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SUMMARY

Influenza A virus (IAV) infections are frequent every year and result in arange of disease
severity. Given that transposable e ements (TES) contribute to the activation of innate immunity,
we wanted to explore their potential role in this variability. Transcriptome profiling in monocyte-
derived macrophages from 39 individuals following IAV infection revealed significant inter-
individual variation in viral load post-infection. Using ATAC-seq we identified a set of TE
families with either enhanced or reduced accessibility upon infection. Of the enhanced families,
15 showed high variability between individuals and had distinct epigenetic profiles. Motif
analysis showed an association with known immune regulators in stably enriched TE families
and with other factorsin variable families, including KRAB-ZNFs. We also observed a strong
association between basal TE transcripts and viral load post infection. Finally, we built a
predictive model suggesting that TEs, and host factors regulating TES, contribute to the variable

response to infection.
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INTRODUCTION

Influenza A virus (IAV) infection causes seasonal epidemics worldwide and resultsin awide
range of disease severity between individuals. The underlying reasons for this variability remain
largely elusive (Clohisey and Baillie, 2019; Fukuyama and Kawaoka, 2011) but are determined

by viral and host factors (Gounder and Boon, 2019). Indeed, viral determinants alone cannot
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account for the varied responses observed in individuals challenged by the same virus
(Ciancandlli et a., 2016; Clohisey and Baillie, 2019; Gounder and Boon, 2019). The human
innate immune system, which involves the modulation of several cellular pathways, is acritica
component of the response to infection (Iwasaki, 2012). Upon sensing of avirussuch as|AV by
recognition receptors, including RIG-1 and TLR3, several signal transduction pathways are
triggered which further modulate various transcription factors (Bierne et al., 2012; Paschos and
Allday, 2010; Xu et al., 2020). These regulators, including NF-kB/RELSs, IRFs, and STATS, will
engage the immune transcriptional network through the alteration of chromatin state, and in turn
mediate the differential expression of hundreds of genesinvolved in the pro-inflammatory and
antimicrobial programsto restrict virus replication and transmission (Smale, 2012; Zhang and
Cao, 2021). Host factorsinvolved in this cascade likely contribute to the variable response to
AV infection. Other factors also associated with influenza pathogenesis and that influence the
response include pre-existing immunity, age, sex, obesity, and the microbiome (Gounder and
Boon, 2019; Keenan and Allan, 2019). Y et, whether there exist other host factors that are
important in determining the response to infection remains unknown.

Transposable elements (TES), which occupy half of the human genome, play critical roles
as cis-regulatory elements in various human biological processes (Bourque, 2009; Bourque et al.,
2018; Chuong et al., 2017). Notably, a particular subclass of TEs, Endogenous Retroviruses
(ERVs), are derived from ancient retrovirus, suggesting a potential association with infection and
immunity (Buttler and Chuong, 2021; Kassiotis and Stoye, 2016; Srinivasachar Badarinarayan
and Sauter, 2021). Confirming this, an ERV family, MER41, was found to be co-opted as cis-
regulatory elements in the primate innate immune response (Bogdan et al., 2020; Chuong et al.,

2016). TEs are also drastically upregulated in human immune cells upon extracellular stimuli,
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including viral infection (Macchietto et al., 2020; Mikhalkevich et al., 2021; Nellaker et al., 2006;
Schmidt et al., 2019; Wang et al., 2020). Meanwhile, loss of SETDB1 or SUMO-modified
TRIM28, which are associated with histone methylation and Kruppel-associated box domain
(KRAB) zinc finger proteins (ZNFs), will lead to the significant derepression of TESin the
immune response (Cuellar et al., 2017; Schmidt et al., 2019). Together, these studies suggest that
TEs play a prominent role in human innate immunity. Moreover, given that many TE families
have integrated after the divergence of primates from other mammals (Benton et al., 2021) and
are polymorphic in humans (Bourque et al., 2018), they could represent host factors contributing
to the variable response to infection. Indeed, TE transcription is linked with aging (Bogu et al .,
2019; Gorbunovacet al., 2021; LaRocca et a., 2020) and microbiota (Lima-Junior et al., 2021),
which are associated with the response to infection (Gounder and Boon, 2019; Keenan and Allan,
2019).

To test whether TES and associated regulators are important host factors in the variable
response to infection, we used data from a multi-omics study that profiled the transcriptome and
epigenome before and after IAV infection in monocyte-derived macrophages derived from 39
individuals (Aracena et al., 2022). During the course of 1AV infection, the amount of viral
transcripts produced is variable and has been associated with disease severity (Clohisey and
Baillie, 2019; Granados et al., 2017; de Jong et al., 2006; Li et al., 2010). Moreover, the amount
of viral reads observed in the macrophages post-infection can be used as a surrogate for viral
load (Thorburn et al., 2015). Indeed, in asimilar experimental system this metric was shown to
be stable and reproducible across individuals (O’ Neill et al., 2021). Notably, by studying the
infected macrophages from these 39 individuals, we observed extensive variation in the levels of

viral reads and discovered a set of TESs displaying high inter-individual variability in chromatin
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accessibility following infection. By looking for binding motifsin these variable regions we
identified novel transcription factors likely contributing to the response to infection. Lastly, using
TEs and these new host factors, we were able to build models that were predictive of the

response to infection as measured by the amount of viral transcripts.

RESULTS

Many TE families are upregulated following I AV infection but few are correated with
viral load post-infection

To characterize individual differencesin the responseto IAV infection, we used RNA-seq data
obtained from monocyte-derived macrophages of 39 individuals before and after exposure to
AV for 24 hours (T able S1, see Methods and Aracena et al. 2022). As expected, we observed
extensive gene expression changes upon infection (Figur e 1A). Despite the fact that al samples
engaged a strong transcriptional response to infection, we noticed extensive variation in the
levels of viral reads (from 3.77% to 65.7%, Figure 1B), suggesting varying capacity to infection
and/or to limit viral replication across individuals. Consistent with this hypothesis, viral load was
inversely correlated with the expression fold change (FC) of several master regulators of the
innate immune response, including transcription factors (TFs, e.g., IRF3, STAT2), adaptor
molecules (e.g., MYD88, TICAM1) and interferon-inducible molecules (e.g., IFNARL, IFNAR2)
(Figure S1A). More globally, genes for which the transcriptional responseto IAV infection was
found to be correlated with viral load (R* > 0.3, p value < 0.05, Figure S1B), were significantly
enriched for pathways involved in the viral response. Similar to protein-coding genes, TE
transcription levels were also significantly changed upon infection (Figure 1A). We inspected

TE regulation at the level of families and identified 204 upregulated and seven downregulated
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families (|log2FC| > 1, adjusted p value < 0.001), respectively (Figure 1C and Table S2). In line
with prior studies, we observed that ERV's (also known as LTRs) were the most commonly
upregulated families (179 out of 204, 85.5%) and had the strongest FC (Figur e 1C bottom).
Next, we looked at the correlation between TE expression FCs and viral load post-
infection. Among the 902 examined families, we only identified 17 and 77 families that were
positively and negatively correlated with viral load (R > 0.3 and p value < 0.05), respectively
(Figure 1D and Table S3). For example, PABL_A-int was positively correlated with viral load
(Figure 1E), while MER61F was negatively correlated with viral load (Figure 1F). Families
from the LTR subclass, and ERV 1 superfamily in particular, were slightly enriched for being
positively correlated with viral load (Figure S1C). In contrast, families from the DNA subclass
were more prone to negatively correlate with viral load. Taken together, we observed significant
upregulation of ERVsfollowing IAV infection but the upregulation across individuals was

correlated with viral load for only a small number of repeat families.

