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Abstract

Despite extensive efforts to address it, the vastness of uncharacterized ‘dark matter’ microbial
genetic diversity can impact short-read sequencing based metagenomic studies. Population-
specific biases in genomic reference databases can further compound this problem. Leveraging
advances in long-read and Hi-C technologies, we deeply characterized 109 gut microbiomes from
three ethnicities in Singapore to comprehensively reconstruct 4,497 medium and high-quality
metagenome assembled genomes, 1,708 of which were missing in short-read only analysis and
with >28x N50 improvement. Species-level clustering identified 70 (>10% of total) novel gut
species out of 685, improved reference genomes for 363 species (53% of total), and discovered
3,413 strains that are unique to these populations. Among the top 10 most abundant gut bacteria
in our study, one of the species and >80% of all strains were not represented in existing
databases. Annotation of biosynthetic gene clusters (BGCs) uncovered more than 27,000 BGCs
with a large fraction (36-88%) not represented in current databases, and with several unique
clusters predicted to produce bacteriocins that could significantly alter microbiome community
structure. These results reveal the significant uncharacterized gut microbial diversity in Southeast
Asian populations and highlight the utility of hybrid metagenomic references for bioprospecting
and disease-focused studies.


https://doi.org/10.1101/2022.05.05.490740
http://creativecommons.org/licenses/by-nc-nd/4.0/

37

38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.05.490740; this version posted May 5, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Introduction

While estimates for microbial diversity on Earth vary widely, studies suggest that there are nearly
a million prokaryotic species of which only around 20,000 have been cultured*?. The use of
culture-free metagenomic techniques has therefore been key to unravel this ‘dark matter’ of
genetic diversity on Earth. Microbial communities in a wide-range of biospheres have been
explored, including terrestrial®, aquatic* and extreme environments>, as well as plant, animal and

7-11 and

human-associated microbiomes®. Improvements in metagenomic assembly workflows
computing resources have further enabled the assembly of these large datasets to construct
metagenome-assembled genomes (MAGs) that serve to augment isolate-based reference
genome databases?!3, Despite this, existing databases only represent approximately 48,000
species with genome sequences, and the accuracy and completeness of short-read based MAGs

is frequently lower than isolate-based references?.

Human gut metagenomes represent an area of intense scientific interest due to their
association with various cancers, metabolic, immunological and neurological disease
conditions'#>, Metagenome-wide association studies frequently rely on the completeness of
reference genomes to correctly assign short reads to taxa, and link microbial genes and function
to diseases®®. In particular, existing studies suggest that there might be key population-specific
differences in metagenomic associations with various diseases'’™'°. The availability of a large
number of short-read metagenomic datasets (e.g. >20,000 for human gut in public repositories)
has spurred the generation of MAG reference collections based on short-read assembly320-22,
While these studies have added an impressive collection of genomes to existing databases, it is
unclear yet if they are representative of the genetic diversity seen in gut metagenomes around
the world. In addition, recent advances in sequencing assays (e.g. Hi-C?3, read cloud?*), hybrid?®
and long-read metagenomic analysis?® have sought to address the shortcomings of short-read
metagenomics, and opened the possibility that long-read based MAGs can provide near-
complete genomes rivaling isolate genomes in quality. As access to genome sequencing becomes
democratized and gut metagenomes are explored in understudied populations, the strategy and
value for establishing population-specific MAG references remains an open question.

Leveraging the availability of a multi-ethnic (Chinese, Malay and Indian) healthy adult
cohort representing major Asian populations in Singapore, a city-state with high population
density, we deeply characterized 109 gut metagenomes with state-of-the-art short read, long
read and Hi-C technologies (Singapore Platinum Metagenomes Project — SPMP). The resulting
datasets were assembled to produce high-quality references that significantly improve existing
databases in assembly quality (>28x N50 improvement), helped identify 70 previously
uncharacterized gut microbial species (>10% novel) and more than 3,400 strains in Southeast
Asian populations, and uncovered thousands of novel BGCs that serve as a resource for
bioprospecting. The ability to substantially augment existing databases through in-depth hybrid
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74  metagenomic analysis highlights the value of this strategy, the importance of uncharacterized
75  microbial diversity in Asia, and serves as a template for population-specific ‘platinum’
76  metagenome references for precision medicine programs around the world.

