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“Leaky gut”, or high intestinal barrier permeability, is common in preterm
newborns. The role of microbiota in this process remains largely uncharacterized. We
employed both short- and long-read sequencing of the 16S rRNA gene and
metagenomes to characterize the intestinal microbiome of a longitudinal cohort of 113
preterm infants born between 24%7-32¢" weeks of gestation. Enabled by enhanced
taxonomic resolution, we found significantly increased abundance of Bifidobacterium
breve and a diet rich in mother’s breastmilk to be associated with intestinal barrier
maturation during the first week of life. We combined these factors using genome-
resolved metagenomics and identified a highly specialized genetic capability of the
Bifidobacterium strains to assimilate human milk oligosaccharides and host-derived
glycoproteins. Our study proposed mechanistic roles of breastmilk feeding and intestinal
microbial colonization in postnatal intestinal barrier maturation; these observations are
critical towards advancing therapeutics to prevent and treat hyperpermeable gut-

associated conditions, including necrotizing enterocolitis.
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Despite improvements in neonatal intensive care, necrotizing
enterocolitis (NEC) remains a leading cause of morbidity and mortality. "Leaky gut", or
intestinal barrier immaturity with elevated intestinal permeability, is the proximate cause
of susceptibility to NEC. Early detection and intervention to prevent leaky gut in “at-risk”
preterm neonates is critical to lower the risk for potentially life-threatening complications
like NEC. However, the complex interactions between the developing gut microbial
community, nutrition, and intestinal barrier function, remain largely uncharacterized. In
this study, we revealed the critical role of sufficient breastmilk feeding volume and
specialized carbohydrate metabolism capability of Bifidobacterium in coordinated
postnatal improvement of intestinal barrier. Determining the clinical and microbial
biomarkers that drive the intestinal developmental disparity will inform early detection
and novel therapeutic strategies to promote appropriate intestinal barrier maturation,

prevent NEC and other adverse health conditions in preterm infants.

preterm infant; gut microbiome; leaky gut; intestinal barrier maturation;

human milk oligosaccharides; Bifidobacterium
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Early preterm neonates are particularly vulnerable to life-threatening events and
routinely require intensive care and medical intervention to survive (1). The
physiological immaturity of their gastrointestinal (Gl) tract is commonly associated with
deficiencies in barrier functions that result in a clinical syndrome known as “leaky gut”
(2-5). Under leaky gut condition, the bacteria and bacterial products normally confined
to the intestinal lumen are able to translocate into the peripheral circulation through the
hyperpermeable epithelial barrier, which could lead to widespread invasion of the
intestinal epithelium and gut lamina propria, mucosal inflammation, epithelial cell
damage, intestinal necrosis, systemic infection, and ultimately multi-organ failure and
death (4, 6, 7). Necrotizing enterocolitis (NEC) is a prominent bacterial translocation-
associated Gl condition that affects 7-10% of preterm neonates or 1-5% of all neonatal
NICU admissions with a devastating mortality rate as high as 50% (8-12). Early detection
of an aberrant leaky gut and early intervention to limit intestinal injury are of paramount
importance to reduce the incidence of subsequent complications including NEC (12, 13).
A functional intestinal barrier combines a physical barrier that encompasses
chemical, immunological and microbiological components (14). We and others have
found that the first week of life (day 8+2 post-birth) is a critical window during which the
most rapid postnatal intestinal maturation occurs (15-17). More importantly, these
earlier studies demonstrated that the intestinal barrier function, which develops mostly
in utero in term infants, can be improved postnatally. They also showed that the
intestinal barrier maturation does not occur at the same rate, with ~40% of preterm
neonates (<33 weeks gestation) failing to develop a functional intestinal barrier within

the first two weeks of life (15, 16). Determining the factors that drive this developmental


https://doi.org/10.1101/2022.05.06.490995
http://creativecommons.org/licenses/by-nc-nd/4.0/

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.06.490995; this version posted May 7, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

disparity will inform early detection and novel therapeutic strategies to promote intestinal
barrier maturation.

Efforts to characterize the microbiological factors that are associated with intestinal
barrier maturation have thus far yielded unsatisfactory results (18). There are no
microbial biomarkers predictive of intestinal development. A major limitation is the use
of partial 16S rRNA gene sequences to evaluate the taxonomic composition of gut
microbiota. The short sequences lack the phylogenetic signal necessary to describe
taxonomic composition at species or even genus level. Many of the PCR primers used
to amplify variable regions of the 16S rRNA gene fail to amplify members of the genus
Bifidobacterium (19-21). Bifidobacterium species are known to be frequent colonizers of
infant guts (22), and are considered to play beneficial roles in intestinal development
and influence maturation of the neonatal gut, potentially through stimulating colonic
epithelial proliferation, modulation of host defense responses and protection against
bacterial infections (23, 24). To investigate Bifidobacterium and other bacterial groups
predictive of early intestinal development and maturation are of pivotal importance.

In this study, we sought to characterize the role of early assembly of infant gut
microbiota and its metabolism in postnatal intestinal barrier maturation. We build upon
the results of past studies (15, 16) using an expanded cohort (N=113) of early preterm
neonates (24%-32°" weeks of gestation) from whom stool samples were collected daily
up to 21 days post birth. High resolution approaches were applied to characterize the
composition of the developing gut microbiota with substantially enhanced taxonomic
resolution including Bifidobacterium species, which we identified as the microbial

biomarker associated with postnatal intestinal barrier maturation within the first week of
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94 life. Whole community metagenomes using both short- and long-read sequences

95 provided a detailed characterization of the genetic content of these Bifidobacterium

96 species, which were shown to have distinct genetic features affording complete

97 carbohydrate foraging capabilities, including human milk oligosaccharides (HMOs) and

98 host-derived glycoprotein. The presence of specific strains of Bifidobacterium may

99 inform the early detection of aberrant intestinal permeability. Supplementation of these
100 bifidobacterial strains could be leveraged in novel intervention strategies for the

101  prevention of leaky gut and its devastating sequelae in preterm newborns.

102

103  Clinical cohort. We examined a prospective cohort of 113 preterm infants 24%7-32%7
104  weeks of gestation including 37 subjects described in a previous analysis (Table S1).
105 Fecal samples were collected daily until postnatal day 21 or discharge from the

106  Neonatal Intensive Care Unit (NICU, Fig. 1). Mean gestational age (GA) of infants at
107  birth was 29.9+2.3 weeks. A total of 28 infants (24.8%) were <28 weeks GA, and 85
108  (75.2%) were 28%7-32°" weeks GA. The mean birth weight was 1,381g (+415g); 66

109 (58.4%) newborns were classified as very low birth weight (VLBW, <1,500g birth weight)
110 and 26 (23.0%) were classified as extremely low birth weight (ELBW, <1,0009).

111 Intestinal permeability (IP) was determined 7-10 days post-birth when rapid

112  intestinal barrier maturation normally takes place (15, 16). IP was calculated as the ratio
113  of two enterally administered sugar probes Lactulose (La) and Rhamnose (Rh), markers
114  of intestinal paracellular and transcellular pathways, respectively (25, 26). IP was

115 ranging between 0.001 and 0.394 with an average of 0.07£0.007 (meants.e.) and is not

116  significantly different among postnatal day 7-10 (Supplemental Fig. 1A). High IP was
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117  defined by a La/Rh ratio >0.05, as validated and applied previously (16). Of the 113
118  subjects, 48 (42.5%) were found to have high IP. Infants <28 weeks GA were more

119  likely to have elevated IP (N=18) than infants 28°-32° weeks GA [(64.3% vs. 35.3%),
120 P<0.01].

121 Postmenstrual age and mother’s own breastmilk (MOM) feeding are

122 associated with intestinal permeability in early preterm neonates. Among the

123  collected demographic and maternal variables for each infant, four host factors were
124  observed to be inversely related to IP, including: GA, postmenstrual age (PMA)

125 corresponding to chronological and GA, birthweight, and 1-minute Apgar score (Table
126  1). These variables are also highly correlated to one another with high covariates

127  multicollinearity (variance inflation factor > 10) (Fig. S1). PMA was the most significant
128 factor associated with IP among the four (P = 0.01, g value = 0.015) based on Hilbert-
129  Schmidt Independence Criterion (HSIC) (Table S2). Other host factors such as sex and
130 race were not significantly associated with IP. Maternal factors including preterm

131  premature rupture of membranes (PPROM), maternal antibiotics, antenatal

132  corticosteroids, preeclampsia and delivery mode, were not associated with IP. These
133 data indicate that younger infants have significantly higher incidences of high IP, likely
134  attributed to their more immature intestinal development.