TEscontribute to dynamic chromatin regionsin response to influenza infection

Beyond transcriptional changes, viral infection also induces significant epigenetic changes in
immune cells (Zhang and Cao, 2021). We wanted to explore whether epigenetic profiles at TES
could help explain the inter-individual variability in the responseto IAV infection. We used data
profiling 35 of the 39 samples before and after infection using transposase-accessible chromatin
using sequencing (ATAC-seq) and chromatin immunoprecipitation followed by sequencing
(ChiP-seq) technologies characterizing various histone marks (T able S1, see Methods) (Aracena
et a., 2022). Across these samples we obtained an average of 137,478 peaks for ATAC-seq,

73,190 for H3K27ac, 230,292 for H3K4mel, 33,700 H3K4me3, and 209,119 for H3K27me3
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(Figure 2A and Table $4). The number of peaks across al marks was dlightly higher in infected
compared to non-infected samples. We observed that on average 19.5% to 47.6% of peaks were
located in TEs across marks (Figure 2B and Table $4). These proportions were found to be
slightly but significantly increased post-infection for H3K4me3 and H3K27me3 (student’ st test,
p value < 0.05). Next, to infer whether repeat regions display epigenetic variability, we measured
the coefficients of variation (cv) in consensus peak regions (Aracena et al., 2022) and identified
similar proportions of variable regionsin TE and non-TE regions for most marks (0.4% to 6.4%,
cv> 0.5, Figure 2C, see Methods). That being said, we observed higher variability of H3K4me3
and lower variability of H3K27me3 mark in TEs compared to non-TE regions, respectively.
Given that H3K4me3 is typically associated with transcription, these results are consistent with
some variability of TE transcription post infection.

To explore the TE families with accessibility changes upon IAV infection, we compared
the normalized number of accessible instances per family as measured by ATAC-seq in infected
versus non-infected samples (Figure S2A). We identified 37 families with enhanced
accessibility exhibiting 1.5-fold (adjusted p value < 0.05) or greater abundance of peaks-
associated instances in infected relative to non-infected samples (Figure S2B and Table S5). For
instance, we observed on average 584.2 peaks overlapping the THE1B repeat family in the flu
samples, while only 79.5 were observed in the uninfected samples. The enrichment observed in
these families can also be visualized relative to a random genomic background (Figure 2D) and
include MER41B that was previously reported in K562, Hela, and CD14+ cell lines (Chuong et
al., 2016). Notably, some families displayed a high degree of variation between samples post-
infection (e.g. LTR12C, highlighted in blue). A similar analysis revealed that enhanced families

were also frequently enriched for histone modifications, especially H3K27ac and H3K4me3
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(Figure 2E). For instance, many H3K27ac peaks overlapped with THE1B and MER41B in
infected samples (Figure S2C).

One of the advantages of comparing two conditionsis that we could also look for TE
families showing reduced accessibility upon infection. We identified 39 such families (Figure
2F, Figure S2D and Table S5). For instance, although on average 54.3 peaks overlapped L1M4c
in non-infected samples, this number dropped to 26.0 in infected samples. Notably, 24 of the 39
(61.5%) reduced accessibility families were LINEs. This contrasts with the fact that only two out
of 37 (1.7%) enhanced families were LINEs. While some families with enhanced accessibility
showed high variability between individuals, families with reduced accessibility displayed a
uniform profile across most individuals (Figure 2F). Lastly, by inspecting the enrichments of
other histone modifications, we identified seven families with reduced H3K27ac (Figure 2G and
Table S5). Taken together, these results highlight that a large number of epigenetically changing

regions of the human genome upon IAV infection arein TEs.

A number of TE familiesdisplay high inter-individual variability upon infection

Metaplots and heatmaps of chromatin accessibility further supported the higher variability
observed in some of the enhanced families post-infection. For instance, upon infection, THE1B
(Figure 3A and Figure S3A) showed less variation in chromatin accessibility across individuals
than LTR12C (Figure 3B and Figure S3A). To better understand why, we performed semi-
supervised clustering analysis of the chromatin accessibility of the 37 enhanced families among
the 35 infected samples (Figure 3C). This analysis revealed three groups of individuals post-
infection. One outlier sample (EU37), was observed to consistently have the lowest fraction of

reads in peaks (FRiP) scores among both infected and non-infected samples, suggesting a


https://doi.org/10.1101/2022.05.10.491101
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.10.491101; this version posted May 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

technical artifact rather than a biologically distinctive response to flu. Using this approach, atotal
of 15 enhanced families had the highest variability (Figure 3C, bottom), which we defined as
“high var. families’, especially between Group 1 and Group 3 individuals. In contrast, 22
enhanced families showed consi stent enrichment patterns between three individual groups, and
were defined as “low var. families’. A similar analysis in the non-infected samples did not reveal
any groupings, suggesting an association specific to 1AV infection (Figur e S3B). Group 3
individuals tended to be slightly older and present higher viral loads as compared with other
groups but the differences were not statistically significant (Figure S3C-S3D).

Next, we asked what fraction of repeat loci from the high var. families were contributing
to the variability observed between individuals. Unsupervised clustering analysis of these loci
(instances) revealed that alarge number displayed high variability post infection (Figure S3E).
Among high var. families we consistently observed more commonly (> 25% individuals of one
group) and rarely (< 25%) accessible instances that were specific to Group 3 individuals (Figure
3D and Methods). To further identify features that were associated with variability in
accessibility in TEs, we performed a comparative analysis between high var. and low var.
families. We focused on flu-specific instances (ATAC-seq peak present in > 1 infected but not in
non-infected samples) and found that high var. families had a significantly higher proportion as
compared to low var. (student’st test, p value = 2.4 x 10°) (Figure 3E and Figure S3F). In
contrast, we did not observe significant differences in the estimated evolutionary age of high var.
versus low var. TE families (Figure 3F and Figure S3G). Overall, we did find that high var.
families had a significantly higher proportion of instances that overlap ATAC-seq peaks, that
their repeat consensus length was longer and that they had a higher GC content (Figur e 3G-3I

and Figure S3H). Taken together, we identified 15 TE families with increased accessibility upon
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infection and that have high epigenetic variability between individuals and display unique

features.

Enhanced and reduced TE familiesact ascis-regulatory elementsin theresponseto
influenza infection
Next, we asked if TE families with enhanced and reduced accessibility acted as cis-regulatory
elements regulating nearby genesin response to IAV infection. We found that upregulated genes
were more likely to be located near instances from low var. and high var. families that become
accessible upon infection (flu-specific instances) (Figure 4A). Lower enrichments were
observed for high var. compared to low var. families, indicating their weaker association to gene
expression. In contrast, we observed a depletion of upregulated genes near non-infected (NI)-
specific instances (accessible in > 1 non-infected but not in infected samples) from TE families
with reduced accessibility (Figure 4A). Notably, the opposite was observed for down-regul ated
genes (Figure 4B). These effects were stronger for flu-/NI-specific instances as compared to
instances associated with shared peaks (Figure S4A). Splitting the enrichment at the TE family
level, we observed cons stent overrepresentation of accessible instances post-infection near
upregulated genes within a 100 kb window for most enhanced families (Figure 4C, red color).
Next, we investigated the properties of chromatin post infection more broadly by
examining DNA methylation (Figure 4C, blue color) and sets of histone modifications (Figure
4C, green color). Instances from high var. families were highly DNA methylated (an average of
83.8%) and prone to overlap with H3K27me3 (47.3%), meanwhile they had arelatively small
fraction of accessible instances overlapped with active marks (e.g. 15.1% for H3K27ac and 31.4%

for H3K4mel). In contrast, low var. families were highly enriched for active histone marks (33.2%
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for H3K27ac and 60.7% for H3K4mel). Overall, low var. and high var. showed distinctive
chromatin patterns post infection.

