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ABSTRACT 38	

AA amyloidosis is a systemic disease characterized by deposition of misfolded serum 39	

amyloid A protein (SAA) into cross-β amyloid in multiple organs in humans and 40	

animals. AA amyloidosis occurs at high SAA serum levels during chronic 41	

inflammation. The disease can be transmitted horizontally, likely facilitated by prion-42	

like mechanism, in captive animals leading to extreme disease prevalence, e.g. 70% in 43	

captive cheetah and 57-73% in domestic short hair (DSH) cats kept in shelters.  44	

Herein, we present the 3.3 Å cryo-EM structure of an AA amyloid extracted post-45	

mortem from the kidney of a DSH cat with renal failure. The structure reveals a cross-46	

β architecture assembled from two 76-residue long proto-filaments. Despite >70% 47	

sequence homology to mouse and human SAA, the cat SAA variant adopts a distinct 48	

amyloid fold. Based on shared disease profiles and almost identical protein sequences, 49	

we propose a similar amyloid fold of deposits identified previously in captive cheetah. 50	

 51	
 52	
 53	
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INTRODUCTION 55	

Amyloidosis is associated with the deposition of proteinaceous amorphous structures 56	

in the extracellular space of tissue and organs in humans and animals 1. Amyloids in 57	

biopsies are histologically revealed by apple-green birefringence under polarized light 58	

after Congo Red staining 1,2. More than 50 disease-causing amyloidogenic proteins 59	

have been discovered, and their molecular identities define specific disease forms and 60	

organ distribution 1,3,4. Immunohistochemistry and mass spectrometry-based 61	

determination of amyloid type is vital for effective treatment 2,5,6 . The authors of a 62	

recent outstanding study have applied single-particle cryo-EM to classify human brain 63	

amyloidoses (tauopathies) based on fibril structures, potentially impacting future 64	

diagnosis and treatment of these devastating neurodegenerative diseases 7. 65	

Specifically, AA amyloidosis represents a systemic disease characterized by the 66	

deposition of misfolded serum amyloid A protein (SAA) in multiple organs 2,8. SAA 67	

proteins are 12-14 kDa light apo-lipoproteins that are remarkably conserved 68	

throughout vertebrate evolution, indicating critical functions for survival 9–11. As part 69	

of the host innate response to inflammation, acute-phase variants of SAA (A-SAA) 70	

are secreted by the liver to increase serum levels up to 1000-fold 2,9,11–16 . A minor 71	

fraction of A-SAA adopts an α-helical bundle structure that delivers retinol to 72	

intestinal myeloid cells, including macrophages, to promote adaptive immunity 17,18. 73	

The vast majority of A-SAA with a more disordered and enigmatic structure is bound 74	

in high-density lipoprotein (HDL), likely contributing to cholesterol homeostasis in 75	

macrophages 2,9,15,19,20. Chronic inflammation increases A-SAA concentrations to 76	

such an extent that macrophages fail to prevent proteolysis-resistant oligomers during 77	

lysosomal degradation 21,22. Low pH in lysosomes may favor transition of A-SAA into 78	

highly ordered almost indestructible amyloid 21–25. Final assembly into massive AA 79	
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amyloid deposits physically distorts and damages organs, in human patients often 80	

diagnosed as kidney-related glomerular proteinuria 2,26,27. Cryo-electron microscopy 81	

(EM) structures of ex vivo AA amyloid deposits from diseased organs of a human 82	

patient and an experimental mouse model revealed the characteristic cross-β 83	

architecture of amyloid, but highly polymorphic structures despite 76% sequence 84	

identity 28. The two polymorphs were added to a growing amyloid structure database 85	

exhibiting more diverse folds than originally anticipated 25,29. Proteins of identical 86	

sequence may adopt many polymorphs, that are defined in vitro by test tube 87	

conditions and ex vivo by tissue origin and disease type 3,7,28–32. Due to the conserved 88	

amyloidogenic nature of A-SAA, domestic animals develop systemic amyloidosis 89	

similarly to humans 2,33,34. Among cats, Siamese and Abyssinian breeds were reported 90	

as particularly prone to amyloidosis due to a familial predisposition 35–40. Strikingly, 91	

the close-to-extinct captive cheetah, from whose lineage DSH cat ancestors split 92	

about six million years ago, suffers from an extreme disease prevalence of 70%, likely 93	

facilitated by prion-like disease transmission 41–44. A prion-like spread of AA 94	

amyloidosis was also inferred from studies in which parenteral administered amyloid 95	

