

1 **Title: Comparative brain structure and the neural network features of cuttlefish and**
2 **squid**

3

4 **Authors:** Wen-Sung Chung^{1,3,*}, Alejandra L. Galan¹, Nyoman D. Kurniawan², N. Justin
5 Marshall¹

6 **Affiliations:**

7 ¹ Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia

8 ² Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072,
9 Australia

10 ³ Lead contact

11 * Correspondence (w.chung1@uq.edu.au)

12

13 **Abstract**

14 Cuttlefishes, like their octopus cousins, are masters of camouflage by control of body
15 pattern and skin texture to blend in with their surroundings for prey ambush and threat
16 avoidance. Aside from significant progress on the cuttlefish visual perception and
17 communication, a growing number of studies have focused on their behavioural neurobiology
18 and the remarkably rapid and apparently cognitively complex reactions to novel challenges
19 such as spatial learning to solve maze tasks and vertebrate-like cognitive capabilities (e.g.
20 object recognition, number sense and episodic-like memory). Despite intense interest of
21 cuttlefish, much of our knowledge of its neuroanatomy and links to behaviour and ecology
22 comes from one temperate species, the European common cuttlefish, *Sepia officinalis*. Here
23 we present the first detailed comparison of neuroanatomical features between the tropical
24 cuttlefish and squid and describe differences in basic brain and wiring anatomy using MRI-
25 based techniques and conventional histology. Furthermore, comparisons amongst nocturnal
26 and diurnal cuttlefish species suggest that the characteristic neuroanatomical features infer
27 interspecific variation in visual capabilities, the importance of vision relative to the less
28 utilised chemosensory system and clear links with life modes (e.g. diurnal vs nocturnal),
29 ecological factors (e.g. living depth and ambient light condition) as well as to an extent,
30 phylogeny. These findings link brain heterogeneity to ecological niches and lifestyle, feeding
31 hypotheses around evolutionary history and provide a timely, new technology update to older
32 literature.

33 **Introduction**

34 Cuttlefish, squid and octopus are the three groups of coleoid cephalopods exhibiting
35 diverse adaptations in body form, life modes and behavioural repertoires. This is reflected in
36 the underlying nervous system (Nixon and Young, 2003, Hanlon and Messenger, 2018).
37 While the fourth extant group of cephalopods, Nautilus, has an obvious external shell, gas-
38 filled and used for floatation, octopus and squid have lost almost all remnants of this ancient
39 feature and may therefore inhabit a broad range of ocean depths (0-6000 m) (Jereb and Roper,
40 2010, Jereb et al., 2014). The cuttlefish possess an internal chambered cuttlebone that, while
41 giving internal strength, is also controllably gas-filled and therefore the risk of implosion
42 limits their living depth to above 400m. Interestingly, for unknown reasons, they also have a
43 limited geographic distribution (high diversity in the Indo-Pacific but absence in the
44 Americas and polar regions) (Sherrard, 2000, Jereb and Roper, 2005, Lu and Chung, 2017).
45 The cuttlebone allows buoyancy control by adjustment of the ratio between air and liquid and
46 cuttlefish can therefore hover in the water column or bury themselves in sand to hide. This
47 hovering, usually close to the benthos, is in contrast to the continual swimming activity of
48 squid and the almost exclusively benthic existence of coastal octopus (Denton and Gilpin-
49 Brown, 1961, Hanlon and Messenger, 2018).

50 A growing number of *in situ* observations of cuttlefish species show that they are not
51 solitary, as are most of the species of neritic octopuses and also not as social as schooling
52 species of squid (Hanlon and Messenger, 2018, Lu and Chung, 2017). Cuttlefish may
53 therefore have a partially social life and are known to aggregate, sometimes in large numbers,
54 for breeding on a seasonal basis (e.g. European common cuttlefish, *Sepia officinalis*;
55 Broadclub cuttlefish, *Sepia latimanus*; Australian giant cuttlefish, *Sepia apama*) (Norman et
56 al., 1999, Hanlon et al., 2005, Yasumuro et al., 2015, Drerup and Cooke, 2021).

57 Cuttlefishes, like their octopus cousins, are masters of camouflage by control of body
58 pattern and texture to blend in with their surroundings and use this ability both for prey
59 ambush and threat avoidance (Marshall and Messenger, 1996, Chiao and Hanlon, 2001,
60 Hanlon and Messenger, 2018, Gonzalez-Bellido et al., 2018, Osorio et al., 2022). In fact,
61 cuttlefish spend most of their time in very effective and totally colourblind camouflage, they
62 may also rapidly switch colouration to emphasise their presence, produce startle threats,
63 attract mates or indeed cheat rival males (Norman et al., 1999, Hanlon et al., 2005, Zylinski et
64 al., 2011, Brown et al., 2012, Chung and Marshall, 2016, How et al., 2017, Alejandra et al.,
65 2020). The ability to alter their visual appearance is driven by neurally-controlled

66 chromatophore (colours) and muscular hydrostat (papillae) systems coordinated by a set of
67 brain lobes organised hierarchically (e.g. the simplest circuit, optic lobe (OPL) - lateral basal
68 lobe (LB)– chromatophore lobe (Ch)) (Messenger, 2001, Gonzalez-Bellido et al., 2018).

69 The cuttlefish central nervous system (CNS) is built around a circum-oesophageal set
70 of lobes that have expanded greatly, in part in response to their complex visual system and
71 rapid visual-motor reactions (i.e. ballistic tentacular strike, visual communication) (Tompsett,
72 1939, Sanders and Young, 1940, Boycott, 1961, Messenger, 1968, Chichery and Chichery,
73 1987). The general shape of the cuttlefish CNS shows that the degree of its compactness is
74 between octopus (compact CNS) and squid (elongated CNS) (see Fig 2.2 in Nixon and
75 Young (2003)). Previous studies also suggested a high degree of similarity in CNS layout and
76 underlying neural network between squid and cuttlefish, including the first of these from
77 Cajal (1917), that initially highlighted the sophisticated visual and chromatophore systems
78 (Sanders and Young, 1940, Boycott, 1953, Boycott, 1961, Messenger, 1968, Young, 1974,
79 Young, 1976, Young, 1977, Young, 1979, Messenger, 1979, Budelmann and Young, 1987,
80 Wild et al., 2015, Ponte et al., 2021). These works demonstrate the closeness of sepioids
81 (cuttlefish) and teuthoids (squid) in spite of their long evolutionary separation (Strugnell et al.,
82 2006, Allcock et al., 2014).

83 Early work on the organisation of the cuttlefish sensory and motor control systems was
84 achieved through two methods: (1) Electrical stimulation of selected brain regions to detail
85 the associating responses (Sanders and Young, 1940, Boycott, 1961, Chichery and Chanelet,
86 1976, Chichery and Chanelet, 1978, Chichery and Chichery, 1987). (2) Comparative studies
87 in behavioural changes and learning impairment before and after brain region ablation
88 (Sanders and Young, 1940, Boycott and Young, 1950, Chichery and Chichery, 1987).

89 The cuttlefish CNS was divided into 5 major functional regions: (i) The vertical lobe
90 complex located at the most dorsal part of CNS with the noticeable dome-shaped vertical
91 lobe (VL) and the superior frontal lobe (learning and memory). (ii) A pair of optic lobes
92 (OPL) (visual tasks). (iii) A pair of peduncle lobes (PED) (cerebellum-like lobe for visual-
93 motor control). (iv) Supra-oesophageal mass (Higher motor centres coordinating sensory
94 inputs and behavioural responses). (v) Sub-oesophageal mass (Lower motor centres
95 executing movement of funnel, arms, and mantle activities). This pioneering work produced a
96 useful model for several ensuing studies of sensory reception, learning and memory

97 (Messenger, 1973, Darmaillacq et al., 2006, Jozet-Alves et al., 2013, Yang and Chiao, 2016,
98 Feord et al., 2020, Schnell et al., 2021b, Schnell et al., 2021a, Osorio et al., 2022).

99 Over the past two decades, a growing number of studies have focused on the
100 behavioural neurobiology of the cuttlefish and their remarkably rapid and apparently
101 cognitively complex reactions to novel challenges. For instance, cuttlefish can utilise spatial
102 learning to solve maze tasks based on visual cues (e.g. landmark and e-vector of polarization
103 light) (Alves et al., 2007, Cartron et al., 2012). Object recognition in cuttlefish (e.g. visual
104 equivalence, amodal completion and visual interpolation for contour completion) appears to
105 use strategies close to those used in vertebrates (Zylinski et al., 2012, Lin and Chiao, 2017a,
106 Lin and Chiao, 2017b). The recent push towards comparisons of advanced cognitive
107 behaviours (i.e. number sense, episodic-like memory, self-control), has postulated that the
108 ability of the cuttlefish in solving complex tasks and cognitive reactions approaches that of
109 young humans (Yang and Chiao, 2016, Schnell et al., 2021a, Schnell et al., 2021b).

110 Our current knowledge of the apparently complex behaviour of cuttlefish is
111 predominantly derived from a large number of studies on a primarily nocturnal species, *S. officinalis* (Cajal, 1917, Sanders and Young, 1940, Boycott, 1961, Denton and Gilpin-Brown,
112 1961, Messenger, 1968, Chichery and Chichery, 1987, Nixon and Mangold, 1998, Gaston
113 and Tublitz, 2004, King et al., 2005, Hanlon et al., 2009, Wild et al., 2015, Oliveira et al.,
114 2017, Gonzalez-Bellido et al., 2018, Feord et al., 2020, Schnell et al., 2021a, Schnell et al.,
115 2021b, Osorio et al., 2022). Despite intense interest their cognitive abilities the CNS gross
116 anatomy, lobe organisation, brain-wide neural networks and the associated functional circuits
117 is scant compared to both octopuses (Messenger, 1967, Young, 1971, Budelmann and Young,
118 1985, Plän, 1987, Chung et al., 2022) and loliginid squids (Cajal, 1917, Young, 1974, Young,
119 1976, Young, 1977, Young, 1979, Messenger, 1979, Wild et al., 2015, Chung et al., 2020).

121 Notably, while some of what we know around biology, ecology and physiology has
122 also been obtained from the Indo-Pacific species, knowledge of their neuroanatomy is either
123 sparse (e.g. *S. latimanus*, *S. pharaonis*, *Sepia bandensis* and *Sepiella japonica*) or absent
124 among distinctively diurnal species such as *S. apama*, the flamboyant cuttlefish (*Metasepia*
125 *pfefferi*) and the mourning cuttlefish (*Sepia plangon*) (Norman et al., 1999, Hanlon et al.,
126 2007, Zylinski et al., 2011, Lee et al., 2013, Yang and Chiao, 2016, Liu et al., 2017a, Li et al.,
127 2018, Schnell et al., 2019, Mezrai et al., 2020, Lu and Chung, 2017, Montague et al., 2022).

128 Recently developed techniques in magnetic resonance imaging (MRI) and histology to
129 investigate cephalopod brains has revealed numerous novel findings at the morphological
130 level. In particular, we have linked lobe growth and heterogeneity to ecological niches and
131 lifestyle (Chung and Marshall, 2017, Liu et al., 2018, Chung et al., 2020, Chung et al., 2022).

132 Diffusion MRI (dMRI) using an ultra-conservative level for tractography acceptance
133 has accurately delineated several new neural interconnections and networks, and at a level of
134 detail not possible to see with conventional histology (Chung et al., 2020, Chung et al., 2022).
135 It is worth noting that the first brain-wide connectome of squid CNS recovered 99.65% of the
136 previously known neural tracts of loliginids (281 of 282) along with additional dozens of
137 previously unknown visual-motor related tracts (Chung et al., 2020).

138 Furthermore, in contrast to a regular dorsoventral chiasmata in nocturnal octopuses, a
139 new form of retinal wiring of the diurnal reef octopus which splits the visual scene into 4
140 separate zones suggested that this adaptation was linked to their ecology and behaviour
141 (Chung et al., 2022). These examples highlight the advantage of new MRI-based methods
142 and how a comparative study of various species, outside the list of the classical model species,
143 allows evolutionary history to be drawn that may otherwise remain obscured.

144 In this context we asked three questions here: (1) Whether the neural anatomy of *S. officinalis*
145 may be representative of all or most cuttlefish (over 100 species)? (2) Whether the
146 cuttlefish brain may have some adaptations in response to their habits and habitats similar to
147 those found in octopuses (i.e. enlargement and division of their visual centre, structural
148 foldings and complexity in the learning and memory centre)? (3) Alternatively, given their
149 free-swimming mode, are their brain adaptations more akin to their apparently closer cousins,
150 the squid?

