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Abstract

Telomeres are essential for linear genomes, yet their repetitive DNA content and somatic variability has
hindered attempts to delineate their chromatin architectures. We performed single-molecule chromatin
fiber sequencing (Fiber-seq) on human cells with a fully resolved genome, enabling nucleotide-precise
maps of the genetic and chromatin structure of all telomeres. Telomere fibers are predominantly
comprised of three distinct chromatin domains that co-occupy individual DNA molecules — multi-
kilobase telomeric caps, highly accessible telomeric-subtelomeric boundary elements, and subtelomeric
heterochromatin. Extended G-rich telomere variant repeats (TVRs) punctuate nearly all telomeres, and
telomere caps imprecisely bridge these degenerate repeats. Telomeres demonstrate pervasive somatic
alterations in length, sequence, and chromatin composition, with TVRs and adjacent CTCF-bound
promoters impacting their stability and composition. Our results detail the structure and function of
human telomeres.

Main

Human telomeres are composed of tandem TTAGGG DNA repeat arrays’, which are encased by a
telomere cap chromatin structure via the recruitment of specialized sequence-specific shelterin protein
complex members?. Despite the protective role of telomere caps in maintaining the stability of telomere
repeat arrays, telomeres are prone to undergo both germline and somatic genetic alterations®*, with
telomere shortening playing a central role in various human diseases and normal aging processes®. The
highly repetitive DNA content and somatic variability within telomeres has curtailed the use of
sequencing-based approaches for interrogating their genetic and chromatin structure. Specifically,
accurate reference sequences for telomeres are largely unavailable, and short-read based chromatin
profiling methods such as DNasel-seq®’, ATAC-seq?, or ChIP-seq® cannot disentangle single-molecule
chromatin architectures across highly-repetitive and somatically-variable multi-kilobase sequences.
Consequently, our understanding of the basic structure and function of the DNA and chromatin
component of telomeres is quite limited. For example, proximal telomeric sequences exposed via
telomere shortening have been shown to frequently harbor telomere variant repeats (TVRs) comprised
of degenerate non-TTAGGG DNA repeats*'9, yet the impact of these degenerate repeats on telomere
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cap formation is largely unknown. In addition, subtelomeric regions are populated by diverse chromatin
features, such as CpG islands that promote TElomeric Repeat-containing RNA (TERRA) transcription!!?,
CCCTC-binding factor (CTCF)-occupied regulatory elements'®**, and constitutive heterochromatin
domains'>!€, However, the interplay of these chromatin domains along individual DNA molecules is

unresolved, and their potential impact on telomere structure and function is largely unknown.

The completion of the first complete human reference genome from CHM13 cells!” opens the possibility
of studying the DNA and chromatin architecture across all human telomeres. Furthermore, emerging
long-read sequencing-based chromatin profiling methods have the potential to overcome the inherent
mapping limitations of short-read based chromatin methods at repetitive DNA elements®®2° (fig. S1A).
For example, single-molecule chromatin fiber sequencing (Fiber-seq) is capable of mapping nucleotide-
precise patterns of chromatin accessibility, transcription factor (TF) occupancy, and nucleosome
positioning along multi-kilobase chromatin fibers!®, and we have optimized the original protocol for
mapping architectures of human chromatin (fig. S2). Specifically, Fiber-seq utilizes a non-specific DNA
Né-adenine methyltransferase (m6A-MTase)?! to stencil the chromatin architecture of individual multi-
kilobase fibers onto their underlying DNA templates via methylated adenines (Fig. 1A), which is a non-
endogenous DNA modification in humans?*%. The genetic and chromatin architecture of each fiber is
directly read using highly accurate single-molecule Pacific Biosciences (PacBio) HiFi long-read DNA
sequencing, which is capable of accurately distinguishing m6A-modified bases*®. Given the high
sequence accuracy and long read lengths obtained during Fiber-seq, as well as the evenly distributed
A/T content of telomeric DNA (fig. S1B), we hypothesized that Fiber-seq could uniquely enable the
interrogation of the genetic and chromatin architectures within human telomeres at single-molecule
and single-base resolution.

Mapping chromatin architectures of human telomeres

To investigate the chromatin architecture of human telomeres, we applied Fiber-seq to the human
hydatidiform mole CHM13prekr cell line (hereafter referred to as CHM13)?, the same line used for
constructing the first human telomere-to-telomere (T2T) reference genomel”%, as well as the human
lymphoblastoid cell line GM12878 as a comparison. By coupling a fully assembled genome map with
matched long-read epigenome data, we were able to overcome the substantial genetic heterogeneity of
these regions?® that appears to be enriched within these highly repetitive genomic regions (fig. S3A).
Application of Fiber-seq to CHM13 cells resulted in 1.7 million individual ~16kb chromatin fiber
architectures (Figs. 1, A to D and figs. S3, B to D), enabling the nucleotide-precise delineation of over
230 million chromatin features, such as nucleosomes, accessible regulatory elements, and single-
molecule TF binding events (Figs. 1, B and C). Furthermore, the high sequence accuracy of these reads
enabled us to uniquely map the chromatin architecture of over 97% of the human genome, including all
telomeres (Figs. 1, D and E).

Human telomeres contain three distinct chromatin domains

We first investigated the single-molecule chromatin organization overlying telomeres and subtelomeres,
which are known to contain diverse and somewhat contradictory chromatin features?!-%, Single-
molecule chromatin fiber sequencing of human telomeres exposed that telomeric and subtelomeric
chromatin is predominantly segmented into three distinct chromatin domains: (1) an MTase-protected
telomere cap structure occupying the telomere repeat array; (2) a highly accessible subtelomeric
chromatin domain immediately adjacent to most telomere repeat arrays; and (3) an extended
heterochromatic subtelomeric region (Figs. 1, B and F; fig. S4; fig. S5). Notably, the highly accessible
subtelomeric chromatin domain localizes to telomere-adjacent Telomere-Associated Repeat (TAR1)
repeats?’, which bookend 85% of all telomeres in CHM13 cells and are frequently occupied by CTCF
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elements (Figs. 1F and G). Overall, 52% of telomeric fibers contain all three of these domains abutting
each other within ~5 kb — indicating that previously observed telomeric and subtelomeric chromatin
features are physically partitioned across these three distinct chromatin domains.

