

1 Evolutionary ecology of microbial populations inhabiting deep sea

2 sediments associated with cold seeps

3 Xiyang Dong^{1, 3 #*}, Yongyi Peng^{1, 2 #}, Muhua Wang^{2, 3}, Laura Woods⁴,
4 Wenzhe Wu^{2, 3}, Yong Wang⁵, Xi Xiao⁶, Jiwei Li⁷,
5 Kuntong Jia², Chris Greening⁴, Zongze Shao^{1, 3 *}, Casey R.J. Hubert⁸

¹ Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China

⁸ ² School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China

³ Southern Marine Science and Engineering Guangdong Laboratory (ZhuHai), ZhuHai 519000, China

11 ⁴Department of Microbiology, Biomedicine Discovery Institute, Monash University,
12 Clayton, VIC 3800, Australia

⁵ Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

⁶ Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou
510075, China

7 Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences,
8 Sanya 572000, China

19 ⁸ Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4,
20 Canada

21 [#] These authors contributed equally to this work.

* Correspondence can be addressed to Xiyang Dong (dongxiyang@tio.org.cn) and Zongze Shao (shaozz@163.com).

24 **Abstract**

25 Deep sea cold seep sediments host abundant and diverse bacterial and archaeal
26 populations that significantly influence biogeochemical cycles. While numerous
27 studies have revealed the community structure and functional capabilities of cold seep
28 microbiomes, little is known about their genetic heterogeneity within species. Here,
29 we examined intraspecies diversity patterns of 39 abundant species identified in
30 sediment layers down to 4.3 mbsf across six cold seep sites from around the world.
31 These species were predicted to participate in methane oxidation and sulfate reduction,
32 and based on their metabolic capabilities, grouped as aerobic methane-oxidizing
33 bacteria (MOB), anaerobic methanotrophic archaea (ANME) and sulfate-reducing
34 bacteria (SRB). These physiologically and phylogenetically diverse MOB, ANME and
35 SRB display different degrees of intrapopulation sequence divergence and different
36 evolutionary trajectories. Populations were in general characterized by low rates of
37 homologous recombination and strong purifying selection with most of the nucleotide
38 variation being synonymous. Functional genes related to methane (*pmoA* and *mcrA*)
39 and sulfate (*dsrA*) metabolisms were found to be under strong purifying selection in
40 the vast majority of species investigated, although examples of active positive
41 selection were also observed. These genes differed in evolutionary trajectories across
42 phylogenetic clades but are functionally conserved across cold seep sites.
43 Intrapopulation diversification of MOB, ANME and SRB species as well as their
44 *mcrA* and *dsrA* genes was observed to be depth-dependent and undergo divergent
45 selection pressures throughout the sediment column. These results highlight the role
46 of the interplay between ecological processes and the evolution of key bacteria and
47 archaea in deep sea cold seep sediments and shed light on how microbial populations
48 adapt in the subseafloor biosphere.

49 **Introduction**

50 Cold seeps are widely distributed along continental margins across the globe and
51 likely have an important environmental influence on the local biology, chemistry, and
52 geology¹⁻⁴. These seep fluids are enriched in hydrocarbon gases (mainly methane) and
53 other energy rich hydrocarbon fluids, and markedly alter the sedimentary microbial
54 community structure and function by promoting microbial growth, specialization, and
55 adaptation¹. Based on amplicon sequencing of genetic markers and genome-resolved
56 metagenomics, numerous studies have revealed the extensive macrodiversity (i.e. the
57 measure of population diversity within a community⁵) of archaeal and bacterial
58 lineages and microbial metabolic versatility along different cold seep sites and
59 sediment depths^{1, 6-9}. Findings include the discovery of various lineages of archaeal
60 anaerobic methanotrophs (ANME) and sulfate-reducing bacteria (SRB) as syntrophic
61 aggregates to perform methane oxidation coupled to sulfate reduction at anoxic
62 sediment layers^{10, 11}. In the upper oxic sediment layers of cold seeps, methane is
63 mostly consumed by aerobic methane-oxidizing bacteria (MOB) mainly from the
64 order *Methylococcales*^{9, 12}. Although macro-variations in microbial diversity and
65 functions have been well-characterized, our knowledge of the microdiversity (i.e. the
66 measure of genetic variation within a population¹³⁻¹⁵) of these metabolically and
67 taxonomically diverse subseafloor microorganisms remains limited. By addressing
68 crucial questions such as “what populations have high microdiversity levels”, “which
69 genes are under selection” and “does homologous recombination occur”, intra-
70 population microdiversity analyses can provide a more complete understanding of
71 microbial ecology and evolution in the subseafloor biosphere^{16, 17}.

72 Traditional cultivation-based approaches have a fundamental role in studying genetic
73 variation in microbial populations but are often not applicable to the study of the
74 subseafloor biosphere as most microorganisms are extremely difficult to isolate^{14, 18, 19}.
75 With the emergence of bioinformatic tools for culture-free, high-resolution strain and
76 subspecies analyses in complex environments^{5, 15, 20-22}, genome-resolved metagenomic
77 analyses can now be conducted at large-scale to reveal fine-scale evolutionary
78 mechanism dynamics and strain-level metabolic variation^{13, 14, 16, 17, 23-25}. Pioneering
79 studies have been conducted in which metagenomic data has been used to explore the
80 roles of basic processes (natural selection, mutation, genetic drift, and recombination)

81 in shaping microbial evolution of several typical subseafloor habitats. For instance, *in*
82 *situ* work examining genomic variation of microbes inhabiting the upper two meters
83 of anoxic subseafloor sediments in Aarhus Bay revealed that rates of genomic
84 diversification and selection do not change with either sediment age or depth, likely
85 due to energy limitation and reduced growth in this environment²⁶. In contrast to non-
86 vent sediments, population-specific differences in selection pressure were observed in
87 both *Sulfurovum* and *Methanothermococcus* species between two distinct
88 geochemically distinct hydrothermal vent fields, where energy availability and cell
89 abundances are relatively high^{27, 28}. A third study found that gene flow and
90 recombination appeared to shape the evolution of microbial metapopulations that
91 disperse frequently through the cold, oxic crustal fluids of the mid-Atlantic ridge²⁹. In
92 contrast, no direct studies of the evolutionary histories and selection pressures of cold
93 seep sedimentary microorganisms have been conducted despite the importance of
94 their roles on global biogeochemical cycles. Knowledge of the nucleotide variation of
95 key functional genes related to methane metabolism in these organisms is similarly
96 lacking.

97 Here we hypothesize that microbial evolution in cold seep sediments may differ from
98 observations in highly productive deep-sea hydrothermal vents and energy-limited
99 marine sediments, due to the impact of the continuous flow of hydrocarbon-rich fluids.
100 To gain insights into evolutionary trajectories among microbial populations inhabiting
101 cold seep sediments, we examined the metagenomic data of 68 cold seep sediment
102 samples to track population microdiversity from metagenomic short-read alignments
103 and performed microdiversity-aware genomic comparisons. Our study also revealed
104 the depth- and site-dependent trends of microbial evolution in deep sea cold seep
105 sediments through the analysis of inter-sample genomic variation of species.
106 Microbial adaptation in a gradient environment is a highly dynamic and complex
107 process involving the interaction of multiple evolutionary forces²². Thus, the
108 exploration of adaptive fingerprints to uncover evolutionary mechanisms of specific
109 taxa in cold seep sediments may hint at the factors impacting long-term evolution in
110 deep subseafloor biosphere, as well as those processes that shape the evolution of
111 genes involved in adaptation to specific environmental factors.

112 **Results and Discussion**

113 **Depth profiles of species-level clusters in cold seep sediments**

114 We assembled metagenomic data sequenced from 68 sediment samples obtained from
115 six globally distributed cold seep sites, spanning various depth layers from 0 to 4.3
116 mbsf (**Supplementary Figure 1 and Supplementary Table 1**). After binning of
117 metagenomic assemblies, 1261 prokaryotic species-level clusters (1041 bacterial and
118 220 archaeal; **Supplementary Table 2**) were recovered according to the suggested
119 threshold of 95% average nucleotide identity (ANI) for delineating species³⁰⁻³². These
120 species clusters belonged to 85 phyla (70 bacterial and 15 archaeal; **Figure 1a**) based
121 on the Genome Database Taxonomy (GTDB; version R06-202)³³⁻³⁶, and were highly
122 represented by bacterial phyla including Chloroflexota (n = 184), Proteobacteria (n =
123 125), Desulfobacterota (n = 101), Planctomycetota (n = 73) and Bacteroidota (n = 67).
124 The top five archaeal phyla with the largest number of species-level clusters were
125 Asgardarchaeota (n = 50), Thermoplasmatota (n = 44), Halobacteriota (n = 42),
126 Thermoproteota (n = 35; mainly *Bathyarchaeia*) and Nanoarchaeota (n = 19). Most of
127 these phyla lack an available cultured representative in the GTDB³⁵ and consist
128 exclusively of MAGs and/or SAGs. Around 51% and 94% clusters could not be
129 assigned to an existing genus and species, respectively (**Figure 1b**), confirming that
130 the majority of the cold seep sediment species lack even uncultured representative
131 genomes in the reference database.

132 At the phylum level, the total relative abundance of Halobacteriota was the highest
133 across samples of all eight depth groups (**Supplementary Figure 2**), and ranged from
134 2.9%±3.7% at 0-0.05 mbsf (n = 11) to 20.7%±12.6% at 2.0-3.0 mbsf (n = 4)
135 (**Supplementary Table 4**). At the species level (**Supplementary Figure 3**), clusters
136 from ANME-1 (genus of QEXZ01) ranked the highest (up to 9.1%±9.1% at 0.3-4.5
137 mbsf), followed by ANME-2c groups (up to 2.0%±2.3% at 0-0.3 mbsf), indicating
138 their different depth distributions³⁷. Bacterial taxa belonging to the phyla
139 Desulfobacterota and Caldtribacteriota are also very abundant, with the latter being
140 especially prevalent in deeper sediments (**Supplementary Figure 2**). The most
141 abundant bacterial species was assigned to Caldtribacteriota taxon SB_S5_bin2, with
142 values of up to 2.2%±2.3% at 1.0-2.0 mbsf (**Supplementary Figure 4**). Three species
143 belonging to Desulfobacterota, the potential bacterial partners of ANME-1 or ANME-

144 2^{38} , became relatively predominant (up to $3.5\% \pm 0.5\%$) at 2.0-4.5 mbsf. Overall,
145 sediment depth is one important factor shaping distributions of cold seep sediment
146 microbial species clusters^{7,39}.

147 **Selection of key functional taxa for microdiversity analysis**

148 Aerobic methane-oxidizing bacteria (MOB), anaerobic methanotrophic (ANME)
149 archaea, and sulfate-reducing bacteria (SRB) are three key groups of functional
150 microorganisms in cold seeps sediments^{1, 6, 9}. To identify them, we screened the 1261
151 MAGs for the presence of three functional genes: the particulate methane
152 monooxygenase marker gene *pmoA* encoding for MOB, the methyl-coenzyme-M
153 reductase marker gene *mcrA* for ANME archaea, and the dissimilatory sulfite
154 reductase marker gene *dsrA* for SRB. To facilitate the microdiversity analyses of key
155 functional taxa, we kept only species-cluster representative MAGs with an estimated
156 quality score ≥ 50 (defined as the estimated completeness of a genome minus five
157 times its estimated contamination)⁴⁰ and at least 10 \times coverage^{15, 22, 41, 42}.

158 Three species belonging to *Gammaproteobacteria* were found to contain *pmoA* genes
159 and passed the required criteria for MAG quality (**Figure 2a and Supplementary**
160 **Table 3**). They were found exclusively in near-surface sediments (0-0.1 mbsf) from
161 the Haima cold seep in the South China Sea (**Supplementary Figure 5 and**
162 **Supplementary Table 5**), where oxygen is likely still available via penetration from
163 the water column. Functional annotation of 13 species genomes from
164 *Methanosaerinia* and *Syntropharchaeia* indicated the ability of these species to
165 perform anaerobic oxidation of methane (**Figure 2b and Supplementary Table 3**).
166 These 13 species represent four families: *Methanosaerinaceae*, HR1, ANME-2c and
167 ANME-1, and are widely distributed in 53 samples across sediment depths in the
168 range of 0.01-4.25 mbsf (**Supplementary Figure 5 and Supplementary Table 5**).
169 Among 117 *dsrA*-containing species genomes, 23 bacterial species from
170 Desulfobacterota perform sulfate reduction, likely coupled to anaerobic oxidation of
171 methane (**Figure 2c and Supplementary Table 3**), and belonged to four clades:
172 “C00003060” (aka SEEP-SRB1c⁴³), *Desulfobacterales*, *Desulfobulbia* and
173 *Desulfatiglandales*. They are widely distributed in 12 sediment columns and along
174 multiple sediment depths (0.01-4.25 mbsf) at various relative abundances
175 (**Supplementary Figure 5 and Supplementary Table 5**).

176 **Genomic variations across different phylogenetic groups**

177 At the genome level, we evaluated the 39 functional species for linkage
178 disequilibrium (D'), pN/pS (the ratio of non-synonymous/synonymous mutations),
179 r/m (the rate of recombination to mutation, gamma/mu; only for 10 species, **see**
180 **Methods**), and number of single nucleotide variations for every thousand base pairs
181 (SNVs/kbp). For populations from MOB, ANME and SRB, the evolutionary metrics
182 varied greatly (**Figure 3a and Supplementary Table 5**), showing a wide distribution
183 range in D' (~0.89 vs 0.72-0.99 vs 0.74-0.99), SNVs/kbp (5-41 vs 2-98 vs 2-89) and
184 pN/pS (0.12-0.27 vs 0.11-0.25 vs 0.13-0.23). D' values indicate that MOB, ANME
185 and SRB have not undergone high rates of homologous recombination similar to soil
186 bacterial populations across a grassland meadow¹⁷. Population diversity in these
187 groups as measured by SNVs/kbp is higher than that observed for soils in grassland
188 meadows and subseafloor crustal fluids^{17, 29}. These result indicate that deeply buried
189 cold seep populations from MOB, ANME and SRB are under purifying selection,
190 suggesting the possibility that these populations have reached an adaptive optimum
191 for this stable environment, which is maintained by purging nonsynonymous
192 mutations⁴⁴. This result is in line with previous observations reported for
193 bacterioplankton assemblages in sunlit freshwater and marine systems^{16, 24, 45}, and
194 microbial populations in other deep sea biospheres^{46, 47}.

