

1 Secreted cytokines provide local immune tolerance for human stem cell-derived islets

2 Gerace, Dario¹., Zhou, Quan¹, Kenty, Jennifer Hyoje-Ryu¹., Sintov, Elad¹., Wang, Xi¹., Boulanger, Kyle R¹.,

3 Li, Hongfei¹ and Melton, Douglas A^{1,*}

4 ¹Department of Stem Cell and Regenerative Biology, Harvard University, Boston MA, USA, Howard Hughes Medical

5 Institute, Harvard Stem Cell Institute

6 *Corresponding Author: Douglas A Melton

7 7 Divinity Ave, Cambridge MA 02138

8 dmelton@harvard.edu

9 Summary

10 Immunological protection of transplanted stem cell-derived islet (SC-islet) cells is yet to be achieved
11 without chronic immunosuppression or encapsulation. Existing genetic engineering approaches to
12 produce hypoimmunogenic SC-islet cells have so far shown variable results. Here, we show that
13 targeting the human leukocyte antigens (HLAs) and PD-L1 alone do not sufficiently protect SC-islet cells
14 from xeno- or allo-rejection. As an addition to these approaches, we genetically engineered SC-islet cells
15 to secrete the cytokines IL-10, TGF- β and modified IL-2 such that they promote a tolerogenic local
16 microenvironment by activating and expanding regulatory T cells (T_{reg} s). These cytokine-secreting human
17 SC-islet cells prevented xeno-rejection for up to 9 weeks post-transplantation in B6/albino mice. Thus,
18 hESCs engineered to induce a tolerogenic local microenvironment may represent a source of
19 replacement SC-islet cells that do not require encapsulation or immunosuppression for diabetes cell
20 replacement therapy.

21 Introduction

22 T1D is an autoimmune disease that results in the destruction of the insulin-producing beta cells of the
23 pancreas (Atkinson and Maclaren, 1994). Cadaveric whole pancreas or islet transplantation are
24 successful treatments for T1D; however, these are hampered by the limited number of donors and the

25 requirement for lifelong immunosuppression (Shapiro et al., 2006). To address the shortage of islet
26 material, several protocols have been developed to steer the *in vitro* differentiation of human induced
27 pluripotent stem cells (iPSCs) into functional SC-islets that include glucose-response beta cells (D'Amour
28 et al., 2006; Millman et al., 2016; Nair et al., 2019; Pagliuca et al., 2014; Rezania et al., 2014; Russ et al.,
29 2015; Veres et al., 2019).

30 Current strategies to protect allografted islet cells include encapsulation (Alagpulinsa et al., 2019;
31 Bochenek et al., 2018), modifying the patient's immune system by co-administration of biologicals such
32 as low dose IL-2 and anti-CD3 (Tepluzimab) (Hartemann et al., 2013; Herold et al., 2019), and/or
33 genetically modifying the SC-islets. Since the main contributors of immune recognition and rejection are
34 the human leukocyte antigens (HLAs), targeting the HLAs has been performed in iPSCs to reduce or
35 eliminate the immune response against foreign cells (Castro-Gutierrez et al., 2021; Deuse et al., 2019;
36 Gornalusse et al., 2017; Han et al., 2019; Harding et al., 2019; Riolobos et al., 2013; Xu et al., 2019;
37 Yoshihara et al., 2020). To date, the engineering strategies demonstrating some immune-protection of
38 SC-islet cells have employed lentiviral over-expression of PD-L1 and the selective retention of a single
39 HLA-A2 allele in HLA-B/C deficient cells (Parent et al., 2021; Yoshihara et al., 2020). However, lentiviral
40 transgene over-expression is limited by transgene silencing (Herbst et al., 2012; Wen et al., 2021), and
41 the retention of a single HLA-A2 allele on SC-islet cells may result in recurrent autoimmune rejection
42 mediated by antigen-specific and tissue-resident memory T cells (Abou-Daya et al., 2021; Monti et al.,
43 2008; Stegall et al., 1996).

44 To address the issue of transgene silencing during differentiation into SC-islet cells, we employ a
45 transgene targeting strategy that makes use of the constitutively expressed GAPDH gene in primary
46 human islets and SC-islet cells (Gerace et al., 2021; Sintov et al., 2021). We generate hypoimmunogenic
47 SC-islet cells that over-express PD-L1 and the HLA-E long-chain fusion in both HLA-competent and
48 deficient settings. In these studies, PD-L1 over-expression did not protect SC-islet cells from xeno-

49 rejection and over-expression of the HLA-E single-chain fusion was not required to inhibit primary
50 human NK cells. In addition to immune evasion, we also address immune modulation and show that
51 constitutive secretion IL-10, TGF- β and the IL-2 mutein does not impair SC-islet cell function *in vitro* and
52 does provide protection of SC-islet cells from xeno-rejection for up to 9 weeks after transplantation.
53 Thus, these immune-modulating SC-islet cells represent another step forward in providing a source of
54 islets for the treatment of T1D with the long-term aim of eliminating the need for encapsulation or
55 systemic immunosuppression.

56 *Engineering hypoimmunogenic SC-islet cells*

57 Since GAPDH is constitutively expressed in all cells of the human islet (**Figure S1A & B**), we targeted the
58 expression of PD-L1 and the HLA-E long-chain fusion to the GAPDH locus of hESCs and used
59 luminescence as a reporter of cell viability. We chose to over-express PD-L1 as it was previously shown
60 to protect SC-islet cells from xeno-rejection (Yoshihara et al., 2020), while the HLA-E long-chain fusion
61 inhibits NK cells in a HLA-deficient context (Gornalusse et al., 2017; Mattapally et al., 2018; Riolobos et
62 al., 2013; Wang et al., 2015). GAPDH-targeting plasmids were modified to include PD-L1 or HLA-E
63 (**Figures S1C-E**) and used to create five hESCs lines (**Figure 1A**) - wild-type (WT), HLA-deficient (B2M $^{-/-}$),
64 PD-L1-expressing (PD-L1) and HLA-deficient/PD-L1-expressing (B2P) and HLA-deficient/HLA-E-expressing
65 (BEC). All five gene-modified hESC lines successfully differentiated into SC- β cells with similar efficiency
66 as assessed by C-peptide and Nkx6.1 expression (**Figure 1B**). Knockout of the beta 2 microglobulin (B2M)
67 gene effectively eliminated HLA class I expression on B2M $^{-/-}$, B2P and BEC SC-islet cells. After IFN- γ
68 stimulation, HLA class I and PD-L1 were upregulated in WT SC-islet cells (Castro-Gutierrez et al., 2021),
69 whereas B2P SC-islet cells constitutively over-expressed PD-L1 and lacked HLA class I expression (**Figure**
70 **1C**). A similar expression profile of HLA-E and HLA class I expression was observed on WT and BEC SC-
71 islet cells (**Figure 1D**) (Gornalusse et al., 2017). Immunohistochemistry of magnetically-enriched SC- β

72 cells showed localization of the HLA-E long-chain fusion to the membrane of BEC SC- β cells (**Figure 1E**)
73 (Veres et al., 2019).

74 To confirm that human PD-L1 expressed on the surface of SC-islet cells binds PD-1, we assessed binding
75 of fluorescently labelled, soluble human and mouse PD-1-Fc on WT and B2P SC-islet cells (**Figure S1F**).
76 Both soluble human and mouse PD-1 bind membrane-bound PD-L1 on B2P SC-islet cells, whereas WT
77 SC-islet cells do not endogenously express sufficient levels of PD-L1 to detectably bind human or mouse
78 PD-1. We also observed a decrease in the binding affinity of soluble mouse PD-1 to human PD-L1
79 (Freeman et al., 2000). When WT, PD-L1 and B2P SC-islet cells were transplanted under the kidney
80 capsule of B6/albino mice (**Figure 1F**), all gene-modified SC-islet cells were rejected within 10 days after
81 transplantation (**Figure 1G**). These results suggest that PD-L1 over-expression is not sufficient to protect
82 HUES8-derived SC-islet cells from xeno-rejection, and that ablation of HLA expression does not improve
83 xenograft survival in our animal model of xeno-rejection.

84 *HLA-deficient SC-islet cells are resistant to allogeneic immune cell destruction in vitro*

85 We next assessed the *in vitro* survival of gene-modified SC-islet cells in co-culture with allogeneic human
86 immune cells (**Figure 2A**). In concordance with previous studies, NK cells and CD4 $^{+}$ and CD8 $^{+}$ T cells
87 represented ~8, 35 and 10% of enriched PBMCs respectively (**Figure S2A & B**) (Kleiveland, 2015). When
88 SC-islet cells were pre-treated with IFN- γ and co-cultured with human PBMCs at multiple effector:target
89 ratios, B2M $^{-/-}$ and BEC SC-islet cells demonstrated significantly improved survival in comparison to WT
90 (**Figures 2B & C**). HLA-E over-expression did not provide additional protective benefit. Additionally,
91 similar survival patterns were observed when SC-islet cells were co-cultured with purified CD8 $^{+}$ and CD4 $^{+}$
92 T cells (**Figures S2C-F**). In all co-culture assays, there was no significant difference in the survival of all
93 gene-modified SC-islet cells cultured with CD3/CD28 activated cells.

94 Since expression of T cell co-activating and co-inhibitory ligands dictates T cell function and is regulated
95 by various stimuli including IFN- γ stimulation (Chen and Flies, 2013), we performed bulk RNA sequencing
96 on WT CD49a $^+$ SC- β cells and assessed T cell ligand expression after IFN- γ stimulation (**Figure 2D**). As
97 expected, IFN- γ stimulation upregulated the T cell co-inhibitory ligands *PD-L1* and *LGALS9* (galectin 9) in
98 SC- β cells (**Figure 2E**) (Garcia-Diaz et al., 2017; Imaizumi et al., 2002). Conversely, while we did not
99 detect transcripts for many T cell co-activating ligands other than HLA genes, we found that IFN- γ
100 stimulation upregulated members of the TNF receptor superfamily *HVEM* (TNF Receptor Superfamily
101 Member 14) and *CD40* (Tumor Necrosis Factor Receptor Superfamily Member 5) in SC- β cells (**Figure 2F**)
102 (Benci et al., 2016; Wagner et al., 2002). Interestingly, *BNT3A1* (butyrophilin subfamily 3 member A1),
103 which is an MHC-associated gene that regulates T cell activation and proliferation (Rigau et al., 2020),
104 was also upregulated. These results suggest that in the absence of classical HLA-TCR signaling due to
105 HLA knockout, other co-stimulatory and co-inhibitory T cell ligands are expressed in SC- β cells that may
106 influence T cell function.

107 *HLA-deficient SC-islet cells are resistant to allogeneic NK cell destruction in vitro and in vivo*
108 We next assessed the effect of HLA deletion and HLA-E over-expression on NK cell function against SC-
109 islet cells. When co-cultured with NK92mi cells, BEC SC-islet cells showed no significant difference in
110 survival in comparison to WT SC-islet cells, whereas HLA-deficient SC-islet cells were susceptible to
111 NK92mi cytotoxicity (**Figure S3A**) (Gornalusse et al., 2017). The strong protective effect of HLA-E against
112 NK92mi cells is likely due to the high percentage (~96.1%) of NKG2A $^+$ /NKG2C $^+$ cells (**Figure S3B**), which
113 biases NK cell inhibition.

114 While NK cell lines are useful tools for assessing NK cell cytotoxicity, they do not accurately recapitulate
115 primary NK cell receptor expression and function. Previous studies have shown that in the absence of IL-
116 2 activation, human NK cells do not destroy HLA-deficient endothelial cells and platelets (Deuse et al.,

117 2021; Suzuki et al., 2020). Thus, prior to co-culture with gene-modified SC-islet cells, we pre-activated
118 human NK cells with IL-2 for 5 days as previously described (Deuse et al., 2021). Enriched NK cells
119 consisted of ~80% CD56^{dim} and ~5% CD56^{high} NK cells (**Figure S3C & D**). Surprisingly, despite IL-2 pre-
120 activation, we observed no significant difference in survival between gene-modified SC-islet cells at
121 multiple effector:target ratios (**Figure 2G**). Since HLA-E over-expression does not provide any additional
122 protective benefit to HLA-deficient SC-islet cells against NK cell cytotoxicity, we chose to interrogate WT
123 and B2M^{-/-} SC-islet cells moving forward. We assessed the survival of WT and B2M^{-/-} SC-islet cells after
124 transplantation with IL-2 pre-activated NK cells in Scid/beige mice (**Figure 2H**). Again, there was no
125 significant difference in WT and B2M^{-/-} SC-islet cell survival *in vivo* (**Figure 2I & S3E**). Taken together,
126 these results suggest that HLA-deficient SC-islet cells are intrinsically resistant to NK cell cytotoxicity and
127 that their survival *in vitro* is recapitulated *in vivo*.

128 *Exclusively, SC- β cells intrinsically possess and sustain an NK cell evasive ligand profile after*
129 *inflammatory stimulus*

130 Since NK cell function is dictated by a balance of inhibitory and activating signals, we compared the
131 ligand profile of CD49a⁺ SC- β cells to stem cell-derived endothelial (SC-endo) cells. We chose endothelial
132 cells as a comparative cell type because it has previously been shown that HLA-deficient endothelial cells
133 are susceptible to pre-activated NK cells (Deuse et al., 2021). Endothelial cell differentiation resulted in
134 >95% CD31⁺ SC-Endo cells derived from both WT and B2M^{-/-} hESCs (**Figures S3F & G**). Bulk RNA
135 sequencing and transcript analysis of NK cell ligands in SC- β and SC-endo cells confirmed that SC-endo
136 cells possess an activating NK cell ligand profile, characterized by expression of *MICA*, *MICB*, *ULBP1*,
137 *ULBP2* and *RAET1G*, whereas transcripts for these genes could not be detected in SC- β cells (**Figures 3A**
138 **& B**). Importantly, we found that the expression of most NK cell ligands is not IFN- γ regulated, except for
139 the HLA molecules. Thus, within an HLA-deficient context, the expression of non-HLA NK cell ligands is
140 stable following an inflammatory stimulus. We confirmed the bulk RNA sequencing analysis of NK cell

141 ligand expression by flow cytometry, which showed that MIC and ULBP proteins were either absent or
142 less expressed on SC- β cells (**Figure 3C & D**). Taken together these data suggest that SC- β cells
143 intrinsically possess and sustain a diminished NK cell activating ligand profile after inflammatory
144 stimulus, and that this ligand phenotype may explain their resistance to IL-2 pre-activated NK cell
145 cytotoxicity.