Telomere caps heterogeneously encase telomere repeat arrays

Although nucleosomes appear capable of occupying telomere repeat arrays (Figs. 1F and fig. S6A),
telomere repeat arrays are largely occluded from m6A-MTase methylation, producing extended
chromatin footprints along the terminal portion of each telomere (i.e., telomere caps) (Fig. 1F; Figs. 2, A
and B). The transition between these extended telomere cap chromatin footprints and their neighboring
nucleosome-demarcated chromatin domain is highly dynamic, varying by over 1 kb between individual
fibers from the same telomere (Fig. 2C), indicating that telomere cap formation is highly heterogeneous
on a per-molecule level.

Notably, we observed that interstitial TTAGGG repeats similarly form extended chromatin footprint
structures, albeit to a slightly less degree (fig. S6B). As interstitial TTAGGG repeats are known to recruit
shelterin proteins?®730, this finding further supports the role of shelterin in forming these extended
chromatin footprints along telomere repeat arrays.

Short telomere repeat arrays form short telomere caps

To determine the impact of the length of the telomere repeat array on telomere cap size, we compared
telomeric chromatin architectures across CHM13 cells and GM12878 cells, as GM12878 cells have
markedly longer telomere repeat arrays (Figs. 2, A and B). Notably, shorter telomere repeat arrays were
associated with shorter overlying telomere caps, with telomere caps almost always terminating at or
before the telomere-subtelomere boundary (Figs. 2, A and B). In addition, telomere caps along multi-
kilobase telomere repeat arrays were often fragmented into multiple parts by short MTase-accessible
patches and nucleosome footprints (Fig. 2A; figs. S7, A and B), further highlighting the impact of
telomere repeat array length on overlying chromatin cap formation.

Telomere caps imprecisely bridge telomere variant repeats

Telomere caps are known to be formed by the shelterin complex3!, which interacts with telomere repeat
sequences through the sequence-specific binding of TRF1 and TRF2 to TTAGGGTT sequences?.

However, although human telomeres are predominantly composed of TTAGGG repeats, non-TTAGGG
telomere variant repeats (TVRs) are known to localize to the proximal end of human telomeres**°,
raising questions about the potential impact of these TVRs on telomere cap formation and function. We
observed that the proximal end of telomere repeat arrays are pervasively punctuated by TVRs across
nearly all human telomeres in CHM13 cells (Figs. 2, D and E; fig. S7B). These TVRs frequently extend to
several hundred bases in length and are often stably present across individual fibers from the same
telomere. Notably, the sequence of these TVRs largely maintains the GGG triplet (Fig. 2F), indicating that
although these repeats lack TRF1/TRF2 binding elements, they still maintain the potential for forming G-
qguadraplex DNA — a core feature of TTAGGG repeats.

We find that TVRs show significantly higher MTase-accessibility when compared to their neighboring
canonical TTAGGG repeats (Fig. 2G and fig. S7C) and are significantly more likely to harbor short MTase-
accessible patches of chromatin (Fig. 2H). However, most telomere cap structures extend through TVRs
(Fig. 2D and fig. S7B), indicating that the majority of TVRs remain encased by proteins in vivo. Overall,
these findings demonstrate that although telomere caps are prone to be disrupted by TVRs, telomere
caps nonetheless often bridge TVRs despite these degenerate repeats lacking TRF1/TRF2-binding
elements (Fig. 21).
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Somatic stability of telomere variant repeats

Given the pervasive punctuation of telomere repeat arrays with TVRs, as well as their potential impact
on telomere cap function, we next sought to determine whether TVRs are associated with altered
telomere somatic stability. Notably, although individual fibers arising from the same telomere often vary
by several kilobases in length®?, only 5.0% of telomeres were shortened beyond their terminal TVR (Fig.
3A), indicating that stable variation in telomere fiber lengths is largely limited to the sequence distal to
these terminal TVRs.

As CHM13 cells express telomerase, telomeres should be in a steady state balance between shortening
and elongation, with newly synthesized telomere DNA predominantly comprised of TTAGGG repeats. As
such, if telomere shortening past these terminal TVRs is compatible with cell survival, we would
frequently observe telomere fibers with their terminal TVRs converted into canonical TTAGGG repeats
(Fig. 3B). However, only 3% of telomere fibers exhibited patterns consistent with having their terminal
TVR somatically restructured into TTAGGG repeats (Fig. 3C and fig. S8). Furthermore, these somatically
restructured repeats appear only in the terminal ~400bp of each telomere, suggesting that telomere
fiber shortening beyond this point is not stably maintained in CHM13 cells*.

Stereotyped CTCF-bound TAR1 promoters bookend most telomeres

Next, we sought to characterize the sequence and chromatin content of telomere-adjacent subtelomeric
regions. Some of these regions are known to contain CTCF binding elements and CpG islands essential
for initiating transcription of the long noncoding telomeric repeat RNA TERRA?, which plays a role in
maintaining telomere function and stability!*343*, We observed that 39 of the 46 telomeres in CHM13
cells harbored telomere-adjacent TAR1 repeats, which were almost uniformly punctuated by a highly
accessible chromatin domain marked with CTCF-bound elements and CpG island promoters (Fig. 1G; Fig.
4A; fig. S9), consistent with previously identified TERRA promoters!!. The chromatin structure of
telomere-adjacent TAR1 repeats is highly stereotyped, with CTCF occupancy precisely demarcating the
boundary between a highly accessible CpG island and adjacent compacted subtelomeric
heterochromatin (Fig. 1B). Notably, TAR1 repeats almost uniformly contain 2+ CTCF proteins bound
simultaneously in tandem along the same molecule of DNA (Fig. 4, B and C) with their N-terminal
cohesin interacting domains oriented away from the telomere (Fig. 4, B and D) — a configuration that
should promote insulation of the TAR1 CpG island from subtelomeric heterochromatin®® and suppress
antisense transcription from the TAR1 CpG island that is directed away from the telomere®’.