77  Results
78  Generation of a population-specific high quality gut microbial reference catalog

79  To explore the utility of various metagenomic strategies for generating a high-quality gut
80  microbial reference database for a population, subjects from an existing multi-omics study in
81  Singapore?’” were recruited to provide stool samples with informed consent (n=109;
82  Supplementary File 1, Methods). Samples were collected using a kit designed for preserving
83  anaerobes, DNA was extracted with a protocol optimized for high molecular weight, and shotgun
84  sequencing was performed using short (lllumina, 2x151bp, average depth=9.4Gbp,
85  Supplementary File 2) and long read (Oxford Nanopore Technologies - ONT, median N50=8.6kbp,
86 average depth=5.8Gbp, Supplementary File 2) technologies, along with high-throughput
87  chromosome conformation capture (Hi-C) analysis for a subset of samples (n=24; Supplementary
88  Figure 1, Supplementary File 2, Methods). The distribution of taxa in both sequencing
89  technologies (Illumina and ONT) were confirmed to be highly concordant (median correlation
90 coefficient p=0.90), enabling joint analysis of both datasets (Supplementary Figure 2).

91 We next compared the commonly used short-read strategy for building MAG reference

13,20-22 '\yith a recently proposed hybrid assembly strategy?®, for their utility in building

92  collections
93  a population-specific database (Methods). From a cost perspective, we noted that the hybrid
94  strategy required <5150 in additional sequencing costs per sample (~*100% increase in total cost)
95 and marginal increase in cloud computing cost per sample (Supplementary Note 1). This in turn
96  was observed to result in >61% increase in the number of genomes produced per sample (>15
97  additional MAGs; Figure 1A) with the hybrid strategy, with some samples yielding >80 genomes.
98  Overall, 4,497 MAGs were obtained with hybrid assembly for 109 samples, versus 2,789 MAGs
99  with short-reads alone (Supplementary File 3), with several abundant gut bacterial genera having
100  enhanced representation within hybrid assemblies (e.g. Bifidobacterium, Faecalibacterium and
101  Blautia; Figure 1B). This was observed to substantially improve read assignment to the reference
102  genome database, ensuring that much fewer genomes were not detected, and with computed
103 relative abundances being more consistent for hybrid assemblies versus short-read assemblies
104  (Figure 1C). Overall, hybrid assemblies consistently improved the recovery of genomes across
105 genera, with no significant bias to any specific genera, highlighting the versatility of this approach

106  (Supplementary Figure 3).

107 Incorporation of long-read data in hybrid assemblies enabled marked improvements in
108  assembly contiguity (>28x) as reported previously?®, with an average N50 of 339kbp (L50=12)
109  with hybrid assembly relative to an N50 of 12kbp with short reads alone (Figure 1D). This was
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110  also accompanied by a notably lower level of chimerism (<10% vs >20% with short-read
111  assemblies) and similar annotated gene lengths as short-read assemblies (Supplementary Figure
112 4), suggesting that hybrid assemblies are robust to indel errors in long reads. Overall, this
113 provided higher quality genomes based on MIMAG critera?® after binning'®, where many hybrid
114  MAGs had correctly reconstructed rRNA genes??, and no such MAGs were obtained with short-
115  read only assembly (Figure 1E, Methods). To assess if the quality of MAGs could be improved

116  further, Hi-C data was used to assist in contig binning3°-3>

. This was found to marginally increase
117  the proportion of high-quality MAGs obtained, and double the proportion of near-complete
118 genomes, with similar average assembly contiguity (Supplementary Figure 5, Supplementary
119  File 3). As the per sample cost of Hi-C analysis is currently high (>$500), studies for generating

120  population-specific references will need to consider this cost-benefit tradeoff.

121 Hybrid assembled genomes in SPMP were assigned taxonomy based on the Genome
122  Taxonomy Database? (GTDB) and compared to existing reference genomes to assess their utility.
123 SPMP genomes were found to provide notably improved references for most GTDB species, for
124 both isolates (>6x increase in N50) as well as uncultivated organisms (>13x; Figure 1F). While
125 the improvement in assembly is expected for uncultivated organisms that are primarily
126  assembled using short-read metagenomics, the observed improvement for isolates (albeit
127  smaller, Wilcoxon p-value=1.25x101?) is noteworthy as long-read sequencing is commonly used
128  and the assembly problem is expected to be simpler. Overall, SPMP genomes provided high-
129  quality references for 110 GTDB species, 46 of which have isolates, highlighting the value of a
130  ‘platinum’ metagenomics approach for augmenting existing reference genome databases (Figure
131 1G).