Finally, to further investigate which genes were potentially regulated by these TE-
embedded sequences upon infection, we performed a pathway enrichment analysis using the list
of nearby differentially expressed genes (< 100 kb). We observed an enrichment in various
immune-related pathways (Figure $4B). For example, an LTR12C instance with enhanced
chromatin accessibility accompanied by an augmentation of H3K27ac upon infection can be
found in the promoter of GBP2 (Figur e 4D). GBP2 geneis an interferon-induced gene and
exhibitsantiviral activity against IAV infection (Tretina et al., 2019). In adifferent LTR12C
instance near the up-regulated immune-related gene IL10RA, transcription was initiated at the
open chromatin region within the repeat itself and was flu-specific (Figure 4E). We aso
confirmed the chromatin change at the MER41 instance that was shown to be an enhancer
regulating AIM2 (Figure $AC) (Chuong et al., 2016). Lastly, we identified several immune-
related genes that were potentially regulated by adjacent instances from enhanced families, such
asthe TE gene pairs of THE1C-IF144, THE1C-GBP3, THE1B-PSMAS5, MLT2B3-CLECA4E, and
THEL1C-ABCGL1 (Figure $AC). Thus, the enhanced and reduced TE families behave like cis-

regulatory elements regulating nearby immune genes.

High var. families contribute transcription factor binding sitesfor potentially novel host
factorsin the responseto infection

To look for regulatory proteins associated with enhanced and reduced families, we aggregated
the reads in open chromatin regions across samples to fine-map the actual peak summit on each

TE instance, which was termed a “ centroid”. A small fraction of instances with inaccurate or
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inconsistent annotations were discarded, this mostly affected TE families with reduced
accessibility (Figure S5A). As examples, we can visualize the peak centroids identified along
the consensus sequences for THE1B, a high var. family (Figure5A), and LTR12C, alow var.
family (Figure 5B). We observed a higher complexity of open chromatin regions for LTR12C
compared to THE1B. Centroids were mainly detected at around 180 bp for THE1B and were
scattered between 150 to 600 bp for LTR12C. Next, we defined a“TE peak region” as alocation
within a TE that has a peak centroid in > 5 instances, starting with the region with the largest
number of instances, named Region 1, and so on. For most families, more than 80% of instances
were accessible in one of thetop 5 TE peak regions (Figure 5C, inset). Thelocation of these TE
peak regions can be shown on their consensus sequence and reveals that they are quite dispersed
(Figure 5C). Notably, compared to low var. families, high var. families had significantly more
TE peak regions (student’ st test, p value = 0.022) and lower proportions of accessible instances
inthetop TE peak region (student’st test, p value = 0.0037) (Figure S5B). Thisis consistent
with the longer length of high var. families (Figure 3H).

To further investigate the molecular mechanism underlying the enhanced families, we
examined the TF binding motifs that were enriched in TE peak regions (Figure 5D and Figure
S5C). The enrichment of binding sites for STATs and IRFsin MER41B were previousy
reported (Chuong et al., 2016). Here we found that the STAT related motifs mainly came from
Region 1 of MER41B while IRF related motifs came from Region 3. STATs were also observed
in various Tigger3 and MER44 families while IRF related motifs were also enriched in various
MER44 families, LTR8 and Tigger7. Other motifs of interest observed in TE peak regions
included FOS/JUN, BATFs, NFKBS/NFY s and RELs. Notably, this analysis also revealed

distinct sets of binding motifs between high var. and low var. families (Figure 5D). Specifically,
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low var. families were enriched for motifs of known immune regulators; while high var. families
were enriched for other motifs (e.g., ASCLs, CTCFs, EBFs, MAZ, MY OG, PLAGs, TFAP2s,
ZKSCANS5, and ZNF460). We speculated that the binding of these other transcription factors
may be associated with the individual epigenetic variability in high var. families post-infection.
Indeed, by clustering accessible HERVE-int instances, we found that instances with peaksin
Region 3 and 4, which were enriched for TFAP2 and ZNF460 motifs, were prone to be
accessible in Group 3 rather than Group 1 individuals (Figure S5D-S5E). Supporting the
potential role of KRAB-ZNFsin high var. families, we observed that binding sites for multiple
ZNF TFs (Imbeault et al., 2017) were enriched in some high var. families (Figure S5G). ZNFs
are commonly found to interact with the KAPL/TRIM 28 machinery (Helleboid et al., 2019;
lyengar and Farnham, 2011). We inspected protein-protein interactions using the STRING
database (Szklarczyk et al., 2019) and confirmed an association between ZKSCANS and

TRIM 28, and also between ZNF460 and TRIM 28 (Figure S5F).

Next, we performed a similar analysis to examine the TE peak regions and corresponding
motifs enriched in the 39 families with reduced accessibility (Figure S6A-S6B). We identified
the enrichment of IRF1, MEF2A/B/C/D and SPI related motifsin these families. Notably,
LIMA2, LIMA4, LIMAG, LIMA7, and LIMAS8 were significantly enriched for MEF2 related
motifs. MEF2 TFs are central developmental regulators (Potthoff and Olson, 2007), which are
also required in the immune response that functions as an in vivo immune-metabolic switch
(Clark et al., 2013). Lastly, by further ingpecting TFs with their binding motifs that were
enriched in enhanced and reduced TE families, we found that TFs bound to high var. families
were mainly enriched in transcription-related pathways while TFs bound to low var. and reduced

families were mainly enriched in immune-regulated pathways (Figure S6C). Taken together, we
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concluded that high var. families have a unique profile and are associated with potentially new

host factors, e.g. ZNF460, which are known to be associated with the KAP1 machinery.

TE-associated host factors can be used to predict viral load post infection

Finally, we asked whether TE and TE-associated host factors can be predictive of viral load post
infection. As we previously noted, the expression changes of most TE families were not
correlated with viral load (Figure 1D), however, we further inspected the TE expression levelsin
non-infected and infected samples, respectively. Unlike expression changes, we observed that the
basal and post-infection expression levels of many families were correlated with viral load
(Figure 6A, Figure S7A and Table S3). Basal expression of most TE families had comparable
correlation coefficients, in contrast to post infection expression levels. Combining reads across
families, we found that there was a strong inverse correlation between the total amount of basal
TE transcripts and viral load post-infection (R? = 0.45, p value = 2.69 x 10°°, Figure 6B). Inverse
correlations were also observed for each of the four main TE subclasses (Figure S7B). As
expected, the basal activation of the immune system (interferon signature) was also inversely
correlated with viral load (Figure 6C, R? = 0.38, see Methods).

To explore therole of other factors known to be associated with the regulation of TES, we
inspected both TRIM28 and SETDB1. We first examined the FC and observed a strong
correlation to viral load post-infection for SETDBL but not for TRIM28 (Figure S7C). Similarly,
an inverse correlation was observed between SETDB1 basal expression and viral load (R? = 0.42,
p value = 7.83 x 10°®) but not for TRIM28 (R? = 0.026, p value = 0.32) (Figur e 6D-6E). Looking
at the average DNA methylation in TEs pre-infection, we did not observe a correlation with viral

load (Figure S7D). Ageis another factor that is potentially associated with TES, even though it
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was not observed to correlate with viral load (Figure S7E). We noted that the variability of basal
TE transcription increased as the age increased (Figur e S7E). Actually, the inverse correlation
observed between basal TE transcripts and viral load became even stronger (R? = 0.76, p value =
4.6 x 107) with the exclusion of individuals older than 40 years old (Figure S7F).

We then expanded the analysis to look at the host factors that are associated with
epigenetic variability in high var. families. First, we examined the correlations between basal
expression levels of all expressed TFs and viral load (Figure 6F). As expected, known immune-
related TFs had higher correlation coefficients with viral load compared to non-immune TFs (p
value = 3.7 x 10°®). Focusing on TFs associated with enhanced and reduced TE families, we
found that many were strongly correlated with viral load (Figure 6G). From motifs found in the
high var. families, we identified PLAGL1 and ZNF460 as the candidates with the highest
correlation to viral load (Figure S7G, R? = 0.41 and 0.36, respectively). Notably, PLAGL1,
which isafamily member of PLAGI, aso encodes a C2H2 zinc finger protein that could be
repressed by SUMOylation (Dyck et al., 2004).

