK GGGGSGGS</p>
<p>>Sra1^{N183R} GAMAAQVTLEDALSNVDLLEELPLPDQQPCIEPPPSSLQYPNFNTNFEDRNAFVTGIARYIEQATVHSSNEMLEEGQEYAVMLYT WRSCSRAIPOVKCNEQPNRVEIYEKTVEVLEPEVTKLMNFMYFQRNAIERFCGEVRLCHAERRKDFVSEAYLITLGKFINMFAVID ELKNMKCSVNDHSAYKRAAQFLRKMDPQSIQESQNLMSFLANHNKITQSLQQQLEVISGYEELLADIVNLCVDYYENRMLTPSE KHMLLVGFGLYLMDGSVSNIYKLDACKRINLSKIDKYFKLQVVLFGDMQIELARYIKTSAYEENKSRWTCTSSGSSPQYNIC EQMIQIREDHMRFISELARYNSEVVTGSGRQEAKTDAEYRKLFDLALQGLQLSQWSAHMVEVSWKLVHPTDKYGSGGSGGGSG GGGGSGGSNNKDCPDSAEYERATRNYTSEEKFALVEVIAMIKGLQVLMGRMESVFNHAI RHTVYALQDFSQVTLREPLQAIKKKNNVQSLQVQIYKTRNFKLQVPLFGDMQIELARYIKTSAYEENKSRWTCTSSGSSPQYNIC WETGHEPFNDPALRGKDPGFDIKVPRRAVGPSSTQLYMVRTMLESIADKSGSKTLLRSSLLEGPTILDIEKFHRESFFYTHLIN FSETLQQCDLSQWLWREFFLELTMRRIQFPIEMMSMPWILTDHILETKEASMEYVLYSLDLYNDSAHYALTRNFKLQVPLFGDMQIELARYIKTSAYEENKSRWTCTSSGSSPQYNIC IHLPPSNRYETLLKQRHVQLLGRSIDLNRLITQRVSAAMYKSLAIGRFSEEDLTSIVELDGLLEINRMTHKLLSRYLTLDGF FREANHNVSAPYGRITLHVFWELNYDFLPNVCYNGSTNRVFTLVPFSQEFQDRKQPNQAPQYIHLGSKALNLYASSIYGSYRNFVGP PHFQVICRLLGQYQIAVVMEEELLKVVKSLLQGTIQLQVKTLMEVMPKICRCLPRHEYGSPGILEFFHQLKDIVEYAEKTVCFQNL EVGNAILFCCLIEQSLSLEEVCDLHAAFPQNIPLRVHVKEGERLDAKMKRLESKYAPLHVPLIERLGTPOQIAIAREGDLLTKE LCCGLSMFEVILTRIRSLDDPIWRGPLPSNGVMHDECVEFHR RWSAMQFVYCIPTVGTHEFTVEQCFGDGLHWAGCMIVLVLGQQRRFAVLDFCYHLLKVQKHDGKDEIIKNVPLKKMVERIRKFQILND IIITILDYLKSGDGEGTPOVEHRCFQPPIHQSASS</p>
<p>>Sra1^{S186M} GAMAAQVTLEDALSNVDLLEELPLPDQQPCIEPPPSSLQYPNFNTNFEDRNAFVTGIARYIEQATVHSSNEMLEEGQEYAVMLYT WRSCSRAIPOVKCNEQPNRVEIYEKTVEVLEPEVTKLMNFMYFQRNAIERFCGEVRLCHAERRKDFVSEAYLITLGKFINMFAVID ELKNMKCSVNDHSAYKRAAQFLRKMDPQSIQESQNLMSFLANHNKITQSLQQQLEVISGYEELLADIVNLCVDYYENRMLTPSE KHMLLVGFGLYLMDGSVSNIYKLDACKRINLSKIDKYFKLQVVLFGDMQIELARYIKTSAYEENKSRWTCTSSGSSPQYNIC EQMIQIREDHMRFISELARYNSEVVTGSGRQEAKTDAEYRKLFDLALQGLQLSQWSAHMVEVSWKLVHPTDKYGSGGSGGGSG GGGGSGGSNNKDCPDSAEYERATRNYTSEEKFALVEVIAMIKGLQVLMGRMESVFNHAI RHTVYALQDFSQVTLREPLQAIKKKNNVQSLQVQIYKTRNFKLQVPLFGDMQIELARYIKTSAYEENKSRWTCTSSGSSPQYNIC WETGHEPFNDPALRGKDPGFDIKVPRRAVGPSSTQLYMVRTMLESIADKSGSKTLLRSSLLEGPTILDIEKFHRESFFYTHLIN FSETLQQCDLSQWLWREFFLELTMRRIQFPIEMMSMPWILTDHILETKEASMEYVLYSLDLYNDSAHYALTRNFKLQVPLFGDMQIELARYIKTSAYEENKSRWTCTSSGSSPQYNIC IHLPPSNRYETLLKQRHVQLLGRSIDLNRLITQRVSAAMYKSLAIGRFSEEDLTSIVELDGLLEINRMTHKLLSRYLTLDGF FREANHNVSAPYGRITLHVFWELNYDFLPNVCYNGSTNRVFTLVPFSQEFQDRKQPNQAPQYIHLGSKALNLYASSIYGSYRNFVGP PHFQVICRLLGQYQIAVVMEEELLKVVKSLLQGTIQLQVKTLMEVMPKICRCLPRHEYGSPGILEFFHQLKDIVEYAEKTVCFQNL EVGNAILFCCLIEQSLSLEEVCDLHAAFPQNIPLRVHVKEGERLDAKMKRLESKYAPLHVPLIERLGTPOQIAIAREGDLLTKE LCCGLSMFEVILTRIRSLDDPIWRGPLPSNGVMHDECVEFHR RWSAMQFVYCIPTVGTHEFTVEQCFGDGLHWAGCMIVLVLGQQRRFAVLDFCYHLLKVQKHDGKDEIIKNVPLKKMVERIRKFQILND IIITILDYLKSGDGEGTPOVEHRCFQPPIHQSASS</p>
<p>>Sra1^{K189M} GAMAAQVTLEDALSNVDLLEELPLPDQQPCIEPPPSSLQYPNFNTNFEDRNAFVTGIARYIEQATVHSSNEMLEEGQEYAVMLYT WRSCSRAIPOVKCNEQPNRVEIYEKTVEVLEPEVTKLMNFMYFQRNAIERFCGEVRLCHAERRKDFVSEAYLITLGKFINMFAVID ELKNMKCSVNDHSAYMRAAQFLRKMDPQSIQESQNLMSFLANHNKITQSLQQQLEVISGYEELLADIVNLCVDYYENRMLTPSE KHMLLVGFGLYLMDGSVSNIYKLDACKRINLSKIDKYFKLQVVLFGDMQIELARYIKTSAYEENKSRWTCTSSGSSPQYNIC EQMIQIREDHMRFISELARYNSEVVTGSGRQEAKTDAEYRKLFDLALQGLQLSQWSAHMVEVSWKLVHPTDKYGSGGSGGGSG GGGGSGGSNNKDCPDSAEYERATRNYTSEEKFALVEVIAMIKGLQVLMGRMESVFNHAI RHTVYALQDFSQVTLREPLQAIKKKNNVQSLQVQIYKTRNFKLQVPLFGDMQIELARYIKTSAYEENKSRWTCTSSGSSPQYNIC WETGHEPFNDPALRGKDPGFDIKVPRRAVGPSSTQLYMVRTMLESIADKSGSKTLLRSSLLEGPTILDIEKFHRESFFYTHLIN FSETLQQCDLSQWLWREFFLELTMRRIQFPIEMMSMPWILTDHILETKEASMEYVLYSLDLYNDSAHYALTRNFKLQVPLFGDMQIELARYIKTSAYEENKSRWTCTSSGSSPQYNIC IHLPPSNRYETLLKQRHVQLLGRSIDLNRLITQRVSAAMYKSLAIGRFSEEDLTSIVELDGLLEINRMTHKLLSRYLTLDGF FREANHNVSAPYGRITLHVFWELNYDFLPNVCYNGSTNRVFTLVPFSQEFQDRKQPNQAPQYIHLGSKALNLYASSIYGSYRNFVGP PHFQVICRLLGQYQIAVVMEEELLKVVKSLLQGTIQLQVKTLMEVMPKICRCLPRHEYGSPGILEFFHQLKDIVEYAEKTVCFQNL EVGNAILFCCLIEQSLSLEEVCDLHAAFPQNIPLRVHVKEGERLDAKMKRLESKYAPLHVPLIERLGTPOQIAIAREGDLLTKE LCCGLSMFEVILTRIRSLDDPIWRGPLPSNGVMHDECVEFHR RWSAMQFVYCIPTVGTHEFTVEQCFGDGLHWAGCMIVLVLGQQRRFAVLDFCYHLLKVQKHDGKDEIIKNVPLKKMVERIRKFQILND IIITILDYLKSGDGEGTPOVEHRCFQPPIHQSASS</p>