146 *HLA-deficient SC-islet cells reverse diabetes in humanized mice and demonstrate delayed graft rejection*
147 Having demonstrated that HLA-deficient SC-islet cells resist PBMC cytotoxicity *in vitro* and NK cell
148 cytotoxicity *in vitro* and *in vivo*, we assessed the survival of HLA-deficient SC-islet cells in diabetic, NSG-
149 DKO mice prior to PBMC injection (**Figure 3E**). By 10 weeks post-transplantation there was no significant
150 difference in blood glucose levels of mice transplanted with WT and B2M^{-/-} SC-islet cells (**Figure 3F**).
151 Once blood glucose levels had been normalized by the SC-islet transplants, we injected HLA-A2⁻ (mis-
152 matched) PBMCs and assessed allograft rejection by monitoring blood glucose levels. WT SC-islet cells
153 were destroyed within 2 weeks, whereas the rejection of B2M^{-/-} SC-islet cells was delayed. At 7 weeks
154 post-PBMC injection, *in vivo* GSIS assay showed that animals transplanted with WT SC-islet cells lost *in*
155 *vivo* graft function, while some graft function was observed in animals transplanted with B2M^{-/-} SC-islet
156 cells (**Figure 3G**). These results suggest that B2M^{-/-} SC-islet cells reverse diabetes and demonstrate
157 delayed allograft rejection, however it is likely that they would ultimately be completely rejected.

158 *Cytokine-secreting SC- β cells induce a local tolerogenic microenvironment that protects against xeno-
159 rejection*

160 As a result of the varying success of immune-evasive engineering to protect SC-islet cells, we pursued a
161 complementary strategy by engineering SC-islet cells to secrete the cytokines IL-2 mutein, TGF- β and IL-
162 10 as vehicles of localized immune (**Figures 4A**). The IL-2 mutein (N88D) possesses reduced affinity for
163 the IL-2R $\beta\gamma$ receptor, resulting in the production of a T_{reg}-selective molecule that preferentially expands

164 T_{reg} s while having a minimal effect on CD4 $^{+}$ and CD8 $^{+}$ memory T cells (Khoryati et al., 2020; Peterson et
165 al., 2018). Since the immune-suppressive phenotype of T_{reg} s requires IL-10 and TGF- β , we included these
166 two cytokines in our immune-tolerizing construct (Horwitz et al., 2008).

167 Differentiation of this genetically-modified cell line, called 2B10, resulted in ~30% Nkx6.1 $^{+}$ /C-peptide $^{+}$
168 SC- β cells (**Figure 4B**) with physiological function as assessed *in vitro* by GSIS (**Figure 4C**). We also
169 confirmed that 2B10 SC-islet cells secrete modified IL-2, TGF- β and IL-10, and that the quantity was cell-
170 concentration dependent (**Figure 4D**). When WT and 2B10 SC-islet cells were co-cultured with human
171 PBMCs *in vitro*, 2B10 SC-islet cells showed significantly improved survival (**Figure 4E**). Notably, 2B10 SC-
172 islet cells transplanted under the kidney capsule of B6/albino mice survived up to 9 weeks post-
173 transplantation, while WT SC-islet cell were destroyed within 2 weeks (**Figures 4F & G**). Furthermore, we
174 found that WT grafts contained little to no remaining SC-islet cells, while 2B10 grafts contained surviving
175 insulin-producing cells and T_{reg} s localized within the graft (**Figure 4H**). Collectively, these data suggest
176 that SC-islet cells can be engineered to co-secrete immune-modulatory cytokines that induce a
177 tolerogenic local microenvironment characterized by T_{reg} cell infiltration that sustains xenograft survival.

178 Discussion

179 The utility of an immune-evasive/tolerogenic islet cell replacement therapy relies on the ability to
180 maintain transgene expression throughout cell differentiation and after transplantation. Thus, to
181 analyze the effect of various gene-editing strategies for the immune protection of SC-islet cells, we
182 engineered SC-islet cells to constitutively express tolerogenic molecules including PD-L1 (Castro-
183 Gutierrez et al., 2021; Yoshihara et al., 2020) and the HLA-E long-chain fusion (Gornalusse et al., 2017)
184 from the *GAPDH* locus, both in a HLA-competent and HLA-deficient background. We report the lack of a
185 xeno-protective effect of PD-L1 over-expression in SC-islet cells. This may be explained by species-
186 specific differences in PD-L1/PD-1 binding (Viricel et al., 2015), and the fact that human and mouse PD-1

187 share only 60% homology at the amino acid level (Finger et al., 1997). In fact, we observed decrease
188 binding of soluble mouse PD-1 to human PD-L1 expressed on SC-islet cells. While these results suggest
189 that over-expression of human PD-L1 is not sufficient to overcome xeno-rejection, PD-L1 over-
190 expression may still be useful in an allogeneic setting.

191 In concordance with previous studies, HLA-deficient SC-islet cells were resistant to PBMC cytotoxicity *in*
192 *vitro* (Han et al., 2019; Leite et al., 2022). We also found that SC- β cells modulate their T cell ligand
193 profile in response to partial inflammatory stimulus. While we and others have attempted to exploit the
194 PD-L1/PD-1 T cell signaling axis to engineer immune-evasive SC-islet cells (Yoshihara et al., 2020), our
195 transcript analysis of T cell ligands in SC- β cells suggests that exploiting the LGALS9/TIM-3 signaling axis
196 may also be of interest. In fact, like *PD-L1*, *LGALS9* is frequently upregulated in cancer cells where it
197 contributes to tumor progression by inhibition of T cell function (Heusschen et al., 2013; Yang et al.,
198 2021). Additionally, we identified the T cell activating ligands *HVEM*, *CD40* and *BTN3A1* as potential
199 targets to knock-out in SC-islet cells to further influence T cell function.

200 We also showed that HLA-deficient SC-islet cells are resistant to pre-activated NK cell cytotoxicity both
201 *in vitro* and *in vivo*, and that over-expression of the HLA-E long-chain fusion does not provide any
202 additional protective benefit. This is due to the SC-islet cell-specific lack of NK cell activating ligands such
203 as the MIC and ULBP proteins, which are expressed in SC-Endothelial cells, and may explain why SC-
204 Endothelial cells are susceptible to pre-activated NK cell cytotoxicity while SC-islet cells are resistant
205 (Deuse et al., 2021). However, since many immunodeficient mouse models lack critical components for
206 NK cell survival and function such as SIRP α and IL-15 (Herndler-Brandstetter et al., 2017), they do not
207 support long-term engraftment of human NK cells and we cannot exclude the possibility of HLA-
208 deficient SC-islet cell destruction in a mouse model that better supports NK cell engraftment.
209 Furthermore, while transplantation of HLA-deficient SC-islet cells was able to normalize blood glucose
210 levels in diabetic mice, after PBMC injection the cells were eventually rejected, albeit with delayed

211 rejection kinetics. This could be explained by the presence of other immune cell subsets such as
212 macrophage, monocytes and dendritic cells that may play a role in indirect allograft rejection
213 (Oberbarnscheidt et al., 2014; Wyburn et al., 2005; Zhuang et al., 2016). Ultimately, this highlights the
214 limitations of exclusively using *in vitro* immune cell co-culture assays to assess the effect of genetic
215 modification on the protection SC-islet cells from immune destruction (Castro-Gutierrez et al., 2021;
216 Leite et al., 2022).

217 Finally, we show for the first time that SC-islet cells engineered to secrete modified IL-2, TGF- β and IL-10
218 are protected against xeno-rejection. This finding has several important implications. First, since β cells
219 are professional secretory cells with a significant translatory demand, it demonstrates that SC-islet cells
220 can be co-opted to secrete other proteins while maintaining their designed function (Lim et al., 2020).
221 Second, the intrinsic ligand profile of the desired cell type should be considered when determining the
222 set of genetic modifications required to generate immune-evasive cells, as some cell types may not
223 require extensive genetic manipulation. Since the safety of immune-evasive/immune-tolerizing cell
224 therapies is critical to their clinical translation, ideally the genetically engineered product should be
225 generated with the least number of genetic perturbations to limit off-target events and chromosomal
226 instability. Third, our results provide validation for the use of immune-tolerizing approaches (either
227 alone or in conjunction with immune-evasion) as a method to protect SC-islet cells from the immune
228 system. A variation of this approach may be to include some, but not all cells, in the transplant that
229 secrete these tolerizing molecules. Overall, this approach may eliminate the need for encapsulation or
230 immunosuppression, a long-standing goal of the islet transplantation field.

231 Limitations

232 Although HLA-deficient SC-islet cells possessed improved survival in *in vitro* PBMC co-culture assays
233 (**Figures 2B and C**), we found that these results did not translate *in vivo*. Choosing an appropriate

234 humanized mouse model is essential to evaluate immune-evasion/immune-tolerizing genetic
235 engineering strategies. Many PBMC humanized mouse models such as that used in this study do not
236 fully recapitulate human allograft rejection since they bias CD3⁺ cell engraftment and lack other immune
237 cell subsets. Thus, while HLA-deficient SC-islets demonstrated delayed rejection in the PBMC humanized
238 mouse model (**Figure 3F**), we cannot exclude the possibility that in CD34⁺ or BLT mice (humanized
239 mouse models that better recapitulate human immune components), that these cells would be rejected
240 earlier. For these reasons, validating the protective effect of immune-evasion/tolerizing genetic-
241 engineering strategies should ideally be conducted in humanized mouse models that more accurately
242 reflect allograft rejection. While xeno-rejection does not mimic allo-rejection, we ultimately chose to
243 use the xeno-rejection model to evaluate our immune-tolerizing genetic-engineering strategy as it is a
244 stronger model of immune rejection and eliminates the immune cell bias of humanized mouse models.
245 By using such a strong model of graft rejection, additional immune barriers are introduced that require
246 complex genetic-engineering approaches as a solution. This means combining gene knock-outs and
247 knock-ins to generate the desired immune-evasive/tolerizing cell product. Knock-in of multiple genes at
248 a specific locus in the genome requires large homology directed repair templates, which is associated
249 with poor integration efficiency and recovery of genetically unstable clones. Exploring the possibility of
250 introducing tolerogenic molecules at multiple constitutively expressed loci could reduce the size of HDR
251 templates and result in the recovery of genetically stable homozygous knock-in clones. Striking a
252 balance between HDR length and the number of editing events may permit the introduction of more
253 foreign genetic material into the genome without destabilizing effects.
254 Furthermore, since immune-tolerizing SC-islets secrete cytokines from all cells within the islet, there is a
255 risk that the concentration of constitutively secreted cytokines may result in chronic
256 immunosuppression. Thus, it is important to evaluate the immune status of mice receiving immune-
257 tolerizing SC-islet cells as chronic immunosuppression should be avoided. However, if transplantation of

258 immune-tolerizing SC-islets does result in chronic immunosuppression, the ability to enrich for specific
259 endocrine cell populations may allow us to adjust the dose of cytokine-secretion by generating designer
260 islets composed of cytokine-secreting and non-cytokine secreting endocrine cells such that localized
261 graft tolerance is achieved.

262 Methods

263 *Mice*

264 Male B6/albino, Scid/beige and NSG-MHC Class I/II KO mice (6-8 weeks of age) were purchased from
265 Jackson Labs. Mice were housed in specific pathogen-free conditions at Harvard University. All animal
266 research was conducted under Harvard IACUC approval.

267 *Cell Culture*

268 Human ES maintenance and differentiation was carried out as previously described (Millman et al.,
269 2016; Pagliuca et al., 2014). SC-islet cell differentiations were initiated 72 h after initial passage by
270 aspirating mTeSR1 and replenished with stage and day-specific media supplemented with the
271 appropriate small molecules or growth factors as previously described (Millman et al., 2016; Pagliuca et
272 al., 2014; Veres et al., 2019). All cell lines were routinely tested for mycoplasma and were mycoplasma-
273 free. All experiments involving human cells were approved by the Harvard University IRB and ESCRO
274 committees.

275 *Generation of immune-evasive hESCs*

276 The existing GAPluc (WT) hESC line served as starting material for the generation of HLA-deficient hESCs
277 (Gerace et al., 2021). To generate HLA-deficient hESCs, 1x10⁶ WT hESCs were nucleofected using the 4D-
278 Nucleofector (Lonza) with RNP complexed with 120 pmol B2M gRNA (5'-
279 GCTACTCTCTTTCTGGCC'3)(Mandal et al., 2014) (IDT) and 104 pmol Alt-R® S.p. HiFi Cas9 Nuclease V3
280 (IDT) according to the manufacturer's instructions. Nucleofected cells were resuspended in mTesR1

281 (STEMCELL Technologies, 85850) + 10 μ M Y27632 (DNSK International, DNSK-KI-15-02) and plated in a
282 matrigel-coated tissue culture plate. After 48 h cells were treated with 10ng/ml IFN- γ (R&D, 285-IF-100)
283 for 24 h and then stained with APC anti-human HLA-ABC (W6/32, 1:100) (Biolegend, 311409). HLA-ABC^{-/-}
284 cells were sorted on a FACS Aria II (BD Biosciences) and plated in a matrigel-coated tissue culture plate
285 containing mTesR1 + CloneR (STEMCELL Technologies, 05888), with single colonies picked for expansion.
286 The resulting HLA-deficient line was named B2M^{-/-}.

287 To generate GAP-PD and GAP-BEC hESCs, human PD-L1 and the peptide::B2M::HLA-E fusion sequences
288 were synthesized as gBlocks (Genscript) and cloned into our existing GAPluc targeting plasmid
289 downstream of the *Luc2* gene. The sequence of the covalently attached peptide (VMAPRTLLL) in the
290 peptide::B2M::HLA-E fusion is derived from the HLA-Cw7 molecule (Kaiser et al., 2005). hESCs were
291 nucleofected with the GAP-PD or GAP-BEC targeting plasmids and GAPDH-targeting RNP as previously
292 described (Gerace et al., 2021). For GAP-B2P and GAP-BEC lines, a polyclonal population of puromycin-
293 selected cells was subsequently nucleofected with B2M-targeting RNP, and single-colonies were picked
294 for expansion after FACS sorting as described above. The gating strategy for sorting HLA-ABC^{-/-} hESCs is
295 described in **Figure S1G**.