151 Understanding the gross neuroanatomy and circuit diagrams of any nervous system is
152 the necessary first step towards understanding how evolution has shaped both brain structures
153 and behaviours in cephalopods (Budelmann and Young, 1987, Nixon and Young, 2003,
154 Williamson and Chrachri, 2004, Chung and Marshall, 2014, Chung and Marshall, 2017, Liu
155 et al., 2018, Chung et al., 2020, Chung et al., 2022). In order to describe the neuroanatomy of
156 the cuttlefish species described here, we have used the previous publications of *S. officinalis*
157 and loliginid squids as a ‘baseline’, along with the few other descriptions for some brain areas
158 that exist for other cuttlefish species (Cajal, 1917, Boycott, 1961, Young, 1974, Young, 1976,
159 Young, 1977, Young, 1979, Messenger, 1979, Dubas et al., 1986b, Dubas et al., 1986a,

160 Budelmann and Young, 1987, Wild et al., 2015, Liu et al., 2017a, Gonzalez-Bellido et al.,
161 2018, Li et al., 2018, Chung et al., 2020, Montague et al., 2022).

162 We also chose a comparative approach, both between cuttlefish species and with squid,
163 and investigated 2 species of decapodiform cephalopods that represent phylogenetically
164 distinct groups and that exhibit different life modes, including the reef squid *Sepioteuthis*
165 *lessoniana* and the diurnal reef cuttlefish, *S. plangon*. In addition to these species described
166 here, another 9 cuttlefish species (*Metasepia tullbergi*, *Sepia elegans*, *Sepia orbignyana*,
167 *Sepia omani*, *S. latimanus*, *S. officinalis*, *S. pharaonis*, *S. bandensis*, *S. japonica*) were
168 selected from published literature (Boycott, 1961, Jereb and Roper, 2005, Wild et al., 2015,
169 Liu et al., 2017a, Li et al., 2018, Ziegler et al., 2018, Montague et al., 2022) and included for
170 further analyses where comparative data exists. Observations on the relative enlargement of
171 brain lobes, and brain folding are included in an extended comparison of species, relative to
172 ecology and lifestyle as well as phylogenies mostly based on existing morphological and
173 molecular data.

174

175 **Results**

176 **Gross anatomy of the diurnal cuttlefish brain**

177 Dissection, contrast-enhanced 16.4T MR images (isotropic resolution 30 μm) and
178 resulting 3D reconstruction show that the brain of *S. plangon* is located just under the anterior
179 projection of the cuttlebone (Figure 1). The central complex (CC) is encased by the cranial
180 cartilage whereas the two optic lobes (OPLs) are partially covered at the posterior end (Figure
181 1B). In gross anatomical terms this diurnal cuttlefish possesses a compact brain superficially
182 similar to those of *S. officinalis* (histology and MRI (3T & 9.4T) (Tompsett, 1939, Boycott,
183 1961, Wild et al., 2015, Ziegler et al., 2018) and *S. bandensis* (histology and MRI (9.4T))
184 (Montague et al., 2022) and shares a similar lobe arrangement as the loliginid squids (Young,
185 1974, Young, 1976, Young, 1977, Young, 1979, Messenger, 1979, Chung et al., 2020),
186 including 32 lobes (15 of which are bilateral) (Figures 1-2 & Table S1).

187 Notably, the suboesophageal mass of squid is elongated due to the long brachio-pedal
188 connective to make contact with the brachial lobe further away from the pedal lobe complex
189 (Figure 2). Additionally, the close to bottom dweller, *S. plangon*, and the water column
190 dweller, *S. lessoniana*, possess relatively small chemosensory regions (inferior frontal lobe

191 complex (iFLx)), approximately 0.3-0.5% of CNS volume, indicating that chemoreception is
192 less important than for the entirely benthic octopuses (4-6%) (Maddock and Young, 1987,
193 Chung et al., 2020, Chung et al., 2022). Several previously unknown neuroanatomical
194 features, obvious at a gross anatomical level, were identified in *S. plangon*, including distinct
195 enlargement of the OPL and vertical lobe, and morphological folding of the OPL as described
196 next (Figures 1-2, Videos S1-2).

197

198 **Croissant-shaped optic lobe**

199 All specimens (1 hatchling, 2 juveniles and 3 adults) examined here possess distinct
200 enlarged OPLs (the percentages of OPLs relative to total CNS volumes range between 77-
201 82%) which are close to another diurnal cuttlefish *S. latimanus* (ca 82%) (Ziadi-Kunzli et al.,
202 2019) and those of loliginid squids (e.g. 80% of CNS in *S. lessoniana*; *Sepioteuthis sepioidea*
203 (79%) and *Loligo forbesi* (77%)) (Maddock and Young, 1987, Chung et al., 2020). This is in
204 contrast to the moderately-large OPLs (58-74% of CNS) in another 4 cuttlefish species which
205 are frequently active at low light conditions (Tables 1 & S3).

206 Another unique neuroanatomical feature of *S. plangon* among cuttlefish but one which
207 it shares with some octopus species (Chung et al., 2022) is an only just described croissant-
208 shaped OPL. All decapodiform cephalopods examined, as far as we know, have a regular
209 bean-shaped OPL, including its cuttlefish siblings (e.g. *S. officinalis*, *S. bandensis*, *S.*
210 *pharaonis*, *S. omani* and *S. japonica*), neritic squid (e.g. *Idiosepius*, *Loligo* and *Sepioteuthis*)
211 and deep sea squid (e.g. *Abraaliopsis*, *Architeuthis*, *Bathyteuthis*, *Liocranchia* and *Pyroteuthis*)
212 (Boycott, 1961, Young, 1974, Chung, 2014, Chung and Marshall, 2017, Liu et al., 2017b, Liu
213 et al., 2017a, Li et al., 2018, Liu et al., 2018, Montague et al., 2022).

214 Given their similar body size, the OPLs of *S. plangon* are significantly larger than those
215 of the nocturnal *S. bandensis* (ML: 60-70mm) and the reef squid, *S. lessoniana* (ML: ca 110
216 mm) (Tables 1 & S2-3). The croissant-shaped OPL is present over a broad range of body size
217 (young juvenile - adult, mantle length: 18-107 mm), less accentuated in the post-hatchling (a
218 week old) and appears to be associated with a diurnal existence and associating visual tasks
219 (Figures 2-4). Detailed morphological features are as follows:

220 (i) OPL horns. The dorsal 1/3 of the OPL is divided into two parts, forming two blunt horns
221 that are closely opposed near the central line of the OPL. With the cuttlefish in a posture that

222 is resting on the substrate or hovering in the water column, the anterior horn receives input
223 from the posterior visual scene via the posterior vertical slit of its w-shaped pupil. The
224 posterior horn is opposite to this and receives visual input from the antero-ventral direction,
225 a zone vital for the ballistic tentacular strike used for prey capture.

226 (ii) OPL sulcal folding. A second modification in *S. plangon* (again one found recently also
227 in octopus (Chung et al., 2022)) is a curved-shaped sulcus at the lateral side apparently
228 matched to the central crescent-shaped area of the pupil. The function of these structural
229 folding is most likely to increase the surface area of the OPL. This is discussed relative to the
230 gyrification index (GI =1.06) below but in brief appears to correlate with resolution power.

231

232 **Vertical lobe**

233 Volumetric estimates show that the dome-shaped vertical lobe of *S. plangon* is
234 significantly enlarged (4-5.3% of CNS volume) relative to those of the loliginid squids (0.3-
235 3.2%) and cuttlefish species which are more active in the low light conditions (e.g.
236 dominantly nocturnal *S. officinalis* (0.3-3.6%), and those living in deeper water (100-400m
237 depth) such as *S. elegans* (3.2%) and *S. orbignyana* (3.3%)) (Table 1). Additionally, the size
238 of vertical lobe increases significantly during ontogeny (from 2.4% at hatchling to
239 approximately 4-5% at adult) (Tables 1 & S3).

240

241 **Tractography and connectome of the cuttlefish brain**

242 Using the same imaging procedure and the selection criteria established for the squid
243 brain (Chung et al., 2020), the averaged connectome of *S. plangon* (3 adults) allows recovery
244 of all known major inter-lobed tracts described in squid and cuttlefish (n = 388, connectivity
245 strength of tractography (C_s the logarithm of numbers of streamlines intersecting a pair of
246 lobes: 0.48 - 5.76) (Figure 3) (Cajal, 1917, Boycott, 1961, Young, 1974, Young, 1976, Young,
247 1977, Young, 1979, Messenger, 1979, Budelmann and Young, 1987, Novicki et al., 1990,
248 Chung et al., 2020). In addition, 181 blank spots ($C_s = 0$) in the averaged connectivity matrix
249 from tractography are well-matched with the blanks from previous histology, demonstrating
250 that our current procedure effectively eliminating false positives.

251 Despite the considerable difference in phylogenetic relationship, a comparison of the
252 MRI-based connectomes confirms a high degree of similarity in the inter-lobed network
253 between squid and cuttlefish (Figure 3). Notably, the vision-related networks in two inter-
254 lobed connectomes represent nearly the same pattern, including those connections between
255 OPL-supra-esophageal mass (squid: 2.44 - 5.08 vs cuttlefish: 3.13 - 5.4) (e.g. OPL linked
256 with basal lobe complex) and OPL-sub-esophageal mass with the median-high C_s value
257 (squid: 0.74 - 4.58 vs cuttlefish: 1.18 - 5.21) (e.g. OPL linked with pedal and magnocellular
258 lobes). Also, the connectomes within the sub-esophageal mass that are responsible for
259 locomotion manoeuvre are similar, presumably due to similar modes of locomotion between
260 the two groups. In addition, a comparison of the C_s between brachial and inferior frontal
261 lobes (*S. plangon* (3.77) vs *S. lessoniana* (0.61)) confirms a previous qualitative description
262 that a strong inter-lobed connection throughout the cerebro-brachial tracts exists in cuttlefish,
263 *S. officinalis*, whereas fewer stained neurons are seen in squid, *Loligo vulgaris* (Budelmann
264 and Young, 1987) (Figure 3).

265 A few remarkably strong inter-lobed connections (C_s : 1.6-2.8) may be identified as
266 tracks unique to cuttlefish, whereas those in the squid connectome are either absent or with a
267 much lower C_s value (<1), including those related to the chromatophore, magnocellular and
268 pedal lobes (Figure 3D). Considering the main function of these three brain regions, in
269 control of locomotion and colouration (Boycott, 1961), these previously-unknown
270 tractographic connections are likely to drive dynamic body pattern changes as well as the two
271 previously known circuits (OPL-lB-Ch and OPL-PED-lB-Ch) (Messenger, 2001, Gonzalez-
272 Bellido et al., 2018).

273

274 **Phylogenetic analyses**

275 Pagel's λ and phylogenetic generalised least squares (PGLS) analyses were used to
276 estimate the likelihood that these newly described modifications are phylogenetically linked
277 (STAR Methods). A strong phylogenetic relationship is linked in the morphological changes
278 of the optic lobes (Pagel's λ = 0.9999 for all 7 species; test of λ = 1, p = 1) (Figure 4).
279 However, we suggest the adaptations seen here, especially those within the OPL in diurnal
280 reef dwellers are most likely driven by the needs of their life modes. In other animals, it is the
281 adaptations of the central brains and existing CNS design that are more likely to retain a

282 phylogenetically-flavoured relationship (Yopak et al., 2010, Yopak et al., 2020, Chung et al.,
283 2022, Wolff et al., 2017, Nixon and Young, 2003).

284

285 **Discussion**

286 In common with their major competitors, the fish, coastal cephalopods are successful
287 and voracious visual predators that live over a broad range of ecological niches. In contrast to
288 our knowledge of fish neuroanatomical adaptations related to sensory perception, foraging
289 modes and habitats (Wagner, 2001, Lisney and Collin, 2006, Yopak et al., 2015), establishing
290 links between behavioural features and neuroanatomical modifications remains in its infancy
291 for the cephalopods (Ponte et al., 2021). Using MRI-based techniques and conventional
292 histology, we have started the first detailed comparison of neuroanatomical features and
293 corresponding MRI-based connectomes between cuttlefish, octopus and squid. This work
294 focusses on cuttlefish but uses our previous studies on squid and octopus as a comparison,
295 both to describe differences in basic brain and wiring anatomy and to examine the ecology
296 and, to an extent, the evolution of the cephalopod brain. It of course stands on the shoulders
297 of previous work on these brainy invertebrates, notably that of JZ Young and colleagues
298 (Boycott, 1961, Messenger, 1973, Nixon and Young, 2003) along with a few studies between
299 that time and now (Chichery and Chanelet, 1976, Chichery and Chanelet, 1978, Chichery and
300 Chichery, 1987, Dickel et al., 1997, Williamson and Chrachri, 2004, Liu et al., 2017a,
301 Gonzalez-Bellido et al., 2018).

302 We also present new findings from a comparative approach amongst cuttlefish species
303 and hope to provide a firm base to challenge the long-standing assumption that
304 neuroanatomical features of *S. officinalis* are representative of all cuttlefish species. The
305 neuroanatomical variation we note here infers interspecific variation in visual capabilities, the
306 importance of vision relative to the less utilised chemosensory system and clear links with
307 life modes (e.g. diurnal vs nocturnal), ecological factors (e.g. living depth and ambient light
308 condition) as well as to an extent, phylogeny.

