

1

2 **Multi-color live-cell STED nanoscopy of mitochondria with a gentle 3 inner membrane stain**

4

5 **Tianyan Liu 1,2,10, Till Stephan 3,4,10, Peng Chen 5,6, Jingting Chen 1, Dietmar Riedel 7, Zhongtian Yang 2, Stefan
6 Jakobs 3,4,8,9, and Zhixing Chen 1,2,5,6***

7

- 8 1. College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key
9 Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
- 10 2. Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing
11 100871, China
- 12 3. Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- 13 4. Clinic of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
- 14 5. PKU-Nanjing Institute of Translational Medicine, Nanjing 211800, China
- 15 6. GenVivo Tech, Nanjing 211800, China
- 16 7. Laboratory of Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- 17 8. Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and
18 Automated Microscopy TNM, Göttingen 37075, Germany
- 19 9. Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC),
20 University of Göttingen, Göttingen 37099, Germany
- 21 10. Equal contribution

22

23 *Corresponding author: Zhixing Chen (zhixingchen@pku.edu.cn)

24 Abstract

25 Capturing mitochondria's intricate and dynamic structure poses a daunting challenge for optical nanoscopy.
26 Different labeling strategies have been demonstrated for live-cell stimulated emission depletion (STED)
27 microscopy of mitochondria, but orthogonal strategies are yet to be established, and image acquisition has
28 suffered either from photodamage to the organelles or from rapid photobleaching. Therefore, live-cell
29 nanoscopy of mitochondria has been largely restricted to 2D single-color recordings of cancer cells. Here,
30 by conjugation of cyclooctatetraene to a benzo-fused cyanine dye, we report a mitochondrial inner-membrane
31 (IM) fluorescent marker, PK Mito Orange (PKMO), featuring efficient STED at 775 nm, strong photostability
32 and markedly reduced phototoxicity. PKMO enables super-resolution recordings of inner-membrane
33 dynamics for extended periods in immortalized mammalian cell lines, primary cells, and organoids.
34 Photostability and reduced phototoxicity of PKMO open the door to live-cell 3D STED nanoscopy of
35 mitochondria for three-dimensional analysis of the convoluted IM. PKMO is optically orthogonal with
36 green and far-red markers allowing multiplexed recordings of mitochondria using commercial STED
37 microscopes. Using multi-color STED, we demonstrate that imaging with PKMO can capture the sub-
38 mitochondrial localization of proteins, or interactions of mitochondria with different cellular components,
39 such as the ER or the cytoskeleton at sub-100 nm resolution. Thereby, this work offers a versatile tool for
40 studying mitochondrial inner-membrane architecture and dynamics in a multiplexed manner.

41 Introduction

42 Mitochondria are the powerhouses of the cell and govern key signaling pathways of cell homeostasis,
43 proliferation, and death (1, 2). Due to their dynamic behavior, and abundant interactions with other organelles,
44 mitochondrial research has been particularly driven by the development of fluorescence microscopy (3).
45 However, the delicate double-membrane structure of mitochondria remains invisible using conventional
46 fluorescence microscopes featuring a resolution limit of roughly 200 nm. Surrounded by a smooth outer
47 membrane, the mitochondrial inner membrane (IM) forms numerous lamellar to tubular cristae, membrane
48 invaginations which enhance the overall surface of the IM (4, 5). Crista junctions (CJs), small pores with a
49 diameter of about 20 nm connect the invaginations to the residual part of the inner membrane and anchor the
50 cristae along the organelle. In most cell types, cristae are densely stacked along the mitochondrial tubules,
51 which can lead to crista-to-crista distances of way below 100 nm (6, 7). Due to this intricate arrangement of
52 the cristae, transmission electron microscopy of fixed specimens remained the only tool to capture the unique
53 mitochondrial membrane architecture for decades. However, coming to the era of super-resolution microscopy,
54 stimulated emission depletion (STED) nanoscopy and structured illumination microscopy (SIM) have become
55 the mainstay of live-cell mitochondrial imaging, with the former offering better spatial resolution of around
56 40-50 nm (3, 8-10) and the latter giving rise to faster imaging recording and longer imaging durations at about
57 100-120 nm resolution (11).

58
59 Like all nanoscopy techniques, STED nanoscopy relies on optimized fluorophores to reach its full potential. In
60 the past several years, a handful of new mitochondrial labels have made possible the first live-cell nanoscopic
61 captures of mitochondrial cristae and revealed their dynamic behavior (6, 12, 13). STED nanoscopy using
62 MitoPB Yellow, Cox8A-SNAP-SiR, or MitoESq 635 all have showcased sub-100 nm resolution imaging of
63 the IM (6, 12, 14). MitoPB Yellow ($\lambda_{\text{ex}} = 488$ nm, $\lambda_{\text{STED}} = 660$ nm) and MitoESq ($\lambda_{\text{ex}} = 633$ nm, $\lambda_{\text{STED}} = 775$
64 nm) are mitochondria-targeting, lipophilic dyes with remarkable photostability for time-lapse recordings.
65 However, the widespread use of these two dyes has so far been prevented by phototoxicity or by the lack of
66 combinability with other STED dyes. A different approach targeted the self-labeling SNAP-tag into the IM for
67 subsequent labeling using the widely available silicone rhodamine dye (SiR, $\lambda_{\text{ex}} = 633$ nm, $\lambda_{\text{STED}} = 775$ nm)
68 (15). Different to the membrane stains, this labeling strategy is generally applicable to the imaging of various
69 mitochondrial proteins (6, 16-18), but it requires transfection or genetic manipulation and usually involves
70 overexpression of the fusion proteins. STED nanoscopy of mitochondria labeled by SiR causes low
71 photodamage (19) but suffers from rapid photobleaching during image acquisition, which strongly restricts the
72 number of recordable frames when used to label cristae (6, 16).

73
74 From a technological point-of-view, the next challenge in nanoscopic live-cell imaging of mitochondrial
75 physiology is to further expand the dimension of information, including long-term time-lapse tracking of
76 mitochondrial dynamics, 3D analysis, and multiplexed imaging of various molecules inside and outside of
77 mitochondria to unveil their interactions. To meet these demands, the next generation mitochondrial marker
78 should feature: 1. Simple and robust protocol of highlighting mitochondrial structures in various cells and
79 tissues; 2. High brightness and photostability, compatibility with a 775 nm STED laser which is available at
80 most commercial STED microscopes, and compatibility with popular orthogonal nanoscopy dyes such as SiR
81 for multi-color analysis; 3. Reduced phototoxicity to retain the integrity of mitochondria even under strong
82 illumination.

83
84 As nanoscopy techniques generally require higher light doses to squeeze additional spatial and temporal

85 information, photodamage and photobleaching can become a pronounced yet often under-evaluated technical
86 hurdle for analyzing 4D physiology (19-21). We previously demonstrated that cyanine-cyclooctatetraene (COT)
87 conjugates are gentle mitochondrial markers which allow extended time-lapse confocal and SIM imaging (22).
88 Here, by adapting this class of labels for diffraction-unlimited STED nanoscopy we aim to provide a general
89 and gentle tool that allows to embrace the era of 4D nanoscopy in mitochondrial imaging. We introduce PK
90 Mito Orange (PKMO), an orange-emitting inner-membrane stain with minimal phototoxicity. PKMO is
91 photostable and well-tailored for nearly all commercial STED microscopes. The cyclooctatetraene conjugated
92 to PKMO depopulates its triplet state, markedly reducing the photodynamic damage during STED imaging.
93 We demonstrate single-color time-lapse STED recordings of mitochondrial dynamics over the time course of
94 several minutes and over 30 frames as well as 3D STED recordings of live mitochondria in cultivated cells.
95 We demonstrate that PKMO can be combined with widely used fluorescent labels, enabling simultaneous
96 localization of cristae along with mitochondrial protein complexes, mitochondrial DNA (mtDNA) or cellular
97 organelles like the ER using multi-color nanoscopy. By resolving different cristae morphologies in living cells,
98 we demonstrate that PKMO can pave the way for nanoscopy-based chemical and genetic screenings on
99 mitochondria. Thereby, PKMO, in conjunction with other dyes for nanoscopy, will compose a palette which
100 can complement classic transmission EM recordings used to investigate mitochondrial morphology and
101 submitochondrial organization.