TAR1 repeats also localized to numerous interstitial locations throughout the genome, but most
interstitial TAR1 repeats are fragmented and lack chromatin accessibility and CTCF occupancy (Fig. 4E;
fig. $10, A and B). However, intact interstitial TAR1 repeats often form gene promoters via their
encompassed CpG island (fig. S10B). For example, the telomere-to-telomere fusion of the ancestral
chromosome 2 at 2q14.138 results in an interstitial TAR1 repeat that has been coopted as a promoter for
the gene DDX11L2 (fig. S10C), further demonstrating that TAR1 repeats can form directional gene
promoters.

Telomere-adjacent TAR1 repeats promote TVR stability

Telomeres without adjacent TAR1 repeats preferentially have transcriptionally inactive subtelomeric
regions (Fig. 4F) that lack cohesin loading (Fig. 4G and fig. S11), suggesting that TAR1 repeats may play a
unique role in guiding telomere function and stability at transcriptionally active chromosome ends.
Comparing the stability of telomeres with and without TAR1 repeats revealed that overall, telomeres
with adjacent TAR1 repeats are significantly longer and are modestly more variable the length (fig. $12),
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indicating that the steady-state balance between telomere shortening and elongation is significantly
impacted by TAR1 repeats. Furthermore, telomeres with and without adjacent TAR1 repeats markedly
diverged in their sequence composition. Specifically, CHM13 telomeres without adjacent TAR1 repeats
contained few, if any, blocks of TVRs (Fig. 3C and Fig. 4H), and when present these TVRs were limited to
the proximal region of each telomere (Fig. 41). Together, these findings demonstrate that one of the
dominant features of telomere-adjacent TAR1 repeats is the stabilization of TVRs within the telomere.

Discussion

We identify highly stereotyped single-molecule chromatin and genetic architectures across all human
telomeres, finding that the majority of human telomere fibers are punctuated by three distinct
chromatin domains that physically co-occupy the same fiber. This finding demonstrates that previously
observed diverse telomeric and subtelomeric chromatin features!'™*¢ are physically partitioned on a per-
molecule basis.

We delineate the architecture of telomere caps at single-nucleotide and single-molecule resolution,
demonstrating that nucleosome-demarcated chromatin transitions into telomere caps within the
proximal ~500bp of each telomere fiber. However, this transition is highly heterogeneous on a per-
molecule level. These single-molecule chromatin measurements contrast prior bulk studies that suggest
pervasive nucleosome occupancy throughout the telomere repeat arrays>>“°. It is likely that this
discrepancy results from bulk averaging of rare nucleosome occupancy events across telomere repeat
arrays, as large telomere caps often appear fragmented into multiple sections that can be bookended by
nucleosome sized footprints. Alternatively, it is also possible that telomere caps themselves include
nucleosomes, with the entry/exit sites of nucleosomes being fully protected by shelterin complex
members*! such that nucleosome-bound DNA that might otherwise undergo stochastic site-exposure*
is sheltered from m6A-MTase activity.

We demonstrate pervasive somatic alterations in the length, sequence, and chromatin composition of
telomeres. Specifically, telomeres appear pervasively punctuated by non-TTAGGG TVRs that are subject
to somatic restructuring through the action of telomerase during the course of telomere shortening and
elongation. Notably, TVRs impact the ability of telomeres to faithfully form telomere caps, with
telomere caps imprecisely bridging these degenerate sequences. Importantly, TVRs preferentially
maintain the GGG triplet, indicating that they are still capable of forming G-quadraplex DNA. As such,
although TVRs lack binding sequences for the shelterin complex members TRF1/TRF2%, it is likely that
they are being bridged by additional proteins that directly interact with both G-quadraplex DNA and
shelterin complex members®.

Our findings also demonstrate TAR1 repeats as a functional repeat that establishes a highly structured
and accessible directional promoter element at the boundary between telomeric and subtelomeric DNA
on 85% of CHM13 telomeres. Notably, these telomere-adjacent TAR1 repeats are associated with the
stabilization of TVRs within the telomere. However, the exact mechanism by which they accomplish this
remains unknown. Similarly, the functional significance of having 7 of the CHM13 telomeres lack
adjacent TAR1 repeats is unknown.

Overall, our results demonstrate the first single-molecule and single-nucleotide resolution maps of the

genetic and chromatin component of all human telomeres, providing insights into the structure and
function of human telomeres as well as their somatic stability.
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Fig. 1 | Single-molecule chromatin fiber sequencing of all human telomeres.

(A) Fiber-seq schematic for mapping chromatin architectures from a complete human telomere-to-
telomere epigenome. (B) Genomic locus showing per-molecule Fiber-seq chromatin architectures for all
fibers overlapping the chromosome 12p telomere. Location of repeat elements indicated above. (right)
Insert of TAR1 repeat, highlighting CTCF binding elements and single-molecule CTCF occupancy events.
(C) Histogram showing the size distribution of chromatin fibers sequenced using Fiber-seq. (D) Mapping
quality of the 1.7 million chromatin fibers delineated using Fiber-seq as well as the percentage of all
euchromatic and telomeric bases in the CHM13 genome covered by Fiber-seq data. (E) Coverage of
single-molecule chromatin fibers (top) genome-wide or (bottom) along individual telomeres (including
25kb subtelomeric region). (F) Heatmap showing the distribution of footprint sizes relative to the
telomere-subtelomere boundary across all CHM13 telomeres. (Top) Repeat elements present across all
46 chromosome ends. (G) Proportion of telomeres that contain telomere-adjacent TAR1 repeats, as well
as the single-molecule chromatin accessibility and CTCF occupancy at these repeats.
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Fig. 2 | Telomeric cap architecture of human telomeres

(A) The association between per-molecule telomere length and max telomere cap length across all
telomeres from CHM13 and GM12878 cells. (B) Box-and-whisker plots showing (left) per-fiber telomere
lengths, and (right) per-fiber telomere largest cap sizes between telomere fibers from CHM13 and
GM12878 cells (* p-value <0.01 Mann-Whitney). (C) Box-and-whisker plots showing location of terminal
nucleosome footprints between telomere fibers from CHM13 and GM12878 cells (* p-value <0.01
Mann-Whitney). (D) Genomic locus showing per-molecule genetic and chromatin architectures for all
fibers overlapping the chromosome 8p telomere. Location of per-fiber TTAGGG, and non-TTAGGG TVRs
in blue and red respectively. Consensus sequence of telomere shown above. (E) Plot showing the
percentage of telomeres containing TTAGGG repeats or TVRs at each base relative to telomere-
subtelomere boundary. (F) Sequence of TVRs within telomeric DNA. (G) m6A-methylation frequency of
TTAGGG repeats and TVRs within telomeres, relative to telomere-subtelomere boundary. (H)
Localization of short accessible patches of DNA within TTAGGG repeats and TVRs, as well as
subtelomeric regions (* p-value <0.01 Mann-Whitney). (I) Model for the formation of telomeric cap
structures across telomere repeat arrays.
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Fig. 3 | Somatic stability of telomere variant repeats