309

310 **Unique neuroanatomical features in the mourning cuttlefish, *Sepia plangon***

311 Early reports divided the cuttlefish brain into regions and associated functions based on
312 electrical stimulation of selected lobes of *S. officinalis* (Boycott, 1961, Chichery and Chanelet,

313 1976, Chichery and Chanelet, 1978, Chichery and Chichery, 1987). However the neuronal
314 number and circuitry behind these connections has remained largely unknown for now more
315 than 30 years (Budelmann and Young, 1987). Here MRI-based observations and gross
316 anatomy have revealed a number of new observations.

317 The tropical diurnal reef cuttlefish, *S. plangon*, apparently possesses an enlarged brain
318 compared to the other coastal species with a similar given body size. The adult-like hatchling
319 of *S. plangon* (ML: 8 mm) has an enlarged brain compared to *S. officinalis* (ML: 6.3 mm)
320 (CNS: 9.26 vs 2.94 mm³ and OPLs: 7.11 vs 1.97 mm³) (Wild et al., 2015). Notably, the
321 cuttlefish embryo starts to react to visual and chemical cues before hatching (stage 30)
322 (Darmaillacq et al., 2006, Mezrai et al., 2020). Unlike the eggs of *S. officinalis* which are
323 darkened by maternal ink resulting in poor visibility of the outside scene, the transparent egg
324 of *S. plangon* allows the embryo to receive surrounding visual cues and respond accordingly
325 with flashing chromatophores. This early vision-related demand toward the post-hatching
326 environment may therefore initiate enlargement of the OPL of *S. plangon* more than that seen
327 in *S. officinalis* (77% vs 67% of CNS).

328 The CNS of *S. plangon* grows rapidly and particularly the VL and OPLs attain a level
329 of complexity and volume not seen in previously examined cuttlefish (Table S3). The size
330 increase of VL during ontogeny results in a 210% relative increase from 2.4% of CNS at
331 hatchling to approximately 4-5% at adult. Furthermore, growth of the OPL from post-
332 hatchling to adult is up to 100 fold the volume increase during all life stages, emphasising the
333 vital role of vision for this diurnal species.

334 Our examination of *S. plangon* shows, like octopus (Chung et al., 2022) two types of
335 OPLs exist, bean vs croissant shape and that this reflects their phylogenetic relationship, life
336 modes and habitats (Figure 4). Both nocturnal and deep-water dwelling cuttlefish species
337 (>200m depth) which encounter dim light condition have a regular bean-shaped OPL (Table
338 1). In contrast, the diurnal species seem to have the enlarged croissant-shaped OPL, a
339 modification associated with a more visual existence and first noted in our previous studies
340 on diurnal octopus species octopus (Chung et al., 2022). By contrast, cuttlefish that live in
341 low light condition where there is less visual contrast possess smaller OPL than those of the
342 diurnal species (Ziegler et al., 2018) (Figure 4).

343

344 **Similarity of brain regions between squid and cuttlefish**

345 Squid and cuttlefish predation is remarkably fast and precise. The feeding behaviour
346 entails a rapid tentacular strike to catch small prey and a ‘punch’ from the arm crown to

347 attack and defend for large objects (Chung and Marshall, 2014, Lu and Chung, 2017, Hanlon
348 and Messenger, 2018). These ballistic movements are visually-coordinated activities and
349 include finding a prey item in the distance and, on moving closer, estimating the object size
350 to guide ballistic strike (Messenger, 1968, Kier and Von Leeuwen, 1997, Chung and Marshall,
351 2014, Feord et al., 2020). Additionally, assessment of prey quality (acceptation or rejection
352 for feeding) is based on contact chemoreception via the suckers of the arms and tentacles
353 (Messenger, 1973, Archdale and Anraku, 2005).

354 The proportion of neural processing investment in chemoreception and vision between
355 the three coleoid groups (cuttlefish, squid and octopus) is quite variable and this study has
356 helped uncover new and underline previous observations. All three cephalopod groups
357 possess optically excellent and often large eyes and all three put considerable investment into
358 the OPL processing of vision (but see ecological differences discussed in Chung et al. (2022))
359 (Land, 1981, Sweeney et al., 2007). There is a difference in volume ratio between the two
360 sensory brain regions, vision (OPLs) versus chemoreception (iFLx), which reaches over 100
361 fold in cuttlefish (e.g. 101 in *S. officinalis*; 235 in *S. plangon*), > 200 in loliginid squid (e.g.
362 220 in *S. lessoniana*; 305 in *Loligo forbesi*) compared to a very low value around 10 in the
363 benthic octopuses, such as *Octopus vulgaris* and *Hapalochlaena fasciata* (Maddock and
364 Young, 1987, Chung et al., 2020, Chung et al., 2022). The relative value of a given sensory
365 area clearly shows its level of importance, suggesting again that the water column dwellers
366 rely more on vision, whereas the more benthic groups favour a combination of vision and
367 chemoreception.

368 Further to the basic volumetric data, vision-related connectomes highlight that
369 cuttlefish and squid have adopted similar principles in design in response to visually-
370 coordinated activities at a very fine scale (Figures 2-3). These two groups possess similar
371 network matrices within the vision to higher motor brain regions (e.g. basal lobe complex)
372 (Figure 3).

373 Again vision related, the multilayered structure in all basal lobes show tractographic
374 projections from the upper layers of the basal lobes that connect only with the upper level of
375 the optic lobe, whereas the projections from the lower levels of the basal lobes shift toward
376 lower levels of the optic lobe accordingly (Chung et al., 2020) (Video S3). This multi-layered
377 network arrangement likely retains retinotopic spatial information from the outside world
378 through to the motor command units in the BLs (Young, 1977, Chung et al., 2020).

379 Finally, this direct connection from visual input in to motor action out is underlined by
380 the new finding that the basal lobe complex possesses interweaving circuits with the sub-

381 esophageal mass. This suggests a relay station exists, mediating motor control such as arm
382 movements (brachial lobe), tentacular strike and eye movements (pedal lobes) and funnel and
383 fin movements (magnocellular, fin and palliovisceral lobes) (Boycott, 1961, Young, 1976,
384 Chichery and Chichery, 1987, Budelmann and Young, 1987, Chung et al., 2020).

385

386 **Cuttlefish-unique neural network features related to chemoreception, colouration and 387 camouflage?**

388 While there is a degree of similarity in inter-lobed connectivity between cuttlefish and
389 squid brains, there are also other tractographic, network and gross anatomical features unique
390 to cuttlefish. These again appear largely driven by ecology and behavioural habits. In brief
391 they are the network between iFLx and brachial lobe (chemosensory related circuits) and
392 those amongst chromatophore, magnocellular and pedal lobes (colouration related circuits)
393 (Figure 3). Each of these cuttlefish-unique features is now described in more detail based
394 around suggested function.

395

396 **Cheosensory-learning circuits**

397 At gross anatomic levels, the volumetric ratio between iFLx and OPLs in squids is
398 smaller than in cuttlefishes in both temperate (e.g. *L. vulgaris* vs *S. officinalis*) and tropical
399 (e.g. *S. lessoniana* vs *S. plangon*) species (Maddock and Young, 1987, Chung et al., 2020). In
400 addition, the increasing complexity of neural network between brachial lobe and iFLx in
401 cuttlefish indicate that cuttlefish may favour chemosensory cues in daily tasks and more so
402 than squid (Figures 2-3). In the behavioural context, bait coated with additional chemicals or
403 biological extract (e.g. amino acids, quinine or cephalopod ink), may be accepted or rejected
404 by touching the bait using arms/tentacles in the cuttlefish, *Sepia esculenta* (Archdale and
405 Anraku, 2005). A similar bait handling behaviour has been found in the other 2 cuttlefish, *S.*
406 *plangon* and *S. latimanus*, during feeding training in captivity. Using the same method rarely
407 triggered feeding acceptance by squid such as *S. lessoniana* that appear to need movement
408 cues to trigger bait capture (personal observation). This indicates that cuttlefish maintains
409 good contact chemosensory capabilities, somewhere between octopus and squid, which could
410 be helpful to shape prey preference and tune foraging strategies.

411

412 **Additional colouration related circuits in cuttlefish**

413 Numerous novel projectomes related the cuttlefish chromatophore lobe ($C_s > 1.5$) are
414 identified in the matrix (Figure 3D). Although the function of this network remains unclear,

415 two possible explanations are proposed as follows: (1) Ontogenetic differences. (2)
416 Additional circuits related to body patterns.

417

418 (1) Ontogenetic differences

419 The cephalopod brain grows continuously over a long period time during its limited 1-2
420 year life span. This is accompanied by an increasing complexity of behaviours (Messenger,
421 1973, Nixon and Young, 2003, Chung et al., 2020, Chung et al., 2022). For instance, the
422 hatching of *S. plangon* only shows two simple body patterns (uniform darkening and blanching)
423 in contrast to the diverse colouration displays during courtship and sophisticated camouflage
424 and warning patterns (Alejandra et al., 2020). Considering the current squid connectome
425 based on 5 juveniles (ML: 40-113 mm) along with other supporting neural tracing data that
426 also favoured smaller brains (mainly juveniles) (Young, 1976, Budelmann and Young, 1987,
427 Novicki et al., 1990, Chung et al., 2020), a comparison between the two connectomes (adult
428 cuttlefish vs juvenile squid) could therefore miss some connections which appear only at the
429 adult stage.

430

431 (2) Additional circuits related to cuttlefish body patterns

432 Decapodiform cephalopods show several forms of courtship display which visually
433 attract mates and coordinates copulation activities (Brown et al., 2012, Lin et al., 2017,
434 Hanlon and Messenger, 2018, Alejandra et al., 2020). Cuttlefish courtship display has been
435 well documented in a few species, including *S. latimanus*, *S. officinalis* and *S. plangon*. These
436 displays often use a combination of chromatic, textural and postural components (Hanlon and
437 Messenger, 2018, Alejandra et al., 2020). For instance, *S. plangon* uses 34 chromatic
438 components combined with 3 textural and 14 postural components for dynamic courtship
439 displays (11 patterns used by female; 18 by male) (Alejandra et al., 2020). In contrast, squid
440 mainly relies on chromatic components alone such as *S. lessoniana* assembling 27 chromatic
441 components during reproductive interactions (7 patterns used by female; 12 by male) (Lin et
442 al., 2017). It should be remembered that both groups are most likely colour blind, seeing only
443 the luminance and pattern component of such displays (Marshall and Messenger, 1996,
444 Chung and Marshall, 2016).

445 The complexity of camouflage tricks between cuttlefish and squid is also substantial.
446 Cuttlefish camouflage contains a combination of cryptic colouration, skin texture and arm
447 posture to conceal itself into the 3D characters of the surrounding scene (e.g. algae, rubbles,

448 coral) (How et al., 2017, Gonzalez-Bellido et al., 2018, Hanlon and Messenger, 2018). By
449 contrast, the squid mainly relies on colour changes on body surface to mimic the 2D
450 background such as manipulating colours to match with substrate while reaching close to
451 floor and switching to countershading while hovering in water column (e.g. *S. lessoniana*)
452 (Lu and Chung, 2017, How et al., 2017, Nakajima et al., 2022). Both chromatic and hydrostat
453 systems are regularly used in the formation of cuttlefish body patterns (Gonzalez-Bellido et
454 al., 2018, Alejandra et al., 2020, Osorio et al., 2022), and one additional set of neural
455 components to coordinate those apparently more complex body patterns compared to a
456 relatively simple system used for the squid chromatic-based patterns is revealed here (Figure
457 3). The detailed function will need further tests to clarify what these additional circuits
458 achieve relative to neural and behavioural dynamics and how the cuttlefish nervous system
459 dispatches signals via different pathways to govern skin patterns (Laan et al., 2014, Reiter et
460 al., 2018, Osorio et al., 2022).

461

462 [Elongated CNS layout linked to the streamline body shape](#)

463 3D reconstruction of the coastal decapodiform brain clearly showed that distinct CNS
464 elongation appears in the myopsid squid and not in cuttlefish (Figure 2). Firstly, with the
465 absence of a floatation apparatus, the cuttlebone, to offset gravity, squid rely on constant
466 swimming to maintain buoyancy and direction, resulting in a daily energy cost much higher
467 than that of the neutral buoyant cuttlefish (O'Dor, 2002). This means that a long, streamlined
468 body shape that minimises energy consumption is desirable for squid (O'Dor and Webber,
469 1986). In turn this has resulted in a stretched squid brain, to fit within this body shape and
470 prevent its brachial and optic lobes bulging outward, causing higher drag. A similar
471 observation of a further elongated CNS layout was briefly described in the oceanic oegopsid
472 squid (neon flying squid) by Nixon and Young (2003)), again suggesting that development of
473 the streamline body shape of squid might be therefore co-evolved with its elongated CNS.