<p>>Sra1^{Y108A}</p> <p>GAMAAQVTLEDALSNVDLLEELPLPDQQPCIEPPPSSLLYQPNFNTNFEDRNAFVTGIARYIEQATVHSSMNEMLEEGQEYAVMLYT WRSCSRAIPQVKCNEQPNRVEIAEKTEVLEPEVTKLMNMFYFQRNAIERFCGEVRLCHAERRKDFVSEAYLITLGKFINMFAVLD ELKNMKCSVNDHSAYKRAAQFLRKMDPQS1QESQNLMSFLANHNKITQSLQQQLEVISGYEELLADIVNLCVDYYENRMLTPSE KHMLLVGMGFLYLMGDSVSNIYKLDACKRINLSKIDKYFKQLQVVPFLFGDMQIELARYIKTSAHYEEENKSRWTCTSSGSSPQYNIC EQMIQIREDHMRFISELARYSNSEVTGSGRQEAKTDAEYRKLFDLALQGLQLLSQWSAHMVEVSWKLVHPTDKYSNKDCPDSAE EYERATRNYTSEEKFALVEVIAMIGLQVLMGRMESVFNHAIRHTVYAAALQDFSVTLEPLRQAIKKKNVIQSVLQAIRKTVCD WETGHEPFNDPALARKEGKDPKSGFDIKVPRRAVGPSSTQLYMVRTMLESIAKSGSKTLRSSLLEGPTILDIEKFHRESFFYTHLIN FSETLQQCCDLSQLWFREFFLELTGRRIQFPIEMSMPPWILTDILETKEASMMEVLYSLDLYNDSAHYALTRFNQFLYDEIEAE VNLCFDQFVYKLAQDQIFAYYKVMAGSLLDKRIRSECKNQGATIHLPPSNRYETLLKQRHVQLLGRSIDLNRLITQRVSAAMYKSLE LAIGRFSEEDLTSIVELDGLEINRMTHKLLSRYLTLDGFDMFREANHNSAPYGRITLHVFWEILYDFLPNYCNGSTNRFVRTV LPFSQEFQRDKQPNAQPQYLGSKALNLAYSSIYGSYRNFVGPPHFQVICRLLGYQGIAVVMEEELLKVKSLQGTILQYVKTLMEV MPKICRCLPRHEYGSPGILEFFHHQQLKDIVEYELKTCFQNIREVGNAILFCLLIEQSLSLEEVCDLLHAAPFQNIILPRVHVKEGER LDAKMKRLESKYAPLHLVPLIERLGTPOQIAIAREGDLLTKERLCCGLSMFEVILTRIRSLDDPIWRGPLPSNGVMHVDECVEFHR LWSAMQFVYCIIPVGTHEFTVEQCFGDGLHWAGCMIVLQGQRRFAVLDFCYHLLKVQKHDGKDEIIKNVPLKKMVERIRKFQILND IIITILDYKLGSGDGEGTPEVHRCFQPPIHQSCLASS</p>
<p>>Sra1^{N176W}</p> <p>GAMAAQVTLEDALSNVDLLEELPLPDQQPCIEPPPSSLLYQPNFNTNFEDRNAFVTGIARYIEQATVHSSMNEMLEEGQEYAVMLYT WRSCSRAIPQVKCNEQPNRVEIYEKTVEVLEPEVTKLMNMFYFQRNAIERFCGEVRLCHAERRKDFVSEAYLITLGKFINMFAVLD ELKNMKCSVNDHSAYKRAAQFLRKMDPQS1QESQNLMSFLANHNKITQSLQQQLEVISGYEELLADIVNLCVDYYENRMLTPSE KHMLLVGMGFLYLMGDSVSNIYKLDACKRINLSKIDKYFKQLQVVPFLFGDMQIELARYIKTSAHYEEENKSRWTCTSSGSSPQYNIC EQMIQIREDHMRFISELARYSNSEVTGSGRQEAKTDAEYRKLFDLALQGLQLLSQWSAHMVEVSWKLVHPTDKYSNKDCPDSAE EYERATRNYTSEEKFALVEVIAMIGLQVLMGRMESVFNHAIRHTVYAAALQDFSVTLEPLRQAIKKKNVIQSVLQAIRKTVCD WETGHEPFNDPALARKEGKDPKSGFDIKVPRRAVGPSSTQLYMVRTMLESIAKSGSKTLRSSLLEGPTILDIEKFHRESFFYTHLIN FSETLQQCCDLSQLWFREFFLELTGRRIQFPIEMSMPPWILTDILETKEASMMEVLYSLDLYNDSAHYALTRFNQFLYDEIEAE VNLCFDQFVYKLAQDQIFAYYKVMAGSLLDKRIRSECKNQGATIHLPPSNRYETLLKQRHVQLLGRSIDLNRLITQRVSAAMYKSLE LAIGRFSEEDLTSIVELDGLEINRMTHKLLSRYLTLDGFDMFREANHNSAPYGRITLHVFWEILYDFLPNYCNGSTNRFVRTV LPFSQEFQRDKQPNAQPQYLGSKALNLAYSSIYGSYRNFVGPPHFQVICRLLGYQGIAVVMEEELLKVKSLQGTILQYVKTLMEV MPKICRCLPRHEYGSPGILEFFHHQQLKDIVEYELKTCFQNIREVGNAILFCLLIEQSLSLEEVCDLLHAAPFQNIILPRVHVKEGER LDAKMKRLESKYAPLHLVPLIERLGTPOQIAIAREGDLLTKERLCCGLSMFEVILTRIRSLDDPIWRGPLPSNGVMHVDECVEFHR LWSAMQFVYCIIPVGTHEFTVEQCFGDGLHWAGCMIVLQGQRRFAVLDFCYHLLKVQKHDGKDEIIKNVPLKKMVERIRKFQILND IIITILDYKLGSGDGEGTPEVHRCFQPPIHQSCLASS</p>
<p>>Sra1^{R87C, D-Racl}, or Sra1^{R87C- (GGS)} + Racl^{Q61L/P29S (1-188)}</p> <p>GAMAAQVTLEDALSNVDLLEELPLPDQQPCIEPPPSSLLYQPNFNTNFEDRNAFVTGIARYIEQATVHSSMNEMLEEGQEYAVMLYT WCSCSRAIPQVKCNEQPNRVEIYEKTVEVLEPEVTKLMNMFYFQRNAIERFCGEVRLCHAERRKDFVSEAYLITLGKFINMFAVLD ELKNMKCSVNDHSAYKRAAQFLRKMDPQS1QESQNLMSFLANHNKITQSLQQQLEVISGYEELLADIVNLCVDYYENRMLTPSE KHMLLVGMGFLYLMGDSVSNIYKLDACKRINLSKIDKYFKQLQVVPFLFGDMQIELARYIKTSAHYEEENKSRWTCTSSGSSPQYNIC EQMIQIREDHMRFISELARYSNSEVTGSGRQEAKTDAEYRKLFDLALQGLQLLSQWSAHMVEVSWKLVHPTDKYSNKDCPDSAE EYERATRNYTSEEKFALVEVIAMIGLQVLMGRMESVFNHAIRHTVYAAALQDFSVTLEPLRQAIKKKNVIQSVLQAIRKTVCD WETGHEPFNDPALARKEGKDPKSGFDIKVPRRAVGPSSTQLYMVRTMLESIAKSGSKTLRSSLLEGPTILDIEKFHRESFFYTHLIN FSETLQQCCDLSQLWFREFFLELTGRRIQFPIEMSMPPWILTDILETKEASMMEVLYSLDLYNDSAHYALTRFNQFLYDEIEAE VNLCFDQFVYKLAQDQIFAYYKVMAGSLLDKRIRSECKNQGATIHLPPSNRYETLLKQRHVQLLGRSIDLNRLITQRVSAAMYKSLE LAIGRFSEEDLTSIVELDGLEINRMTHKLLSRYLTLDGFDMFREANHNSAPYGRITLHVFWEILYDFLPNYCNGSTNRFVRTV LPFSQEFQRDKQPNAQPQYLGSKALNLAYSSIYGSYRNFVGPPHFQVICRLLGYQGIAVVMEEELLKVKSLQGTILQYVKTLMEV MPKICRCLPRHEYGSPGILEFFHHQQLKDIVEYELKTCFQNIREVGNAILFCLLIEQSLSLEEVCDLLHAAPFQNIILPRVHVKEGER LDAKMKRLESKYAPLHLVPLIERLGTPOQIAIAREGDLLTKERLCCGLSMFEVILTRIRSLDDPIWRGPLPSNGVMHVDECVEFHR LWSAMQFVYCIIPVGTHEFTVEQCFGDGLHWAGCMIVLQGQRRFAVLDFCYHLLKVQKHDGKDEIIKNVPLKKMVERIRKFQILND IIITILDYKLGSGDGEGTPEVHRCFQPPIHQSCLASSGGGCGGSGGSMQA1KCVVVGDGAVGKTCLLISYTTNAFSGEYIPTVFD NYSANVMVDGKPVNLGLWDTAGLEDYDRLRPLSPQTDVFLICFSLVSPASFENRAKWYPEVRHHCPNTPIILVGTKLDDRDKDT IEKLKEKKLTPITYPQGLAMAKEIGAVKYLECSALTQRLKTVFDEAIRAVLCPPPVKKRKRK</p>
<p>>Nap1</p>