135 However, host factors could only partially explain IP. Mother’s own breastmilk (MOM)
136 longer feeding and higher intake volume, and shorter antibiotics treatment duration were
137  also significantly associated with low IP (Table 1). Compared to infants with low IP,

138 neonates with high IP had fewer days of MOM feeding (4 days vs. 5.5 days, P<0.01)

139 and less total MOM volume (123.4 ml/kg vs. 263 ml/kg, P<0.01) as well as longer
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140 duration (>3 days) antibiotics use (37.5% vs. 18.5%, P=0.03). We adjusted host factors
141  associated with IP and fit a generalized logistic regression model. Newborns who were
142 fed MOM for 24 days during the first week were demonstrated to be 10.3-fold more

143 likely to have low IP than those who were fed MOM for <4 days [adjusted odds ratio
144 (aOR): 10.3, 95% CI: 3.21-33.33] (Table 2). Additionally, newborns who had longer

145 antibiotics treatment (=3 days) were 2.6 times more likely to have high IP, however this
146  association was mitigated when adjusting for confounders like PMA. This result is in line
147  with our previous observations that antibiotic use is significantly more common in the
148 early GA subjects (92% in <28 weeks GA versus 32% in >28 weeks GA, P<0.001) (16).
149  Statistical dependence analyses showed that the cumulative intake volume of MOM

150 prior to the IP measurement was the most significant factor associated with IP (P

151  <0.001, g value <0.01, HSIC statistic=1.53 and 1.46), at a significance level even higher
152  than host factors including GA (P <0.001, q value <0.01, HSIC statistics=1.12), PMA (P
153 =0.01, q value = 0.015, HSIC statistics=0.93), and body weight (P = 0.01, q value =
154  0.035, HSIC statistics=1.12) (Table S2).

155 Breastmilk intake is associated with improved intestinal barrier integrity.

156  Unfortunately, mothers who deliver preterm often produce less milk than those who

157  deliver term, and milk administration is often delayed especially in early preterm infants
158  (27). Formula and/or pasteurized donor human breastmilk (PDHM) is often a necessary
159 dietary supplement. Only 55.7% of neonates in the cohort were exclusively breastfed
160 (N=63), others had either complemented with formula (N=31), or PDHM (N=12), or were
161  fed exclusively formula (N=9) (Fig. 2A). For this reason, we investigated IP in neonates

162 grouped by feeding types. Exclusive formula feeding was significantly associate with


https://doi.org/10.1101/2022.05.06.490995
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.06.490995; this version posted May 7, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

163  high IP, either in number of days (P=0.02) or the intake volume (P=0.03, Table 1).

164 However, when formula was used in combination with MOM, even at a minor portion
165 (35.2%+31.7%, meants.e.), IP was significantly lowered to a level that is no different
166 than exclusive MOM (Fig. 2B). Infants whose diet was supplemented with PDHM in
167 addition to MOM had similar IP to the exclusive MOM group. We further investigated
168 how much MOM is “sufficient” relating to improved IP during the first week post-birth. A
169  highly elevated IP was observed in infants who received no MOM (exclusive formula or
170 no feed), and a rapid decrease in IP was inversely correlated with increased MOM

171 intake volume (Fig. 2C). Discriminatory machine learning schemes suggested that a
172  threshold around 150-180 ml/kg of cumulative intake of MOM by 7-10 days of age is
173  associated with low IP. Together our results indicate that sufficient MOM, used alone or
174  combined with other forms of feeding, significantly impacts IP in early preterm infants.
175 Even more importantly, these results imply that the benefits of breastmilk feeding are
176  beyond the nutrition alone but extend to postnatal intestinal barrier maturation.

177 Increased Bifidobacterium species abundance correlates with improved

178 intestinal barrier integrity. We further performed high-resolution characterization of
179 intestinal microbiota in 517 fecal samples, using both short-read sequencing of the

180 V3V4 region of the 16S rRNA gene on an lllumina HiSeq 2500 instrument (300PE,

181 N=472), and long-read sequencing of the full-length 16S rRNA gene on PacBio Sequel
182 Il platform (N=192). For short-read sequencing, we obtained a total of 25,838,078 high-
183  quality, non-chimeric ASVs (Amplicon Sequence Variants) after the assembly of forward
184  and reverse reads and quality assessment, representing 51,165£620 (meants.e.) ASVs

185 per sample (Table B at https://doi.org/10.6084/m9.figshare.19723252.v1). On the
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186 other hand, long-read sequencing generated using the Circular Consensus Sequences
187 (CCS) yielded 1,271,873 high-quality full-length 16S rRNA sequences or 992.9+16.8
188 (meanzts.e.) non-chimeric ASVs per sample. The full-length 16S rRNA gene sequences
189 (1,462 bp on average) extended the partial V3V4 region (428 bp on average) 3.2 times,
190 and afforded species level assignment for 87.6% of the long-read ASVs (remaining

191  were not assigned due to a lack of reference), compared to 15.3% for the short-read

192 ones (Table D at https://doi.org/10.6084/m9.figshare.19723252.v1, Fig. $2). Using

193 samples sequenced by both methods, taxonomic assignments for long-read ASVs were
194  conveyed to short-read ASVs using perfect sequence match, thus achieving species
195 assignment in 65.3% of short-read sequences (Table E at

196  https://doi.org/10.6084/m9.figshare.19723252.v1).

197 In total 508 ASVs belonging to 212 species in 15 orders and 6 phyla were identified

198 (Table A-C at https://doi.org/10.6084/m9.figshare.19723252.v1). The four most

199 abundant taxa were Klebsiella pneumoniae, Escherichia coli, Staphylococcus

200 epidermidis, and Enterobacter spp. These taxa were predominant (>50% relative

201 abundance) and dictated four distinct community types (Fig. S3). These four taxa

202 belong to two classes Enterobacteria (K. pneumoniae, E. coli, and Enterobacter spp.)
203 and Bacilli (S. epidermidis) and were highly prevalent (present in 86.2-94.8% samples)
204 in both high and low IP subjects (Fig. 3A). They are also known “first colonizers” of the
205 infant gut (15, 28, 29). Five other taxa, including Enterococcus faecalis, Clostridium
206 perfringens, Proteus mirabilis, Bifidobacterium breve, and Veillonella dispar, were found
207  to contribute to 17.4% of all sequences and detected in 47.7-86.6% of all samples.

208 These obligate and facultative anaerobes were considered the “succession”

10
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209 microorganisms that succeed to the first colonizers (15, 30-32). Together these nine
210 taxa accounted for 76.0% of all sequences in this dataset. Remaining sequences were
211  from a diverse array of obligate and facultative anaerobes (Fig. S3 cluster 5).

212 A zero-inflated negative binomial random effects model (ZINBRE) was applied to
213 investigate microbial biomarkers correlated with IP. B. breve was the taxa the most

214  significantly associated with low IP (P < 0.001) during the first 7-10 days after birth

215 (Table S3B, Fig. 3B, S4B). The low IP group had significantly higher levels of B. breve,
216  more Bifidobacterium overall, and more MOM. An adaptive spline logistic regression
217  model was used independently to confirm the association between B. breve to IP and
218 MOM (Fig. S4C,D). Other phylotypes associated with MOM or PMA were shown in

219 Table S3. The high IP-associated ASVs of S. epidermidis, E. coli, Parabacterioides

220 distasonis were associated with early PMA (Table S3A). Veillonella dispar was revealed
221  to strongly associate with later PMA (P<0.001) but not with IP. S. epidermidis and E. coli
222  were also associated with less MOM during the first week (Table S3C). B. breve was in
223  71.7% of samples containing Bifidobacterium, followed by B. longum (21.7%). The other
224  Bifidobacterium species were either rare or in very low abundance (<0.1%). Temporal
225 microbiota profiling indicated that Bifidobacterium species reached higher abundance

226 ~5-20%) after >3d of MOM (Fig. 3E, https://doi.org/10.6084/m9.figshare.19709923.v1).

227  When stratified by major feeding types, Bifidobacterium was mostly abundant in

228  exclusive MOM or MOM supplemented with formula (Fig. S4A). We plotted community
229 diversity against MOM feeding volume in function of time and observed that low IP

230 infants had significantly higher diversity microbiota and higher diversity Bifidobacterium

231  species, when MOM reached >150 ml/kg of cumulative intake within the first week (Fig.

11
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232  3C-D). Itis worth noting that MOM is a critical but not the only contributor to the

233 abundance of Bifidobacterium. 15% of the subjects received no MOM had >1%

234  Bifidobacterium and 32.5% had detected level of Bifidobacterium (>0.1%). Overall this
235 result further supports the importance of achieving the critical threshold of MOM intake
236  and its critical association with low IP.

237 Population dynamics of Bifidobacterium species in early postnatal

238 colonization. Phylogenetic analyses of full-length 16S rRNA gene sequences

239 demonstrated that B. breve forms a monophyletic clade and the four most abundant
240 ASVs were nearly identical, while B. longum was more phylogenetically diverse with
241  four distinct clades (Fig. 4A,B). Clade | was the most abundant and represented B.
242  longum subsp. longum, while B. longum in the other three clades II-IV was in low

243 abundance. ASVs assigned to Bifidobacterium showed high sequence diversity (Fig. 4A)
244  as well as inter- and intra-subject variability (Fig. 4C), in that multiple ASVs can be
245 detected in the same subject and a single ASV can be detected in multiple subjects at
246  multiple time points. For instance, 35 B. longum ASVs of four different clades were
247 observed in one subject. Further, some ASVs (i.e., unclassified Bifidobacterium spp.)
248  were only observed in infants with early PMA (<33 weeks) while others did not vary in
249 abundance across PMA (i.e., B. breve), supporting a high subspecies-level diversity and
250 population dynamics in preterm infant gut community.