474

475

476

477

478

479 **Materials and Methods**

480 **Sample collection and preparation**

481 All collections were conducted under a Great Barrier Reef Marine Park Permit
482 (G17/38160.1) and Queensland General Fisheries Permit (180731). The mourning cuttlefish,
483 *Sepia plangon*, and oval squid, *Sepioteuthis lessoniana*, were collected using a seine net
484 (water depth 1-3m) close to Moreton Bay Research Station, Stradbroke Island, Queensland,
485 Australia. The maintenance and experimental protocol used here were covered by animal
486 ethics permit (QBI/236/13/ARC/US AIRFORCE & QBI/304/16). Total 44 cuttlefish and 5
487 squid were collected for this neuroanatomical study in 2017-2021.

488 Animals were anaesthetised in cool seawater (15°C) mixed with 2% MgCl₂ (Chem-
489 Supply, Australia) and sacrificed by an overdose of MgCl₂ prior to fixation. The small
490 specimens (hatchlings and early juvenile) were soaked into 4% PFA-PBS fixative at 4°C for
491 48 h and then transferred to 0.1% PFA-PBS fixative for storage at 4 °C until further
492 dissection.

493 Three adult cuttlefish specimens for MR imaging were fixed using the transcardial
494 perfusion protocol developed by Chung et al. (2020). In brief, the transcardial perfusion
495 protocol is using 4% paraformaldehyde (PFA) (EM grade, Electron Microscopy Sciences,
496 Hatfield, USA) mixed with 0.1 M PBS with the rate of perfusion set to 2.5 ml per minute.
497 The perfusion proceeded until 0.2 ml fixative per gram of specimen was used. Subsequently
498 the muscle, skin and connective tissues around the brain were removed and the specimen was
499 soaked in 4% PFA-PBS fixative for overnight to reduce morphological deformation of the
500 brain.

501

502 **Image stacking of the isolated brain-eyes**

503 The isolated brain and eyes were imaged with the focus stacking method using a digital
504 camera (Canon 5D4 camera with Canon MPE 65mm Macro lens, Canon, Japan) mounted on
505 the electronically-controlled focusing rack (Castel-Micro focusing rack, Novoflex, Germany).
506 A sequence of close-up images was captured from the dorsal end of brain to the ventral end
507 using 0.1 mm step for small samples or 0.25 mm step for large samples. Focus stacking (20-
508 80 images) was processed using the software Helicon Focus Pro (version 7.6.4, Helicon Soft
509 Ltd. Ukraine), rendering an image with a greater depth of field.

510 **MRI procedure**

511 Intact brain and eyeballs were isolated and repeatedly rinsed with 0.1 M PBS to
512 minimise fixative residue. The isolated brain and eyes were then soaked into 0.1 M PBS
513 containing magnetic resonance imaging (MRI) contrast agent, 0.2% ionic Gd-DTPA
514 (Magnevist) (Bayer, Leverkusen, Germany), for 24-48 hours to enhance image contrast prior
515 to MR imaging (Chung et al., 2020, Chung et al., 2022). Six contrast-enhanced cuttlefish
516 brains were imaged following the protocol developed by Chung et al. (2020). The contrast-
517 enhanced specimen was placed into a fomblin-filled (Fomblin oil, Y06/6 grade, Solvay, USA)
518 container to prevent dehydration and then vacuumed for 3 minutes to remove air bubbles
519 trapped inside oesophagus or brain lobes. The container was then placed in a custom-built 20
520 mm diameter surface acoustic wave coil or 10 mm diameter quadrature coil (M2M Imaging,
521 Brisbane, Australia). Both high resolution MR structural images and high angular resolution
522 diffusion images (HARDI) were acquired using a 16.4 Tesla (700 MHz) vertical wide-bore
523 microimaging system (interfaced to an AVANCE I spectrometer running imaging software
524 Paravision 6.0.1 (Bruker Biospin, Karlsruhe, Germany) in the Centre for Advanced Imaging
525 at the University of Queensland. Imaging was performed at a room temperature (22 °C) using
526 a circulating water-cooling system.

527 Three dimensional (3D) high resolution structural images were acquired using fast low
528 angle shot (FLASH) with the following parameters based on Chung and Marshall (2017):
529 echo time (TE) / repetition time (TR) = 12/40 ms, average = 4, flip angle (FA) = 30°, field of
530 view (FOV) = $7.5 \times 6.4 \times 6$ mm to $21 \times 13 \times 13$ mm for different individuals, 30 μm
531 isotropic resolution. Total acquisition time for one brain was 1 h (hatchling) to 8.3 h (the
532 largest brain).

533 After FLASH imaging, 3D high angular resolution diffusion-weighted imaging
534 (HARDI) was acquired with the following parameters: TR = 300 ms, TE = 22 ms, 30
535 direction diffusion encoding with b-value = 3000 s/mm², two b0 images acquired without
536 diffusion weighting and 80 μm isotropic resolution with 1.5 partial Fourier acceleration
537 acquisition in the phase dimensions (Chung et al., 2020). Total acquisition time for one brain
538 was 16.5-35.5 h.

539 **Estimates of lobe volume**

540 Identification of the cuttlefish brain lobes was based on the published anatomical
541 studies of cuttlefish and loliginid squids as an initial aid in determining the boundaries

542 between tissue. 47 lobes previously defined by (Young, 1974, Young, 1976, Young, 1977,
543 Young, 1979, Messenger, 1979, Chung et al., 2020, Boycott, 1961) were identified from the
544 MRI data. The parcellation of the selected lobes and brains was then manually segmented
545 using MRtrix3 (version 3.0.2, open-source software, <http://www.mrtrix.org/>) (Tournier et al.,
546 2019) and then estimates of volume of the selected lobes and an entire brain were calculated
547 using ITK-SNAP (version 3.6.0, open-source software, <http://www.itksnap.org/>) (Yushkevich
548 et al., 2006). Considering variations of volume estimates of cephalopod brain which are
549 strongly affected by the size and age of the individuals, the volumes of the lobes were
550 expressed as percentages of the total CNS volume to circumvent this issue as suggested in
551 previous studies (Maddock and Young, 1987, Chung et al., 2020, Chung et al., 2022).

552

553 **Construction of structural neural connectivity matrix**

554 Our previous work demonstrated that the high resolution HARDI combined with
555 conservative selection criteria enabled to accurately reveal the major neural tracks in the
556 squid brain and octopus optic nerve tracks (Chung et al., 2020, Chung et al., 2022). Adapting
557 the same procedure to construct the brain-wide tractography of cuttlefish brain, the 47 lobes,
558 regions of interest (ROIs) were used to construct tractography. Probabilistic fibre tracking
559 was then performed using second order integration over the fibre orientation distribution
560 (FOD) algorithm and the tracts were generated independently for each ROI (10 streamlines
561 per voxel) with an optimized FOD amplitude cut-off value of 0.175 to generate biologically
562 realistic tractography in cephalopod neural tissue at mesoscale. The brain-wide cuttlefish
563 neural connectivity matrix where the connections and the corresponding connectivity strength
564 (C_s) were mapped to the relevant cuttlefish brain lobes for each individual. The averaged
565 pairwise C_s were also calculated and plotted in the matrices for further analysis with the
566 previously-published squid matrix (Chung et al., 2020).

567

568 **Contour-based measurement of gyration index (GI)**

569 The degree of folding of the optic lobe was measured using the contour-based method
570 (Chung et al., 2022). We measured the GI by comparing the lengths of complete and outer
571 contours of the selected brain lobes in a serial horizontal MR slices for the OPLs along with
572 the dorso-ventral axis using Fiji (version 1.53c, open-source software, <https://imagej.net/>)

573 (Schindelin et al., 2012). The mean GI of the defined entire lobe is the ratio between the sum
574 of the total outer contour and the sum of the superficially exposed surface contours.

575

576 **Phylogenetic analyses**

577 In order to understand whether the phylogenetic relationship or the life mode affect the
578 modification of octopodiform's brain, the phylogenetic generalised least squares (PGLS) test
579 was used to investigate the impact of several predictor variables (life modes, light conditions,
580 and visual tasks) on the modification of neuroanatomical structure while controlling for
581 potential phylogenetic signals in the responses (Mundry, 2014). Determination of the selected
582 octopus phylogenetic relationships was based on the published complete mitochondrial DNA
583 sequence which were available from GenBank. Alignments of sequence were constructed
584 using the multiple sequence alignment (MUSCLE) method with MEGA X (molecular
585 evolutionary genetics analysis program version 10.2.5) (Kumar et al., 2018). *Sepioteuthis*
586 *lessoniana* was used as the outgroup. The phylogenetic tree of these selected species was
587 generated by the Maximum-Likelihood method and the bootstrap confidence values (1000
588 replicates) were calculated with MEGA X (Kumar et al., 2018). The phylogenetic signal was
589 estimated with Pagel's λ using the package the CAPER v1.0.1 as implemented in the RStudio
590 v1.4.1103. The relationship between the changes of brain anatomy and environmental
591 characters (Table S3) was determined using the phylogenetic generalised least squares (PGLS)
592 method with the CAPER package in RStudio.

593

594 **Acknowledgements**

595 This work is supported by the Australian Research Council (ARC) (Australian Laureate
596 Fellowship (FL140100197) to N.J.M.), (Discovery Project (DP200101930) to N.J.M.) and
597 the Office of Naval Research Global (ONR Global) (N62909-18-1-2134 to N.J.M.) The
598 16.4T is supported by the Queensland State Government through the Queensland NMR
599 Network, and the Australian Government through National Collaborative Research
600 Infrastructure Strategy (NCRIS) and the National Imaging Facility. We thank the staff of the
601 Moreton Bay Research Station for logistical support. We also acknowledge the
602 Quandamooka people as the Traditional Owners and their custodianship of the lands on
603 which Moreton Bay Research Station operate. We pay our respects to their ancestors and

604 their descendants, who continue cultural and spiritual connections to Country and recognise
605 their valuable contributions to Australian and global society.

606

607 **Author contributions**

608 Conceptualization, W.-S.C. and A.L.G.; methodology, A.L.G. N.D.K. and W.-S.C.; funding
609 acquisition and supervision, N.J.M.; validation and visualization, W.-S.C. N.D.K. and N.J.M.;
610 the first draft of manuscript, W.-S.C.; all authors contributed to data analysis, interpretation
611 and revision of the manuscript.

612

613 **Declaration of Interests**

614 The authors declare no competing interests.

615

616 **References**

617 ALEJANDRA, L. G., CHUNG, W.-S. & MARSHALL, N. J. 2020. Dynamic courtship signals and mate
618 preferences in *Sepia plangon*. *Front Physiol*, 11, 845.

619 ALLCOCK, A. L., LINDGREN, A. & STRUGNELL, J. M. 2014. The contribution of molecular data to our
620 understanding of cephalopod evolution and systematics: a review. *J Nat Hist*, 49, 1373-1421.

621 ALVES, C., CHICHERY, R., BOAL, J. G. & DICKEL, L. 2007. Orientation in the cuttlefish *Sepia officinalis*:
622 response versus place learning. *Anim Cogn*, 10, 29-36.

623 ARCHDALE, M. V. & ANRAKU, K. 2005. Feeding behavior in scyphozoa, crustacea and cephalopoda.
624 *Chem Senses*, 30 Suppl 1, i303-4.

625 BOYCOTT, B. B. 1953. The chromatophore system of cephalopods. *Proceedings of the Linnean
626 Society of London*, 164, 235-240.

627 BOYCOTT, B. B. 1961. The functional organization of the brain of the cuttlefish *Sepia officinalis*. *Proc
628 Biol Sci*, 153, 503-534.

629 BOYCOTT, B. B. & YOUNG, J. Z. 1950. The comparative study of learning. *Physiological mechanisms in
630 animal behaviour*. Cambridge: The University Press.

631 BROWN, C., GARWOOD, M. P. & WILLIAMSON, J. E. 2012. It pays to cheat: tactical deception in a
632 cephalopod social signalling system. *Biol Lett*, 8, 729-32.

633 BUDELMANN, B. U. & YOUNG, J. Z. 1985. Central pathways of the nerves of the arms and mantle of
634 *Octopus*. *Philos T Roy Soc B*, 310, 109-122.

635 BUDELMANN, B. U. & YOUNG, J. Z. 1987. Brain pathways of the brachial nerves of *Sepia* and *Loligo*.
636 *Philos Trans R Soc Lond B Biol Sci*, 315, 345-352.

637 CAJAL, S. R. 1917. *Contribucion al conocimiento de la retina y centros opticos de los cefalopodos.*
638 *Tarabajos del laboratorio de investigaciones biologicas de la universidad de Madrid* Madrid.