accelerated deposition in inflamed animals 2,45,46. Our recent study has revealed a 96	

prevalence of 57-73% among 80 domestic short hair (DSH) cats kept in shelters 47, in 97	

stark contrast to a very low prevalence (1-2 %) in client-owned cats 48–51 .  98	

Herein, we present the cryo-EM structure of fibrils extracted post-mortem from the 99	

diseased kidney of a DSH cat with systemic AA amyloidosis. The structure exhibits 100	

the characteristic cross-β architecture of amyloid, but adopts a unique fold distinct 101	

from any deposited structure. The novel amyloid fold is built from a SAA variant with 102	

potentially increased prion capacity. Almost identical SAA fragment sequences and 103	

shared disease profiles hint to a conserved amyloid fold in cat and cheetah.  104	
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RESULTS  AND DISCUSSION 105	

AA amyloid extracted from the kidney of a DSH cat deceased with renal failure 106	

During the last two months of a two-year stay in a shelter in Northern Italy, a female 107	

DSH cat became anorectic, developed jaundice and lost significant body weight. She 108	

was affected by chronic kidney and liver disease, and had no retroviral infections 109	

(Figure S1A). Due to worsened renal failure, euthanasia was requested when the cat 110	

was six years old. Histology of the kidney revealed mild chronic multifocal interstitial 111	

nephritis and that of the liver showed severe diffuse hypotrophy/atrophy of the 112	

hepatocytes. Abundant, amorphous and eosinophilic material in the kidney, liver and 113	

spleen stained positive for Congo red and appeared green-apple birefringent under 114	

polarized light, consistent with amyloid (Figures 1A and S1B). We suspected AA 115	

amyloidosis, representing the most commonly observed type of amyloid in animals 116	

2,33,34,41,42,45,46.  Indeed, specific antibodies detected SAA close to and as component 117	

of amyloids in all three organs (Figures 1B and S1C). Fibrils were extracted from 118	

kidney tissue and SAA was identified as the most abundant protein by liquid 119	

chromatography with tandem mass spectrometry (LC-MS/MS) (Table S1). Based on 120	

negative stain electron microscopy (EM), revealing straight helical filaments with 121	

cross-over distances in the 650-700 Å range (Figure 1C), fibril extraction was 122	

optimized for collection of a high-resolution single-particle cryo-EM dataset. 123	

 124	

Cat’s AA amyloid is built from two identical 76-residue long proto-filaments 125	

stabilized through staggered ionic lock and hydrophobic cluster interactions  126	

Cryo-electron micrographs of vitrified AA amyloid extracts revealed a homogeneous 127	

population of straight fibrils (Figure 2A) that were manually picked for standard 128	

helical reconstruction 52,53. About 65k from initially 380k segments were refined with 129	
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C2 symmetry, a left-handed twist angle of 1.3° and a helical rise of 4.9 Å to yield a 130	

final map with a nominal resolution of 3.3 Å, as estimated from half-map Fourier 131	

shell correlation curves (FSC) (Figure S2A). Reasonable map-model statistics as well 132	

as matching 2D class averages and map projections provide evidence of a physically 133	

valid model built into a consistently reconstructed map (Figures 2A-D, S2 and Table 134	

S2). The fibril structure is composed of two identical proto-filaments, and exhibits the 135	

cross-β architecture characteristic of amyloid (Figure 2). The polypeptide of each 136	

proto-filament comprises 11 β-strands between residue positions 19 and 94 and 137	

adopts an extended hairpin structure. A central β-arch between residues Asp-50 and 138	

Arg-64 links two ~25 residue long meandering tails that stick together via side chain 139	

contacts. A noteworthy feature following the β-arch is an unusual backbone bulge 140	

adopted by the P66GGAW70 segment comprising Pro-66 modeled as cis-isomer 141	

(Figures S3A), in contrast to the trans-Proline residues in mouse and human AA 142	

amyloid (Figure S3B). To the best of our knowledge, this is the first example of a cis-143	

Proline in amyloid. Isomerization of unfolded SAA may occur spontaneously, as 144	

observed in human dialysis-related amyloidosis of β2-microglobulin, but could also 145	

be catalyzed by isomerases 54–59. In the assembled fibril, the N-terminal tails are 146	

surface-exposed at the edges, while the C-terminal tails are buried facing each other 147	