251 To characterize the genome content of Bifidobacterium species, we performed

252 whole metagenomic sequencing of 30 samples with >10% Bifidobacterium species
253 using an lllumina NovaSeq 6000 platform (Table A at

254 ) and generated 26 B. breve and four

12
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255 B. longum nearly complete metagenomic-assembled genomes (MAGs) (Table B at

256 ). We further performed metagenomic

257 sequencing of two samples using Pacific Bioscience Sequel Il platform, which afforded
258 one closed and one nearly complete genomes of B. breve strains. The closed genome

259 was 2.34M in size (Fig. S6, Table C at

260 ), similar to the median B. breve

261 genome size of 2.33M on NCBI. For pangenome analysis, we supplemented the 26 B.
262  breve in-house MAGs with 107 published genomes (Table A at

263 ) and the four B. longum MAGs with
264 310 published genomes (Table B at )

265 to identify homologous gene clusters (HGCs) (Tables C-D at

266 ). Among the total of 4,922 B. breve

267 HGCs, 54.2% were considered dispensable (present in <10% genomes), 29.4% were
268 core (present in >95% genomes) and the rest were accessory (Table E at

269 ). The pangenome of B. longum

270 (7,265 HGCs) was roughly twice the size of B. breve (3,363 HCGs), although the two
271  species core genomes were similar (1,511 vs. 1,448 HCGs). The large pangenome size
272  of B. longum may reflect its broader host range that includes both infant and adult

273 intestines than B. breve or B. infantis, which were exclusively observed in infant gut (33).
274 In particular, the genes involved in the fructose 6-phosphate phosphoketolase-

275 dependent glycolytic pathway for ATP-efficient carbohydrate catabolism, or “bifid shunt”,
276 are conserved in both species (Fig. S7). Further, B. longum’s dispensable genome,

277  which comprised 46.3% of its pangenome (2,666 HGCs), was smaller than that of B.

13
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278 breve (54.2%, 3,363 HCGs) in both size and proportion, indicating a high genome
279 plasticity in B. breve.
280 We identified 46 genes specific to B. breve colonizing infants with low IP (Table F at

281 ). While a large number of these

282 genes have unknown functions, others encoded functions such as glycosyl transferases,
283  glycosyl hydrolases, cell surface adhesion and transport, polysaccharide biosynthesis,
284 quorum sensing, and phage integration. Further, a number of functions were

285 significantly enriched in these genomes compared to the species’ genomes publicly

286 available (adjusted g-value < 0.05, Table F-I at

287 ), such as cation transmembrane

288 transporter activity, glucuronate isomerase, methyladenine glycosylase, glycosyl

289 hydrolase family 59, 2, 85, 30, bacterial rhamnosidase A and B. Of note, B. breve HGC
290 profiles appears to be highly similar within subjects, indicating that B. breve genomes
291 detected at different time points in the same infants shared greater similarity than those

292 from different subjects (Fig. S7, Table J at

293 ). Together, compared to B. longum,

294  B. breve colonizing infants with low IP has a high genome plasticity and enriched

295 genetic features in carbohydrate metabolism and transportation that underlies the
296  species strong niche adaptive capabilities.

297 Specialized human milk oligosaccharides assimilation capabilities of

298 Bifidobacterium strains in early preterm infants. As both Bifidobacterium species
299 abundance and MOM were associated with postnatal intestinal barrier maturation, we

300 nextinvestigated whether these two factors were linked through the ability of
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301  Bifidobacterium species to utilize the oligosaccharides present in breastmilk. Previously

302 characterized major HMO utilizers like Bacteroides species and Lactobacillus (34, 35)

303 were largely absent from our cohort (https://doi.org/10.6084/m9.figshare.19723252.v1),

304 indicating that Bifidobacterium species likely provide the genetic capabilities to

305 metabolize HMOs. We thus examined the set of genes encoding extracellular

306 hydrolases, sugar transporters, and intracellular hydrolases (Table S$4), which comprise
307 the machinery necessary to uptake and metabolize HMO substrates to feed the central
308 fermentative metabolism (36-38).

309 Intracellular HMO utilization functions were exclusively found encoded by both B.
310 breve and B. longum. We examined eight essential extracellular enzymes and their
311 homologs (details in methods section) known to be required in extracellular breakdown
312  of HMOs into smaller molecules that are then transported intracellularly. Interestingly,
313  none of these extracellular enzymes were found in this cohort. We investigated five
314  essential bacterial ABC transporters and homologs involved in the import of various
315  oligosaccharides, known to have a high specificity for HMOs conferred by substrate-
316  binding protein (SBPs) domains (39). Both B. breve and B. longum contained gltA

317 (Table S4A), a gene considered crucial to the import of lacto-N-tetraose (LNT). LNT
318 comprise the core HMO structure that is catabolized via lacto-N-biose (LNB)

319 intermediates (40). Further, a family 1 solute binding proteins (F1SBP) gene cluster
320 Blon_2177, was found in both B. breve and B. longum (Table S4B). This cluster was
321  found critical in the import of non-fucosylated type 1 oligosaccharides (41). None of the
322  B. longum strains but the majority B. breve strains of this cohort (92.4%) harbor the

323 LNnNT (lacto-N- neotetraose) transporter that is encoded by nahS. These findings
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324 indicate both B. breve and B. longum could transport LNB and LNT, while B. breve can
325  further metabolize LNNT.

326 We then evaluated the capability of consuming the transported oligosaccharides,
327 and, compared to B. longum, we revealed expanded metabolic capabilities of B. breve
328  of this cohort to utilize a variety of HMO molecules including fucosylated or sialylated
329 forms, in addition to the neutral types of HMOs (i.e., LNB, LNT, LNnT). 17 key glycoside
330 hydrolases (GH) involved in essential HMO degradation and utilization were

331 investigated (Table S4C). Key intracellular enzymes GH2 (3-1,4-galactosidases,

332 LacZ2/6), GH112 (GNB/LNB phosphorylase, InpA), GH20 (3-N-acetylglucosaminidase),
333 and GH42 (B-1,3-galactosidase, IntA, bga42A) are highly conserved in both B. breve
334 and B. longum. These enzymes lack transmembrane domains or signal peptide

335 sequence and are required to degrade HMOs intracellularly (42). While almost all B.
336  breve contained GH95 a-fucosidase (afcA, homolog to Blon_2335), GH33 a-sialidase
337 (homolog to Blon_0646), and GH20 B-N-acetylglucosaminidase (nahA, homolog to

338 Blon_0459) (Table S4C), only a small portion of B. longum (~10%) contained these
339 enzymes. Further, B. breve present in these preterm infants carries gene encoding

340 GH29 a-fucosidases more often (53.8% vs. 12.7%) than B. breve isolated from other
341  sources obtained from GenBank. The presence of GH29 a-fucosidase genes underlines
342  the capability to consume fucosylated oligosaccharides such as 2’-fucosyllactose (2'-FL)
343 and larger fucosylated HMOs such as lacto-N-fucopentaose (38, 42). The GH29

344  containing B. breve strains in our cohort also encode GH95. In fact, GH29 and GH95 a-
345 fucosidases are highly complementary since they target specific substrate of a-1,3/4

346 and a-1,2 fucosyl linkages, respectively (42), and the activation of both enzymes
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347 enables degradation and utilization of a higher variety of HMOs. Moreover, a prominent
348 gene cluster termed FHMO (Fucosylated Human Milk Oligosaccharide) that contains
349 both GH29 and GH95 a-fucosidases coding genes was observed in some B. breve
350 strains but is largely absent from B. longum (Table S4D). This cluster was reported to
351 enable B. breve strains to preferentially consume fucosylated HMOs over neutral HMOs
352  during early bacterial growth (42). In particular, the putative fucosyl lactose SBP

353 (BLNG_1257) present in this cluster confers glycan binding specificity and is

354  consistently present in B. breve strains of this cohort but rarely in other B. breve in

355 GenBank. Overall, our results revealed an expanded, specialized HMOs assimilation
356 capability of B. breve strains, conferring a competitive growth advantage in the gut of
357 this preterm infant cohort when fed breastmilk.

358 Host-derived glycoproteins utilization is limited to B. breve in early preterm
359 infants. Besides HMOs, the host-derived glycoproteins such as mucin and

360 proteoglycan (mucus or milk) are critical carbon sources to bacteria in the infant

361 intestinal microenvironment. Human glycoproteins are often heavily sulfated and could
362 not be metabolized without bacterial glycosidases (43, 44). We investigated two

363 sulfatase-encoding gene clusters essential in sulfatase metabolism ats1 and ats2 (45,
364  46), and they each encode glycosulfatases and accompanying anaerobic sulfatase-
365 maturing enzymes (anSMEs) with an associated transport system and transcriptional
366 regulator (46). The primary mucin degradation capabilities in this cohort are shown to be
367 limited to B. breve strains (Table S4F), as the two clusters are present in 100% of B.
368 breve in our cohort and ~70% of all B. breve genomes available. B. longum rarely

369 harbor ats1 and no strains carry ats2.
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370 In addition to sulfated residues, more than half of human colonic mucin

371  oligosaccharides also contain sialic acid residues (47). The release of sialic acid is an
372 initial step in the sequential degradation of mucins and sialylated HMO substrates (46,
373 48). Hence, we investigated the two gene clusters essential for the uptake and

374  metabolism of sialic acid, nagA2-nagB3 cluster (Bbr_1247, Bbr_1248) and the nan-nag
375 cluster (Bbr_0160-0172) (49-51). These two gene clusters are highly conserved in B.
376  breve while only present in 14% of B. longum genomes (Table S6E). Our results

377 demonstrate the capability of foraging sulfated and/or sialylated host-derived

378  glycoprotein is attributed to B. breve strains in this cohort. This metabolic versatility of B.
379  breve may greatly improve its fithess and facilitate its mucosa adherence, hence

380 facilitating the colonization under nutrient- or energy-limited conditions in the preterm

381  infant gut environment.
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382

383 Early preterm neonates are a vulnerable and challenging population that often

384 requires intensive medical care. As a result of their premature birth, these neonates
385 often have an aberrantly permeable intestinal barrier that fail to limit bacterial

386 translocation. Our group has previously reported positive associations between

387 persistently elevated intestinal permeability and delayed feeding, prolonged antibiotics
388 exposure and altered development of the intestinal microbiota, and a lack of progressive
389 increased abundance of Clostridiales (15, 16). These Clostridiales became abundant
390 mostly at the end of the second week post-birth, this is after the extensive barrier

391  maturation that occurs during the first week. In this study, we determined the minimal
392 intake of maternal breastmilk necessary to significantly lowered IP, and identified

393 specific Bifidobacterium species and strains as the biomarkers associated with low IP
394 development in preterm infants first week of life.