195 These data (**Figure 3a and Supplementary Table 5**) also indicate that microbial
196 populations with different functional features in cold seep sediment habitats have
197 diverse evolutionary modes, similar to observations in deep-sea hydrothermal vents
198 with unique attributes^{13, 27}. Accordingly, statistically significant differences were
199 observed for almost all of the evolutionary metrics among the ANME and SRB
200 lineages ($P<0.001$, except 0.06 for D' of ANME groups; **Figures 3b and 3c**). The
201 SEEP-SRB1c group had the lowest SNVs/kbp ratio, highest pN/pS value and a low
202 degree of recombination among the four SRB groups (**Figure 3b**). Fewer
203 recombination events and lower nucleotide diversity are signals of selective sweep²⁴.
204 Thus, these data indicate that the SEEP-SRB1c group has undergone strong selection.

205 For HR1, *Methanosarcinaceae*, ANME-2c, *Desulfatiglandales* and ANME-1,
206 negative correlations between D' and SNVs/kbp reflect a positive relationship
207 between nucleotide diversity and homologous recombination (**Figure 4a and**

208 **Supplementary Table 6**). This is in agreement with the positive correlation (linear
209 regression; $R^2=0.34$, $P<0.001$) found between r/m and SNVs/kbp for both ANME and
210 SRB (**Supplementary Figure 6a and Supplementary Table 7**). The ratio of
211 nucleotide substitutions originating from homologous recombination to those
212 originating from mutation (r/m ratio) can be used to measure the relative effect of
213 homologous recombination on the genetic diversification of populations⁴⁸. These
214 results indicate that ANME and SRB populations could preserve high genome-wide
215 diversity and prevent selective sweeps through increasing recombination rates to
216 various environmental changes^{14, 24}. In addition to the negative correlation between
217 SNVs/kbp and D', negative correlations were also observed between SNVs/kbp and
218 pN/pS for HR1 and *Methanosaerincaceae* (**Figure 4b, Supplementary Figure 7 and**
219 **Supplementary Table 6**). These correlations indicate that HR1 and
220 *Methanosaerincaceae* populations are stabilized by frequent recombination while
221 maintaining a high degree of intra-population diversity characterized by an
222 accumulation of synonymous mutations, pointing to an ancient divergence of these
223 two populations^{45, 49}. In contrast, the *Desulfobulbia* populations had higher pN/pS
224 values with more single nucleotide variants (linear regression; $R^2=0.65$, $P=0.006$;
225 **Figure 4b and Supplementary Table 6**). Additionally, they also had high SNVs/kbp
226 and low degrees of within-species recombination (**Figure 3c and Supplementary**
227 **Figure 8**). These data suggest that *Desulfobulbia* populations may be in the process of
228 subspecies establishment (i.e. speciation) or purging of non-synonymous mutations¹⁴.
229 For ANME-2c and *Desulfobacterales* populations, the genome coverage (i.e. relative
230 abundances of the populations) and SNVs/kbp fitted the linear regression model with
231 a positive slope (**Figure 4c and Supplementary Table 6**), indicating that population
232 quantity may be constraining genomic microdiversification⁴². ANME-2c populations
233 with higher abundances were found to show high single-nucleotide variations which
234 were related to the high mutation rate or accumulation of mutations in the population
235 (**Supplementary Figure 7**)^{27, 50}. Relatively constant pN/pS ratios in those population
236 further suggest that non-synonymous mutations in ANME-2c population might have
237 been purged by purifying selection over a long period⁴⁵. For the *Desulfobacterales*
238 group, high-coverage populations were also reported to show relatively high degrees
239 of recombination, and recombination did not bring changes in amino acids at the
240 genome level despite the observed high nucleotide variations (**Supplementary Figure**
241 **8**)²². ANME-1 populations with higher abundances showed higher recombination

242 rates (linear regression; $R^2=0.12$, $P<0.001$; **Figure 4d and Supplementary Table 6**),
243 consistent with the positive linear regression relationship between r/m and coverage
244 (linear regression; $R^2=0.81$, $P<0.001$; **Supplementary Figure 6b and**
245 **Supplementary Table 7**). These findings are consistent with those of another study in
246 which the relationship between population abundance and recombination rate was
247 proposed to be the underlying mechanism responsible for the evolutionary success of
248 the marine bacterium SAR11 in the near-surface epipelagic waters of the ocean⁴⁵.

249 **Nucleotide variation of three key functional genes**

250 For *pmoA*, *mcrA* and *dsrA* genes, SNVs/kbp ranged widely from 0.76 to 123 (45 on
251 average, **Figure 5a and Supplementary Table 8**). Based on the pN/pS values (0-1.43,
252 0.16 on average), these genes were under strong purifying selection. The evolutionary
253 fitness of these three key functional genes was also consistent with that observed in
254 previous studies for natural comammox *Nitrospira* populations⁴⁴ and *Thalassospira*
255 bacterial populations isolated from million-year-old subseafloor sediments¹⁹. Our
256 findings are in line with research showing that essential genes and enzymes catalyzing
257 reactions that are difficult to bypass through alternative pathways are subject to higher
258 purifying selection than nonessential ones^{26, 44}. Even though the pN/pS values of the
259 vast majority were well below 1 (indicating purifying selection), genes with pN/pS
260 values above 1 and significantly higher than the genomic average were detected,
261 which indicates that positive selection acted upon those genes. Although these
262 microorganisms were deeply buried in subseafloor in which microbial evolution
263 might operate differently from sunlit habitats¹³, the distribution profile of pN/pS
264 values are compatible with the neutral theory model⁵¹ wherein most mutation events
265 are neutral or deleterious⁵² (**Figure 5b**). Similarly, in microbial rare genes, evolution
266 was found to proceed largely via neutral processes⁵³. On the other hand, studies of the
267 microbial inhabitants of wild bromeliads demonstrate patterns indicating the action of
268 non-neutral processes⁵⁴. The similar evolutionary patterns appeared in both microbes
269 and higher eukaryotes may be due to the conserved ancient mechanism.

270 For *dsrA* genes, SNVs/kbp and major allele frequency exhibited statistically
271 significant differences among the four SRB groups ($P\leq 0.005$), while pN/pS values
272 were similar among them (**Figure 5c**). Similar evolutionary trends (relatively low
273 SNVs/kbp and pN/pS values) were observed in *dsrA* genes from groups of

274 *Desulfobulbia*, SEEP-SRB1c and *Desulfatiglandales*, (**Supplementary Figure 9**).

275 This indicates that *dsrA* genes in these groups were functionally stable following
276 purifying selection. The *dsrA* gene in the *Desulfobacterales* group also had low pN/pS
277 values (~0.12) but showed a broad range of SNVs/kbp. The *dsrA* gene of ETH-SRB1
278 SB_S7_bin23 populations with abnormally high pN/pS values were found with fewer
279 synonymous mutations (**Supplementary Figure 10**), indicating that *dsrA* genes in
280 these populations were under strong positive selection and were likely further
281 determined by random genetic drift⁵⁵.

282 For *mcrA*, the three evolutionary metrics (SNVs/kbp, pN/pS and major alleles
283 frequency) were significantly different ($P<0.001$) among the four ANME groups
284 (**Figure 5d and Supplementary Figure 11**), indicating differences in evolutionary
285 trends of *mcrA* genes across these groups. The *mcrA* gene from HMR20_21 in the
286 ANME-1 group were found to have high pN/pS values with low synonymous
287 mutation rates, indicating positive selection or relaxed purifying selection
288 (**Supplementary Figure 10**). For *mcrA* genes from ANME-2c, SNVs/kbp (linear
289 regression; $R^2=0.47$, $P<0.001$) and pN/pS values (linear regression; $R^2=0.17$, $P=0.003$)
290 positively correlated with gene coverage (**Supplementary Figure 12**). This suggests
291 that mutations were maintained for *mcrA* genes during the clonal expansion of
292 ANME-2c populations.

293 Major allele frequency (0.79 on average) appeared to show a direct relationship with
294 SNVs/kbp for *mcrA* and *dsrA* genes (**Supplementary Figures 9 and 11**). High
295 SNVs/kbp corresponded to high major allele frequencies (~0.8), while the
296 distributions of major allele frequency were mostly scattered (0.56-0.99) at low values
297 of SNVs/kbp. Specific major alleles were fixed in most *mcrA* and *dsrA* genes (major
298 allele frequency: 0.70-0.98) with varying degrees of nucleotide diversity (SNVs/kbp:
299 1-123). For *mcrA* and *dsrA* genes with relatively low major allele frequency (0.56-
300 0.70) and low pN/pS values (0-0.26), their genetic heterogeneity was preserved and
301 strongly selected in populations from HR1, SEEP-SRB1c, *Desulfobulbia* and
302 *Desulfobacterales* which might help diversification of functional genes under
303 different environmental conditions⁵⁶.

304 **Depth- and site-dependent trends of microdiversity**

305 To determine whether microbial microdiversity was depth-dependent in deep-sea cold
306 seep sediments, we assessed the relationship between evolutionary metrics and
307 sediment depth. At genome level, a negative correlation was observed between
308 SNVs/kbp and depth while pN/pS and D' showed a positive relationship with
309 sediment depth for ANME and SRB populations (**Figures 6a-c and Supplementary**
310 **Table 9**). This suggests that as depth below the sea floor increases along the sediment
311 column, microbial populations exhibit less microdiversity and levels of homologous
312 recombination, as well as more relaxed purifying selection. This depth-dependent
313 trend differs from that found for non-seep subseafloor sediments in which buried
314 microbial populations show uniformly low genetic heterogeneity across sediment
315 depths²⁶; but similar to results from a pelagic freshwater system on the surface of the
316 Earth where a lower mutation rate was observed in the deeper water layer⁴². This is
317 likely related to the higher energy supply and larger population sizes in cold seep
318 sediments compared to non-seep subseafloor habitats²⁹. Depth-dependent
319 microdiversity patterns were also observed for *mcrA* and *dsrA* genes. In general,
320 SNVs/kbp and pN/pS are negatively correlated with sediment depth while major allele
321 frequency correlated positively with depth but the degree to which it did so was
322 population-specific (**Figure 6d-f and Supplementary Table 9**). This suggests that
323 *mcrA* and *dsrA* genes had lower degrees of microdiversity and were subject to higher
324 levels of purifying selection when ANME and SRB were buried deeper. Additionally,
325 based on observations at genome and gene levels, ANME and SRB populations likely
326 undergo distinct selection pressures arising from sediment depths (**Figure 6**).

327 Cold seep microbiomes are reported to be locally selected and diversified
328 (macrodiversity) by unique benthic biogeochemical conditions and environmental
329 gradients such as for methane and sulfate concentrations^{6, 7, 9, 39}. Evolutionary metrics
330 (D', SNVs/kbp, pN/pS) at the genome level showed significant differences ($P<0.001$)
331 among different cold seep sites (**Supplementary Figure 13a**), indicating that different
332 physicochemical conditions of various cold seep systems also influenced the intra-
333 population diversity and evolutionary processes in microbial populations. We also
334 observed that there were differences ($P=0.006$) in evolutionary metrics (SNVs/kbp
335 and major alleles frequency) for the three functional genes among different cold seep

336 sites, (**Supplementary Figure 13b**), indicative of site-dependent microdiversity for
337 functional genes. However, no clear difference ($P=0.64$) was observed among them
338 with regard to pN/pS (**Supplementary Table 10**). This suggests that those three key
339 genes from ANME and SRB are mostly functionally conserved across different cold
340 seep sites.

341 **Conclusion**

342 By analyzing a suite of population genetics parameters through metagenomic read
343 mapping, here we show that microbial evolutionary processes of microbes in deep-sea
344 cold seep sediments are much more complex than previously thought, and are
345 governed by factors that differ from those observed in energy-limited marine
346 sediments, hydrothermal vents and low biomass subseafloor fluids^{26, 27, 29}. The 39
347 abundant MOB, ANME and SRB species in cold seep sediments had diverse
348 evolutionary modes with different degrees of nucleotide variation and varying degrees
349 of homologous recombination, demonstrating that selection pressure exerted by seep
350 fluids enriched in methane may operate differently on different species-level
351 populations. The investigated species from MOB, ANME and SRB in general showed
352 low homologous recombination and strong purifying selection, the latter process
353 being especially strong in functional genes related to methane (*pmoA* and *mcrA*) and
354 sulfate (*dsrA*) metabolisms. Evolutionary metrics of these genes differed across
355 species identities but were functionally conserved across various cold seep sites,
356 supporting that the importance of relatively stable cold seep environmental conditions
357 (i.e. continuous supply of methane and sulfate) in affecting evolutionary processes of
358 genes essential in energy metabolism. We further found that sediment depths can not
359 only shape the community structure of cold seep microbes in sediment depth layers
360 from 0 to 4.3 mbsf, but also be one of the driving factors of microdiversity patterns
361 for microbial genomes and genes. The depth-dependent trends of microdiversity
362 might be the mixing consequences of redox condition changes and age of the
363 sediment^{12, 26}. Together, this study improves our understanding of principles that drive
364 evolution of slow-growing deep-sea microbes in one of the unique subseafloor
365 biosphere. However, these conclusions were only based on abundant populations from
366 MOB, ANME and SRB, genomic microdiversification of other species at lower
367 abundance levels can still play important functional roles was not evaluated due to

368 relatively shallow sequencing⁵. Deeper sequencing is therefore needed to depict a full
369 picture of microdiversity within microbial populations in deep sea sediments⁵⁷.