(A) Swarm and box-and-whisker plots showing the length of each telomere fiber from CHM13 cells
relative to the most distal constitutive TVR on that telomere. (B) Model showing the impact of telomere
shortening and telomerase lengthening on the somatic preservation of TVRs. (C) Genomic loci showing
per-molecule genetic architectures for all fibers overlapping the chromosome 1p, 13p, 3q, and 8q
telomeres. Consensus sequences for each telomere are shown in middle. Telomere fibers colored based
on their sequence relative to the consensus sequence, with repeats matching the consensus in dark and
repeats not matching the consensus in light colors. TTAGGG repeats, and TVRs on each fiber colored in
blue and red respectively. (D) Box-and-whisker plot showing the minimum lengths of somatically
restructured repeats across all 46 CHM13 telomeres.
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Fig. 4 | Telomere-adjacent TAR1 repeats impact telomere stability and composition

(A) The percentage of fibers that contain a CTCF-footprinted element within 500 bp bins relative to the
telomere-subtelomere boundary. Telomeres (top) with and (bottom) without a telomere-adjacent TAR1
repeat. (B) Model for CTCF occupancy at telomere-adjacent TAR1 repeats. (C) Distance between
neighboring MTase-footprinted CTCF elements along the same molecule, by location of footprint
relative to telomere-subtelomere boundary. (D) The percentage of all CTCF elements, as well as MTase-
footprinted CTCF elements, that are oriented in the reverse orientation relative to the telomere (* p-
value <0.01 Z test). (E) Box-and-whisker plot of TAR1 repeat size for telomere-adjacent and interstitial
TAR1 repeats. (F,G) Total number of (F) Iso-seq reads or (G) NIPBL ChIP-seq peaks within the 500 kb
subtelomeric region for telomeres with or without a telomere-adjacent TAR1 repeat (* p-value <.01
Mann-Whitney). (H) Number of constitutive TVRs within telomeres with or without a telomere-adjacent
TAR1 repeat (* p-value <.01 Mann-Whitney). (1) Location of TVRs within telomeres relative to telomere-
subtelomere boundary for telomeres with or without a telomere-adjacent TAR1 repeat.
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Supplementary Materials

Materials and Methods

Single-molecule chromatin fiber sequencing of CHM13 cells

CHM13 cells were grown in AmnioMax C-100 Basal Medium (Invitrogen 12558011), which
includes the AmnioMAX™ C-100 Supplement to approximately 90% confluency. Growth
media was changed daily and cells were split using 0.25% trypsin (Gibco 25200056). One
million CHM13 cells per sample were pelleted at 250 x g for 5 minutes (4 samples were
processed in parallel), washed once with PBS, and then pelleted again at 250 x g for 5 minutes.
Each cell pellet was resuspended in 60 pL Buffer A (15 mM Tris, pH 8.0; 15 mM NaCl; 60 mM
KCI; ImM EDTA, pH 8.0; 0.5 mM EGTA, pH 8.0; 0.5 mM Spermidine) and 60 pL of cold 2X
Lysis buffer (0.1% IGEPAL CA-630 in Buffer A) was added and mixed by gentle flicking then
kept on ice for 10 minutes. Samples were then pelleted at 4°C for 5 min at 350 x g and the
supernatant was removed. The nuclei pellets were gently resuspended individually with wide
bore pipette tips in 57.5 pLL Buffer A and moved to a 25°C thermocycler. 1 uL Hia5 MTase (200
U)"® and 1.5 pL 32 mM S-adenosylmethionine (NEB B9003S) (0.8 mM final concentration)
were added, then carefully mixed by pipetting the volume up and down 10 times with wide bore
tips. The reactions were incubated for 10 minutes at 25°C then stopped with 3 pL of 20% SDS
(1% final concentration) and transferred to new 1.5 mL microfuge tubes. The sample volumes
were adjusted to 100 pL by the addition of 37 pLL PBS. To that, 500 pL. of HMW Lysis Buffer A
(Promega Wizard HMW DNA Extraction Kit A2920) and 3 pLL RNAse A (ThermoFisher
ENO0531) were added. The tubes were mixed by inverting 7 times and incubated 15 minutes at
37°C. 20 pL of Proteinase K (Promega Wizard HMW DNA Extraction Kit A2920) was added
and the samples mixed by inverting 10 times and incubated 15 minutes at 56°C followed by
chilling on ice for 1 minute. Protein was precipitated by the addition of 200 pL Protein
Precipitation Solution (Promega Wizard HMW DNA Extraction Kit A2920). Using a wide bore
tip, the samples were mixed by drawing up contents from the bottom of the tube and then
expelled on the side of the tube 5 times. Tubes were centrifuged at 16,000g for 5 minutes. The
supernatant was poured into a new 1.5 mL tube containing 600 pL isopropanol. This was mixed
by gentle inversion 10 times, incubated for 1 minute at room temperature, then inverted an
additional 10 times. DNA was precipitated by centrifugation at 16,000g for 5 minutes. The
supernatant was decanted, the pellet washed with the addition of 70% ethanol, and the sample
was centrifuged again at 16,000 g 5 minutes. After the supernatant was decanted, a quick spin
was performed to facilitate removal of any residual ethanol. Open tubes were air dried on the
bench for 15 minutes. The DNA was resuspended by the addition of 25 pL. 10mM Tris pH 8.0.
Tubes were stored overnight in 4°C and the next day were mixed gently by using a wide bore
pipette tip, drawing up the sample 5 times and gently expelling the contents on the side of the
tube. Samples were then stored at -80°C prior to library construction.