395 We posited the benefits of breastmilk extend beyond nutrition and include improved
396  gut barrier function, and that the two factors associated with reduced IP, MOM feeding
397 and Bifidobacterium strains, at least in part, are linked by the capability of the

398 Bifidobacterium to metabolize human milk oligosaccharides (illustrated in Fig. 5). To
399 investigate this link, we evaluated the carbohydrate metabolizing capabilities of

400 Bifidobacterium strains and uncovered a complement of genes dedicated to utilizing a
401  wide variety of HMO molecules as well as host-derived glycoproteins. These genetic
402 features were enriched in preterm infant gut-associated Bifidobacterium strains

403 compared to those isolated from other sources like dairies or adult gut. Our results are

404  concordant with previous studies that the establishment of a bifidobacterial dominant
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405 community was facilitated by specific gene clusters supporting HMOs metabolism,

406 which are absent in many adult associated bifidobacterial strains (52-55). The functional
407 characterization of the contribution of B. breve metabolizing MOM to low IP would be
408 critical to its translational significance. Future studies modeling both transcriptional

409 activities of bifidobacterial biomarkers and host responses in a longitudinal design is
410 warranted to address the causal-effect relationships of MOM and Bifidobacterium on
411  intestinal barrier maturation. Further, the production of short chain fatty acids via

412 carbohydrate consumption by bifidobacteria, particularly acetate and butyrate, was

413 demonstrated to correlate with their anti-inflammatory properties and promoted the

414  defense functions of the epithelium (56-58). Together, our study supports the notion that
415 intestinal barrier function can develop postnatally, and this process could be induced
416 through supplementation of breastmilk substrates as well as Bifidobacterium strains that
417 consume them. These elements are promising therapeutic targets to reduce NEC and
418 other life-threatening conditions associated with intestinal hyperpermeability.

419 B. breve is a known dominant Bifidobacterium species in both preterm and term

420 infant gut microbiota (59) and was also observed in breastmilk and vaginal microbiota
421 (60, 61). In human, B. breve appears to be exclusively in these environments and is
422  largely absent in adult gut. The factors contributing to B. breve persistence in infants are
423 not well understood. Most studies were performed using the type strain B. breve ATCC
424 15700 (JCM 1192), which has limited ability to consume HMOs (62, 63). As

425 demonstrated by us and others, strains of B. breve vary greatly in their capabilities to
426  metabolize HMOs (55). The B. breve strains in our cohort displayed extensive

427  enzymatic capability designed to efficiently utilize a broad range of dietary and host-
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428 derived carbohydrates and thus maximizing their colonization in the infant intestinal

429  environment. In particular, we demonstrated that LNnT utilization was exclusively limited
430 to strains of B. breve. Growth on LNnT was shown in vitro to enable B. infantis to

431 outcompete other species such as Bacteroides (64). LNnT can be fermented by specific
432  strains of Bifidobacterium only found in infant gut (65). Digestion of neutral HMOs (i.e.,
433 LNT, LNnT) was actually shown to induce a significant shift in the ratio of secreted

434  acetate to lactate compared to the catabolism of the simpler carbohydrates they contain
435 (66). Further, GH29 a-fucosidase, an uncommon enzyme correlated to the ability to
436  grow on fucosylated HMOs (38), was only enriched in B. breve strains in this cohort.
437  The presence of key gene sets expands B. breve metabolic capabilities (i.e., FHMO,
438 GH29, GH95), and is reminiscent to those found in B. infantis ATCC 15697, the model
439 strain that can also consume a broad repertoire of HMOs (41, 67). Previous clinical

440 trials administrating B. breve strains in early preterm infants yield contradicted results,
441  which may relate to the different strains selection. For example, Kitajima and co-authors
442  reported a B. breve strain BBG could colonize the immature bowel effectively with

443  significantly fewer abnormal abdominal signs and greater weight gain in VLBW infants
444  (68). However, the clinical trial of the type strain BBG-001 in very preterm infants

445 observed no evidence of benefit in terms of preventing NEC and LOS (69). These data
446  highlight the importance of strain characterization in prophylactic supplementation of live
447  Dbiotherapeutics. Further characterization of these key genes will be necessary to

448 understand the range of oligosaccharides B. breve strain can transport and consume.
449  Strains collection of B. breve isolated from both preterm infants with rapidly lowering IP

450 and healthy term infants should be established to achieve this important goal.
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451 The specialized HMOs and glycoprotein utilization capabilities of B. breve,

452  particularly the sulfated and sialic residues degradation, further confers a competitive
453 capability that improve B. breve fitness and facilitate its adherence and colonization of
454  the gut mucosa (70). The release of sialic acid is an initial step in the sequential

455 degradation of mucins and sialylated HMO substrates (46, 48), and the ability to utilize
456 the heavily sulfated mucin glycoprotein and sialic residues were found to be highly

457  correlated (46, 49). Sialic acid concentrations are highest in colostrum in preterm infants
458  but decrease by almost 80% after 3 months (71). Further, breastmilk from mom who
459 delivered preterm was reported to be a rich source of oligosaccharide-bound sialic acids,
460  with 20% more sialic acid residues than breastmilk from term mothers and 25% more
461 than that found in formula (72). A recent in vivo study showed that sialylated HMOs are
462 on the causal pathway of a microbiota-dependent infant growth outcome, hence were
463 considered the most growth-discriminatory HMO structures (73). Interestingly, and

464  supporting its importance in infant health, only strains of B. infantis and B. breve

465 isolated from infant gut have been reported to be capable of utilizing sialic acid and
466 sialylated lacto-N-tetraose as sole carbon source (54, 74, 75). A few B. breve strains
467  were actually reported to preferentially consume sialylated HMOs, in particular sialyl-
468 LNT b (LSTb), sialyl-lacto-N-hexaose (S-LNH) over neutral HMOs (38, 49). Given that
469 Dbacteria with pathogenic potentials are capable of utilizing sialic acid, B. breve strains
470 could rapidly sequester sialic acid away from these pathogens and offer nutritional

471  immunity, i.e., sequester nutrients to limit infection, thus contributing to a healthy

472  intestinal environment (76). It would be highly insightful to further characterize maternal

473  HMOs variations in MOM and the composition of specific formula in addition to the
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474  information of HMOs assimilation capability of bifidobacterial strains, for comprehensive
475 understanding of the essential factors attributed to postnatal intestinal maturation.

476 HMO utilization by Bifidobacterium species in this cohort appears to be exclusively
477  an intracellular process, which would unlikely allow for cross-feeding of intermediates
478  with other gut bacterial species. Extracellular digestion of HMOs would afford fucose
479 and sialic acid monomers to be cross-fed to other bacteria, some of which with

480 pathogenic properties (77). Bacteroides spp that are largely absent in this cohort are
481  known to employ exclusively extracellular process in HMO utilization (64). The

482  “internalize, then degrade” approach for HMO consumption is a critical Bifidobacterium
483 property that affords protection against infection for the infants. Interestingly, the

484  preference for intracellular digestion of HMOs is not conserved across all infant gut
485  Bifidobacterium species or strains. A recent study revealed Bifidobacterium in the gut
486 microbiome of breast-fed Malawi and Venezuela infants similarly employed an

487 intracellular HMO digestion strategy, while Bifidobacterium in a cohort of US infants fed
488 formula and breastmilk preferentially employed extracellular HMO digestion strategies
489 (36). The difference may relate to galacto-oligosaccharides (GOS) transporter genes
490 present in strains that internalize HMOs to metabolize them, especially the GNB/LNB-
491 BP (GltA) gene (36, 78), though the mechanisms remain unclear.

492 Our study highlights the strong potential for the prophylactic administration of

493 specific B. breve strains early in life along with specific HMOs to enhance intestinal
494  Dbarrier in preterm neonates. We previously defined a “window of opportunity” of day 8+2
495  post-birth, for intervention prior to the onset of leaky gut-associated conditions such as

496 NEC (15, 16). Our study proposed the role of breastmilk feeding in promoting the
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497  growth of beneficial Bifidobacterium species and strains that could consume breastmilk
498 HMOs during that critical window period of time. In the absence of these prophylactic
499 Bifidobacterium, the benefit of breastmilk feeding is expected to be dramatically reduced.
500 Counting on the vertical transmission of these Bifidobacterium strains from the mothers’
501  gut or vaginal microbiota, or breastmilk is not reliable and could leave many infants

502 unprotected (79, 80). It is thus critical to gain further mechanistic insight into

503 Dbifidobacterial-rich microbiota formation in the infant gut by prophylactic

504 supplementation of live biotherapeutics that possess the ability to effectively utilize them.
505 Such understanding will inform the design of clinical interventions with supplementation
506 of HMOs and Bifidobacterium as live biotherapeutics prophylaxis to enhance intestinal

507 barrier integrity early in life, and ultimately reduce risk for NEC.
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508

509 Study cohort and feeding protocol. The study protocol was approved by the
510 institutional review boards of the University of Maryland, Baltimore and Mercy Medical
511  Center. Written informed parental consent was obtained. Eligibility criteria were

512  described previously (16). 113 eligible preterm infants 24%7-32%" weeks of gestation
513  were enrolled within 4 days after birth from combining cohorts enrolled during June
514  2013-October 2014 and October 2018-Nov 2019. Prior to study procedures, a complete
515  physical exam including vital signs, weight, height, and head circumference was

516 performed. Demographic, obstetric and clinical, medication exposures, feeding

517  practices and adverse events data were collected from the medical record.