296 *Flow Cytometry*

297 Differentiated WT, B2M^{-/-}, BEC, PD-L1 and B2P SC-islet cells were both treated and untreated with
298 10ng/ml IFN- γ for 24 h prior to staining. Cells were dissociated with Accutase (STEMCELL Technologies,
299 07920), washed twice with PBS + 0.1% BSA (Gibco, A10008-01) and blocked for 30 min on ice with PBS +
300 5% donkey serum (Jackson Labs; 100181-234). Cells were then stained for 30 min on ice in blocking
301 buffer with PE or APC anti-human HLA-ABC (Biolegend, 311405), PE anti-human HLA-E (Biolegend,
302 342603) and PE anti-human PD-L1 (Biolegend, 393607). Cells were then washed three times and fixed in
303 4% PFA (EMS, 15710) for 15 min at 4 °C. Fixed cells were then incubated in blocking buffer with rat anti-

304 human C-peptide (DHSB; GN-ID4) and mouse anti-human Nkx6.1 (DHSB; F55A12) (overnight at 4 °C),
305 washed three times with blocking buffer, incubated with goat anti-rat 647 (Life Technologies, A-21247; 1:300) and goat anti-mouse 405 (Life Technologies, A-31553; 1:300) in blocking solution (1 h at room
306 temperature), washed three times and resuspended in PBS + 0.1% BSA. Samples were captured on the
307 LSR II (BD) flow cytometer and analyzed using FlowJo 10.7.1 (BD). All antibodies were used at 1:100
308 unless otherwise stated. The gating strategy for identifying SC-β cells is described in **Figure S1H**. PE
309 mouse IgG2a (Biolegend, 400213) and PE mouse IgG1 (Biolegend, 400111) served as isotype controls.
310

311 *Magnetic enrichment using CD49a and reaggregation*

312 WT and BEC SC-β cells were magnetically-enriched from SC-islet clusters as previously described (Veres
313 et al., 2019). Enriched cells were resuspended in S6 medium and plated at 5x10³ cells/well in low-
314 attachment 96-well v-bottom tissue-culture plates (Thermo Scientific, 277143), centrifuged at 300 g for
315 1 min and incubated at 37 °C for 4-7 days. CD49a enriched SC-β cell clusters were fed fresh S6 medium
316 every 2 days.

317 *SC-β cell immunohistochemistry*

318 CD49a enriched SC-β cell clusters were fixed in 4% PFA for 1 h at room temperature, washed and frozen
319 in OCT (Tissue-Tek, 4583) and sectioned to 14 µm. Before staining, paraffin-embedded samples were
320 treated with Histo-Clear (EMS, 64110-01) to remove the paraffin. For staining, slides were incubated in
321 blocking buffer (PBS + 0.1% Triton-X + 5% donkey serum) for 1 h at room temperature, incubated in PBS
322 + 5% donkey serum containing rat anti-human C-peptide (1:300), mouse anti-human Nkx6.1 (1:100) and
323 rabbit anti-human HLA-E (Sigma-Aldrich, HPA031454, 1:100) for 1 h at room temperature, washed three
324 times, incubated in goat anti-mouse 594 (Life Technologies, A-11032; 1:500), goat anti-rat 488 (Life
325 Technologies, A-11006; 1:500) and goat anti-rabbit 647 (Life technologies, A-21244; 1:500) for 2 h at
326 room temperature, washed, mounted in Vectashield with DAPI (Vector Laboratories; H-1200), covered

327 with coverslips and sealed with clear nail polish. Representative regions were imaged using Zeiss.Z2 with
328 Apotome microscope.

329 *Immune cell isolation*

330 PBMCs, CD8 and CD4 T cells, and NK cells were isolated from apheresis leukoreduction collars ($n = 5$
331 donors) obtained from Brigham and Women's Hospital in compliance with our IRB approval. PBMCs
332 were isolated by density gradient centrifugation with lymphoprep (STEMCELL Technologies, 07801)
333 SepMate™-50 (IVD) tubes (STEMCELL Technologies, 85450) according to the manufacturer's
334 instructions. CD4, CD8 and NK cells were isolated by density gradient centrifugation with lymphoprep
335 and SepMate™-50 (IVD) tubes following the addition of RosetteSep Human CD4+ T Cell Enrichment
336 Cocktail (STEMCELL Technologies, 15062), CD8+ T Cell Enrichment Cocktail (STEMCELL Technologies,
337 15063) and NK Cell Enrichment Cocktail (STEMCELL Technologies, 15065) respectively. Enriched immune
338 cells were cryopreserved in CryoStor CS10 (STEMCELL Technologies, 07930) at a concentration of 10M
339 cells/vial.

340 Flow cytometric analysis of enriched immune cell subpopulations was performed by staining cells in
341 blocking buffer containing APC anti-human CD3 (Biolegend, 300311), PE anti-human CD4 (Biolegend,
342 357403), Pacific Blue anti-human CD8 (Biolegend, 344717) and Pacific Blue anti-human CD56 (Biolegend,
343 362519). Isotype controls were Pacific Blue mouse IgG1 (Biolegend, 400131), APC mouse IgG2a
344 (Biolegend, 400221) and PE rat IgG2b (Biolegend, 400607). All antibodies were used at 1:100 or unless
345 otherwise stated. Representative gating strategies are demonstrated in **Figures S2G-I**.

346 *In vitro T cell cytotoxicity assays*

347 WT, B2M^{-/-} and BEC SC-islet cells were seeded in S3 medium at 5×10^4 cells/well of a matrigel-coated 96-
348 well black flat-bottom plate (Corning, 3916) in the presence or absence of IFN- γ (10 ng/ml). After 24 h,
349 the medium was switched to T cell medium (ImmunoCult™-XF T Cell Expansion Medium (STEMCELL

350 Technologies, 10981) + 100U/ml rhIL-2) for immune cell co-culture. Primary human PBMCs, CD4 or CD8
351 cells ($n = 5$ donors) cultured in T cell medium were added to SC-islet cells at 1:1 and 3:1 effector:target
352 ratios with and without the addition of ImmunoCult™ Human CD3/CD28 T Cell Activator (STEMCELL
353 Technologies, 10991). All T cell cytotoxicity assays were co-cultured for 72 h, after which luminescence
354 was measured following the addition of 150 µg/ml D-luciferin (Gold Biotechnology, LUCK-2G) on the
355 CLARIOstar microplate reader (BMG LABTECH). SC-islet cell survival was calculated as a percentage
356 relative to luminescence in the absence of T cells (test SC-islet cell luminescence/no T cell SC-islet cell
357 luminescence $\times 100$).

358 *In vitro NK cell cytotoxicity assays*

359 WT, B2M^{-/-} and BEC SC-islet cells were seeded in NK cell medium (NK MACS medium (Milteny Biotec,
360 130-114-429) + 5% Human AB serum (Valley Biomed, HP1022HI) + 5% HyClone FBS (GE Healthcare,
361 SH30070.03) + 0.5 ng/ml rhIL-2 (Peprotech, 200-02)) at 2×10^4 cells/well of a 96-well black round-
362 bottom ultra-low attachment plate (Corning, 4591). Primary NK cells ($n = 5$ donors) cultured in NK cell
363 media for 5 days were added to SC-islet cells at 1:1 and 10:1 effector:target ratios. K562-Luc2
364 (Biocytogen, BCG-PS-015-luc) and Raji-GFP-Luc2 (Biocytogen, BCG-PS-087-luc) cells were used as
365 positive and negative controls respectively. All NK cell cytotoxicity assays were co-cultured for 5 h, after
366 which luminescence and SC-islet cell survival was measured as described above.

367 *In vivo NK cell cytotoxicity*

368 2.5×10^5 WT and B2M^{-/-} SC-islet cell clusters were resuspended either alone or with 7.5×10^5 primary
369 human NK cells (pre-treated with 0.5 ng/ml rhIL-2 for 12 h) in phenol-free Matrigel (Corning, 356237)
370 and transplanted subcutaneously in Scid/beige mice ($n = 5$). Bioluminescence was measured 10 min
371 after i.p injection of 10 µL/g D-luciferin (15mg/ml) on days 1 and 5 following cell transplantation on the
372 IVIS Spectrum (PerkinElmer, 124262) as previously described (Gerace et al., 2021).

373 *Endothelial cell differentiation*

374 WT and B2M^{-/-} hESCs were seeded in mTesR1 + 10 µM Y27632 at a concentration of 7.5 x 10⁴ cells/well
375 of a Matrigel-coated 6-well tissue-culture plate (Corning, 3516). Thereafter, cells were differentiated
376 into endothelial cells using STEMdiff™ Endothelial Differentiation Kit (STEMCELL Technologies, 08005)
377 according to the manufacturer's instructions. Differentiation efficiency was quantified by FACS analysis
378 after staining endothelial cells with Pacific Blue anti-human CD31 (Biologend, 303113). Pacific Blue
379 mouse IgG1 (Biolegend, 400131) was used as an isotype control. All antibodies were used at 1:100
380 unless otherwise stated.

381 *Bulk RNA sequencing*

382 Magnetically-enriched CD49a⁺ SC-β cells and SC-Endothelial cells were seeded in 6-well plates at 1 x 10⁶
383 cells/well (in triplicate) and treated with and without 10ng/ml IFN-γ for 24 h. Cells were then harvested
384 using Accutase and the pellets snap-frozen on dry-ice. RNA extractions, library preparations and
385 sequencing reactions were conducted at GENEWIZ, LLC. (South Plainfield, NJ, USA). Total RNA was
386 extracted from cell pellet samples using RNeasy Plus Mini Kit (Qiagen, Germantown, MD, USA) and
387 quantified using Qubit Fluorometer (Life Technologies, Carlsbad, CA, USA). SMART-Seq v4 Ultra Low
388 Input Kit for Sequencing was used for full-length cDNA synthesis and amplification (Clontech, Mountain
389 View, CA), and Illumina Nextera XT library was used for sequencing library preparation.
390 Multiplexed sequencing libraries were loaded on the Illumina HiSeq instrument and sequenced using a
391 2x150 Paired End (PE) configuration. Image analysis and base calling were conducted by the HiSeq
392 Control Software (HCS). Raw sequence data (.bcl files) generated from Illumina HiSeq was converted
393 into FASTQ files and de-multiplexed using Illumina's bcl2fastq 2.17 software. One mismatch was allowed
394 for index sequence identification.

395 After investigating the quality of the raw data, sequence reads were trimmed to remove possible
396 adapter sequences and nucleotides with poor quality using Trimmomatic v.0.36. The trimmed reads
397 were mapped to the *Homo sapiens* reference genome available on ENSEMBL using the STAR aligner
398 v.2.5.2b. The STAR aligner is a splice aligner that detects splice junctions and incorporates them to help
399 align the entire read sequences. BAM files were generated as a result of this step. Unique gene hit
400 counts were calculated by using feature Counts from the Subread package v.1.5.2. Only unique reads
401 that fell within exon regions were counted.

402 After extraction of gene hit counts, the gene hit counts table was used for downstream differential
403 expression analysis. Using DESeq2, a comparison of gene expression between the groups of samples was
404 performed. The Wald test was used to generate p-values and Log2 fold changes. Genes with adjusted p-
405 values < 0.05 and absolute log2 fold changes > 1 were called as differentially expressed genes for each
406 comparison. A gene ontology analysis was performed on the statistically significant set of genes by
407 implementing the software g:Profiler (Raudvere et al., 2019). *The gene accession number for the unique*
408 *RNAseq dataset generated in this study is GSE200021. The reviewer token for private access to this*
409 *dataset is “gpkjywayfxmhjgd”.*

410 *NK cell ligand analysis*

411 WT and B2M^{-/-} SC-islet cells and SC-endothelial cells were washed twice with washing buffer and blocked
412 for 30 min on ice with blocking buffer. Cells were then stained for 30 min on ice in blocking buffer with
413 APC anti-human CD47 (Biolegend, 323123), APC anti-human CD324 (E-Cadherin) (Biolegend, 324107), PE
414 anti-human CD325 (N-Cadherin) (Biolegend, 350806), PE anti-human CD112 (Nectin-2) (Biolegend,
415 337409), APC anti-human CD155 (PVR) (Biolegend, 337617), PE anti-human CD111 (Nectin-1)
416 (Biolegend, 340404), APC anti-human MICA/MICB (Biolegend, 320907), AF647 anti-human PCNA
417 (Biolegend, 307912), PE anti-human BAG6 (Abcam, ab210838), APC anti-human CD48 (Biolegend,

418 336713), PE anti-human CD70 (Biolegend, 355103), mouse anti-human CD113 (Nectin-3) (Millipore-
419 Sigma, MABT63), APC anti-human ULBP1 (R&D, FAB1380A), PE anti-human ULBP2/5/6 (R&D,
420 FAB1298P), APC anti-human CLEC2D (R&D, FAB3480A) and PE anti-human CD72 (Biolegend, 316207). PE
421 Mouse IgG1 (Biolegend, 400111), APC mouse IgG1 (Biolegend, 400121), APC mouse IgG2a (Biolegend,
422 400221), PE Mouse IgG2a (Biolegend, 400213), APC rat IgG1 (Biolegend, 401903), PE rabbit IgG (Cell
423 Signaling technology, 5742S) and goat anti-mouse 488 (Thermofisher, A-11001, 1:300) served as isotype
424 controls. All antibodies were used at 1:100 unless otherwise stated.

425 *Transplantation of HLA-deficient SC-islet cells*

426 Diabetes was induced in NSG-MHC Class I/II KO mice by multiple low-dose (40 mg/kg) streptozotocin
427 (STZ) i.p. injection as previously described (Furman, 2021). Once animals reached a blood glucose of
428 >500 mg/dL, 5×10^6 WT or B2M^{-/-} SC-islet cells were transplanted under the kidney capsule ($n = 10$) as
429 previously described (Millman et al., 2016; Pagliuca et al., 2014). Blood glucose and body weight was
430 measured twice a week after transplantation.