DNA shearing, library construction, and PacBio Sequel II sequencing were performed as
previously described!® with the exception that 15-20kb fragments were targeted when shearing
using the Megaruptor (Diagenode Diagnostics). In addition, we performed a high-pass size
selection of the SMRTbell library using the Sage Science PippinHT platform (Sage Science cat.
no. ELF0001) according to the manufacturer's protocol, using a high-pass cutoff of 10-15 kb to
target an average library size of 17-20 kb.
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Single-molecule chromatin fiber sequencing of GM 12878 cells

GM 12878 cells were purchased from the Coriell Institute for Medical Research and were grown
in RPMI 1640 with 2mM L-glutamine and 15% fetal bovine serum. Growth media was changed
every 2-4 days and cells were maintained at a density between 2-10x10° cells/mL. GM12878
nuclei were isolated similarly to above with the exception that the 2X Lysis buffer contained
0.05% IGEPAL CA-630 in Buffer A. Fiber-seq reaction conditions, DNA isolation, shearing,
and PacBio library construction were performed as described above for CHM13 cells.

Single-molecule chromatin fiber sequencing of K562 cells

K562 cells were grown and nuclei isolated as previously described'®. Fiber-seq reactions were
performed using the following conditions: (1) 200 Units of Hia5 for 10 minutes at 25°C; (2) 500
Units of Hia5 for 10 minutes at 25°C; (3) 1500 Units of Hia5 for 10 minutes at 25°C; (4) 200
Units of Hia5 for 10 minutes at 16°C; (5) 500 Units of Hia5 for 10 minutes at 16°C; or (6) 1500
Units of Hia5 for 10 minutes at 16°C. The same reaction buffer and nuclei amount was used as
described above. The reactions were all stopped as above and DNA isolation, shearing, and
PacBio library construction were performed as described above for CHM13 cells.

Hia5 expression and in vitro MTase activity assessment.

Hia5 m6A-MTase was purified as previously described'®, resulting in an enzyme concentration
of 200 Units per pL, with a single unit of Hia5 defined as the maximum dilution of Hia$5 that still
results in near complete digestion by Dpnl of Hia5-treated, purified dsDNA PCR product that
contains a GATC motif. /n vitro Hia5 m6A-MTase activity was performed as previously
described!® with the following modifications: 60 uL reactions contained 1 pg of the dsPCR
product substrate DNA, and various concentrations of Hia5 m6A-MTase [200 Units, 500 Units,
or 1,500 Units] in Buffer A (15 mM Tris, pH 8.0; 15 mM NaCl; 60 mM KCIl; ImM EDTA, pH
8.0; 0.5 mM EGTA, pH 8.0; 0.5 mM Spermidine) supplemented with 0.8 mM S-adenosyl-
methionine (NEB B9003S). A negative control was prepared without MTase. The reactions were
mixed by gentle flicking of the PCR strip tubes and a quick spin down before a 1 hour incubation
at either 25°C, or 16°C. Dpnl digestion and electrophoresis conditions were as previously
described'®.

Mapping single-molecule chromatin fibers to CHM13 T2T genome

3 Sequel II SMRT cells for CHM13 Fiber-seq, 2 Sequel II SMRT cells for GM 12878 Fiber-seq,
and 1 multiplexed Sequel II SMRT cell for K562 Fiber-seq were processed individually. Using
the raw subread bam files and the CHM 13 v1.0 reference genome, we ran the
findMethylationPipeline no probability.sh script on a SLURM managed cluster (see data and
code availability below). This pipeline takes raw PacBio subread bam files and converts them
into a comma separated format with per-base IPD ratio information for each read. Specifically,
as part of this script, CCS reads were first generated using pbccs (v6.0.0) (https://ccs.how/) with
the --chunk flag to parallelize across multiple nodes. Next, CCS reads were aligned to the
CHM13 genome build v1.0 using ppbmm?2 (v 1.2.0) with the -N 1, --preset CCS, and --sort flags.
This script then extracted the specific molecular identifier (ZMWID) for each aligned CCS read
and the genomic sequence to which the CCS read aligned. It then iteratively used bamsieve (v
0.2.0) to extract all subreads with the same ZMWID using the --whitelist flag. Extracted
subreads were then aligned to the genomic coordinates to which that ZMWID CCS molecule
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mapped using ppmm?2 (v 1.2.0) and flags: --sort, --preset SUBREAD. We then run ipdSummary
(v3.0)

(https://github.com/PacificBiosciences/kineticsTools/blob/master/kinetics Tools/ipdSummary.py)
with the CCS-specific extracted genomic sequence as the --reference with these flags: --pvalue
0.001 --identify m6A --csv <csv_file name.csv> --numWorkers <number of available threads>.
Finally, SMRT cell IDs were appended to each ZMWID to ensure that each molecule had a
unique identifier when combining data across multiple SMRT cells.

Once findMethylationPipeline no_probability.sh has completed, all ZMWID ipdSummary CSVs
from a single SMRT cell were concatenated into a single file.

Next, using the ipdSummary CSV files from each SMRT cell, we trained a Gaussian Mixture
Model (GMM) from adenine ipdRatios gathered from a subsample of 5,000 fibers by running
python3 faster gmm.py --slurm input.csv, similar to that previously described?’. Once the GMM
was trained on these 5,000 fibers, we applied the model to all fibers from a SMRT cell to
calculate the methylation probability for each adenine contained within each fiber. Adenines
with a m6A probability >=.99999999 were defined as being methylated.

To convert these methylation probabilities into bed files compatible with the UCSC browser, we
ran python3 new_csv_to_bed with_model apply.py -model trained _gmm.pkl input.csv
output.bed. This produces a bed12 formatted file that can be directly uploaded into the UCSC
browser. Then we filtered out fibers devoid of m6A at the terminal ends by running python3
cleanLowMethylation.py output.bed A_counts.txt (To generate A counts.txt we ran awk -F”,”
‘$4=="A" { print $11} input.csv | sort | uniq -c > A_counts.txt). Note that by convention, for
each read in this file the first and final position of the read are given a size of ‘1’ so that it
appropriately displays the ends of the read, independently of the methylation status at that
position.

