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 2

ABSTRACT “Leaky gut”, or high intestinal barrier permeability, is common in preterm 18 

newborns. The role of microbiota in this process remains largely uncharacterized. We 19 

employed both short- and long-read sequencing of the 16S rRNA gene and 20 

metagenomes to characterize the intestinal microbiome of a longitudinal cohort of 113 21 

preterm infants born between 240/7-326/7 weeks of gestation. Enabled by enhanced 22 

taxonomic resolution, we found significantly increased abundance of Bifidobacterium 23 

breve and a diet rich in mother’s breastmilk to be associated with intestinal barrier 24 

maturation during the first week of life. We combined these factors using genome-25 

resolved metagenomics and identified a highly specialized genetic capability of the 26 

Bifidobacterium strains to assimilate human milk oligosaccharides and host-derived 27 

glycoproteins. Our study proposed mechanistic roles of breastmilk feeding and intestinal 28 

microbial colonization in postnatal intestinal barrier maturation; these observations are 29 

critical towards advancing therapeutics to prevent and treat hyperpermeable gut-30 

associated conditions, including necrotizing enterocolitis.  31 
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IMPORTANCE Despite improvements in neonatal intensive care, necrotizing 32 

enterocolitis (NEC) remains a leading cause of morbidity and mortality. "Leaky gut", or 33 

intestinal barrier immaturity with elevated intestinal permeability, is the proximate cause 34 

of susceptibility to NEC. Early detection and intervention to prevent leaky gut in “at-risk” 35 

preterm neonates is critical to lower the risk for potentially life-threatening complications 36 

like NEC. However, the complex interactions between the developing gut microbial 37 

community, nutrition, and intestinal barrier function, remain largely uncharacterized. In 38 

this study, we revealed the critical role of sufficient breastmilk feeding volume and 39 

specialized carbohydrate metabolism capability of Bifidobacterium in coordinated 40 

postnatal improvement of intestinal barrier. Determining the clinical and microbial 41 

biomarkers that drive the intestinal developmental disparity will inform early detection 42 

and novel therapeutic strategies to promote appropriate intestinal barrier maturation, 43 

prevent NEC and other adverse health conditions in preterm infants. 44 

 45 

KEYWORDS preterm infant; gut microbiome; leaky gut; intestinal barrier maturation; 46 

human milk oligosaccharides; Bifidobacterium  47 
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Early preterm neonates are particularly vulnerable to life-threatening events and 48 

routinely require intensive care and medical intervention to survive (1). The 49 

physiological immaturity of their gastrointestinal (GI) tract is commonly associated with 50 

deficiencies in barrier functions that result in a clinical syndrome known as “leaky gut” 51 

(2-5). Under leaky gut condition, the bacteria and bacterial products normally confined 52 

to the intestinal lumen are able to translocate into the peripheral circulation through the 53 

hyperpermeable epithelial barrier, which could lead to widespread invasion of the 54 

intestinal epithelium and gut lamina propria, mucosal inflammation, epithelial cell 55 

damage, intestinal necrosis, systemic infection, and ultimately multi-organ failure and 56 

death (4, 6, 7). Necrotizing enterocolitis (NEC) is a prominent bacterial translocation-57 

associated GI condition that affects 7-10% of preterm neonates or 1-5% of all neonatal 58 

NICU admissions with a devastating mortality rate as high as 50% (8-12). Early detection 59 

of an aberrant leaky gut and early intervention to limit intestinal injury are of paramount 60 

importance to reduce the incidence of subsequent complications including NEC (12, 13). 61 

A functional intestinal barrier combines a physical barrier that encompasses 62 

chemical, immunological and microbiological components (14). We and others have 63 

found that the first week of life (day 8±2 post-birth) is a critical window during which the 64 

most rapid postnatal intestinal maturation occurs (15-17). More importantly, these 65 

earlier studies demonstrated that the intestinal barrier function, which develops mostly 66 

in utero in term infants, can be improved postnatally. They also showed that the 67 

intestinal barrier maturation does not occur at the same rate, with ~40% of preterm 68 

neonates (<33 weeks gestation) failing to develop a functional intestinal barrier within 69 

the first two weeks of life (15, 16). Determining the factors that drive this developmental 70 
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disparity will inform early detection and novel therapeutic strategies to promote intestinal 71 

barrier maturation.  72 

Efforts to characterize the microbiological factors that are associated with intestinal 73 

barrier maturation have thus far yielded unsatisfactory results (18). There are no 74 

microbial biomarkers predictive of intestinal development. A major limitation is the use 75 

of partial 16S rRNA gene sequences to evaluate the taxonomic composition of gut 76 

microbiota. The short sequences lack the phylogenetic signal necessary to describe 77 

taxonomic composition at species or even genus level. Many of the PCR primers used 78 

to amplify variable regions of the 16S rRNA gene fail to amplify members of the genus 79 

Bifidobacterium (19-21). Bifidobacterium species are known to be frequent colonizers of 80 

infant guts (22), and are considered to play beneficial roles in intestinal development 81 

and influence maturation of the neonatal gut, potentially through stimulating colonic 82 

epithelial proliferation, modulation of host defense responses and protection against 83 

bacterial infections (23, 24). To investigate Bifidobacterium and other bacterial groups 84 

predictive of early intestinal development and maturation are of pivotal importance.  85 

In this study, we sought to characterize the role of early assembly of infant gut 86 

microbiota and its metabolism in postnatal intestinal barrier maturation. We build upon 87 

the results of past studies (15, 16) using an expanded cohort (N=113) of early preterm 88 

neonates (240/7-326/7 weeks of gestation) from whom stool samples were collected daily 89 

up to 21 days post birth. High resolution approaches were applied to characterize the 90 

composition of the developing gut microbiota with substantially enhanced taxonomic 91 

resolution including Bifidobacterium species, which we identified as the microbial 92 

biomarker associated with postnatal intestinal barrier maturation within the first week of 93 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2022. ; https://doi.org/10.1101/2022.05.06.490995doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.06.490995
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

life. Whole community metagenomes using both short- and long-read sequences 94 

provided a detailed characterization of the genetic content of these Bifidobacterium 95 

species, which were shown to have distinct genetic features affording complete 96 

carbohydrate foraging capabilities, including human milk oligosaccharides (HMOs) and 97 

host-derived glycoprotein. The presence of specific strains of Bifidobacterium may 98 

inform the early detection of aberrant intestinal permeability. Supplementation of these 99 

bifidobacterial strains could be leveraged in novel intervention strategies for the 100 

prevention of leaky gut and its devastating sequelae in preterm newborns. 101 

RESULTS 102 

Clinical cohort. We examined a prospective cohort of 113 preterm infants 240/7-326/7 103 

weeks of gestation including 37 subjects described in a previous analysis (Table S1). 104 

Fecal samples were collected daily until postnatal day 21 or discharge from the 105 

Neonatal Intensive Care Unit (NICU, Fig. 1). Mean gestational age (GA) of infants at 106 

birth was 29.9±2.3 weeks. A total of 28 infants (24.8%) were <28 weeks GA, and 85 107 

(75.2%) were 280/7-326/7 weeks GA. The mean birth weight was 1,381g (±415g); 66 108 

(58.4%) newborns were classified as very low birth weight (VLBW, <1,500g birth weight) 109 

and 26 (23.0%) were classified as extremely low birth weight (ELBW, <1,000g). 110 

Intestinal permeability (IP) was determined 7-10 days post-birth when rapid 111 

intestinal barrier maturation normally takes place (15, 16). IP was calculated as the ratio 112 

of two enterally administered sugar probes Lactulose (La) and Rhamnose (Rh), markers 113 

of intestinal paracellular and transcellular pathways, respectively (25, 26). IP was 114 

ranging between 0.001 and 0.394 with an average of 0.07±0.007 (mean±s.e.) and is not 115 

significantly different among postnatal day 7-10 (Supplemental Fig. 1A). High IP was 116 
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defined by a La/Rh ratio >0.05, as validated and applied previously (16). Of the 113 117 

subjects, 48 (42.5%) were found to have high IP. Infants <28 weeks GA were more 118 

likely to have elevated IP (N=18) than infants 280-326 weeks GA [(64.3% vs. 35.3%), 119 

P<0.01].  120 

Postmenstrual age and mother’s own breastmilk (MOM) feeding are 121 

associated with intestinal permeability in early preterm neonates. Among the 122 

collected demographic and maternal variables for each infant, four host factors were 123 

observed to be inversely related to IP, including: GA, postmenstrual age (PMA) 124 

corresponding to chronological and GA, birthweight, and 1-minute Apgar score (Table 125 

1). These variables are also highly correlated to one another with high covariates 126 

multicollinearity (variance inflation factor > 10) (Fig. S1). PMA was the most significant 127 

factor associated with IP among the four (P = 0.01, q value = 0.015) based on Hilbert-128 

Schmidt Independence Criterion (HSIC) (Table S2). Other host factors such as sex and 129 

race were not significantly associated with IP. Maternal factors including preterm 130 

premature rupture of membranes (PPROM), maternal antibiotics, antenatal 131 

corticosteroids, preeclampsia and delivery mode, were not associated with IP. These 132 

data indicate that younger infants have significantly higher incidences of high IP, likely 133 

attributed to their more immature intestinal development.  134 

However, host factors could only partially explain IP. Mother’s own breastmilk (MOM) 135 

longer feeding and higher intake volume, and shorter antibiotics treatment duration were 136 

also significantly associated with low IP (Table 1). Compared to infants with low IP, 137 

neonates with high IP had fewer days of MOM feeding (4 days vs. 5.5 days, P<0.01) 138 

and less total MOM volume (123.4 ml/kg vs. 263 ml/kg, P<0.01) as well as longer 139 
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duration (>3 days) antibiotics use (37.5% vs. 18.5%, P=0.03). We adjusted host factors 140 

associated with IP and fit a generalized logistic regression model. Newborns who were 141 

fed MOM for ≥4 days during the first week were demonstrated to be 10.3-fold more 142 

likely to have low IP than those who were fed MOM for <4 days [adjusted odds ratio 143 