639 CARTRON, L., DARMAILACQ, A. S., JOZET-ALVES, C., SHASHAR, N. & DICKEL, L. 2012. Cuttlefish rely
640 on both polarized light and landmarks for orientation. *Anim Cogn*, 15, 591-6.

641 CHIAO, C. C. & HANLON, R. 2001. Cuttlefish camouflage: visual perception of size, contrast and
642 number of white squares on artificial checkerboard substrata initiates disruptive colouration.
643 *J Exp Biol*, 204, 2119-2125.

644 CHICHERY, M. P. & CHICHERY, R. 1987. The anterior basal lobe and control of prey-capture in the
645 cuttlefish (*Sepia officinalis*). *Physiol Behav*, 40, 329-36.

646 CHICHERY, R. & CHANELET, J. 1976. Motor and behavioural responses obtained by stimulation with
647 chronic electrodes of the optic lobe of *Sepia officinalis*. *Brain Research*, 105, 525-532.

648 CHICHERY, R. & CHANELET, J. 1978. Motor responses obtained by stimulation of the peduncle lobe
649 of *Sepia officinalis* in chronic experiments. *Brain Research*, 150, 188-193.

650 CHUNG, W.-S. 2014. *Comparisons of visual capabilities in modern cephalopods from shallow water to*
651 *deep sea*. Phd, The University of Queensland.

652 CHUNG, W.-S., KURNIAWAN, N. D. & MARSHALL, N. J. 2020. Toward an MRI-based mesoscale
653 connectome of the squid brain. *iScience*, 23, 100816.

654 CHUNG, W.-S. & MARSHALL, N. J. 2014. Range-finding in squid using retinal deformation and image
655 blur. *Curr Biol*, 24, R64-R65.

656 CHUNG, W.-S. & MARSHALL, N. J. 2016. Comparative visual ecology of cephalopods from different
657 habitats. *Proc Biol Sci*, 283, 20161346.

658 CHUNG, W.-S. & MARSHALL, N. J. 2017. Complex visual adaptations in squid for specific tasks in
659 different environments. *Front Physiol*, 8, 105.

660 CHUNG, W. S., KURNIAWAN, N. D. & MARSHALL, N. J. 2022. Comparative brain structure and visual
661 processing in octopus from different habitats. *Curr Biol*, 32, 97-110 e4.

662 DARMAILLACQ, A. S., CHICHERY, R. & DICKE, L. 2006. Food imprinting, new evidence from the
663 cuttlefish *Sepia officinalis*. *Biol Lett*, 2, 345-347.

664 DENTON, E. J. & GILPIN-BROWN, J. B. 1961. The effect of light on the buoyancy of the cuttlefish. *J*
665 *Mar Biol Assoc UK*, 41, 343-350.

666 DICKE, L., CHICHERY, M. P. & CHICHERY, R. 1997. Postembryonic maturation of the vertical lobe
667 complex and early development of predatory behavior in the cuttlefish (*Sepia officinalis*).
668 *Neurobiol Learn Mem* 67, 150-160.

669 DRERUP, C. & COOKE, G. M. 2021. Shoaling behaviour in the European cuttlefish *Sepia officinalis*.
670 *Ethology*, 127, 1101-1108.

671 DUBAS, F., HANLON, R. T., FERGUSON, G. P. & PINSKER, H. M. 1986a. Localization and stimulation of
672 chromatophore motoneurons in the brain of the squid, *Lolliguncula brevis*. *J Exp Biol*, 121, 1-
673 25.

674 DUBAS, F., LEONARD, R. B. & HANLON, R. T. 1986b. Chromatophore motoneurons in the brain of the
675 squid, *Lolliguncula brevis* - an HRP study. *Brain Res*, 374, 21-29.

676 FEORD, R. C., SUMNER, M. E., PUSDEKAR, S., KALRA, L., GONZALEZ-BELLIDO, P. T. & WARDILL, T. J.
677 2020. Cuttlefish use stereopsis to strike at prey. *Sci Adv*, 6, eaay6036.

678 GASTON, M. R. & TUBLITZ, N. J. 2004. Peripheral innervation patterns and central distribution of fin
679 chromatophore motoneurons in the cuttlefish *Sepia officinalis*. *J Exp Biol*, 207, 3089-98.

680 GONZALEZ-BELLIDO, P. T., SCAROS, A. T., HANLON, R. T. & WARDILL, T. J. 2018. Neural Control of
681 Dynamic 3-Dimensional Skin Papillae for Cuttlefish Camouflage. *iScience*, 1, 24-34.

682 HANLON, R. T., CHIAO, C. C., MÄTHGER, L. M., BARBOSA, A., BURESCH, K. C. & CHUBB, C. 2009.
683 Cephalopod dynamic camouflage: bridging the continuum between background matching
684 and disruptive coloration. *Philos Trans R Soc Lond B Biol Sci*, 364, 429-437.

685 HANLON, R. T. & MESSENGER, J. B. 2018. *Cephalopod Behaviour*, Cambridge, Cambridge University
686 Press.

687 HANLON, R. T., NAUD, M.-J., SHAW, P. W. & HAVENHAND, J. N. 2005. Transient sexual mimicry leads
688 to fertilization. *Nature*, 433, 212-212.

689 HANLON, R. T., NAUD, M. J., FORSYTHE, J. W., HALL, K., WATSON, A. C. & MCKECHNIE, J. 2007.
690 Adaptable night camouflage by cuttlefish. *Am Nat*, 169, 543-551.

691 HOW, M. J., NORMAN, M. D., FINN, J., CHUNG, W.-S. & MARSHALL, N. J. 2017. Dynamic skin patterns
692 in cephalopods. *Front Physiol*, 8, 393.

693 JEREB, P., ROPER, C. F., NORMAN, M. D. & FINN, J. 2014. Cephalopods of the world. An annotated
694 and illustrated catalogue of cephalopod species known to date. Volume 3 Octopods and

695 vampire squids. *FAO species catalogue for fishery purposes*. Roma: Food and Agriculture
696 Organization of the United Nations.

697 JEREB, P. & ROPER, C. F. E. 2005. Cephalopods of the world. An annotated and illustrated catalogue
698 of cephalopod species known to date. Volume 1. Chambered nautiluses and sepioids. *FAO
699 species catalogue for fishery purposes*. Rome: Food and Agriculture Organization of the
700 United Nations.

701 JEREB, P. & ROPER, C. F. E. 2010. Cephalopods of the world. An annotated and illustrated catalogue
702 of cephalopod species known to date. Volume 2 Myopsid and oegopsid squids. *FAO species
703 catalogue for fishery purposes*. Roma: Food and Agriculture Organization of the United
704 Nations.

705 JOZET-ALVES, C., BERTIN, M. & CLAYTON, N. S. 2013. Evidence of episodic-like memory in cuttlefish.
706 *Curr Biol*, 23, R1033-5.

707 KIER, W. & VON LEEUWEN, J. 1997. A kinematic analysis of tentacle extension in the squid *Loligo
708 pealei*. *J Exp Biol*, 200, 41-53.

709 KING, A. J., HENDERSON, S. M., SCHMIDT, M. H., COLE, A. G. & ADAMO, S. A. 2005. Using ultrasound
710 to understand vascular and mantle contributions to venous return in the cephalopod *Sepia
711 officinalis* L. *J Exp Biol*, 208, 2071-2082.

712 KUMAR, S., STECHER, G., LI, M., KNYAZ, C. & TAMURA, K. 2018. MEGA X: Molecular Evolutionary
713 Genetics Analysis across Computing Platforms. *Mol Biol Evol*, 35, 1547-1549.

714 LAAN, A., GUTNICK, T., KUBA, M. J. & LAURENT, G. 2014. Behavioral analysis of cuttlefish traveling
715 waves and its implications for neural control. *Curr Biol*, 24, 1737-1742.

716 LAND, M. F. 1981. Optics and vision in invertebrates. In: AUTRUM, H. (ed.) *Handbook of Sensory
717 Physiology*. Berlin: Springer.

718 LEE, Y. H., CHANG, Y. C., YAN, H. Y. & CHIAO, C. C. 2013. Early visual experience of background
719 contrast affects the expression of NMDA-like glutamate receptors in the optic lobe of
720 cuttlefish, *Sepia pharaonis*. *J Exp Mar Biol Ecol*, 447, 86-92.

721 LI, Y., CAO, Z., LI, H., LIU, H., LU, Z. & CHI, C. 2018. Identification, characterization, and expression
722 analysis of a FMRFamide-like peptide gene in the common Chinese cuttlefish (*Sepiella
723 japonica*). *Molecules*, 23, 742.

724 LIN, C.-Y., TSAI, Y.-C. & CHIAO, C.-C. 2017. Quantitative analysis of dynamic body patterning reveals
725 the grammar of visual signals during the reproductive behavior of the oval squid *Sepioteuthis
726 lessoniana*. *Front Ecol Evol*, 5, 30.

727 LIN, I.-R. & CHIAO, C.-C. 2017a. Visual equivalence and amodal completion in cuttlefish. *Front Physiol*,
728 8, 40.

729 LIN, I. R. & CHIAO, C. C. 2017b. Visual equivalence and amodal completion in cuttlefish. *Front Physiol*,
730 8, 40.

731 LISNEY, T. J. & COLLIN, S. P. 2006. Brain morphology in large pelagic fishes: a comparison between
732 sharks and teleosts. *J Fish Biol*, 68, 532-554.

733 LIU, Y.-C., CHUNG, W.-S., YU, C.-C., HSU, S.-T., CHAN, F.-L., LIU, T.-H., SU, C.-H., HWU, Y., MARSHALL,
734 N. J. & CHIAO, C. C. 2018. Morphological changes of the optic lobe from late embryonic to
735 adult stages in oval squids *Sepioteuthis lessoniana*. *J Morphol*, 279, 75-85.

736 LIU, Y. C., LIU, T. H., SU, C. H. & CHIAO, C. C. 2017a. Neural organization of the optic lobe changes
737 steadily from late embryonic stage to adulthood in cuttlefish *Sepia pharaonis*. *Front Physiol*,
738 8, 538.

739 LIU, Y. C., LIU, T. H., YU, C. C., SU, C. H. & CHIAO, C. C. 2017b. Mismatch between the eye and the
740 optic lobe in the giant squid. *R Soc Open Sci*, 4, 170289.

741 LU, C.-C. & CHUNG, W.-S. 2017. *Guide of the Cephalopods of Taiwan*, Taichung, National Museum of
742 Natural Science.

743 MADDOCK, L. & YOUNG, J. Z. 1987. Quantitative differences among the brains of cephalopods. *J Zool*,
744 212, 739-767.

745 MARSHALL, N. J. & MESSENGER, J. B. 1996. Colour-blind camouflage. *Nature*, 382, 408-409.

746 MESSENGER, J. B. 1967. The peduncle lobe: a visuo-motor centre in octopus. *Proc Biol Sci*, 167, 225-
747 251.

748 MESSENGER, J. B. 1968. The visual attack of the cuttlefish, *Sepia officinalis*. *Anim Behav*, 16, 342-357.

749 MESSENGER, J. B. 1973. Learning performance and brain structure: a study in development. *Brain*
750 *Res*, 58, 519-523.

751 MESSENGER, J. B. 1979. The nervous system of *Loligo*. IV. Peduncle and olfactory lobes. *Philos Trans*
752 *R Soc Lond B Biol Sci*, 285, 275-309.

753 MESSENGER, J. B. 2001. Cephalopod chromatophores: neurobiology and natural history. *Biol Rev*
754 *Camb Philos Soc*, 76, 473-528.

755 MEZRAI, N., ARDUINI, L., DICKEL, L., CHIAO, C. C. & DARMAILLACQ, A. S. 2020. Awareness of danger
756 inside the egg: Evidence of innate and learned predator recognition in cuttlefish embryos.
757 *Learn Behav*, 48, 401-410.

758 MONTAGUE, T. G., RIETH, I. J., GJERSWOLD-SELLECK, S., GARCIA-ROSALES, D., ANEJA, S., ELKIS, D.,
759 ZHU, N., KENTIS, S., RUBINO, F. A., NEMES, A., WANG, K., HAMMOND, L. A., EMILIANO, R.,
760 OBER, R. A., GUO, J. & AXEL, R. 2022. A brain atlas of the camouflaging dwarf cuttlefish,
761 *Sepia bandensis*. *bioRxiv*, 2022.01.23.477393.

762 MUNDRY, R. 2014. Statistical issues and assumptions of phylogenetic generalized least squares. In:
763 GARAMSZEGI, Z. L. (ed.) *Modern Phylogenetic Comparative Methods and Their Application in*
764 *Evolutionary Biology: Concepts and Practice*. Berlin, Heidelberg: Springer Berlin Heidelberg.