(Figure 2C). Each polypeptide deviates from planarity traversing more than three rung 148	

layers (Figure 2E). While the β-arch lies almost perpendicular to the fibril axis, the 149	

exposed edge- and buried face-tails are tilted by 15° and 10°, respectively. At the 150	

intra-protomer interface (Figures 3 and S4, left), the edge-tail of rung layer (i) 151	

contacts the face-tails (i-1) to (i+2), creating four hydrophobic clusters, three ionic 152	

locks and additional H-bond interactions. On the other side, at the inter-protomer 153	

interface (Figures 3 and S4, right), the face-tail (i) contacts four rung layers of the 154	
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adjacent proto-filament, creating two hydrophobic clusters, four ionic locks and two 155	

additional H-bond interactions. Such staggered interactions contribute to fibril 156	

stability, as described previously 29 .  157	

 158	

Cat´s distinct AA amyloid structure buries its unique eight-residue insert 159	

between the two proto-filaments and is predicted as the most stable assembly 160	

Although the amino acid sequences of the human, mouse and cat SAA fibrils share 161	

>70% residue identity, each amyloid fold is distinct (Figure 4). All three fibrils start at 162	

residue 19, but they differ in lengths. Compared to the 54-residue short fibril core of 163	

human SAA (hSAA), mouse and cat SAA fibrils (mSAA and cSAA) are elongated by 164	

14 and 22 residues, respectively. Each structure adopts a unique fold, exhibiting 165	

distinct arrangements of β-strands that vary slightly in number and lengths, despite 166	

high sequence identities (Figure 4A). In each fibril, different parts of the sequences 167	

are exposed or buried. In cSAA, residues 19-49 comprising strands β1-β4 are exposed 168	

as part of the edge-tail, comprising two short segments that are partially buried in 169	

sharp turns. Longer buried segments are observed for the corresponding region in 170	

both hSAA and mSAA, but with different distributions. Despite these differences, a 171	

segment between residues 24 and 54 of hSAA superposes well on cSAA with an 172	

rmsd-value of 2.5 Å (Figure S5). The concomitant observation of shared and distinct 173	

structural elements in sequence-homologous amyloids has been referred to as type-2 174	

polymorphism 29. The surface-exposed β-arch of cSAA, comprising residues 50 to 64, 175	

adopts more extended conformations in hSAA and mSAA. In hSAA, residues 50-55 176	

are buried, followed by the exposed C-terminal segment. In mSAA, residues 50-64 177	

are exposed, while residues 65-86 adopt a U-shaped structure that is, except for 178	

residues 66-72, largely exposed and in loose contact with the other protomer. A non-179	
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conserved sequence insertion at position 86 of the precursor protein sequence sets 180	

apart the cat from mouse and human SAA variants 10,11. In the fibril, the insert 181	

constitutes a part of the buried tail at the inter-protomer interface. The described 182	

differences of the protein sequences, amyloid folds and assemblies yield unique fibril 183	

architectures (Figures 4, S6 and S7), each with distinct buried surface area (BSA) and 184	

estimated dissociation free energy (ΔGdiss) contributions of the intra- and inter-185	

protomer interfaces (Figure S8). Compared to mSAA and hSAA, cSAA is predicted 186	

as the most stable assembly, with BSA and ΔGdiss–values increased by ~2000 Å2 and 187	

4-8 kcal/mole, respectively. While the eight-residue insert likely increases fibril 188	

stability, predicted local conformational changes may affect the stability of the native 189	

lipid-free SAA structure (Figure S9) as well as the currently unknown HDL-bound 190	

structure, which might contribute to explain the high amyloidosis prevalence in cats.  191	

 192	

Shared disease profiles and almost identical fibril sequences suggest a similar 193	

amyloid fold with increased prion capacity in captive cat and cheetah 194	

The presented cryo-EM fibril structure is unique in representing the first ex vivo 195	

structure of a spontaneously occurring amyloid obtained from an animal kept in a 196	

man-made habitat. Remarkably, the distantly related captive cheetah species Acinonyx 197	

jubatus suffers from a similarly high AA-amyloidosis prevalence of 70%, likely 198	

facilitated by a prion-like disease transmission 41,42,46. In particular, the amino acid 199	

sequence of AA amyloid extracted post-mortem from the diseased liver of a cheetah is 200	