102 Results

103 **PKMO is an orange-emitting cyanine-COT conjugate that stains the mitochondrial inner membrane.**

104 In our previous work, we introduced the two mitochondrial probes PK Mito Red (PKMR) and PK Mito Deep
105 Red (PKMDR) which showcased low phototoxicity due to the use of the COT-conjugating strategy (22).
106 PKMDR features an emission spectrum compatible with the more common 775-nm STED depletion, but the
107 Cyanine 5 (Cy5) scaffold of PKMDR is prone to photobleaching compared to Cyanine 3 (Cy3) (23), giving
108 only ~ 10 informative STED frames (*SI Appendix*, Fig. S1). In addition, PKMDR cannot be combined with
109 popular live-cell compatible STED labels such as SiR due to overlapping emission spectra. To overcome this
110 problem, we conjugated COT to Cy3.5 introducing the orange-emitting mitochondrial probe PKMO, which is
111 photostable, well-suited for use with 775-nm STED lasers, and enables multicolor super-resolution (SR)
112 imaging combined with green and far-red emitting probes. The chemical structures of PKMO and its analogue
113 without COT, PKMO 0.9, are shown in Fig. 1a. Notably, these molecules feature a straightforward chemistry
114 (< 7 steps from commercial material, see *SI Appendix* for detail), facilitating their large-scale production. The
115 absorption and emission spectra of PKMO (Fig. 1b) demonstrate that the dye is tailored for STED nanoscopy
116 using 561 nm excitation and a 775 nm depletion, a configuration implemented in most commercially available
117 STED microscopes. Among the popular orange-red dyes, PKMO exhibited very good photostability in
118 hydrophobic PMMA film (*SI Appendix*, Fig. S2). Moreover, PKMO led to significantly reduced singlet oxygen
119 generation *in vitro* compared to PKMO 0.9 or TMRE as measured by the 1,3-diphenylisobenzofuran (DPBF)
120 decay assay (24) under green LED illumination (50 mW/cm² 520-530 nm) (Fig. 1c and *SI Appendix*, Fig. S2)
121 (25). The absolute singlet oxygen quantum yield of PKMO was measured as $1.7 \pm 0.1 \times 10^{-3}$, which is ~ 4 fold
122 lower than that of PKMO 0.9 ($6.7 \pm 0.5 \times 10^{-3}$). These data corroborate previous results with Cy3/Cy5 (22, 26),
123 suggesting that phototoxicity and photostability are two related yet different properties of fluorophores in the
124 excited state and hinting to a generally reduced phototoxicity of the COT-conjugate PK Mito dyes. To assess
125 phototoxicity at the cellular level, we labeled live HeLa cells with 1 μ M PKMO or 0.65 μ M PKMO 0.9 (to
126 achieve the same staining brightness, *SI Appendix*, Fig. S3) and illuminated the cells for different periods in a
127 high-content imager before assessing apoptosis using a Calcein AM stain. The half-lethal light dose for cells

128 stained with PKMO 0.9 was reached after ~ 10-min illumination, whereas for PKMO the dose was reached
129 after 20-25 min, supporting the notion that the COT-conjugation significantly reduces cellular photodamage
130 induced by long-term illumination.

131

132

133 **Long-term time-lapse recording and 3D-STED imaging of cristae with PKMO.**

134 To test the application of PKMO in super-resolution imaging, we stained COS-7 cells using 250 nM PKMO,
135 resulting in brightly fluorescent mitochondrial network. PKMO showed excellent performance when recorded
136 with a commercial STED nanoscope (Facility Line and STEDYCON, Abberior Instruments) equipped with
137 561 nm excitation and 775 nm depletion lasers, and like PKMR, the lipophilic and cationic PMKO specifically
138 accumulated in the IM of mitochondria. We were able to record the mitochondrial networks across entire COS-
139 7 cells and to capture individual mitochondrial cristae (Fig. 2a) at an optical resolution of down to 50 nm. (*SI*
140 *Appendix*, Fig. S4). STED recordings revealed that mitochondria in COS-7 cells featured a highly ordered
141 lamellar cristae architecture across the entire mitochondrial network (Fig. 2a and b). We measured the cristae-
142 to-cristae distance from a selected area in Fig 2b and found distances of around 100 nm between closely spaced
143 cristae (Fig 2c and *SI Appendix*, Fig S5).

144

145 In general, a limiting factor of live-cell STED imaging of mitochondria seems to be dye-induced phototoxicity
146 since the fluorescence signals enriched in cristae membranes tend to decrease and can leak into the cytoplasm,
147 accompanied by drop of mitochondrial membrane potential (MMP), when the cells are exposed to high light
148 intensities (27). Indeed, COS-7 cells stained with PKMO 0.9 showed drastic mitochondrial swelling,
149 accompanied by diffusion of the fluorescence signal after very few recorded frames (Fig. 2d). In contrast, the
150 COT-conjugated counterpart, PKMO, enabled time-lapse STED recordings of cristae for 30 - 50 frames (Fig.
151 2d and *SI Appendix*, Fig. S6) before the onset of prohibitive photobleaching. The bottleneck of imaging PKMO
152 in the STED mode was typically the eventual photobleaching, by which time the mitochondrial morphology
153 still remained in shape. We conclude that because of reduced phototoxicity, mitochondria labeled by PKMO
154 maintained a relatively healthy and intact morphology over the course of several minutes, showing
155 mitochondrial dynamics including tubulation, fusion, and fissions (Fig. 2e, f).

156

157 The excellent 2D STED performance of PKMO encouraged us to test 3D STED nanoscopy of live COS-7 cells.
158 Live-cell 3D STED nanoscopy is challenging due to several different limitations such as photobleaching of
159 probes or rapid mobility of live mitochondria. Most importantly, phototoxicity effects accumulate by repeated
160 scanning during Z-stacking, causing continuous swelling artifacts. Nevertheless, the gentle nature of PKMO
161 allowed us to record the three-dimensional cristae architecture in mitochondria of a live COS-7 cell, at sub100-
162 nm resolution using a 3D STED PSF. (Fig. 3a-b and *SI Appendix*, Fig. S7). Intriguingly, orthogonal cross
163 sections revealed densely stacked and strongly tilted cristae in the YZ section and hollow sections of
164 mitochondria in the XZ section. Thereby, the data show the first three-dimensional mapping of cristae in live
165 mitochondria, demonstrating that 3D STED can resolve complicated cristae arrangements, which would be
166 barely visible using 2D nanoscopy.

167 **PKMO is a versatile cristae marker in various cell lines, primary cells, and organoids**

168 In contrast to labeling strategies based on fluorescent proteins or self-labeling tags, PKMO spontaneously
169 accumulates inside the IM of mitochondria. This behavior of the fluorophore should enable convenient
170 mitochondrial labeling in various cell lines and tissues using a simple labeling protocol. So far, live-cell super-
171 resolution microscopy of mitochondria has only been demonstrated in cultivated cancer cells, such as HeLa
172 cells or COS-7 cells (6, 11, 12, 14, 16, 17, 22, 27-30), which feature relatively thick mitochondria and well-
173 ordered lamellar cristae. We evaluated the performance of PKMO across other immortalized cell lines, namely
174 HeLa cells and U-2 OS cells. As expected, both cell lines showed excellent PKMO staining and good STED
175 performance (Fig. 4a, b). Cristae spacing in HeLa and U-2 OS cells was measured as 127 ± 33 nm (*SI Appendix*,
176 Fig. S8) and 89 ± 22 nm (*SI Appendix*, Fig. S9), comparable with that in COS-7 cells (90 ± 24 nm, *SI Appendix*,
177 Fig. S5). Moreover, STED recordings revealed that mitochondria in U-2 OS cells were generally more
178 elongated and thinner than those in HeLa cells. The overall cristae arrangements appeared to be less regular
179 compared to the striking lamellar cristae in COS-7 and HeLa cells (Fig. 2a and Fig. 4a).

180

181 Encouraged by its performance on immortal cell lines, we next aimed to test super-resolution mitochondrial
182 imaging of primary cells and tissues labeled with our low-phototoxic probe PKMO (Fig. 4c-e). In primary
183 brown adipocytes (pBacs), PKMO delivered bright fluorescent labeling and STED nanoscopy recordings
184 revealed a lamellar cristae architecture with dense cristae spacing of 63 ± 14 nm (*SI Appendix*, Fig. S10 and
185 Table S1). Remarkably, we were also able to follow the dynamic behavior of cristae in pBacs using time-lapse
186 STED nanoscopy, suggesting that PKMO could be a promising tool to support the investigation of crista
187 dynamics (Fig. 4c and *SI Appendix*, Fig. S10 and S11). We further tested PKMO in live mouse hippocampal
188 neurons for mitochondrial labeling and cristae imaging (Fig. 4d and *SI Appendix*, Fig. S12). Mitochondria were
189 clearly labeled in the cell bodies, axons, and dendrites (Fig. 4d, left panel), and STED imaging revealed dense
190 cristae spacing at 62 ± 20 nm (*SI Appendix*, Fig. S13 and Table S1). Similarly, PKMO highlighted the fibrillar
191 mitochondrial networks in rat cardiomyocytes (CMs) (*SI Appendix*, Fig. S14). However, STED nanoscopy was
192 not able to visualize the cristae along the mitochondria of these cells. We attribute this to the intrinsic dense
193 packing of cristae in CMs ($\sim 20 - 30$ nm spacing according to electron microscopy (7) which is beyond the
194 practical resolution of current commercial STED machines). Nonetheless, PKMO gave quantitative
195 information on the cristae arrangement of various cells (Fig. 4f and *SI Appendix*, Table S1), circumventing
196 time-consuming protocols of EM (13) and the potential sample distortion during chemical fixation (31).
197 Strikingly, PKMO worked well also in primary tissues, as demonstrated on isolated mouse islet tissue (Fig. 4e).
198 The confocal overview shown in Figure 4e (left panel) shows isolated islet tissue. Beta-cells expressing a
199 genetically-encoded calcium sensor (Ins-GCaMP6f) are labeled in green, whereas the mitochondria of all cells
200 within the islet tissue are labeled in magenta. Using 2D STED nanoscopy (Fig. 4e, right panel) we were able
201 to capture the distinct lamellar cristae pattern in mitochondria from different cells within the islet tissue.