Lastly, we wanted to test our ability to combine al thisinformation into predictive
models to estimate the variable responses to IAV infection among the 35 individuals for which
we had all the multi-omic datasets. We started with IFN related features as variables including
the IFN signature and age to achieve a model explaining 36% of the variation (Figure S7H).
Next, we included the top six immune factors bound to low var. families that were correlated
with viral load as variables and used a stepwise approach to select the final set of featuresin a
generalized linear model (see Methods). Age was aso included as an interaction term variable
dueto itsinfluence on multiple variables. Using this approach, we were able to build a better

model (adjusted R* = 0.625) (Figure 6H). Afterwards, we looked at all the TE-related host
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factors described above in a correlation matrix chart with viral load (Figure S71). Notably, when
we included six non-immune factors associated with TEs and age in our model, we obtained a
comparable fit with a modd that includes TE transcripts and the new factor PLAGL1 (adjusted
R? = 0.624) (Figure 6l). Adding the top correlated immune TF, i.e., STAT2, further increased the
accuracy of the model (adjusted R? = 0.689) (Figure 6J). As expected, if we used age asan
independent variable in these models, the predictive accuracies decreased significantly (Figure
S77J). Altogether, we concluded that TEs and TE-related host factors can be used to predict viral

load in macrophages post-infection.

DISCUSSION

Inter-individual variability in diseaseis at the core of precision medicine. By examining TE
transcription and epigenetic state in macrophages derived from 39 individuals, we provided new
insghtsinto the contribution of TEs to the responseto IAV infection. Specifically, we
discovered a set of 15 TE families with high inter-individual variability in chromatin
accessibility post-infection (Figure 3C). Besides the distinct sequence features and chromatin
states they promote, we found that high var. families mainly contribute transcription factor
binding sites (TFBSs) for potentially new host factorsin the response to infection (e.g., ZNF460
and ZKSCANS); in contrast, other TE families of interest mainly contribute TFBSs for known
immune regulators (Figure 7). Given that many of the TFBSs enriched in high var. families were
associated with proteins that are known to interact with the KAPL/TRIM 28 machinery, this
suggests that KRAB-ZNFs may contribute to the inter-individual epigenetic variability post

infection. We speculate that the enhanced accessibility in these families may be because of
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gradual chromatin depression led by the reduced expression of SETDB1 or TRIM28 upon
infection.

In this study, multiple chromatin regions were identified for each TE family (Figure 5C-
5D). For example, we observed the top peak region of MER44D to be significantly enriched for
FOS/JUN related motifs, while another region was mainly enriched for IRF related motifs. Thus,
the same TE family appearsto contribute multiple binding regions recognized by different TFs,
suggesting that each family may play complex regulatory roles upon infection. Additionally, by
comparing the TE enrichment levels between infected and non-infected monocyte-derived
macrophages following AV infection, we were able to identify families with reduced chromatin
accessibility (Figure 2F). These families would have been missed by previous approaches that
relied on an expected distribution as control (Bogdan et al., 2020; Chuong et a., 2016; Ito et al.,
2017; Sakashita et al., 2020). Moreover, although many LINE families were found to have
reduced accessibility post-infection, we still observed two LINE families (L1PA12 and L1M2a)
with enhanced accessibility. This may be due to the absence in these two LINE families of TFBS
found enriched in their counterparts with reduced accessibility (SPIs and MEF2s).

Our data also revealed a strong inverse correlation between the basal TE transcripts and
viral load post-infection. In line with the involvement of TE transcripts in the activation of innate
immunity (Cuellar et al., 2017; Rookhuizen et al., 2021; Schmidt et al., 2019), we speculate that
TE regulation in macrophages before infection may be involved in the activation of the innate
immune response to IAV infection. To further support this claim, we combined TE basal
expression levels with other factors identified in the analysis of high var. families, such as TE
DNA methylation, SETDB1 and PLAGL1 expression levels, and were able to build amodel that

was predictive of the response to infection (Figure 6H-J). Some polymorphic TES were also
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found to be eQTLs for genes upon infection, such as TRIM25 (Groza et al., 2021), thus we
speculate that polymorphic TEs may further contribute to the variable response to infection.
More samples will be needed to improve and validate the predictive model we constructed using
TEs and TE-associated host factors.

Altogether, our data depict major epigenetic shiftsin TESin human macrophages upon
infection -- opening mostly in LTR/ERVs and closing in LINES --, suggesting their critical role
in the response to influenzainfection. It isintriguing to consider that TEs might not only be an
important source of regulatory innovation between species (Bogdan et al., 2020; Chuong et al.,
2016) but also of regulatory variation within a population. It will be interesting to expand this
analysis and study the contributions of TEs in other immune cells, e.g. CD4" T cdlls,
pneumocytes and dendritic cells (Iwasaki, 2012; Marasca et al., 2022) and to challenges with

other pathogens.

DATA AND CODE AVAILABILITY

All datasets used in this study have been deposited (Aracena et al., 2022), and are available at the
European Genome-phenome Archive (EGA) asfollows: RNA-seq & ATAC-seq & ChiP-seq -
EGAD00001008422; and WGBS - EGAD00001008359. We aso constructed a versatile browser

(https://computati onal genomi cs.caltool s/epivar), which allows users to explore genomic tracks

for gene expression, chromatin accessibility, histone modifications, DNA methylation.

Scripts for main analyses are available at https://github.com/xunchen85/Variability In_TEsand

will be deposited at Zenodo repository once the article is accepted. Any additional information
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required to reanalyze the data reported in this paper is available from the lead contact upon

request.
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FIGURE LEGENDS

Figurel. TEsare upregulated post-infection but most expression changes are not
correlated toviral load

(A) PCA plots of genes (left) and TE families (right) expression of individuals before and after
infection. Individuals with African (AF) and European (EU) ancestry areindicated. (B) Bar plots
show viral load (% viral reads) across individuals post-infection. (C) TE upregulation at the
family level in human macrophages in responseto IAV infection. Up/down regulated families
were detected as families with > 1 log2 fold change (Iog2FC) in expression and adjusted p value
< 0.001 upon infection (top). The highest 20 upregulated families based on fold change are
highlighted. The total number of examined families per TE subclassisindicated in parentheses.
The vertical line separates the upregulated (left) and downregulated (right) families. (D) Dot
plots of correlation coefficients between TE FC and viral load post-infection. X-axis represents
the log2FC of each family computed by DESeq2. Y -axis represents the correlation coefficients
(R squared) between expression FCs and viral load among 39 individuals. The same 20
upregulated families (Figure 1C) are highlighted here. A positively and negatively correlated
family (green) is shown as examplesin panel E and F respectively. (E) Example of positive
correlation between PABL_A-int FCs and viral load. (F) Example of negative correlation

between MERG61F FCs and viral load.

Figure 2. TEs contribute to dynamic chromatin regionsin human macrophagesin response
to influenza infection
(A) Number of peak regions detected in infected and non-infected samples for ATAC-seq and

histone marks. (B) Proportion of ATAC-seq and histone marks peaks that overlap repeat regions.
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Two-tailed paired student’ s t-test was used to compare infected and non-infected samples for
each mark. (C) Number and proportion of variable peak regions overlap TE and non-TE regions.
Variable regions were determined with the threshold of coefficient of variation (cv) > 0.5 (see
Methods). Bars represent the proportions of peak regions that are variable while the dotted line
represents the corresponding peak counts. Infected (Flu) and non-infected (NI) samples are
shown separately. (D,F) Distribution of log2 enrichment levels of families with enhanced (D)
and reduced (F) accessibility in infected and non-infected samples. Candidate families were
identified using the optimized methodology as we described in Figure S3C. The enrichment
level refersto the fold enrichment per sample relative to the corresponding random distribution
(see Methods). Families with a high variability of enrichment levels between individuals
(standard deviation divided by the mean value, cv > 0.5) are highlighted in blue color (Table S5).
The dotted line at “0" represents the random distribution. Standard deviations were computed in
non-infected and infected samples separately. (E,G) Heatmap of log2 fold enrichments (FIu/NI)
of families with enhanced (E) and reduced (G) accessibility for ATAC-seq and each histone
mark, i.e., H3K27ac, H3K4mel, H3K4me3, and H3K27me3. The fold enrichment was computed
by dividing the average normalized number of peaks-associated instances in infected by non-
infected samples. Two-tailed paired student’ s t-test was used to compute the p values (* p < 0.05,

" p<0.01,” p<0.001).