765 NAKAJIMA, R., LAJBNER, Z., KUBA, M. J., GUTNICK, T., IGLESIAS, T. L., ASADA, K., NISHIBAYASHI, T. &
766 MILLER, J. 2022. Squid adjust their body color according to substrate. *Sci Rep*, 12, 5227.

767 NIXON, M. & MANGOLD, K. 1998. The early life of *Sepia officinalis*, and the contrast with that of
768 *Octopus vulgaris* (Cephalopoda). *J Zool*, 245, 407-421.

769 NIXON, M. & YOUNG, J. Z. 2003. *The Brains and Lives of Cephalopods*, Oxford, Oxford University
770 Press.

771 NORMAN, M. D., FINN, J. & TREGENZA, T. 1999. Female impersonation as an alternative
772 reproductive strategy in giant cuttlefish. *Proc Biol Sci*, 266, 1347-1349.

773 NOVICKI, A., BUDELMANN, B. U. & HANLON, R. T. 1990. Brain pathways of the chromatophore
774 system in the squid *Lolliguncula brevis*. *Brain Res*, 519, 315-323.

775 O'DOR, R. 2002. Telemetered cephalopod energetics: Swimming, soaring, and blimping. *Integr Comp*
776 *Biol*, 42, 1065-1070.

777 O'DOR, R. K. & WEBBER, D. M. 1986. The constraints on cephalopods: why squid aren't fish. *Can J*
778 *Zool*, 64, 1591-1605.

779 OLIVEIRA, C. C. V., GRANO-MALDONADO, M. I., GONCALVES, R. A., FRIAS, P. A. & SYKES, A. V. 2017.
780 Preliminary results on the daily and seasonal rhythms of cuttlefish *Sepia officinalis* (Linnaeus,
781 1758) locomotor activity in captivity. *Fishes*, 2, 9.

782 OSORIO, D., MENAGER, F., TYLER, C. W. & DARMAILLACQ, A. S. 2022. Multi-level control of adaptive
783 camouflage by European cuttlefish. *Curr Biol*, 32.

784 PLÄN, T. 1987. *Functional neuroanatomy of sensory motor lobes of the brain of Octopus vulgaris* Phd,
785 University of Regensburg.

786 PONTE, G., TAITE, M., BORRELLI, L., TARALLO, A., ALLCOCK, A. L. & FIORITO, G. 2021. Cerebrotypes in
787 cephalopods: Brain diversity and its correlation with species habits, life history, and
788 physiological adaptations. *Front Neuroanat*, 14, 565109.

789 REITER, S., HULSDUNK, P., WOO, T., LAUTERBACH, M. A., EBERLE, J. S., AKAY, L. A., LONGO, A.,
790 MEIER-CREDO, J., KRETSCHMER, F., LANGER, J. D., KASCHUBE, M. & LAURENT, G. 2018.
791 Elucidating the control and development of skin patterning in cuttlefish. *Nature*, 562, 361-
792 366.

793 SANDERS, F. & YOUNG, J. 1940. Learning and other functions of the higher nervous centres of *Sepia*.
794 *J Neurophysiol*, 3, 501-526.

795 SCHINDELIN, J., ARGANDA-CARRERAS, I., FRISE, E., KAYNIG, V., LONGAIR, M., PIETZSCH, T., PREIBISCH,
796 S., RUEDEN, C., SAALFELD, S., SCHMID, B., TINEVEZ, J. Y., WHITE, D. J., HARTENSTEIN, V.,

797 ELICEIRI, K., TOMANCAK, P. & CARDONA, A. 2012. Fiji: an open-source platform for
798 biological-image analysis. *Nat Methods*, 9, 676-82.

799 SCHNELL, A. K., BOECKLE, M., RIVERA, M., CLAYTON, N. S. & HANLON, R. T. 2021a. Cuttlefish exert
800 self-control in a delay of gratification task. *Proc Biol Sci*, 288, 20203161.

801 SCHNELL, A. K., CLAYTON, N. S., HANLON, R. T. & JOZET-ALVES, C. 2021b. Episodic-like memory is
802 preserved with age in cuttlefish. *Proc Biol Sci*, 288, 20211052.

803 SCHNELL, A. K., JOZET-ALVES, C., HALL, K. C., RADDAY, L. & HANLON, R. T. 2019. Fighting and mating
804 success in giant Australian cuttlefish is influenced by behavioural lateralization. *Proc Biol Sci*,
805 286, 20182507.

806 SHERRARD, K. M. 2000. Cuttlebone morphology limits habitat depth in eleven species of *Sepia*
807 (Cephalopoda: Sepiidae). *Biol Bull*, 198, 404-14.

808 STRUGNELL, J., JACKSON, J., DRUMMOND, A. J. & COOPER, A. 2006. Divergence time estimates for
809 major cephalopod groups: evidence from multiple genes. *Cladistics*, 22, 89-96.

810 SWEENEY, A. M., HADDOCK, S. H. & JOHNSEN, S. 2007. Comparative visual acuity of coleoid
811 cephalopods. *Integr Comp Biol*, 47, 808-814.

812 TOMPSETT, D. H. 1939. *Sepia. LMBC Memoirs on typical British marine plants and animals*, XXXII.

813 TOURNIER, J. D., SMITH, R., RAFFELT, D., TABBARA, R., DHOLLANDER, T., PIETSCH, M., CHRISTIAENS,
814 D., JEURISSEN, B., YEH, C. H. & CONNELLY, A. 2019. MRtrix3: A fast, flexible and open
815 software framework for medical image processing and visualisation. *Neuroimage*, 202,
816 116137.

817 WAGNER, H. J. 2001. Sensory brain areas in mesopelagic fishes. *Brain Behav Evolut*, 57, 117-133.

818 WILD, E., WOLLESEN, T., HASZPRUNAR, G. & HESS, M. 2015. Comparative 3D microanatomy and
819 histology of the eyes and central nervous systems in coleoid cephalopod hatchlings. *Org
820 Divers Evol*, 15, 37-64.

821 WILLIAMSON, R. & CHRACHRI, A. 2004. Cephalopod neural networks. *Neurosignals*, 13, 87-98.

822 WOLFF, G. H., THOEN, H. H., MARSHALL, J., SAYRE, M. E. & STRAUSFELD, N. J. 2017. An insect-like
823 mushroom body in a crustacean brain. *eLife*, 6, e29889.

824 YANG, T. I. & CHIAO, C. C. 2016. Number sense and state-dependent valuation in cuttlefish. *Proc Biol
825 Sci*, 283, 20161379.

826 YASUMURO, H., NAKATSURU, S. & IKEDA, Y. 2015. Cuttlefish can school in the field. *Marine Biology*,
827 162, 763-771.

828 YOPAK, K. E., LISNEY, T. J. & COLLIN, S. P. 2015. Not all sharks are "swimming noses": variation in
829 olfactory bulb size in cartilaginous fishes. *Brain Struct Funct*, 220, 1127-43.

830 YOPAK, K. E., LISNEY, T. J., DARLINGTON, R. B., COLLIN, S. P., MONTGOMERY, J. C. & FINLAY, B. L.
831 2010. A conserved pattern of brain scaling from sharks to primates. *Proc Natl Acad Sci U S A*,
832 107, 12946-12951.

833 YOPAK, K. E., PAKAN, J. M. P. & WYLIE, D. 2020. The cerebellum of nonmammalian vertebrates. In:
834 KAAS, J. H. (ed.) *Evolutionary Neuroscience*. London: Academic Press.

835 YOUNG, J. Z. 1971. *The anatomy of the nervous system of Octopus vulgaris*, Oxford,, Clarendon Press.

836 YOUNG, J. Z. 1974. The central nervous system of *Loligo*. I. The optic lobe. *Philos Trans R Soc Lond B
837 Biol Sci*, 267, 263-302.

838 YOUNG, J. Z. 1976. The nervous system of *Loligo*. II. Subesophageal centers. *Philos Trans R Soc Lond
839 B Biol Sci*, 274, 101-167.

840 YOUNG, J. Z. 1977. The nervous system of *Loligo*. III. Higher motor centers - The basal
841 supraesophageal lobes. *Philos Trans R Soc Lond B Biol Sci*, 276, 351-398.

842 YOUNG, J. Z. 1979. The nervous system of *Loligo*. V. The vertical lobe complex. *Philos Trans R Soc
843 Lond B Biol Sci*, 285, 311-354.

844 YUSHKEVICH, P. A., PIVEN, J., HAZLETT, H. C., SMITH, R. G., HO, S., GEE, J. C. & GERIG, G. 2006. User-
845 guided 3D active contour segmentation of anatomical structures: Significantly improved
846 efficiency and reliability. *NeuroImage*, 31, 1116-1128.

847 ZIADI-KUNZLI, F., IGLESIAS, T., LAJBNER, Z., GUTNICK, T., MILLER, J. & KUBA, M. 2019. Quantitative
848 analysis of the central nervous system in a coleoid cephalopod through 3D microCT.

849 ZIEGLER, A., BOCK, C., KETTEN, D. R., MAIR, R. W., MUELLER, S., NAGELMANN, N., PRACHT, E. D. &
850 SCHRODER, L. 2018. Digital three-dimensional imaging techniques provide new analytical
851 pathways for malacological research. *American Malacological Bulletin*, 36, 248-273.

852 ZYLINSKI, S., DARMAILACQ, A. S. & SHASHAR, N. 2012. Visual interpolation for contour completion
853 by the European cuttlefish (*Sepia officinalis*) and its use in dynamic camouflage. *Proc Biol Sci*,
854 279, 2386-90.

855 ZYLINSKI, S., HOW, M. J., OSORIO, D., HANLON, R. T. & MARSHALL, N. J. 2011. To be seen or to hide:
856 visual characteristics of body patterns for camouflage and communication in the Australian
857 giant cuttlefish *Sepia apama*. *Am Nat*, 177, 681-690.