(aOR): 10.3, 95% CI: 3.21-33.33] (Table 2). Additionally, newborns who had longer 144 

antibiotics treatment (≥3 days) were 2.6 times more likely to have high IP, however this 145 

association was mitigated when adjusting for confounders like PMA. This result is in line 146 

with our previous observations that antibiotic use is significantly more common in the 147 

early GA subjects (92% in <28 weeks GA versus 32% in >28 weeks GA, P<0.001) (16). 148 

Statistical dependence analyses showed that the cumulative intake volume of MOM 149 

prior to the IP measurement was the most significant factor associated with IP (P 150 

<0.001, q value <0.01, HSIC statistic=1.53 and 1.46), at a significance level even higher 151 

than host factors including GA (P <0.001, q value <0.01, HSIC statistics=1.12), PMA (P 152 

= 0.01, q value = 0.015, HSIC statistics=0.93), and body weight (P = 0.01, q value = 153 

0.035, HSIC statistics=1.12) (Table S2).  154 

Breastmilk intake is associated with improved intestinal barrier integrity. 155 

Unfortunately, mothers who deliver preterm often produce less milk than those who 156 

deliver term, and milk administration is often delayed especially in early preterm infants 157 

(27). Formula and/or pasteurized donor human breastmilk (PDHM) is often a necessary 158 

dietary supplement. Only 55.7% of neonates in the cohort were exclusively breastfed 159 

(N=63), others had either complemented with formula (N=31), or PDHM (N=12), or were 160 

fed exclusively formula (N=9) (Fig. 2A). For this reason, we investigated IP in neonates 161 

grouped by feeding types. Exclusive formula feeding was significantly associate with 162 
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high IP, either in number of days (P=0.02) or the intake volume (P=0.03, Table 1). 163 

However, when formula was used in combination with MOM, even at a minor portion 164 

(35.2%±31.7%, mean±s.e.), IP was significantly lowered to a level that is no different 165 

than exclusive MOM (Fig. 2B). Infants whose diet was supplemented with PDHM in 166 

addition to MOM had similar IP to the exclusive MOM group. We further investigated 167 

how much MOM is “sufficient” relating to improved IP during the first week post-birth. A 168 

highly elevated IP was observed in infants who received no MOM (exclusive formula or 169 

no feed), and a rapid decrease in IP was inversely correlated with increased MOM 170 

intake volume (Fig. 2C). Discriminatory machine learning schemes suggested that a 171 

threshold around 150-180 ml/kg of cumulative intake of MOM by 7-10 days of age is 172 

associated with low IP. Together our results indicate that sufficient MOM, used alone or 173 

combined with other forms of feeding, significantly impacts IP in early preterm infants. 174 

Even more importantly, these results imply that the benefits of breastmilk feeding are 175 

beyond the nutrition alone but extend to postnatal intestinal barrier maturation. 176 

Increased Bifidobacterium species abundance correlates with improved 177 

intestinal barrier integrity. We further performed high-resolution characterization of 178 

intestinal microbiota in 517 fecal samples, using both short-read sequencing of the 179 

V3V4 region of the 16S rRNA gene on an Illumina HiSeq 2500 instrument (300PE, 180 

N=472), and long-read sequencing of the full-length 16S rRNA gene on PacBio Sequel 181 

II platform (N=192). For short-read sequencing, we obtained a total of 25,838,078 high-182 

quality, non-chimeric ASVs (Amplicon Sequence Variants) after the assembly of forward 183 

and reverse reads and quality assessment, representing 51,165±620 (mean±s.e.) ASVs 184 

per sample (Table B at https://doi.org/10.6084/m9.figshare.19723252.v1). On the 185 
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other hand, long-read sequencing generated using the Circular Consensus Sequences 186 

(CCS) yielded 1,271,873 high-quality full-length 16S rRNA sequences or 992.9±16.8 187 

(mean±s.e.) non-chimeric ASVs per sample. The full-length 16S rRNA gene sequences 188 

(1,462 bp on average) extended the partial V3V4 region (428 bp on average) 3.2 times, 189 

and afforded species level assignment for 87.6% of the long-read ASVs (remaining 190 

were not assigned due to a lack of reference), compared to 15.3% for the short-read 191 

ones (Table D at https://doi.org/10.6084/m9.figshare.19723252.v1, Fig. S2). Using 192 

samples sequenced by both methods, taxonomic assignments for long-read ASVs were 193 

conveyed to short-read ASVs using perfect sequence match, thus achieving species 194 

assignment in 65.3% of short-read sequences (Table E at 195 

https://doi.org/10.6084/m9.figshare.19723252.v1).   196 

In total 508 ASVs belonging to 212 species in 15 orders and 6 phyla were identified 197 

(Table A-C at https://doi.org/10.6084/m9.figshare.19723252.v1). The four most 198 

abundant taxa were Klebsiella pneumoniae, Escherichia coli, Staphylococcus 199 

epidermidis, and Enterobacter spp. These taxa were predominant (>50% relative 200 

abundance) and dictated four distinct community types (Fig. S3). These four taxa 201 

belong to two classes Enterobacteria (K. pneumoniae, E. coli, and Enterobacter spp.) 202 

and Bacilli (S. epidermidis) and were highly prevalent (present in 86.2-94.8% samples) 203 

in both high and low IP subjects (Fig. 3A). They are also known “first colonizers” of the 204 

infant gut (15, 28, 29). Five other taxa, including Enterococcus faecalis, Clostridium 205 

perfringens, Proteus mirabilis, Bifidobacterium breve, and Veillonella dispar, were found 206 

to contribute to 17.4% of all sequences and detected in 47.7-86.6% of all samples. 207 

These obligate and facultative anaerobes were considered the “succession” 208 
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microorganisms that succeed to the first colonizers (15, 30-32). Together these nine 209 

taxa accounted for 76.0% of all sequences in this dataset. Remaining sequences were 210 

from a diverse array of obligate and facultative anaerobes (Fig. S3 cluster 5).  211 

A zero-inflated negative binomial random effects model (ZINBRE) was applied to 212 

investigate microbial biomarkers correlated with IP. B. breve was the taxa the most 213 

significantly associated with low IP (P < 0.001) during the first 7-10 days after birth 214 

(Table S3B, Fig. 3B, S4B). The low IP group had significantly higher levels of B. breve, 215 

more Bifidobacterium overall, and more MOM. An adaptive spline logistic regression 216 

model was used independently to confirm the association between B. breve to IP and 217 

MOM (Fig. S4C,D). Other phylotypes associated with MOM or PMA were shown in 218 

Table S3. The high IP-associated ASVs of S. epidermidis, E. coli, Parabacterioides 219 

distasonis were associated with early PMA (Table S3A). Veillonella dispar was revealed 220 

to strongly associate with later PMA (P<0.001) but not with IP. S. epidermidis and E. coli 221 

were also associated with less MOM during the first week (Table S3C). B. breve was in 222 

71.7% of samples containing Bifidobacterium, followed by B. longum (21.7%). The other 223 

Bifidobacterium species were either rare or in very low abundance (<0.1%). Temporal 224 

microbiota profiling indicated that Bifidobacterium species reached higher abundance 225 

~5-20%) after >3d of MOM (Fig. 3E, https://doi.org/10.6084/m9.figshare.19709923.v1). 226 

When stratified by major feeding types, Bifidobacterium was mostly abundant in 227 

exclusive MOM or MOM supplemented with formula (Fig. S4A). We plotted community 228 

diversity against MOM feeding volume in function of time and observed that low IP 229 

infants had significantly higher diversity microbiota and higher diversity Bifidobacterium 230 

species, when MOM reached >150 ml/kg of cumulative intake within the first week (Fig. 231 
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3C-D). It is worth noting that MOM is a critical but not the only contributor to the 232 

abundance of Bifidobacterium. 15% of the subjects received no MOM had >1% 233 

Bifidobacterium and 32.5% had detected level of Bifidobacterium (>0.1%). Overall this 234 

result further supports the importance of achieving the critical threshold of MOM intake 235 

and its critical association with low IP.  236 

Population dynamics of Bifidobacterium species in early postnatal 237 

colonization. Phylogenetic analyses of full-length 16S rRNA gene sequences 238 

demonstrated that B. breve forms a monophyletic clade and the four most abundant 239 

ASVs were nearly identical, while B. longum was more phylogenetically diverse with 240 

four distinct clades (Fig. 4A,B). Clade I was the most abundant and represented B. 241 

longum subsp. longum, while B. longum in the other three clades II-IV was in low 242 

abundance. ASVs assigned to Bifidobacterium showed high sequence diversity (Fig. 4A) 243 

as well as inter- and intra-subject variability (Fig. 4C), in that multiple ASVs can be 244 

detected in the same subject and a single ASV can be detected in multiple subjects at 245 

multiple time points. For instance, 35 B. longum ASVs of four different clades were 246 

observed in one subject. Further, some ASVs (i.e., unclassified Bifidobacterium spp.) 247 

were only observed in infants with early PMA (<33 weeks) while others did not vary in 248 

abundance across PMA (i.e., B. breve), supporting a high subspecies-level diversity and 249 

population dynamics in preterm infant gut community.  250 

To characterize the genome content of Bifidobacterium species, we performed 251 

whole metagenomic sequencing of 30 samples with >10% Bifidobacterium species 252 

using an Illumina NovaSeq 6000 platform (Table A at 253 

https://doi.org/10.6084/m9.figshare.19723255.v1) and generated 26 B. breve and four 254 
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B. longum nearly complete metagenomic-assembled genomes (MAGs) (Table B at 255 

https://doi.org/10.6084/m9.figshare.19723255.v1). We further performed metagenomic 256 

sequencing of two samples using Pacific Bioscience Sequel II platform, which afforded 257 

one closed and one nearly complete genomes of B. breve strains. The closed genome 258 

was 2.34M in size (Fig. S6, Table C at 259 

https://doi.org/10.6084/m9.figshare.19723255.v1), similar to the median B. breve 260 

genome size of 2.33M on NCBI. For pangenome analysis, we supplemented the 26 B. 261 

breve in-house MAGs with 107 published genomes (Table A at 262 

https://doi.org/10.6084/m9.figshare.19709917.v2) and the four B. longum MAGs with 263 