431 Ten weeks after transplantation (before PBMC injection) and seven weeks after PBMC injection the
432 function of transplanted cells was assessed by performing *in vivo* peritoneal glucose-stimulated insulin
433 secretion (IPGTT) as previously described (Millman et al., 2016; Pagliuca et al., 2014). Insulin secretion
434 was quantified using the Human Ultrasensitive Insulin ELISA (ALPCO Diagnostics; 80-INSHUU-E01.1.)

435 *Generation of immune-tolerizing SC-islet cells*

436 The cDNAs of human IL-2, TGF- β and IL-10 were synthesized as a polycistronic gBlock (Genscript) and
437 cloned into the existing GAPluc targeting plasmid as described above to generate the GAP-2B10 plasmid.
438 The human IL-2 sequence was modified by substituting a single amino acid (N88D) as previously
439 described (Peterson et al., 2018). GAP-2B10 hESCs were generated by co-nucleofection of the GAP-2B10

440 targeting plasmid and the GAPDH-targeting RNP as described above. GAP-2B10 SC-islet cells were
441 differentiated as previously described (Millman et al., 2016; Pagliuca et al., 2014).

442 *In vitro glucose-stimulated insulin secretion*

443 *In vitro* function was assessed by measuring glucose-stimulated insulin secretion (GSIS) as previously
444 described (Millman et al., 2016; Pagliuca et al., 2014). SC-islet clusters were washed twice in Krebs
445 buffer (KRB), and preincubated at 37 °C for 1 h in KRB containing 2 mM glucose (low glucose). Clusters
446 were then challenged with three sequential treatments of alternating low-high-low KRB containing
447 glucose (high; 20 mM), followed by depolarization with low KRB containing 30 mM KCl. Each treatment
448 lasted 30 min, after which 100 µl of supernatant was collected and human insulin quantified using the
449 Human Ultrasensitive Insulin ELISA. Human insulin measurements were normalized by viable cell counts
450 that were acquired by dispersing clusters with TrypLE Express (Thermofisher, 12604013) and counted
451 using a ViCell (Beckman Coulter).

452 *In vitro SC-islet cell cytokine secretion and PBMC cytotoxicity assays*

453 GAP-2B10 SC-islet cell clusters were dispersed with TrypLE Express and seeded in 96-well matrigel-
454 coated plates in S3 media at a linear concentration (1, 2, 4, 6, 8 × 10⁴, and 1 × 10⁵ cells/well) in duplicate.
455 After 24 h, supernatants were collected, centrifuged at 3000g for 5 min and the cytokines IL-2, TGF-β
456 and IL-10 quantified using Legend Max ELISAs (IL-2, Biolegend, 431807; TGF-β, Biolegend, 436707; IL-10,
457 Biolegend, 430607) according to the manufacturer's instructions. For cytotoxicity assays, WT and 2B10
458 SC-islet cells were co-cultured with human PBMCs as described above.

459 *Xenotransplantation of GAP-2B10 SC-islet cells*

460 WT and GAP-2B10 SC-islet cell clusters (5 × 10⁶ cells) were transplanted under the kidney capsule of
461 B6/albino mice (n = 3/group) and graft survival was monitored weekly for nine weeks by
462 bioluminescence following i.p. injection of D-luciferin as described above. At five weeks post-

463 transplantation SC-islet grafts were removed for immunohistochemical analysis of surviving INS⁺ cells
464 and CD8⁺ T and FOXP3⁺ T_{reg} cells.

465 *Immunohistochemistry of SC-islet grafts*

466 The kidneys of B6/Albino mice transplanted with WT and 2B10 SC-islets were excised, fixed overnight in
467 4% paraformaldehyde (PFA) at room temperature and embedded in paraffin. Sections were pre-cleared
468 with Histo-Clear, rehydrated using an ethanol gradient and antigen fixed by incubating in boiling antigen
469 retrieval reagent (10 mM sodium citrate, pH 6.0) for 50 min. Slides were then blocked in 5% donkey
470 serum for 1h and stained with Guinea pig anti-human Insulin (DAKO, A0564), Rat anti-mouse CD8 α
471 (Biolegend, 100702) and Mouse anti-mouse FOXP3 (Biolegend, 320002) overnight at 4 °C. The slides
472 were then washed three times, incubated in secondary antibodies goat anti-mouse 594 (Life
473 Technologies, A-11032), goat anti-rat 488 (Life Technologies, A-11006) and goat anti-guinea pig 647 (Life
474 technologies, A-21450) for 2 h at room temperature, washed, mounted in Vectashield with DAPI (Vector
475 Laboratories; H-1200), covered with coverslips and sealed with clear nail polish. Representative regions
476 were imaged using Zeiss.Z2 with Apotome microscope. All primary and secondary antibodies were used
477 at dilution of 1:200 and 1:500 respectively.

478 *Statistics*

479 All data are presented as means \pm SD and were analyzed by GraphPad Prism 9 (GraphPad Software).
480 Statistically significant differences were determined either by one-way or two-way ANOVA, with Tukey's
481 and Sidak's post-hoc test for multiple comparisons, and two-tailed t test for pairwise comparisons. p
482 values are indicated in the figures as *p < 0.05, **p < 0.01, ***p < 0.005 and ****p < 0.001.

483 *Acknowledgements*

484 D.A.M. is an investigator of the Howard Hughes Medical Institute. This work was supported by grants
485 from the Harvard Stem Cell Institute (DP-0180-18-02), JDRF (5-COE-2020-967-M-N), and the JPB
486 Foundation (Award #1094). We would like to thank Ramona Pop for discussions on manuscript content.

487 References

488 Abou-Daya, K.I., Tieu, R., Zhao, D., Rammal, R., Sacirbegovic, F., Williams, A.L., Shlomchik, W.D.,
489 Oberbarnscheidt, M.H., and Lakkis, F.G. (2021). Resident memory T cells form during persistent antigen
490 exposure leading to allograft rejection. *Science Immunology* 6, eabc8122.

491 Alagpulinsa, D.A., Cao, J.J.L., Driscoll, R.K., Sîrbulescu, R.F., Penson, M.F.E., Sremac, M., Engquist, E.N.,
492 Brauns, T.A., Markmann, J.F., Melton, D.A., *et al.* (2019). Alginate-microencapsulation of human stem
493 cell-derived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without
494 systemic immunosuppression. *Am J Transplant* 19, 1930-1940.

495 Atkinson, M.A., and Maclaren, N.K. (1994). The Pathogenesis of Insulin-Dependent Diabetes Mellitus.
496 *The New England Journal of Medicine* 331, 1428-1436.

497 Benci, J.L., Xu, B., Qiu, Y., Wu, T.J., Dada, H., Twyman-Saint Victor, C., Cucolo, L., Lee, D.S.M., Pauken,
498 K.E., Huang, A.C., *et al.* (2016). Tumor Interferon Signaling Regulates a Multigenic Resistance Program to
499 Immune Checkpoint Blockade. *Cell* 167, 1540-1554.

500 Bochenek, M.A., Veiseh, O., Vegas, A.J., McGarrigle, J.J., Qi, M., Marchese, E., Omami, M., Doloff, J.C.,
501 Mendoza-Elias, J., Nourmohammadzadeh, M., *et al.* (2018). Alginate encapsulation as long-term immune
502 protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. *Nat
503 Biomed Eng* 2, 810-821.

504 Castro-Gutierrez, R., Alkanani, A., Mathews, C.E., Michels, A., and Russ, H.A. (2021). Protecting Stem Cell
505 Derived Pancreatic Beta-Like Cells From Diabetogenic T Cell Recognition. *Frontiers in Endocrinology* 12.

506 Chen, L., and Flies, D.B. (2013). Molecular mechanisms of T cell co-stimulation and co-inhibition. *Nat Rev
507 Immunol* 13, 227-242.

508 D'Amour, K.A., Bang, A.G., Eliazer, S., Kelly, O.G., Agulnick, A.D., Smart, N.G., Moorman, M.A., Kroon, E.,

509 Carpenter, M.K., and Baetge, E.E. (2006). Production of pancreatic hormone-expressing endocrine cells

510 from human embryonic stem cells. *Nat Biotechnol* 24, 1392-1401.

511 Deuse, T., Hu, X., Agbor-Enoh, S., Jang, M.K., Alawi, M., Saygi, C., Gravina, A., Tediashvili, G., Nguyen,

512 V.Q., Liu, Y., *et al.* (2021). The SIRP α -CD47 immune checkpoint in NK cells. *The Journal of experimental*

513 *medicine* 218.

514 Deuse, T., Hu, X., Gravina, A., Wang, D., Tediashvili, G., De, C., Thayer, W.O., Wahl, A., Garcia, J.V.,

515 Reichenspurner, H., *et al.* (2019). Hypoimmunogenic derivatives of induced pluripotent stem cells evade

516 immune rejection in fully immunocompetent allogeneic recipients. *Nature Biotechnology* 37, 252-258.

517 Finger, L.R., Pu, J., Wasserman, R., Vibhakar, R., Louie, E., Hardy, R.R., Burrows, P.D., and Billips, L.G.

518 (1997). The human PD-1 gene: complete cDNA, genomic organization, and developmentally regulated

519 expression in B cell progenitors. *Gene* 197, 177-187.

520 Freeman, G.J., Long, A.J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., Fitz, L.J., Malenkovich, N.,

521 Okazaki, T., Byrne, M.C., *et al.* (2000). Engagement of the PD-1 immunoinhibitory receptor by a novel B7

522 family member leads to negative regulation of lymphocyte activation. *The Journal of experimental*

523 *medicine* 192, 1027-1034.

524 Furman, B.L. (2021). Streptozotocin-Induced Diabetic Models in Mice and Rats. *Current Protocols* 1, e78.

525 Garcia-Diaz, A., Shin, D.S., Moreno, B.H., Saco, J., Escuin-Ordinas, H., Rodriguez, G.A., Zaretsky, J.M., Sun,

526 L., Hugo, W., Wang, X., *et al.* (2017). Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2

527 Expression. *Cell reports* 19, 1189-1201.

528 Gerace, D., Boulanger, K.R., Hyoje-Ryu Kenty, J., and Melton, D.A. (2021). Generation of a heterozygous

529 GAPDH-Luciferase human ESC line (HVRDe008-A-1) for in vivo monitoring of stem cells and their

530 differentiated progeny. *Stem Cell Research* 53, 102371.

531 Gornalusse, G.G., Hirata, R.K., Funk, S.E., Riolobos, L., Lopes, V.S., Manske, G., Prunkard, D., Colunga,
532 A.G., Hanafi, L.-A., Clegg, D.O., *et al.* (2017). HLA-E-expressing pluripotent stem cells escape allogeneic
533 responses and lysis by NK cells. *Nature Biotechnology* *35*, 765.

534 Han, X., Wang, M., Duan, S., Franco, P.J., Kenty, J.H.-R., Hedrick, P., Xia, Y., Allen, A., Ferreira, L.M.R.,
535 Strominger, J.L., *et al.* (2019). Generation of hypoimmunogenic human pluripotent stem cells.
536 *Proceedings of the National Academy of Sciences* *116*, 10441.

537 Harding, J., Vintersten-Nagy, K., Shutova, M., Yang, H., Tang, J.K., Massumi, M., Izaidfar, M., Izadifar, Z.,
538 Zhang, P., Li, C., *et al.* (2019). Induction of long-term allogeneic cell acceptance and formation of
539 immune privileged tissue in immunocompetent hosts. *bioRxiv*, 716571.

540 Hartemann, A., Bensimon, G., Payan, C.A., Jacqueminet, S., Bourron, O., Nicolas, N., Fonfrede, M.,
541 Rosenzwajg, M., Bernard, C., and Klatzmann, D. (2013). Low-dose interleukin 2 in patients with type 1
542 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. *Lancet Diabetes Endocrinol* *1*,
543 295-305.

544 Herbst, F., Ball, C.R., Tuorto, F., Nowrouzi, A., Wang, W., Zavidij, O., Dieter, S.M., Fessler, S., van der
545 Hoeven, F., Kloz, U., *et al.* (2012). Extensive Methylation of Promoter Sequences Silences Lentiviral
546 Transgene Expression During Stem Cell Differentiation In Vivo. *Molecular Therapy* *20*, 1014-1021.

547 Herndler-Brandstetter, D., Shan, L., Yao, Y., Stecher, C., Plajer, V., Lietzenmayer, M., Strowig, T., de
548 Zoete, M.R., Palm, N.W., Chen, J., *et al.* (2017). Humanized mouse model supports development,
549 function, and tissue residency of human natural killer cells. *Proceedings of the National Academy of
550 Sciences* *114*, E9626.

551 Herold, K.C., Bundy, B.N., Long, S.A., Bluestone, J.A., DiMeglio, L.A., Dufort, M.J., Gitelman, S.E., Gottlieb,
552 P.A., Krischer, J.P., Linsley, P.S., *et al.* (2019). An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for
553 Type 1 Diabetes. *New England Journal of Medicine* *381*, 603-613.

554 Heusschen, R., Griffioen, A.W., and Thijssen, V.L. (2013). Galectin-9 in tumor biology: A jack of multiple
555 trades. *Biochimica et Biophysica Acta (BBA) - Reviews on Cancer* **1836**, 177-185.

556 Horwitz, D.A., Zheng, S.G., Wang, J., and Gray, J.D. (2008). Critical role of IL-2 and TGF-beta in
557 generation, function and stabilization of Foxp3+CD4+ Treg. *Eur J Immunol* **38**, 912-915.

558 Imaizumi, T., Kumagai, M., Sasaki, N., Kurotaki, H., Mori, F., Seki, M., Nishi, N., Fujimoto, K., Tanji, K.,
559 Shibata, T., *et al.* (2002). Interferon-gamma stimulates the expression of galectin-9 in cultured human
560 endothelial cells. *J Leukoc Biol* **72**, 486-491.

561 Kaiser, B.K., Barahmand-pour, F., Paulsene, W., Medley, S., Geraghty, D.E., and Strong, R.K. (2005).
562 Interactions between NKG2x Immunoreceptors and HLA-E Ligands Display Overlapping Affinities and
563 Thermodynamics. *The Journal of Immunology* **174**, 2878.

564 Khoryati, L., Pham, M.N., Sherve, M., Kumari, S., Cook, K., Pearson, J., Bogdani, M., Campbell, D.J., and
565 Gavin, M.A. (2020). An IL-2 mutein engineered to promote expansion of regulatory T cells arrests
566 ongoing autoimmunity in mice. *Science immunology* **5**, eaba5264.