858

859

860

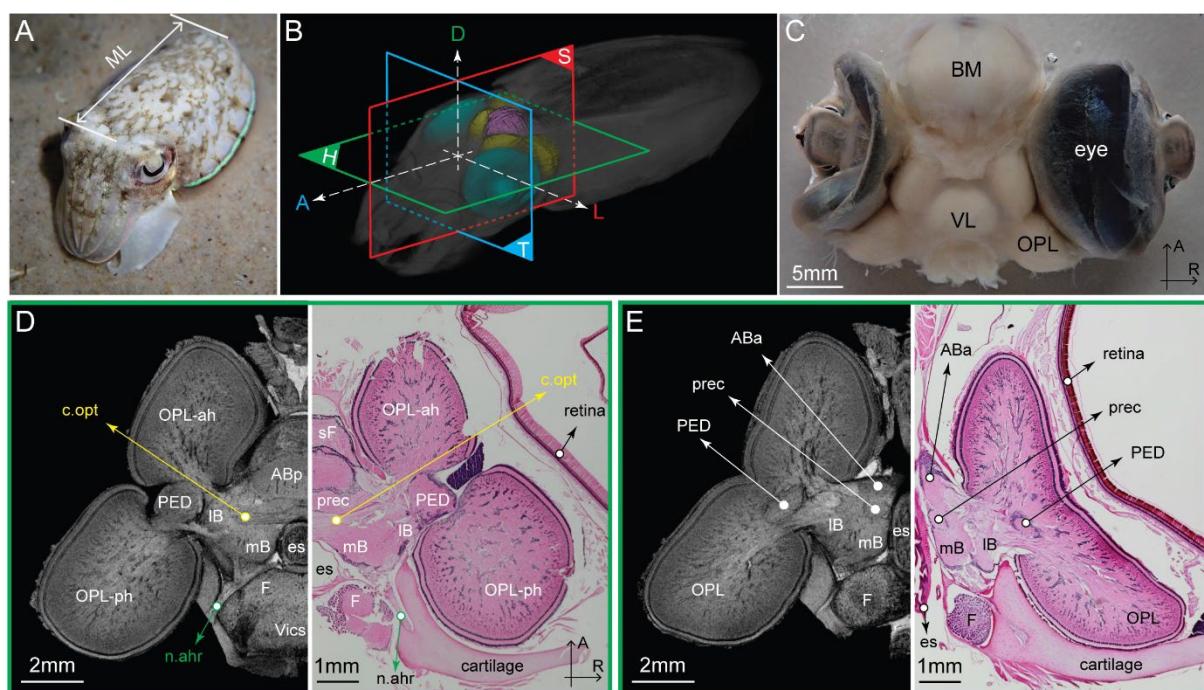
861

862

863

864

865

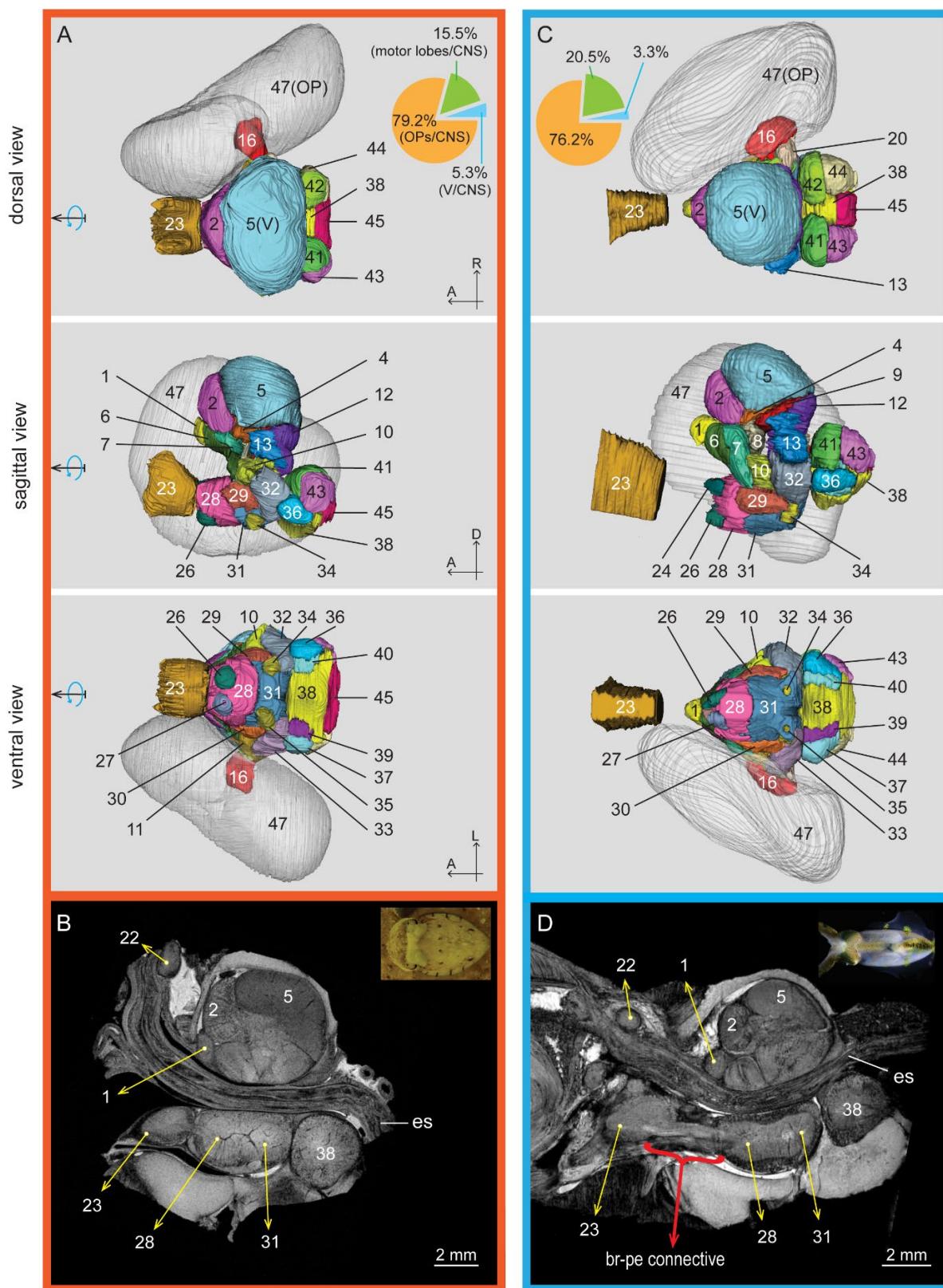

866

867

868

869

870



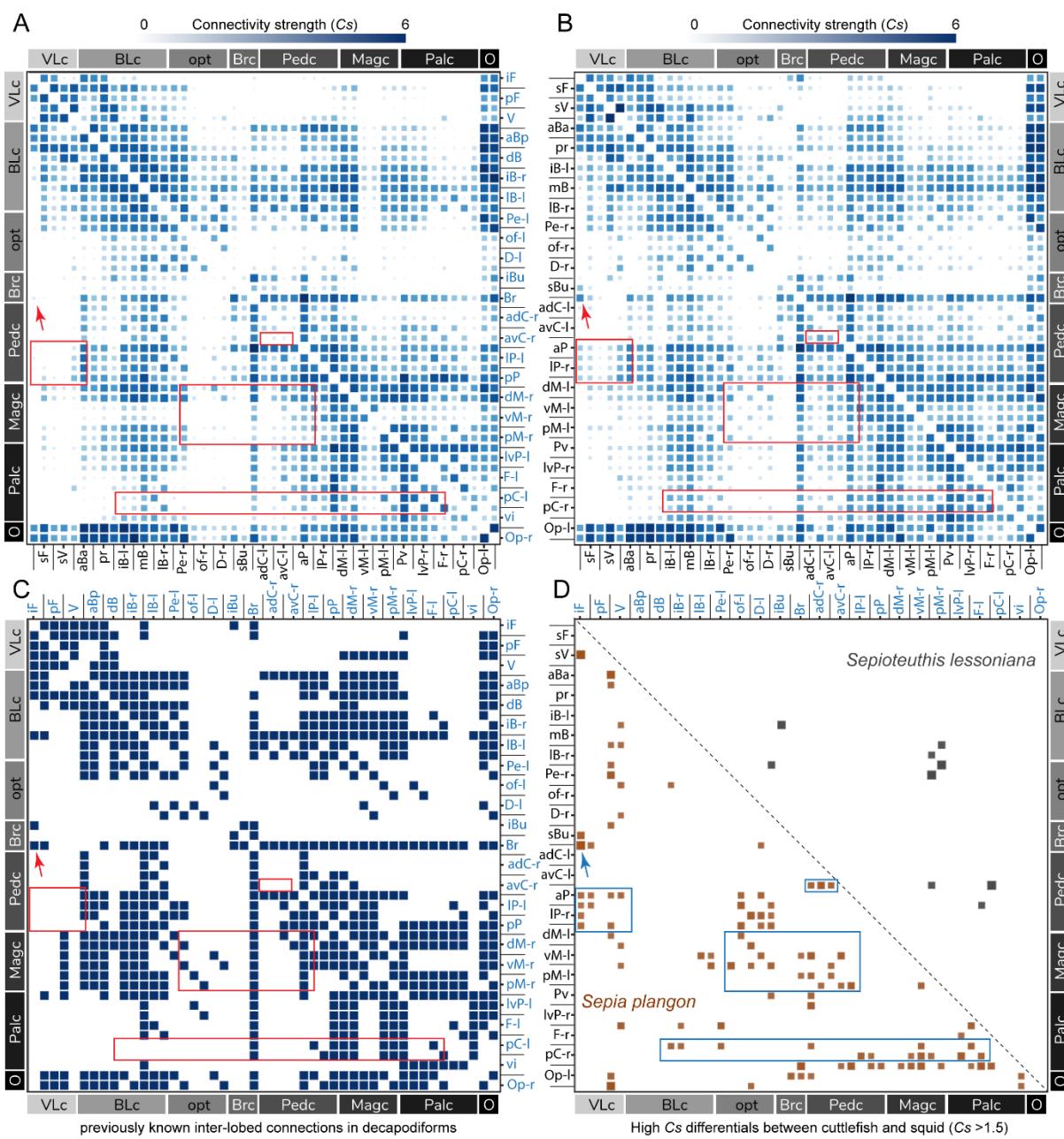
871

872

873 **Figure 1. The diurnal cuttlefish, *Sepia plangon*, and the features of its central nervous
874 system (CNS)**

875 **(A)** Live juvenile, *S. plangon*. ML - mantle length. **(B)** Three anatomical planes and 3D MRI
876 rendering of an entire cuttlefish and the underlying CNS and eyes. H- horizontal; S- sagittal;
877 T- transverse plane. A - anterior; P - posterior; D - dorsal; L – left; R - right lateral side. **(C)**
878 Isolated brain-eyes preparation (dorsal view). BM- buccal mass; OPL - optic lobe; VL-
879 vertical lobe. **(D-E)** Comparisons of horizontal sections between magnetic resonance
880 histology (left) (isotropic resolution 30 μ m) and conventional histology (right) (10 μ m slice
881 stained with hematoxylin and eosin). es- esophagus; Anterior anterior basal lobe (aBa);
882 anterior posterior basal (aBp); optic connective (c.opt); anterior head retractor nerve (n.ahr);
883 superior frontal (sF); lateral basal (IB); median basal (mB); precommisural (prec); peduncle
884 (PED); fin (F); visceral (Vics); anterior horn of optic lobe (OPL-ah); posterior horn of optic
885 lobe (OPL-ph).

886


887

888

889 **Figure 2 MRI-based 3D reconstruction of two types of decapodiform multi-lobed brains**
890 (Top, middle and bottom rows are dorsal, sagittal, ventral viewpoints and sagittal section
891 along the central midline).

892 CNS gross anatomy and lobe organisation are superficially similar between cuttlefish and
893 squid. **(A-B)** The diurnal tropical cuttlefish, *Sepia plangon*, its CNS layout and lobe-type are
894 similar to that of the nocturnal temperate *Sepia officinalis*. **(C-D)** The reef squid *Sepioteuthis*
895 *lessoniana* and its CNS layout. **(D)** The long brachio-pedal connective makes the squid
896 brachial lobe further away from the pedal lobe complex, rendering an elongated sub-
897 esophageal mass compared to it of the cuttlefish **(B)**. In total 47 lobes are identified (15 of
898 which are bilateral) (See also Tables S1-2): (1) inferior frontal lobe; (2) superior frontal; (3)
899 posterior frontal; (4) subvertical; (5) vertical; (6) anterior anterior basal; (7) anterior posterior
900 basal; (8) precommissural; (9) dorsal basal (10-11) interior basal; (12) median basal; (13-14)
901 lateral basal; (15-16) peduncle; (17-18) olfactory; (19-20) dorsolateral; (21) inferior buccal;
902 (22) superior buccal; (23) brachial; (24-25) anterior dorsal chromatophore; (26-27) anterior
903 ventral chromatophore; (28) anterior pedal; (29-30) lateral pedal; (31) posterior pedal; (32-33)
904 dorsal magnocellular; (34-35) ventral magnocellular; (36-37) posterior magnocellular; (38)
905 palliovisceral; (39-40) lateral ventral palliovisceral; (41-42) fin; (43-44) posterior
906 chromatophore; (45) visceral; (46-47) optic.

907

923 regions show strong Cs values in cuttlefish which are related to chromatophore,
924 magnocellular and pedal lobes where are potentially related to a large set of network in
925 charge of complex colouration displays.

926

927

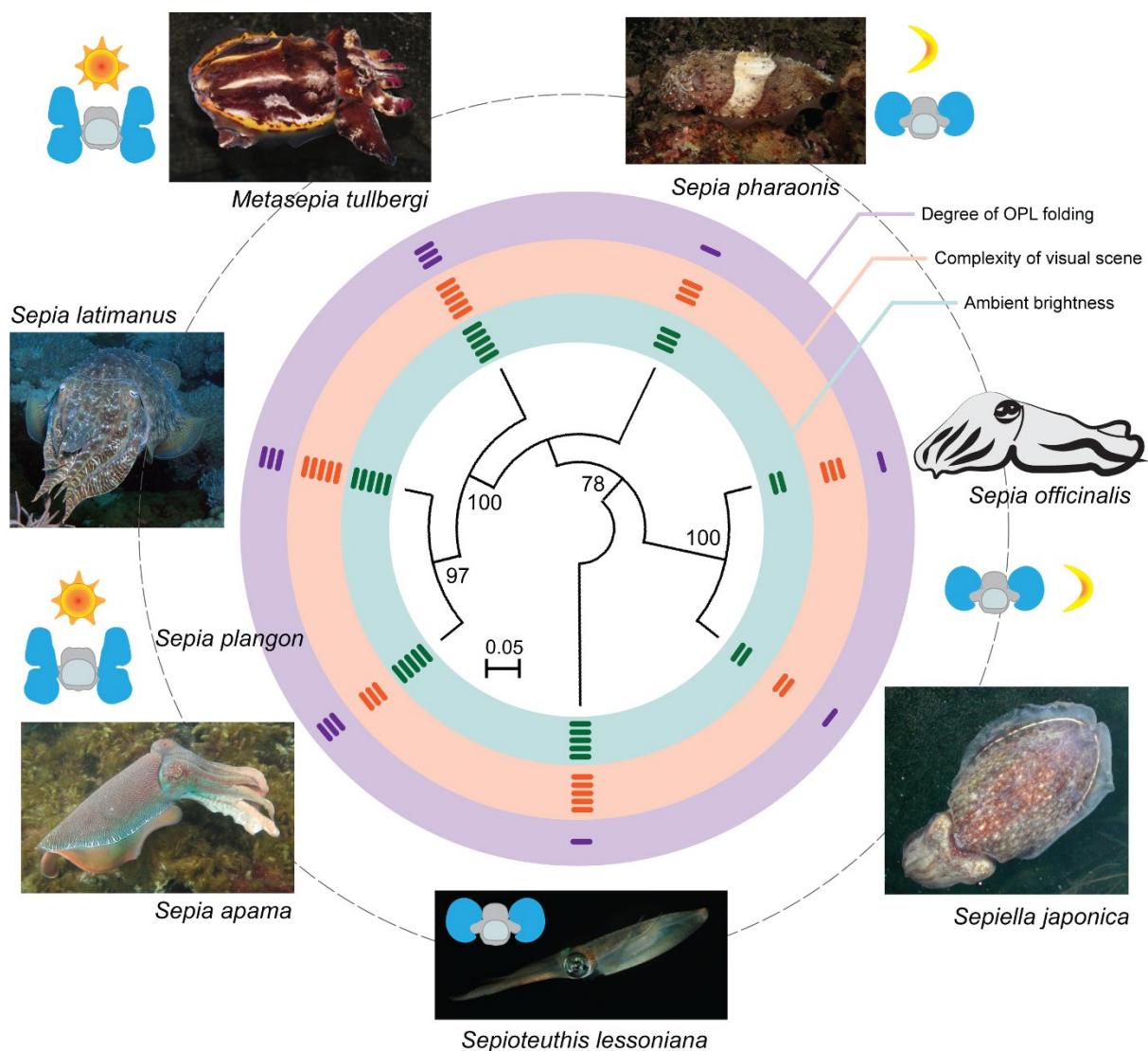
928

929

930

931

932


933

934

935

936

937

938

939

940 **Figure 4 Diversity of neuroanatomical features in the optic lobe (blue) of the selected 7**
941 **decapodiforms and the corresponding life modes**