202

203 Together, these data demonstrate that PKMO allows a broad range of applications and can be used for
204 convenient labeling of mitochondria across different cultivated cancer cells, isolated primary cells, and even
205 to capture mitochondrial architecture in isolated tissues. We note, however, that super-resolution imaging of
206 live primary cells remains challenging. First, many primary cells are often three-dimensional and small in size
207 and have thinner and elongated mitochondria, which complicates super-resolution imaging. Second, labeling
208 conditions need to be precisely adapted for different cell types. Third, primary cells are inherently fragile and
209 tended to be more susceptible to photodamage compared to cancer cells. Especially in neurons mitochondria
210 rapidly developed signs of significant and irreversible damage (*SI Appendix*, Fig. S12), which inevitably
211 compressed the dynamic information to some extent. These challenges, in turn, underscore the importance of
212 biocompatibility in the development of probes for nanoscopy (19-21).

213

214 **PKMO is compatible with various live-cell dyes and self-labeling tags for multiplexed recording.**

215 The double-membrane architecture of mitochondria creates different mitochondrial sub-compartments, which
216 serve different purposes (Fig. 5a). Traditionally, biochemical analysis or electron microscopy have been used
217 to analyze the submitochondrial localization of proteins. Multicolor nanoscopy has the potential to target the
218 localization of biomolecules in live cells. PKMO is precisely designed for an application in multicolor
219 nanoscopy due to its peak emission in the orange part of the spectrum. Excitation at 561 nm wavelength and
220 depletion at 775 nm allows to combine PKMO with green fluorophores, which can be recorded in the confocal
221 mode, or with a wide palette of deep-red fluorophores for dual-color STED nanoscopy. We tested the multi-
222 color performance of PKMO in HeLa and COS-7 cells labeled with different transfection-free fluorescent
223 probes or expressing fusion constructs with the self-labeling SNAP-tag or HaloTag (for an overview of labeling
224 strategies, see Fig. 5a).

225

226 ***PKMO allows analyzing submitochondrial compartments.***

227 The mitochondrial DNA (mtDNA) is packed into nucleoids, which are located within the matrix of the
228 organelle. In order to localize the mtDNA across the mitochondrial network of HeLa cells, we stained the cells
229 with PKMO and the dsDNA-binding green-emitting probe PicoGreen. This allowed us to capture the spatial
230 organization of the mtDNA (λ_{ex} 488nm, confocal) alongside the cristae (λ_{ex} 561 nm, λ_{STED} 775 nm) over the
231 time course of several minutes (Fig. 5b and *SI Appendix*, Fig. S15). During this time, we observed significant
232 remodeling of individual cristae and the overall mitochondrial network, but we found that the mtDNA remained
233 trapped within the larger voids between groups of densely stacked cristae, suggesting that lamellar cristae
234 generally act as diffusion barriers, which can separate different nucleoids (6).

235

236 Next, we aimed at a nanoscopic differentiation of the mitochondrial OM, IM and the CJs using dual-color live-
237 cell STED nanoscopy. To this end, we expressed the OM protein TOM20 and the CJ marker MIC10 fused to
238 the HaloTag and SNAP-tag, respectively. We stained the cells with PKMO and the deep-red fluorophores 647-
239 SiR-CA or SNAP-Cell 647-SiR (15). Both PKMO (λ_{ex} 561 nm) and SiR (λ_{ex} 640 nm) are efficiently depleted
240 using the 775 nm STED wavelength implemented in most STED microscopes. As expected, using dual-color
241 live-cell STED nanoscopy, we were able to resolve the mitochondrial OM surrounding the PKMO-enriched
242 IM using 2D STED as well as using 3D STED (Fig. 5c-d and *SI Appendix*, Fig. S16 and S17). Similarly, we
243 were able to highlight the individual CJs alongside the cristae and to capture their dynamic movements over a
244 few frames (Fig 5e and *SI Appendix*, Fig. S16). Thereby, the data demonstrate that combining PKMO with
245 self-labeling tags and SiR, multi-color live-cell STED can help to analyze the sub-mitochondrial localization
246 of different biomolecules, a task that is traditionally done using technically more demanding immunogold
247 transmission electron microscopy (32). In contrast, STED manages to deliver similar information in living
248 cells and does not require extensive sample preparation. Moreover, the approach allows drawing some
249 information about the dynamics of the involved structures and biomolecules. However, we note that dual-color
250 STED typically reduced the number of recordable frames compared to single-color recordings, which is mainly
251 due to rapid photobleaching of SiR and occasionally because of enhanced photodamage (*SI Appendix*, Fig.
252 S15-S16).

253

254 ***PKMO allows analyzing mito-organelle interactions.***

255 Mitochondria form a highly dynamic and interconnected tubular network that pervades the entire cytosol and
256 features contact sites with different cellular structures. Especially important are interactions of mitochondria
257 with the endoplasmic reticulum (ER). ER-mito contact sites are not only essential for the transport of lipids
258 between both organelles (33, 34), but also for the overall dynamics of the mitochondrial network as they
259 control fusion and fission of mitochondrial tubules (35-38). Importantly, ER-mito contacts have been
260 considered increasingly important in the development of neurological disease in recent years (39). Similarly

261 important for proper cellular function are interactions of mitochondria with the tubulin cytoskeleton, which
262 determines the transport of the mitochondria (40). Therefore, an important aspect of future live-cell super-
263 resolution microscopy studies will be high-resolution analysis of such interactions between mitochondria and
264 cellular structures. To test the performance of PKMO in such scenarios, we labeled HeLa cells for the tubulin-
265 cytoskeleton using the biocompatible fluorescent probe 4-610-CP-CTX (41) or for the ER by overexpressing
266 Halo-KDEL (stained with 647-SiR-CA). Cells were co-labeled with PKMO and analyzed by live-cell dual-color
267 STED nanoscopy. This approach allowed us to capture the tight spatial arrangement of mitochondria and the
268 cytoskeleton at high spatial resolution (Fig. 5f). In addition, we could follow the interaction of the
269 mitochondrial tubules with the ER over the time course of several minutes (Fig. 5g and *SI Appendix*, Fig. S18).

270
271 Taken together, live-cell STED nanoscopy of mitochondria labeled with PKMO allows rapid analysis of the
272 sub-mitochondrial distribution of biomolecules and facilitates the recordings of dynamic interactions between
273 mitochondria and other cellular structures.

274
275 **PKMO paves the way for a nanoscopic screening of the cristae architecture in living cells**
276 The unique structure of the mitochondrial IM is inextricably linked to the functionality of mitochondria as the
277 powerhouses of the cells. Defects of the cristae architecture cause malfunction of cellular respiration and are
278 associated with neurodegenerative or cardiac diseases (42). Mutations or complete loss of proteins that control
279 cristae morphology cause drastic remodeling of the cristae architecture (43-46). Traditionally, such changes of
280 the cristae architecture have been analyzed using transmission electron microscopy of ultrathin sections of
281 fixed cells. PKMO as a universal mitochondrial inner membrane marker that imposes little phototoxicity opens
282 the door to perform such analysis also in living cells. As an example, we show cells that have been genetically
283 modified using CRISPR-Cas9 to silence the genes of MIC10 or MIC60, core subunits of the mitochondrial
284 contact site and cristae organizing system (MICOS) that controls CJ formation. We labeled these cells with
285 PKMO and PicoGreen and recorded them using 2D live-cell STED. STED recordings clearly showed that all
286 three cell lines feature distinct cristae phenotypes (Fig. 6a-c). Whereas wildtype HeLa cells showed highly
287 ordered lamellar cristae (Fig. 6a), the cristae appeared as single- or double-layered tubes that lined the
288 mitochondrial interior in the absence of MIC10 (Fig. 6b). This phenotype is caused by a reduction in the
289 number of CJs and by a defective segmentation of the IM into individual cristae (17). MIC60 depleted HeLa
290 cells showed a different phenotype (Fig. 6c). The mitochondrial network of these cells was largely fragmented,
291 and the large spherical mitochondria accumulated multiple layers of cristae, since MIC60 depletion causes
292 virtually a complete disruption of CJs (16, 17). Transmission EM recordings of the same cell lines (Fig. 6a-c)
293 demonstrated that live-cell STED delivers similar information regarding the overall cristae arrangements like
294 the electron microscopy recordings of resin-embedded samples. In addition, multi-color recordings allowed
295 drawing additional information that are barely extractable from EM recordings. Our recordings showed that
296 MICOS-depleted mitochondria do not only feature disturbed cristae, but also feature an aberrant distribution
297 of the mtDNA, which can accumulate into large aggregates (Fig. 6b-c).