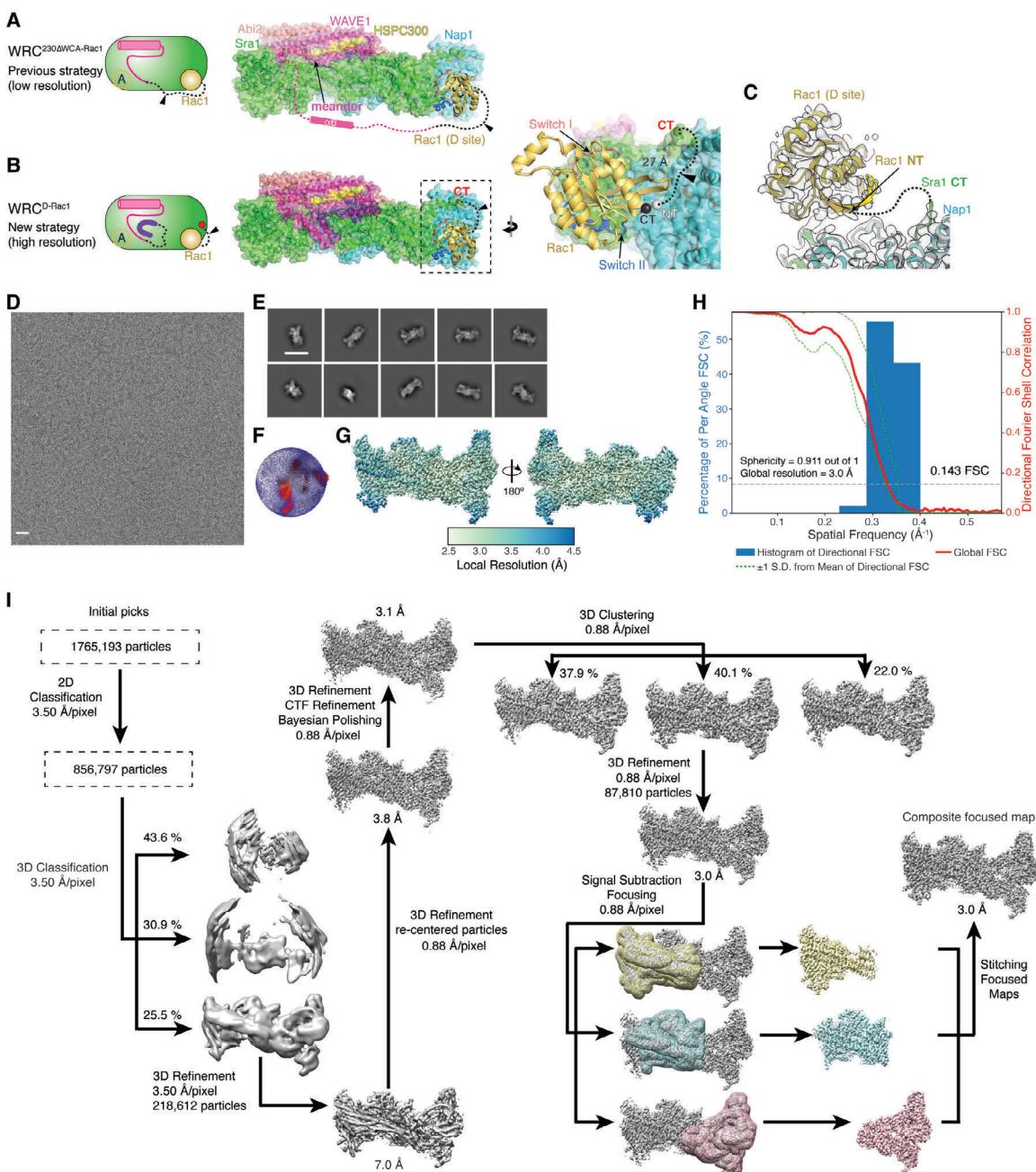
GAMSRSQLPSQQKLAEKLTLNDRGVGMLTRLYNIKKACGDPKAKPSYLIDKNLESAVKFIVRKFPAVETRNNNQQLAQLQKEKSEILKNLALYFTFVDMFKEFDBHCELLNTIDCVQVFFDITVNFPLTKNYLDLITYTTLMILLSRIERKAIIGLYNYAHEMTHGASDREYPRLGQMIVDYEPLKMMEEFVPHSKSLSDALISLQMVPYRNRNLSDAQWRNAQLLSISAPSTMNPAQSDTMPCYLSLDAMEKWIIFGFILCHGILNTDATAFLNLWKLALQSSSCLSLFRDEVFHIIKAAEDLFVNIRGYNKRINDIRECKEAVSHAGSMHRERRKFLRSALKELATVLSQDQPLGLGPALFVFMALSFARDEIIWLLRHADNMPKKSADDIDKHKIAELIFYMEELRAHVRKYGPVMQRYYVYLSGFDAVVINELVQNLSCPEDESIIMSSFVNTMTSLSVKQVEDGEVFDFRGMRLDWFLRQAYTSVSKASLGLADHRELGMNTIIFHTKMDVSLVEMLVETSDLSIFCFYSRAFEKMFQOCLELPSQSRYSIAFPILLCTHFMSCTHELCPPEERHHIGDRSLSLCNMFLDEMAKQARNLITDICTEQCTLSQDQLLPKHCARKTISQAVNKKSSKKQTGKGEPEPEREKGPGESMRKNRLVVTNLKLHTALSELCSINYVPNMMVWEHTFTPREYLTSHLEIRFTKSIVGMMTMYNQATQEIAPSELLTSVRAVYMTVLQSIENYVQIDITRVFNNVLLQQTQHLDHGEPTITSLYTNWYLETLLRQVSNGHIAFPAMAKFVNLPTENEAKTFNAEYSDISEMRSLSSELLGPYGMKFLSESIMWHISSQVAELKKMVENVDVLQTMRTSFDPDQMAALFKRLLSVSDVSLKRMITIIGVILFERSLQAQELRDVLSYHIFLVSSIEDFKDHIPRETMKVA闵VYELSSAAGLPCEIDPALVALLSSQKSENISPEEYKIACLMVFVAVSLPTLASNVMQSYPASIEGHCNNIHCLAKAINQIAALFTIHKGSEDRLKEFLALASSLLKIGQETDKTTRNRESVYLLDMIVQESPFLTMDFCFPVYLLRNAYHAYKQSVTSSA
>WAVE1 (1-230) GHMPLVKRNIDPRHLCHTALPRGIKNELECVTNISLANIIRQLSSLSKYAEDIFGELFNEAHFSFRVNSLQERVDRLSVSVTQLDPKEEELSLQDITMRKAFRSSTIQQDQLFDRKTLPIPLQETYDVCEQPPPLNILTPYRDDGKEGLKFYTNPSYFFDLWKEKMLQDTEDKRKEKRKQKQKRNLDLDRPHEPEKVPRAFPDERRREWQKLAQGPELAEDDANLLHKHIEVANG GGSGGGGGGGGGGGGG KRHPSTLPVISDARSLVLEAIRKGIGQLRKVEEQRQEAKHERIENDVATILSRRIAVEYSDSEDSEFDEVWDLE
>WAVE1 (1-230) -WCA, or WAVE1 (1-230) -(GGS) ₆-WCA (485-559) GHMPLVKRNIDPRHLCHTALPRGIKNELECVTNISLANIIRQLSSLSKYAEDIFGELFNEAHFSFRVNSLQERVDRLSVSVTQLDPKEEELSLQDITMRKAFRSSTIQQDQLFDRKTLPIPLQETYDVCEQPPPLNILTPYRDDGKEGLKFYTNPSYFFDLWKEKMLQDTEDKRKEKRKQKQKRNLDLDRPHEPEKVPRAFPDERRREWQKLAQGPELAEDDANLLHKHIEVANG GGSGGGGGGGGGGGGG KRHPSTLPVISDARSLVLEAIRKGIGQLRKVEEQRQEAKHERIENDVATILSRRIAVEYSDSEDSEFDEVWDLE
>WAVE1 (1-230) -Rac1, or WAVE1 (1-230) -(GGS) ₆-Rac1 ^{Q61L/P29S} (1-188) GHMPLVKRNIDPRHLCHTALPRGIKNELECVTNISLANIIRQLSSLSKYAEDIFGELFNEAHFSFRVNSLQERVDRLSVSVTQLDPKEEELSLQDITMRKAFRSSTIQQDQLFDRKTLPIPLQETYDVCEQPPPLNILTPYRDDGKEGLKFYTNPSYFFDLWKEKMLQDTEDKRKEKRKQKQKRNLDLDRPHEPEKVPRAFPDERRREWQKLAQGPELAEDDANLLHKHIEVANG GGSGGGGGGGGGGGGG MQAIKCVVVGDDAVGKTCLLISYTTNAFS GEYI PTVFDNYSANVMVDGKPVNLGLWDTAG LEDY DRRLRPLSYPQTDVFLICFSLVSPASFENVRAKWPYEVRRHCPNTPIIILVGRK
>WAVE1 ^{APP}, ¹³¹PPPLNI¹³⁶ replaced by (GS) ₃ in WAVE1 (1-230) -WCA GHMPLVKRNIDPRHLCHTALPRGIKNELECVTNISLANIIRQLSSLSKYAEDIFGELFNEAHFSFRVNSLQERVDRLSVSVTQLDPKEEELSLQDITMRKAFRSSTIQQDQLFDRKTLPIPLQETYDVCEQPPPLNILTPYRDDGKEGLKFYTNPSYFFDLWKEKMLQDTEDKRKEKRKQKQKRNLDLDRPHEPEKVPRAFPDERRREWQKLAQGPELAEDDANLLHKHIEVANG GGSGGGGGGGGGGGGG KRHPSTLPVISDARSLVLEAIRKGIGQLRKVEEQRQEAKHERIENDVATILSRRIAVEYSDSEDSEFDEVWDLE
>WAVE1 ^{Y151E}, Y151E in WAVE1 (1-230) -WCA GHMPLVKRNIDPRHLCHTALPRGIKNELECVTNISLANIIRQLSSLSKYAEDIFGELFNEAHFSFRVNSLQERVDRLSVSVTQLDPKEEELSLQDITMRKAFRSSTIQQDQLFDRKTLPIPLQETYDVCEQPPPLNILTPYRDDGKEGLKFYTNPSYFFDLWKEKMLQDTEDKRKEKRKQKQKRNLDLDRPHEPEKVPRAFPDERRREWQKLAQGPELAEDDANLLHKHIEVANG GGSGGGGGGGGGGGGG KRHPSTLPVISDARSLVLEAIRKGIGQLRKVEEQRQEAKHERIENDVATILSRRIAVEYSDSEDSEFDEVWDLE
>Abi2 (1-158) GHMAELQMLLEEEIPGGRRALFDSYTNLERVADYCENNYIQSADKQRALEETKAYTQSLASVAYINTLANNVILQMLDIQASQLRMESSINHISQTVDIHKEKVARREIGILTNTNNTSRTHKIIAPANLERPVYIRKPIDYTILDDIGHGVKVSTQ
>HSPC300 GHMGAAMAGQEDPVQREIHQDWANREYIEIITSSIKKIADFLNSFDMSCRSRLATLNEKLTALERRIEYIEARVTKGETLT
>WCA KRHPSTLPVISDARSLVLEAIRKGIGQLRKVEEQRQEAKHERIENDVATILSRRIAVEYSDSEDSEFDEVWDLE
>GST-Rac1 ^{P29S} or GST-Tev-Rac1 ^{P29S} (1-188) MSPILGYWIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYIDGDVKLTQSMAIIRYIADKHNMLGGCPKERAESMLEGAVLDIYGVSRAYSKDFETLKVDFLSKLPPEMLKMFEDRLCHKTYLNGDHVTBDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEAPIQIDKYLKSSKYIAWPLQGWQATFGGGDHPKSDLVPRGSENLYFQGH MQAIKCVVVGDGAVGKTCLLISYTTNAFS GEYI PTVFDNYSANVMVDGKPVNLGLWDTAG LEDY DRRLRPLSYPQTDVFLICFSLVSPASFENVRAKWPYEVRRHCPNTPIIILVTKLDDRKDKTIEKLKEKKLTPITYPQGLAMAKEIGAVKYLECSALTQRGLKTVFDEAIRAVLCPPPVKKRK
>GST-Rac1 ^{QP} or GST-Tev-Rac1 ^{Q61L/P29S} (1-188) MSPILGYWIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYIDGDVKLTQSMAIIRYIADKHNMLGGCPKERAESMLEGAVLDIYGVSRAYSKDFETLKVDFLSKLPPEMLKMFEDRLCHKTYLNGDHVTBDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEAPIQIDKYLKSSKYIAWPLQGWQATFGGGDHPKSDLVPRGSENLYFQGH MQAIKCVVVGDGAVGKTCLLISYTTNAFS GEYI PTVFDNYSANVMVDGKPVNLGLWDAG LEDY DRRLRPLSYPQTDVFLICFSLVSPASFENVRAKWPYEVRRHCPNTPIIILVTKLDDRKDKTIEKLKEKKLTPITYPQGLAMAKEIGAVKYLECSALTQRGLKTVFDEAIRAVLCPPPVKKRK