132 Asian gut metagenomes harbor substantial uncharacterized gut microbial diversity

133 By encompassing three major Asian ethnicities (Chinese, Malay, Indian) in Singapore we
134  anticipated that the SPMP would be a useful resource to explore Southeast Asian gut microbial
135  diversity, and tested the idea of population-specific MAG reference catalogs (Supplementary
136  Figure 6). Subsampling based rarefaction analysis with SPMP MAGs showed that with as few as
137  a 100 subjects, >90% of the estimated recoverable (at the genomic level) gut microbial species
138  diversity of the Singaporean population was represented in the SPMP catalog (Figure 2A,
139  Methods). Similarly, with a reference genome collection that is 1/6%" the size of a public gut
140  microbial reference database'® (UHGG; 18Gb vs 3Gb), SPMP can be used to identify more gut
141  bacterial reads from an independent Singaporean study (manuscript under review; 92% vs 91%),
142 and classify substantially more reads at the genome-level when database sizes are similar (81%
143 vs 67%; Supplementary Figure 7). These results indicate that while the urban populations in
144  Singapore have broadly similar representation of gut microbes, their genome sequences are still
145  substantially distinct to impact mapping-based gut metagenome analyses.
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146 To understand microbiome variability across ethnicities and its utility to discover new
147  biological insights, we used multivariate regression analysis® to explore relationships between
148  gut metagenome composition and demographic factors (e.g. sex, age, ethnicity). Interestingly,
149  more than 60% of the taxonomic associations discovered (91 out of 133; FDR-adjusted p-
150  value<0.05) were related to ethnicity, with 23 gender-specific and 19 age-based associations
151  (Supplementary File 4). We then aggregated SPMP MAGs into species-level clusters (SLCs, 95%
152  identity), annotating them with publicly available reference genome collections (Supplementary
153  Figure 8, Methods) to identify 70 putative new species for which no genomes have been available
154  previously, despite large-scale MAG generation efforts®*3 (Figure 2B). Surprisingly, these putative
155 new species represent >10% of the species-level clusters obtained (n=685) and are in addition to
156  the 363 clusters that only have MAGs and no isolate genomes in existing databases (GTDB:
157  https://gtdb.ecogenomic.org/, based on systematic analysis of curated genomes in RefSeq:

158  https://www.ncbi.nlm.nih.gov/refseq/ and GenBank: https://www.ncbi.nlm.nih.gov/genbank/).
159  More than 50% of the novel SLCs (38 out of 70) were only assembled with hybrid assembly and
160  were missing in short-read assembilies. In addition, hybrid assemblies provided a >13x median

161  N50 improvement overall, generating nearly all of the high-quality and near-complete genomes
162  for the novel SLCs (19 out of 20), highlighting the utility of this strategy for capturing microbial
163 diversity. In comparison to a recently published resource for under-represented East and South
164  Asian populations?> we found that most species were still novel (87%, 61/70) emphasizing the
165 importance of generating population-specific references.

166 Among the novel SLCs, in addition to representatives in nearly all orders commonly
167  containing gut microbes (e.g. Bacteroidales), we noted that 17 could be classified to the order
168  Coriobacteriales while an additional 7 were assigned to Christensenellales, both of which are
169  relatively understudied gut bacterial orders with high diversity in general and few isolates
170  (Supplementary Figure 9). Additionally, three novel SLCs with high-quality MAGs represent the
171  only available genomes for the corresponding genera (SLC637 — closest match Phocaeicola, <83%
172  identity; SLC487 and SLC667 — closest match Butyricicoccus, <81% identity), while one of the
173 novel SLCs is among the top 10 most abundant SLCs within the gut microbiomes of SPMP subjects
174  (SLC612; Supplementary Figure 10). We noted that SLC612 is significantly more abundant in the
175  gut microbiomes of Singaporean populations than in western subjects, potentially explaining why
176 it was not assembled in previous large-scale studies, and emphasizing the need for population-
177  specific references for even common gut bacteria (Supplementary Figure 10).