Identifying single-molecule nucleosome footprints

To identify nucleosomes along a single fiber, we used the ipdSummary CSV files and
methylation bed12 files to train and apply a Hidden Markov Model (HMM)** with a standardized
post-hoc correction. Specifically, we ran the script python3 hmmNucFinder _improved.py -A
<output of build A _bed.v2.py> -m <output of new csv_to_bed with_model apply.py> -o
<name of output HMM file>. This script first projected methylation data into A/T space, using
the ipdSummary CSV files to identify adenine positions along each fiber using the python3 script
build A bed.v2.py. The HMM was then trained using a subsample of 5,000 fibers per SMRT cell
and subsequently applied across all fibers from that SMRT cell. In tandem with the HMM
delineation of nucleosomes, we also applied a simple finding approach that looked for
unmethylated stretches larger than 85 bp in length (irrespective of A/T content). We used these
‘simple’ calls to refine our HMM nucleosome calls by splitting large HMM nucleosomes that
contained multiple ‘simple’ calls. We also refined the terminal boundaries of each nucleosome
by bookending it to the nearest m6A call within 10bp, if present. This produces a bed12
formatted file that can be directly uploaded into the UCSC browser. Note that by convention, for
each read in this file the first and final position of the read are given a size of ‘1’ so that it
appropriately displays the ends of the read, independently of the nucleosome footprint status at
that position.
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Quantifying single-molecule m6A-MTase accessibility

To identify single-molecule patches of m6A-MTase accessibility (MTase-sensitive patches -
MSPs), we took the inverse of the nucleosome positions across single fibers with the script
invertBed.py (python3 invertBed.py bed file > inverted bed file). This produces a bed12
formatted file that can be directly uploaded into the UCSC browser. Note that by convention, for
each read in this file the first and final position of the read are given a size of ‘1’ so that it
appropriately displays the ends of the read, independently of the MSP status at that position.

Computational filtering of telomeric Fiber-seq reads

To only include high quality reads in our analysis we developed specific filters for reads from
CHM13 cells and GM 12878 cells. To filter for high quality CHM13 reads we required that 80%
of the terminal telomeric 500bp on each read have a Phred Quality score >= 30. For GM 12878
reads, we required that 80% of the terminal telomeric 500bp on each read have a Phred Quality
score >= 30, have a mapping quality score (MAPQ) >= 40, and was not a secondary alignment.
For the GM12878 analysis we focused on fibers from these telomere ends, as the coverage at
these telomeres was consistent with genome-wide coverage of GM 12878, indicating that these
telomere ends were appropriately assembled: 1p, 2p, 3p, 3q, 649, 7q, 9q, 1 1p, 20p, 22p.

Identifying genetic architectures of each telomeric fiber

To identify the genetic architecture of telomeric fibers, we searched all 9-mers along each fiber’s
sequence to label canonical repeats as 9-mers perfectly matching TTAGGGTTA, which is the
minimal sequence for TRF1/2 occupancy. Following identification of all 9-mer locations,
overlapping 9-mers were merged to generate runs of canonical vs. non-canonical sequence. We
then merged this data with fiber-specific chromatin information to delineate the relationship
between each fiber’s telomeric sequence and telomeric chromatin structure.

Generating consensus telomere genetic architectures
To generate per-telomere consensus genetic architectures we utilized the per-fiber genetic
architectures we previously generated. To account for the fact that the genetic architectures were
constructed from the read sequence and not genomic sequence, we used the base position that
aligned to the telomere-subtelomere boundary as an anchor point for each fiber. With the
molecular coordinates normalized between fibers, we then iterated through every position
relative to the telomere/subtelomere boundary, aggregated the sequence classification (TTAGGG
vs. Non-TTAGGG) of each fiber at that position, and then classified into these 4 categories :
1. Germline canonical: Position relative to subtelomere is also called as canonical in >=50%
of fibers at that position.
2. Somatic canonical: Position relative to subtelomere is also called as canonical in <50% of
fibers at that position.
3. Germline non-canonical: Position relative to subtelomere is also called as non-canonical
in >=50% of fibers at that position.
4. Somatic non-canonical: Position relative to subtelomere is also called as non-canonical in
<50% of fibers at that position.

Identifying the nucleosomal architecture of telomeric reads
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To properly identify the nucleosomal architecture of telomeric reads we modified our existing
Fiber-seq pipeline to account for mapping difficulties that may arise from somatic alterations in
the telomere repeat DNA content. First, we aligned CCS reads to the CHM 13 genome (v1.0) and
extracted ZMWIDs for all reads aligning to the telomeric sequence. Next, we modified the Fiber-
seq computational pipeline to align each fiber to itself rather than the CHM 13 genome (referred
to as a CCS-based mo6A profile as opposed to a genome reference-based m6A profile), enabling
us to identify m6A patterns that may be unique to the DNA content of each read. To set these
self-aligned fibers in a CHM 13 coordinate space, we used their CCS alignment to the CHM 13
genome to identify the centromeric end of the telomere TTAGGG repeat. We then set this
position as 0 in the CCS-based m6A profile, allowing us to relate each individual fiber back to
the CHM13 genome and to each other.

Quantifying the m6A methylation frequency of TTAGGG repeats genome-wide

To determine the m6A methylation frequency of the TTAGGG sequence, we first identified
instances of the 7-mers CCTAACC, CTAACCC, and GTTAGGG in various genomic contexts
and then calculated the proportion of these instances that contained an m6A at the central
adenine. Note that these are the 7-mers corresponding to the three A/T base pairs in the
TTAGGG repeat. Interstitial TTAGGG repeats were identified using repeat masker v2.0 file,
which was downloaded from the UCSC T2T hub (http://t2t.gi.ucsc.edu/chm13/hub/t2t-chm13-
v1.0/rmskV2/rmskV2.bigBed), and were defined as repeats containing iterations of TTAGGG or
CCCTAA. These calculations were performed across a single SMRT cell.