298 Our data demonstrate that PKMO can be used to analyze changes of the overall cristae architecture in live
299 cultivated cells. If combined with automated imaging, this will open the door to a high throughput screening
300 of compounds or siRNA libraries to conveniently analyze the impact of substances or proteins on the overall
301 cristae morphology.

302 **Discussion and conclusion**

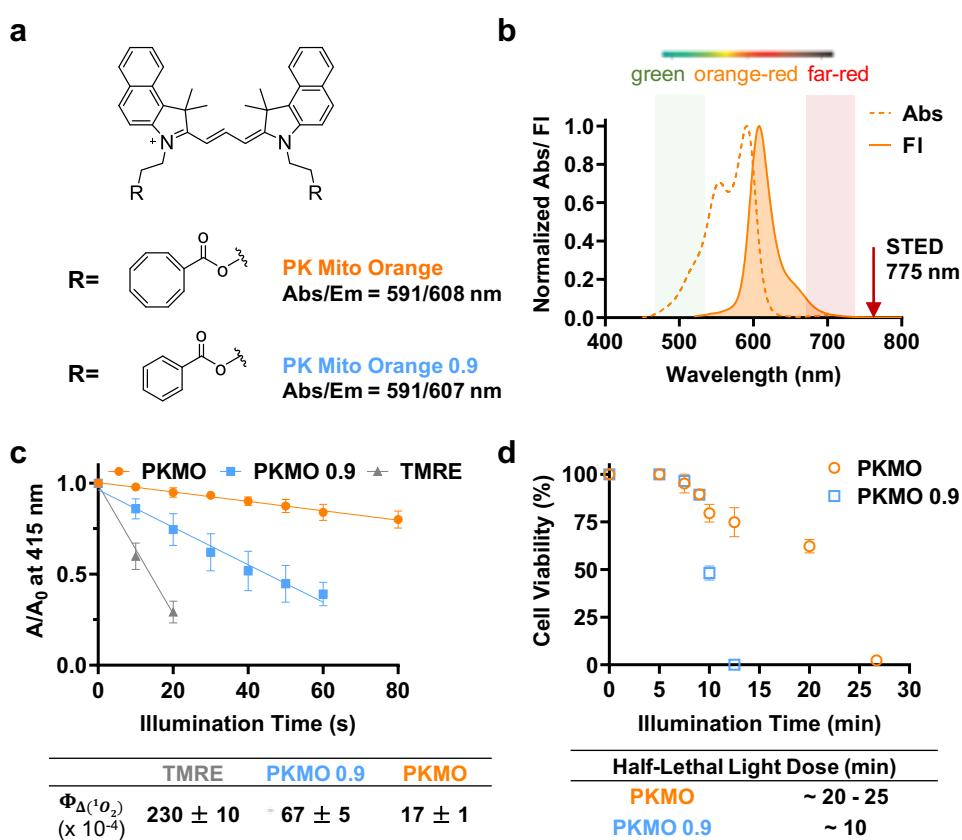
303 Here we introduced PK Mito Orange (PKMO), a bright and versatile mitochondrial inner membrane stain with

304 remarkably low phototoxicity that is tailored for multi-color STED imaging. From the perspective of probe
305 development, the conceptual advance of this work lies in the introduction of triplet-state depleted dyes (47,
306 48) into STED nanoscopy to minimize photodamage. Phototoxicity has long been regarded as an important
307 parameter in bioimaging practice and is often considered as a main hurdle of live-cell STED microscopy but
308 approaches to chemically alleviate it were falling disproportionately short. This work showcased that a
309 judiciously engineered mitochondrial stain can be gentle enough to allow ~20 z-stacks in a live cell for
310 reconstructing cristae in 3D, opening future possibilities for the analysis of mitochondria. We thereby
311 recapitulate the importance of assessing the phototoxicity of imaging probes, especially for nanoscopy(19, 20).
312

313 PKMO represents a timely addition to the toolbox of mitochondrial research using nanoscopic imaging. Its
314 green excitation and orange-red emission profile are orthogonal with green dyes/FPs and the SiR-based far-red
315 dyes, allowing unprecedented multiplexed nanoscopic recording of mitochondria-related processes in live cells.
316 While GFP-based probes and sensors dominate diffraction-limited fluorescence microscopy techniques, the
317 emerging red and far-red organic dyes, in conjunction with self-labeling protein tags, often outperform
318 fluorescent proteins in nanoscopy due to superior optical properties (49, 50). The compatibility of PKMO with
319 established dyes, the simple labeling protocol, the broad scope across different samples, and its compatibility
320 with commercial STED microscopes promise to bring mitochondrial studies to the era of 3D nanoscopy. Crista
321 dynamics, organelle interactions, and mitochondrial morphologies in genetically manipulated cells and even
322 tissues can be examined in a multiplexed manner at unprecedented resolutions for long durations. Overall, this
323 work opens exciting opportunities for mitochondria-related physiological and pathological research. We
324 foresee that PKMO, as well as the other dyes of the mitochondrial palette in this work, will inspire additional
325 methodologies ranging from probes, and algorithms, to instrumentations and will take part in various
326 nanoscopic imaging practices in the era of 4D cellular physiology.

327 Acknowledgements

328 This project was supported by funds from the Beijing Municipal Science & Technology Commission (Project:
329 Z211100003321004 to Z.C.), Beijing Youth Top-Notch Talent Group (Project: 7350500012 to Z.C.), the
330 Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through TRR 274/1 (2020) –
331 ID408885537 (to S.J.), and the European Research Council through ERCAdG No. 835102 (to S.J.). We thank
332 the Optofem Technology Limited for providing the instrument demonstrations of Abberior FACILITY and
333 STEDYCON nanoscopes at Peking University. We thank Zhiwei He and Prof. Li Zhao for primary
334 hippocampal neurons, Xuejiao Song and Prof. Xianhua Wang for adipocytes, Shiyan Tong and Prof. Liangyi
335 Chen for islet tissues, Yingna Guo and Prof. Shiqiang Wang for cardiomyocytes, Junsheng Yang for helpful
336 discussions on image processing, and Jan Keller-Findeisen for support with data analysis. We thank Gražvydas
337 Lukinavičius for providing fluorescent probes and careful reading of the manuscript. We thank the analytical
338 instrumentation center of Peking University and the NMR facility and optical imaging facility of the National
339 Center for Protein Sciences at Peking University for assistance with data acquisition.


340 Conflicts of interest

341 Z.C. is an inventor of the patent on the mitochondria dye described in this work (CN 202010492298.8). The
342 patent was applied through Peking University and is currently transferred to Genvivo Tech (in which Z.C. is a
343 shareholder) for commercialization.