935 **Table S3. Cryo-EM data collection, refinement, and validation statistics.**

Sample name	WRC ^{apo}	WRC ^{D-Rac1}	WRC ^{AD-Rac1}
EMDB ID	EMD-26732	EMD-26733	EMD-26734
PDB ID	7USC	7USD	7USE
<hr/>			
Microscope	Talos Arctica	Talos Arctica	Talos Arctica
Detector (Mode)	Falcon 3EC counting mode	Falcon 3EC counting mode	Falcon 3EC counting mode
Voltage (kV)	200	200	200
Magnification (nominal)	120,000	120,000	120,000
Total electron fluence (e ⁻ /Å ²)	44.06	45.27	41.34
Electron flux (e ⁻ /pixel/sec)	0.84	0.87	0.79
Defocus range (μm)	-0.6 to -1.2	-0.5 to -1.0	-0.8 to -1.2
Pixel size (Å)	0.8757	0.8757	0.8757
Total exposure time (sec)	40	40	40
Total fractions/micrograph	62	62	62
Exposure per fraction (e ⁻ /Å ² /frame)	0.71	0.73	0.67
Micrographs collected (no.)	2913	2512	1285
Total extracted particles (no.)	2,006,821	1,765,193	666,417
Particles used for 3D analyses (no.)	957,365	856,797	657,065
Final refined particles (no.)	95,319	87,810	139,296
Symmetry imposed	C1	C1	C1
FSC 0.5 (masked/unmasked)	3.5/4.1	3.5/4.2	3.6/4.0
FSC 0.143 (masked/unmasked)	3.0/3.4	3.0/3.5	3.0/3.3
FSC Sphericity	0.925	0.911	0.884
Local resolution range (Å)	2.8 – 4.5	2.8 – 4.5	2.5 – 4.5
Map Sharpening B factors (Å ²)	-35	-39	-59
<hr/>			
Model composition			
Non-hydrogen atoms	21709	23226	23913
Protein residues	2673	2864	2954
Ligands	0	2	4
Refinement			
Refinement package (s)	Phenix	Phenix	Phenix
Map Correlation Coefficient			
Global	0.86	0.80	0.78
Local	0.87	0.81	0.78
R.m.s. deviations			
Bond lengths (Å)	0.007	0.005	0.006
Bond angles (°)	0.992	0.990	1.058
Validation			
EMRinger score	2.84	2.15	2.35
MolProbity score	1.53	1.39	1.35
Clashscore	6.44	7.13	6.41
Poor rotamers (%)	0	0.15	0.19
C _B deviations (%)	0	0.07	0
Ramachandran plot			
Favored (%)	97.01	98.23	98.46
Allowed (%)	2.99	1.77	1.54
Disallowed (%)	0.00	0.00	0.00
CaBLAM outliers (%)	0.73	0.64	0.76

937

938 **Extended Data Fig. 1 Determination of WRC^{apo} structure by cryo-EM. (A)** Structural
939 overlay of WRC^{apo} (color) and WRC^{xtal} (grey, PDB: 3P8C), showing high similarity
940 between the two structures, with the whole complex r.m.s.d. = 0.827 Å as calculated in
941 Pymol. **(B)** Side-by-side comparison of WRC^{apo} and WRC^{xtal} showing the difference in the