310 published genomes (Table B at https://doi.org/10.6084/m9.figshare.19709917.v2) 264 

to identify homologous gene clusters (HGCs) (Tables C-D at 265 

https://doi.org/10.6084/m9.figshare.19709917.v2). Among the total of 4,922 B. breve 266 

HGCs, 54.2% were considered dispensable (present in <10% genomes), 29.4% were 267 

core (present in >95% genomes) and the rest were accessory (Table E at 268 

https://doi.org/10.6084/m9.figshare.19709917.v2). The pangenome of B. longum 269 

(7,265 HGCs) was roughly twice the size of B. breve (3,363 HCGs), although the two 270 

species core genomes were similar (1,511 vs. 1,448 HCGs). The large pangenome size 271 

of B. longum may reflect its broader host range that includes both infant and adult 272 

intestines than B. breve or B. infantis, which were exclusively observed in infant gut (33). 273 

In particular, the genes involved in the fructose 6-phosphate phosphoketolase-274 

dependent glycolytic pathway for ATP-efficient carbohydrate catabolism, or “bifid shunt”, 275 

are conserved in both species (Fig. S7). Further, B. longum’s dispensable genome, 276 

which comprised 46.3% of its pangenome (2,666 HGCs), was smaller than that of B. 277 
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breve (54.2%, 3,363 HCGs) in both size and proportion, indicating a high genome 278 

plasticity in B. breve.  279 

We identified 46 genes specific to B. breve colonizing infants with low IP (Table F at 280 

https://doi.org/10.6084/m9.figshare.19709917.v2). While a large number of these 281 

genes have unknown functions, others encoded functions such as glycosyl transferases, 282 

glycosyl hydrolases, cell surface adhesion and transport, polysaccharide biosynthesis, 283 

quorum sensing, and phage integration. Further, a number of functions were 284 

significantly enriched in these genomes compared to the species’ genomes publicly 285 

available (adjusted q-value < 0.05, Table F-I at 286 

https://doi.org/10.6084/m9.figshare.19709917.v2), such as cation transmembrane 287 

transporter activity, glucuronate isomerase, methyladenine glycosylase, glycosyl 288 

hydrolase family 59, 2, 85, 30, bacterial rhamnosidase A and B. Of note, B. breve HGC 289 

profiles appears to be highly similar within subjects, indicating that B. breve genomes 290 

detected at different time points in the same infants shared greater similarity than those 291 

from different subjects (Fig. S7, Table J at 292 

https://doi.org/10.6084/m9.figshare.19709917.v2). Together, compared to B. longum, 293 

B. breve colonizing infants with low IP has a high genome plasticity and enriched 294 

genetic features in carbohydrate metabolism and transportation that underlies the 295 

species strong niche adaptive capabilities.  296 

Specialized human milk oligosaccharides assimilation capabilities of 297 

Bifidobacterium strains in early preterm infants. As both Bifidobacterium species 298 

abundance and MOM were associated with postnatal intestinal barrier maturation, we 299 

next investigated whether these two factors were linked through the ability of 300 
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Bifidobacterium species to utilize the oligosaccharides present in breastmilk. Previously 301 

characterized major HMO utilizers like Bacteroides species and Lactobacillus (34, 35) 302 

were largely absent from our cohort (https://doi.org/10.6084/m9.figshare.19723252.v1), 303 

indicating that Bifidobacterium species likely provide the genetic capabilities to 304 

metabolize HMOs. We thus examined the set of genes encoding extracellular 305 

hydrolases, sugar transporters, and intracellular hydrolases (Table S4), which comprise 306 

the machinery necessary to uptake and metabolize HMO substrates to feed the central 307 

fermentative metabolism (36-38).  308 

Intracellular HMO utilization functions were exclusively found encoded by both B. 309 

breve and B. longum. We examined eight essential extracellular enzymes and their 310 

homologs (details in methods section) known to be required in extracellular breakdown 311 

of HMOs into smaller molecules that are then transported intracellularly. Interestingly, 312 

none of these extracellular enzymes were found in this cohort. We investigated five 313 

essential bacterial ABC transporters and homologs involved in the import of various 314 

oligosaccharides, known to have a high specificity for HMOs conferred by substrate-315 

binding protein (SBPs) domains (39). Both B. breve and B. longum contained gltA 316 

(Table S4A), a gene considered crucial to the import of lacto-N-tetraose (LNT). LNT 317 

comprise the core HMO structure that is catabolized via lacto-N-biose (LNB) 318 

intermediates (40). Further, a family 1 solute binding proteins (F1SBP) gene cluster 319 

Blon_2177, was found in both B. breve and B. longum (Table S4B). This cluster was 320 

found critical in the import of non-fucosylated type 1 oligosaccharides (41). None of the 321 

B. longum strains but the majority B. breve strains of this cohort (92.4%) harbor the 322 

LNnT (lacto-N- neotetraose) transporter that is encoded by nahS. These findings 323 
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indicate both B. breve and B. longum could transport LNB and LNT, while B. breve can 324 

further metabolize LNnT.  325 

We then evaluated the capability of consuming the transported oligosaccharides, 326 

and, compared to B. longum, we revealed expanded metabolic capabilities of B. breve 327 

of this cohort to utilize a variety of HMO molecules including fucosylated or sialylated 328 

forms, in addition to the neutral types of HMOs (i.e., LNB, LNT, LNnT). 17 key glycoside 329 

hydrolases (GH) involved in essential HMO degradation and utilization were 330 

investigated (Table S4C). Key intracellular enzymes GH2 (β-1,4-galactosidases, 331 

LacZ2/6), GH112 (GNB/LNB phosphorylase, lnpA), GH20 (β-N-acetylglucosaminidase), 332 

and GH42 (β-1,3-galactosidase, lntA, bga42A) are highly conserved in both B. breve 333 

and B. longum. These enzymes lack transmembrane domains or signal peptide 334 

sequence and are required to degrade HMOs intracellularly (42). While almost all B. 335 

breve contained GH95 α-fucosidase (afcA, homolog to Blon_2335), GH33 α-sialidase 336 

(homolog to Blon_0646), and GH20 β-N-acetylglucosaminidase (nahA, homolog to 337 

Blon_0459) (Table S4C), only a small portion of B. longum (~10%) contained these 338 

enzymes. Further, B. breve present in these preterm infants carries gene encoding 339 

GH29 α-fucosidases more often (53.8% vs. 12.7%) than B. breve isolated from other 340 

sources obtained from GenBank. The presence of GH29 α-fucosidase genes underlines 341 

the capability to consume fucosylated oligosaccharides such as 2’-fucosyllactose (2’-FL) 342 

and larger fucosylated HMOs such as lacto-N-fucopentaose (38, 42). The GH29 343 

containing B. breve strains in our cohort also encode GH95. In fact, GH29 and GH95 α-344 

fucosidases are highly complementary since they target specific substrate of α-1,3/4 345 

and α-1,2 fucosyl linkages, respectively (42), and the activation of both enzymes 346 
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enables degradation and utilization of a higher variety of HMOs. Moreover, a prominent 347 

gene cluster termed FHMO (Fucosylated Human Milk Oligosaccharide) that contains 348 

both GH29 and GH95 α-fucosidases coding genes was observed in some B. breve 349 

strains but is largely absent from B. longum (Table S4D). This cluster was reported to 350 

enable B. breve strains to preferentially consume fucosylated HMOs over neutral HMOs 351 

during early bacterial growth (42). In particular, the putative fucosyl lactose SBP 352 

(BLNG_1257) present in this cluster confers glycan binding specificity and is 353 

consistently present in B. breve strains of this cohort but rarely in other B. breve in 354 

GenBank. Overall, our results revealed an expanded, specialized HMOs assimilation 355 

capability of B. breve strains, conferring a competitive growth advantage in the gut of 356 

this preterm infant cohort when fed breastmilk.  357 

Host-derived glycoproteins utilization is limited to B. breve in early preterm 358 

infants. Besides HMOs, the host-derived glycoproteins such as mucin and 359 

proteoglycan (mucus or milk) are critical carbon sources to bacteria in the infant 360 

intestinal microenvironment. Human glycoproteins are often heavily sulfated and could 361 

not be metabolized without bacterial glycosidases (43, 44). We investigated two 362 

sulfatase-encoding gene clusters essential in sulfatase metabolism ats1 and ats2 (45, 363 

46), and they each encode glycosulfatases and accompanying anaerobic sulfatase-364 

maturing enzymes (anSMEs) with an associated transport system and transcriptional 365 

regulator (46). The primary mucin degradation capabilities in this cohort are shown to be 366 

limited to B. breve strains (Table S4F), as the two clusters are present in 100% of B. 367 

breve in our cohort and ~70% of all B. breve genomes available. B. longum rarely 368 

harbor ats1 and no strains carry ats2.  369 
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In addition to sulfated residues, more than half of human colonic mucin 370 

oligosaccharides also contain sialic acid residues (47). The release of sialic acid is an 371 

initial step in the sequential degradation of mucins and sialylated HMO substrates (46, 372 

48). Hence, we investigated the two gene clusters essential for the uptake and 373 

metabolism of sialic acid, nagA2-nagB3 cluster (Bbr_1247, Bbr_1248) and the nan-nag 374 

cluster (Bbr_0160-0172) (49-51). These two gene clusters are highly conserved in B. 375 

breve while only present in 14% of B. longum genomes (Table S6E). Our results 376 

demonstrate the capability of foraging sulfated and/or sialylated host-derived 377 

glycoprotein is attributed to B. breve strains in this cohort. This metabolic versatility of B. 378 

breve may greatly improve its fitness and facilitate its mucosa adherence, hence 379 

facilitating the colonization under nutrient- or energy-limited conditions in the preterm 380 

infant gut environment.  381 
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DISCUSSION 382 