518 Enteral feeds by the orogastric or nasogastric route were initiated between the first
519 and fourth day of life depending on clinical stability. After initial feeds of 10 ml/kg

520 expressed breast milk or 20 kcal/oz preterm formula daily for 3-5 days, feedings were
521  advanced by 20 ml/kg/d until 100 ml/kg/d was reached. Subsequently, caloric density
522  was advanced to 24 kcal/oz prior to increasing feeding volume by 20 ml/kg/d to 150
523 ml/kg/d. The total volume of each source of feeds was calculated as sum of the daily
524  amount of milk intake per kilogram of the administered expressed mom'’s breastmilk,
525 donor milk or preterm formula from initial feed day till postnatal day 7-10 when the IP
526  was measured. Feedings were held or discontinued for signs of feeding intolerance
527 such as abdominal distension, gastric residuals, or hematochezia, or for clinical

528 deterioration. Pooled pasteurized human donor breastmilk (PHDB) was purchased from
529 Prolacta Biosciences (Duarte, CA, US). PHDB was collected from mothers of term

530 infants who have breastfed for at least 6 months (81).
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531 In vivo intestinal permeability (IP) measurement. In our previous pilot studies that
532 employed a small cohort of neonates (N=37) (15, 16) with IP measured at study day 1,
533 8+2 and 15%2. It was shown that IP is high within 4 days of birth in all preterm infants
534  with a rapid maturation of the intestinal barrier over the first week of life. Persistently
535 high IP and/or late increase in IP indicate the physiological immaturity of the intestinal
536 tract barrier function. Hence the first 7-10 days in preterm infants is a critical observation
537  period for monitoring IP. Eligible preterm infants received 1 ml/kg of the non-

538 metabolized sugar probes on postnatal day 7-10, which included lactulose (La,

539 Cumberland Pharmaceuticals, Nashville, TN) that is the marker of intestinal paracellular
540 transport and rhamnose (Rh, Saccharides, Inc., Calgary, Alberta, Canada) that is the
541  marker of intestinal transcellular transport. One ml of 8.6 g La +140 mg Rh/100 mL

542  solution was administered enterally by nipple or by gavage via a clinically indicated

543  orogastric tube (82). A minimum of 2 mL of urine was collected over a 4-hour period
544  following administration of the La/Rh dose as previously described (16). La and Rh

545  concentrations were measured by high-pressure liquid chromatography (HPLC) at the
546  University of Calgary (Calgary, Canada). High or low intestinal permeability was defined
547 by a La/Rh >0.05 or <0.05 respectively, as validated and applied previously (16).

548 Postmenstrual age at sugar probe dosing was calculated as gestational age at birth plus
549  postnatal age at dosing day (83).

550 Fecal specimen collection and nucleic acid extraction. Fecal samples (~1g)

551  collected daily from enroliment until postnatal day 21 or NICU discharge were stored
552  immediately in 1 ml of DNA/RNA Shield (Zymo Research, Irving, CA, USA). Stool

553 specimen were collected from within the stool mass from the diaper as much as feasible
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554  to avoid frequent air exposure. The stool sitting time was 0-3 hours and was collected
555  during diaper change every 3 hours. Urine and fecal samples were archived at -80°C
556  until processed.

557 Genomic DNA was extracted from homogenized fecal samples using the MagAttract
558 PowerMicrobiome DNA/RNA kit (Qiagen) implemented on a Hamilton STAR robotic
559 platform and after a bead-beating step on a TissueLyzer Il (Qiagen) in 96-deep well
560 plates at the Microbiome Service Laboratory (MSL) at the University of Maryland

561  Baltimore (Baltimore, MD, USA). DNA purification from lysates was done on a

562 QIAsymphony automated platform.

563 Short-read sequencing of 16S rRNA gene amplicon and whole community
564 metagenomes. PCR amplification of the 16S rRNA gene V3-V4 hypervariable region
565 was performed using dual-barcoded universal primers 318F and 806R as previously
566 described (84). In brief, amplicon pools were prepared for sequencing with AMPure XT
567 beads (Beckman Coulter Genomics, Danvers, MA) and the size and quantity of the
568 amplicon library were assessed on the LabChip GX (Perkin ElImer, Waltham, MA) and
569  with the Library Quantification Kit for lllumina (Kapa Biosciences, Woburn, MA),

570 respectively. PhiX Control library (v3) (lllumina, San Diego, CA) was combined with the
571  amplicon library. High-throughput sequencing of the amplicons was performed on an
572  lllumina MiSeq platform using the 300 bp paired-end protocol. Sequence libraries were
573 prepared from the extracted DNA using the Nextera DNA Flex kit (lllumina; San Dieago,
574  CA) according to manufacturer’s specifications. Libraries were then pooled together in

575 equimolar proportions and sequenced on a single lllumina NovaSeq 6000 S2 flow cell

27


https://doi.org/10.1101/2022.05.06.490995
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.06.490995; this version posted May 7, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

576  providing an average of 6.5 million pairs of 150 bp reads per library at the Genomic
577 Resource Center at the University of Maryland School of Medicine.

578 Long-read sequencing of full-length 16S rRNA gene and whole community
579 metagenomes on Pacific Biosciences Sequel Il platform. Amplification of full-length
580 16S rRNA gene was performed using a dual-barcode, two-step PCR on diluted (1:10)
581 genomic DNA. The first round of PCR amplification of the 16S rRNA full-length gene
582  was performed using universal primers 27F (AGRGTTYGATYMTGGCTCAG) and

583 1492R (RGYTACCTTGTTACGACTT) following Pacific Biosciences (Menlo Park, CA,
584 USA) specifications for 20 cycles. The cycling conditions for the first-step PCR were
585 95C for 30sec, 57C for 30sec, and 72C for 60sec. The PCR reaction was then diluted in
586  water (1:5) and amplified with Pacific Biosciences universal forward/reverse 96-plate
587 primers for an additional 20 cycles following Pacific Biosciences specifications. Cycling
588 conditions are as described in manufacture protocol (85). DNA quantification was

589 carried out using the Quant-iT PicoGreen double-stranded DNA assay (Invitrogen) and
590 visualized on a 2% agarose E-gel. The amplicon libraries were normalized and cleaned
591  and concentrated using AmPure XP SPRI beads (Beckman Coulter, Brea, CA, USA) at
592  0.6X the reaction volume.

593 Library pools were prepared with SMRTBell Template Prep Kit 1.0 with barcoded
594  adaptors. Libraries were then size-selected on a BluePippen (Sage Science, Beverly,
595 MA) with a cutoff of 5 kb. Sequencing was performed on the Sequel Il Platform (PacBio,
596 Menlo Park, CA) with a loading at 60pM. Multiplexed samples were sequenced on

597  PacBio Sequel Il cells using the S/P3-C1/5.0-8M sequencing chemistry. Demultiplexing

598 was done with lima (version 1.9.0) using default parameters except minimum barcode

28


https://doi.org/10.1101/2022.05.06.490995
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.06.490995; this version posted May 7, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

599 score 26 and min length 50 bp, both tools are part of the SMRTLink 6.0.1 software
600 package with updated CCS version 3.4.1 (Pacific Biosciences, 2019). Raw reads were
601 assembled via Canu v1.8 and the “-pacbio-raw” protocol (86). Resulting contigs were
602 taxonomically annotated using BLASTN v 2.8.1 (87) and the non-redundant nucleotide
603 database (updated 2019/05/03) to pool all contigs identified under the same species
604 name to form metagenomic bins. Binned contigs were circularized and rotated using
605 “Simple-circularise” (88) and retained if the circularized contigs is in the range of the full
606 genome size according to published closed genomes of that species based on genBank
607 genome database. Metagenome bins were further confirmed using GTDB-Tk v1.1.0
608 (89). Genomes were annotated using PROKKA v1.13 (90).