97% identical to the sequence of the extracted cat fibril (Figure 5). While highly 201	

homologous amyloidogenic proteins, even of identical sequence, may adopt different 202	

structure, human brain diseases can be linked to shared amyloid folds	7,29,30,32. Based 203	

on simple structural considerations we consider the Q19E and N93S substitutions in 204	
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cheetah fully compatible with the herein presented structure. Although other SAA 205	

variants exist in both cat and cheetah, re-discovery of a prion-reported SAA from 206	

cheetah in cats affected by severe AA amyloidosis may provide further evidence for 207	

its increased prion capacity. Indeed captive cheetah and shelter cats experience 208	

similar living conditions that favour horizontal disease transmission, likely through 209	

faeces or other exchange of biological material between individuals. Thus, we may 210	

hypothesize that the cat and cheetah SAA variant has increased prion capacity with a 211	

similar amyloid fold, revealing itself in shelter and zoo populations.  212	

 213	

In summary, here we report the 3.3 Å resolution cryo-EM structure of fibrils from 214	

renal tissue of a cat affected by severe AA amyloidosis in a shelter. The fibril is 215	

assembled from two twisted proto-filaments, each comprising 76 residues. Amyloid 216	

fold and fibril assembly differ from previously reported human and mouse ex vivo AA 217	

amyloid structures. Almost identical fibril sequences and similar disease prevalence in 218	

related captive cheetah suggest that the structure reported here may depict the prion 219	

agent responsible for the high AA amyloidosis prevalence in these two related felids.  220	

 221	

 222	
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MATERIALS AND METHODS 223	

Diagnosis of AA amyloidosis  224	

Histology	and	 immunofluorescence.	Full	details	were	described	previously	 47. 225	

In brief, organs were collected within 5 h from death, fixed in 10% formalin, and 226	

embedded in paraffin. After automatic sectioning, 4-5 µm-thick slices were stained 227	

with hematoxylin/eosin and Congo red and examined using standard and polarized 228	

light microscopy. For immunofluorescence, serum was obtained by immunization of 229	

Balb/c mice with virus-like particles-conjugated to SAA-derived peptides 230	

(MREANYIGAD, QRGPGGAWAAKV and EWGRSGKDPNHFRP). Serum 231	

specificity was assessed using ELISA. Goat anti-mouse monoclonal IgG conjugated 232	

to biotin and streptavidin conjugated to Alexa-546 were used for detection.  233	

Fibril extraction. After excision, non-fixed cat kidneys were stored frozen (-80  °C) 234	

until amyloids were extracted as described previously 60–62. Briefly, 0.5 g tissue from 235	

the kidney pole was minced with a scalpel, and washed in 20 mM Tris, 140 mM 236	

NaCl, 2 mM CaCl2, pH 8. After collagenase-digestion (from Clostridium histolyticum, 237	

Sigma Aldrich, Saint Louis, MO, USA), the sample was homogenized applying nine 238	

cycles of centrifugation and pellet re-suspension in 1 mL of 20 mM Tris, 140 mM 239	

NaCl, 10 mM EDTA, pH 8.0. Supernatants from additional homogenization cycles in 240	

ice-cold water were kept as amyloid extracts and analyzed by SDS-PAGE.  241	

LC-MS/MS. Extracted fibrils were solubilized in 8M Urea, 0.1M Dithiotreitol and 242	

quantified using Bradford (Bio-Rad, Hercules, CA, USA). 30 µg of solubilized and 243	

reduced protein was alkylated (150 mM iodoacetamide, 1 h, RT, dark), 1/6-diluted in 244	

100 mM NH₄HCO₃, and digested with Trypsin (Sequence grade, Promega, Madison, 245	

WI, USA) at a 1:20 (w/w) ratio for 16 h at 37 °C. Peptides were purified using Pierce 246	

C18 Tips (Thermo Fisher Scientific) and analyzed by LC-MS/MS (Table S1). Uniprot 247	
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entries Q9XSG7, Q1T770, A0A337SKP2 and Q5XXU5, were identified as top hits 248	

from the Felis catus proteome.  249	

 250	

Structure of AA amyloid fibrils by single-particle cryo-EM 251	

Sample preparation and data collection. A 4-µl droplet of fibrils sample was applied 252	

onto a C-flat thick 1.2/1.3 300 mesh Cu, previously glow-discharged for 30s at 30mA 253	

using a GloQube system (Quorum Technologies). The sample was blotted 254	

immediately and plunge-frozen in liquid ethane using a Vitrobot Mk IV (Thermo 255	

Fischer Scientific). A cryo-EM dataset of 2,652 movies was collected automatically 256	

on a Talos Arctica 200kV (Thermo Fisher Scientific), equipped with a Falcon 3 direct 257	

electron detector operated in electron counting mode (Table S2).  258	

Helical reconstruction. Fibrils were picked manually from dose-weighted, motion- 259	

and CTF-corrected image micrographs in RELION 3.1 52,53,63,64. After manual 260	

picking, a first set of ~65,131 segments were extracted in 1000-pixel boxes binned by 261	