567 Kleiveland, C.R. (2015). Peripheral Blood Mononuclear Cells. In *The Impact of Food Bioactives on Health: in vitro and ex vivo models*, K. Verhoeckx, P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, T.
568 Requena, D. Swiatecka, and H. Wicher, eds. (Cham: Springer International Publishing), pp. 161-167.

570 Leite, N.C., Pelayo, G.C., and Melton, D.A. (2022). Genetic manipulation of stress pathways can protect
571 stem-cell-derived islets from apoptosis in vitro. *Stem cell reports*.

572 Lim, D., Sreekanth, V., Cox, K.J., Law, B.K., Wagner, B.K., Karp, J.M., and Choudhary, A. (2020).
573 Engineering designer beta cells with a CRISPR-Cas9 conjugation platform. *Nature communications* **11**,
574 4043.

575 Mandal, P.K., Ferreira, L.M., Collins, R., Meissner, T.B., Boutwell, C.L., Friesen, M., Vrbanac, V., Garrison,
576 B.S., Stortchevoi, A., Bryder, D., *et al.* (2014). Efficient ablation of genes in human hematopoietic stem
577 and effector cells using CRISPR/Cas9. *Cell stem cell* **15**, 643-652.

578 Mattapally, S., Pawlik, K.M., Fast, V.G., Zumaquero, E., Lund, F.E., Randall, T.D., Townes, T.M., and
579 Zhang, J. (2018). Human Leukocyte Antigen Class I and II Knockout Human Induced Pluripotent Stem
580 Cell-Derived Cells: Universal Donor for Cell Therapy. *J Am Heart Assoc* 7, e010239.

581 Millman, J.R., Xie, C., Van Dervort, A., Gurtler, M., Pagliuca, F.W., and Melton, D.A. (2016). Generation of
582 stem cell-derived beta-cells from patients with type 1 diabetes. *Nature communications* 7, 11463.

583 Monti, P., Scirpoli, M., Maffi, P., Ghidoli, N., De Taddeo, F., Bertuzzi, F., Piemonti, L., Falcone, M., Secchi,
584 A., and Bonifacio, E. (2008). Islet transplantation in patients with autoimmune diabetes induces
585 homeostatic cytokines that expand autoreactive memory T cells. *The Journal of clinical investigation*
586 118, 1806-1814.

587 Nair, G.G., Liu, J.S., Russ, H.A., Tran, S., Saxton, M.S., Chen, R., Juang, C., Li, M.L., Nguyen, V.Q.,
588 Giacometti, S., *et al.* (2019). Recapitulating endocrine cell clustering in culture promotes maturation of
589 human stem-cell-derived beta cells. *Nature cell biology* 21, 263-274.

590 Oberbarnscheidt, M.H., Zeng, Q., Li, Q., Dai, H., Williams, A.L., Shlomchik, W.D., Rothstein, D.M., and
591 Lakkis, F.G. (2014). Non-self recognition by monocytes initiates allograft rejection. *The Journal of clinical*
592 *investigation* 124, 3579-3589.

593 Pagliuca, F.W., Millman, J.R., Gurtler, M., Segel, M., Van Dervort, A., Ryu, J.H., Peterson, Q.P., Greiner,
594 D., and Melton, D.A. (2014). Generation of functional human pancreatic beta cells in vitro. *Cell* 159, 428-
595 439.

596 Parent, A.V., Faleo, G., Chavez, J., Saxton, M., Berrios, D.I., Kerper, N.R., Tang, Q., and Hebrok, M. (2021).
597 Selective deletion of human leukocyte antigens protects stem cell-derived islets from immune rejection.
598 *Cell Reports* 36, 109538.

599 Peterson, L.B., Bell, C.J.M., Howlett, S.K., Pekalski, M.L., Brady, K., Hinton, H., Sauter, D., Todd, J.A.,
600 Umana, P., Ast, O., *et al.* (2018). A long-lived IL-2 mutein that selectively activates and expands
601 regulatory T cells as a therapy for autoimmune disease. *Journal of Autoimmunity* 95, 1-14.

602 Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo, J. (2019). g:Profiler: a web
603 server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic acids
604 research 47, W191-W198.

605 Rezania, A., Bruin, J.E., Arora, P., Rubin, A., Batushansky, I., Asadi, A., O'Dwyer, S., Quiskamp, N.,
606 Mojibian, M., Albrecht, T., *et al.* (2014). Reversal of diabetes with insulin-producing cells derived in vitro
607 from human pluripotent stem cells. Nat Biotechnol 32, 1121-1133.

608 Rigau, M., Ostrouska, S., Fulford Thomas, S., Johnson Darryl, N., Woods, K., Ruan, Z., McWilliam Hamish,
609 E.G., Hudson, C., Tutuka, C., Wheatley Adam, K., *et al.* (2020). Butyrophilin 2A1 is essential for
610 phosphoantigen reactivity by $\gamma\delta$ T cells. Science 367, eaay5516.

611 Riolobos, L., Hirata, R.K., Turtle, C.J., Wang, P.R., Gornalusse, G.G., Zavajlevski, M., Riddell, S.R., and
612 Russell, D.W. (2013). HLA engineering of human pluripotent stem cells. Molecular therapy : the journal
613 of the American Society of Gene Therapy 21, 1232-1241.

614 Russ, H.A., Parent, A.V., Ringler, J.J., Hennings, T.G., Nair, G.G., Shveygert, M., Guo, T., Puri, S., Haataja,
615 L., Cirulli, V., *et al.* (2015). Controlled induction of human pancreatic progenitors produces functional
616 beta-like cells in vitro. The EMBO journal 34, 1759-1772.

617 Shapiro, A.M., Ricordi, C., Hering, B.J., Auchincloss, H., Lindblad, R., Robertson, R.P., Secchi, A., Brendel,
618 M.D., Berney, T., Brennan, D.C., *et al.* (2006). International trial of the Edmonton protocol for islet
619 transplantation. N Engl J Med 355, 1318-1330.

620 Sintov, E., Gerace, D., and Melton, D.A. (2021). A human ESC line for efficient CRISPR editing of
621 pluripotent stem cells. Stem Cell Research 57, 102591.

622 Stegall, M.D., Lafferty, K.J., Kam, I., and Gill, R.G. (1996). Evidence of recurrent autoimmunity in human
623 allogeneic islet transplantation. Transplantation 61, 1272-1274.

624 Suzuki, D., Flahou, C., Yoshikawa, N., Stirblyte, I., Hayashi, Y., Sawaguchi, A., Akasaka, M., Nakamura, S.,

625 Higashi, N., Xu, H., *et al.* (2020). iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA

626 Class I and Natural Killer Cell Immunity. *Stem cell reports* 14, 49-59.

627 Veres, A., Faust, A.L., Bushnell, H.L., Engquist, E.N., Kenty, J.H., Harb, G., Poh, Y.C., Sintov, E., Gurtler, M.,

628 Pagliuca, F.W., *et al.* (2019). Charting cellular identity during human in vitro beta-cell differentiation.

629 *Nature* 569, 368-373.

630 Viricel, C., Ahmed, M., and Barakat, K. (2015). Human PD-1 binds differently to its human ligands: a

631 comprehensive modeling study. *J Mol Graph Model* 57, 131-142.

632 Wagner, A.H., Gebauer, M., Pollok-Kopp, B., and Hecker, M. (2002). Cytokine-inducible CD40 expression

633 in human endothelial cells is mediated by interferon regulatory factor-1. *Blood* 99, 520-525.

634 Wang, D., Quan, Y., Yan, Q., Morales, J.E., and Wetsel, R.A. (2015). Targeted Disruption of the β 2-

635 Microglobulin Gene Minimizes the Immunogenicity of Human Embryonic Stem Cells. *Stem cells*

636 *translational medicine* 4, 1234-1245.

637 Wen, J., Wu, J., Cao, T., Zhi, S., Chen, Y., Aagaard, L., Zhen, P., Huang, Y., Zhong, J., and Huang, J. (2021).

638 Methylation silencing and reactivation of exogenous genes in lentivirus-mediated transgenic mice.

639 *Transgenic Res* 30, 63-76.

640 Wyburn, K.R., Jose, M.D., Wu, H., Atkins, R.C., and Chadban, S.J. (2005). The Role of Macrophages in

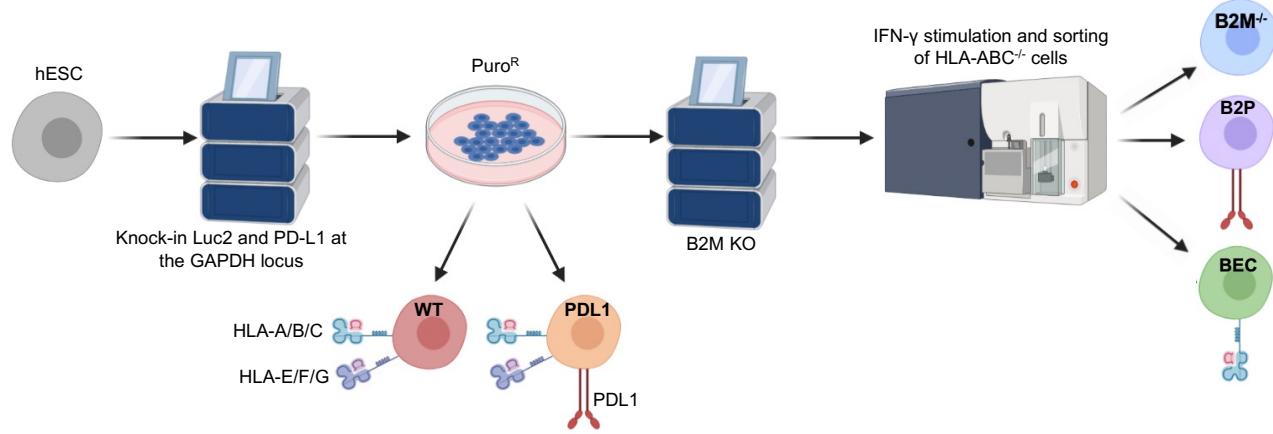
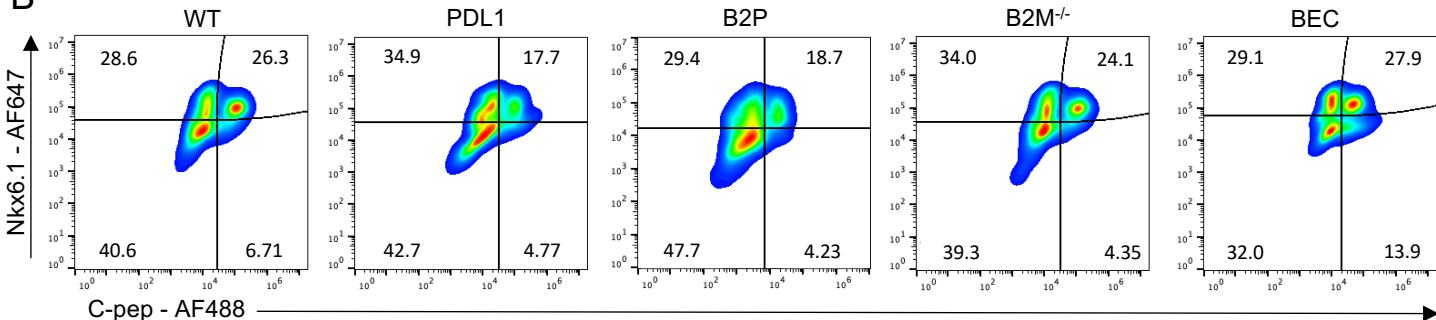
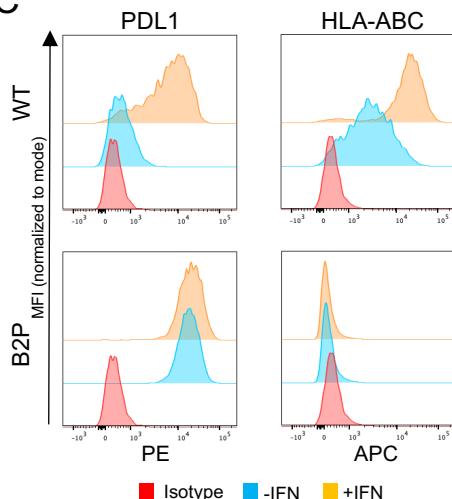
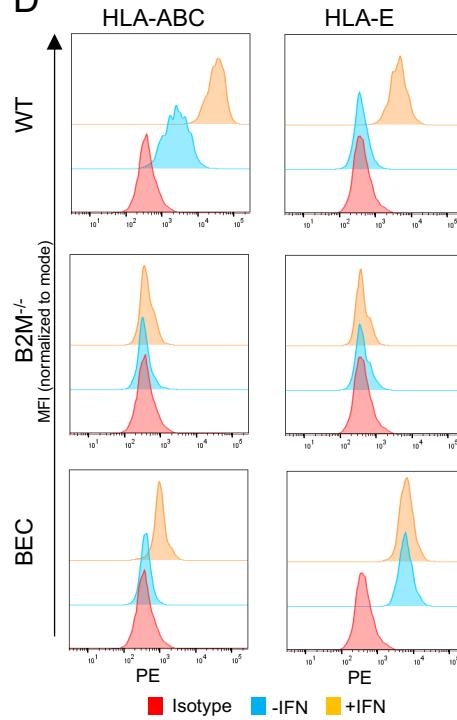
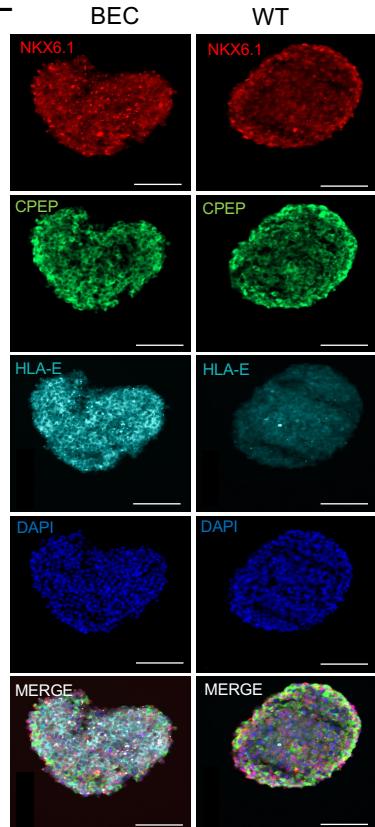
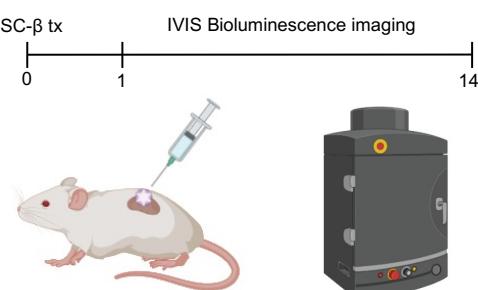
641 Allograft Rejection. *Transplantation* 80.