370

371 **Methods**

372 **Metagenomes for deep-sea cold seep sediments**

373 Metagenomic data sets were compiled from 68 sediment samples (0 to 4.3 mbsf)
374 collected from six globally distributed cold seep sites (**Supplementary Figure 1**).
375 These sites are as follows: Eastern Gulf of Mexico; Northwestern Gulf of Mexico;
376 Scotian Basin; Haiyang4, Site F, and Haima cold seeps in the South China Sea
377 (**Supplementary Table 1**). For samples from Northwestern Gulf of Mexico,
378 metagenomic data sets along with metadata were downloaded from NCBI Sequencing
379 Read Archive (SRA) and NCBI BioSample databases⁵⁸. Samples of SY5, SY6 and
380 S11 were obtained from sediments of Haima cold seep areas⁵⁹ and raw sequencing
381 data were deposited in NCBI SRA (PRJNA739036 and PRJNA738468). For other
382 samples, sample collection and DNA sequencing were detailed previously^{7, 8, 60-62}. The
383 68 sediment samples were catalogued into eight groups according to depth below the
384 seafloor (**Supplementary Figure 2**): 0-0.05 mbsf (n = 11); 0.05-0.1 mbsf (n = 14);
385 0.1-0.2 mbsf (n = 16); 0.2-0.3 mbsf (n = 8); 0.3-1.0 mbsf (n = 6); 1.0-2.0 mbsf (n = 4);
386 2.0-3.0 mbsf (n = 4); 3.0-4.5 mbsf (n = 5).

387 **Metagenome assembly and binning**

388 Paired-end raw reads were quality-controlled by trimming primers and adaptors and
389 filtering out artifacts and low-quality reads using the Read_QC module within the
390 metaWRAP pipeline (v1.3.2; –skip-bmtagger)⁶³. For each cold seep site, filtered reads
391 from each metagenome were individually assembled and co-assembled using
392 MEGAHIT (v1.1.3; default parameters) based on succinct *de Bruijn* graphs⁶⁴. Contigs
393 less than 1000 bp were removed. For each assembly, contigs were binned using the
394 binning module (parameters: –maxbin2 –concoct –metabat2) and consolidated into a
395 final bin set using the Bin_refinement module (parameters: –c 50 –x 10) within
396 metaWRAP. The quality of the obtained MAGs was estimated by the lineage-specific

397 workflow of CheckM (v1.0.12)⁶⁵. MAGs estimated to be at least 50% complete and
398 with less than 10% contamination were retained.

399 **Species-level clustering and taxonomic assignment**

400 Species-level clustering and representative species identification was performed using
401 dRep (v3.2.2)³¹ with an average nucleotide identity (ANI) cutoff value of 95%. The
402 taxonomic classifications of representative MAGs were assigned based on the
403 Genome Database Taxonomy GTDB (release 06-RS202)³⁵ via the classify workflow
404 of GTDB-Tk (v1.5.1)⁶⁶. To calculate the relative abundance of each MAG, CoverM
405 was used in genome mode (v0.6.0; parameters: –min-read-percent-identity 0.95 –min-
406 read-aligned-percent 0.75 –trim-min 0.10 –trim-max 0.90;
407 <https://github.com/wwood/CoverM>).

408 **Functional annotations and phylogenetic analysis**

409 METABOLIC-G, an implementation of METABOLIC (v4.0)⁶⁷, was used to predict
410 metabolic and biogeochemical functional trait profiles of MAGs. For phylogenetic
411 analysis of functional genes related to methane and sulfate metabolism, amino acid
412 sequences were aligned using the MUSCLE algorithm⁶⁸ included in the software
413 package MEGA X⁶⁹. All positions with less than 95% site coverage were excluded.
414 The maximum-likelihood phylogenetic tree was constructed in MEGA X using the
415 Jones Taylor Thornton matrix-based model, bootstrapped with 50 replicates. The
416 output trees were visualized and beautified in the Interactive Tree Of Life (iTOL;
417 v6)⁷⁰.

418 **Calculation of evolutionary metrics**

419 Filtered reads from each sample were mapped to all species-cluster representative
420 MAGs concatenated together using Bowtie2 (v2.2.5; default parameters)⁷¹. Population
421 statistics and nucleotide metrics including linkage disequilibrium (D'), nucleotide
422 diversity (SNVs/kbp), nonsynonymous to synonymous mutation ratio (pN/pS) and
423 major allele frequency were calculated from these mappings using the profile module
424 of the inStrain program (v1.5.4; –database mode; default parameters)¹⁵ at genome and
425 gene levels. Genetic annotation of MAGs was performed with Prodigal (v2.6.3; –p

426 meta)⁷² for the gene module of inStrain.

427 **Inferring recombination rates**

428 Filtered reads were mapped to each of 39 selected representative MAGs using
429 Bowtie2 (v2.2.5; –sensitive-local mode)⁷¹. The mcorr package
430 (<https://github.com/kussell-lab/mcorr>)⁷³ was used to calculate the rate of
431 recombination to mutation (gamma/mu) for each population. MAGs in which (1)
432 normally distributed residuals for the model fit and (2) the bootstrapping mean was
433 within 2X of the final estimate for gamma/mu¹⁷ were retained, resulting in a set of 10
434 genomes for inferring recombination rates.

435 **Statistical analyses**

436 Statistical analysis was carried out in R (v4.0.0). Shapiro-Wilk and Bartlett's tests
437 were used to assess the normality and variance homogeneity of the data. The Kruskal-
438 Wallis rank sum test with Chi-square correction was used for comparison of
439 evolutionary metrics in genomes and genes among different groups. Pearson's
440 product-moment correlation was performed to assess the relationship between various
441 evolutionary metrics (D', pN/pS, r/m, coverage and SNVs/kbp for genomes; pN/pS,
442 major allele frequency, coverage and SNVs/kbp for genes) and their relationship with
443 sediment depth. Linear regression was used to fit the data and predict the linear
444 correlation between the two indexes mentioned above on population. These metrics
445 were used to test the evolutionary processes in the cold seep sediment populations and
446 the effect of sediment depth on them.

447 **Data availability**

448 MAGs, files for the phylogenetic trees and other related information have been
449 uploaded to figshare (DOI: 10.6084/m9.figshare.17195003).

450 **References**

- 451 1. Joye, S. B., The Geology and Biogeochemistry of Hydrocarbon Seeps. *Annu Rev Earth Pl Sc*
452 **2020**, *48*, (1), 205-231.
- 453 2. Suess, E., Marine cold seeps and their manifestations: geological control, biogeochemical
454 criteria and environmental conditions. *Int J Earth Sci* **2014**, *103*, (7), 1889-1916.

455 3. Levin, L. A.; Baco, A. R.; Bowden, D. A.; Colaco, A.; Cordes, E. E.; Cunha, M. R.;
456 Demopoulos, A. W. J.; Gobin, J.; Grupe, B. M.; Le, J.; Metaxas, A.; Netburn, A. N.; Rouse, G.
457 W.; Thurber, A. R.; Tunnicliffe, V.; Van Dover, C. L.; Vanreusel, A.; Watling, L., Hydrothermal
458 Vents and Methane Seeps: Rethinking the Sphere of Influence. *Front Mar Sci* **2016**, *3*, (72).

459 4. Chakraborty, A.; Ruff, S. E.; Dong, X.; Ellefson, E. D.; Li, C.; Brooks, J. M.; McBee, J.;
460 Bernard, B. B.; Hubert, C. R. J., Hydrocarbon seepage in the deep seabed links subsurface and
461 seafloor biospheres. *Proc Natl Acad Sci U S A* **2020**, *117*, (20), 11029-11037.

462 5. Gregory, A. C.; Gerhardt, K.; Zhong, Z. P.; Bolduc, B.; Temperton, B.; Konstantinidis, K. T.;
463 Sullivan, M. B., MetaPop: a pipeline for macro- and microdiversity analyses and visualization
464 of microbial and viral metagenome-derived populations. *Microbiome* **2022**, *10*, (1), 49.

465 6. Li, Z.; Pan, D.; Wei, G.; Pi, W.; Zhang, C.; Wang, J. H.; Peng, Y.; Zhang, L.; Wang, Y.; Hubert,
466 C. R. J.; Dong, X., Deep sea sediments associated with cold seeps are a subsurface reservoir of
467 viral diversity. *Isme J* **2021**, *15*, (8), 2366-2378.

468 7. Dong, X.; Rattray, J. E.; Campbell, D. C.; Webb, J.; Chakraborty, A.; Adebayo, O.; Matthews,
469 S.; Li, C.; Fowler, M.; Morrison, N. M.; MacDonald, A.; Groves, R. A.; Lewis, I. A.; Wang, S.
470 H.; Mayumi, D.; Greening, C.; Hubert, C. R. J., Thermogenic hydrocarbon biodegradation by
471 diverse depth-stratified microbial populations at a Scotian Basin cold seep. *Nat Commun* **2020**,
472 *11*, (1), 5825.

473 8. Dong, X.; Greening, C.; Rattray, J. E.; Chakraborty, A.; Chuvochina, M.; Mayumi, D.; Dolfig,
474 J.; Li, C.; Brooks, J. M.; Bernard, B. B.; Groves, R. A.; Lewis, I. A.; Hubert, C. R. J.,
475 Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in
476 deep-sea sediments. *Nat Commun* **2019**, *10*, (1), 1816.

477 9. Ruff, S. E.; Biddle, J. F.; Teske, A. P.; Knittel, K.; Boetius, A.; Ramette, A., Global dispersion
478 and local diversification of the methane seep microbiome. *Proc Natl Acad Sci U S A* **2015**, *112*,
479 (13), 4015-20.

480 10. Vigneron, A.; Alsop, E. B.; Cruaud, P.; Philibert, G.; King, B.; Baksmaty, L.; Lavallee, D.;
481 Lomans, B. P.; Eloe-Fadrosh, E.; Kyrpides, N. C.; Head, I. M.; Tsesmetzis, N., Contrasting
482 Pathways for Anaerobic Methane Oxidation in Gulf of Mexico Cold Seep Sediments.
483 *mSystems* **2019**, *4*, (1), e00091-18.

484 11. Boetius, A.; Ravenschlag, K.; Schubert, C. J.; Rickert, D.; Widdel, F.; Gieseke, A.; Amann, R.;
485 Jorgensen, B. B.; Witte, U.; Pfannkuche, O., A marine microbial consortium apparently
486 mediating anaerobic oxidation of methane. *Nature* **2000**, *407*, (6804), 623-6.

487 12. Emil Ruff, S., Microbial Communities and Metabolisms at Hydrocarbon Seeps. In *Marine
488 Hydrocarbon Seeps*, Teske, A.; Carvalho, V., Eds. Springer International Publishing: Cham,
489 2020; pp 1-19.

490 13. Anderson, R. E., Tracking Microbial Evolution in the Subseafloor Biosphere. *mSystems* **2021**,
491 *6*, (4), e0073121.

492 14. Van Rossum, T.; Ferretti, P.; Maistrenko, O. M.; Bork, P., Diversity within species:
493 interpreting strains in microbiomes. *Nat Rev Microbiol* **2020**, *18*, (9), 491-506.

494 15. Olm, M. R.; Crits-Christoph, A.; Bouma-Gregson, K.; Firek, B. A.; Morowitz, M. J.; Banfield,
495 J. F., inStrain profiles population microdiversity from metagenomic data and sensitively
496 detects shared microbial strains. *Nat Biotechnol* **2021**, *39*, (6), 727-736.

497 16. Delmont, T. O.; Kiefl, E.; Kilinc, O.; Esen, O. C.; Uysal, I.; Rappe, M. S.; Giovannoni, S.;
498 Eren, A. M., Single-amino acid variants reveal evolutionary processes that shape the

499 biogeography of a global SAR11 subclade. *Elife* **2019**, 8, e46497.

500 17. Crits-Christoph, A.; Olm, M. R.; Diamond, S.; Bouma-Gregson, K.; Banfield, J. F., Soil
501 bacterial populations are shaped by recombination and gene-specific selection across a
502 grassland meadow. *Isme J* **2020**, 14, (7), 1834-1846.

503 18. Zhao, S.; Lieberman, T. D.; Poyet, M.; Kauffman, K. M.; Gibbons, S. M.; Groussin, M.;
504 Xavier, R. J.; Alm, E. J., Adaptive Evolution within Gut Microbiomes of Healthy People. *Cell*
505 *Host Microbe* **2019**, 25, (5), 656-667 e8.

506 19. Orsi, W. D.; Magritsch, T.; Vargas, S.; Coskun, O. K.; Vuillemin, A.; Hohna, S.; Worheide, G.;
507 D'Hondt, S.; Shapiro, B. J.; Carini, P., Genome Evolution in Bacteria Isolated from Million-
508 Year-Old Subseafloor Sediment. *mBio* **2021**, 12, (4), e0115021.

509 20. Costea, P. I.; Munch, R.; Coelho, L. P.; Paoli, L.; Sunagawa, S.; Bork, P., metaSNV: A tool for
510 metagenomic strain level analysis. *PLoS One* **2017**, 12, (7), e0182392.

511 21. Eren, A. M.; Esen, O. C.; Quince, C.; Vineis, J. H.; Morrison, H. G.; Sogin, M. L.; Delmont, T. O., Anvi'o: an advanced analysis and visualization platform for 'omics data. *PeerJ* **2015**, 3, e1319.

512 22. Sjoqvist, C.; Delgado, L. F.; Alneberg, J.; Andersson, A. F., Ecologically coherent population
513 structure of uncultivated bacterioplankton. *Isme J* **2021**, 15, (10), 3034-3049.

514 23. Kiefl, E.; Esen, O. C.; Miller, S. E.; Kroll, K. L.; Willis, A. D.; Rappé, M. S.; Pan, T.; Eren, A. M., Structure-informed microbial population genetics elucidate selective pressures that shape
515 protein evolution. *bioRxiv* **2022**, 2022.03.02.482602.

516 24. Bendall, M. L.; Stevens, S. L.; Chan, L. K.; Malfatti, S.; Schwientek, P.; Tremblay, J.;
517 Schackwitz, W.; Martin, J.; Pati, A.; Bushnell, B.; Froula, J.; Kang, D.; Tringe, S. G.;
518 Bertilsson, S.; Moran, M. A.; Shade, A.; Newton, R. J.; McMahon, K. D.; Malmstrom, R. R.,
519 Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations.
520 *Isme J* **2016**, 10, (7), 1589-601.