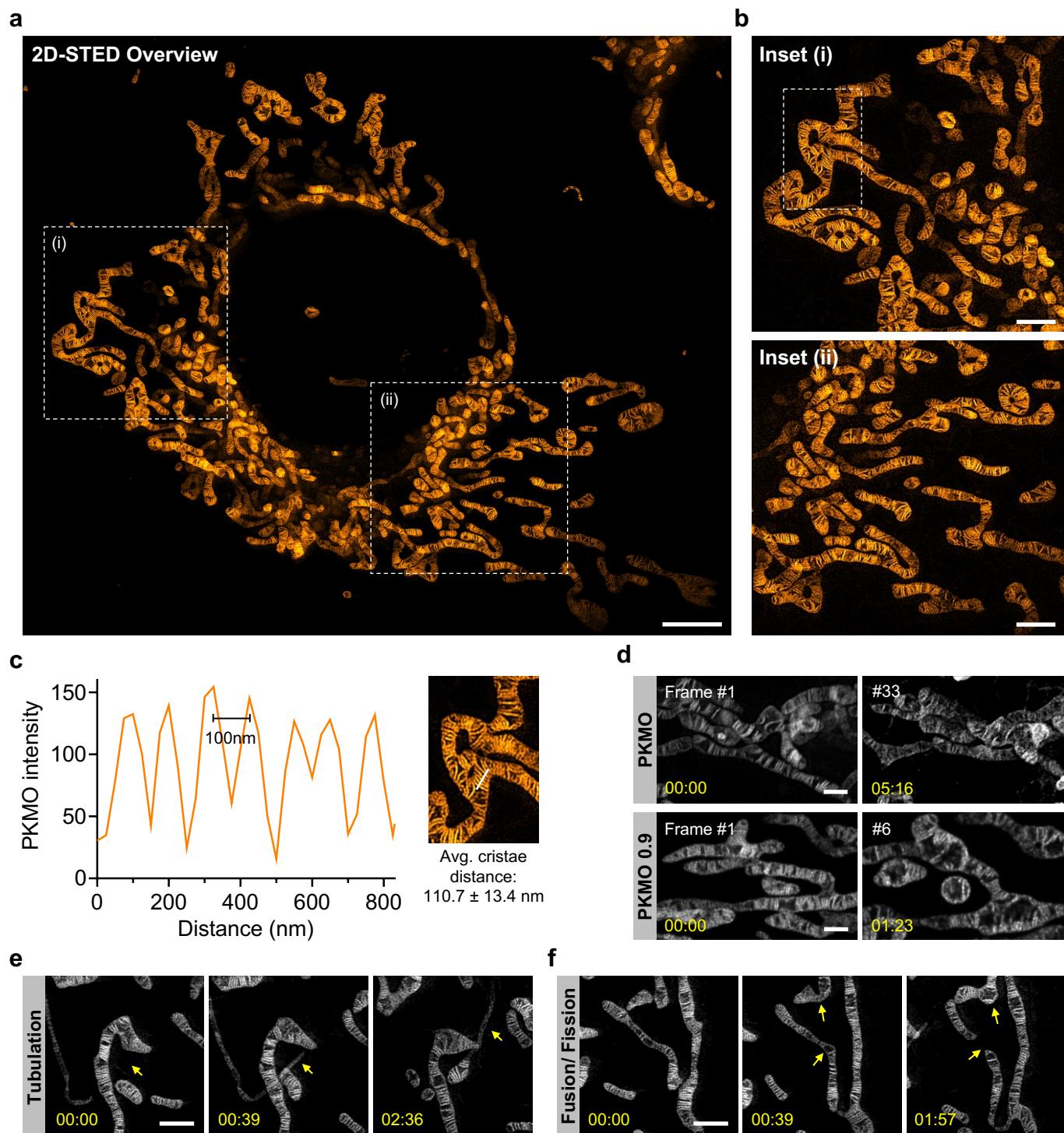
344 Author contributions

345 Z.C. conceived the project and designed mitochondrial probes. Z.C., S.J., T.L., T.S. designed research. T.L.,
346 J.C and Z.Y. performed spectroscopy measurements, phototoxicity assays and STED microscopy of COS-7
347 cells, primary cells and tissues. T.S. performed STED imaging of HeLa and U-2 OS cells. P.C. performed
348 chemical synthesis and characterizations. D.R. performed electron microscopy. T.L., T.S., S.J, and Z.C.
349 analyzed data. T.L., T.S., and Z.C. wrote the paper with comments from all authors.

350 Figures

351

352


353 **Figure 1. PK Mito Orange is a cyclooctatetraene-conjugated Cy3.5, featuring excellent photostability and remarkably**
354 **low singlet oxygen generation.**

355 a. Chemical structures of PK Mito Orange and a benzoate-derived control compound.

356 b. Absorption and fluorescence spectra of PK Mito Orange (PKMO) dwell in orange-red channel. The fluorescence can
357 be potentially depleted using a 775-nm laser.

358 c. Singlet oxygen quantum yields of PKMO and PKMO 0.9 measured using 1,3-diphenylisobenzofuran (DPBF) decay
359 assay in acetonitrile. TMRE in MeOH ($\Phi_{\Delta} = 0.012$) was selected as a standard.

360 d. Viability of PKMO (1 μ M) and PKMO 0.9 (650 nM) stained HeLa cells after green LED light illumination (543-nm,
361 2.6 W/cm²). > 500 cells were examined in each time point of the three independent experiments.

362
363 **Figure 2. PKMO enables long time-lapse nanoscopic recording of mitochondrial cristae in COS-7 cells with minimal
364 phototoxicity.**

365 a. 2D-STED recording of mitochondrial cristae of a COS-7 cell labeled with PKMO. Scale bar = 10 μ m.

366 b. Zoomed-in images of the white boxed areas (i, ii) in the a; the upper image is in (i), and the lower image is in (ii).

367 c. Fluorescence intensity line profiles measured as indicated in the magnified view of white boxed area in the b.

368 d. Time-lapse recordings of live COS-7 cell labeled with PKMO and PKMO 0.9; PKMO maintained both fluorescent
369 signal and mitochondrial morphology during 30-frames of STED recording, while PKMO 0.9 caused visible
370 mitochondrial swelling after 10 frames.

371 e. Time-lapse STED nanoscopy recordings highlighting mitochondrial tubulation. Scale bar = 1 μ m.

372 f. Time-lapse STED nanoscopy recordings highlighting mitochondrial network dynamics such as fusion and fission.
373 Scale bar = 1 μ m.

374

All the image data were deconvoluted and corrected for photobleaching.

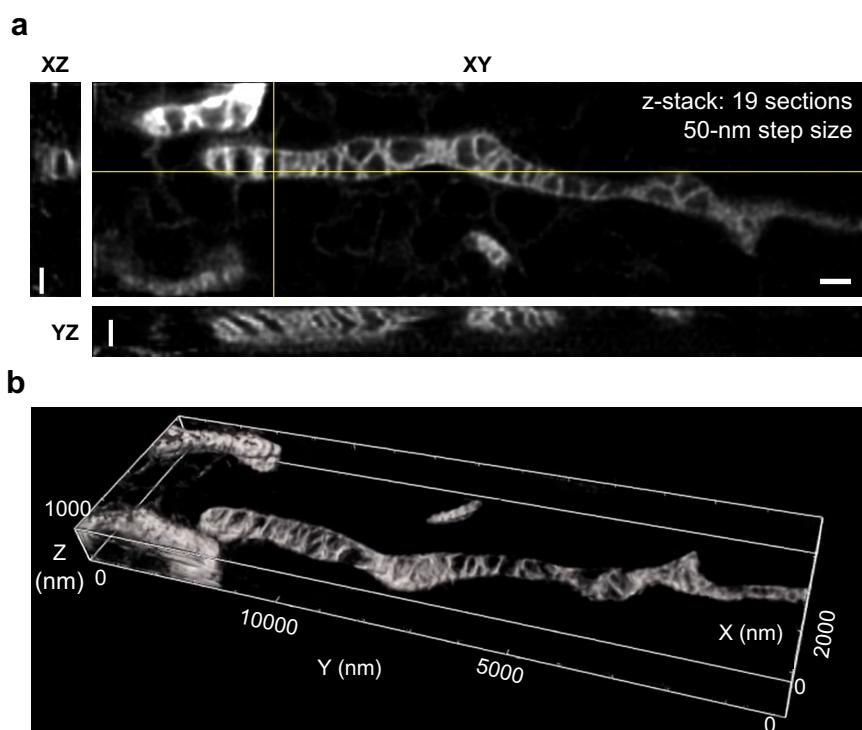
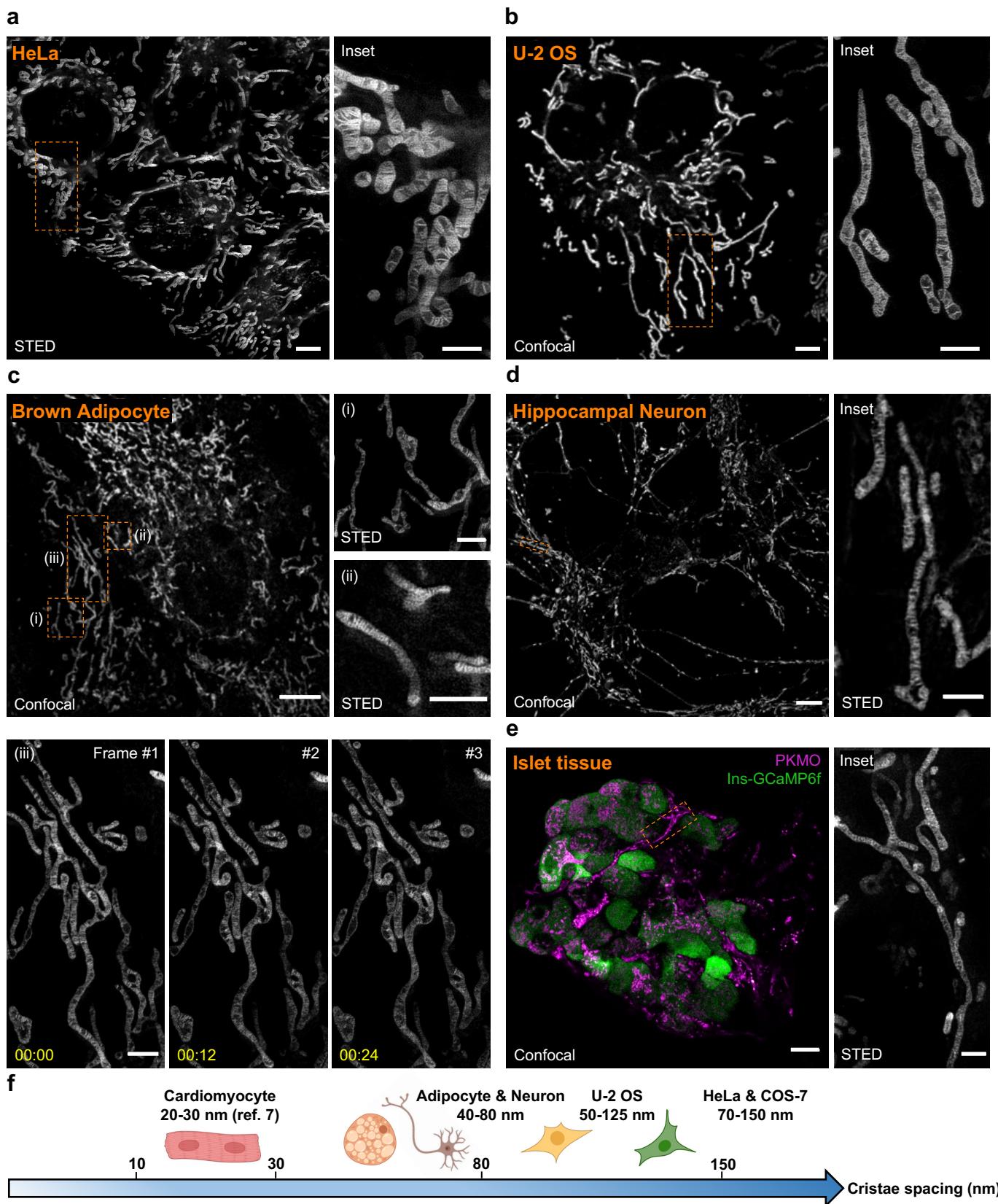