Early preterm neonates are a vulnerable and challenging population that often 383 

requires intensive medical care. As a result of their premature birth, these neonates 384 

often have an aberrantly permeable intestinal barrier that fail to limit bacterial 385 

translocation. Our group has previously reported positive associations between 386 

persistently elevated intestinal permeability and delayed feeding, prolonged antibiotics 387 

exposure and altered development of the intestinal microbiota, and a lack of progressive 388 

increased abundance of Clostridiales (15, 16). These Clostridiales became abundant 389 

mostly at the end of the second week post-birth, this is after the extensive barrier 390 

maturation that occurs during the first week. In this study, we determined the minimal 391 

intake of maternal breastmilk necessary to significantly lowered IP, and identified 392 

specific Bifidobacterium species and strains as the biomarkers associated with low IP 393 

development in preterm infants first week of life.  394 

We posited the benefits of breastmilk extend beyond nutrition and include improved 395 

gut barrier function, and that the two factors associated with reduced IP, MOM feeding 396 

and Bifidobacterium strains, at least in part, are linked by the capability of the 397 

Bifidobacterium to metabolize human milk oligosaccharides (illustrated in Fig. 5). To 398 

investigate this link, we evaluated the carbohydrate metabolizing capabilities of 399 

Bifidobacterium strains and uncovered a complement of genes dedicated to utilizing a 400 

wide variety of HMO molecules as well as host-derived glycoproteins. These genetic 401 

features were enriched in preterm infant gut-associated Bifidobacterium strains 402 

compared to those isolated from other sources like dairies or adult gut. Our results are 403 

concordant with previous studies that the establishment of a bifidobacterial dominant 404 
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community was facilitated by specific gene clusters supporting HMOs metabolism, 405 

which are absent in many adult associated bifidobacterial strains (52-55). The functional 406 

characterization of the contribution of B. breve metabolizing MOM to low IP would be 407 

critical to its translational significance. Future studies modeling both transcriptional 408 

activities of bifidobacterial biomarkers and host responses in a longitudinal design is 409 

warranted to address the causal-effect relationships of MOM and Bifidobacterium on 410 

intestinal barrier maturation. Further, the production of short chain fatty acids via 411 

carbohydrate consumption by bifidobacteria, particularly acetate and butyrate, was 412 

demonstrated to correlate with their anti-inflammatory properties and promoted the 413 

defense functions of the epithelium (56-58). Together, our study supports the notion that 414 

intestinal barrier function can develop postnatally, and this process could be induced 415 

through supplementation of breastmilk substrates as well as Bifidobacterium strains that 416 

consume them. These elements are promising therapeutic targets to reduce NEC and 417 

other life-threatening conditions associated with intestinal hyperpermeability. 418 

B. breve is a known dominant Bifidobacterium species in both preterm and term 419 

infant gut microbiota (59) and was also observed in breastmilk and vaginal microbiota 420 

(60, 61). In human, B. breve appears to be exclusively in these environments and is 421 

largely absent in adult gut. The factors contributing to B. breve persistence in infants are 422 

not well understood. Most studies were performed using the type strain B. breve ATCC 423 

15700 (JCM 1192), which has limited ability to consume HMOs (62, 63). As 424 

demonstrated by us and others, strains of B. breve vary greatly in their capabilities to 425 

metabolize HMOs (55). The B. breve strains in our cohort displayed extensive 426 

enzymatic capability designed to efficiently utilize a broad range of dietary and host-427 
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derived carbohydrates and thus maximizing their colonization in the infant intestinal 428 

environment. In particular, we demonstrated that LNnT utilization was exclusively limited 429 

to strains of B. breve. Growth on LNnT was shown in vitro to enable B. infantis to 430 

outcompete other species such as Bacteroides (64). LNnT can be fermented by specific 431 

strains of Bifidobacterium only found in infant gut (65). Digestion of neutral HMOs (i.e., 432 

LNT, LNnT) was actually shown to induce a significant shift in the ratio of secreted 433 

acetate to lactate compared to the catabolism of the simpler carbohydrates they contain 434 

(66). Further, GH29 α-fucosidase, an uncommon enzyme correlated to the ability to 435 

grow on fucosylated HMOs (38), was only enriched in B. breve strains in this cohort. 436 

The presence of key gene sets expands B. breve metabolic capabilities (i.e., FHMO, 437 

GH29, GH95), and is reminiscent to those found in B. infantis ATCC 15697, the model 438 

strain that can also consume a broad repertoire of HMOs (41, 67). Previous clinical 439 

trials administrating B. breve strains in early preterm infants yield contradicted results, 440 

which may relate to the different strains selection. For example, Kitajima and co-authors 441 

reported a B. breve strain BBG could colonize the immature bowel effectively with 442 

significantly fewer abnormal abdominal signs and greater weight gain in VLBW infants 443 

(68). However, the clinical trial of the type strain BBG-001 in very preterm infants 444 

observed no evidence of benefit in terms of preventing NEC and LOS (69). These data 445 

highlight the importance of strain characterization in prophylactic supplementation of live 446 

biotherapeutics. Further characterization of these key genes will be necessary to 447 

understand the range of oligosaccharides B. breve strain can transport and consume. 448 

Strains collection of B. breve isolated from both preterm infants with rapidly lowering IP 449 

and healthy term infants should be established to achieve this important goal. 450 
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The specialized HMOs and glycoprotein utilization capabilities of B. breve, 451 

particularly the sulfated and sialic residues degradation, further confers a competitive 452 

capability that improve B. breve fitness and facilitate its adherence and colonization of 453 

the gut mucosa (70). The release of sialic acid is an initial step in the sequential 454 

degradation of mucins and sialylated HMO substrates (46, 48), and the ability to utilize 455 

the heavily sulfated mucin glycoprotein and sialic residues were found to be highly 456 

correlated (46, 49). Sialic acid concentrations are highest in colostrum in preterm infants 457 

but decrease by almost 80% after 3 months (71). Further, breastmilk from mom who 458 

delivered preterm was reported to be a rich source of oligosaccharide-bound sialic acids, 459 

with 20% more sialic acid residues than breastmilk from term mothers and 25% more 460 

than that found in formula (72). A recent in vivo study showed that sialylated HMOs are 461 

on the causal pathway of a microbiota-dependent infant growth outcome, hence were 462 

considered the most growth-discriminatory HMO structures (73). Interestingly, and 463 

supporting its importance in infant health, only strains of B. infantis and B. breve 464 

isolated from infant gut have been reported to be capable of utilizing sialic acid and 465 

sialylated lacto-N-tetraose as sole carbon source (54, 74, 75). A few B. breve strains 466 

were actually reported to preferentially consume sialylated HMOs, in particular sialyl-467 

LNT b (LSTb), sialyl-lacto-N-hexaose (S-LNH) over neutral HMOs (38, 49). Given that 468 

bacteria with pathogenic potentials are capable of utilizing sialic acid, B. breve strains 469 

could rapidly sequester sialic acid away from these pathogens and offer nutritional 470 

immunity, i.e., sequester nutrients to limit infection, thus contributing to a healthy 471 

intestinal environment (76). It would be highly insightful to further characterize maternal 472 

HMOs variations in MOM and the composition of specific formula in addition to the 473 
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information of HMOs assimilation capability of bifidobacterial strains, for comprehensive 474 

understanding of the essential factors attributed to postnatal intestinal maturation. 475 

HMO utilization by Bifidobacterium species in this cohort appears to be exclusively 476 

an intracellular process, which would unlikely allow for cross-feeding of intermediates 477 

with other gut bacterial species. Extracellular digestion of HMOs would afford fucose 478 

and sialic acid monomers to be cross-fed to other bacteria, some of which with 479 

pathogenic properties (77). Bacteroides spp that are largely absent in this cohort are 480 

known to employ exclusively extracellular process in HMO utilization (64). The 481 

“internalize, then degrade” approach for HMO consumption is a critical Bifidobacterium 482 

property that affords protection against infection for the infants. Interestingly, the 483 

preference for intracellular digestion of HMOs is not conserved across all infant gut 484 

Bifidobacterium species or strains. A recent study revealed Bifidobacterium in the gut 485 

microbiome of breast-fed Malawi and Venezuela infants similarly employed an 486 

intracellular HMO digestion strategy, while Bifidobacterium in a cohort of US infants fed 487 

formula and breastmilk preferentially employed extracellular HMO digestion strategies 488 

(36). The difference may relate to galacto-oligosaccharides (GOS) transporter genes 489 

present in strains that internalize HMOs to metabolize them, especially the GNB/LNB-490 

BP (GltA) gene (36, 78), though the mechanisms remain unclear.  491 

Our study highlights the strong potential for the prophylactic administration of 492 

specific B. breve strains early in life along with specific HMOs to enhance intestinal 493 

barrier in preterm neonates. We previously defined a “window of opportunity” of day 8±2 494 

post-birth, for intervention prior to the onset of leaky gut-associated conditions such as 495 

NEC (15, 16). Our study proposed the role of breastmilk feeding in promoting the 496 
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growth of beneficial Bifidobacterium species and strains that could consume breastmilk 497 

HMOs during that critical window period of time. In the absence of these prophylactic 498 

Bifidobacterium, the benefit of breastmilk feeding is expected to be dramatically reduced. 499 

Counting on the vertical transmission of these Bifidobacterium strains from the mothers’ 500 

gut or vaginal microbiota, or breastmilk is not reliable and could leave many infants 501 

unprotected (79, 80). It is thus critical to gain further mechanistic insight into 502 

bifidobacterial-rich microbiota formation in the infant gut by prophylactic 503 

supplementation of live biotherapeutics that possess the ability to effectively utilize them. 504 