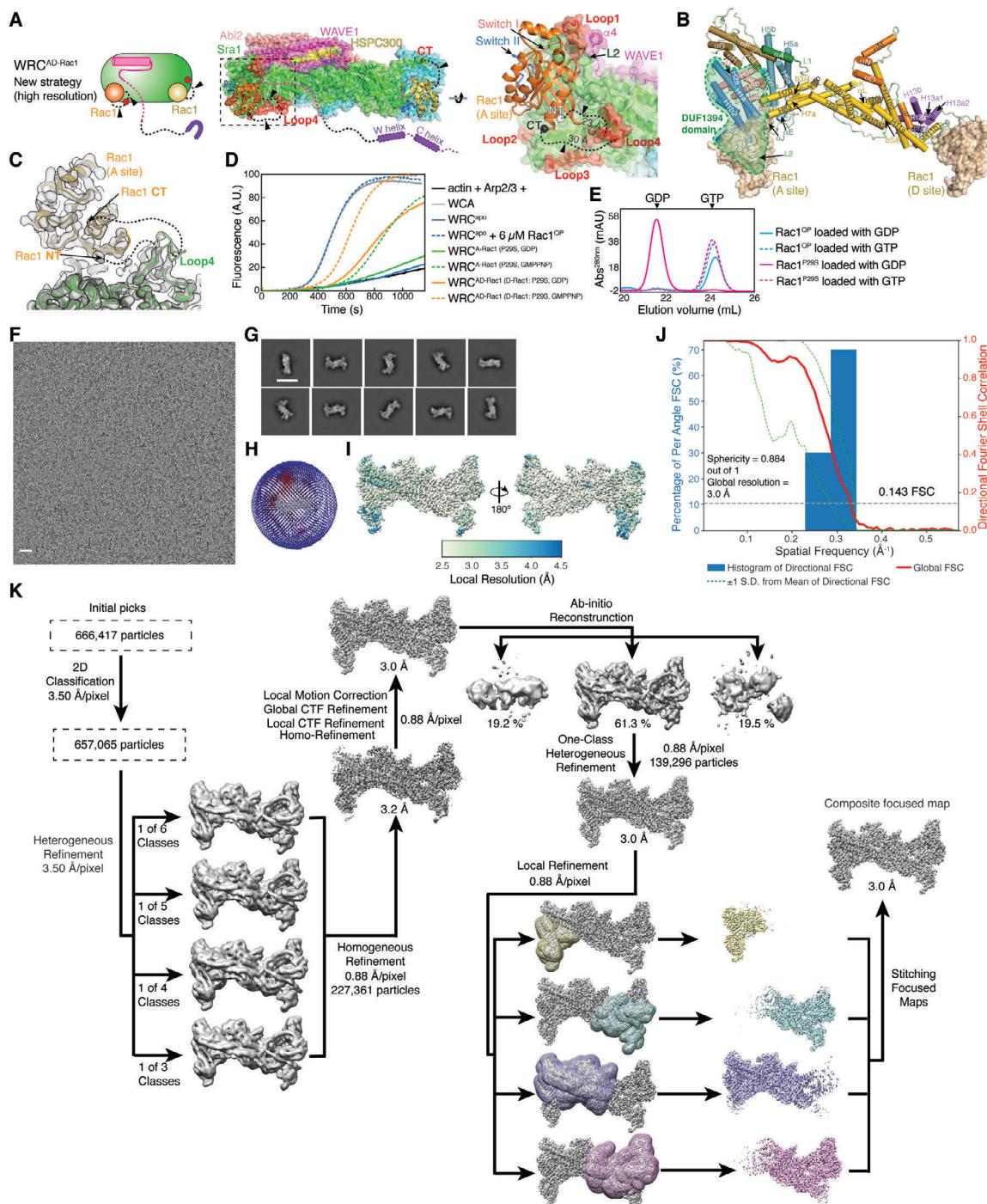

942 assigned position of the α A helix. In WRC^{xtal} structure, this helix was assigned to a
943 neighboring WRC in the crystal lattice, which raised the hypothesis that this helix might
944 promote WRC clustering or oligomerization at membranes. By contrast, the single particle
945 cryo-EM structure of WRC^{apo} reveals the helix belongs to the same WRC. **(C)** Density for
946 the α A helix and L1 loop (a.a. 27-56) in Sra1. The weak density of the L1 loop following
947 the C-terminus of α A suggests L1 must wind through an internal cavity in WRC to connect
948 to the N-terminus of the H1a helix. This buried loop should restrain α A from approaching
949 another WRC, unless the complex is first disassembled. The missing density of the C-
950 terminal half of the L1 loop is indicated by a dashed line connecting to the N-terminus of
951 the H1a helix. **(D)** A representative cryo-EM micrograph of vitrified WRC^{apo} sample. Scale
952 bar: 20 nm. **(E)** Representative 2D class averages of WRC^{apo}. Scale bar: 20 nm. **(F)** Plot
953 showing the Euler angle distribution assigned to the particles contributing to the final
954 reconstructed map of WRC^{apo}. The height of each cylinder corresponds to the number of
955 particles in each angular orientation. **(G)** Maps of WRC^{apo} colored based on local resolution
956 values and showing two views that are rotated 180° along y-axis. **(H)** Directional Fourier
957 Shell Correlation (FSC) plot representing 3D resolution anisotropy in the cryo-EM map of
958 WRC^{apo}. The blue histograms represent percentage of directional resolution over the spatial
959 frequency; the red line indicates the global FSC; the green dashed lines correspond to ± 1
960 standard deviation from mean of directional resolutions; and the grey dashed line shows
961 FSC at the cut-off value 0.143. **(I)** Schematic showing cryo-EM data processing steps for
962 obtaining 3D reconstruction of WRC^{apo} complex dataset. ~2 million particles went through
963 multiple iterations of 2D classification and one round of 3D classification to clean up the
964 particle stack. 3D clustering helped to further sort out heterogeneity existing in the data set.

Ding et al

965 This clean stack of particles was subject to 3D auto-refinement and signal-subtracted

966 focused refinement. The focused maps were combined to generate the final composite map.

967

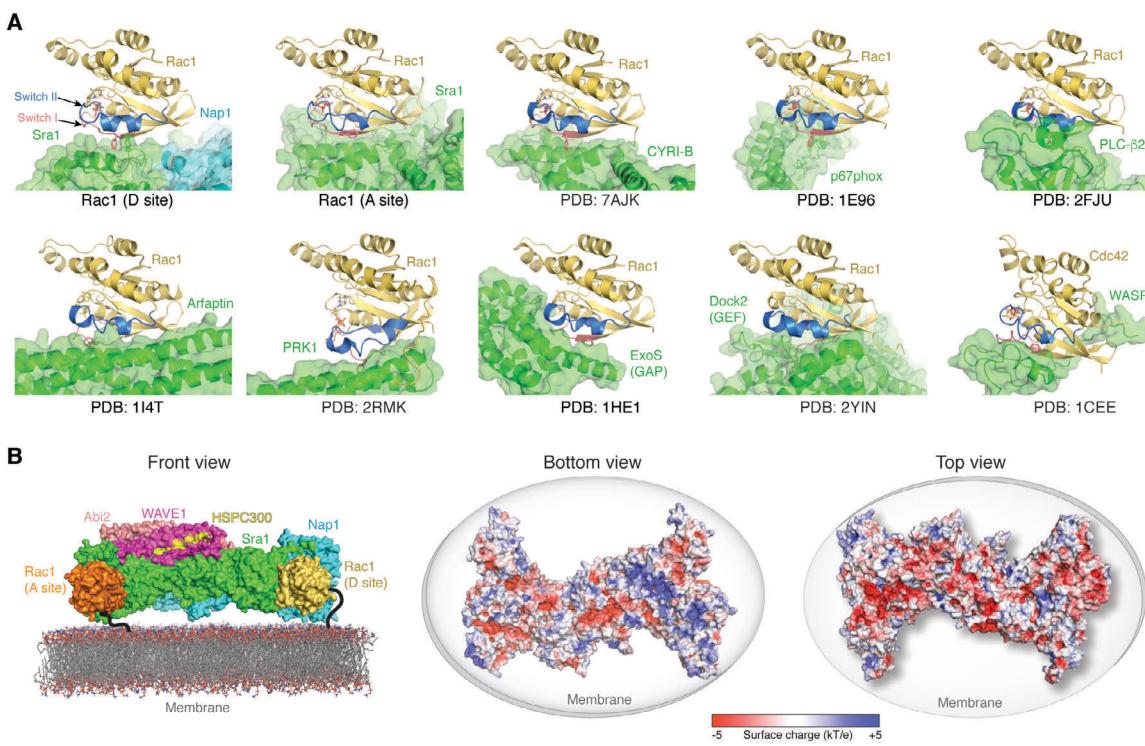


968

969 **Extended Data Fig. 2 Cryo-EM structure determination of WRC^{D-Rac1}.** (A-B) Cartoon
 970 and structural representations to show the previous and new strategies of stabilizing Rac1
 971 binding to the D site. Dotted lines and arrow heads indicate flexible (GGS) or (GS) linkers
 972 (see **Table S1, S2** for linker details). (C) Density for Rac1 tethered to the D site, showing
 973 no observable density accountable for the flexible linker used for tethering (indicated by

974 dotted line). The WRC^{D-Rac1} structure is overlaid on WRC^{apo} (pale color), showing the local
975 structures surrounding the tethering points were not perturbed. **(D)** A representative cryo-
976 EM micrograph of vitrified WRC^{D-Rac1} sample. Scale bar: 20 nm. **(E)** Representative 2D
977 class averages of WRC^{D-Rac1}. Scale bar: 20 nm. **(F)** Plot showing the Euler angle
978 distribution of particles that contributed to final reconstruction of WRC^{D-Rac1}. The height
979 of each cylinder corresponds to the number of particles in each angular orientation. **(G)**
980 Maps of WRC^{D-Rac1} colored based on local resolution values and showing two views
981 rotated by 180° along y-axis. **(H)** Directional Fourier Shell Correlation (FSC) plot
982 representing 3D resolution anisotropy in the cryo-EM map of WRC^{D-Rac1}. The blue
983 histograms represent percentage of directional resolution over the spatial frequency; the
984 red line indicates the global FSC; the green dashed lines correspond to ± 1 standard
985 deviation from mean of directional resolutions; and the grey dashed line shows FSC at the
986 cut-off value 0.143. **(I)** A schematic of the different data processing steps of WRC^{D-Rac1}
987 complex dataset, which is similar to that of WRC^{apo}.