521 25. Schloissnig, S.; Arumugam, M.; Sunagawa, S.; Mitreva, M.; Tap, J.; Zhu, A.; Waller, A.;
522 Mende, D. R.; Kultima, J. R.; Martin, J.; Kota, K.; Sunyaev, S. R.; Weinstock, G. M.; Bork, P.,
523 Genomic variation landscape of the human gut microbiome. *Nature* **2013**, 493, (7430), 45-50.

524 26. Starnawski, P.; Bataillon, T.; Ettema, T. J.; Jochum, L. M.; Schreiber, L.; Chen, X.; Lever, M. A.;
525 Polz, M. F.; Jorgensen, B. B.; Schramm, A.; Kjeldsen, K. U., Microbial community
526 assembly and evolution in subseafloor sediment. *Proc Natl Acad Sci U S A* **2017**, 114, (11),
527 2940-2945.

528 27. Anderson, R. E.; Reveillaud, J.; Reddington, E.; Delmont, T. O.; Eren, A. M.; McDermott, J. M.;
529 Seewald, J. S.; Huber, J. A., Genomic variation in microbial populations inhabiting the
530 marine subseafloor at deep-sea hydrothermal vents. *Nat Commun* **2017**, 8, (1), 1114.

531 28. Hoffert, M.; Anderson, R. E.; Reveillaud, J.; Murphy, L. G.; Stepanauskas, R.; Huber, J. A.,
532 Genomic Variation Influences *Methanothermococcus* Fitness in Marine Hydrothermal
533 Systems. *Front Microbiol* **2021**, 12, 714920.

534 29. Anderson, R. E.; Graham, E. D.; Huber, J. A.; Tully, B. J., Microbial populations are shaped
535 by dispersal and recombination in a low biomass subseafloor habitat. *bioRxiv* **2021**,
536 2021.02.03.429647.

537 30. Jain, C.; Rodriguez, R. L.; Phillippy, A. M.; Konstantinidis, K. T.; Aluru, S., High throughput
538 ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat Commun*
539 **2018**, 9, (1), 5114.

543 31. Olm, M. R.; Brown, C. T.; Brooks, B.; Banfield, J. F., dRep: a tool for fast and accurate
544 genomic comparisons that enables improved genome recovery from metagenomes through de-
545 replication. *Isme J* **2017**, *11*, (12), 2864-2868.

546 32. Olm, M. R.; Crits-Christoph, A.; Diamond, S.; Lavy, A.; Matheus Carnevali, P. B.; Banfield, J.
547 F., Consistent Metagenome-Derived Metrics Verify and Delineate Bacterial Species
548 Boundaries. *mSystems* **2020**, *5*, (1), e00731-19.

549 33. Rinke, C.; Chuvochina, M.; Mussig, A. J.; Chaumeil, P. A.; Davin, A. A.; Waite, D. W.;
550 Whitman, W. B.; Parks, D. H.; Hugenholtz, P., A standardized archaeal taxonomy for the
551 Genome Taxonomy Database. *Nat Microbiol* **2021**, *6*, (7), 946-959.

552 34. Parks, D. H.; Chuvochina, M.; Waite, D. W.; Rinke, C.; Skarszewski, A.; Chaumeil, P. A.;
553 Hugenholtz, P., A standardized bacterial taxonomy based on genome phylogeny substantially
554 revises the tree of life. *Nat Biotechnol* **2018**, *36*, (10), 996-1004.

555 35. Parks, D. H.; Chuvochina, M.; Rinke, C.; Mussig, A. J.; Chaumeil, P. A.; Hugenholtz, P.,
556 GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically
557 consistent, rank normalized and complete genome-based taxonomy. *Nucleic Acids Res* **2022**,
558 *50*, (D1), D785-D794.

559 36. Parks, D. H.; Chuvochina, M.; Chaumeil, P. A.; Rinke, C.; Mussig, A. J.; Hugenholtz, P., A
560 complete domain-to-species taxonomy for Bacteria and Archaea. *Nat Biotechnol* **2020**, *38*, (9),
561 1079-1086.

562 37. Chadwick, G. L.; Skennerton, C. T.; Laso-Perez, R.; Leu, A. O.; Speth, D. R.; Yu, H.; Morgan-
563 Lang, C.; Hatzenpichler, R.; Goudeau, D.; Malmstrom, R.; Brazelton, W. J.; Woyke, T.;
564 Hallam, S. J.; Tyson, G. W.; Wegener, G.; Boetius, A.; Orphan, V. J., Comparative genomics
565 reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and
566 methanogenic archaea. *PLoS Biol* **2022**, *20*, (1), e3001508.

567 38. Skennerton, C. T.; Chourey, K.; Iyer, R.; Hettich, R. L.; Tyson, G. W.; Orphan, V. J., Methane-
568 Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits
569 Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea. *mBio*
570 **2017**, *8*, (4), e00530-17.

571 39. Hoshino, T.; Doi, H.; Uramoto, G. I.; Wormer, L.; Adhikari, R. R.; Xiao, N.; Morono, Y.;
572 D'Hondt, S.; Hinrichs, K. U.; Inagaki, F., Global diversity of microbial communities in marine
573 sediment. *Proc Natl Acad Sci U S A* **2020**, *117*, (44), 27587-27597.

574 40. Parks, D. H.; Rinke, C.; Chuvochina, M.; Chaumeil, P. A.; Woodcroft, B. J.; Evans, P. N.;
575 Hugenholtz, P.; Tyson, G. W., Recovery of nearly 8,000 metagenome-assembled genomes
576 substantially expands the tree of life. *Nat Microbiol* **2017**, *2*, (11), 1533-1542.

577 41. Bouma-Gregson, K.; Crits-Christoph, A.; Olm, M. R.; Power, M. E.; Banfield, J. F.,
578 *Microcoleus* (Cyanobacteria) form watershed-wide populations without strong gradients in
579 population structure. *Mol Ecol* **2022**, *31*, (1), 86-103.

580 42. Okazaki, Y.; Nakano, S.-i.; Toyoda, A.; Tamaki, H., Long-read-resolved, ecosystem-wide
581 exploration of nucleotide and structural microdiversity of lake bacterioplankton genomes.
582 *bioRxiv* **2022**, 2022.03.23.485478.

583 43. Zhao, R.; Biddle, J. F., Helarchaeota and co-occurring sulfate-reducing bacteria in subseafloor
584 sediments from the Costa Rica Margin. *ISME Communications* **2021**, *1*, (1), 25.

585 44. Palomo, A.; Dechesne, A.; Cordero, O. X.; Smets, B. F., Evolutionary Ecology of Natural
586 Comammox Nitrospira Populations. *mSystems* **2022**, *7*, (1), e0113921.

587 45. Lopez-Perez, M.; Haro-Moreno, J. M.; Coutinho, F. H.; Martinez-Garcia, M.; Rodriguez-
588 Valera, F., The Evolutionary Success of the Marine Bacterium SAR11 Analyzed through a
589 Metagenomic Perspective. *mSystems* **2020**, *5*, (5), e00605-20.

590 46. Biddle, J. F.; Sylvan, J. B.; Brazelton, W. J.; Tully, B. J.; Edwards, K. J.; Moyer, C. L.;
591 Heidelberg, J. F.; Nelson, W. C., Prospects for the study of evolution in the deep biosphere.
592 *Front Microbiol* **2011**, *2*, 285.

593 47. Shoemaker, W. R.; Jones, S. E.; Muscarella, M. E.; Behringer, M. G.; Lehmkuhl, B. K.;
594 Lennon, J. T., Microbial population dynamics and evolutionary outcomes under extreme
595 energy limitation. *Proc Natl Acad Sci U S A* **2021**, *118*, (33), e2101691118.

596 48. Vos, M.; Didelot, X., A comparison of homologous recombination rates in bacteria and
597 archaea. *Isme J* **2009**, *3*, (2), 199-208.

598 49. Dixit, P. D.; Pang, T. Y.; Maslov, S., Recombination-Driven Genome Evolution and Stability
599 of Bacterial Species. *Genetics* **2017**, *207*, (1), 281-295.

600 50. Koskella, B.; Hall, L. J.; Metcalf, C. J. E., The microbiome beyond the horizon of ecological
601 and evolutionary theory. *Nat Ecol Evol* **2017**, *1*, (11), 1606-1615.

602 51. Ohta, T., The Nearly Neutral Theory of Molecular Evolution. *Annu Rev Ecol Evol Syst* **1992**,
603 *23*, (1), 263-286.

604 52. Nei, M.; Suzuki, Y.; Nozawa, M., The neutral theory of molecular evolution in the genomic
605 era. *Annu Rev Genomics Hum Genet* **2010**, *11*, (1), 265-89.

606 53. Coelho, L. P.; Alves, R.; Del Rio, A. R.; Myers, P. N.; Cantalapiedra, C. P.; Giner-Lamia, J.;
607 Schmidt, T. S.; Mende, D. R.; Orakov, A.; Letunic, I.; Hildebrand, F.; Van Rossum, T.;
608 Forslund, S. K.; Khedkar, S.; Maistrenko, O. M.; Pan, S.; Jia, L.; Ferretti, P.; Sunagawa, S.;
609 Zhao, X. M.; Nielsen, H. B.; Huerta-Cepas, J.; Bork, P., Towards the biogeography of
610 prokaryotic genes. *Nature* **2022**, *601*, (7892), 252-256.

611 54. Louca, S.; Jacques, S. M. S.; Pires, A. P. F.; Leal, J. S.; Srivastava, D. S.; Parfrey, L. W.;
612 Farjalla, V. F.; Doebeli, M., High taxonomic variability despite stable functional structure
613 across microbial communities. *Nat Ecol Evol* **2016**, *1*, (1), 15.

614 55. Rocha, E. P. C., Neutral Theory, Microbial Practice: Challenges in Bacterial Population
615 Genetics. *Mol Biol Evol* **2018**, *35*, (6), 1338-1347.

616 56. Orsi, W. D., Ecology and evolution of seafloor and subseafloor microbial communities. *Nat
617 Rev Microbiol* **2018**, *16*, (11), 671-683.

618 57. Merrill, B. D.; Carter, M. M.; Olm, M. R.; Dahan, D.; Tripathi, S.; Spencer, S. P.; Yu, B.; Jain,
619 S.; Neff, N.; Jha, A. R.; Sonnenburg, E. D.; Sonnenburg, J. L., Ultra-deep Sequencing of
620 Hadza Hunter-Gatherers Recovers Vanishing Microbes. *bioRxiv* **2022**, 2022.03.30.486478.

621 58. Zhao, R.; Summers, Z. M.; Christman, G. D.; Yoshimura, K. M.; Biddle, J. F., Metagenomic
622 views of microbial dynamics influenced by hydrocarbon seepage in sediments of the Gulf of
623 Mexico. *Sci Rep* **2020**, *10*, (1), 5772.

624 59. Niu, M.; Fan, X.; Zhuang, G.; Liang, Q.; Wang, F., Methane-metabolizing microbial
625 communities in sediments of the Haima cold seep area, northwest slope of the South China
626 Sea. *FEMS Microbiol Ecol* **2017**, *93*, (9).

627 60. Lu, R.; Gao, Z.-M.; Li, W.-L.; Wei, Z.-F.; Wei, T.-S.; Huang, J.-M.; Li, M.; Tao, J.; Wang, H.-
628 B.; Wang, Y., Asgard archaea in the haima cold seep: Spatial distribution and genomic insights.
629 *Deep-Sea Res Pt I* **2021**, *170*, 103489.

630 61. Li, W. L.; Dong, X.; Lu, R.; Zhou, Y. L.; Zheng, P. F.; Feng, D.; Wang, Y., Microbial ecology

631 of sulfur cycling near the sulfate-methane transition of deep-sea cold seep sediments. *Environ*
632 *Microbiol* **2021**, *23*, (11), 6844-6858.

633 62. Li, W.-L.; Wu, Y.-Z.; Zhou, G.-w.; Huang, H.; Wang, Y., Metabolic diversification of
634 anaerobic methanotrophic archaea in a deep-sea cold seep. *Mar Life Sci Tech* **2020**, *2*, (4),
635 431-441.

636 63. Uritskiy, G. V.; DiRuggiero, J.; Taylor, J., MetaWRAP-a flexible pipeline for genome-resolved
637 metagenomic data analysis. *Microbiome* **2018**, *6*, (1), 158.

638 64. Li, D.; Luo, R.; Liu, C. M.; Leung, C. M.; Ting, H. F.; Sadakane, K.; Yamashita, H.; Lam, T.
639 W., MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced
640 methodologies and community practices. *Methods* **2016**, *102*, 3-11.

641 65. Parks, D. H.; Imelfort, M.; Skennerton, C. T.; Hugenholtz, P.; Tyson, G. W., CheckM:
642 assessing the quality of microbial genomes recovered from isolates, single cells, and
643 metagenomes. *Genome Res* **2015**, *25*, (7), 1043-55.

644 66. Chaumeil, P. A.; Mussig, A. J.; Hugenholtz, P.; Parks, D. H., GTDB-Tk: a toolkit to classify
645 genomes with the Genome Taxonomy Database. *Bioinformatics* **2019**.

646 67. Zhou, Z.; Tran, P. Q.; Breister, A. M.; Liu, Y.; Kieft, K.; Cowley, E. S.; Karaoz, U.;
647 Anantharaman, K., METABOLIC: high-throughput profiling of microbial genomes for
648 functional traits, metabolism, biogeochemistry, and community-scale functional networks.
649 *Microbiome* **2022**, *10*, (1), 33.

650 68. Edgar, R. C., MUSCLE: multiple sequence alignment with high accuracy and high throughput.
651 *Nucleic Acids Res* **2004**, *32*, (5), 1792-7.

652 69. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K., MEGA X: Molecular Evolutionary
653 Genetics Analysis across Computing Platforms. *Mol Biol Evol* **2018**, *35*, (6), 1547-1549.

654 70. Letunic, I.; Bork, P., Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree
655 display and annotation. *Nucleic Acids Res* **2021**, *49*, (W1), W293-W296.