Such understanding will inform the design of clinical interventions with supplementation 505 

of HMOs and Bifidobacterium as live biotherapeutics prophylaxis to enhance intestinal 506 

barrier integrity early in life, and ultimately reduce risk for NEC.  507 
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MATERIALS AND METHODS 508 

Study cohort and feeding protocol. The study protocol was approved by the 509 

institutional review boards of the University of Maryland, Baltimore and Mercy Medical 510 

Center. Written informed parental consent was obtained. Eligibility criteria were 511 

described previously (16). 113 eligible preterm infants 240/7-326/7 weeks of gestation 512 

were enrolled within 4 days after birth from combining cohorts enrolled during June 513 

2013-October 2014 and October 2018-Nov 2019. Prior to study procedures, a complete 514 

physical exam including vital signs, weight, height, and head circumference was 515 

performed. Demographic, obstetric and clinical, medication exposures, feeding 516 

practices and adverse events data were collected from the medical record.  517 

Enteral feeds by the orogastric or nasogastric route were initiated between the first 518 

and fourth day of life depending on clinical stability. After initial feeds of 10 ml/kg 519 

expressed breast milk or 20 kcal/oz preterm formula daily for 3-5 days, feedings were 520 

advanced by 20 ml/kg/d until 100 ml/kg/d was reached. Subsequently, caloric density 521 

was advanced to 24 kcal/oz prior to increasing feeding volume by 20 ml/kg/d to 150 522 

ml/kg/d. The total volume of each source of feeds was calculated as sum of the daily 523 

amount of milk intake per kilogram of the administered expressed mom’s breastmilk, 524 

donor milk or preterm formula from initial feed day till postnatal day 7-10 when the IP 525 

was measured. Feedings were held or discontinued for signs of feeding intolerance 526 

such as abdominal distension, gastric residuals, or hematochezia, or for clinical 527 

deterioration. Pooled pasteurized human donor breastmilk (PHDB) was purchased from 528 

Prolacta Biosciences (Duarte, CA, US). PHDB was collected from mothers of term 529 

infants who have breastfed for at least 6 months (81).  530 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2022. ; https://doi.org/10.1101/2022.05.06.490995doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.06.490995
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26

In vivo intestinal permeability (IP) measurement. In our previous pilot studies that 531 

employed a small cohort of neonates (N=37) (15, 16) with IP measured at study day 1, 532 

8±2 and 15±2. It was shown that IP is high within 4 days of birth in all preterm infants 533 

with a rapid maturation of the intestinal barrier over the first week of life. Persistently 534 

high IP and/or late increase in IP indicate the physiological immaturity of the intestinal 535 

tract barrier function. Hence the first 7-10 days in preterm infants is a critical observation 536 

period for monitoring IP. Eligible preterm infants received 1 ml/kg of the non-537 

metabolized sugar probes on postnatal day 7-10, which included lactulose (La, 538 

Cumberland Pharmaceuticals, Nashville, TN) that is the marker of intestinal paracellular 539 

transport and rhamnose (Rh, Saccharides, Inc., Calgary, Alberta, Canada) that is the 540 

marker of intestinal transcellular transport. One ml of 8.6 g La +140 mg Rh/100 mL 541 

solution was administered enterally by nipple or by gavage via a clinically indicated 542 

orogastric tube (82). A minimum of 2 mL of urine was collected over a 4-hour period 543 

following administration of the La/Rh dose as previously described (16). La and Rh 544 

concentrations were measured by high-pressure liquid chromatography (HPLC) at the 545 

University of Calgary (Calgary, Canada). High or low intestinal permeability was defined 546 

by a La/Rh >0.05 or ≤0.05 respectively, as validated and applied previously (16). 547 

Postmenstrual age at sugar probe dosing was calculated as gestational age at birth plus 548 

postnatal age at dosing day (83).  549 

Fecal specimen collection and nucleic acid extraction. Fecal samples (~1g) 550 

collected daily from enrollment until postnatal day 21 or NICU discharge were stored 551 

immediately in 1 ml of DNA/RNA Shield (Zymo Research, Irving, CA, USA). Stool 552 

specimen were collected from within the stool mass from the diaper as much as feasible 553 
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to avoid frequent air exposure. The stool sitting time was 0-3 hours and was collected 554 

during diaper change every 3 hours. Urine and fecal samples were archived at -80°C 555 

until processed.  556 

Genomic DNA was extracted from homogenized fecal samples using the MagAttract 557 

PowerMicrobiome DNA/RNA kit (Qiagen) implemented on a Hamilton STAR robotic 558 

platform and after a bead-beating step on a TissueLyzer II (Qiagen) in 96-deep well 559 

plates at the Microbiome Service Laboratory (MSL) at the University of Maryland 560 

Baltimore (Baltimore, MD, USA). DNA purification from lysates was done on a 561 

QIAsymphony automated platform.  562 

Short-read sequencing of 16S rRNA gene amplicon and whole community 563 

metagenomes. PCR amplification of the 16S rRNA gene V3-V4 hypervariable region 564 

was performed using dual-barcoded universal primers 318F and 806R as previously 565 

described (84). In brief, amplicon pools were prepared for sequencing with AMPure XT 566 

beads (Beckman Coulter Genomics, Danvers, MA) and the size and quantity of the 567 

amplicon library were assessed on the LabChip GX (Perkin Elmer, Waltham, MA) and 568 

with the Library Quantification Kit for Illumina (Kapa Biosciences, Woburn, MA), 569 

respectively. PhiX Control library (v3) (Illumina, San Diego, CA) was combined with the 570 

amplicon library. High-throughput sequencing of the amplicons was performed on an 571 

Illumina MiSeq platform using the 300 bp paired-end protocol. Sequence libraries were 572 

prepared from the extracted DNA using the Nextera DNA Flex kit (Illumina; San Dieago, 573 

CA) according to manufacturer’s specifications. Libraries were then pooled together in 574 

equimolar proportions and sequenced on a single Illumina NovaSeq 6000 S2 flow cell 575 
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providing an average of 6.5 million pairs of 150 bp reads per library at the Genomic 576 

Resource Center at the University of Maryland School of Medicine.  577 

Long-read sequencing of full-length 16S rRNA gene and whole community 578 

metagenomes on Pacific Biosciences Sequel II platform. Amplification of full-length 579 

16S rRNA gene was performed using a dual-barcode, two-step PCR on diluted (1:10) 580 

genomic DNA. The first round of PCR amplification of the 16S rRNA full-length gene 581 

was performed using universal primers 27F (AGRGTTYGATYMTGGCTCAG) and 582 

1492R (RGYTACCTTGTTACGACTT) following Pacific Biosciences (Menlo Park, CA, 583 

USA) specifications for 20 cycles. The cycling conditions for the first-step PCR were 584 

95C for 30sec, 57C for 30sec, and 72C for 60sec. The PCR reaction was then diluted in 585 

water (1:5) and amplified with Pacific Biosciences universal forward/reverse 96-plate 586 

primers for an additional 20 cycles following Pacific Biosciences specifications. Cycling 587 

conditions are as described in manufacture protocol (85). DNA quantification was 588 

carried out using the Quant-iT PicoGreen double-stranded DNA assay (Invitrogen) and 589 

visualized on a 2% agarose E-gel. The amplicon libraries were normalized and cleaned 590 

and concentrated using AmPure XP SPRI beads (Beckman Coulter, Brea, CA, USA) at 591 

0.6X the reaction volume.  592 

Library pools were prepared with SMRTBell Template Prep Kit 1.0 with barcoded 593 

adaptors. Libraries were then size-selected on a BluePippen (Sage Science, Beverly, 594 

MA) with a cutoff of 5 kb. Sequencing was performed on the Sequel II Platform (PacBio, 595 

Menlo Park, CA) with a loading at 60pM. Multiplexed samples were sequenced on 596 

PacBio Sequel II cells using the S/P3-C1/5.0-8M sequencing chemistry. Demultiplexing 597 

was done with lima (version 1.9.0) using default parameters except minimum barcode 598 
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score 26 and min length 50 bp, both tools are part of the SMRTLink 6.0.1 software 599 

package with updated CCS version 3.4.1 (Pacific Biosciences, 2019). Raw reads were 600 

assembled via Canu v1.8 and the “-pacbio-raw” protocol (86). Resulting contigs were 601 

taxonomically annotated using BLASTN v 2.8.1 (87) and the non-redundant nucleotide 602 

database (updated 2019/05/03) to pool all contigs identified under the same species 603 

name to form metagenomic bins. Binned contigs were circularized and rotated using 604 

“Simple-circularise” (88) and retained if the circularized contigs is in the range of the full 605 

genome size according to published closed genomes of that species based on genBank 606 

genome database. Metagenome bins were further confirmed using GTDB-Tk v1.1.0 607 

(89). Genomes were annotated using PROKKA v1.13 (90).  608 

Epidemiological analyses. Covariates identified based on previous literature and 609 

biological plausibility were collected at the time of enrollment of the participants and 610 

evaluated. Categorical data were compared using Fisher's exact test and continuous 611 

data using Student's t-test. Multicollinearity between covariates was assessed using 612 

Variance Inflation Factor (VIF) and Tolerance, where covariates with VIF >10 were 613 

considered collinear. Covariates with p-value < 0.05 in the bivariate analysis were 614 

considered confounding factors and were adjusted in the multivariable analysis as 615 

random factors. Generalized logistic regression was used to determine the association 616 

between IP category and continuous variables including duration of antibiotics and 617 

duration of MOM feeding. Analyses were conducted using SAS version 9.4 software 618 

(SAS Institute, Cary, NC), code used in this statistical analysis was deposited at 619 

https://github.com/igsbma/IP_microbiome/tree/main/statistical_analyses. 620 
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Bioinformatics analysis of intestinal microbiota. For 16S rRNA V3V4 gene 621 

amplicon analysis, raw data was demultiplexed and barcode, adapter and primer 622 

sequences were trimmed using tagcleaner v0.16 (91). Quality assessment and 623 

sequencing error correction was performed using the software package DADA2 v1.14 624 