4 and a 10% inter-box distance. The tube diameter, rise and number of asymmetrical 262	

units were set to 125 Å, 4.75 Å and 21, respectively. Reference-free 2D classification 263	

was performed to select a single large class average for initial model generation with 264	

an estimated cross-over distance of 700 Å. A second set of ~381,233 smaller 265	

segments was extracted for the refinement applying a box size of 250 pixel with 10% 266	

inter-box distance and helical tube diameter, rise and asymmetrical unit values of 150 267	

Å, 4.75 Å and 5, respectively. The initial model was re-scaled and re-windowed to 268	

match the un-binned particles and low-pass-filtered to 10 Å. 3D auto-refinement 269	

applying C1 symmetry, angular sampling, helical twist and rise values of 3.7°, 1.3° 270	

and 4.75 Å, respectively, yielded an ~4 Å resolution map. Imposing apparent C2 271	

symmetry improved map resolution to 3.8 Å. After additional steps comprising 3D 272	
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class average selection, Bayesian polishing, CTF refinement and mask-generation, 273	

~65,122 particles were subjected to a final 3D auto-refinement with solvent-flattened 274	

FSCs. The final map was reconstructed with helical twist and rise values of 1.3° and 275	

4.9 Å to an estimated resolution of 3.3 Å.   276	

Model building. After map auto-sharpening in Phenix 65, the model was built de novo 277	

starting from a map region featuring an unusual backbone bulge with an associated 278	

bulky side-chain volume. The bulge was identified as P66GGAW70 in the LC-MS/MS-279	

identified amino acid sequence. The model was built and refined in Coot, Chimera-280	

Isolde as well as Phenix real-space refinement initially with and later without Amber 281	

gradients 66–70. Molprobity validation71 revealed model issues that were resolved by 282	

rebuilding of a single chain into the inverted map with left-handed twist. Five 76-283	

residue long chains in each proto-filament were modeled and refined with non-284	

crystallographic symmetry (NCS) restraints. In the final stages of refinement, we 285	

modeled Proline-66 as cis-isomer to fit the backbone carbonyl into the map, although 286	

a higher resolution is required to discriminate conclusively between cis- and trans-287	

Proline. Phenix, Molprobity and EMDB validation71–73 revealed map-model cross-288	

correlation (CCmask), EM-ringer and Molprobity-score values of 0.74, 5.1 and 1.4, 289	

indicative of a physically valid model with definite map support.  290	

 291	

Data analysis and visualization  292	

Structures and derived data were analyzed and visualized using PyMol and Rstudio 293	

74–79. Molecular contact fingerprints, flexible structural alignments and buried surface 294	

areas as well as dissociation free energies of assemblies were obtained from 295	

Arpeggio, FATCAT and PISA webservers 80–82. Sequences were aligned and 296	

visualized using Uniprot, Blast, ClustalOmega and ESPript 83–86.  297	
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FIGURE LEGENDS 298	

Figure 1. SAA deposits extracted post-mortem from the kidney of a shelter cat 299	

deceased with renal failure  300	

 (A) Abundant interstitial Congo Red-stained amyloid deposits appear orange-red 301	

(asterisks) with green-apple birefringence (arrows) under polarized light. 302	

Magnification 10x. 303	

(B) Immunofluorescent staining of the same kidney slices reveals SAA-positive 304	

sections (red) within large areas covered by Thioflavin-stained amyloids (green). Two 305	

hotspot areas are highlighted using white arrows. Nuclei are colored blue and were 306	

stained using DAPI. Magnification 10x.  307	

(C) Micrograph of negative-stained fibril extracted from the kidney. 308	

See related Figure S1 for tissue slices of liver and spleen. 309	

 310	

  311	
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Figure 2. The 3.3 Å resolution cryo-EM structure of the cat’s SAA fibril  312	

 (A) Cryo-EM image of a single straight fibril with a crossover distance in the 650-313	

700 Å range. The fibril model spans approximately an entire crossover length of 680 314	