656 71. Langmead, B.; Salzberg, S. L., Fast gapped-read alignment with Bowtie 2. *Nat Methods* **2012**,
657 9, (4), 357-9.

658 72. Hyatt, D.; Chen, G. L.; Locascio, P. F.; Land, M. L.; Larimer, F. W.; Hauser, L. J., Prodigal:
659 prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics*
660 **2010**, *11*, (1), 119.

661 73. Lin, M.; Kussell, E., Inferring bacterial recombination rates from large-scale sequencing
662 datasets. *Nat Methods* **2019**, *16*, (2), 199-204.

663

664 **Acknowledgements**

665 The work was supported by the Scientific Research Foundation of Third Institute of
666 Oceanography, MNR (No. 2022025), the National Natural Science Foundation of
667 China (No. 41906076), the Science and Technology Projects in Guangzhou (No.
668 202102020970), and Guangdong Basic and Applied Basic Research Foundation (No.
669 20201910240000691).

670 **Author contributions**

671 XD, ZS and CRJH designed this study. XD and YP performed analysis. XD, YP, MW,
672 LW, WW, KJ and CG interpreted the data. YW, XX, JL and CRJH contributed to data
673 collection. XD, YP and LW wrote the paper, with input from other authors.

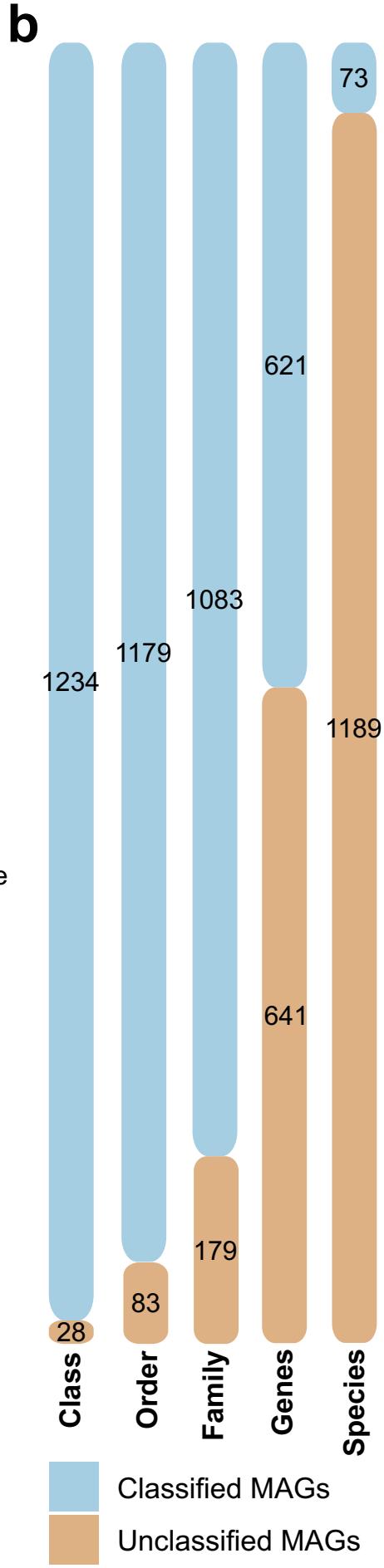
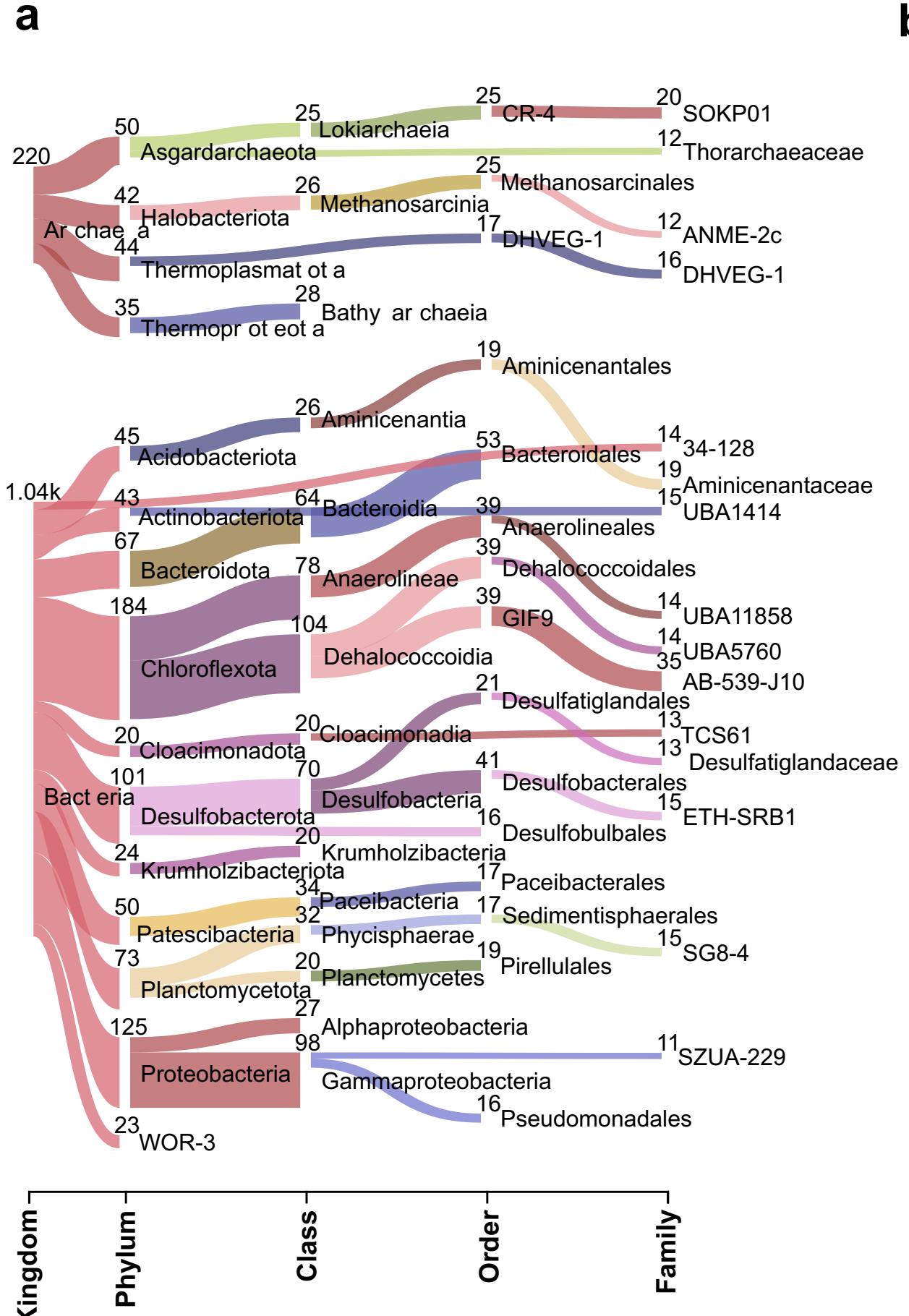
674 **Conflict of interest**

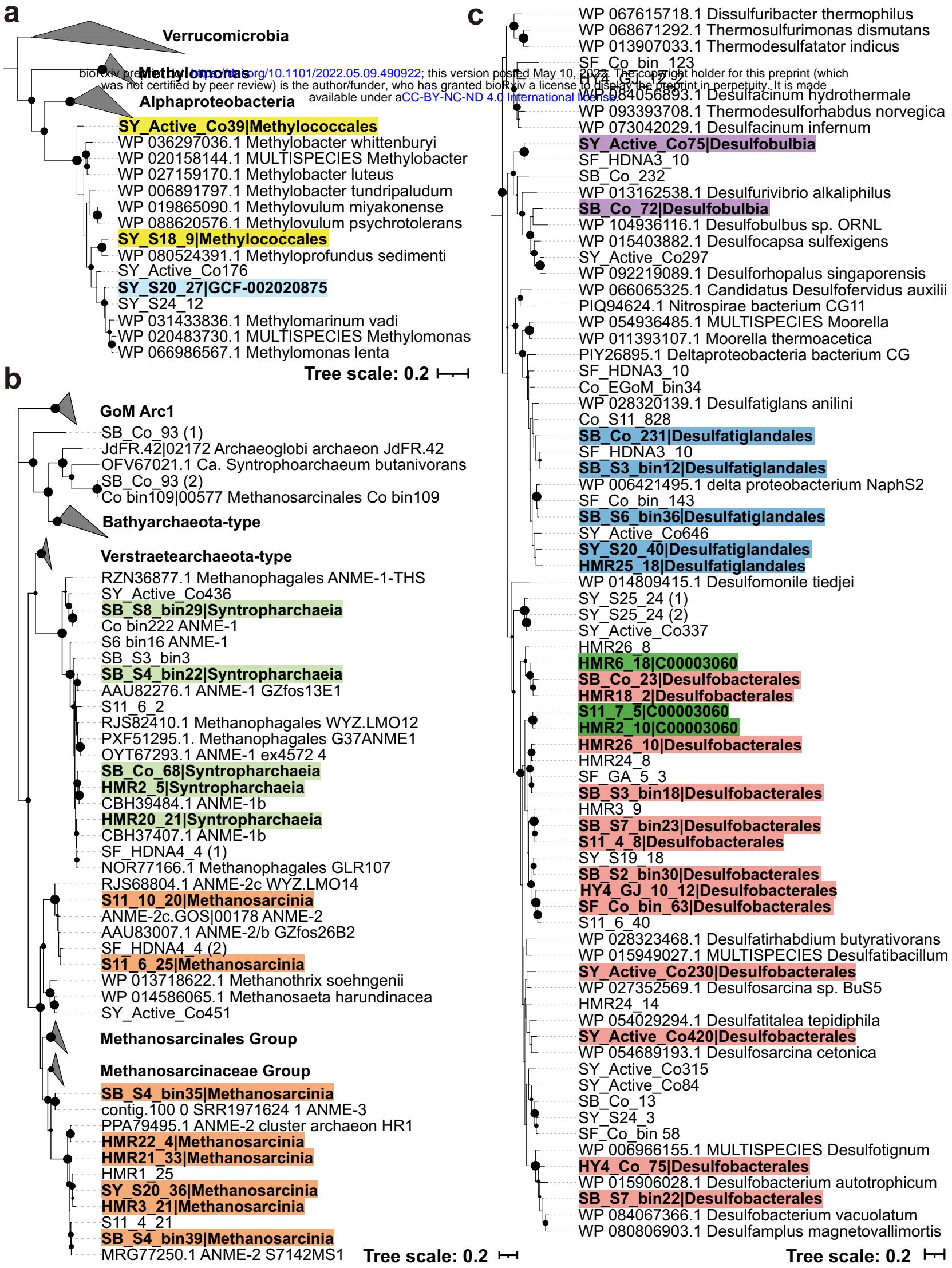
675 The authors declare no conflict of interest.

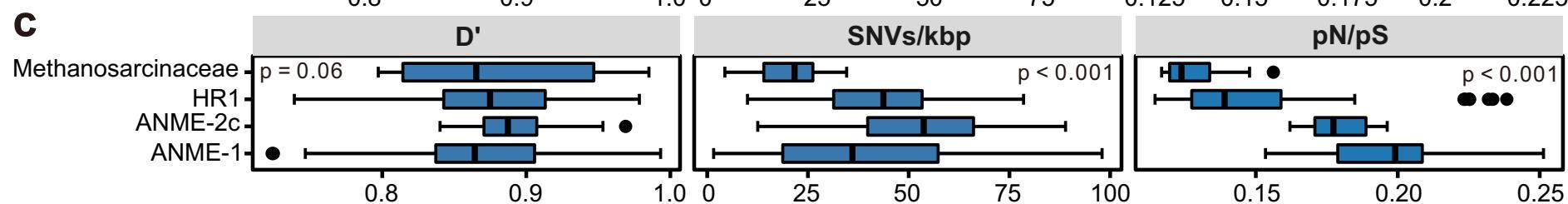
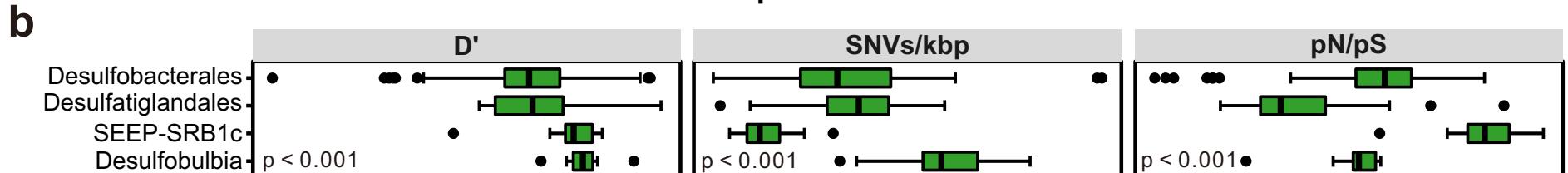
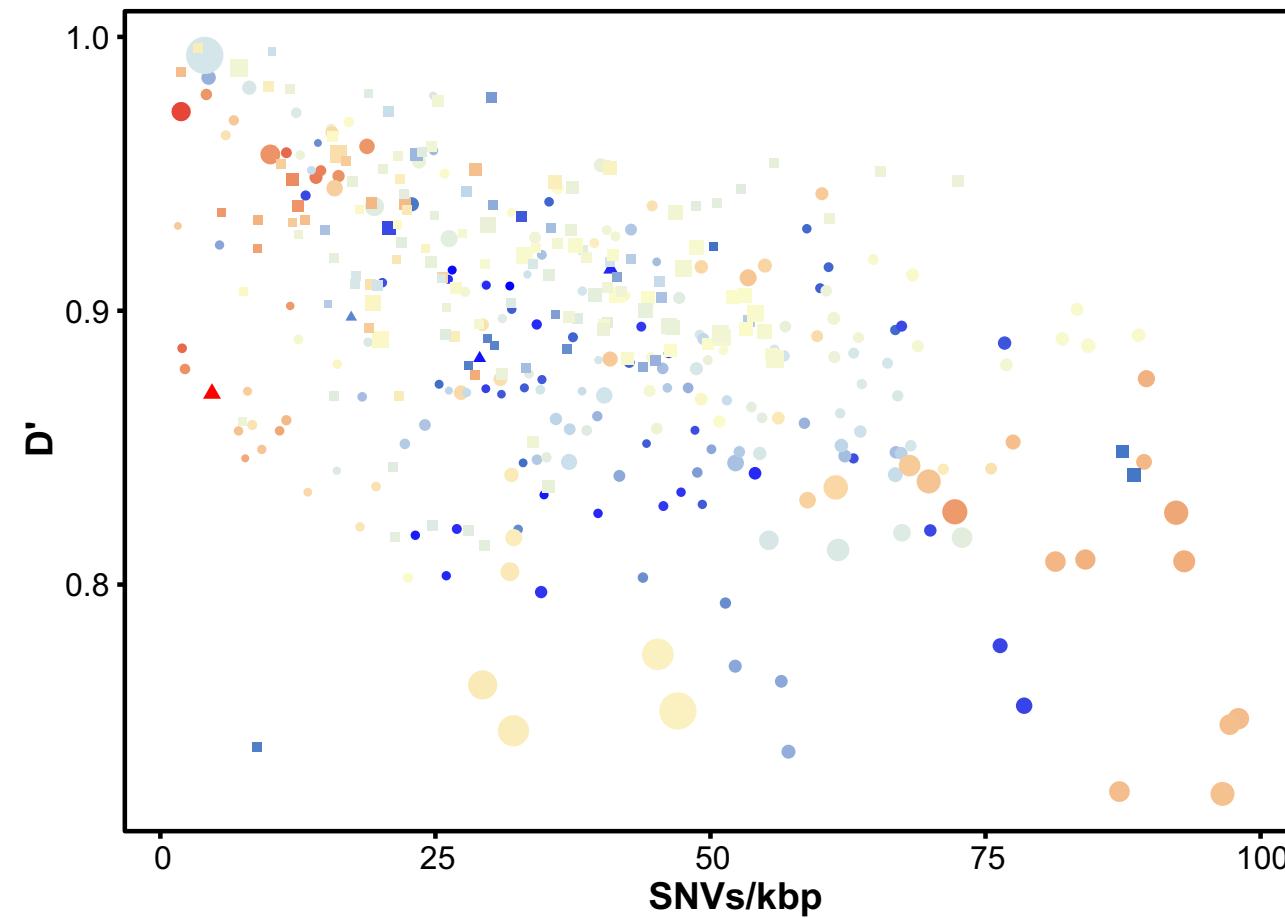
676 **Figure legends**