(92) and the following parameters: forward reads were truncated at position 240 and the 625 

reverse reads at position 210 based on the sequencing quality plot, no ambiguous 626 

based and a maximum of 2 expected errors per-read were allowed (93). The quality-627 

trimmed reads were used to infer amplicon sequence variant (ASV) and their relative 628 

abundance in each sample after removing chimera. The SILVA database (94) release 629 

132 was used to assigned taxonomy. The following criteria were applied on an ASV: 1) 630 

at least 400bp in length for long-read sequencing; 2) was observed in at least two 631 

samples; 3) at least 5 counts in at least one sample; 4) not assigned to taxonomic 632 

groups of Mitochondria or Chloroplast.  633 

For full-length 16S rRNA gene analyses, CCS reads were generated using the ccs 634 

application with minPredictedAccuracy=0.99 and the rest of the parameters were default, 635 

including minimum 3 subread passes. Demultiplexing was done with lima (version 1.9.0) 636 

with minimum barcode score 26 and min length 50bp, both tools are part of SMRTLink 637 

6.0.1 software package with updated CCS version 3.4.1 (Pacific Biosciences, 2019). 638 

The microbiota analyses were modified from a previously reported bioinformatics 639 

pipeline that incorporates the DADA2 protocol (95). The quality-trimmed reads were 640 

used to infer ribosomal sequence variants and their relative abundance in each sample 641 

after removing chimera. Taxonomy was assigned to each ASV generated by DADA2 642 

using both the SILVA (release 132) database and Genome Taxonomy Database (GTDB) 643 
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(96) and the RDP naïve Bayesian classifier as implemented in the dada2 R package (97, 644 

98). In a few cases when conflicted taxonomic assignments appeared, NCBI Refseq 645 

16S rRNA combined with RDP database (99, 100) and Human Intestinal 16S rRNA 646 

database (HITdb v1) (101) were used to resolve the conflict. Pacific Biosciences long-647 

reads sequencing complements short-reads sequencing for its high accuracy and 648 

extended length. To boost taxonomy assignment for short sequencing, we performed 649 

BLASTN search of the short-read ASVs to the long-read ASVs, and assigned the 650 

taxonomic name to the short reads if there is 100% percent identity and unanimous 651 

assignment if there are multiple hits to long-reads sequences.  652 

A heatmap was constructed from the 50 most abundant intestinal bacterial taxa 653 

relative abundance in samples collected from 113 preterm infants enrolled in the study. 654 

The ASVs were normalized using total sum to calculate their relative abundances. Ward 655 

linkage clustering was used to cluster samples based on their Jensen-Shannon 656 

distance calculated in vegan package in R (102). The number of clusters was validated 657 

using gap statistics implemented in the cluster package in R (103) by calculating the 658 

goodness of clustering measure. Package raxml (v8.0.0) (104) was used to construct 659 

the phylogeny, Phyloseq R package (v1.38.0) (105) was used to display the phylogeny 660 

and the barplot. Volatility plot to demonstrate the fluctuation of microbial community 661 

diversity (characterized as Shannon diversity index) over MOM feeding volume in high 662 

or low IP groups. Plot was generated in QIIME (2019.10 vers) (106) (option -longitudinal 663 

plot-feature-volatility).  664 

Statistical analysis of intestinal microbial community. Hilbert-Schmidt 665 

Independence Criterion (HSIC) R package ‘dHSIC’ (107) was used to examine the 666 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2022. ; https://doi.org/10.1101/2022.05.06.490995doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.06.490995
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32

independence between any variables with IP. Longitudinal modeling was performed 667 

using zero-inflated negative binomial random effects (ZINBRE) models. These models 668 

account for the possibility of existence of more than expected zeros (from negative 669 

binomial distribution) as well for correlations between samples from the same subject. 670 

Though IP was categorized to high and low groups, it is inherently continuous and 671 

hence we modeled IP as continuous value in our analyses. Subject was included as a 672 

random factor. Read counts data of phylotypes detected in at least 15% samples were 673 

modeled using ZINBRE models. The same principle was applied to MOM and PMA. 674 

The model was fitted using JAGS R package (108), and 10,000 iterations with the same 675 

number of burn in iterations was used. The convergence of the model was assessed 676 

using Gelman and Rubin's potential scale reduction factor (109) and visual inspection of 677 

each coefficient’s Markov chains. The mean of the posterior distributions of estimated 678 

coefficients and their corresponding 95% credible intervals were calculated using 679 

model's Markov chains. The credible intervals without overlapping are considered 680 

significant. P values were computed assuming normality of the posterior distributions of 681 

the corresponding coefficients. An adaptive spline logistic regression model 682 

implemented in spmrf R package (110) was used independently to confirm the 683 

association between B. breve to IP and MOM. This model is a locally adaptive 684 

nonparametric fitting method that operates within a Bayesian framework, which uses 685 

shrinkage prior Markov random fields to induce sparsity and provides a combination of 686 

local adaptation and global control (110). Bayesian goodness-of-fit p-value implemented 687 

in R package rstan (111) was used to access the significance of the association. R code 688 

implementation of the model is deposited in 689 
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https://github.com/igsbma/IP_microbiome/tree/main/statistical_analyses. Discriminatory 690 

machine learning schemes computation were implemented in weka (112, 113), 691 

including J48 decision tree, REPTree, decision stump, and logistic model trees. The 692 

functional enrichment test was performed for each functional group (based on COG and 693 

PFAM annotation) and each of homologous gene cluster (HGC) generated in genome 694 

comparison analyses. The frequency tables of each function or HGC in each category 695 

(i.e., MAGs of this study versus genBank genomes) were generated, which was used to 696 

fit a generalized linear model with the logit linkage function to compute an enrichment 697 

score and p-value for each unit (114). False detection rate correction to p-values was 698 

used to account for multiple tests using R package ‘qvalue’ (115).  699 

Intestinal microbiome analyses. Metagenomic sequence data were pre-processed 700 

using the following steps: 1) human sequence reads and rRNA LSU/SSU reads were 701 

removed using BMTagger v3.101 (116) using a standard human genome reference 702 

(GRCh37.p5) (117); 2) rRNA sequence reads were removed in silico by aligning all 703 

reads using Bowtie v1 (118) to the SILVA PARC ribosomal-subunit sequence database 704 

(94). Sequence read pairs were removed even if only one of the reads matched to the 705 

human genome reference or to rRNA; 3) the Illumina adapter was trimmed using 706 

Trimmomatic (119); 4) sequence reads with average quality greater than Q15 over a 707 

sliding window of 4 bp were trimmed before the window, assessed for length and 708 

removed if less than 75% of the original length; and 5) no ambiguous base pairs were 709 

allowed. The taxonomic composition of the microbiomes was established using 710 

MetaPhlAn version 2 (120). Metagenome assembled genomes (MAGs) pipeline 711 

includes de bruijin genome assembly using SPAdes v.3.10.1 (121), the bins were 712 
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defined through distance clustering based on coverage and tetranucleotide signature 713 

using MetaBat v2 (122), and were refined using GTDB-Tk (89). Genomes were 714 

annotated using PROKKA v1.13 (90), annotated through evidences from the 715 

nomenclature of the consortium for function glycomics, eggNOG (v4.5)(123),  KEGG 716 

2013-03-18 release (124)), Pfam (v30.0)(125), CAZy (2014 release) (126, 127). 717 

Similarity searches were performed to compare with previously annotated enzymes or 718 

transporter proteins based on the accession number (36-38), using BLASTP and 719 

confirmed with the COG, Pfam and CAZy annotation evidence to ensure the integrity of 720 

the results. The 8 essential extracellular enzymes that are known to be required in 721 

extracellular cleavage of HMOs before importing selected products of degradation are 722 

investigated (36-38), include: 1,2-α-l-Fucosidase (AfcA), 1,3/4-α-l-Fucosidase (AfcB), 723 

2,3/6-α-Sialidase (SiaBb2), Lacto-N-biosidase (LnbB, LnbX), Chaperon for LnbX (LnbY), 724 

β-1,4-Galactosidase (BbgIII), β-N-Acetylglucosaminidase (BbhI). Five essential bacterial 725 

ABC transporters and homologs involved in the import of oligosaccharides were 726 

examined, which was known to show an exquisite specificity conferred by substrate-727 

binding protein (SBPs) for different HMO molecules (39), including GNB/LNB (galacto-728 

N-biose/lacto-N-biose I) transporter SBP (GltA), FL transporter SBPs (FL1-BP, FL2-BP), 729 

and LNnT transporter SBP (NahS). In addition to similarity search on Bifidobacterium 730 

genomes and MAGs, we also confirmed the results by searching the metagenomic 731 

community gene content, so to verify the target genes are not from species other than 732 

Bifidobacterium.  733 

Metapangenomes were prepared using the MAGs constructed in this study and 734 

publicly available genomes under the species name B. breve (taxID: 1685) and B. 735 
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longum (taxID: 216816), listed in Table S6. The metapangenome was constructed 736 

using anvi’o vers 6.2 (128) following pangenome workflow (114). Homologous gene 737 

clusters (HGCs) were identified in this set of genomes based on all-versus-all sequence 738 

similarity. Briefly, this workflow uses BLASTP to compute ANI identity between all pairs 739 

of genes, uses the Markov Cluster Algorithm (MCL) (129) to generate homologous gene 740 

clusters and aligns amino acid sequences using MUSCLE (130) for each gene cluster. 741 

Each gene was assigned to core or accessory according the hierarchical clustering of 742 

the gene clusters. Sourmash vers 3.3 (131) was used to compute ANI across genomes. 743 

To count as being present in the sample, it had to be at least 50 reads mapping on at 744 

least one Bifidobacterium species genomes, and the total abundance had to be at least 745 

0.1% after normalizing over the total number of reads. For long-read data sequenced on 746 

Pacific Biosciences Sequel II platform, QC and assembly was performed using Canu-747 