642 Xu, H., Wang, B., Ono, M., Kagita, A., Fujii, K., Sasakawa, N., Ueda, T., Gee, P., Nishikawa, M., Nomura,

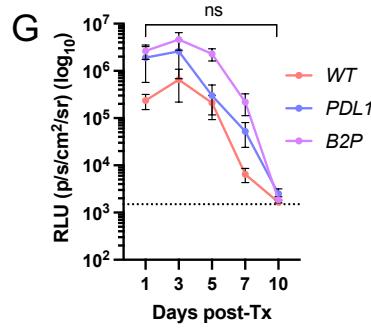
643 M., *et al.* (2019). Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with Enhanced

644 Immune Compatibility. *Cell stem cell* 24, 566-578.e567.

645 Yang, R., Sun, L., Li, C.-F., Wang, Y.-H., Yao, J., Li, H., Yan, M., Chang, W.-C., Hsu, J.-M., Cha, J.-H., *et al.*







646 (2021). Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer

647 immunotherapy. *Nature communications* 12, 832.


648 Yoshihara, E., O'Connor, C., Gasser, E., Wei, Z., Oh, T.G., Tseng, T.W., Wang, D., Cayabyab, F., Dai, Y., Yu,
649 R.T., *et al.* (2020). Immune-evasive human islet-like organoids ameliorate diabetes. *Nature* 586, 606-611.
650 Zhuang, Q., Liu, Q., Divito, S.J., Zeng, Q., Yatim, K.M., Hughes, A.D., Rojas-Canales, D.M., Nakao, A.,
651 Shufesky, W.J., Williams, A.L., *et al.* (2016). Graft-infiltrating host dendritic cells play a key role in organ
652 transplant rejection. *Nature communications* 7, 12623-12623.

653

654

A**B****C****D****E****F**

WT, PDL1 and B2P SC- β tx under kidney capsule of B6/albino mice

656

657 **Figure 1: Generation of immune-evasive SC-islet cells**

658 A. Schematic representation of the genetic-engineering strategy to generate hypoimmunogenic
659 hESCs.

660 B. FACS analysis of Nkx6.1/C-peptide SC- β cells derived from hypoimmunogenic hESCs (S6d14).

661 C. PDL1 and HLA-ABC expression on SC- β cells. Data is presented as MFI (gated on C-pep $^+$ /Nkx6.1 $^+$
662 SC- β cells) normalized to mode.

663 D. HLA-ABC and HLA-E expression on SC- β cells. Data is presented as MFI (gated on C-pep $^+$ /Nkx6.1 $^+$
664 SC- β cells) normalized to mode.

665 E. Immunofluorescence staining of HLA-E, Nkx6.1 and C-peptide in CD49a $^+$ -enriched SC- β cells
666 (S6d14). Size bars = 100 μ m.

667 F. Schematic of *in vivo* SC-islet cell xeno-rejection assay.

668 G. Quantitative analysis of xenograft rejection. Data is presented as mean \pm SEM ($n = 5$ /group).
669 Dashed line represents background luminescence.

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

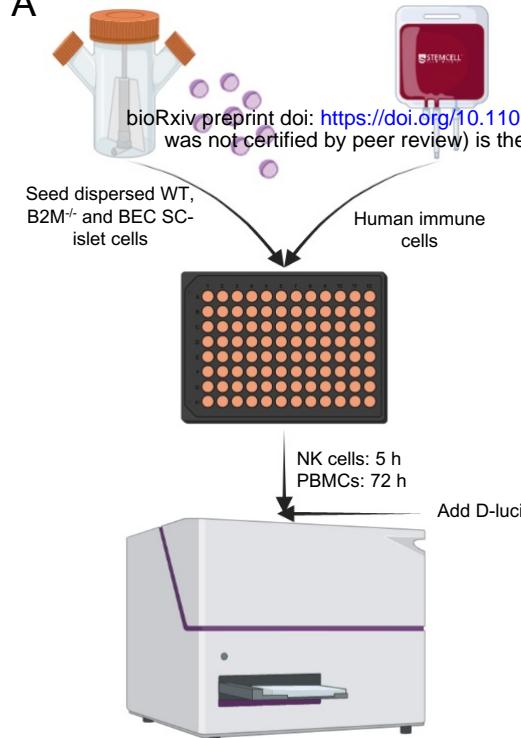
693

694

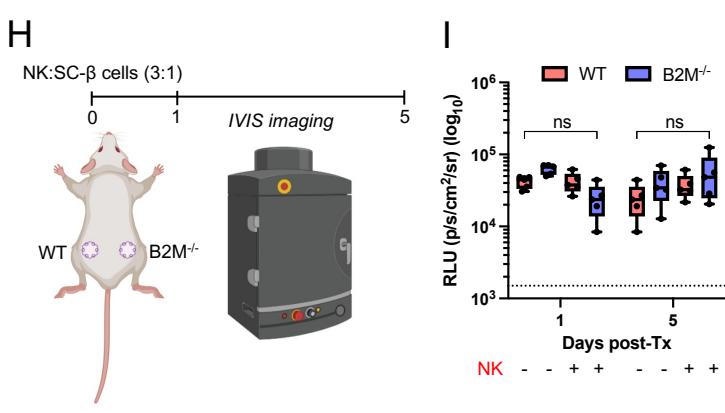
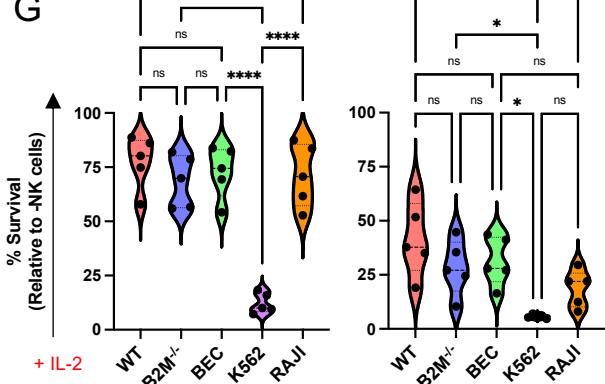
695

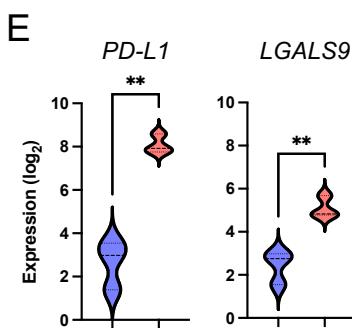
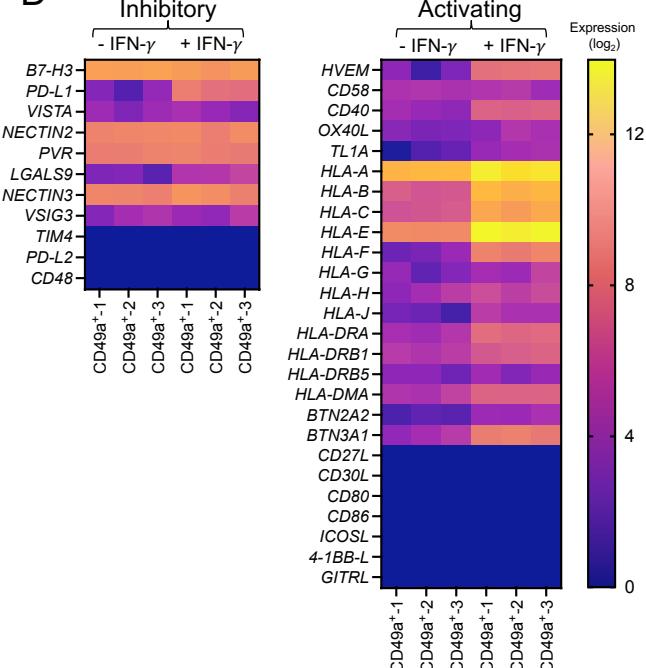
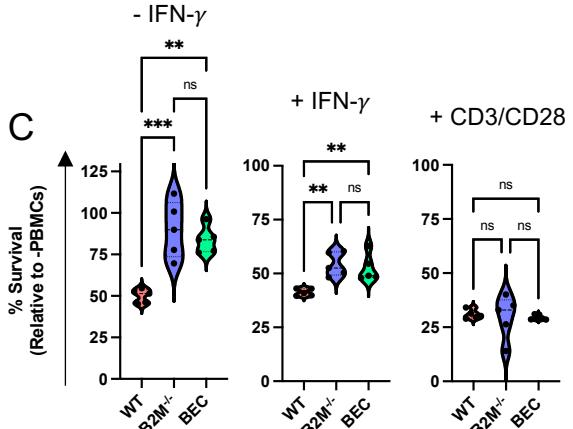
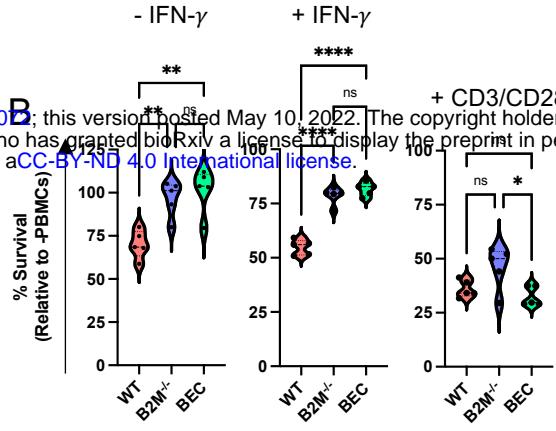
696

697


698

699





700

701

702

bioRxiv preprint doi: <https://doi.org/10.1101/2022.05.09.487023>; this version posted May 10, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

704 **Figure 2: *In vitro* co-culture of hypoimmunogenic SC-islet cells with allogeneic human immune cells**

705 A. Schematic of the *in vitro* immune:SC-islet cell co-culture assay.

706 B. Quantification of SC-islet cell survival when co-cultured with primary human PBMCs at a 1:1
707 ratio. Cell survival is presented as mean \pm SD ($n = 5$).

708 C. Quantification of SC-islet cell survival when co-cultured with primary human PBMCs at a 3:1
709 ratio. Cell survival is presented as mean \pm SD ($n = 5$).

710 D. Heatmap of T cell ligand gene expression in IFN- γ treated CD49a $^+$ SC- β cells. Ligand expression is
711 presented as fold-change (\log_2).

712 E. Differential expression of T cell co-inhibitory ligands in IFN- γ treated CD49a $^+$ SC- β cells. Ligand
713 expression is presented as fold-change (\log_2).

714 F. Differential expression of T cell co-activating ligands in IFN- γ treated CD49a $^+$ SC- β cells. Ligand
715 expression is presented as fold-change (\log_2).

716 G. Quantification of SC- β cell survival when co-cultured with primary human CD56 $^+$ NK cells. Cell
717 survival is presented as mean \pm SD ($n = 5$).

718 H. Schematic of *in vivo* NK cell cytotoxicity assay.

719 I. Quantitative analysis of *in vivo* NK cell assay. Data is presented as mean \pm SEM. Dashed line
720 represents background luminescence.