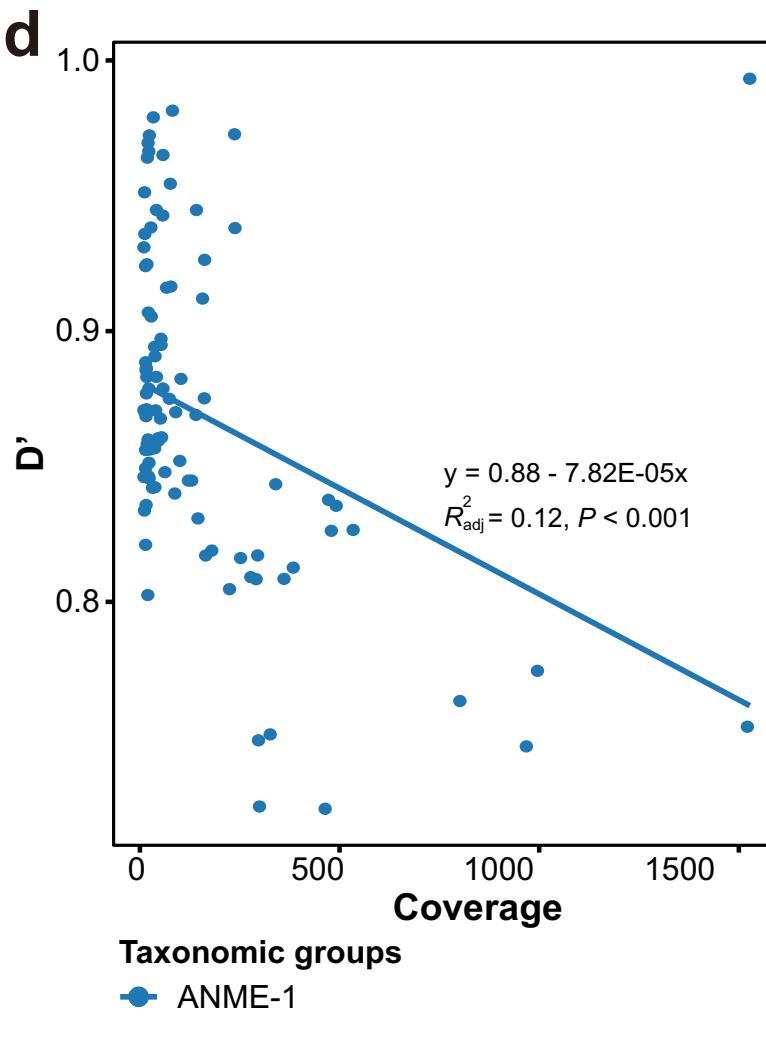
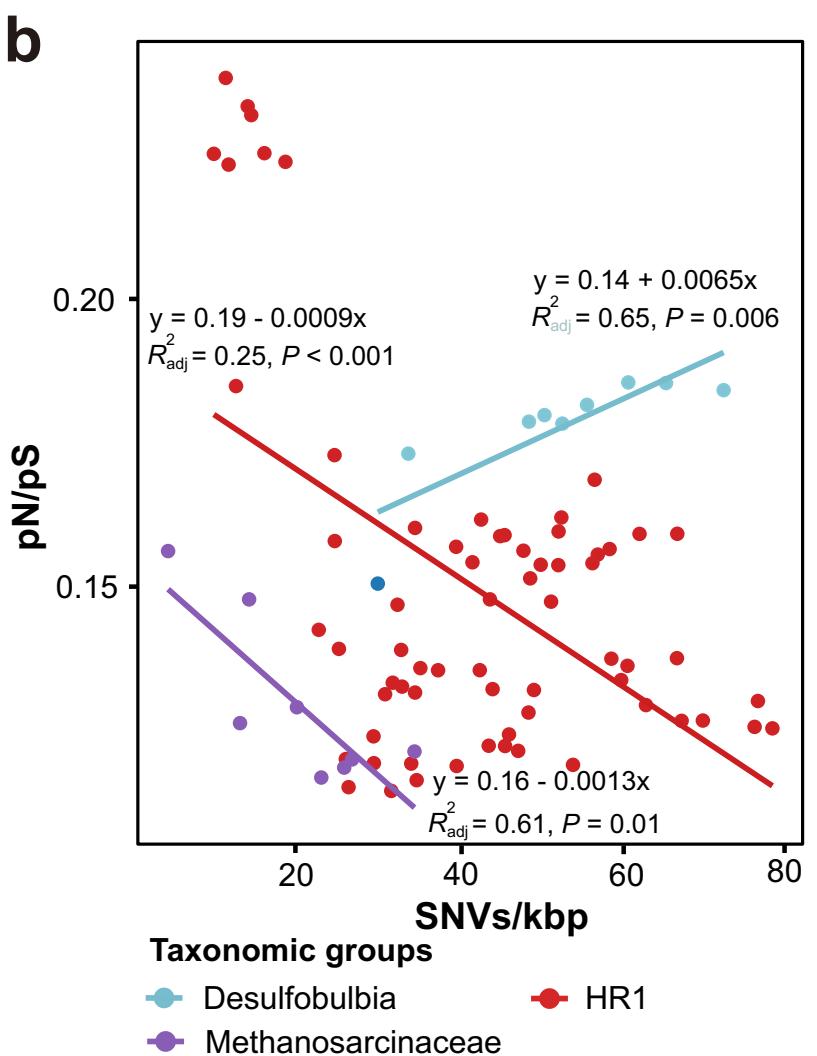
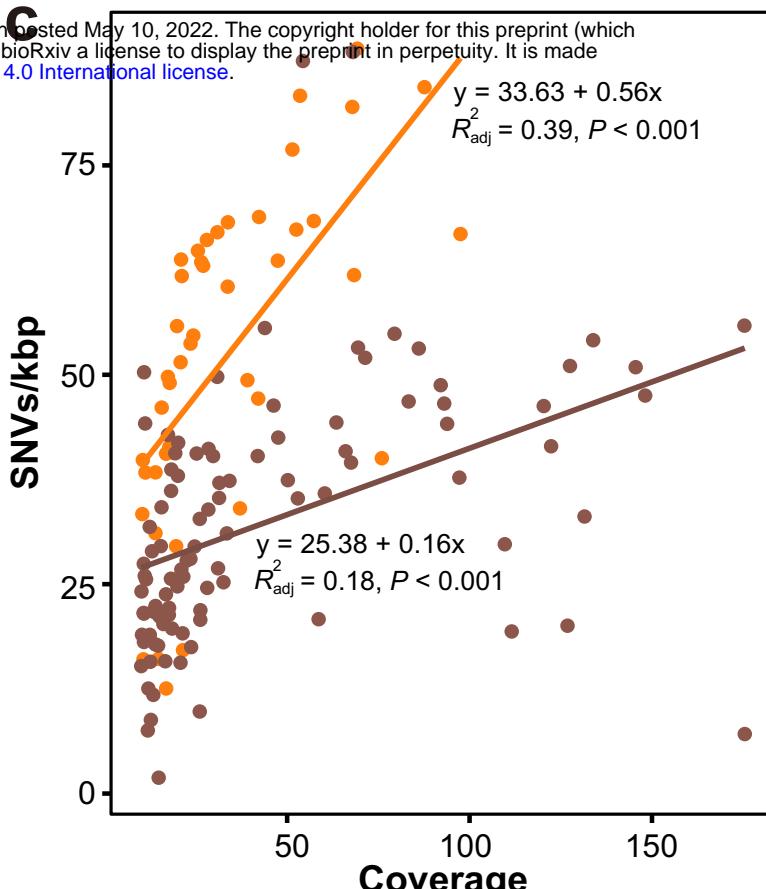
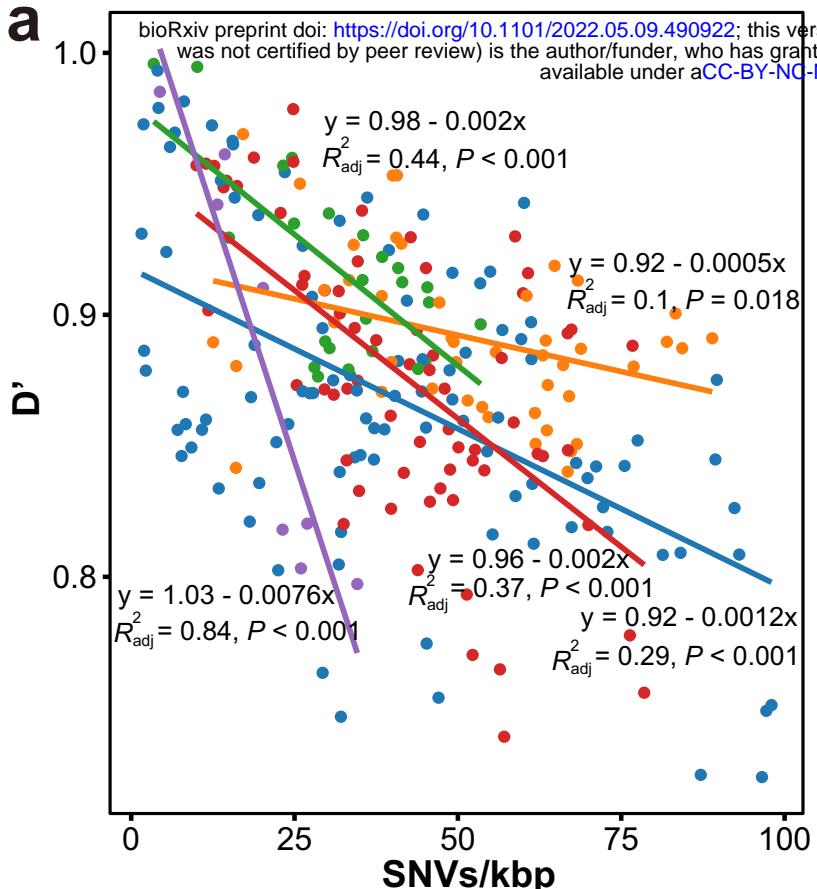
677 **Figure 1. Classification of species-level MAGs recovered from global cold seep**
678 **sediments.** (a) Sankey based on assigned GTDB taxonomy showing recovered
679 archaeal and bacterial MAGs at different phylogenetic levels. Numbers indicate the
680 number of MAGs recovered for the lineage. (b) Total MAGs unclassified by GTDB-
681 Tk at each taxonomic level. MAGs were dereplicated at species level (i.e., 95% ANI).
682 Detailed statistics for 1261 MAGs are provided in **Supplementary Table 2**.