178 At the strain-level (99% identity), SPMP genomes were notably unique compared to
179  >200,000 genomes in the UHGG database, with 3,413 novel strains out of 3,891 (87% novel,
180  Methods). Among the top 20 most abundant gut bacterial species in SPMP, less than 20% of the
181  strains were represented in UHGG, with only the keystone gut commensal Bacteroides uniformis
182  having >40% of its strains being represented by genomes from other populations (Figure 2C). For
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183  species that are extensively characterized due to their use as probiotics such as Bifidobacterium
184  adolescentis and Bifidobacterium longum, we noted that while many strain genomes have been
185  obtained from isolates (>30; Supplementary Figure 11), SPMP MAGs reveal an even greater
186  uncharacterized diversity in the Singaporean population (>50 novel strains; Figure 2C,
187  Supplementary Figure 11) that could be leveraged for probiotic discovery.

188 To explore the utility of the SPMP database for bioprospecting and discovering secondary
189  metabolic pathways that may be important for gut microbiome structure and function, we
190  combined comparative3’ and deep learning3® based approaches for annotating biosynthetic gene
191  clusters with high stringency filters (BGCs, Methods). In total, we identified 27,084 BGCs
192  (DeepBGC: 23,175; antiSMASH: 3,909) that grouped into 16,055 gene cluster families by BiG-
193  SCAPE?*® (GCFs; Figure 2D). More than 90% of the GCFs (15,134) did not display similarity to
194  previously known BGCs in curated standard databases (antiSMASH and MIBiG) and were not
195 found in annotations within an extensive collection of gut microbial reference genomes (HRGM,
196  Methods), highlighting the value of using complementary algorithms for bioprospecting in new
197  populations. We estimated that >85% of SPMP GCFs were not represented in curated databases,
198  even when only a higher confidence set of predictions from antiSMASH was considered, while
199  49% of GCFs were novel even after taking into account more extensive HRGM antiSMASH
200  annotations (Supplementary Figure 12, 13).

201 While a significant fraction of GCFs were predicted to encode for saccharides (N=5,888,
202  37%), in line with their important functions in microbe-microbe and microbe-host interactions*®,
203  many novel GCFs appear to encode diverse bioactive compounds such as ribosomally translated
204  and post translationally modified peptides (RiPPs), polyketides and non-ribosomal peptides
205  (NRPs) (Figure 2D), some of which may have antimicrobial function (Supplementary Note 2). In
206  particular, a group of GCFs not represented in curated databases was predicted to synthesize a
207  bacteriocin in a Blautia species, with 3 distinct gene configurations and genes encoding enzymes
208  for peptide modification (radical SAM superfamily) and ABC transporter genes (GCF382/271/37,
209  Figure 2E). Analyzing the structure of the microbial community in samples with and without the
210  novel GCFs identified distinct networks, with presence of GCF382/271/37 associated with strong
211  negative correlations between the Blautia species and multiple Faecalibacterium species
212 including Faecalibacterium prausnitzii (Figure 2F, Methods). Together with the known role of
213 Faecalibacterium species in gut health*#2, these observations highlight the importance of
214 comprehensively identifying secondary metabolic pathways for understanding gut metagenome
215  function in human diseases.

216 Discussion

217  Despite the growing number of gut microbiome studies worldwide, including from remote
218  populations in the Americas*® and hunter-gatherer tribes in Africa*t, the gut microbial diversity
219  of Asian populations remains understudied®. Singapore represents a microcosm of multiple
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220  major Asian ethnic populations (Chinese, Malay and Indian) living in the shared environment of
221  a modern metropolis. While there has been extensive study of gut metagenomes of ethnic
222 Chinese individuals from China, fewer studies have involved individuals from Southeast Asia and
223 India. The SPMP can thus represent an important reference for these populations, in addition to
224 Singaporean studies. More broadly, we anticipate that the microbial diversity seen in SPMP might
225  be similar to what would be observed in other major urban centers in Asia (e.g. New Delhi,
226  Jakarta, Tokyo, Hong Kong), but is likely the ‘tip of the iceberg’ when considering rural and
227  nomadic populations.