942 The phylogenetical tree in the centre is constructed based on the published molecular
943 information (entire mitochondrial DNA sequences were available in the selected 7 species,
944 Star Method table). Due to partially sequenced molecular data, *Sepia plangon* was excluded.
945 The bootstrap values are shown in front of the branch node. The neuroanatomical features
946 and corresponding habit and habitats were based on the current study and the published
947 literature (See also Table 1). Schematic sun indicates diurnal active species; schematic
948 moons – nocturnal active species. Coloured bars in the two inner circles (green and orange)
949 indicate degree of complexity of the visual scene estimated by their ecological niches and the
950 ambient brightness the species inhabits based on published literature. Dark purple bars (in the
951 purple circle) show the degree of structural folding of the optic lobe (OPL). A similar feature
952 of the croissant-shaped OPL described in *Sepia plangon* is found in the three diurnal species
953 using dissection.

954

955

Species	Body size Mantle length or total length (mm) (maturity)	OPs/CNS (VL/CNS)	OP shape	Life mode	Habitat/depth	References
<i>Sepia plangon</i>	ML 71-107 (adults)	81% (4.3%)	C	D	Reef (down to 83m)	Current study
<i>Sepia latimanus</i>	ML 35 (40d post hatchling)	83% (ca2%)	C	D	Reef (down to 30m)	Ziadi-Kunzli et al, 2018 Roper et al 2005
<i>Sepia bandensis</i>	TL 80 (adult)	74% (5.1%)	B	N	Reef	Montague et al 2022 Roper et al 2005
<i>Sepia elegans</i>	-	60% (3.2%)	B	-	Down to 500 m	Ziegler et al 2018 Roper et al 2005
<i>Sepia officinalis</i>	ML 80 (subadult) -	67% (0.3%) 67% (3.7%)	B	N	Down to 200 m	Wirez 1959, Denton & Gilpin-Brown, 1961 Maddock & Young, 1987 Roper et al 2005
<i>Sepia omani</i>	TL 247 (adult)	-/-	B	-	50-210m	Roper et al 2005
<i>Sepia orbignyana</i>	-	58% (3.3%)	B	-	15-570m	Roper et al 2005
<i>Sepia pharaonis</i>	ML 10 - 302 (hatching to adult)	-/-	B	N	Down to 130m	Liu et al 2017 Roper et al 2005
<i>Sepiella japonica</i>	-	-/-	B	-	50m	Li et al 2018 Roper et al 2005
<i>Sepioteuthis lessoniana</i>	ML 40 - 113 (juvenile)	80% (2.6%)	B	cathemeral	Reef (down to 100m)	Chung et al 2020 Roper et al 2005

Table 1 List of ecological, behavioural, neuroanatomical features and estimates of lobe volume of decapodiforms used in this study. B- bean-shaped; C- croissant-shaped; D- diurnal; N- nocturnal.

Lobe system and function	Lobe	Abbreviation
Vertical lobe complex (VLC) - Memory & learning	Inferior frontal	iF
	Superior frontal	sF
	Posterior frontal	pF
	Subvertical	sV
	Vertical	V
Basal lobe complex (BLc) - Higher motor control	Anterior anterior basal	aBa
	Anterior posterior basal	aBp
	Precommisural	pr
	Dorsal basal*	dB
	Interbasal*	iB
	Median basal	mB
	Lateral basal*	lB
Optic track complex (opt) - Intermediate visual-motor center & olfaction	Peduncle*	Pe
	Olfactory*	of
	Dorsolateral*	D
Brachial lobe complex (Brc) - Arm and feeding control	Inferior buccal	iBu
	Superior buccal	sBu
	Brachial	Br
Pedal lobe complex (Pedc) - Intermediate and lower motor center for locomotion control	Anterior dorsal chromatophore* Ψ	adC
	Anterior ventral chromatophore* Ψ	avC
	Anterior pedal	aP
	Lateral pedal*	lP
	Posterior pedal	pP
Magnocellular lobe complex (Magc) - Intermediate motor center	Dorsal magnocellular*	dM
	Ventral magnocellular*	vM
	Posterior magnocellular*	pM
Palliovisceral lobe complex (Palc) - Lower motor center for locomotion and mantle activities	Palliovisceral	Pv
	Lateral ventral palliovisceral*	lvP
	Fin*	F
	Posterior chromatophore*	pC
	Visceral	vi
Optic lobes (O) - Vision	Optic*	OPL

956

957 Table S1 List of cuttlefish brain lobes with abbreviations used through the text

958 The main functions of the lobe systems based on work by Young and his colleagues
 959 (Messenger, 1979; Young, 1961, 1971; 1974, 1976; 1977, 1979; Boycott and Young, 1955,
 960 1957; Boycott, 1961; Nixon and Young, 2003). Supraoesophageal mass includes basal lobe
 961 and optic track complexes. Suboesophageal mass consists of the brachial lobe, pedal lobe,
 962 magnocellular lobe, and palliovisceral lobe complexes. * indicates that the lobe is further
 963 divided into the left and right lobe. Ψ indicates a further sub-division of the anterior
 964 chromatophore lobes into dorsal and ventral halves.

965

966

967

968

969

970

		Hatching ML:8mm	Juvenile ML:18mm	Juvenile ML:32.4mm	Adult male ML:72.9mm	Adult female ML:71.1mm	Adult female ML:107mm
VL complex	iFL	1		0.11	0.36	0.39	0.97
	sFL	2		1.14	3.56	3.67	8.18
	pFL	3		0.16	0.13	0.20	0.16
	sVL	4		0.95	3.43	4.26	9.04
	VL	5		4.14	15.62	18.12	46.61
ABL complex	ABL-a	6		0.47	1.62	1.91	4.49
	ABL-p	7		0.55	1.74	1.69	3.56
	preCL	8		1.02	1.48	2.41	3.14
BL complex	dBBL	9		0.52	0.62	1.42	2.67
	intBL-L	10		0.19	0.54	0.81	1.85
	intBL-R	11		0.16	0.53	0.73	1.93
	mBL	12		1.62	4.73	5.07	14.37
	IBL-L	13		0.21	1.01	0.67	1.21
OPT complex	IBL-R	14		0.21	1.01	0.63	1.45
	PeduncleL	15		0.31	1.00	1.32	2.54
	PeduncleR	16		0.36	0.99	1.20	2.54
	ofL-L	17		0.06	0.17	0.29	0.05
	ofL-R	18		0.05	0.17	0.31	0.03
BrachL complex	DorsolatL-L	19		0.05	0.16	0.29	0.18
	DorsolatL-R	20		0.05	0.16	0.31	0.19
	sBuL	22		0.22	1.05	1.11	2.00
PedL complex	Brachil	23		0.87	5.45	6.40	12.21
	Chrom-dA-L	24		0.08	0.31	0.32	0.28
	Chrom-dA-R	25		0.08	0.32	0.31	0.29
	Chrom-vA-L	26		0.09	0.32	0.26	0.48
	Chrom-vA-R	27		0.08	0.30	0.29	0.40
	Pedal-a	28		1.18	3.59	3.98	10.82
	Pedal-l-L	29		0.32	0.93	0.94	0.98
	Pedal-l-R	30		0.36	0.98	0.85	1.00
	Pedal-p	31		1.43	4.28	5.20	11.03
Magno complex	Magno-d-L	32		0.38	1.09	1.52	2.95
	Magno-d-R	33		0.38	1.19	1.62	2.77
	Magno-v-L	34		0.12	0.33	0.30	0.29
	Magno-v-R	35		0.12	0.31	0.27	0.36
	Magno-p-L	36		0.41	0.53	0.91	1.24
Palliovisc complex	Magno-p-R	37		0.45	0.50	0.85	1.21
	PallioVis	38		1.04	3.12	4.46	10.17
	PallioVis-lv-L	39		0.51	0.34	0.88	1.21
	PallioVis-lv-R	40		0.50	0.36	0.92	1.07
	FinL-L	41		0.06	0.47	0.91	2.91
	FinL-R	42		0.07	0.42	0.95	2.58
	Chrom-p-L	43		0.19	0.14	0.81	1.72
Optic lobes	Chrom-p-R	44		0.19	0.16	0.72	1.63
	Visc	45		0.16	0.29	1.25	4.96
	OPL-L	46		43.63	157.50	188.64	334.56
	OPL-R	47		46.81	155.50	184.37	356.52
	CC (mm ³)	2.15	7.44	21.75	66.17	82.62	181.49
	OPLs (mm ³)	7.11	28.82	90.44	313.00	373.01	691.08
		9.26	36.26	112.19	379.17	455.63	872.57

Table S2 Estimates of lobe volume of the mourning cuttlefish, *Sepia plangon*

Species	ML(mm)	OPLs (mm ³)	CC (mm ³)	CNS(mm ³)	VL (mm ³)	OPLs/CNS(%)	VL/CNS(%)
<i>Sepia elegans</i>	-	296.00	197.00	493.00	15.88	59.68	3.22
<i>Sepia orbignyana</i>	-	274.00	198.40	472.40	15.49	57.81	3.28
<i>Sepia officinalis</i> (H) (Wild et al 2015)	6.30	1.96	0.97	2.94	n.a.	66.85	n.a.
<i>Sepia officinalis</i> (Maddock & Young 1987)	80.00	232.40	163.80	396.20	1.19	58.66	0.30
<i>Sepia officinalis</i> (Wirz, 1959)	-	-	-	-	-	67.03	3.68
<i>Sepia officinalis</i> (Frosch, 1971)	-	-	-	-	-	70.73	2.03
<i>Sepia bandensis</i> (Montague, et al 2022)	ca. 60	233.24	80.43	313.67	16.05	74.36	5.12
<i>Sepia latimanus</i> (H) (Ziadi-Kunzli, et al 2019)	-	-	-	-	-	ca. 82	-
<i>Sepia plangon</i> (H)	8.00	7.11	2.15	9.26	0.22	76.78	2.38
<i>Sepia plangon</i> (J)	18.00	28.82	7.44	36.26	1.41	79.48	3.89
<i>Sepia plangon</i> (J)	32.00	90.44	21.75	112.19	4.14	80.61	3.69
<i>Sepia plangon</i> (F)	71.00	373.00	82.62	455.62	18.12	81.87	3.98
<i>Sepia plangon</i> (M)	73.00	313.00	73.30	386.30	15.51	81.03	4.02
<i>Sepia plangon</i> (F)	107.00	691.00	181.50	872.50	46.61	79.20	5.34
<i>Sepioteuthis lessoniana</i> (Chung et al 2020)	55.00	98.12	22.89	121.01	2.69	81.08	2.22
<i>Sepioteuthis lessoniana</i>	40.30	112.41	25.38	137.79	3.59	81.58	2.61
<i>Sepioteuthis lessoniana</i>	49.30	175.23	41.77	217.00	5.61	80.75	2.59
<i>Sepioteuthis lessoniana</i>	58.30	207.70	48.03	255.73	5.65	81.22	2.21
<i>Sepioteuthis lessoniana</i>	113.00	443.90	138.48	582.38	19.07	76.22	3.27

Table S3. List of estimates of brain volume in cuttlefish and squid.
 bioRxiv preprint doi: <https://doi.org/10.1101/2022.05.19.491988>; this version posted May 19, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.