Figure 3. 3D-STED imaging and reconstruction of cristae in COS-7 cells labeled with PKMO.

a.-b. 3D live-cell STED recording of a mitochondrion from a COS-7 cell labeled with PKMO.

a. Orthogonal cross-sections through 3D STED recordings. Scale bars: 500 nm.


b. 3D reconstruction/ volume rendering of 3D STED data (Imaris).

375

376

277

577

381 **Figure 4. PKMO as a general mitochondrial cristae probe enables STED recordings on different cell lines, primary**

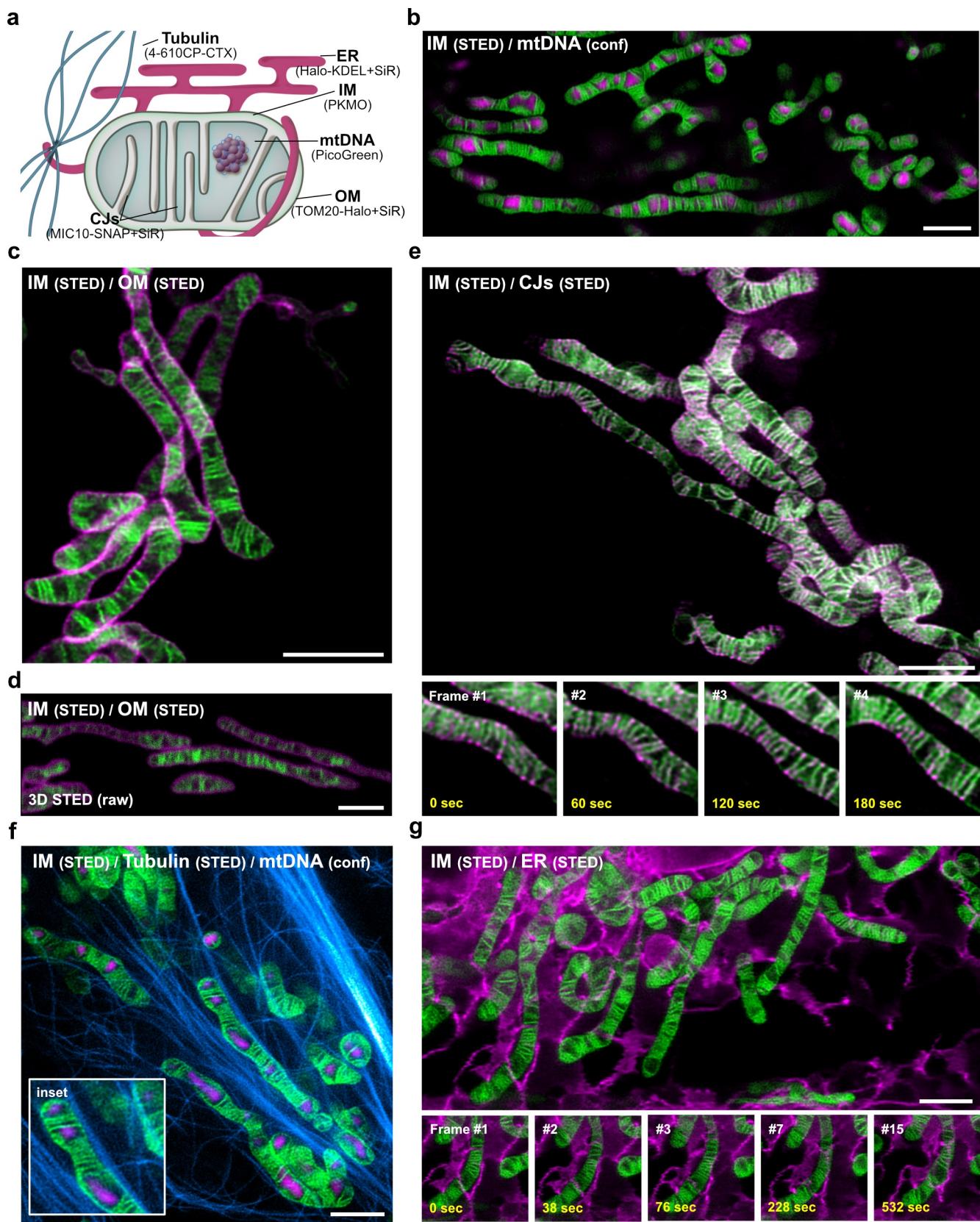
382 **cells, and tissue.**

383 a. STED overview images (left) of live HeLa cells labeled with PKMO and zoom-in view (right) of the orange boxed

384 area. Scale bar: overviews 5 μm, insets 2 μm.

385 b. Confocal image of mitochondria labeled with PKMO in U-2 OS cell and zoom-in view of the dashed boxes in STED

386 mode. Scale bar: overviews 5 μm, insets 2 μm.


387 c. STED images of mitochondria labeled with PKMO in primary brown adipose cells (pBacs). Confocal images of the
388 mitochondria of pBac and zoomed-in views or time-lapse recordings of the corresponding dashed boxes (i, ii, iii) in
389 the overview. Scale bar: overviews 5 μ m, insets 1 μ m.

390 d. Confocal image of mitochondria labeled with PKMO in primary hippocampal neurons (left) and zoom-in image of
391 the dendrite in the boxed region is shown on the right. Scale bar: overviews 5 μ m, insets 2 μ m.

392 e. Dual-color confocal image (left) of mitochondria (magenta, PKMO) and beta cells (green, Ins-GCaMP6f) in the
393 primary islet tissue and zoomed-in STED images (right) of the corresponding orange boxed region (i, ii). Scale bar:
394 overviews 5 μ m, insets 1 μ m.

395 f. Cristae spacing ruler of various primary cells such as cardiomyocytes, adipocytes, and hippocampal neurons and cell
396 lines such as U-2OS, HeLa, and COS-7.