1.8 (86). The assemblies were assigned species name through BLAST to refseq 748 

dataset and confirmed with GTDB-Tk v1.1.0 (89). Genome alignment of the assemblies 749 

assigned to B. breve was aligned to reference B. breve genome JCM1192 using 750 

MAUVE aligner (132, 133).  751 

Data and Code Availability. All metagenomicm, metataxonomic and genomic data 752 

were deposited under BioProject PRJNA774819 753 

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA774819) for open assessment. Illumina 754 

16S rRNA V3V4 gene amplicon and Pacific Biosciences full-length 16S rRNA gene data 755 

were deposited in Sequence Read Archive with experiment ID from SRX12805867 to 756 

SRX12806634. Data deposition includes samples of positive and negative controls in 757 

each plate. Metagenomic data using Pacific Biosciences were deposited in 758 
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SRR16598000 and SRR16598001. Metagenomic data using Illumina platform were 759 

deposited in the same BioProject with experiment ID from SRX12798907 to 760 

SRX12798933. The assembled genomes of B breve were deposited under the 761 

accession ID JAJGBR000000000 and JAJGBS000000000. The R code processing 762 

these sequences and SAS code used in this statistical analysis are deposited in 763 

https://github.com/igsbma/IP_microbiome/tree/main/statistical_analyses. Detailed 764 

information of sequences and annotation of pangenome can be retrieved at 765 

https://github.com/igsbma/IP_microbiome/tree/main/pangenome.  766 
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FIGURES AND TABLES LEGENDS 1172 

 1173 
FIG 1 Study design. *Demographic, clinical, and nutritional information was collected for 1174 

each enrolled preterm neonate. Inclusion: 240-326 weeks, <4d age. Exclusion criteria 1175 

include nonviable or planned withdrawal of care, severe asphyxia, chromosome 1176 

abnormalities, cyanotic congenital heart disease, intestinal atresia or perforation, 1177 

abdominal wall defects, significant GI dysfunction, galactosemia or other forms of 1178 

galactose intolerance. **Intestinal permeability was measured using urine non-1179 

metabolized sugar probes lactulose and rhamnose day 7-10 post-birth. ***Stool 1180 

specimens were collected daily at every stooling event, stored in storage buffer and 1181 

archived in -80°C.  1182 

 1183 

FIG 2 Pie chart of feeding types of the preterm infant population in this study (A). Abbr: 1184 

MOM: mother’s breastmilk feeding; PHDM: pasteurized human donor’s milk. Boxplot of 1185 

the IP measurement grouped by feeding types (B). Correlation between intestinal 1186 

permeability and the cumulative amount of mom’s own breastmilk feeding (ml/kg) for a 1187 

total of 113 enrolled preterm infants 240/7-326/7 weeks of gestation were enrolled (C). IP 1188 

was calculated using the ratio of urine Lactulose (La) and Rhamnose (Rh), low and high 1189 

IP was defined by a La/Rh >0.05 or ≤0.05, respectively. The total amount of mom’s own 1190 

breastmilk feeding was calculated as sum of the daily amount of milk intake per 1191 

kilogram bodyweight until d7-10 when the IP was measured. Initial feed was calculated 1192 

based on 10 ml/kg expressed breast milk between the first and fourth day of life 1193 

depending on clinical stability. After 3-5 days initial feeds, feedings were advanced by 1194 

20 ml/kg/d until 100 ml/kg/d was reached. Plotted are interquartile ranges (IQRs, boxes), 1195 
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medians (line in box), and mean (diamond). Significance value was calculated using 1196 

Wilcoxon rank sum test. Star sign (*) denotes the level of significance. “NS” denotes 1197 

non-significant. 1198 

 1199 

FIG 3 Microbial biomarkers and breastmilk feeding in early preterm subjects with high 1200 

and low IP. Abundance of bacterial groups stratified by postmenstrual age at study day 1201 

7-10. It indicates the Actinobacteria (Bifidobacterium) and Clostridia (Clostridiales) that 1202 

were mainly observed in low IP subjects but not in high IP subject (red) (A). The 1203 

abundance values of read count for each ASVs are stacked in order from greatest to 1204 

least, separate by a horizontal line. Boxplot of the Bifidobacterium relative abundance 1205 

and cumulative amount of mom’s breastmilk feeding (ml/kg) during the first 7-10 1206 

postnatal days in subjects with high or low IP (B). IP was calculated using the ratio of 1207 

urine Lactulose (La) and Rhamnose (Rh), low and high IP defined by a La/Rh >0.05 or 1208 

≤0.05, respectively. Plotted are interquartile ranges (IQRs, boxes), medians (line in box), 1209 

and mean (diamond). Significance value was calculated using Wilcoxon rank sum test. 1210 

Star sign (*) denotes the level of significance. “NS” denotes non-significant. Volatility 1211 

plot to demonstrate the fluctuation of microbial community diversity (C) (characterized 1212 

as Shannon diversity index) and Bifidobacterium diversity over MOM feeding volume in 1213 

high or low IP groups (D). Plot was generated in QIIME (2019.10 vers) (106). Non-1214 

overlapping of the vertical error bar at each measuring point was considered 1215 

significantly different. Temporal characterization of intestinal microbiota of early preterm 1216 

infants to profile changes over the first 21 days post-birth (E). Taxonomic profile was 1217 

generated using 16S rRNA gene sequencing. Community type is shown in Fig. S3 1218 
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heatmap clusters. The dates when IP was measured, MOM, PHDM, formula feeding 1219 

day, antibiotics administration are shown in the plot. Each circle is sized proportionally 1220 

the feeding volume. Abbr: MOM: mother’s own breastmilk feeding; PHDM: pasteurized 1221 

human donor’s milk. 1222 

 1223 

FIG 4 Phylogenetic tree constructed using 81 unique, full-length 16S rRNA gene ASV 1224 

sequences of Bifidobacterium (A). ANI clustering of full-length 16S rRNA gene 1225 

sequences (B). Phylogenetic tree of Bifidobacterium ASVs in stool microbiota of cohort 1226 

(C). All full-length 16S rRNA genes assigned to Bifidobacterium were used in the 1227 

analyses. Color denotes individual subjects.  1228 

 1229 

FIG 5 Illustration of the mature and immature intestinal barrier in neonates. Peristalsis 1230 

(reduced intestinal motility), maldigestion of nutrient sources and a compromised gut 1231 

barrier may render the mucosa susceptible to invasion by the opportunistic pathogens in 1232 

gut environment. The resulting imbalance between epithelial cell injury and repair leads 1233 

to a vicious cycle of maldigestion, bacterial invasion, immune activation and 1234 

uncontrolled inflammation. Illustration not drawn to scale. Created with BioRender.com.  1235 
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TABLE 1 Study cohort demographics and clinical variables stratified by intestinal 1237 

permeability (IP) category 1238 
 1239 
TABLE 2 Odds ratio for factors associated with Low IP Adjusted for postmenstrual age 1240 

(PMA) and birth weight (BW)  1241 
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Supplementary Figures and Table legends 1242 

FIG S1 Intestinal permeability (IP) and cohort clinical information. A) Notched boxplot of 1243 

IP for early preterm subjects (GA < 33 weeks gestation). Subjects were categorized by 1244 

IP-measuring day between study day 7-10 and by IP category. The top and bottom of 1245 

the box are the lower and upper quartiles, and the band near the middle of the box 1246 

represents the median. The width of the notch can be used to roughly compare two 1247 
distributions. For example, two distributions without overlapping notch regions can be roughly 1248 
considered as being significantly different from each other (1). IP was measured by non-1249 

metabolized sugar probes lactulose and rhamnose. High IP was defined by a La/Rh 1250 

ratio >0.05, as validated and applied previously (2). B) Correlation matrices visualization 1251 

of the subjects’ physiological age. R package Correlograms (corrgram) were used to 1252 

visualize the correlation matrices. Pearson correlation method used to calculate 1253 

correlation. Abbr: PMA at dosing: postmenstrual age calculated at the dosing day when 1254 

IP was measured; PMA at enrollment: postmenstrual age at enrollment day taken place 1255 

within 1-4 days post-birth; GA: gestational age; BW: birthweight; body weight at dosing: 1256 

subject weight measured at the dosing day when IP was measured.  1257 

 1258 

FIG S2 Phylogenetic tree of all ASVs of full-length 16S rRNA gene sequenced on 1259 

Pacific Biosciences Sequel II platform. Package raxml (v8.0.0) (3) was used to construct 1260 

the phylogeny, Phyloseq R package (4) was used to display the phylogeny.  1261 

 1262 

FIG S3 Heatmap of the 50 most abundant intestinal bacterial taxa relative abundance in 1263 

samples collected from 113 preterm infants enrolled in the study. The fecal microbiota 1264 

was characterized by high-throughput sequencing of the V3-V4 variable regions of 16S 1265 

rRNA genes. Ward linkage clustering was used to cluster samples based on their 1266 

Jensen-Shannon distance calculated in vegan package in R (5). The number of clusters 1267 

was validated using gap statistics implemented in the cluster package in R (6) by 1268 

calculating the goodness of clustering measure. 1269 

 1270 

FIG S4 Information on bifidobacterial abundance and intestinal permeability (IP). A) 1271 

Relative abundance of bifidobacterial bacterial groups stratified by feeding types. 1272 
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Phyloseq R package (v1.38.0) (4) was used to generate the barplot. B) The relative 1273 

abundance of B. breve between high-IP and low-IP groups. Dependence between C) IP 1274 

or D) MOM feeding dose and the log relative abundance of B. breve. An adaptive spline 1275 

logistic regression model implemented in spmrf R package (7) was applied to the 1276 

phylotypes present in at least 15% of all samples. Bayesian goodness-of-fit p-value 1277 

implemented in R package rstan (8) was used to access the significance of the 1278 

association between phylotypes and investigated factors.  1279 

 1280 

FIG S5 Metapangenome of Bifidobacterium breve. The 26 in-house B. breve MAGs was 1281 

supplemented with 107 published genomes 1282 

(https://doi.org/10.6084/m9.figshare.19709917.v2  A) and our 4 B. longum MAGs was 1283 

supplemented with 310 published genomes 1284 

(https://doi.org/10.6084/m9.figshare.19709917.v2 B) for pangenome construction 1285 

following pangenome workflow (9). B. breve pangenome was displayed using anvi’o 1286 

vers 6.2 (10). BLASTP was used to compute ANI identity between all pairs of genes. 1287 