228 Various parameters are likely to define the appropriate strategy for a study similar to
229  SPMP in other countries, including cost, targeted quality of reference genomes, ease of
230  technology access, and availability of sufficient number of samples from a representative
231  baseline cohort in the country. While we attempted to employ multiple different technologies
232 for SPMP to get high-quality assemblies, we chose the middle-ground in terms of cost and
233 accessibility as this is an important consideration for many countries. In particular, even higher-
234 quality metagenomic assemblies are possible if HiFi reads from the Pacific Biosciences Sequel lle
235  system are available®. Also, the recent announcement of higher-quality reads from ONT could
236  help improve assembly further and reduce costs*’. Even as the sequencing landscape is
237  constantly changing, the results from our study suggest that high-quality population-specific
238  metagenomic references are already feasible with a modest-sized cohort and limited sequencing
239  resources.

240 The advantages of having high-quality references for metagenomics are similar to what
241  other areas of genetics and studies in model organisms have benefited from i.e. substantially
242  reduced cost and effort in future studies by: (i) allowing the use of short reads or a single
243 sequencing assay/technology, (ii) enabling increased sensitivity in identification of genomic
244  features using reference-based approaches (e.g. taxonomic classifiers for metagenomics), (iii)
245  ensuring that there are fewer ‘dark matter’ reads whose origin is unknown. We envisage that
246  efforts such as SPMP will benefit the scientific community by spurring greater adoption of
247  reference-based analyses in metagenome-wide association studies*®4°. Additionally, as we noted
248  in Figures 1F and 1G, the quality of genomes that can be obtained using metagenomics is now
249  comparable or better than what can be obtained from the sequencing of microbial isolates,
250  especially with short reads. This can galvanize efforts to genetically map microbial ecosystems in
251  diverse biospheres, further contributing to the references available to study human
252 microbiomes, and understanding of strain sharing between humans and the environment. As
253  sequencing costs, ease of use and accessibility of new technologies, and metagenomic assembly
254  algorithms improve, we can expect that a majority of the high-quality microbial references that
255  will be used in the future would be obtained through metagenomics, thus helping to bridge the
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256  knowledge gap for the hundreds of thousands of microbial species that are estimated to be there
257  on Earth.

258  The detection of 70 putative novel species in SPMP is perhaps not surprising given the unexplored
259  microbial diversity and the limitations of current genetic databases. However, it is noteworthy
260  that this is still a substantial fraction of the species detected in this study (>10%, Figure 2B), and
261  while some of these species are not frequently detected across individuals, one of them was in
262  the top 10 most abundant gut bacterial species, while others may still play a significant role in
263  the biology of some individuals by being sporadically abundant (e.g. SLC665 which is among the
264  top 20 most abundant species in 5% of subjects). Not surprisingly, at the strain-level an even
265 larger fraction of the observed genetic diversity was novel, but what was notable was that this
266  was true even for the more abundant and well-studied species in the gut microbiome (e.g.
267  Bacteroides uniformis and Bifidobacterium adolescentis, Figure 2C). These observations highlight
268  the overall value of such studies for discovering probiotic strains that could be leveraged for
269  population health, with modest investments in metagenomic analysis cost (<$40,000), making it
270  feasible for national microbiome projects around the world.

271 Finally, the identification of >23,000 BGCs in the SPMP database that were not represented in
272  existing annotated databases (88% of total, Figure 2D) highlights that we are only scratching the
273  surface in terms of harnessing microbial pathways and functions for synthetic biology and
274  biotechnology applications. This was made possible by the high-contiguity of our hybrid
275  assemblies (>28x N50 relative to short-read assemblies), and the characterization of distinct,
276  underrepresented South-East Asian populations in SPMP harboring substantial novelty relative
277  to curated BGC databases (>85%) and annotated reference genomes (49%, Supplementary
278  Figure 12, 13). The gut microbiome by virtue of being a dynamic, host-associated community with
279  high diversity of microbes is a rich hunting ground for host-modulating, macro-nutrient
280  catabolizing and micro-nutrient synthesizing functions®®>. In addition, homeostasis in the gut
281  microbiome may be maintained by key members of the community through the selective
282  expression of antimicrobial peptides®? (AMPs), and correspondingly we identified hundreds of
283  novel BGCs encoding putative bacteriocins, sactipeptides, lanthipeptides and lassopeptides that
284  can now be further characterized (Supplementary Note 2). Notably, we found evidence that the
285  presence of a BGC in a common Blautia species is associated with significant changes in overall
286  gut microbiome community structure for SPMP subjects (Figure 2F). Together these results
287  highlight the potential for novel AMPs discovered in SPMP to provide genetic templates for
288  further optimization, and subsequent use to modulate the gut microbiome, or as new
289  antimicrobials to target multi-drug resistant pathogens.
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290 Figure Legends