397 All STED data were deconvoluted and corrected for photobleaching.

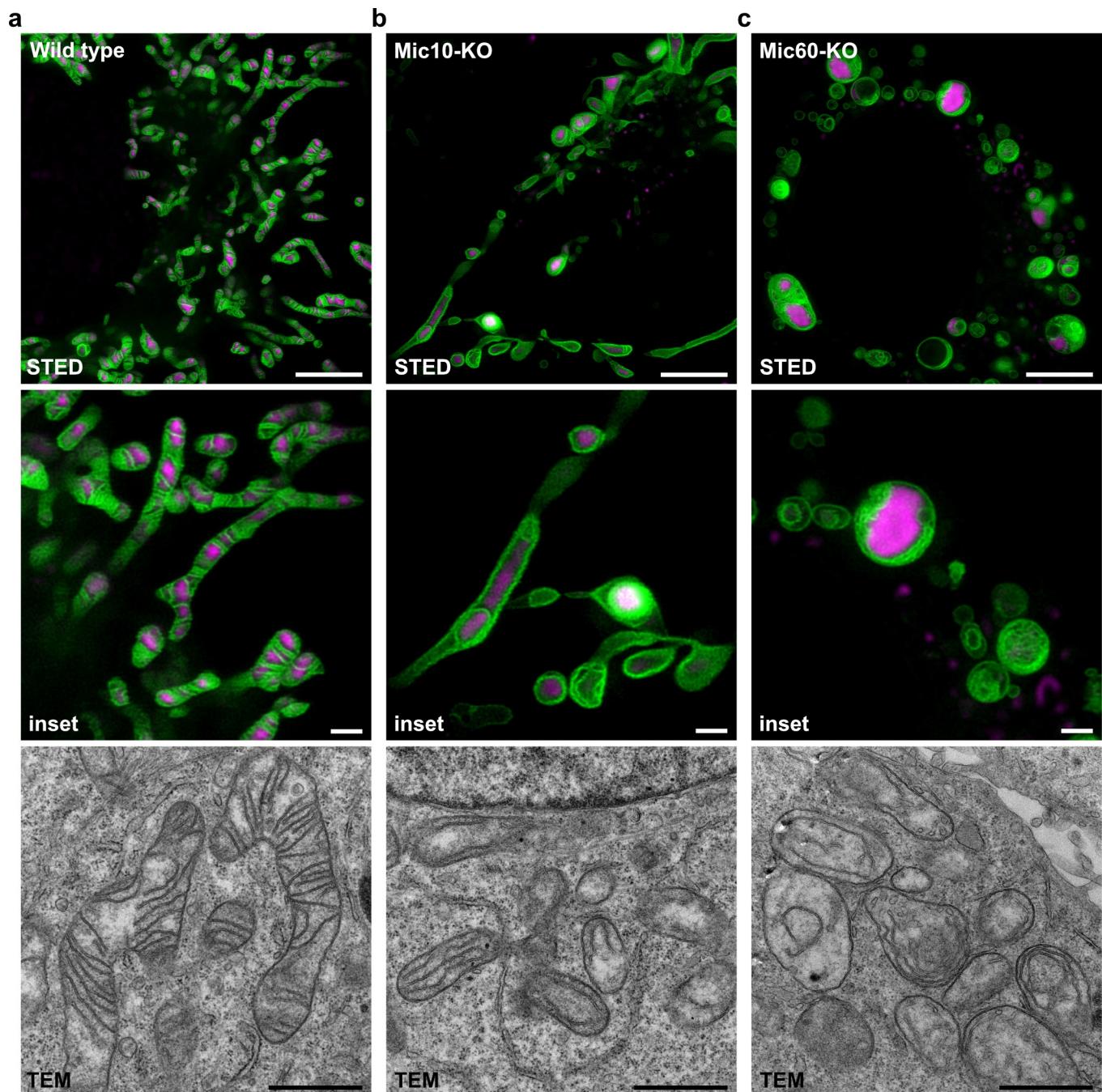
399 **Figure 5. PKMO in conjunction with fluorogenic rhodamine probes enables nanoscopic mapping of mitochondria and**
400 **the analysis of mito-organelle interactions using multi-color STED nanoscopy.**

401 a. Labeling strategies for multi-color live-cell recordings of mitochondria. Cartoon demonstrating the labeling strategies
402 for mitochondrial sub-compartments and for mitochondria-interacting cellular structures. Abbreviations: ER
403 (endoplasmic reticulum); IM (inner mitochondrial membrane); OM (outer mitochondrial membrane); CJs (crista
404 junctions), mtDNA (mitochondrial DNA).

405 b-g. Multi-color live-cell STED nanoscopy of HeLa and COS-7 cells labeled for the IM together with different

406 mitochondrial targets or subcellular structures. IM was labeled using PKMO and recorded by live-cell STED
407 nanoscopy ($\lambda_{\text{ex}} = 561$ nm, $\lambda_{\text{STED}} = 775$ nm).

408 **b.** 2D single-color STED nanoscopy of mitochondria labeled for mtDNA. The mitochondrial DNA (mtDNA) was stained
409 using PicoGreen and was recorded in the confocal mode ($\lambda_{\text{ex}} = 488$ nm). PKMO was recorded by 2D STED nanoscopy.


410 **c-d.** Dual-color STED nanoscopy of mitochondria in COS-7 cells. OM marker TOM20-Halo was labeled using 647-SiR-
411 CA ($\lambda_{\text{ex}} = 640$ nm, $\lambda_{\text{STED}} = 775$ nm). Cells were recorded by 2D STED in (c) or 3D STED nanoscopy (d).

412 **e.** 2D dual-color time-lapse STED nanoscopy of mitochondria in HeLa cells. CJs were labeled by overexpression of
413 MIC10-SNAP and staining with SNAP-Cell 647-SiR. Inset shows four consecutive frames illustrating cristae and CJ
414 dynamics.

415 **f.** 2D dual-color STED nanoscopy of mitochondria and microtubules in HeLa cells. Microtubules were labeled using 4-
416 610CP-CTX ($\lambda_{\text{ex}} = 640$ nm, $\lambda_{\text{STED}} = 775$ nm). MtDNA was labeled using PicoGreen. Inset highlights contact sites of
417 mitochondria and microtubules.

418 **g.** 2D dual-color time-lapse STED nanoscopy of mitochondria and ER in HeLa cells. ER was labeled by overexpression
419 of Halo-KDEL and staining with 647-SiR-CA. Inset highlights contact sites of a mitochondrion and ER over several
420 time points.

421 If not indicated otherwise, all image data were deconvoluted and corrected for photobleaching. Scale bars: 2 μm .

423 **Figure 6. Analysis of cristae architecture using PKMO labeling and 2D live-cell STED nanoscopy.**

424 a-c. The mitochondrial inner membrane (IM) of HeLa cells was labeled using PKMO ($\lambda_{\text{ex}} = 561 \text{ nm}$, $\lambda_{\text{STED}} = 775 \text{ nm}$).
425 MtDNA was labeled using PicoGreen ($\lambda_{\text{ex}} = 488 \text{ nm}$, confocal). Scale bars: overviews 5 μm , insets 2 μm .
426
427 a. STED (upper panel) and transmission electron microscopy (TEM) recording (lower panel) of wild-type HeLa cells
428 with typical lamellar cristae architecture (upper panel).
429 b. STED and TEM recording of genome-edited HeLa cells lacking MIC10, a subunit of the mitochondrial contact site
430 and cristae organizing system (MICOS complex). STED nanoscopy reveals tube-like and onion-like cristae
431 arrangements and a disturbed arrangement of the mtDNA.
432 c. STED and TEM recording of genome-edited HeLa cells lacking MIC60, the core subunit of MICOS. STED
433 nanoscopy reveals a fragmented mitochondrial network, onion-like cristae arrangements, and aggregations of
434 mtDNA.
435 All STED data were deconvoluted. Scale bars: STED (overview) 5 μm , STED (insets) 1 μm , TEM 1 μm .

435 **Reference**

436 1. J. R. Friedman, J. Nunnari, Mitochondrial form and function. *Nature* **505**, 335-343 (2014).

437 2. L. D. Osellame, T. S. Blacker, M. R. Duchen, Cellular and molecular mechanisms of mitochondrial function. *Best*
438 *Practice & Research Clinical Endocrinology & Metabolism* **26**, 711-723 (2012).

439 3. S. Jakobs, T. Stephan, P. Ilgen, C. Brüser, Light Microscopy of Mitochondria at the Nanoscale. *Annual Review of*
440 *Biophysics* **49**, 289-308 (2020).

441 4. G. E. Palade, The fine structure of mitochondria. *Anat Rec* **114**, 427-451 (1952).

442 5. F. S. SjÖStrand, Electron Microscopy of Mitochondria and Cytoplasmic Double Membranes: Ultra-Structure of Rod-
443 shaped Mitochondria. *Nature* **171**, 30-31 (1953).

444 6. T. Stephan, A. Roesch, D. Riedel, S. Jakobs, Live-cell STED nanoscopy of mitochondrial cristae. *Scientific Reports* **9**,
445 12419 (2019).