Markov Cluster Algorithm (MCL) (11) was used to generate homologous gene clusters 1288 

(HGCs). Amino acid sequences of each HGC were aligned using MUSCLE (12). HCG 1289 

was assigned to core, accessory or dispensable according the hierarchical clustering of 1290 

the gene clusters. Detail of each HGC was in 1291 

https://doi.org/10.6084/m9.figshare.19709917.v2 C. Sourmash vers 3.3 (13) was used 1292 

to compute Average nucleotide identity (ANI) across genomes. The source indicates the 1293 

isolated origin of the genome, and genomes of the same subject are indicated in the 1294 

same cohort.  1295 

 1296 

FIG S6 The complete B. breve genome reconstructed in this study. Metagenomic 1297 

sequencing of the two selected fecal samples was performed using the Pacific 1298 

Bioscience Sequel II platform, followed by assembly using Canu v1.8 (14) and 1299 

deconvolution using BLASTN of the assembly. This complete genome was 2.34M in 1300 

size (https://doi.org/10.6084/m9.figshare.19709923.v1, 1301 

https://doi.org/10.6084/m9.figshare.19723255.v1C), similar to median B. breve 1302 
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genome size of 2.33M reported on NCBI. A) KEGG 2013-03-18 release (15) to 1303 

characterize functional categories of B. breve XM1439. B) Circular genome display of B. 1304 

breve XM1439, generated by BLAST Ring Image Generator (BRIG) (2011 June vers) 1305 

(16). C) Genome alignment of B. breve genome 1439, 1437 using MAUVE (17) using B. 1306 

breve DSM20213 as the reference genome. 1307 

 1308 

TABLE S1. Clinical metadata of the 113 early preterm infant subjects used in this study.  1309 

TABLE S2. Dependence of demographic, obstetric, and neonatal characteristics with 1310 

intestinal permeability (IP) using Hilbert-Schmidt Independence Criterion (HSIC) 1311 

implemented in R package dHSIC.  1312 

TABLE S3. Taxonomic groups significantly associated with PMA, IP and MOM feeding 1313 

volume. Zero-inflated negative binomial random effects (ZINBRE) models were used to 1314 

compute significance level of association, which accounts for many zeros as well for 1315 

correlations between samples from the same subject. All phylotypes detected in at least 1316 

15% samples were modeling using ZINBRE models. PMA, IP and MOM feeding volume 1317 

were modeled as continuous value. A) Taxonomic groups associated with PMA, which 1318 

was calculated as day of life after birth plus gestational age; B) Taxonomic groups 1319 

associated with IP, measured at 7-10 days after birth; C) Taxonomic groups significantly 1320 

associated with MOM feeding volume. Abbr: MOM: mother’s own breastmilk feeding. 1321 

PMA: postmenstrual age. IP: intestinal permeability.  1322 

TABLE S4. Bifidobacterium homologous gene clusters (HGCs) characterized to 1323 

involved in human milk oligosaccharides assimilation. Genomes were annotated 1324 

through annotative evidences from the nomenclature of the consortium for function 1325 

glycomics, eggNOG (v4.5)(18),  KEGG (FTP Release 2013-03-18)(15)), Pfam 1326 

(v30.0)(19), CAZy (2014 release) (20, 21). Similarity searches were performed to 1327 

previously annotated enzymes or transporter proteins based on the accession number 1328 

listed in previous studies (22-24), using BLASTP similarity search and confirmed with 1329 

the COG, Pfam and CAZy annotation evidence to ensure the integrity of the results. A) 1330 

HGCs involved in extracellular enzymes and their homologs involved in extracellular 1331 

cleavage of HMOs; B) HGCs characterized as family 1 solute binding proteins (F1SBP); 1332 

C) HGCs involved in enzymes for catabolizing HMOs substrates intracellularly; D) 1333 
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HGCs characterized as FHMO (Fucosylated Human Milk Oligosaccharide utilization 1334 

cluster); E) HGCs involved in sialylated HMO substrates catabolism; F) HGCs involved 1335 

in sulfatase catabolism activity. 1336 
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TABLE 1 Study cohort demographics and clinical variables stratified by intestinal permeability (IP) 
category 

aVariable 
measure
d during 
the time-
period 
starting 
from 
enrollme
nt day 
(within 1 
to 4 days 
after 
birth 
dependi
ng  
on 
clinical 
stability) 
until the 
day 
when IP 
was 
measure
d (day 
8±2 
post-
birth). 

 

Variables 
Total cohort 
(N=113) 
(N (%) / mean ±  SD) 

High IP 
(n=48) 
(n (%) / mean ± SD) 

Low IP 
(n=65) 
(n (%) / mean ± SD) 

p-value* 

Sex    0.28 
    Male  61 (54.0) 24 (50.0) 37 (57.0)  
    Female 52 (46.0) 24 (50.0) 28 (43.1)  
Race     
     White 42 (37.2) 18 (37.5) 24 (37.0) 1.00 
     African American 63 (55.8) 30 (62.5) 33 (50.8) 0.25 
     Other 8 (7.1) 0 8 (12.3) 0.02 
Birth weight (gram) 1377.8 ± 415.2 1237.3 ± 378.1 1496.5 ± 403.0 <0.01 
VLBW (<1,500 g) 66 (58.4) 32 (66.7) 34 (52.3) 0.18 
Gestational age (wks) 29.8 ± 2.3 29.0 ± 2.3 30.5 ± 2.1 <0.01 
Early GA (≤28 wks) 28 (24.8) 18 (37.5) 10 (15.4) <0.01 
Postmenstrual age (wks) 31.1 ± 2.3 30.3 ± 2.3 31.7 ± 2.1 <0.01 
Early PMA (<31 wks) 41 (36.3) 23 (47.9) 18 (27.7) 0.03 
Caesarean delivery 77 (68.1) 37 (77.1) 40 (61.5) 0.10 
PPROM  36 (31.9) 15 (31.3) 21 (32.3) 1.00 
Preeclampsia  25 (22.1) 11 (23.0) 14 (21.5) 1.00 
Antenatal corticosteroids 106 (94.0) 46 (96.0) 60 (92.3) 0.70 
Maternal antibiotics 69 (61.1) 30 (62.5) 39 (60.0) 0.85 
APGAR Score at 1 min 5.8 ± 2.5 5.3 ±2.8 6.2 ± 2.1 0.04 
APGAR Score at 5 min 7.7 ± 1.6 7.5 ± 1.9 7.9 ± 1.6 0.12 
Antibiotic types      
    Ampicillin received 64 (56.7) 30 (62.5) 34 (52.3) 0.33 
    Gentamycin received 56 (49.6) 25 (52.1) 31 (47.7) 0.70 
    Vancomycin received 8 (7.1) 6 (12.5) 2 (3.1) 0.07 
    Cefotaxime received 9 (8.0) 6 (12.5) 3 (4.6) 0.16 
Received at least one antibiotic vs. no 
antibioticsa 

68 (60.2) 33 (68.8) 35 (53.9) 0.12 

Antibiotics days receiveda     
     ≤ 3 days 83 (73.5) 30 (62.5) 53 (81.5) 0.03 
     > 3 days 30 (26.6) 18 (37.5) 12 (18.5)  
Days received MBMa     
     < 4 days 26 (23.0) 20 (41.7)  6 (9.2) < 0.01 
     ≥ 4 days 87 (77.0) 28 (58.3) 59 (90.8)  
Feeding duration (number days)a     
    Mother’s own breast milk  4.8 ± 2.3 4 ± 2.7 5.5  ± 1.5 <0.01 
    Formula  1.3 ± 2.3 2 ± 2.7 0.8 ± 1.6 0.02 
Feeding intake volume receiveda     
    Mother’s own breast milk 200.8 ± 178.8 123.4 ± 154.2 263.0 ± 175.6 < 0.01 
    Formula  61.7 ± 146.7 99.8 ± 194.7 32.8 ± 91.2 0.03 
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TABLE 2 Odds ratio for factors associated with Low IP Adjusted for postmenstrual age (PMA) and 
birth weight (BW)a 

aFisher’s exact test was used to calculate p value for categorical variable. Student’s t-test was used for continuous 
variables (BW, GA, PMA, APGAR score at 1 minute and 5 minutes). IP was calculated as the ratio of urine Lactulose (La) 
and Rhamnose (Rh) and La/ Rh < 0.05 was defined as low IP.  
bVariable measured during the time-period starting from enrollment day (within 1 to 4 days after birth depending on clinical 
stability) until the day when IP was measured (day 8±2 post-birth). 
cAdjusted OR model includes PMA and BW. 
dp-value calculated using logistic regression.  
 
ABBR: IP, Intestinal Permeability; PPROM, Premature Preterm Rupture of Membranes; BW: Birth Weight; VLBW, Very 
Low Birth Weight; MOM, Mothers own breastmilk; GA, Gestational Age; PMA, Postmenstrual Age; OR, Odds ratio; CI, 
confidence interval 

 OR 95% CI p-valued Adjusted ORc 95% CI p-valued 
Duration of antibiotics useb    

≤ 3 days 2.65 1.12, 6.25 0.02 1.56 0.58, 4.16 0.37
> 3 days 1.0 (Ref)  1.0 (Ref)  

Duration of MOM feedingb    
≥ 4 days  7.04 2.5, 19.6 <0.01 10.30 3.21, 33.33 <0.01
< 4 days 1.0 (Ref)  1.0 (Ref)  
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