291  Figure 1. Assembly strategy for high-quality microbiome references. (A) Boxplots showing the
292  number of MAGs obtained across metagenomic datasets using short-read and hybrid assemblies
293  (n=109). (B) Stacked barchart showing genus-specific breakdown of the number of MAGs
294  obtained using short-read and hybrid assemblies (left) and boxplots for corresponding relative
295 abundances of the genera (right). (C) Scatter-plot showing the relative abundance of
296  Bifidobacterium genomes estimated using short-read or hybrid assemblies for a sample (y-axis)
297  versus corresponding relative abundances obtained using the default Kraken2 database (x-axis).
298 (D) Violin plots showing the distribution of a contiguity metric (N50 — largest contig size where
299  >50% of the genome is in larger contigs) for short-read and hybrid assembly based MAGs. (E)
300  Stacked barcharts showing the relative proportion of MAGs satisfying different MIMAG quality
301  standards with short-read and hybrid assemblies of SPMP datasets. (F) Violin plots showing the
302 relative improvement in contiguity (N50) obtained using hybrid assembly MAGs from SPMP
303 relative to matched genomes in the GTDB database. (G) Barcharts showing the number of GTDB
304 reference genomes which were improved from medium to high MIMAG quality using SPMP
305 MAGs. Center lines in the boxplots represent median values, box limits represent upper and
306 lower quartile values, whiskers represent 1.5 times the interquartile range above the upper
307 quartile and below the lower quartile, and all data points are represented as dots in the figures.

308 Figure 2. Characterization of novel species, strains and gene families in SPMP genomes. (A)
309 Collection curve analysis showing that the SPMP database covers a substantial fraction of the
310  species level diversity in its MAGs. (B) Pie-chart showing the breakdown of species-level clusters
311  in SPMP that have an isolate genome, only have MAGs (uncultivated) and are novel compared to
312 genomes in public databases (UHGG, GTDB, SGB). (C) Stacked barcharts showing the number of
313  SPMP strains that have an isolate genome, only have MAGs (uncultivated) and are novel
314 compared to all UHGG genomes (>200,000, <99% ANI). The species shown are the top 20 in terms
315 of median relative abundance in SPMP (most abundant on the left). (D) Stacked barcharts
316 showing the number of BGCs (top) and GCFs (bottom) in different product classes that are
317  present or absent in existing annotations comprising of the antiSMASH and MiBIG databases as
318  well as antiSMASH annotations from HRGM. Inset piecharts show the overall breakdown. (E)
319 Synteny plots showing the conservation of gene order and orientation (colored arrows,
320 relatedness shown by vertical lines) for a novel GCF (GCF382) and related families. (F) Network
321 diagrams depicting correlations between gut microbial species (nodes — species, edges —
322 significant correlations) and overall microbiome structure in SPMP metagenomes when stratified
323  based on presence or absence of GCF 382/271/37 (or missing the corresponding transporter
324  gene) in a Blautia species (enlarged teal node, solid edges to correlated species, dashed edges
325  between other nodes).
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326 Methods
327  Subject recruitment

328  Subjects for this study were recruited based on recall from a community-based multi-ethnic
329  prospective cohort?’ that is part of the Singapore Population Health Studies project (SPHS -
330 formerly Singapore Consortium of Cohort Studies). Subjects in SPHS were recruited to participate
331 in the National Health Survey, where subjects were selected at random using age- and gender-
332  stratified sampling to obtain a representative sample set of residents in the country. At the point
333  of recruitment in 2008, subjects did not have any pre-existing major health conditions
334  (cardiovascular disease, mental illness, diabetes, stroke, renal failure, hypertension and cancer)
335  based on self-reporting?’. The ethnicity of each subject was confirmed verbally so that all four
336 grandparents of the subject belonged to the same ethnic group. Informed consent was obtained
337  from all participants and the associated protocols for this study were approved by the National
338  University of Singapore Institutional Review Board (IRB reference number H-17-026).