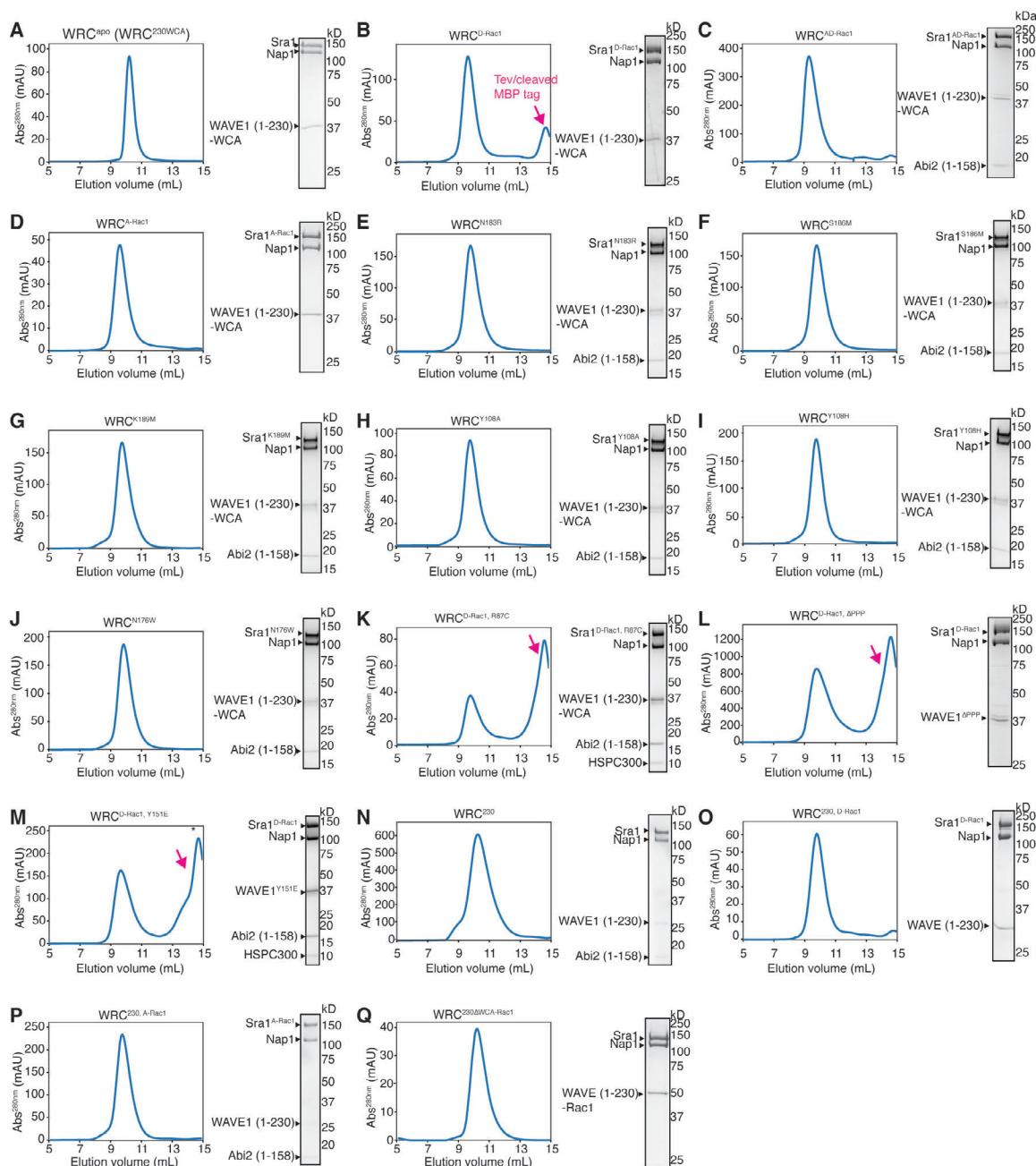
988


989

990 **Extended Data Fig. 3 Cryo-EM structure determination of WRC^{AD-Rac1}. (A-B)**

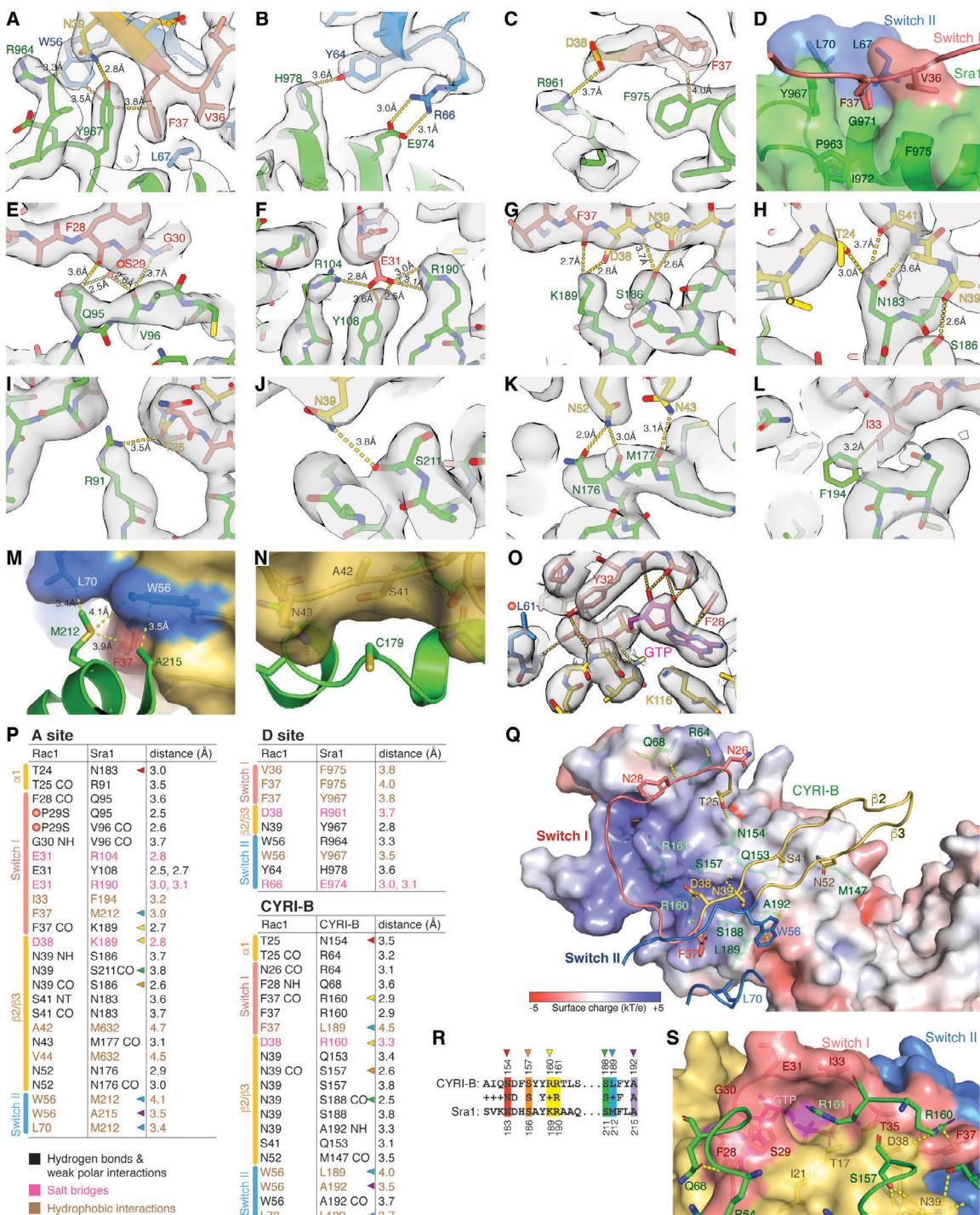
991 Cartoon and structural representation of the new strategies to stabilize Rac1 binding to the
 992 A site. Dotted lines and arrow heads indicate flexible (GGS) or (GS) linkers (see **Table S1**,
 993 **S2** for linker details). Four non-conserved surface loops in Sra1 (red, Loop1: a.a. 95-103;