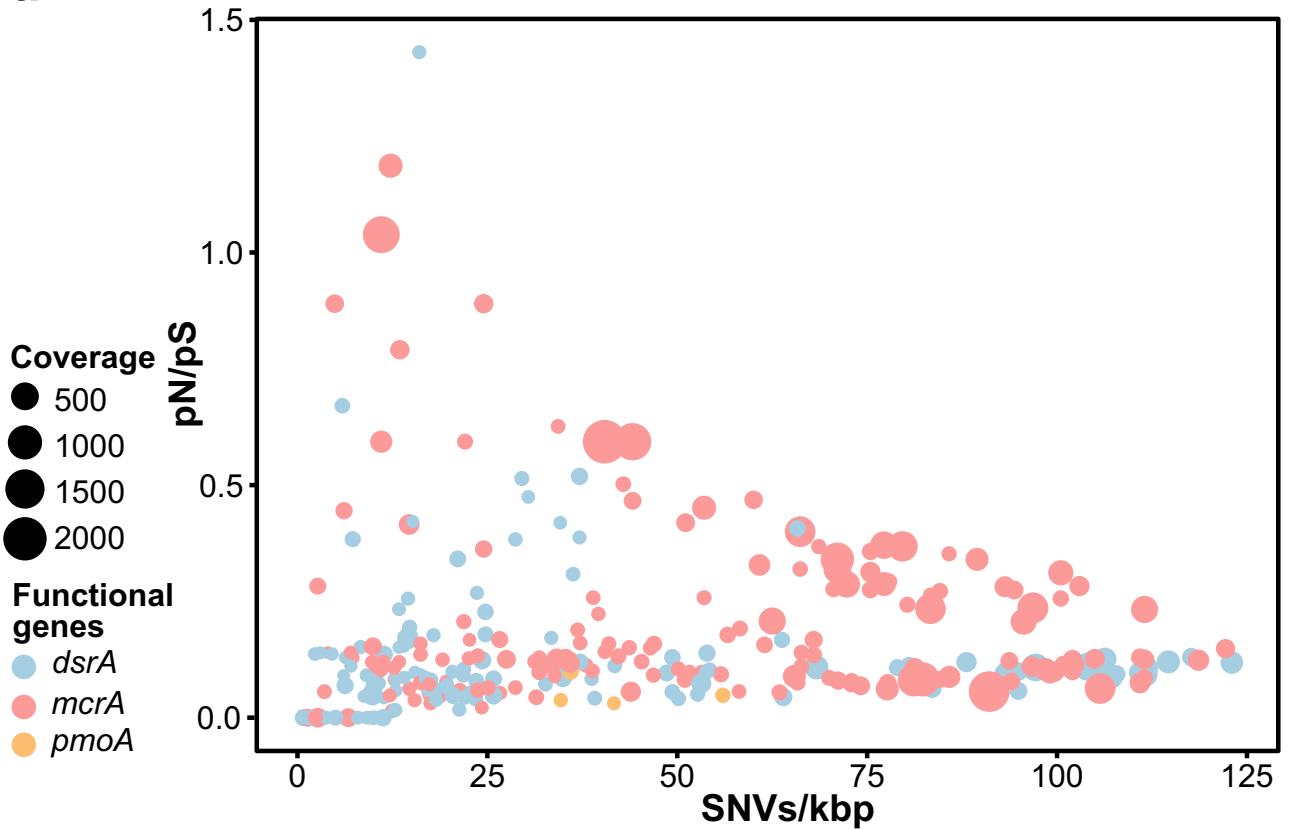
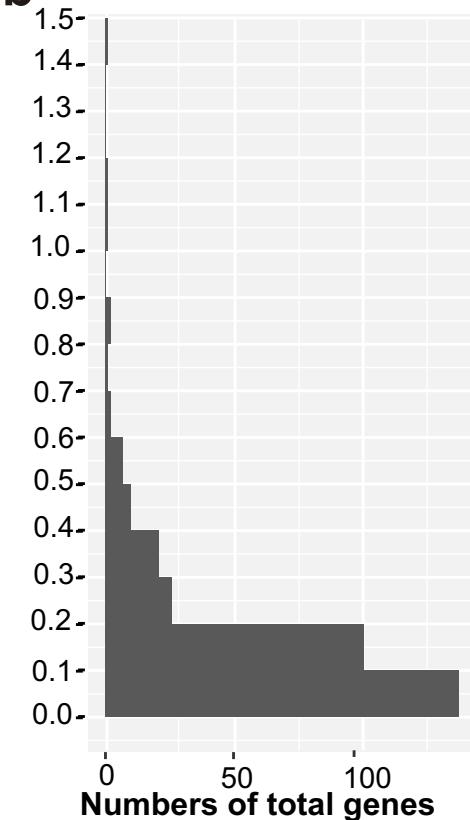
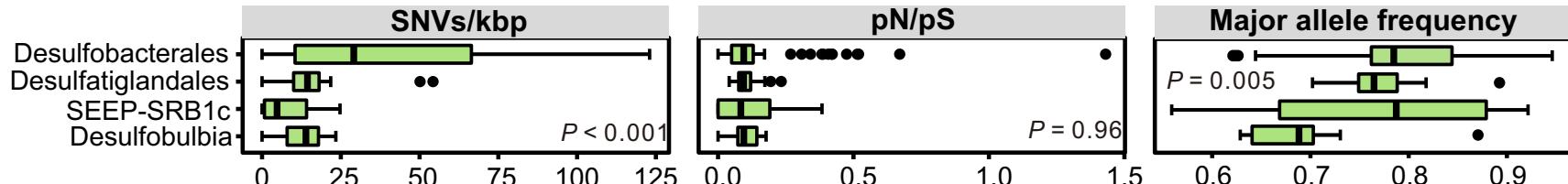
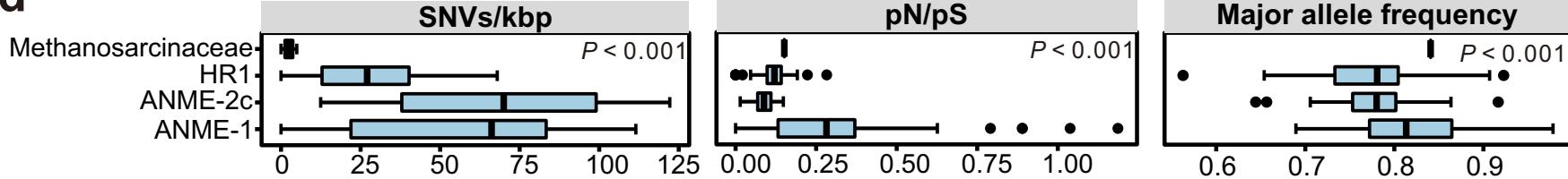
683 **Figure 2. Maximum-likelihood phylogenetic trees of three key functional genes in**
684 **cold seep sediments.** Phylogenetic trees are based on alignments of amino-acid
685 sequences of (a) PmoA, (b) McrA and (c) DsrA protein sequences. The sequences
686 from the same taxonomic groups are highlighted in the same colors. Black dots
687 indicate bootstrap values 50-100%. Scale bars indicate the average number of
688 substitutions per site. Detailed annotations of species-cluster representative MAGs are
689 provided in **Supplementary Table 3**.