446 7. H. Fujioka, B. Tandler, C. L. Hoppel, Mitochondrial division in rat cardiomyocytes: an electron microscope study.
447 *Anat Rec (Hoboken)* **295**, 1455-1461 (2012).

448 8. S. W. Hell *et al.*, The 2015 super-resolution microscopy roadmap. *Journal of Physics D: Applied Physics* **48**, 443001
449 (2015).

450 9. S. J. Sahl, S. W. Hell, S. Jakobs, Fluorescence nanoscopy in cell biology. *Nature Reviews Molecular Cell Biology* **18**,
451 685-701 (2017).

452 10. B. Huang, M. Bates, X. Zhuang, Super-Resolution Fluorescence Microscopy. *Annual Review of Biochemistry* **78**, 993-
453 1016 (2009).

454 11. X. Huang *et al.*, Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. *Nature*
455 *Biotechnology* **36**, 451-459 (2018).

456 12. C. Wang *et al.*, A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of
457 the mitochondrial cristae. *Proceedings of the National Academy of Sciences* **116**, 15817-15822 (2019).

458 13. A. K. Kondadi, R. Anand, A. S. Reichert, Cristae Membrane Dynamics – A Paradigm Change. *Trends in Cell Biology*
459 **30**, 923-936 (2020).

460 14. X. Yang *et al.*, Mitochondrial dynamics quantitatively revealed by STED nanoscopy with an enhanced squaraine
461 variant probe. *Nature Communications* **11**, 3699 (2020).

462 15. G. Lukinavičius *et al.*, A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins.
463 *Nature Chemistry* **5**, 132-139 (2013).

464 16. A. K. Kondadi *et al.*, Cristae undergo continuous cycles of membrane remodelling in a MICOS-dependent manner.
465 *EMBO reports* **21**, e49776 (2020).

466 17. T. Stephan *et al.*, MICOS assembly controls mitochondrial inner membrane remodeling and crista junction
467 redistribution to mediate cristae formation. *The EMBO Journal* **39**, e104105 (2020).

468 18. F. Bottanelli *et al.*, Two-colour live-cell nanoscale imaging of intracellular targets. *Nature Communications* **7**, 10778
469 (2016).

470 19. N. Kilian *et al.*, Assessing photodamage in live-cell STED microscopy. *Nature Methods* **15**, 755-756 (2018).

471 20. P. P. Laissie, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, H. Shroff, Assessing phototoxicity in live fluorescence
472 imaging. *Nature Methods* **14**, 657-661 (2017).

473 21. P. Montero Llopis *et al.*, Best practices and tools for reporting reproducible fluorescence microscopy methods.
474 *Nature Methods* **18**, 1463-1476 (2021).

475 22. Z. Yang *et al.*, Cyclooctatetraene-conjugated cyanine mitochondrial probes minimize phototoxicity in fluorescence
476 and nanoscopic imaging. *Chemical Science* **11**, 8506-8516 (2020).

477 23. R. B. Altman *et al.*, Enhanced photostability of cyanine fluorophores across the visible spectrum. *Nature Methods* **9**,
478 428-429 (2012).

479 24. T. Entradas, S. Waldron, M. Volk, The detection sensitivity of commonly used singlet oxygen probes in aqueous
480 environments. *Journal of Photochemistry and Photobiology B: Biology* **204**, 111787 (2020).

481 25. J. M. Abbas *et al.*, The intramolecular self-healing strategy applied to near infrared fluorescent
482 aminotricarbocyanines. *Dyes and Pigments* **186**, 109040 (2021).

483 26. Q. Zheng, S. Jockusch, Z. Zhou, S. C. Blanchard, The Contribution of Reactive Oxygen Species to the Photobleaching
484 of Organic Fluorophores. *Photochemistry and Photobiology* **90**, 448-454 (2014).

485 27. D. M. Wolf *et al.*, Individual cristae within the same mitochondrion display different membrane potentials and are
486 functionally independent. *The EMBO Journal* **38**, e101056 (2019).

487 28. C. Hu *et al.*, OPA1 and MICOS Regulate mitochondrial crista dynamics and formation. *Cell Death & Disease* **11**, 940
488 (2020).

489 29. D. M. Wolf, M. Segawa, O. S. Shirihi, M. Liesa, "Chapter 22 - Method for live-cell super-resolution imaging of
490 mitochondrial cristae and quantification of submitochondrial membrane potentials" in *Methods in Cell Biology*, L.
491 A. Pon, E. A. Schon, Eds. (Academic Press, 2020), vol. 155, pp. 545-555.

492 30. R. Fiolka, L. Shao, E. H. Rego, W. Davidson Michael, G. L. Gustafsson Mats, Time-lapse two-color 3D imaging of live
493 cells with doubled resolution using structured illumination. *Proceedings of the National Academy of Sciences* **109**,
494 5311-5315 (2012).

495 31. M. H. Laporte, N. Klena, V. Hamel, P. Guichard, Visualizing the native cellular organization by coupling cryofixation
496 with expansion microscopy (Cryo-ExM). *Nature Methods* **19**, 216-222 (2022).

497 32. K. T. Tokuyasu, Application of cryoultramicrotomy to immunocytochemistry. *Journal of Microscopy* **143**, 139-149
498 (1986).

499 33. V. V. Flis, G. Daum, Lipid transport between the endoplasmic reticulum and mitochondria. *Cold Spring Harb Perspect
500 Bio* **5**, a013235 (2013).

501 34. G. Csordás, D. Weaver, G. Hajnóczky, Endoplasmic Reticulum-Mitochondrial Contactology: Structure and Signaling
502 Functions. *Trends in cell biology* **28**, 523-540 (2018).

503 35. R. Friedman Jonathan *et al.*, ER Tubules Mark Sites of Mitochondrial Division. *Science* **334**, 358-362 (2011).

504 36. U. Manor *et al.*, A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial
505 division. *eLife* **4**, e08828 (2015).

506 37. R. Chakrabarti *et al.*, INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner
507 membrane constriction, and division. *Journal of Cell Biology* **217**, 251-268 (2017).

508 38. Y. Guo *et al.*, Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond
509 Timescales. *Cell* **175**, 1430-1442.e1417 (2018).

510 39. E. L. Wilson, E. Metzakopian, ER-mitochondria contact sites in neurodegeneration: genetic screening approaches
511 to investigate novel disease mechanisms. *Cell Death & Differentiation* **28**, 1804-1821 (2021).

512 40. G. López-Doménech *et al.*, Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport
513 and distribution. *The EMBO Journal* **37**, 321-336 (2018).

514 41. J. Bucevičius, G. Kostiuk, R. Gerasimaitė, T. Gilat, G. Lukinavičius, Enhancing the biocompatibility of rhodamine
515 fluorescent probes by a neighbouring group effect. *Chemical Science* **11**, 7313-7323 (2020).

516 42. J. Nunnari, A. Suomalainen, Mitochondria: In Sickness and in Health. *Cell* **148**, 1145-1159 (2012).

517 43. M. Giacomello, A. Pyakurel, C. Glytsou, L. Scorrano, The cell biology of mitochondrial membrane dynamics. *Nature
518 Reviews Molecular Cell Biology* **21**, 204-224 (2020).

519 44. N. Pfanner *et al.*, Uniform nomenclature for the mitochondrial contact site and cristae organizing system. *Journal
520 of Cell Biology* **204**, 1083-1086 (2014).

521 45. H. Rampelt, R. M. Zerbes, M. van der Laan, N. Pfanner, Role of the mitochondrial contact site and cristae organizing
522 system in membrane architecture and dynamics. *Biochimica et Biophysica Acta (BBA) - Molecular Cell Research*
523 **1864**, 737-746 (2017).

524 46. S. Khosravi, M. E. Harner, The MICOS complex, a structural element of mitochondria with versatile functions.
525 *Biological Chemistry* **401**, 765-778 (2020).

526 47. R. B. Altman *et al.*, Cyanine fluorophore derivatives with enhanced photostability. *Nature Methods* **9**, 68-71 (2012).

527 48. M. Isselstein *et al.*, Self-Healing Dyes—Keeping the Promise? *The Journal of Physical Chemistry Letters* **11**, 4462-
528 4480 (2020).

529 49. J. B. Grimm, L. D. Lavis, Caveat fluorophore: an insiders' guide to small-molecule fluorescent labels. *Nature
530 Methods* **19**, 149-158 (2022).

531 50. L. Wang, M. S. Frei, A. Salim, K. Johnsson, Small-Molecule Fluorescent Probes for Live-Cell Super-Resolution
532 Microscopy. *Journal of the American Chemical Society* **141**, 2770-2781 (2019)