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

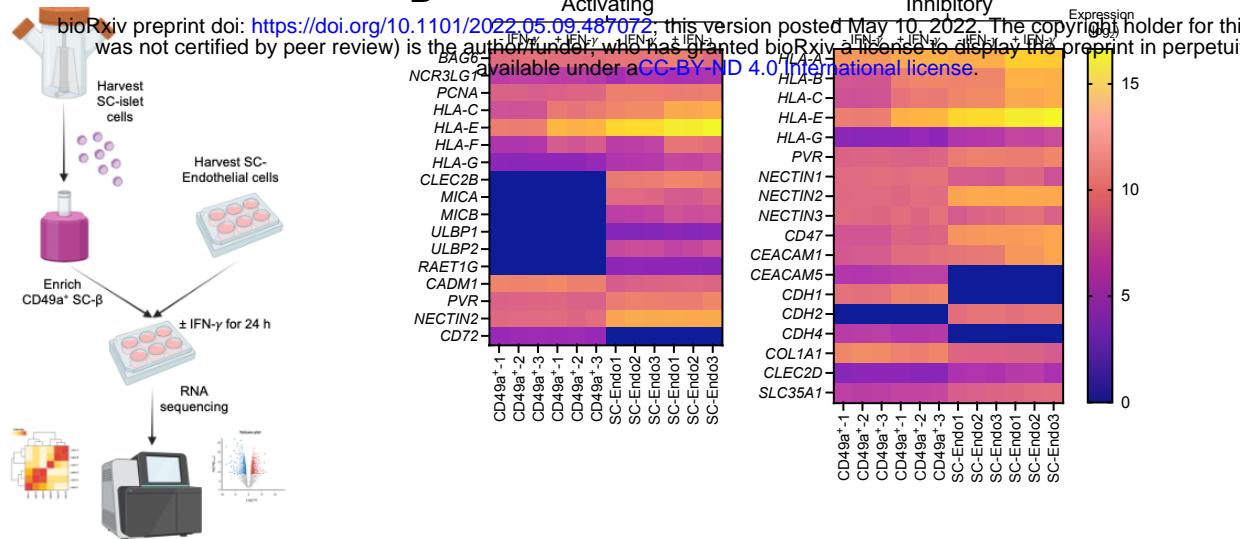
742

743

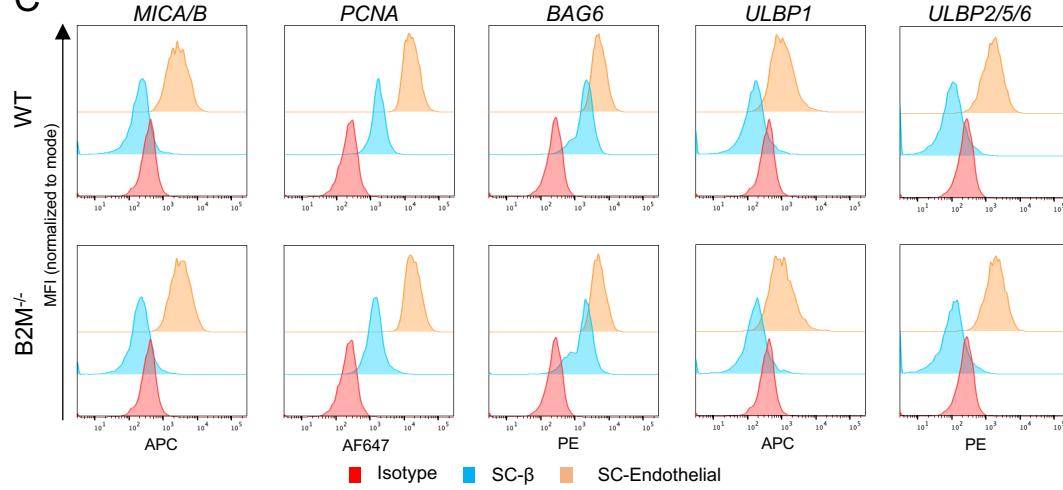
744

745

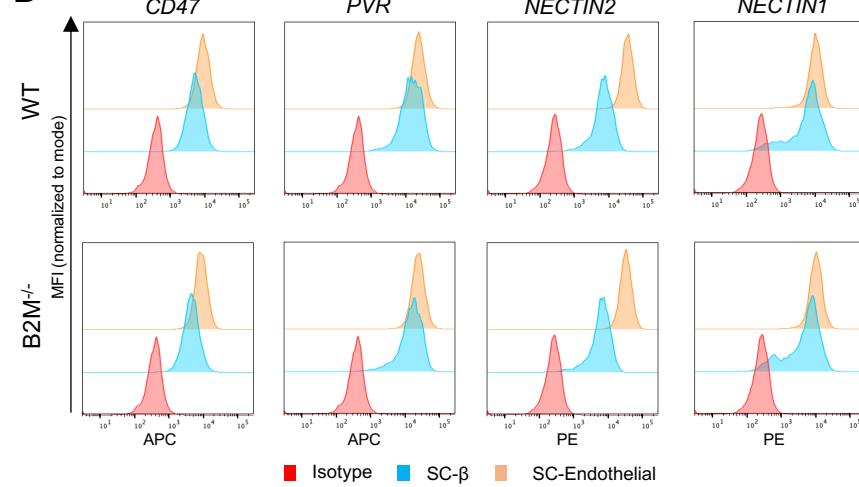
746

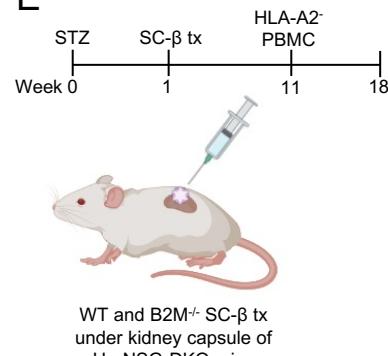

747

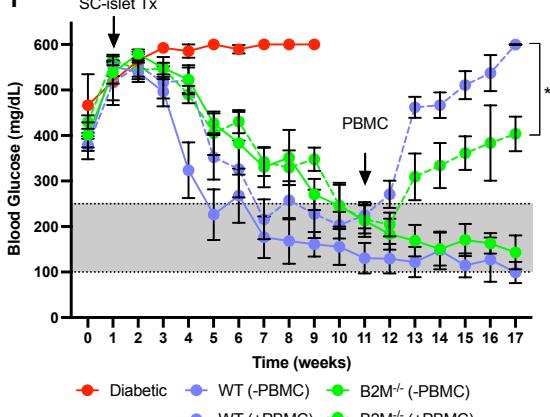
748


749

750


A


C


D

E

F

G

752 **Figure 3: Characterization of SC-islet cell-specific NK cell ligand profile**

753 A. Schematic of SC- β and SC-Endothelial cell bulk RNA sequencing workflow.

754 B. Heatmap of NK cell ligand expression in SC- β and SC-Endothelial cells (-IFN- γ vs +IFN- γ). Ligand
755 expression is presented as fold-change (\log_2).

756 C. NK cell activating ligand expression on SC- β and SC-Endothelial cells. Data is presented as MFI
757 normalized to mode and is representative of three independent experiments.

758 D. NK cell inhibitory ligand expression on SC- β and SC-Endothelial cells. Data is presented as MFI
759 normalized to mode and is representative of three independent experiments.

760 E. Schematic of SC-islet cell transplantation in diabetic humanized NSG-DKO mice.

761 F. Non-fasting blood glucose concentrations after SC-islet transplantation and PBMC injection.
762 Data is presented as mean \pm SD ($n = 12$ /group).

763 G. In vivo GSIS pre- and post-PBMC injection. Plasma insulin concentration was measured t=0 and
764 30 min after glucose injection. Data is represented as mean \pm SD ($n = 5$ /group).

765

766

767

768

769

770

771

772

773

774

775

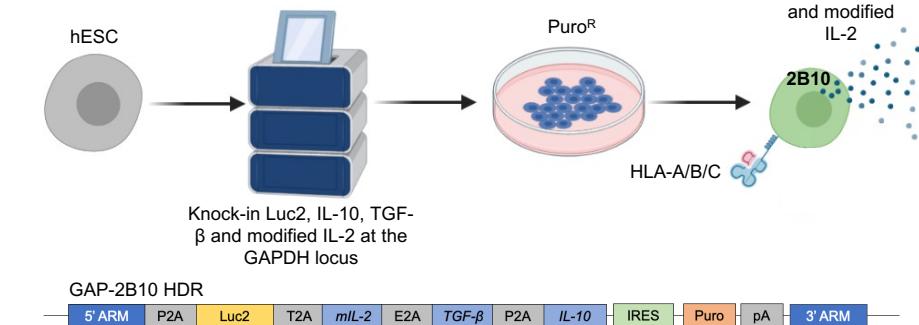
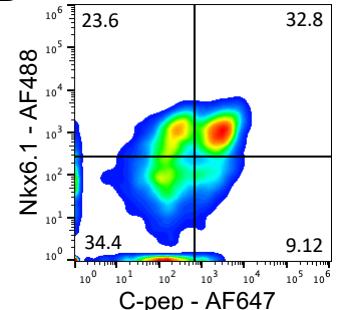
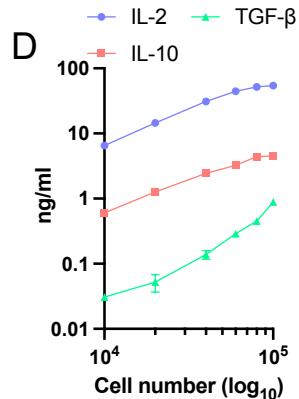
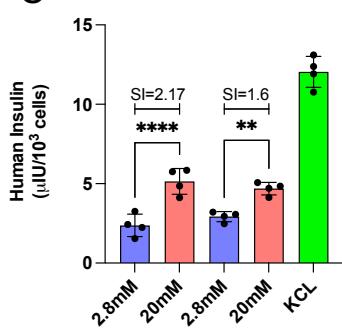
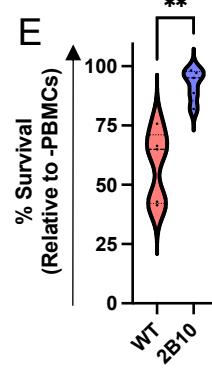
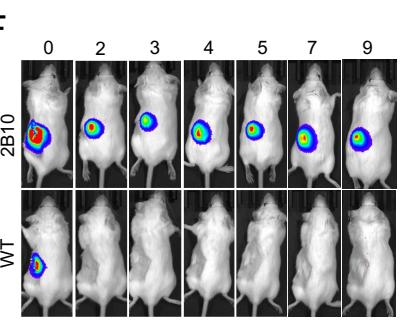
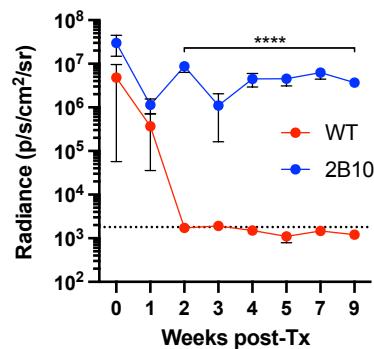
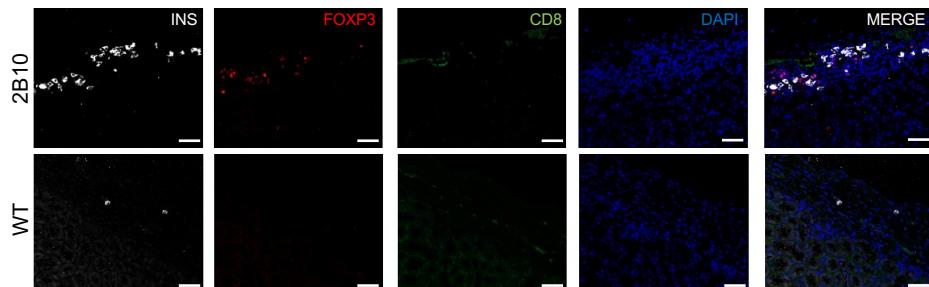
776

777

778

779

780









781

782

783

784

785

A**B****C****E****F****G****H**

797

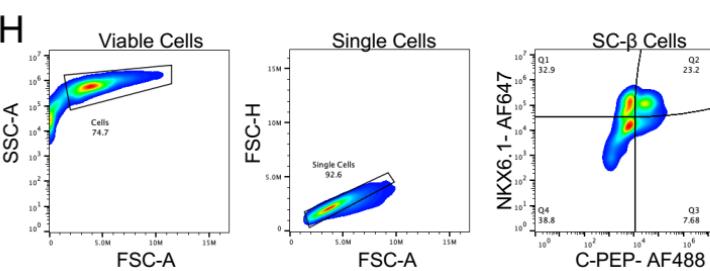
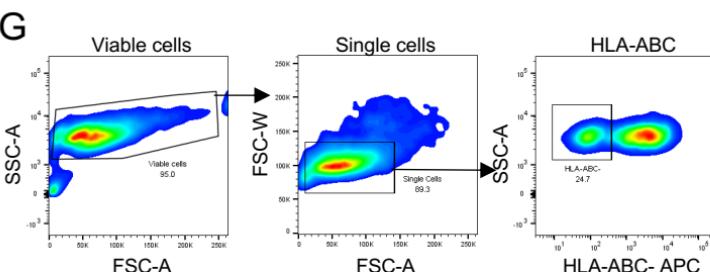
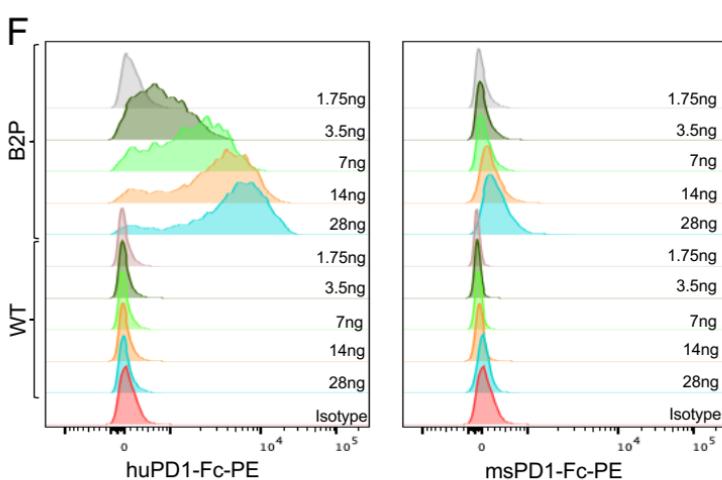
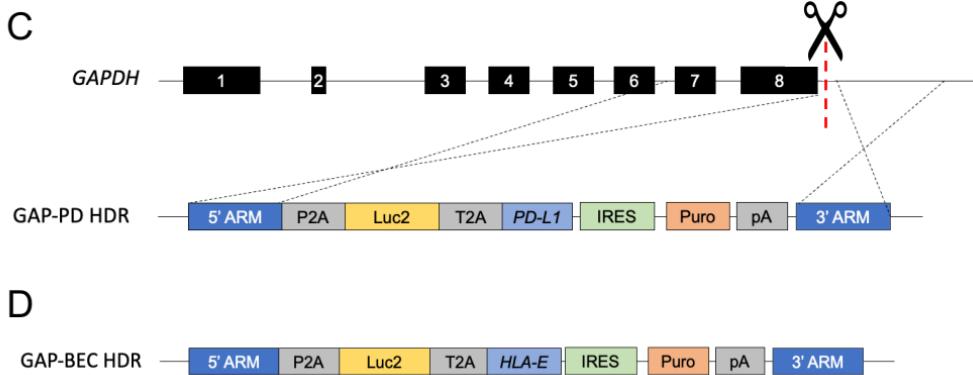
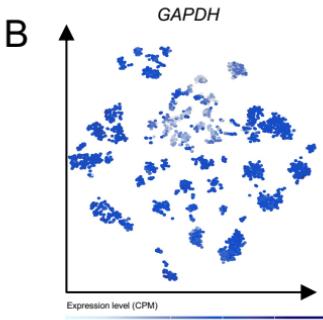
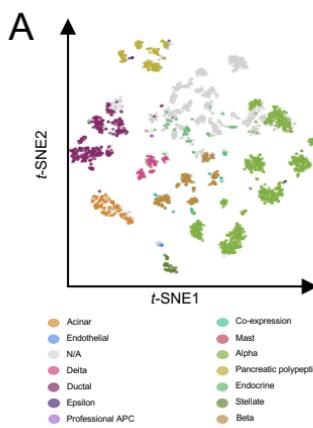
Figure 4: Immune-tolerizing SC-islet cells survive xeno-rejection

798 A. Schematic representation of the genetic-engineering strategy to generate immune-modulatory
799 hESCs and of the GAP-2B10 HDR plasmid.