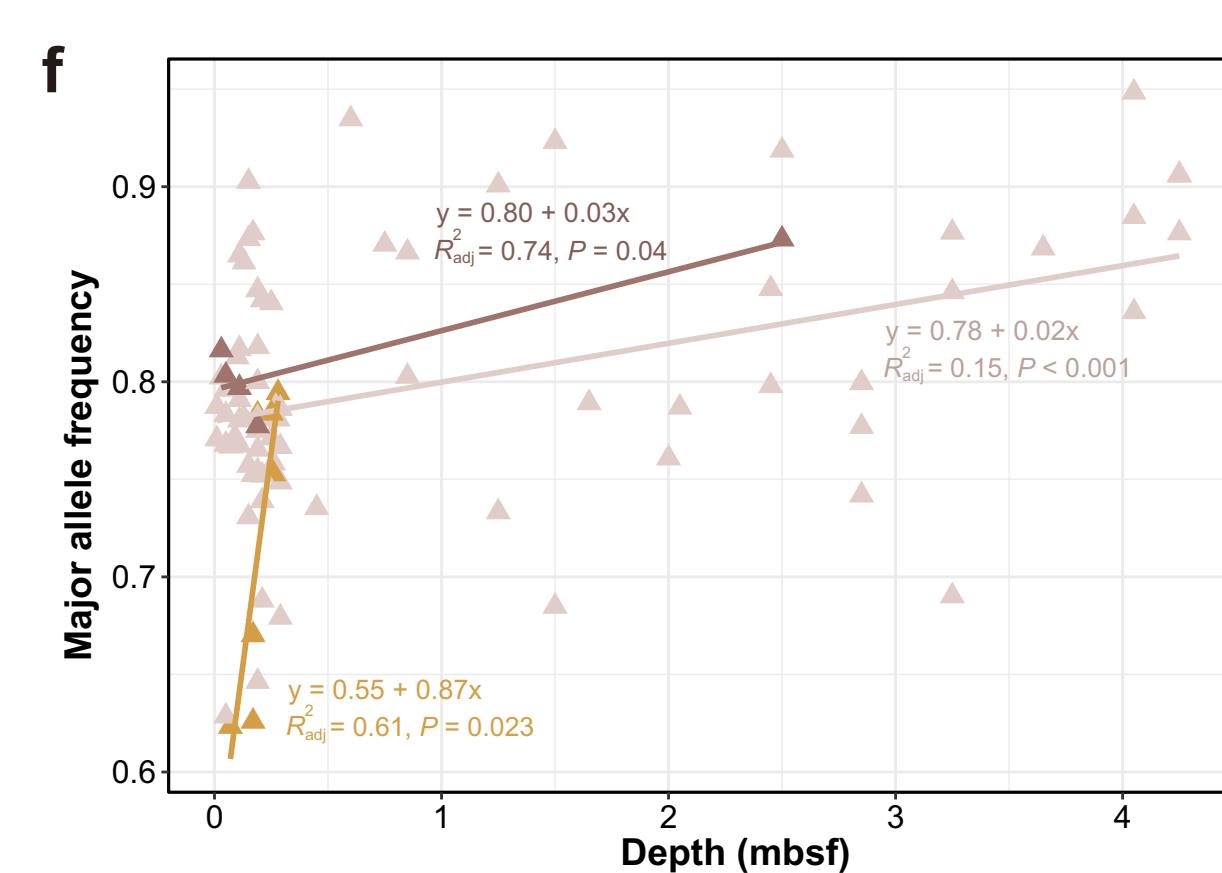
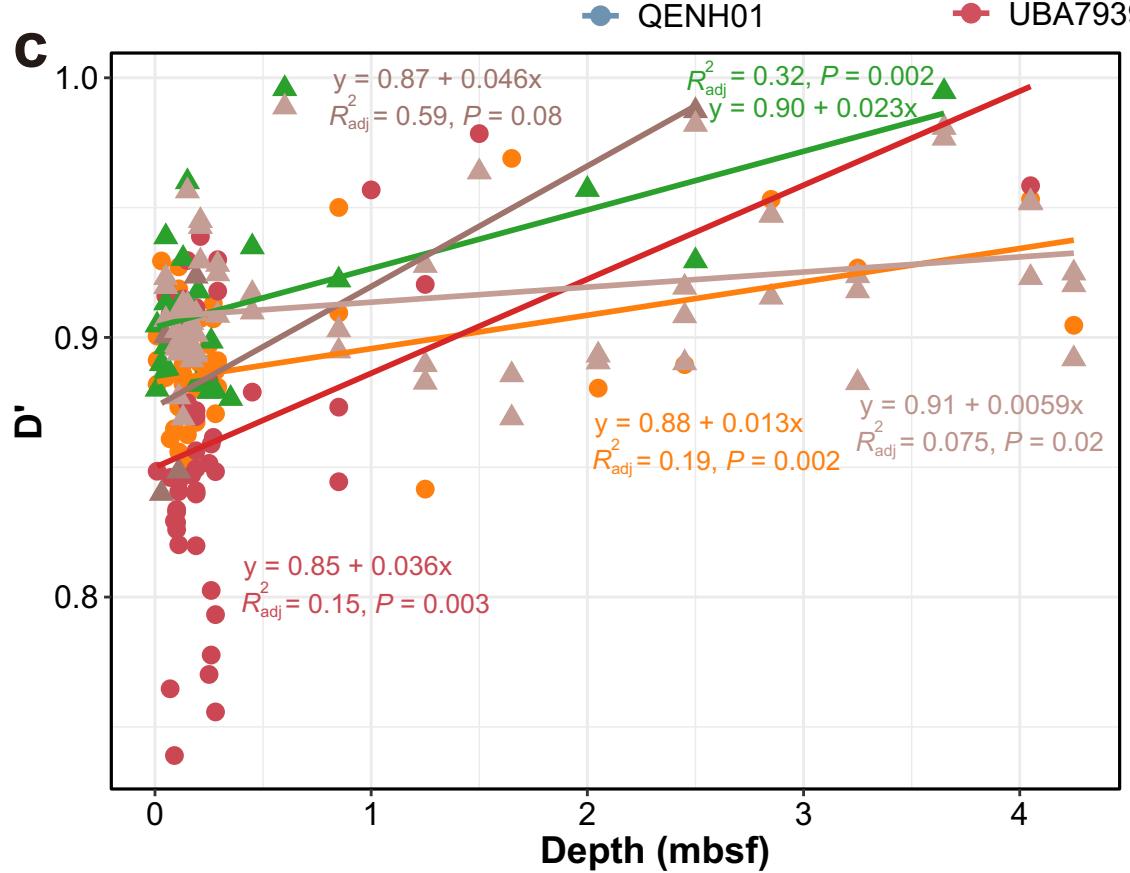
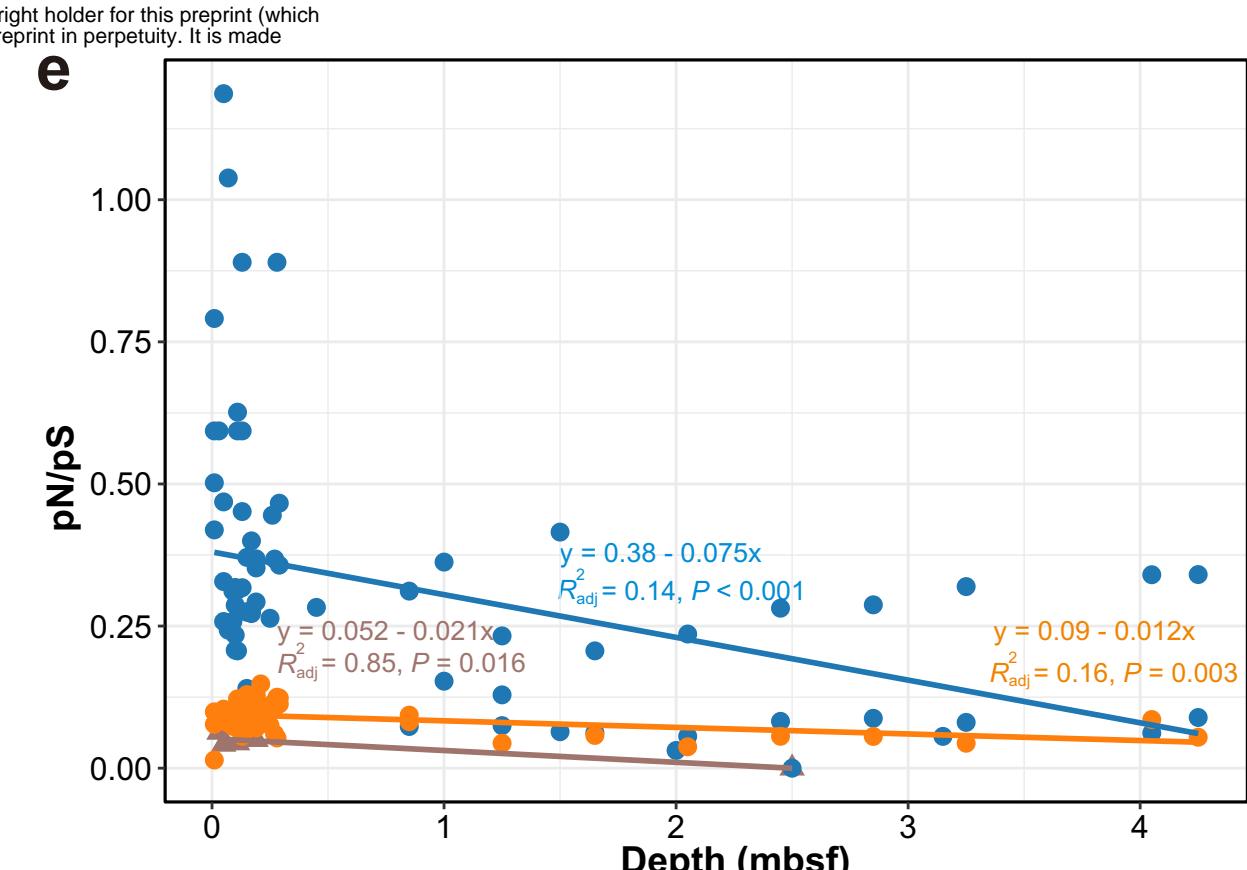
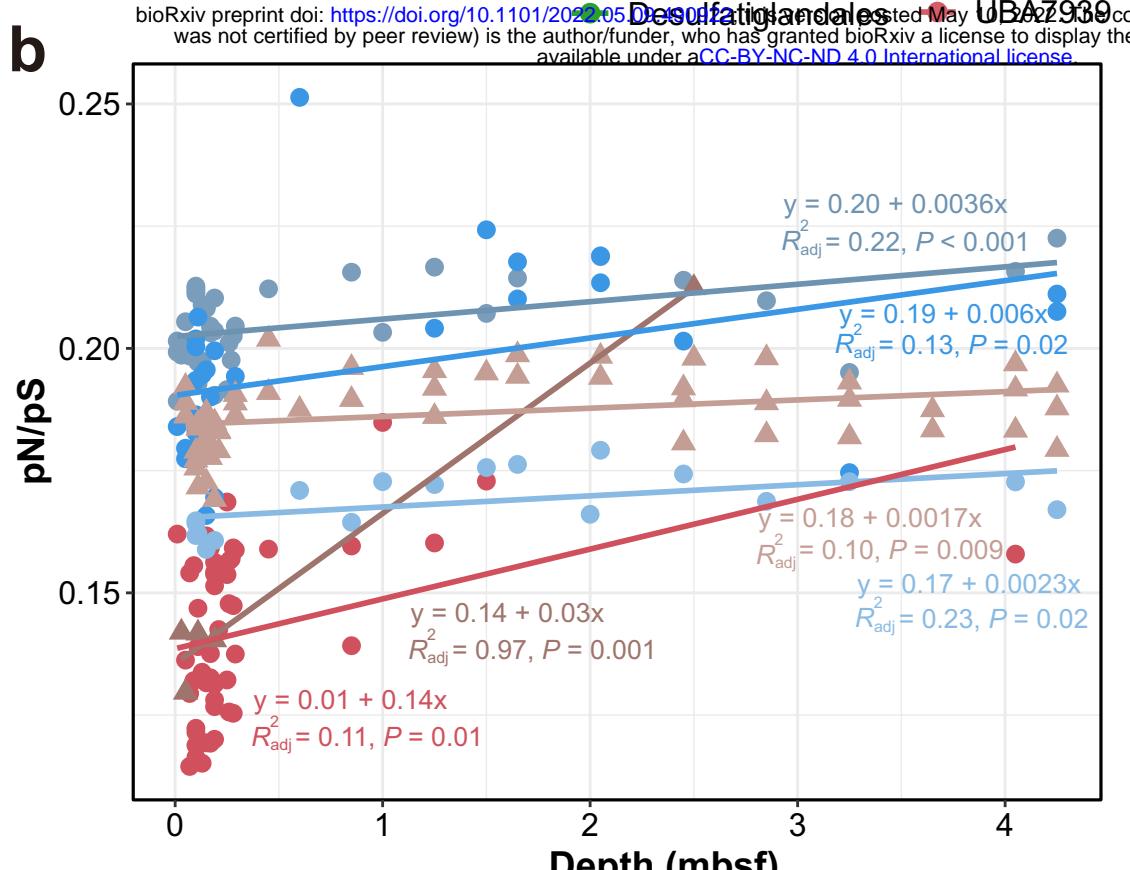
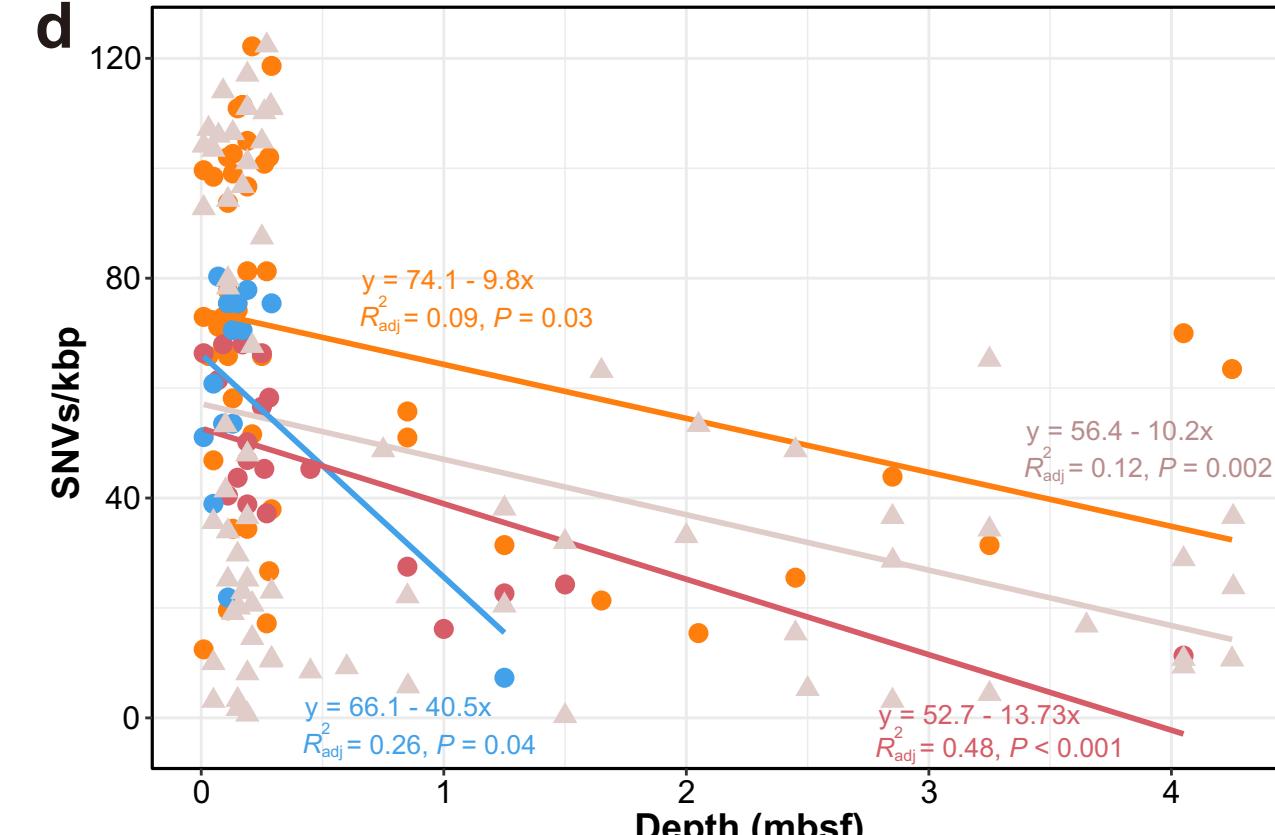
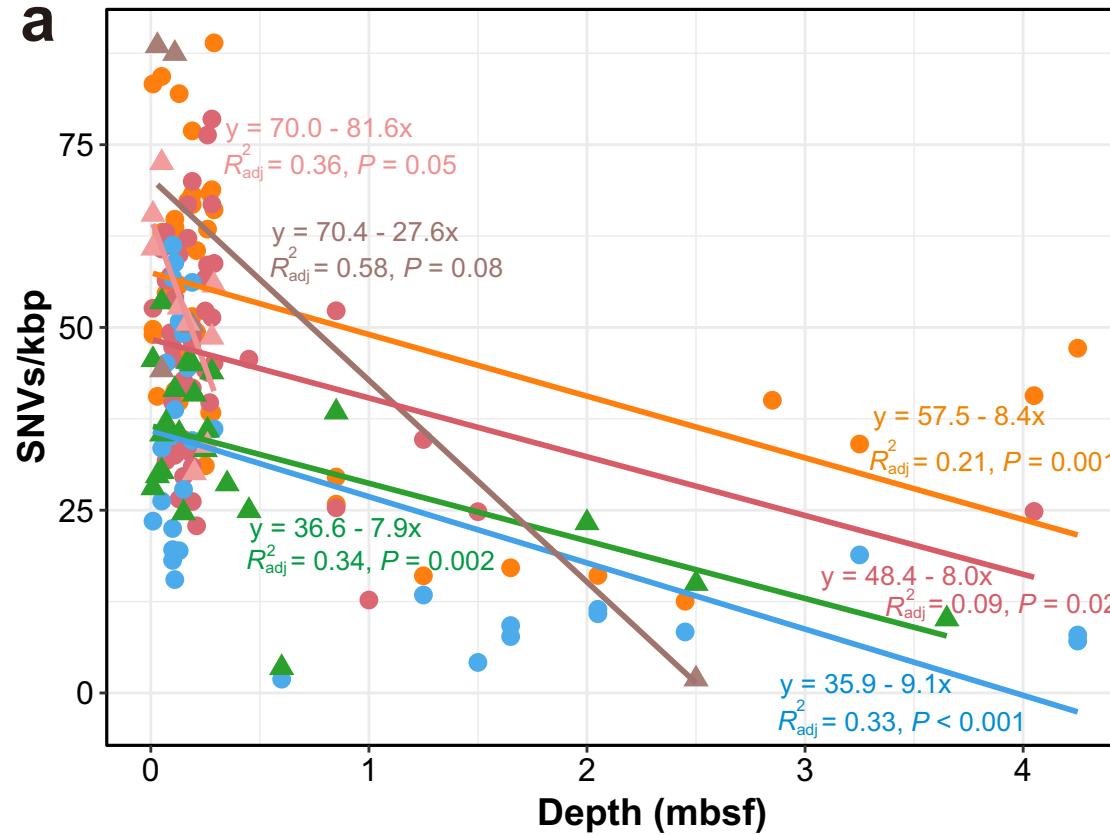


690 **Figure 3. Genome-wide evolutionary metrics of three key functional microbial**
691 **groups in cold seep sediments.** (a) Relationships between SNV density (SNVs/kbp),
692 linkage disequilibrium (D'), the ratio of nonsynonymous to synonymous
693 polymorphisms (pN/pS ratio), and genome coverage at genome level. Each dot
694 represents one species-level microbial population. (b)-(c) Box plots showing
695 comparison of SNV density, D' and pN/pS of sulfate-reducing bacteria and anaerobic
696 methanotrophic archaea across different taxonomic groups. P-values of differences
697 across different taxonomic groups were calculated using Kruskal-Wallis rank sum test.
698 Source data is available in **Supplementary Table 5**.


699 **Figure 4. Genome-wide comparison of evolutionary metrics for microbial**
700 **populations in cold seep sediments.** (a)-(b) D' and pN/pS ratio in relation to SNV
701 density. (c)-(d) SNV density and D' in relation to genome coverage. Each dot
702 represents one species-level microbial population. Linear regressions and R^2 values




703 are indicated for different taxonomic groups. Detailed statistics for linear regressions
704 are provided in **Supplementary Table 6**.





705 **Figure 5. Gene-specific evolutionary metrics of three key functional microbial**
706 **groups in cold seep sediments.** (a) Relationships between SNV density, pN/pS and
707 gene coverage at gene level. Each dot represents one species-level microbial
708 population. (b) Frequency histogram of pN/pS. (c)-(d) Box plots showing comparison
709 of SNV density, pN/pS and major allele frequency of *dsrA* and *mcrA* genes across
710 different taxonomic groups. P-values of differences across different taxonomic groups
711 were calculated using Kruskal-Wallis rank sum test. Source data is available in
712 **Supplementary Table 8**.





713 **Figure 6. Relationships between evolutionary metrics and cold seep sediment**
714 **depths (mbsf) at the whole-genome and gene levels.** (a)-(c) Comparison of
715 SNVs/kbp, pN/pS ratio and D' against sediment depths at the whole-genome level.
716 (d)-(f) Comparison of SNVs/kbp, pN/pS ratio and major allele frequency against
717 sediment depths at the gene level. Each dot represents one species-level microbial
718 population. Linear regressions and R^2 values are indicated for different taxonomic
719 groups. Detailed statistics for linear regressions are provided in **Supplementary**
720 **Table 9**.

a**b****c****d**