609 Epidemiological analyses. Covariates identified based on previous literature and
610 Dbiological plausibility were collected at the time of enroliment of the participants and
611  evaluated. Categorical data were compared using Fisher's exact test and continuous
612 data using Student's t-test. Multicollinearity between covariates was assessed using
613 Variance Inflation Factor (VIF) and Tolerance, where covariates with VIF >10 were
614  considered collinear. Covariates with p-value < 0.05 in the bivariate analysis were

615 considered confounding factors and were adjusted in the multivariable analysis as

616 random factors. Generalized logistic regression was used to determine the association
617 between IP category and continuous variables including duration of antibiotics and
618 duration of MOM feeding. Analyses were conducted using SAS version 9.4 software
619 (SAS Institute, Cary, NC), code used in this statistical analysis was deposited at

620 https://qgithub.com/igsbma/lP microbiome/tree/main/statistical analyses.
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621 Bioinformatics analysis of intestinal microbiota. For 16S rRNA V3V4 gene

622 amplicon analysis, raw data was demultiplexed and barcode, adapter and primer

623 sequences were trimmed using tagcleaner v0.16 (91). Quality assessment and

624  sequencing error correction was performed using the software package DADA2 v1.14
625 (92) and the following parameters: forward reads were truncated at position 240 and the
626 reverse reads at position 210 based on the sequencing quality plot, no ambiguous

627 based and a maximum of 2 expected errors per-read were allowed (93). The quality-
628 trimmed reads were used to infer amplicon sequence variant (ASV) and their relative
629 abundance in each sample after removing chimera. The SILVA database (94) release
630 132 was used to assigned taxonomy. The following criteria were applied on an ASV: 1)
631 atleast 400bp in length for long-read sequencing; 2) was observed in at least two

632 samples; 3) at least 5 counts in at least one sample; 4) not assigned to taxonomic

633 groups of Mitochondria or Chloroplast.

634 For full-length 16S rRNA gene analyses, CCS reads were generated using the ccs
635 application with minPredictedAccuracy=0.99 and the rest of the parameters were default,
636 including minimum 3 subread passes. Demultiplexing was done with lima (version 1.9.0)
637  with minimum barcode score 26 and min length 50bp, both tools are part of SMRTLink
638 6.0.1 software package with updated CCS version 3.4.1 (Pacific Biosciences, 2019).
639 The microbiota analyses were modified from a previously reported bioinformatics

640 pipeline that incorporates the DADAZ2 protocol (95). The quality-trimmed reads were

641 used to infer ribosomal sequence variants and their relative abundance in each sample
642  after removing chimera. Taxonomy was assigned to each ASV generated by DADA2

643 using both the SILVA (release 132) database and Genome Taxonomy Database (GTDB)
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644 (96) and the RDP naive Bayesian classifier as implemented in the dada2 R package (97,
645 98). In a few cases when conflicted taxonomic assignments appeared, NCBI Refseq
646 16S rRNA combined with RDP database (99, 100) and Human Intestinal 16S rRNA

647 database (HITdb v1) (101) were used to resolve the conflict. Pacific Biosciences long-
648 reads sequencing complements short-reads sequencing for its high accuracy and

649 extended length. To boost taxonomy assignment for short sequencing, we performed
650 BLASTN search of the short-read ASVs to the long-read ASVs, and assigned the

651 taxonomic name to the short reads if there is 100% percent identity and unanimous

652 assignment if there are multiple hits to long-reads sequences.

653 A heatmap was constructed from the 50 most abundant intestinal bacterial taxa

654 relative abundance in samples collected from 113 preterm infants enrolled in the study.
655 The ASVs were normalized using total sum to calculate their relative abundances. Ward
656 linkage clustering was used to cluster samples based on their Jensen-Shannon

657 distance calculated in vegan package in R (102). The number of clusters was validated
658 using gap statistics implemented in the cluster package in R (103) by calculating the
659 goodness of clustering measure. Package raxml (v8.0.0) (104) was used to construct
660 the phylogeny, Phyloseq R package (v1.38.0) (105) was used to display the phylogeny
661 and the barplot. Volatility plot to demonstrate the fluctuation of microbial community

662 diversity (characterized as Shannon diversity index) over MOM feeding volume in high
663 orlow IP groups. Plot was generated in QIIME (2019.10 vers) (106) (option -longitudinal
664  plot-feature-volatility).

665 Statistical analysis of intestinal microbial community. Hilbert-Schmidt

666 Independence Criterion (HSIC) R package ‘dHSIC’ (107) was used to examine the
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667 independence between any variables with IP. Longitudinal modeling was performed
668 using zero-inflated negative binomial random effects (ZINBRE) models. These models
669 account for the possibility of existence of more than expected zeros (from negative

670 binomial distribution) as well for correlations between samples from the same subject.
671  Though IP was categorized to high and low groups, it is inherently continuous and

672 hence we modeled IP as continuous value in our analyses. Subject was included as a
673 random factor. Read counts data of phylotypes detected in at least 15% samples were
674 modeled using ZINBRE models. The same principle was applied to MOM and PMA.
675 The model was fitted using JAGS R package (108), and 10,000 iterations with the same
676 number of burn in iterations was used. The convergence of the model was assessed
677 using Gelman and Rubin's potential scale reduction factor (109) and visual inspection of
678 each coefficient's Markov chains. The mean of the posterior distributions of estimated
679 coefficients and their corresponding 95% credible intervals were calculated using

680 model's Markov chains. The credible intervals without overlapping are considered

681  significant. P values were computed assuming normality of the posterior distributions of
682 the corresponding coefficients. An adaptive spline logistic regression model

683 implemented in spmrf R package (110) was used independently to confirm the

684  association between B. breve to IP and MOM. This model is a locally adaptive

685 nonparametric fitting method that operates within a Bayesian framework, which uses
686  shrinkage prior Markov random fields to induce sparsity and provides a combination of
687 local adaptation and global control (110). Bayesian goodness-of-fit p-value implemented
688 in R package rstan (111) was used to access the significance of the association. R code

689 implementation of the model is deposited in
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690 https://github.com/igsbma/IP_microbiome/tree/main/statistical analyses. Discriminatory

691  machine learning schemes computation were implemented in weka (112, 113),

692 including J48 decision tree, REPTree, decision stump, and logistic model trees. The
693 functional enrichment test was performed for each functional group (based on COG and
694 PFAM annotation) and each of homologous gene cluster (HGC) generated in genome
695 comparison analyses. The frequency tables of each function or HGC in each category
696 (i.e., MAGs of this study versus genBank genomes) were generated, which was used to
697 fit a generalized linear model with the logit linkage function to compute an enrichment
698 score and p-value for each unit (114). False detection rate correction to p-values was
699 used to account for multiple tests using R package ‘qvalue’ (115).

700 Intestinal microbiome analyses. Metagenomic sequence data were pre-processed
701 using the following steps: 1) human sequence reads and rRNA LSU/SSU reads were
702  removed using BMTagger v3.101 (116) using a standard human genome reference
703 (GRCh37.p5) (117); 2) rRNA sequence reads were removed in silico by aligning all

704  reads using Bowtie v1 (118) to the SILVA PARC ribosomal-subunit sequence database
705 (94). Sequence read pairs were removed even if only one of the reads matched to the
706  human genome reference or to rRNA,; 3) the lllumina adapter was trimmed using

707  Trimmomatic (119); 4) sequence reads with average quality greater than Q15 over a
708  sliding window of 4 bp were trimmed before the window, assessed for length and

709  removed if less than 75% of the original length; and §) no ambiguous base pairs were
710 allowed. The taxonomic composition of the microbiomes was established using

711 MetaPhlAn version 2 (120). Metagenome assembled genomes (MAGS) pipeline

712 includes de bruijin genome assembly using SPAdes v.3.10.1 (121), the bins were
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713  defined through distance clustering based on coverage and tetranucleotide signature
714 using MetaBat v2 (122), and were refined using GTDB-Tk (89). Genomes were

715 annotated using PROKKA v1.13 (90), annotated through evidences from the

716 nomenclature of the consortium for function glycomics, eggNOG (v4.5)(123), KEGG
717  2013-03-18 release (124)), Pfam (v30.0)(125), CAZy (2014 release) (126, 127).

718  Similarity searches were performed to compare with previously annotated enzymes or
719  transporter proteins based on the accession number (36-38), using BLASTP and

720 confirmed with the COG, Pfam and CAZy annotation evidence to ensure the integrity of
721  the results. The 8 essential extracellular enzymes that are known to be required in

722  extracellular cleavage of HMOs before importing selected products of degradation are
723 investigated (36-38), include: 1,2-a-I-Fucosidase (AfcA), 1,3/4-a-I-Fucosidase (AfcB),
724  2,3/6-a-Sialidase (SiaBb2), Lacto-N-biosidase (LnbB, LnbX), Chaperon for LnbX (LnbY),
725 B-1,4-Galactosidase (Bbglll), B-N-Acetylglucosaminidase (Bbhl). Five essential bacterial
726  ABC transporters and homologs involved in the import of oligosaccharides were

727  examined, which was known to show an exquisite specificity conferred by substrate-
728  binding protein (SBPs) for different HMO molecules (39), including GNB/LNB (galacto-
729  N-biose/lacto-N-biose |) transporter SBP (GItA), FL transporter SBPs (FL1-BP, FL2-BP),
730 and LNnT transporter SBP (NahS). In addition to similarity search on Bifidobacterium
731 genomes and MAGs, we also confirmed the results by searching the metagenomic

732 community gene content, so to verify the target genes are not from species other than
733  Bifidobacterium.