339  Sample collection

340 Fecal samples were collected from healthy subjects using the BioCollector™ kit (The
341  BioCollective, Colorado, USA). Samples were kept at -20°C until they were brought into an
342  anaerobic chamber (atmosphere of N; (75%), CO, (20%) and H. (5%)). Fecal samples were
343  homogenized and subsamples transferred into sterile 2 mL centrifuge tubes.

344 DNA extraction

345  Genomic DNA was extracted from fecal material (0.25 g wet weight) using the QlAamp Power
346  Fecal Pro DNA kit (QIAGEN GmbH, Cat. No. 51804) and was quantified using Qubit dsDNA BR
347  Assay Kit (Thermo Fisher Scientific, Cat. No. Q32853). Integrity of the extracted DNA was verified
348  using 0.5% agarose gel electrophoresis.

349  lllumina library preparation and sequencing

350 Metagenomic libraries were prepared with a standard DNA input of 50ng across all samples,
351  using NEBNext® Ultra™ Il FS DNA Library Prep Kit for lllumina (New England Biolabs, Cat. No.
352 E7805), according to the manufacturer’s instructions. The reaction volumes were, however,
353 scaled to a quarter of the recommended volumes for cost effectiveness. Barcoding and
354  enrichment of libraries was carried out using NEBNext® Multiplex Oligos for Illumina® (96 Unique
355 Dual Index Primer Pairs; New England Biolabs, Cat. No. E6440). Paired-end sequencing (2x151bp
356 reads) was carried out on the lllumina HiSeq4K platform.

357  ONT library preparation and sequencing

358  Purity and integrity of DNA was assessed and ensured to fall within recommended ranges before
359 library preparation. To preserve the integrity of DNA, the shearing step was omitted and DNA
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360 was used directly for DNA repair and end-prep. Single-plex libraries were prepared using 1D
361 sequencing kit (Oxford Nanopore Technologies, SQK-LSK108 or SQK-LSK109) according to the “1D
362 Genomic DNA by ligation” protocol. For samples that were multiplexed (12-plex), the native
363  barcoding kit (Oxford Nanopore Technologies, EXP-NBD103 or EXP-NBD104 and EXP-NBD114)
364 was used and libraries were prepared according to the “Native barcoding genomic DNA”
365 protocol. Both native barcode ligation and adapter ligation steps were extended to 30 min
366 instead of 10 min. Single-plex samples were sequenced on either the MinlON or GridION machine
367  with either FLO-MIN106D or MIN106 revD flowcells. Multiplex samples were sequenced on the
368 PromethlON machine with FLO-PRO002 flowcells. Raw reads were basecalled with the latest
369 version of the basecaller available at the point of sequencing (Guppy v3.0.4 to v3.2.6). Basecalled
370 nanopore reads were demultiplexed and filtered for adapters with gcat (v1.1.0
371  https://github.com/nanoporetech/gcat).

372  Hi-C library preparation and sequencing

373  Hi-C libraries were generated using Phase Genomics ProxiMeta kit (version 3.0), based on the
374  standard protocol. Briefly, 500 mg fecal material was crosslinked for 15 minutes at room
375 temperature with end-over-end mixing in 1 mL of ProxiMeta crosslinking solution. Once
376  crosslinking reaction was terminated, quenched fecal material was rinsed. Sample was
377 resuspended and a low-speed spin was used to clear large debris. Chromatin was bound to SPRI
378 beads and incubated for 1 hour with 150 pL of ProxiMeta fragmentation buffer and 11 pL of
379  ProxiMeta fragmentation enzyme. Once washed, beads were resuspended with 100 pL of
380 ProxiMeta Ligation Buffer supplemented with 5 pL of Proximity ligation enzyme and incubated
381  for 4 hours. After reversing crosslinks, the free DNA was purified with SPRI and Hi-C junctions
382  were bound to streptavidin beads and washed to remove unbound DNA. Washed beads were
383 used to prepare paired-end deep sequencing libraries using ProxiMeta Library preparation
384 reagents. Paired-end sequencing (2x151bp reads) was carried out on the lllumina HiSeq4K
385 platform.