Figure 3. Uncovering a set of TE familiesthat display high individual variability in
chromatin accessibility post-infection
(A-B) Peak count frequency of ATAC-seq peaks overlapped with THE1B (A) and LTR12C (B).

Red and grey lines represent the infected or non-infected samples. Compared to THE1B,
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LTR12C shows a higher standard deviation between infected samples. Peaks overlapping each
TE instance are centered at the median position of peak summits across samples. Upstream and
downstream regions (2.5 kb) are shown. (C) Heatmap of log2 enrichment levels of 37 families
with enhanced accessibility in 35 infected samples. Semi-supervised clustering analysis was
performed. Threeindividual groups are shown with an outlier sample. High var. families are
highlighted in blue color and have higher enrichment levelsin Group 3 individuals than Group 1
individuals. Enrichment level refers to the abundance of accessible instances in infected samples
relative to the background. (D) Proportions of accessible instances per enhanced family are
variable between three individual groups post infection. Commonly accessible instances
represent instances that are accessible in more than 25% samples from at least one group (l€ft);
rarely accessible instances represent instances that are accessible in less than 25% samples from
any groups (right). Enrichment in one individual group refers to instances that are accessible in
more than 25% samples for commonly accessible instances and one or more samples for rarely
accessible instances. High var. families are highlighted in blue color. (E-1) Comparative analysis
of the proportion of flu-specific instances among all accessible instances (E), evolutionary ages
(F), proportion of accessible instances among all instances (G), lengths (H) and GC contents (1)
of accessible instances between high var. and low var. families. P values computed by two-tailed

student’ s t-test are shown above the dot plots.

Figure4. TE familieswith accessibility changes may play critical regulatory rolesin the
response to influenza infection
(A,B) Fractions of differentially expressed genes near accessible TEs relative to the random

digtributions. Proportions of up (A) and down (B) regulated genes are shown within each of the

23


https://doi.org/10.1101/2022.05.10.491101
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.10.491101; this version posted May 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

genomic intervals relative to nearby accessible TEs. Flu-specific instances from high var. and
low var. families and NI-specific instances from reduced families are considered. The total
number of instances are indicated in the figure legend. Expected distributions were computed by
randomizing each set of accessible instances 1,000 times (shaded area, 95% confidence intervals),
suggesting a statistical significance of p < 0.05 for values outside the distributions. The
proportions of regulated genes are compared with corresponding expected distributions. (C)
Properties of high var. and low var. families overlapped with histone marks and DNA
methylation. The number and proportion of accessible instances with nearest significantly
upregulated genes within 100 kb (log2FC > 0.5, adjusted p value < 0.05) are shown in red color
(st column). The number of CG sites and average DNA methylation levels are shown in blue
color (2nd column). The number and proportion of accessible instances overlapped with each
mark are shown in green color (3rd - 7th columns). The color ranges (proportion of accessible
instances) are scaled by the minimum and maximum values for each mark. (D) Example
genomic view of an accessible LTR12C instance potentially upregulating adjacent GBP2 gene
expression post-infection. LTR12C is highlighted as the shaded area with the increased
accessibility, expression and H3K4me3 activity. The dark shaded area denotes the distribution of
the average RPM values and the light shaded area denotes the standard deviation. Signals of
various epigenetic marks are shown in blue color for non-infected samples and red color for
infected samples. For RNA-seq, forward and reverse transcripts are shown in blue and green
color separately for non-infected samples; while forward and reverse transcripts are shown in red
and brown color separately for infected samples. (E) Example genomic view of an accessible
LTR12C with the expression was upregulated and initiated at the open chromatin region post-

infection. The LTR12C instance highlighted as the shaded area shows an upregulated
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accessibility, expression, and H3K4me3 activity. IL10RA gene located near the LTR12C instance

is also significantly upregulated (log2FC = 1.44, adjusted p value = 1.60 ™) post-infection.

Figure5. Low var. and high var. families contribute binding sitesfor distinct sets of
potential host factorsin theresponse to infection

(A,B) Digtribution of chromatin accessibility along the THE1B (A) and LTR12C (B) consensus
sequence. Distribution plots (up) show aggregated (summed) reads per million (RPM) values
across accessible instances. Infected and non-infected samples are shown separately. Upstream
and downstream regions (+ 20% of the consensus sequence length) are shown. Heatmaps
(bottom) show z-scaled RPM values per accessible instance. In the heatmap, scaled RPM values
below zero are shown in white color and the deletions relative to the consensus sequence are
shown in grey color. The centroid (blue triangle) refers to the peak summit per instance. The
total number of instances are indicated as the y-axis. (C) Distribution of TE peak regions on each
enhanced family. A TE peak region was previously defined as alocation within a TE that has a
peak centroid in > 5 instances. Here, the locations and proportions (%) of the top-five TE peak
regions are shown on each consensus sequence. The number in each dot refers to the proportion
among accessible instances (> 10%) in each TE peak region. Y -axis shows the family name,
consensus name, and the number of accessible instances in TE peak regions. The inset barplot
shows the proportion of instances in each TE peak region. Region 1 represents the TE peak
region with the highest proportion and region 2 refers to the second-highest, and so on. High var.
families are in blue color. (D) TF binding motifs enriched in enhanced families. Same motifs
enriched across TE peak regions are aggregated. TE peak regions with the most number of

instances are shown as representatives. Black boxes highlighted candidate motifs recognized by
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known immune regulators enriched in low var. families and TF names are shown at the bottom;
Brown boxes highlighted top candidate motifs recognized by potential novel host factors
enriched in high var. families, including ZNF460 and ZKSCANS. High var. families are
highlighted in blue color. Mean TF activity was obtained from Aracena et al. 2022. Missing

valuesarein grey color.

Figure 6. TEsand TE-associated host factorsare predictive of viral load post-infection

(A) Distribution of correlation coefficients (R squareds) between the TE expression level (TPM)
in non-infected and infected samples and TE expression fold changes with viral load post-
infection. Log2FCs and TPM values were calculated as we previously described. Four TE
subclasses are shown separately. Correlation directions are shown in Figure S7A. (B) Inverse
correlation between the amount of basal TE transcripts and viral load. The basal TE transcript
refers to the proportion of aggregated normalized read counts in TEs among the global
transcripts. Black line represents the regression line. R? and p values computed by the linear
regression model are shown. (C) Inverse correlation between the basal type | interferon (IFN)
signature (score) and viral load. The IFN signature represents the median expression level (TPM
value) of genesinvolved in Type | interferon signaling pathways (T able S6). (D,E) Correlations
between the basal expression levels of SETDB1 (D) and TRIM28 (E) and viral load. It shows that
SETDB1 (R? = 0.42) rather than TRIM28 (R? = 0.03) basal expression is associated with viral
load. Basal SETDBL expression is also positively correlated with the basal TE transcripts and
IFN signature before infection (Figure S7G). (F) Violin plot of the correlation coefficients
between basal TF expression levels and viral load. Basal TPM values were used for the

correlation analysis as we previously described. Immune and non-immune TFs are compared
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using the paired student’ s t-test and the p value is also shown. Black bars represent mean values.
TF genes were obtained from the JASPAR database as we previously used for the motif analysis
and Immune TFs were obtained from the InnateDB database (Breuer et al., 2013). Only
expressed TFs are shown. "~ highlights motifs that are enriched in different categories of families.
(G) Bar plot of correlation coefficients between the basal expression of TFs bound to enhanced
and reduced families. Highly expressed TFs (TPM > 1) are considered and the expression fold
changes upon infection are shown. TFs are ranked based on the R squared value. ~ highlights
motifs that are enriched in different categories of families. (H) Multivariable regression model
developed for the prediction of viral load using the expression levels of immune TFsin the basal
state. The top six correlated TFsto viral load that are also associated with TEs were used. The
model was generated as we described in the Methods. The formula and variables and adjusted R?
are shown. (1) Multivariable regression model developed for the predictive of viral load using the
TE-associated non-immune (novel) host factorsin the basal state. Using the same approach (see
Methods), a subset of features were selected among the age and six non-immune factors,
including TRIM28, SETDB1, TE transcripts, TE methylation, ZNF460, and PLAGL1. (J)
Multivariable regression model developed for the predictive of viral load using the TE-associated
immune and non-immune host factorsin the basal state. Weincluded all the non-immune factors
aswell as STATZ2 to generate the model. STAT2 was selected based on the correlation to viral

load.