Delineating CTCF binding elements and CTCF and cohesin occupancy

CTCEF binding elements were identified genome-wide using the MA0139.1.meme motif from
Jaspar. Specifically, the entire CHM13 v1.0 genome was scanned with this motif using fimo
(version 4.11.2) with the --no-qvalue --thresh 0.001 --max-stored-scores 1000000 flags.
Identified elements that overlapped were resolved by selectively keeping the element with the
lower p-value. To determine CTCF occupancy on each chromatin fiber we set these thresholds:
(1) the motif of interest must contain 0 m6As within the binding element; (2) the motif must fall
within a MSP >= 150 bp; and (3) the motif must have at least 3 m6As in the +/- 15bp
bookending the motif instance. We applied these thresholds across each instance of an overlap
between a motif and a fiber.

CTCF ChIP-seq raw FASTQ files were retrieved from 10 different cell lines (AG09309,A0AF,
BJ, Caco-2, GM12878, HEEpiC, HepG2, K562, SAEC,SK-N-SH-RA) (GSE30263)*6, Reads
were aligned to uniquely mapping locations along the CHM13 v1.0 genome using bwa mem
(v0.7.17-r1188). Aligned reads were sorted and indexed using samtools (v1.11). ChIP-seq
occupancy peaks were identified for each replicate with their respective control, using macs2
callpeak with a g-value of 0.01 (v2.2.7.1). Peaks were sorted by p-value (-log10) and the
replicates were then assessed for consistency and reproducibility by calculating the
irreproducibility discovery rate (IDR), using idr with a threshold of 1% (v2.0.4.2). Signal tracks
were generated by calculating the fold-enrichment and log likelihood from pileup bedGraph files
with macs2 bdgecmp, removing off-chromosome lines using bedTools slop (v2.30.0) + UCSC
bedClip (v302.1 kentUtils) and transforming the resulting clip files to bigWig format.
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ChIP-seq raw FASTQ files were retrieved for treated and untreated samples: RAD21, SMCI,
CTCF, NIPBL, and input (GSM2809609 to GSM2809614, GSM2809637, GSM2809638,
GSM3242972 and GSM3242973), all retrieved from the GEO accession series GSE104888%7.
All runs from the same sample were merged prior to alignment. All samples (single and paired-
end) were aligned to the CHM13 V1.0 reference genome with bwa-mem -t 40 (v.0.7.17-r1188),
sorted and indexed using samtools (v1.11). Peaks were called using macs?2 callpeak (v.2.2.7.1)
with parameters: -f BAM, -B, —-SPMR, -q 0.01. Peaks were sorted by -log10 (p-value). The
output bedgraph files were used to retrieve signal data and narrowPeak files used to retrieve peak
data.

CHM 13 transcriptional activity

Iso-seq and RNA-seq data from CHM13 cells were downloaded from the T2T repository!’. For
RNA-seq, FASTQ files from both libraries were merged. CHM13 liftoff based GENCODE gene
models (http://t2t.gi.ucsc.edu/chm13/hub/t2tChm13 20200727/1iftOffGenes/) were transformed
to GTF format using the UCSC bigGenePredToGenePred and genePredToGtf tools (v302.1
kentUtils). An index was generated for the CHM13 v1.0 genome using the STAR algorithm
(v2.7.8a) with the following flags: --runMode genomeGenerate --sjdbOverhang 74. Next, reads
were aligned with STAR using the following flags: --runMode alignReads, --twopassMode
Basic, --alignSoftClipAtReferenceEnds Yes, --quantMode TranscriptomeSAM GeneCounts, --
quantTranscriptomeBAMcompression -1,--outSAMtype BAM SortedByCoordinate,--
outBAMcompression -1,--outSAMunmapped Within,--genomeLoad NoSharedMemory. We
calculated the total number of RNA-seq reads in the terminal 250kb of each chromosome, with
the first bin starting at the end of the chromosome.

CHM13 Iso-Seq data was downloaded from the NCBI sequence read archive (SRA) accession
SRR12519035. Iso-Seq bam files were aligned to CHM13 v1.0 using ppbmm?2 (v1.2.0) --preset
ISOSEQ. Aligned bam files were subsequently converted to bed format. To investigate
differences between TAR1 and non-TAR1 containing terminal ends we intersected the respective
non-telomeric terminal 500-kb with the IsoSeq bed file and then counted the number of
intersections for each terminal end with the following command : bedtools intersect -wa -a
respective.terminal.region.bed -b isoseq.aligned.sorted.bed | sort | uniq -c. Terminal ends with
no transcripts aligning were given a value of 0.

TARI repeat clustering

TARI repeats were identified using repat masker v2.0 file, which was downloaded from the
UCSC T2T hub (http://t2t.gi.ucsc.edu/chm13/hub/t2t-chm13-v1.0/rmskV2/rmskV2.bigBed), and
were filtered for those with a size >=500bp. A FASTA file containing DNA oriented to the
TARI repeat orientation was generated for each of these elements using bedtools getfasta and the
CHM13 v1.0 reference genome. The FASTA sequences were then aligned using the multiple
sequence aligner program, MAFFT*® using the following flags: --reorder --maxiterate 1000 --
thread 16 . The resulting multiple sequence alignment was used to create a maximum likelithood
phylogenetic tree with the tool RAXML (Stamatakis, 2014), by running raxm!/HPC-PTHREADS -
fa-p 12345 -x 12345 -s {TARI elements MSA fasta} -m GTRGAMMA -# 100 -T' 8§ -n TARI.
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Fig. S1. | Resolution of short-read and long-read epigenomic mapping methods

(A) Percentage of reads from GM 12878 DNasel seq experiment uniquely mapping to various
segments of the genome. Euchromatic genome defined as genomic regions not contained within
repeats. (B) Distance between neighboring A/T base pairs or GC dinucleotides outside of a CpG
context within telomeres.
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Fig. S2. | Optimization of Fiber-seq for human samples

(A) DNA gel of Hia5 m6A-MTase activity at various temperatures. Specifically, 1ug of ~1kb
dsDNA PCR product that contains several GATC motifs was treated with 200 units of Hia5 for
10 minutes at various temperatures, or untreated with Hia5. The DNA was then purified and
digested with Dpnl, which will selectively cut DNA molecules with methylated GATC motifs.
(B) Schematic for testing optimal Fiber-seq reaction conditions in human cells. Specifically, all
reaction were performed for 10 minutes with the same number of cells, and the temperature and
enzyme concentration were varied. (C) Histograms of (left) nucleosome footprint sizes and
(right) MTase-accessible patch (MSP) sizes from Fiber-seq reactions performed with various
amounts of enzyme or at various temperatures. (D) Aggregate m6A profile surrounding ChIP-
seq positive CTCF binding elements from Fiber-seq libraries obtained according to panel b.