800 B. FACS analysis of Nkx6.1/C-peptide SC- β cells derived from immune-modulatory hESCs (S6d8).

801 C. In vitro GSIS of 2B10 SC-islet cells. Data is represented as mean \pm SD ($n = 4$).

802 D. Quantification of cytokine secretion from 2B10 SC-islet cells. Data is represented as mean \pm SD
803 ($n = 2$).







804 E. Quantification of SC-islet cell survival when co-cultured with primary human PBMCs at a 1:1
805 ratio. Cell survival is presented as mean \pm SD ($n = 5$)

806 F. In vivo bioluminescence imaging of B6/albino mice transplanted with 2B10 SC-islet cells ($n =$
807 3/group).

808 G. Quantitative analysis of *in vivo* graft survival in B6/albino mice. Data is presented as mean \pm SD
809 ($n = 3$ /group).

810 H. Immunostaining of 2B10 and WT SC-islet grafts showing presence of INS $^+$ cells and T_{reg}
811 recruitment at 5 weeks post transplantation. Size bars = 100 μ m.

812

814 **Figure S1**

- 815 A. t-SNE projections of primary human islet cells.
- 816 B. t-SNE projections of GAPDH expression across the assigned populations. Cells are colored
- 817 according to their assigned cluster. (Adapted from Segerstolpe et al., 2016)
- 818 C. Schematic of homology directed repair plasmids for integration of Luc2 and PD-L1 at the GAPDH
- 819 locus.
- 820 D. Schematic GAPDH-targeting Luc2 and peptide::B2M::HLA-E HDR plasmid.
- 821 E. Schematic of the peptide::B2M::HLA-E long-chain fusion.
- 822 F. PD1-Fc binding assay. PD-L1 and WT SC-islet cells were dissociated and stained with a 2-fold
- 823 dilution series of PE-conjugated human and mouse PD1-Fc. Data is presented as MFI normalized
- 824 to mode.
- 825 G. FACS sorting strategy of HLA-ABC^{-/-} hESCs.
- 826 H. FACS gating strategy for quantification of Nkx6.1⁺/C-pep⁺ SC- β cells following *in vitro*
- 827 differentiation.

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

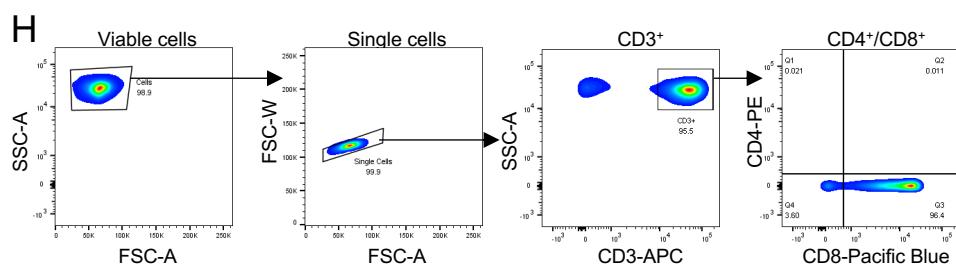
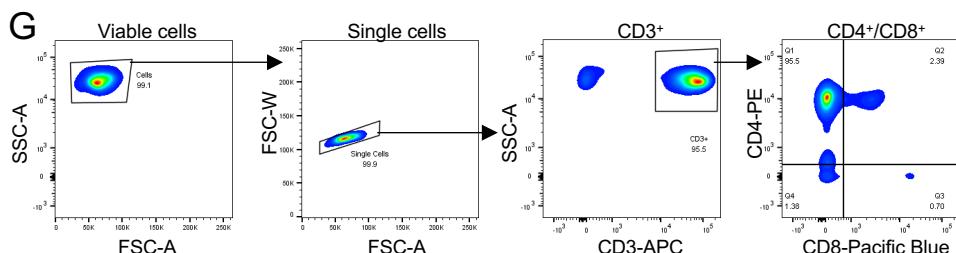
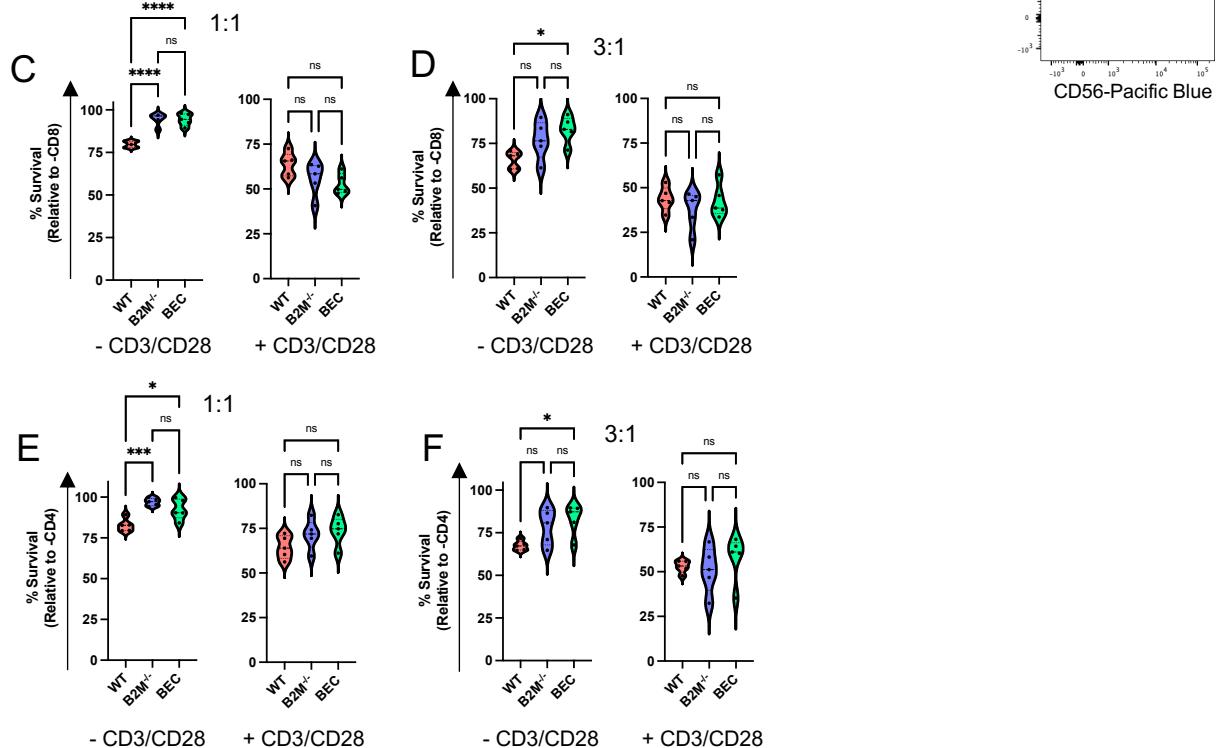
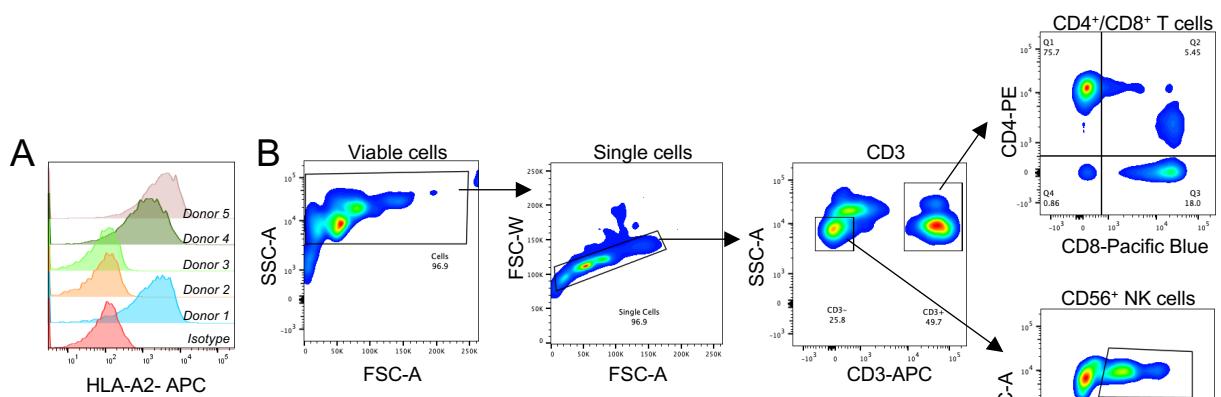
851

852

853

854

855





856

857

858

859

860

862 **Figure S2**

863 A. FACS profiling of HLA-A2 status of 5 PBMC donors.

864 B. FACS gating strategy of CD4⁺ and CD8⁺ T cells and CD56⁺ NK cells in PBMCs enriched from human

865 apheresis leukoreductions. Plots are representative of 5 donors.

866 C. Quantification of SC-islet cell survival when co-cultured with purified human CD8⁺ T cells at a 1:1

867 ratio. Cell survival is presented as mean \pm SD ($n = 5$).

868 D. Quantification of SC-islet cell survival when co-cultured with purified human CD8⁺ T cells at a 3:1

869 ratio. Cell survival is presented as mean \pm SD ($n = 5$).

870 E. Quantification of SC-islet cell survival when co-cultured with purified human CD4⁺ T cells at a 1:1

871 ratio. Cell survival is presented as mean \pm SD ($n = 5$).

872 F. Quantification of SC-islet cell survival when co-cultured with purified human CD4⁺ T cells at a 3:1

873 ratio. Cell survival is presented as mean \pm SD ($n = 5$).

874 G. FACS gating strategy of CD4⁺ T cells enriched from human apheresis leukoreductions. Plots are

875 representative of 5 donors.

876 H. FACS gating strategy of CD8⁺ T cells enriched from human apheresis leukoreductions. Plots are

877 representative of 5 donors.

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

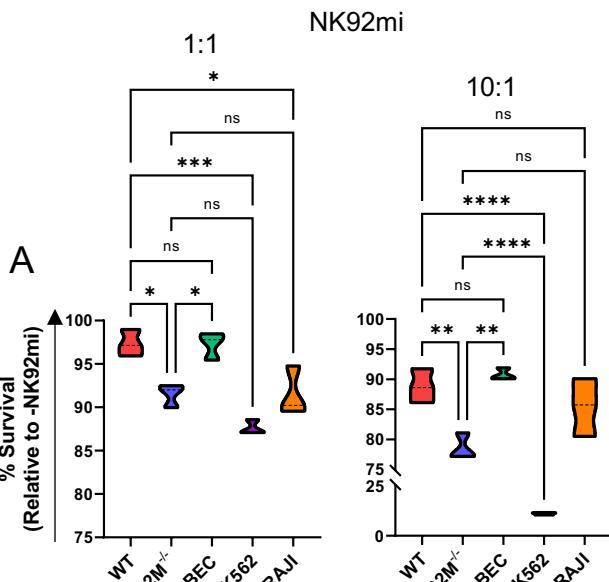
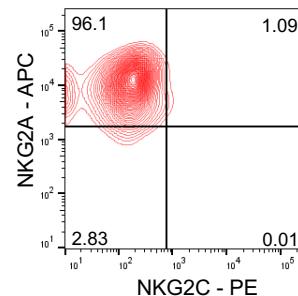
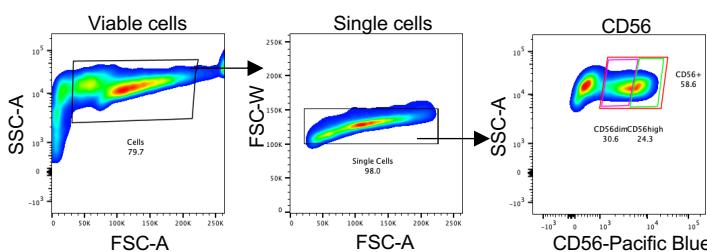
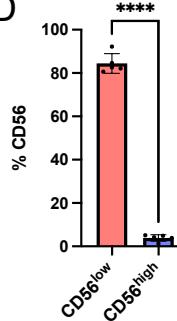
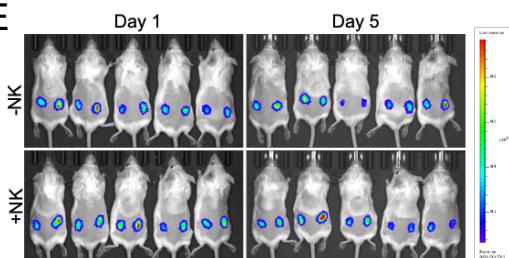
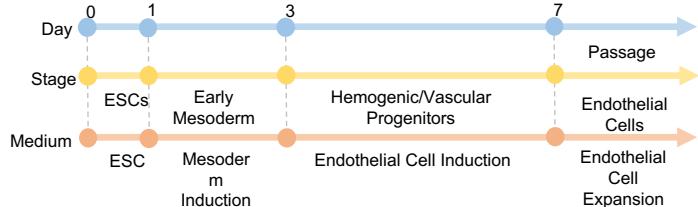
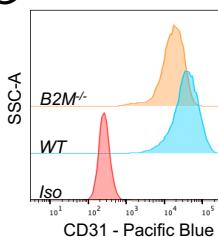
901

902

903

904

905








906

907

908

NK92mi

1:1

B**C****D****E****F****G**

913 **Figure S3**

914 A. Quantification of SC- β cell survival when co-cultured with NK92mi cells. K562 and Raji cells were
915 used as positive and negative controls, respectively. Cell survival is presented as mean \pm SD (n =
916 5).
917 B. NKG2A/NKG2C expression on NK92mi cells.
918 C. FACS gating strategy of CD56 $^{+}$ NK cells enriched from human apheresis leukoreductions. Gates
919 for specific population include all CD56 $^{+}$ NK cells (red), CD56 $^{\text{high}}$ (green) and CD56 $^{\text{dim}}$ (pink). Plots
920 are representative of 5 donors.
921 D. Quantitative analysis of CD56 expression on enriched primary human NK cells. Data is presented
922 as % CD56 expression (n = 5).
923 E. *In vivo* NK cell assay. Bioluminescence imaging was performed on day 1 and 5 post-
924 transplantation.
925 F. Schematic of SC-endothelial cell differentiation protocol.
926 G. FACS analysis of the endothelial cell marker CD31 in SC-endothelial cells derived from WT and
927 B2M $^{-/-}$ hESCs.