Figure 7. Regulatory modelsof TEsin response to influenza infection in human primary

macr ophages
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(A) Epigenetic states of enhanced and reduced families in macrophages pre-infection. Before
infection, high var. and low var. families are not accessible due to the lack of corresponding TFs
binding or repression by high DNA methylation or histone methylation. In contrast, reduced
families are accessible and bound by a distinct set of known immune-related (IR) TFs, including
MEF2s and SPIs. High var. families are relatively longer and show a higher DNA and histone
methylation level compared with other families. (B) Epigenetic states of enhanced and reduced
families in macrophages post-infection. Chromatin accessibility of high var. and low var.
families are enhanced post infection. High var. families are mainly bound by potential novel host
factors (Non IR TFs), including ZFN460 and ZKSCANS; low var. families are mainly bound by
known immune-related regulators (IR TFs), including IRFs and STATs. Reduced TEs are prone
to be less accessible due to the decreased expression of various TFs (e.g. MEF2s) post-infection.
High var. families display a high variability in accessibility post-infection and may differentially

regul ate nearby genes between individuals.
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METHODS

Materials and sequencing data gener ation

To study theinter-individual variability in TEs following influenza A (IAV) infection, we
collected primary macrophage cells from peripheral blood mononuclear cells of 39 healthy
female individuals with African-American (n=19) and European-American (n=20) ancestry
between 18 and 54 years old. We then infected macrophages (cultured for 6 days) with IAV for
24-hours and collected both non-infected and infected macrophages for multiple sequencing
assays. The details were described here (Aracena et a., 2022). Briefly, we conducted the ATAC-
seq assay to study chromatin accessibility. Using chromatin immunoprecipitation sequencing
(ChiP-seq) technology, we also investigated the genome-wide profiles of H3K27ac, H3K4mel,
H3K4me3, and H3K27me3 histone modifications. H3K27ac and H3K4mel have been widely
used to mark enhancers; H3K4me3 mark has been associated with promoters or active
transcription; H3K27me3 mark has been associated with chromatin repression. Whole-genome
bisulfite sequencing (WGBS) was further used to profile genome-wide DNA methylation. RNA
sequencing (RNA-seq) was used to profile the transcriptome. All sequencing assays were
performed in both infected and non-infected macrophages of each donor. Samples and generated
sequencing datasets were summarized in Table S1 (Aracena et a., 2022). Detailed
methodologies to profile the genome-wide DNA methylation level and chromatin modifications

were also described here (Aracenaet al., 2022).

RNA-seq read alignment
Trimmomatic (v0.36) was first used to trim adapter sequences with the parameters PE -phred33 -

quiet -validatePairs ILLUMINACLIP: $SEBROOTTRIMMOMATI C/adapter ' TruSeqg3-
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PE.fa:2:30:15: 2:true LEADING: 3 TRAILING: 30 MINLEN:50 (Bolger et al., 2014). After
trimming off the adapters and low-quality nucleotides, high-quality paired-end RNA-seq reads
were aligned against the human reference genome (hg19) using TopHat2 v2.1.1 (Kim et al.,
2013). To optimize for the analysis of TE transcription, we kept multi-mapped reads with the
recommended parameters -x 100 --no-mixed (Jin et al., 2015). Gene annotation file
“hg19.ensGene.gtf” was obtained from

https://hgdownl oad.soe.ucsc.edu/gol denPath/hg19/bi gZi ps/genes/.

Viral load calculation

To estimate the viral load, we re-aligned high-quality paired-end RNA-seq reads against the
human reference genome (hg38) using TopHat2 with the default parameters. Paired-end
unmapped reads were extracted from the unmapped BAM files and converted to FASTQ format
using SAMtools (v1.10) fastq function (Li et al., 2009). Obtained FASTQ files were then
reformatted using Fastg-pair (v0.3) tool with the parameter -t 1000000 (Edwards and Edwards,
2019). Using TopHat2 with the same parameters, paired-end unmapped reads were aligned
against the influenza A virus (H1N1) reference genome, which contains eight fragments
including NC_002016.1, NC_002017.1, NC_002018.1, NC_002019.1, NC_002020.1,
NC_002021.1, NC_002022.1, NC_002023.1. After that, we retrieved the number of reads
mapped to influenza. Lastly, viral load was computed as the percentage of reads mapped to the
influenza genome versus the total number of reads mapped to both human and influenza

reference genomes.
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Geneand TE family expression measur ement

TEcount implemented by TEtranscripts (v2.1.4) (Jin et al., 2015) was used to measure the gene
and TE expression at the family level using RNA-seq data. Expression of each family represents
the total number of reads mapped to al instances from the same family. We ran it with the use of
sorted BAM file as the input and following parameters. --sortByPos --TE hgl9 rmsk TE.gtf --
GTF hgl9.ensGene.gtf --stranded reverse --mode multi. The repeat annotation file

“hgl9_rmsk TE.gtf” was downloaded from http://labshare.cshl.edu/shares/mhammelll ab/www-

data/ TEtranscripts TE_GTF/. After running, we obtained the output file for each sample which

contains two columns, one column specifying the names of genes and TE families, and another
column specifying corresponding read counts. The output files of al samples were combined

into acount matrix for the downstream analysis.

Gene and TE family differential expression and PCA analysis
To perform the differential expression analysis, the obtained count matrix was used as the input
to DESeg2 v3.9 (Loveet al., 2014). Non-infected samples were used as the control group and
infected samples were used as the case group. After the removal of non-expressed TE families
and genes (< 2 reads across samples), the count matrix was then standardized following QC steps
of DESegDataSetFromMatrix, estimateS zeFactors, estimateDispersions, and nbinomWaldTest
included by DESeq2. Lastly, after we retrieved the output using the results function, we kept the
significantly differentially expressed genes and TE families from DNA, LINE, SINE, LTR and
SV A subclasses with the thresholds of [log2FC| > 1 and adjusted p value < 0.001.

To perform the principal component analysis (PCA), we applied a variance stabilizing
transformation (vst) to the achieved normalized count matrix. We then used the PCAtools pca

function with the parameter removeVar = 0.1 for the PCA analysis and biplot function for the
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visualization (https:.//github.com/kevinblighe/PCAtools). Genes and TE families were analyzed

separately.

Geneand TE family expression levels nor malization

Transcripts per kilobase million (TPM) values were calculated using the raw count matrix for
genes and TE families. Specifically, we first computed the reads per kilobase (RPK) for each
gene and family. For genes, we divided the read counts by the aggregated total lengths of exons
per genein kilobases; for TE families, we divided the read counts by the aggregated lengths
across al instances per family. We next counted up the RPK values of both genesand TE

families and divided them by 1,000,000 to obtain the TPM values.