Dubocanin et al., (pg. 26)


https://doi.org/10.1101/2022.05.09.491186
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.09.491186; this version posted May 9, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Figure S3
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Fig. S3 | Fiber-seq statistics for CHM13 and GM12878 cells mapped to CHM13 genome
(A) Mapping quality and coverage of various regions of the CHM13 v1.0 genome obtained by
performing Fiber-seq on GM 12878 cells or CHM13 cells. (B) Coverage of the CHM13 v1.0
genome obtained by performing Fiber-seq on GM 12878 cells or CHM 13 cells. (C) Histogram
showing the size distribution of chromatin fibers sequenced using Fiber-seq from GM12878 and
CHM13 cells. (D) Histograms of PacBio circular consensus sequencing (CCS) coverage of each
strand, the number of nucleosome footprints identified on each fiber, the size of MSPs identified,
and the size of nucleosome footprints identified for reads from the GM 12878 and CHM 13 Fiber-
seq experiment.
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Fig. S4 | CHM13 telomere chromatin architecture
(A-D) Genomic loci showing per-molecule genetic and chromatin architectures for all fibers
from (A) 2q, (B) 3q, (C) 14p, and (D) 22p telomeres.
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Fig. S5 | GM12878 telomere chromatin architecture

(A) Coverage of single-molecule chromatin fibers along individual GM 12878 telomeres, as well
as the list of telomeres that were appropriately mapped using GM 12878 Fiber-seq and the
CHM13 reference genome. (B) Heatmap showing the distribution of footprint sizes relative to
the telomere-subtelomere boundary across these GM 12878 telomeres.
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Fig. S6 | Nucleosome and methylation architecture of telomere and non-telomere DNA

(A) Histogram of nucleosome footprint widths within telomere repeat arrays (blue), and genome-
wide (tan) from CHM13 cells. (B) Methylation frequency of the central adenine in CTAACCC
7-mers located within various genomic contexts.
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Fig. S7 | GM12878 and CHM13 telomere chromatin and genetic architectures

(A) Violin plots showing the number of >500 bp footprints per fiber within CHM13 telomere
repeat arrays based on the size of the telomere repeat array. (B) Genomic locus showing per-
molecule genetic and chromatin architectures for all fibers overlapping the chromosome 9q
telomere in CHM 13 and GM12878 cells. Location of per-fiber TTAGGG repeats, and telomere
variant repeats in blue and red, respectively. Consensus sequence of CHM13 and GM 12878 9q
telomeres shown as well. (C) m6A-methylation frequency of TTAGGG repeats and telomere
variant repeats within GM 12878 telomeres, relative to telomere-subtelomere boundary (* p-
value <0.01 Mann-Whitney).
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Fig. S8 | Somatic stability of CHM13 telomeres

Genomic loci showing per-molecule genetic architectures for all fibers that demonstrate
somatically rearranged telomere variant repeats. Shown are the individual fibers that have
undergone somatic reconstruction, as well as the consensus genetic architectures based on the
other fibers from that telomere (these other fibers are not shown). Reads from telomeres 1p, 3p,
12p, 17p, 19p, 3q, 9q, 10q, and 18q are displayed, as these are the only reads that clearly
demonstrated somatic reconstruction. Telomere fibers colored based on their sequence relative to
the consensus sequence, with repeats matching the consensus in dark and repeats not matching
the consensus in light colors. TTAGGG repeats, and telomere variant repeats on each fiber
colored in blue and red respectively. The minimal length of each somatically restructured
telomere end is displayed along side each fiber.
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Fig. S9 | Chromatin architecture of TAR1 repeats

Genomic loci showing CTCF and Cohesin ChIP-seq signal from various cell lines mapped
across the 39 telomere-adjacent TAR1 elements in the CHM 13 genome. Track heights for all
CTCF ChIP-seq samples, and HCT-116 cell samples are identical, respectively.
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Fig. S10 | TARI repeat evolution and chromatin architecture

(A) Box-and-whisker plots for telomere-adjacent and interstitial TAR1 elements showing (left)
the percentage of overlapping fibers at TAR1 repeat that contain an MSP>150bp, and (right) the
percentage of overlapping fibers at TAR1 repeat that contain an occupied CTCF binding
element. (B) Phylogenetic tree comparing the sequence of each of the interstitial and telomere-
adjacent TARI repeats >500 bp in length. Displayed to the right are the sizes of each element, as
well as the percentage of overlapping fibers containing an MSP>150 bp within the TAR1 repeat,
or containing an occupied CTCF binding element within the TAR1 repeat. TAR1 repeat overlap
with transcriptional start sites (TSS) is also displayed. (C) Genomic locus with an interstitial
TARI element at the chromosome 2 telomere-telomere fusion site that functions as a promoter
for a non-coding gene. Displayed is CTCF ChIP-seq signal, as well as single-molecule chromatin
fiber architectures.
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Fig. S11 | Cohesin signal at TAR1 repeat CTCF elements

(A) ChIP-seq signal for CTCF, cohesin components RAD21 and SMC1, cohesin loading factor
NIPBL, and input at CTCF ChIP-seq peaks at telomere-proximal TAR1 elements, or other CTCF
ChIP-seq peaks in HCT-116 cells. (B) ChIP-seq signal for CTCF, cohesin components RAD21
and SMC1, cohesin loading factor NIPBL, and input at CTCF ChIP-seq peaks at telomere-
proximal TAR1 elements in HCT-116 cells before or after RAD21 depletion. ChIP-seq data
obtained from Rao et al., Cell 2017, wherein RAD21 depletion was accomplished via an auxin-
inducible degron (AID).
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Fig. S12 | Telomere lengths at telomeres with adjacent TARI1 repeats in CHM13 cells
(A) Box-and-whisker plot showing length of telomere repeats for fibers from telomeres with
telomere-adjacent TAR1 repeats. (B) Box-and-whisker plot showing the difference in fiber

lengths from telomere fibers that originate from the same telomere (* p-value <0.01 Mann-
Whitney).
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