734 Metapangenomes were prepared using the MAGs constructed in this study and

735  publicly available genomes under the species name B. breve (taxID: 1685) and B.
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736  longum (taxID: 216816), listed in Table S6. The metapangenome was constructed

737 using anvi'o vers 6.2 (128) following pangenome workflow (114). Homologous gene

738 clusters (HGCs) were identified in this set of genomes based on all-versus-all sequence
739  similarity. Briefly, this workflow uses BLASTP to compute ANI identity between all pairs
740  of genes, uses the Markov Cluster Algorithm (MCL) (129) to generate homologous gene
741  clusters and aligns amino acid sequences using MUSCLE (130) for each gene cluster.
742  Each gene was assigned to core or accessory according the hierarchical clustering of
743 the gene clusters. Sourmash vers 3.3 (131) was used to compute ANI across genomes.
744  To count as being present in the sample, it had to be at least 50 reads mapping on at
745 least one Bifidobacterium species genomes, and the total abundance had to be at least
746  0.1% after normalizing over the total number of reads. For long-read data sequenced on
747  Pacific Biosciences Sequel Il platform, QC and assembly was performed using Canu-
748 1.8 (86). The assemblies were assigned species name through BLAST to refseq

749  dataset and confirmed with GTDB-Tk v1.1.0 (89). Genome alignment of the assemblies
750 assigned to B. breve was aligned to reference B. breve genome JCM1192 using

751  MAUVE aligner (132, 133).

752 Data and Code Availability. All metagenomicm, metataxonomic and genomic data
753  were deposited under BioProject PRINA774819

754  (https://www.ncbi.nim.nih.gov/bioproject/PRINA774819) for open assessment. lllumina

755  16S rRNA V3V4 gene amplicon and Pacific Biosciences full-length 16S rRNA gene data
756  were deposited in Sequence Read Archive with experiment ID from SRX12805867 to
757 SRX12806634. Data deposition includes samples of positive and negative controls in

758 each plate. Metagenomic data using Pacific Biosciences were deposited in
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759 SRR16598000 and SRR16598001. Metagenomic data using Illumina platform were
760 deposited in the same BioProject with experiment ID from SRX12798907 to

761  SRX12798933. The assembled genomes of B breve were deposited under the

762  accession ID JAJGBR000000000 and JAJGBS000000000. The R code processing
763 these sequences and SAS code used in this statistical analysis are deposited in

764  https://github.com/igsbma/lP microbiome/tree/main/statistical analyses. Detailed

765 information of sequences and annotation of pangenome can be retrieved at

766  https://qgithub.com/igsbma/lP microbiome/tree/main/pangenome.
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1172

1173
1174  FIG 1 Study design. *Demographic, clinical, and nutritional information was collected for

1175  each enrolled preterm neonate. Inclusion: 24°-32° weeks, <4d age. Exclusion criteria
1176 include nonviable or planned withdrawal of care, severe asphyxia, chromosome

1177  abnormalities, cyanotic congenital heart disease, intestinal atresia or perforation,

1178 abdominal wall defects, significant Gl dysfunction, galactosemia or other forms of

1179 galactose intolerance. **Intestinal permeability was measured using urine non-

1180 metabolized sugar probes lactulose and rhamnose day 7-10 post-birth. ***Stool

1181 specimens were collected daily at every stooling event, stored in storage buffer and
1182  archived in -80°C.

1183

1184  FIG 2 Pie chart of feeding types of the preterm infant population in this study (A). Abbr:
1185 MOM: mother’s breastmilk feeding; PHDM: pasteurized human donor’s milk. Boxplot of
1186 the IP measurement grouped by feeding types (B). Correlation between intestinal

1187  permeability and the cumulative amount of mom’s own breastmilk feeding (ml/kg) for a
1188  total of 113 enrolled preterm infants 24%7-325" weeks of gestation were enrolled (C). IP
1189  was calculated using the ratio of urine Lactulose (La) and Rhamnose (Rh), low and high
1190 IP was defined by a La/Rh >0.05 or <0.05, respectively. The total amount of mom’s own
1191  breastmilk feeding was calculated as sum of the daily amount of milk intake per

1192  kilogram bodyweight until d7-10 when the IP was measured. Initial feed was calculated
1193 based on 10 ml/kg expressed breast milk between the first and fourth day of life

1194  depending on clinical stability. After 3-5 days initial feeds, feedings were advanced by

1195 20 ml/kg/d until 100 ml/kg/d was reached. Plotted are interquartile ranges (IQRs, boxes),
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1196 medians (line in box), and mean (diamond). Significance value was calculated using
1197  Wilcoxon rank sum test. Star sign (*) denotes the level of significance. “NS” denotes
1198  non-significant.

1199

1200 FIG 3 Microbial biomarkers and breastmilk feeding in early preterm subjects with high
1201 and low IP. Abundance of bacterial groups stratified by postmenstrual age at study day
1202  7-10. It indicates the Actinobacteria (Bifidobacterium) and Clostridia (Clostridiales) that
1203  were mainly observed in low IP subjects but not in high IP subject (red) (A). The

1204 abundance values of read count for each ASVs are stacked in order from greatest to
1205 least, separate by a horizontal line. Boxplot of the Bifidobacterium relative abundance
1206  and cumulative amount of mom’s breastmilk feeding (ml/kg) during the first 7-10

1207 postnatal days in subjects with high or low IP (B). IP was calculated using the ratio of
1208 urine Lactulose (La) and Rhamnose (Rh), low and high IP defined by a La/Rh >0.05 or
1209 <0.05, respectively. Plotted are interquartile ranges (IQRs, boxes), medians (line in box),
1210 and mean (diamond). Significance value was calculated using Wilcoxon rank sum test.
1211 Star sign (*) denotes the level of significance. “NS” denotes non-significant. Volatility
1212  plot to demonstrate the fluctuation of microbial community diversity (C) (characterized
1213  as Shannon diversity index) and Bifidobacterium diversity over MOM feeding volume in
1214  high or low IP groups (D). Plot was generated in QIIME (2019.10 vers) (106). Non-
1215 overlapping of the vertical error bar at each measuring point was considered

1216  significantly different. Temporal characterization of intestinal microbiota of early preterm
1217 infants to profile changes over the first 21 days post-birth (E). Taxonomic profile was

1218 generated using 16S rRNA gene sequencing. Community type is shown in Fig. S3
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1219 heatmap clusters. The dates when IP was measured, MOM, PHDM, formula feeding
1220 day, antibiotics administration are shown in the plot. Each circle is sized proportionally
1221  the feeding volume. Abbr: MOM: mother’s own breastmilk feeding; PHDM: pasteurized
1222 human donor’s milk.

1223

1224  FIG 4 Phylogenetic tree constructed using 81 unique, full-length 16S rRNA gene ASV
1225 sequences of Bifidobacterium (A). ANI clustering of full-length 16S rRNA gene

1226  sequences (B). Phylogenetic tree of Bifidobacterium ASVs in stool microbiota of cohort
1227  (C). All full-length 16S rRNA genes assigned to Bifidobacterium were used in the

1228 analyses. Color denotes individual subjects.

1229

1230 FIG 5 lllustration of the mature and immature intestinal barrier in neonates. Peristalsis
1231  (reduced intestinal motility), maldigestion of nutrient sources and a compromised gut
1232  barrier may render the mucosa susceptible to invasion by the opportunistic pathogens in
1233  gut environment. The resulting imbalance between epithelial cell injury and repair leads
1234  to a vicious cycle of maldigestion, bacterial invasion, immune activation and

1235 uncontrolled inflammation. lllustration not drawn to scale. Created with BioRender.com.

1236
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1237 TABLE 1 Study cohort demographics and clinical variables stratified by intestinal

1238 permeability (IP) category
1239
1240 TABLE 2 Odds ratio for factors associated with Low IP Adjusted for postmenstrual age

1241 (PMA) and birth weight (BW)
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1242 Supplementary Figures and Table legends

1243  FIG $1 Intestinal permeability (IP) and cohort clinical information. A) Notched boxplot of
1244  |P for early preterm subjects (GA < 33 weeks gestation). Subjects were categorized by
1245 IP-measuring day between study day 7-10 and by IP category. The top and bottom of
1246 the box are the lower and upper quartiles, and the band near the middle of the box
1247  represents the median. The width of the notch can be used to roughly compare two

1248  distributions. For example, two distributions without overlapping notch regions can be roughly
1249  considered as being significantly different from each other (1). IP was measured by non-
1250 metabolized sugar probes lactulose and rhamnose. High IP was defined by a La/Rh
1251 ratio >0.05, as validated and applied previously (2). B) Correlation matrices visualization
1252  of the subjects’ physiological age. R package Correlograms (corrgram) were used to
1253 visualize the correlation matrices. Pearson correlation method used to calculate

1254  correlation. Abbr: PMA at dosing: postmenstrual age calculated at the dosing day when
1255 IP was measured; PMA at enrollment: postmenstrual age at enroliment day taken place
1256  within 1-4 days post-birth; GA: gestational age; BW: birthweight; body weight at dosing:
1257  subject weight measured at the dosing day when IP was measured.

1258

1259 FIG S2 Phylogenetic tree of all ASVs of full-length 16S rRNA gene sequenced on

1260 Pacific Biosciences Sequel Il platform. Package raxml (v8.0.0) (3) was used to construct
1261 the phylogeny, Phyloseq R package (4) was used to display the phylogeny.

1262

1263 FIG S3 Heatmap of the 50 most abundant intestinal bacterial taxa relative abundance in
1264 samples collected from 113 preterm infants enrolled in the study. The fecal microbiota
1265 was characterized by high-throughput sequencing of the V3-V4 variable regions of 16S
1266  rRNA genes. Ward linkage clustering was used to cluster samples based on their

1267 Jensen-Shannon distance calculated in vegan package in R (5). The number of clusters
1268 was validated using gap statistics implemented in the cluster package in R (6) by

1269 calculating the goodness of clustering measure.