Correlation analysis between genesand viral load post-infection

We then examined which differentially expressed genes (DEGs) are correlated with viral load.
Here, we only considered highly-expressed genes with an average of TPM values> 1 in either
infected or non-infected samples. The expression fold change (log2FC) of each gene was
computed using the formula: log2(TPM™"+0.01) - log2(TPMN'+0.01). FCs were correlated with
viral load post-infection using R Im function. DEGs correlated with viral load (RZ > 0.3 and p

value < 0.05) were then submitted to the g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) with the

default parameters for the pathway enrichment analysis (Raudvere et al., 2019). G:SCS threshold
with aminimum p value of 0.05 was used to determine the enriched pathways. Kyoto
Encyclopedia of Genes and Genomes (KEGG) database was used to determine the enriched
pathways and the top 30 terms were visualized. Key immune regulators involved in the RNA
viral signaling pathway were obtained here (Xu et al., 2020). Smilarly we also correlated the

basal gene expression (TPM) with viral load.
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Correlation analysis between TE family and viral load post-infection

To measure the variability of TE transcription, we correlated expression fold changes of each
family with viral load post-infection. Expression FC of each family per sample was computed
with the same formula: log2(TPM™“+0.01) - log2(TPM"'+0.01). Similarly, R Im function was
used for the correlation analyses. Positive and negative correlated (R > 0.3 and p value < 0.05)
families were reported.

To study the enrichment of positively or negatively associated families among each TE
subclass, we performed the permutation test by comparing the actual proportion of
positively/negatively correlated families among each TE subclass or superfamily relative to
10,000 randomized proportions. P value was calculated using the formulain R: 2 x mean
(randomized_counts > actual_count).

Using the same approach, we correlated the expression of TE familiesin infected and
non-infected samples with viral load post-infection. Computed TPM values were used for the

correlation analysis.

Detection of peaks-associated TEs

After profiling the epigenetic state, we obtained ATAC-seq and Chip-seq narrow peaksin BED
format. Peak regions were then converted to peak summits (median positions). To identify
ATAC-seq peaks-associated instances, peak summits were intersected with the obtained repeat
annotation file“hgl9 _rmsk_TE.gtf” using BEDtools v2.29.2 inter sect function (Quinlan and
Hall, 2010) with the parameters -wa -u. The same analysis was performed for other histone

marks.
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Evaluation of the epigenetic variability in TEs

Unigue ATAC-seq consensus peaks were obtained as we previously described (Aracena et al.,
2022). To identify consensus peaksin TEs, we first converted peak regionsto summits (median
positions) and then intersected with the repeat annotation file aforementioned using BEDtools
intersect function with the parameters -wa -wb. After that, read counts were normalized to RPM
value for the downstream comparative analysis across samples. Specifically, the read count was
first divided by the total number of reads and then multiplied 1,000,000. The coefficient of
variation (cv) of each peak region was computed using the formula: cv = absolute(sd/mean).
Infected and non-infected samples were analyzed separately. Consensus peak regions with a
minimum RPM value of “1” were kept. Variable regions were defined as the peak regions with
cv values> 0.5, referring to regions with the standard deviation that is half of the mean.
Proportions of variable regionsin TEs and non-TES were analyzed separately. Same analysis was

performed for other histone marks.

Detection of TE familieswith chromatin state changes

We next aimed to identify families with enhanced accessibility upon infection. Firstly, we
normalized the number of peaks-associated instances per family. Briefly, we divided the number
of peaks-associated instances by the total number of peaks per sample, and then multiplied the
average number of peaks across samples. Infected and non-infected samples were normalized,
separately. Secondly, to identify families with enhanced accessibility during infection, we kept
families with significantly more peaks-associated instances (> 1.5-fold, adjusted p value < 0.05)

in infected than non-infected samples. Two-tailed paired student’ s t-test was used for the
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comparison and the resulting p value was adjusted for multiple testing with the Benjamini-
Hochberg using the R p.adjust function. Lastly, we kept family candidates from DNA, LINE,
SINE, LTR, and SVA subclasses with a minimum of 20 peaks-associated instances on average
among either infected or non-infected samples.

Similarly, to identify families with reduced accessibility, we kept families with
significantly more peaks-associated instances (> 1.5-fold, adjusted p value < 0.05) in non-
infected than infected samples. Same analysis was applied to each histone mark to identify
families with dynamic regulatory (e.g., enhancer or promoter) potentials upon infection.

We also computed the enrichment level of each family by comparing the actual number
of peaks-associated instances with its expected distribution (Bogdan et al., 2020). Specifically,
we first annotated peaks-associated instances using BEDtools intersect function with the
parameters -wa -u based on the annotation files (i.e., desert, distal, proximal, 5" untranslated

region (5" UTR), promoter, transcription start site (TSS), exon, and intron regions) obtained from

https://github.com/lubogdan/ImmuneT E. We then shuffled the true peaks while keeping the
distribution relative to each region using BEDtools shuffle function with the parameters -incl or -
excl, for 1000 times. The randomized peaks were intersected with the repeat annotation file to
achieve the number of expected peaks-associated instances per family. Lastly, we computed the
enrichment level of each family as the actual number of peaks-associated instances relative to the

average number of the expected values.

TE clustering analysis

To identify families with high variability, we performed the semi-supervised clustering analysis

of enhanced familiesin 35 infected samples. Here, to rule out the impacts of different genomic
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distribution between TE families, we used the enrichment level relative to the expected
digtribution rather than the actual number of instances for the clustering analysis. Briefly, the
enrichment levels of enhanced families were gathered into a data matrix followed by the log2
conversion. R heatmap.2 function was used to perform the unsupervised clustering analysis with
the default parameters. Based on the obtained enrichment pattern among samples, we re-ordered
the families. Families with higher enrichment levelsin Group 3 individuals than Group 1
individuals were distinguished. Non-infected samples were analyzed separately.

We then want to understand whether individual instances from high var. families display
ahigh variability in infected samples. Peaks-associated instances from high var. families were
collected. Instances with open chromatin were recorded as “1”; instances with closed chromatin
were recorded as “0”. We then performed the clustering analysis using R hclust function with the

default parameters.

Detection of TE instances from enhanced familieswith variable accessibility

For each accessible instance, we first computed the percentage of samples from each group that
were accessible post-infection. Next, we defined commonly accessible instances as the instances
that were accessible in 25% or more samples from one individual group; we also defined rarely
accessible instances as the instances that were accessible in less than 25% samples from any
groups. An instance that was accessible in more than 25% samples for commonly accessible
instances and one or more samples for rarely accessible instances was considered as enriched in
oneindividual group. Lastly, we computed the proportion of instances that were prone to be

accessible in each group.
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TE age estimation

The evolutionary age of each instance was estimated using our previous approach (Bogdan et al.,
2020; Bourque et al., 2008). In brief, the sequence divergence of each instance relative to the
corresponding consensus sequence was obtained from the “.align” file generated by

RepeatM asker (https.//www.repeatmasker.org/). Hg19 “.align” file was obtained from the UCSC

database (https://hgdownl oad.soe.ucsc.edu/gol denPath/hg19/bigZips/). The divergence rate of

each instance was divided by the substitution rate for the human genome (2.2x10°®) to compute
the age per instance (Lander et al., 2001). The average ages across all instances was referred to

the age of each TE family.

Detection of peak centroids on accessible instances

We next want to fine-map the peak centroid on each accessible instance. Read depths were
extracted from the aligned BAM file using BEDtools genomecov function with the parameter -d
and then divided by 1,000,000 to compute the RPM values. We then aggregated (summed) RPM
values of each nucleotide across accessible instances. Infected and non-infected samples were
analyzed separately. The nucleotide with the highest RPM value was recorded as the peak
centroid of each instance. Peak centroids in infected samples were used for families with
enhanced accessibility; peak centroidsin non-infected samples were used for families with

reduced accessibility.

Sequence alignment of instances against consensus sequences
We next wanted to map accessible instances to corresponding consensus sequences. The
aforementioned RepeatM asker “.align” file was used to retrieve the consensus positions at

single-nucleotide resolution. Instances with consistent start and end positions with the “.out” file
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were kept for downstream analyses. The incons stency was potentially due to the defective
annotation methodologies for the nested instances, extremely short instances, etc. It was afact
that instances of one TE family may be aligned to different consensus sequences. Thus, we
wanted to focus on instances aligned to the most representative consensus sequence for each
family. In the end, we pinpointed the peak centroid to the consensus sequence.