Å and was constructed using the deposited model (PDB: 7ZH7) composed of two 315	

proto-filaments (yellow and grey), each assembled by five chains. The map view was 316	

oriented to match the fibril orientation of the averaged 2D class and corresponding 2D 317	

projection of the reconstructed map.  318	

(B) Cross-sectional view of the map volume with contour levels according to the 319	

depicted σ-color scale.  320	

(C) The molecular model of two subunits within a single fibril layer is shown as 321	

cartoon with side chains in yellow and grey. N- and C-terminal positions of each 322	

chain and of the β-arch structure are indicated. A scheme in the lower left corner 323	

depicts the two chains in yellow and grey. 324	

(D) 2D class average corresponding to the orientation of the map shown in panel A. 325	

(E) Side-view of the deposited model comprising five subunits in each protofilament. 326	

The N- and C-terminal tails are tilted by 10° and 15°, respectively, to the central β-327	

arch that lies almost perpendicular to the long axis of the fibril. Cα-positions of Arg-328	

56 were defined as rung levels (i, i±1 and i±2) along the long fibril axis.  329	

See related Figures S2 and S3 for additional 2D classes, projections, map views, 330	

quality indicators and cis-Proline 331	

 332	

  333	
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Figure 3. Staggered ionic locks and hydrophobic clusters stabilize intra- and 334	

inter-protomer interfaces 335	

(Center) In the cross-sectional view the face of the left proto-filament is represented 336	

as molecular surface with aliphatic, positively and negatively charged side chain 337	

atoms in yellow, blue, and red, respectively.  338	

(Left, right) Side chain contacts at the intra- and inter-protomer interfaces are 339	

visualized in separate panels to the left and right, respectively. Hydrophobic and H 340	

bond as well as ionic contacts are shown as yellow and pink semi-transparent heavy 341	

lines. The backbone and side chain atoms of the opposing strands are represented in 342	

mixed cartoon/stick format in white with black outlines. 343	

see related Figure S4 for molecular footprints to illustrate staggered contact modes 344	

 345	

  346	
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Figure 4. cSAA exhibits weak type-2 polymorphism and buries its unique eight-347	

residue insert in an extended inter-protomer interface 348	

(A) Alignment of hSAA, mSAA and cSAA amino acid sequences present in the fibril 349	

core (Uniprot83 entries P0DJI8, P05367 and P19707). Strict sequence identity is 350	

indicated by a red box with white character, similarities within and across groups are 351	

indicated by red characters and blue frames, respectively. For simplicity, numbering 352	

is according to cSAA. The alignment was visualized using ESPript84. Secondary 353	

structure elements of the native human and of the three fibril structures are shown 354	

above and below the sequence alignment, respectively. Secondary structures were 355	

extracted from PDB87 entries 4IP8, 6MST, 6DSO and 7ZH7, respectively. Buried, 356	

partially buried and exposed segments were assigned manually taking into account 357	

accessible surface areas and relative positioning of segments in the fibril. 358	

(B) Cross-section views of human, murine and cat fibrils illustrate the distinct 359	

molecular arrangements of strands and interfaces. Residues are colored according to 360	

the rainbow code in panel A.  361	

(C) Each chain in the human, mouse and cat fibril is not planar, but spans 11, 13.5 and 362	

16.5 Å along the long fibril axis, corresponding to the crossings of about two (human) 363	

or three layers (mouse and cat). One chain per fibril is colored as in panel B, the other 364	

chains are shown as grey ribbons.  365	

See related Figures S5, S6, S7, S8 and S9 for analysis of shared structural elements, 366	

layer level crossing, fibril surfaces, PISA analysis and native SAA structures. 367	

 368	

 369	

  370	
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Figure 5. Cheetah AA amyloid fragment is 97% identical to cat fibril 371	

Sequence alignment of extracted cat and cheetah amyloid (Uniprot P19707 and 372	

B0M1H2) identified in this and a previous study 41. Sequence conservation is based 373	

on a multiple sequence alignment 83,85 comprising the two AA amyloid as well as 374	

eight additional cat and cheetah SAA variants (with Uniprot ids A0A2I2UCY9, 375	

A0A6J2AHC5, A0A337S9A8, A0A337SUS3, A0A6J2AJW0, M3WHE0, 376	

A0A5F5XYT5, A0A337SKP2). Single-residue substitutions of SAA variants are 377	

highlighted on sequence (left) and structure level (right) for fibrils and other reported 378	

variants. Substitution tolerance was estimated based on simple structural 379	

considerations, and coloured in green, yellow and red. cSAA is shown as grey 380	

cartoon, large and small spheres highlight the positions of single-residue substitutions 381	

in fibrils and in other cat as well as cheetah SAA variants, respectively. 382	

 383	

 384	

 385	

 386	
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