994 Loop2: a.a. 276-281; Loop3: a.a. 329-342; Loop4: a.a. 418-432) surrounding the A site
995 were chosen to insert Rac1 using two separate flexible linkers. Insertion at Loop4 between
996 Y423 and S424 produced the high-resolution cryo-EM structure of WRC^{AD-Rac1}. **(B)**
997 Secondary structure assignment of Sra1, following the same scheme used in the crystal
998 structure of the WRC⁸. DUF1394 domain and Rac1 at both A and D site are indicated. **(C)**
999 Density for Rac1 tethered to the A site, showing very weak, if any, density could be
1000 observed for the flexible linkers used for the tethering (indicated by dotted lines). The
1001 WRC^{AD-Rac1} structure is overlaid on WRC^{apo} (pale color), showing the local structures
1002 surrounding the tethering points were not disturbed, except that no density was observed
1003 for a.a. 422-427, which is the tip of Loop4 where Rac1 is inserted between a.a. 423 and
1004 424. **(D)** Pyrene-actin polymerization assay showing tethering Rac1 to the A site was
1005 sufficient to promote WRC activation in a nucleotide dependent manner, and this activity
1006 was further promoted by Rac1 binding to the D site. The green curves show WRC^{A-Rac1}, in
1007 which Rac1 only contained the P29S mutation, instead of both P29S and Q61L. Unlike
1008 Rac1^{QP}, Rac1^{P29S} can be loaded with GMPPNP or GDP, as is shown in **(E)**. The orange
1009 curves compare the activities of WRC^{AD-Rac1}, in which the D-site Rac1^{P29S} was loaded with
1010 indicated nucleotides, while the A-site Rac1^{QP} remained bound to GTP. Reactions use the
1011 KMEI20GD buffer (see Methods) and contain 4 μ M actin (5% pyrene-labeled), 10 nM
1012 Arp2/3 complex, 100 nM WRC230WCA or WAVE1 WCA. **(E)** Ion exchange
1013 chromatography to identify the nucleotide bound to Rac1 after the loading procedures (see
1014 Methods for details), showing Rac1^{P29S} can be loaded with GTP (or GMPPNP) and GDP,
1015 while Rac1^{QP} stays bound to GTP after the same treatment. The bound nucleotides were
1016 released from Rac1 after urea denaturation, separated from the protein through a 3-kDa


1017 MWCO membrane, and analyzed by anion exchange chromatography. **(F)** A representative
1018 cryo-EM micrograph of vitrified WRC^{AD-Rac1}. Scale bar: 20 nm. **(G)** Representative 2D
1019 class averages of WRC^{AD-Rac1}. Scale bar: 20 nm. **(H)** Plot showing the Euler angle
1020 distribution of the particles that contributed to the final reconstruction of WRC^{AD-Rac1}. The
1021 height of each cylinder corresponds to the number of particles in each angular orientation.
1022 **(I)** Maps of WRC^{AD-Rac1} colored based on local resolution values and showing two
1023 different views that are rotated 180° relative to y-axis. **(J)** Directional Fourier Shell
1024 Correlation (FSC) plot representing 3D resolution anisotropy in the cryo-EM map of
1025 WRC^{AD-Rac1}. The blue histograms represent percentage of directional resolution over the
1026 spatial frequency; the red line indicates the global FSC; the green dashed lines correspond
1027 to ± 1 standard deviation from mean of directional resolutions; and the grey dashed line
1028 shows FSC at the cut-off value 0.143. **(K)** A schematic for the different data processing
1029 steps for the WRC^{AD-Rac1} dataset.
1030

1031

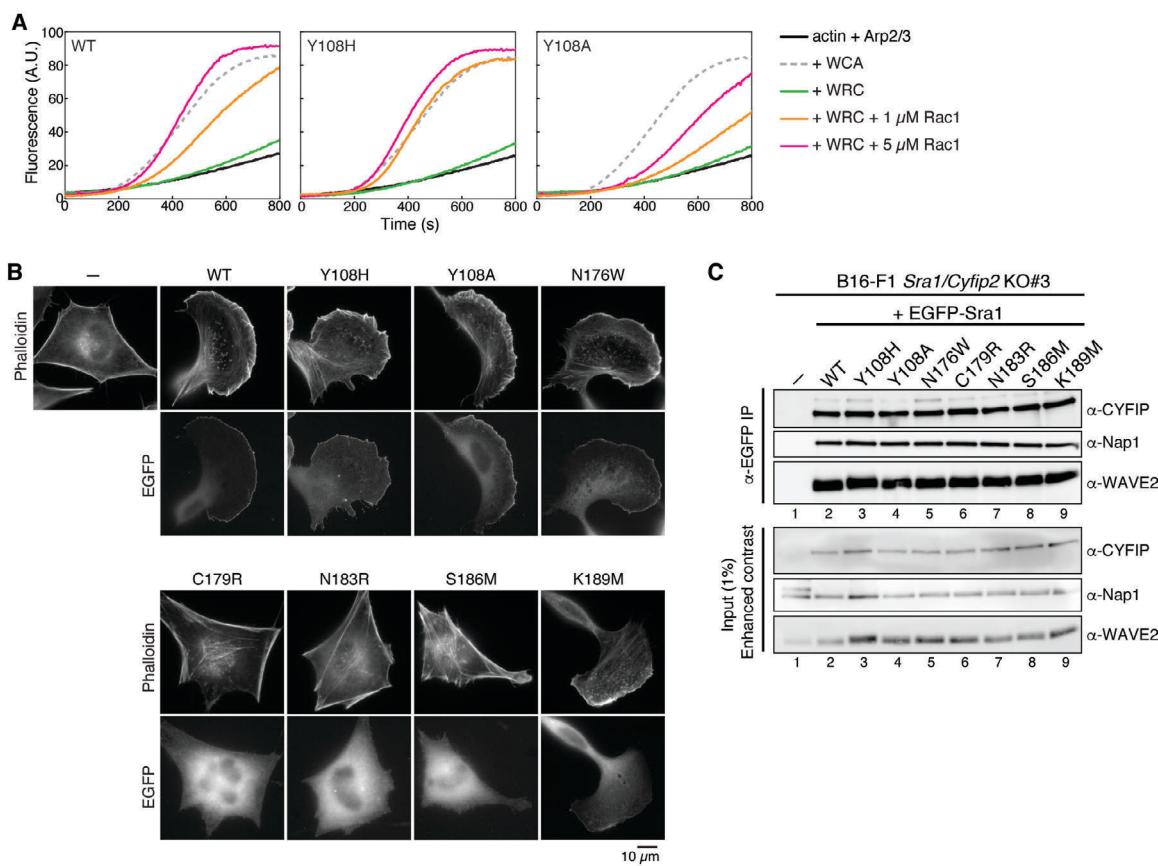
1032 **Extended Data Fig. 4 Orientation of Rac1 binding to the WRC and other ligands. (A)**


1033 Comparison of Rac1 and Cdc42 binding to the indicated ligands, with GTPases remaining
1034 in the same orientation. **(B)** Surface representation (left) and surface charge representation
1035 (right, calculated using APBS in Pymol³⁵) showing how WRC can be oriented on the
1036 membrane by binding to two Rac1 molecules and through electrostatic interactions
1037 between its positively charged surface (Bottom view) and acidic phospholipids on the
1038 membrane. Rac1 molecules are anchored on the membrane through prenylation of their C-
1039 terminal tails (indicated by black lines, ~15-30 Å in distance each).

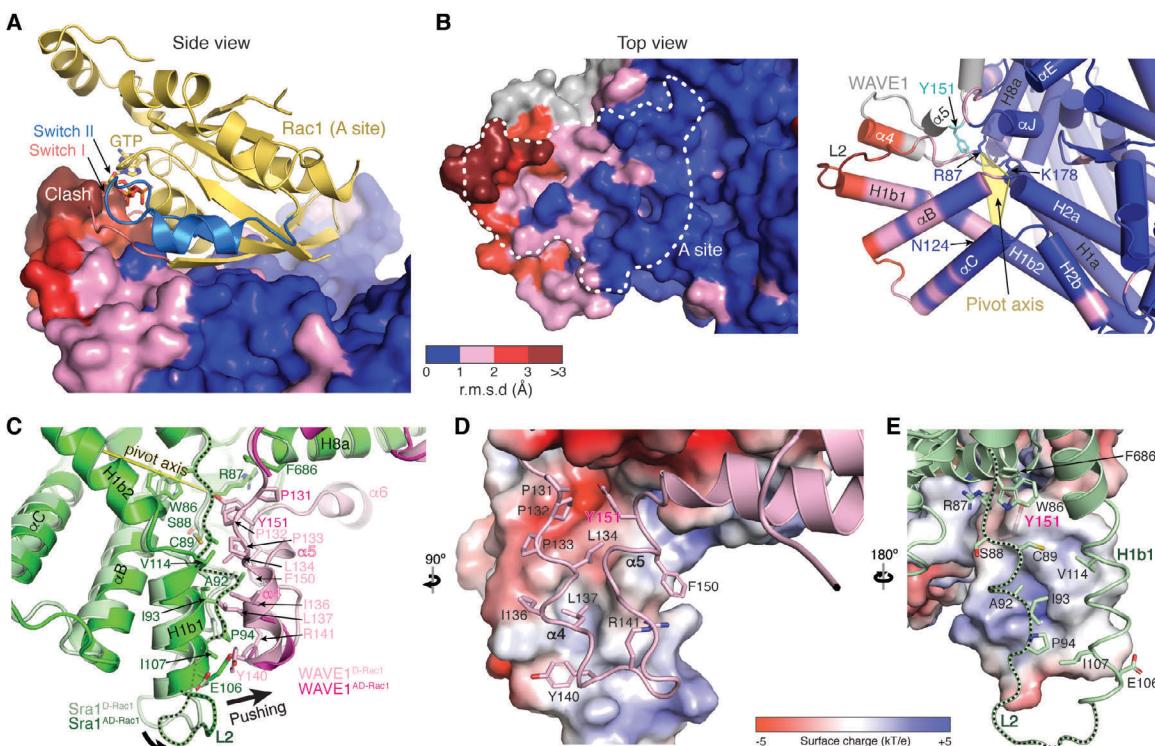
Ding et al

1045 Source Q15 ion exchange column, different amounts of Tev and cleaved MBP tag may
1046 show as peaks (indicated by magenta arrows) that were well separated from the WRC peak.