We plotted the aggregated RPM values relative to the consensus sequence using R. We
also clustered accessible instances using the RPM values relative to the consensus sequence.
Specifically, after z-transformation, scaled RPM values < 0 and consensus regions with deletions
were recoded as “0”. R function heatmap.2 with the default parameter was used for the

unsupervised clustering analysis. Heatmap was plotted using ggplot2 in R.

Detection of TE peak regions

We next wanted to identify “ TE peak regions’, which referred to the consensus regions that
become accessible on multiple instances. We first excluded instances that were only accessiblein
the outlier sample and then used the sliding window approach to identify TE peak regions. To
iterate over the entire consensus sequence, the window size was set at 100 bp with a step size of
one base pair. In each step, we counted the total number of peak centroids within each 100 bp
window. The 100 bp-window containing the most peak centroids was identified asa TE peak
region (> 5 peak centroids). After the exclusion of previously counted peak centroids, the
analysis was repeated till all candidate TE peak regions were identified. The proportion of
instances in each TE peak region was computed. TE peak regions were identified using peak
centroids in infected samples for enhanced families and non-infected samples for reduced

families.
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Transcription factor binding motifsanalysiswithin TE peak regions

Firstly, we extracted 100 bp sequence centered at the centroid of each TE instance using
BEDtools getfasta function with the -s parameter and then used the MEME fimo function to
search the extracted sequences for known motifs from the latest 8th release of JASPAR motif

database (http://jaspar.genereg.net/downl oad/ CORE/JASPAR2020 CORE vertebrates non-

redundant_pfms_meme.txt) (Bailey et al., 2009; Fornes et al., 2020). Instances uniquely

accessible in the outlier sample were excluded. Secondly, instances were categorized into each
TE pesk region, e.g., TE peak region with the most instances was named as “Region 1” and so
on. TE peak regions with less than five instances were excluded. Instances not in TE peak
regions were grouped as “No regions’. Thirdly, we computed the proportion of instances (100 bp
centered at the centroid) containing each motif for each TE peak region. The top 5 most
abundant motifsin each TE peak region were kept as candidates. To obtain enriched motifs per
family, we kept motif candidates appearing in more than 20% instances in each TE peak region
and more than 50% instances per family. Lastly, the same motifs detected in multiple TE peak
regions were aggregated (summed) to recalculate the proportion; motifs enriched in atotal of >
50 instances across families were kept as top candidates. After the analysis, enriched motifs were

compared between different TE peak regions and families.

Protein-protein interaction
To identify the protein association networks of ZNF TFs (ZNF460 and ZKSCANS) that were
associated with high var. families, we submitted them to the STRING database (https://version-

11-0.string-db.org) with the default parameters.
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TE regulation of neighboring genes

To explore whether TEs regulate neighboring genes, we examined differentially expressed genes
(DEGsS) nearby flu-specific instances from enhanced families and nearby NI-specific instances
from reduced families. After the differential expression analysis, we retrieved corresponding
gene names and coordinates through the command line and parameters: mysgl --user=genome -N
--host=genome-mysgl.cse.ucsc.edu -A -D hgl9 -e " select ensGene.name, name2, chrom, strand,
txStart, txEnd, value from ensGene, ensembl ToGeneName wher e ensGene.name =

ensembl ToGeneName.name". To compute the distance between genes and TEs, the first
nucleotide (5" end) (TSS) was used to represent each gene and the median position was used to
represent each TE instance. Highly expressed genes (average TPM values > 1 in either infected
or non-infected samples) were used for the analysis. BEDtools window function was used to
obtain human genes centered at each accessible instance within an 1-Mb window. We then
computed the proportion of significantly upregulated and downregulated genes among inspected
genes, respectively, within each interval of 0-50 kb, 50-100 kb, 100-200 kb, 200-300 kb and so
on. Each gene was counted once within each interval.

We also compared the proportions of significantly up/down regulated genes with the
expected distribution to compute the statistical significance. Accessible instances were randomly
shuffled for high var., low var. families, and reduced families for 1000 times separately. After
the detection of genes near accessible instances, the proportions of significantly up/down
regulated genes were computed as the expected values. The binomial distribution of the
proportions of up/down regulated genes within each genomic interval was plotted with the 95%

confidence interval, suggesting a statistical significance of p < 0.05 for any observed values
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outside the distribution. We then compared the proportions of significantly up/down regulated
genes near accessible instances from high var. families, low var. families, and families with
reduced accessibility.

We also compared the proportion of up/down regulated genes between flu-specific, NI-
specific instances and instances overlapped with shared peaks (instances that were accessible in

both infected and non-infected samples).

Profile of DNA methylation and various histone mar ks of accessibleinstances

Focusing on enhanced families, we calculated the number and proportion of accessible instances
overlapped with each mark post-infection. Specifically, we used BEDtools intersect function to
identify accessible instances overlapped with each histone mark in infected samples. The median
position of each peak was used for the analysis. We further identified instances overlapped with
both H3K27ac and H3K4mel marks in infected samples, suggesting the active or strong
enhancer potential. We also computed the number and proportion of nearby DEGs within 100 kb
(log2FC > 0.5, adjusted p value < 0.05). Additionally, we computed the average DNA
methylation level of each instance and then we used the mean value across instances to represent
the DNA methylation level of the family. DNA methylation level was calculated as the number
of methylated cytosines divided by the sum of methylated and unmethylated cytosines at each

locus.

Pathway enrichment analysis of genes potentially regulated by TEs

Thelist of significantly up/down regulated genes near each accessible instance was obtained

using BEDtools2 window function with the parameters -| 200000 -r 100000. The transcription
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start site was used to represent each gene. We focused on the significantly upregulated genes
near accessible instances for high var. and low var. families, and significantly downregulated
genes near accessible instances for reduced families. The obtained gene lists were submitted to
the g:profiler tool with the same settings for the pathway enrichment analysis. We visualized the

enriched pathways using ggplot2 in R.

Calculation of the amount of global TE transcripts

The amount of global TE transcripts was computed as the proportion of aggregated (summed)
read counts normalized by DEseg2 in TEs among the total RNA-seq read countsin both TEs and
genes. Thelinear regression model was used to evaluate the correlation between the basal TE
transcripts and viral load post-infection. R Im function was used for the analysis and the
corresponding p value and R? were reported. Using the same approach, we further analyzed each

of the four main TE subclasses, i.e., DNA, LINE, SINE and LTR.

Calculation of the average DNA methylation levelsin TEs
We computed the average DNA methylation levels among examined CpG sites across all
annotated TE regions (TE methylation) in non-infected samples. TE families from the four main

subclasses were considered.

Construction of predictive modelsfor viral load post-infection
Multiple regression analysis was used to build the predictive models. Viral load post-infection
was used as the outcome of the models. The basdline of IFN signature (score) was computed as

the median TPM value amongst 39 expressed genes from type | IFN signaling pathways (Table
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S6). Wefirst included the basdline of IFN signature and age as predictive variables. We then
chose the top six correlated immune TFs of which basal expression levels are also associated
with TEs asvariables, including STAT2, IRF1, IRF7, IRF9, STAT5A, and REL. We also picked
non-immune factors that were associated with TES as predictive variables, including age, the
basal amount of TE transcripts, the average DNA methylation levelsin TES (TE methylation),
and the basal expression levels (TPM) of TRIM28, SETDB1, PLAGL1, and ZNF460. R gim
function with the parameter family = gaussian() was first used to include al variablesin the
generalized linear modd. R stepAl C function was then used to choose a subset of main features
for the final model. R summary function was used to report the R?, adjusted R? and p value.
Lastly, we used the R predict function with the parameter type = “ response’ for the expected

viral load with each predictive mode.
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