1270

1271  FIG S4 Information on bifidobacterial abundance and intestinal permeability (IP). A)
1272 Relative abundance of bifidobacterial bacterial groups stratified by feeding types.
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1273 Phyloseq R package (v1.38.0) (4) was used to generate the barplot. B) The relative
1274  abundance of B. breve between high-IP and low-IP groups. Dependence between C) IP
1275 or D) MOM feeding dose and the log relative abundance of B. breve. An adaptive spline
1276 logistic regression model implemented in spmrf R package (7) was applied to the

1277  phylotypes present in at least 15% of all samples. Bayesian goodness-of-fit p-value
1278 implemented in R package rstan (8) was used to access the significance of the

1279 association between phylotypes and investigated factors.

1280

1281  FIG S5 Metapangenome of Bifidobacterium breve. The 26 in-house B. breve MAGs was
1282  supplemented with 107 published genomes

1283  ( A) and our 4 B. longum MAGs was
1284  supplemented with 310 published genomes

1285 ( B) for pangenome construction
1286 following pangenome workflow (9). B. breve pangenome was displayed using anvi'o
1287 vers 6.2 (10). BLASTP was used to compute ANI identity between all pairs of genes.
1288  Markov Cluster Algorithm (MCL) (11) was used to generate homologous gene clusters
1289 (HGCs). Amino acid sequences of each HGC were aligned using MUSCLE (12). HCG
1290 was assigned to core, accessory or dispensable according the hierarchical clustering of
1291 the gene clusters. Detail of each HGC was in

1292 C. Sourmash vers 3.3 (13) was used

1293 to compute Average nucleotide identity (ANI) across genomes. The source indicates the
1294  isolated origin of the genome, and genomes of the same subject are indicated in the
1295 same cohort.

1296

1297 FIG S6 The complete B. breve genome reconstructed in this study. Metagenomic

1298 sequencing of the two selected fecal samples was performed using the Pacific

1299 Bioscience Sequel Il platform, followed by assembly using Canu v1.8 (14) and

1300 deconvolution using BLASTN of the assembly. This complete genome was 2.34M in
1301  size (https://doi.org/10.6084/m9.figshare.19709923.v1,

1302 C), similar to median B. breve
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1303 genome size of 2.33M reported on NCBI. A) KEGG 2013-03-18 release (15) to

1304 characterize functional categories of B. breve XM1439. B) Circular genome display of B.
1305 breve XM1439, generated by BLAST Ring Image Generator (BRIG) (2011 June vers)
1306 (16). C) Genome alignment of B. breve genome 1439, 1437 using MAUVE (17) using B.
1307 breve DSM20213 as the reference genome.

1308

1309 TABLE S1. Clinical metadata of the 113 early preterm infant subjects used in this study.
1310 TABLE S2. Dependence of demographic, obstetric, and neonatal characteristics with
1311 intestinal permeability (IP) using Hilbert-Schmidt Independence Criterion (HSIC)

1312 implemented in R package dHSIC.

1313 TABLE S3. Taxonomic groups significantly associated with PMA, IP and MOM feeding
1314  volume. Zero-inflated negative binomial random effects (ZINBRE) models were used to
1315  compute significance level of association, which accounts for many zeros as well for
1316 correlations between samples from the same subject. All phylotypes detected in at least
1317  15% samples were modeling using ZINBRE models. PMA, IP and MOM feeding volume
1318 were modeled as continuous value. A) Taxonomic groups associated with PMA, which
1319 was calculated as day of life after birth plus gestational age; B) Taxonomic groups

1320 associated with IP, measured at 7-10 days after birth; C) Taxonomic groups significantly
1321 associated with MOM feeding volume. Abbr: MOM: mother’s own breastmilk feeding.
1322 PMA: postmenstrual age. IP: intestinal permeability.

1323 TABLE S4. Bifidobacterium homologous gene clusters (HGCs) characterized to

1324  involved in human milk oligosaccharides assimilation. Genomes were annotated

1325 through annotative evidences from the nomenclature of the consortium for function
1326  glycomics, eggNOG (v4.5)(18), KEGG (FTP Release 2013-03-18)(15)), Pfam

1327  (v30.0)(19), CAZy (2014 release) (20, 21). Similarity searches were performed to

1328 previously annotated enzymes or transporter proteins based on the accession number
1329 listed in previous studies (22-24), using BLASTP similarity search and confirmed with
1330 the COG, Pfam and CAZy annotation evidence to ensure the integrity of the results. A)
1331  HGCs involved in extracellular enzymes and their homologs involved in extracellular
1332 cleavage of HMOs; B) HGCs characterized as family 1 solute binding proteins (F1SBP);

1333 C) HGCs involved in enzymes for catabolizing HMOs substrates intracellularly; D)
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1334 HGCs characterized as FHMO (Fucosylated Human Milk Oligosaccharide utilization
1335 cluster); E) HGCs involved in sialylated HMO substrates catabolism; F) HGCs involved
1336 in sulfatase catabolism activity.

1337
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TABLE 1 Study cohort demographics and clinical variables stratified by intestinal permeability (IP)

category
Variable
Total cohort High IP Low IP measure
Variables (N=113) (n=48) (n=65) p-value*  d during
(N (%) / meant SD) (n(%)/meanxSD) (n(%)/ mean £ SD) the time-
period
Sex 0.28 starting
Male 61 (54.0) 24 (50.0) 37 (57.0) from
Female 52 (46.0) 24 (50.0) 28 (43.1) enrolime
Race , nt day
White 42 (37.2) 18 (37.5) 24 (37.0) 1.00 (within 1
African American 63 (55.8) 30 (62.5) 33 (50.8) 0.25 to 4 days
Other 8(7.1) 0 8(12.3) 0.02 after
Birth weight (gram) 1377.8 £415.2 1237.3 £ 378.1 1496.5 + 403.0 <0.01 birth
VLBW (<1,500 g) 66 (58.4) 32 (66.7) 34 (52.3) 0.18 dependi
Gestational age (wks) 29.8+23 29.0+2.3 30.5+2.1 <0.01 ng
Early GA (<28 wks) 28 (24.8) 18 (37.5) 10 (15.4) <0.01 on
Postmenstrual age (wks) 31.1+£23 30.3+£23 31.7+21 <0.01 clinical
Early PMA (<31 wks) 41 (36.3) 23 (47.9) 18 (27.7) 0.03 stability)
Caesarean delivery 77 (68.1) 37 (77.1) 40 (61.5) 0.10 until the
PPROM 36 (31.9) 15 (31.3) 21(32.3) 1.00 day
Preeclampsia 25 (22.1) 11 (23.0) 14 (21.5) 1.00 when IP
Antenatal corticosteroids 106 (94.0) 46 (96.0) 60 (92.3) 0.70 was
Maternal antibiotics 69 (61.1) 30 (62.5) 39 (60.0) 0.85 measure
APGAR Score at 1 min 58+25 5.3+2.8 6.2+2.1 0.04 d (day
APGAR Score at 5 min 7.7+16 75+£19 79+16 0.12 812
Antibiotic types post-
Ampicillin received 64 (56.7) 30 (62.5) 34 (52.3) 0.33 birth).
Gentamycin received 56 (49.6) 25 (52.1) 31 (47.7) 0.70
Vancomycin received 8(7.1) 6 (12.5) 2(3.1) 0.07
Cefotaxime received 9(8.0) 6 (12.5) 3 (4.6) 0.16
Received at least one antibiotic vs. no 68 (60.2) 33 (68.8) 35 (563.9) 0.12
antibiotics®
Antibiotics days received®
< 3 days 83 (73.5) 30 (62.5) 53 (81.5) 0.03
> 3 days 30 (26.6) 18 (37.5) 12 (18.5)
Days received MBM?
<4 days 26 (23.0) 20 (41.7) 6 (9.2) <0.01
> 4 days 87 (77.0) 28 (58.3) 59 (90.8)
Feeding duration (number days)?
Mother’s own breast milk 48+23 4427 55 +1.5 <0.01
Formula 1.3+23 2+27 0.8+1.6 0.02
Feeding intake volume received®
Mother’s own breast milk 200.8+178.8 123.4 +154.2 263.0 + 175.6 <0.01
Formula 61.7 + 146.7 99.8 + 194.7 32.8+91.2 0.03
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TABLE 2 Odds ratio for factors associated with Low IP Adjusted for postmenstrual age (PMA) and

birth weight (BW)?
OR 95% CI p-value® Adjusted OR® 95% CI p-value®
Duration of antibiotics use®
< 3 days 2.65 1.12,6.25 0.02 1.56 0.58,4.16  0.37
> 3 days 1.0 (Ref) 1.0 (Ref)
Duration of MOM feeding®
2 4 days 7.04 25,196  <0.01 10.30 3.21,33.33 <0.01
< 4 days 1.0 (Ref) 1.0 (Ref)

@Fisher’s exact test was used to calculate p value for categorical variable. Student’s t-test was used for continuous

variables (BW, GA, PMA, APGAR score at 1 minute and 5 minutes). IP was calculated as the ratio of urine Lactulose (La)
and Rhamnose (Rh) and La/ Rh < 0.05 was defined as low IP.
bVariable measured during the time-period starting from enrollment day (within 1 to 4 days after birth depending on clinical
stability) until the day when IP was measured (day 8+2 post-birth).

¢Adjusted OR model includes PMA and BW.
dp-value calculated using logistic regression.

ABBR: IP, Intestinal Permeability; PPROM, Premature Preterm Rupture of Membranes; BW: Birth Weight; VLBW, Very
Low Birth Weight; MOM, Mothers own breastmilk; GA, Gestational Age; PMA, Postmenstrual Age; OR, Odds ratio; Cl,

confidence interval
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