1047



1048


1049 **Extended Data Fig. 6 Details of interactions at A and D sites and comparison with**
 1050 **CYRI-B. (A-O)** Detailed views of map density or semitransparent surface presentation of
 1051 key residues that mediate Rac1 binding to the D site (A-D) and A site (E-N), and GTP
 1052 bound to Rac1^{QP} at the A site (O). Red dots indicated the P29S or Q61L mutation in Rac1

1053 used for optimizing A site binding. In (N), C179 in Sra1 does not have specific interactions
1054 with Rac1, but is packed against a concave pocket on Rac1. The structure suggests
1055 mutating C179, which is limited to small side chains throughout all examined organisms,
1056 to the long-chain residue Arginine (C179R) would cause steric clashes to disrupt Rac1
1057 binding and WRC activation. (P) Contacting residues between Rac1 and indicated surface.
1058 Color-coded arrow heads indicate conserved interactions shared by both Sra1 and CYRI-
1059 B. (Q) Top view and semitransparent surface charge representation of Rac1 binding to the
1060 CYRI-B surface (PDB: 7AJK). Yellow dotted lines indicate polar interactions. For clarity,
1061 the backbone of Rac1 Switch I-β2-β3-Switch II sequence mediating the binding is shown
1062 as loops. Orientation is similar to Fig. 3B. (R) Sequence alignment of the conserved
1063 residues of CYRI-B and Sra1 mediating Rac1 binding, which are indicated by color
1064 arrowheads also shown in (P). (S) Semitransparent surface representation of the Rac1
1065 surface, showing how CYRI^{R161} fits into the pocket in Rac1 similar to Sra1^{R190} shown in
1066 Fig. 3C.

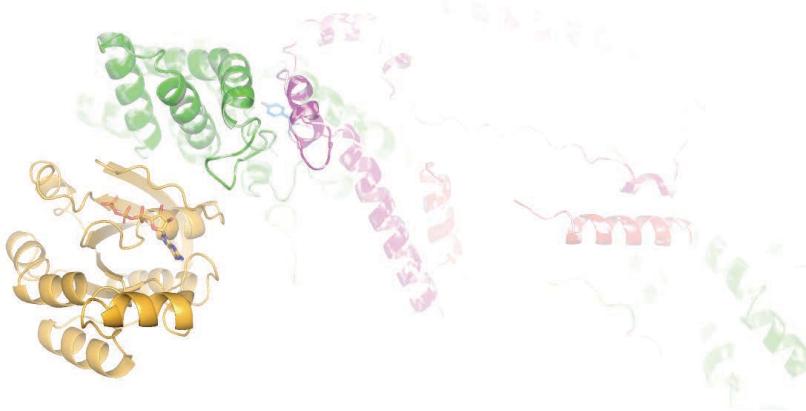
1067

1070 Pyrene-actin polymerization assays comparing the activities of WRCs carrying Y108H vs.
1071 Y108A. Reactions use the NMEH20GD buffer (see Methods) and contain 3.5 μ M actin
1072 (5% pyrene-labeled), 10 nM Arp2/3 complex, 100 nM WRC230WCA or WAVE1 WCA,
1073 and/or indicated amounts of untagged Rac1^{QP}. **(B)** Representative fluorescence images of
1074 B16-F1 *Sra1/Cyfip2* double KO#3 cells transfected with indicated EGFP-Sra1 variants,
1075 stained by phalloidin for F-actin, and imaged for both actin and EGFP-Sra1. **(C)**
1076 Immunoprecipitation (IP) and Western blot of the same B16-F1 *Sra1/Cyfip2* double KO#3
1077 cells used in (B), which were transfected with indicated EGFP-tagged Sra1 variants, lysed,
1078 and probed for the expression and assembly of the WRC, as exemplified by CYFIP
1079 antibodies (α -CYFIP, which detected both Sra1 and Cyfip2), α -Nap1, and α -WAVE2.

1080

1081 **Extended Data Fig. 8 Interactions propagating from A site binding to WCA release.**

1082 (A) Side view of the surface representation of the A site in WRC^{D-Rac1}, colored by r.m.s.d.
1083 values between WRC^{D-Rac1} and WRC^{AD-Rac1} using the *colorbyrmsd.py* script written by
1084 Shivender Shandilya, Jason Vertrees, and Thomas Holder. The two overall structures are
1085 aligned by excluding the regions that undergo major conformational changes (a.a. 56-337
1086 of Sra1 and 131-544 of WAVE1). The A site binding Rac1 in WRC^{AD-Rac1} is shown in
1087 cartoon to demonstrate the steric clash with the A site in WRC^{D-Rac1}. (B) Top view of the
1088 A site in surface (left) and cartoon (right) representations, following the same r.m.s.d. color
1089 scheme used in (A). The grey color corresponds to the WAVE1 sequence released in
1090 WRC^{AD-Rac1} (including Y151 in cyan). White dashed line indicates the boundary of the A
1091 site. Pivot axis for A site rotation/flattening is defined by a plane in yellow that runs through
1092 R87/N124/K178 and aligns to Y151 in WAVE1. (C) Detailed view of the conformational
1093 changes at the interface between H1b1-L2 of Sra1 and α4-loop-α5 of WAVE1. WRC^{D-Rac1}


Ding et al

1094 structure is in light color. WRC^{AD-Rac1} is in dark color. Black dotted line traces the L2 loop.

1095 Contacting residues are shown as sticks. **(D-E)** Electrostatic surface representations of the

1096 binding surfaces on the Sra1 side (D) and the WAVE1 side (E).

1097

1098

1099 **Extended Data Movie 1. Morph movie showing conformational changes caused by**
1100 **Rac1 binding to the A site leading to WCA release.** Movie was made using Pymol based
1101 on the structural overlay of WRC^{D-Rac1} and WRC^{AD-Rac1}. Rac1 (orange) binding to the A
1102 site (green) flattens the binding surface, causing a rotation against the Tyrosine lock
1103 indicated by WAVE1^{Y151} (blue stick). This rotation in turn destabilizes the Tyrosine lock
1104 conformation, which leads to the release of the downstream sequences including the W and
1105 C helices (red). Structure of the intermediate state was made by combining the structure of
1106 WRC^{AD-Rac1} (all but the meander and WCA regions of WAVE1) and WRC^{D-Rac1} (meander
1107 and WCA sequences, after aligning the L2 loop of WRC^{D-Rac1} to WRC^{AD-Rac1}). Structure
1108 of the end point was based on the structure of WRC^{AD-Rac1}, with the destabilized structural
1109 elements (meander region and WCA) randomly positioned.

1110

1111

1112 **Additional references for Methods & Extended Data**

1113 36. Chen, B., Padrick, S. B., Henry, L. & Rosen, M. K. Biochemical reconstitution of
1114 the WAVE regulatory complex. *Methods Enzymol.* **540**, 55–72 (2014).

1115 37. Zheng, S. Q. *et al.* MotionCor2: Anisotropic correction of beam-induced motion
1116 for improved cryo-electron microscopy. *Nature Methods* vol. 14 (2017).

1117 38. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM
1118 structure determination. *J Struct Biol* **180**, 519–530 (2012).

1119 39. Zhang, K. Gctf: Real-time CTF determination and correction. *J. Struct. Biol.* **193**,
1120 (2016).

1121 40. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC:
1122 Algorithms for rapid unsupervised cryo-EM structure determination. *Nat. Methods*
1123 (2017) doi:10.1038/nmeth.4169.

1124 41. Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory
1125 research and analysis. *J Comput Chem* **25**, 1605–1612 (2004).

1126 42. Kidmose, R. T. *et al.* Namdinator - Automatic molecular dynamics flexible fitting
1127 of structural models into cryo-EM and crystallography experimental maps. *IUCrJ*
1128 **6**, (2019).

1129 43. Afonine, P. V. *et al.* Towards automated crystallographic structure refinement with
1130 phenix.refine. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **68**, (2012).

1131 44. Chen, V. B. *et al.* MolProbity: All-atom structure validation for macromolecular
1132 crystallography. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **66**, (2010).

1133 45. Berman, H., Henrick, K., Nakamura, H. & Markley, J. L. The worldwide Protein
1134 Data Bank (wwPDB): Ensuring a single, uniform archive of PDB data. *Nucleic*

1135 *Acids Res.* **35**, (2007).

1136 46. Steffen, A. *et al.* Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia
1137 formation. *EMBO J.* **23**, (2004).

1138