386  Sequence quality assessment

387 Illumina and ONT read statistics were generated with Fastg-Scan (v0.4.1,
388  https://github.com/rpetit3/fastqg-scan) and NanoStat>® (v1.4.0), respectively. To assess

389  taxonomic concordance, Illumina and ONT reads were classified with Kraken2>* (v2.1.1, UHGG
390 database’®) and relative abundances were estimated with Bracken>® (v2.6.1) at the species level
391 (option -l R7) to compute Pearson correlation coefficients per sample.

392  Metagenomic assembly and binning

393  Illumina reads were assembled using MEGAHIT® (v1.04, default parameters) and hybrid
394  metagenomic assemblies were generated with Illumina and ONT data using OPERA-MS?® (v0.9.0,
395  --polish). Contigs were binned with MetaBAT2' (v2.12.1, default parameters). Hi-C binning was
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396 provided by Phase Genomics using its internal pipeline with MetaBAT results for hybrid
397 assemblies as a starting point. Assembly bins were evaluated based on MIMAG standards?®, with
398  contamination, completeness and N50 values determined with CheckM>® (v1.04), and non-
399  coding RNA annotations from barrnap (https://github.com/tseemann/barrnap) (v0.9) and
400 tRNAscan-SE°’ (v2.0.5, default parameters). Assembly bins with contamination <10% and
401 completeness >50% were designated as medium quality MAGs, those with contamination <5%

402  and completeness >90% as near complete MAGs, and additionally near complete MAGs with
403 complete 5S, 16S and 23S rRNA genes and at least 18 unique tRNA genes were classified as high
404  quality MAGs. All other bins were classified as low quality and were removed from further
405  analyses. In total, 4,497 medium quality, near complete and high quality MAGs were designated
406  as being part of the SPMP database. Hybrid and short-reads assembly based MAGs were further
407  assessed for chimerism with GUNC®® (v1.0.4, detailed output). Coding sequence lengths obtained
408  from Prodigal®® (v2.6.3) calls were compared between the two datasets to assess the potential
409  impact of long read indel errors on gene annotation. Concordant with prior work showing that
410  hybrid metagenomic assemblies can have high base-pair accuracy?’, we also noted that SPMP
411  MAGs independently assembled from distinct individual gut metagenomes could exhibit high
412  average nucleotide identity (>99.99%, consistent with Q40 quality).

413  Annotation of MAGs with the Genome Taxonomy Database

414  The SPMP database was compared to the GTDB database? (release 95) using GTDBtk’s®° (v1.4.1)
415  ani_rep command with default arguments, which leverages MASH®? (v2.3) to provide pairwise
416  genome-wide similarity values between all query MAGs and GTDB sequences. Only pairs with
417  MASH distance <0.05 were retained and used to define the best match for each SPMP MAG based
418  on minimum MASH distance. GTDB matches were classified based on their metadata as being
419  uncultivated (“derived from environmental sample” or “derived from metagenome”) or based
420  on isolate strains. Both N50 values and MIMAG classifications were extracted from GTDB
421  metadata. MAGs were placed into a phylogenetic tree using GTDB_TK (v1.4.1) with classify_wf
422  (default options), based on pplacer_taxonomy values. To assess novelty in light of the latest
423  human gut metagenome database, we further compared our MAGs to the 5,414 representative
424  genomes from the Human Reference Gut Microbiome catalog (HRGM)?? with a similar MASH
425  analysis (Supplementary File 5).

426  Species and strain-level clustering

427  MAGs were clustered at the species (95%) and strain-level (99%) based on average nucleotide
428  identity estimates (ANI; using MASH with sketch size of 10k and k-mer size of 21bp) with
429  agglomerative clustering (sklearn v0.23.2, AgglomerativeClustering function, options:
430 linkage="single", n_clusters=None, compute_full_tree=True, affinity="precomputed"). For each
431  cluster, representative MAGs were defined using the highest eigen centrality value based on a
432  weighted network graph produced by networkx (v2.5; eigenvector_centrality function). Strain-
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433  level clustering was done jointly with all species-level matches from the UHGG database (v1.0,
434  ANI threshold of 95%). Phylogenetic analysis at the strain-level was conducted using the
435  biopython Phylo package®?, based on pairwise distances generated with FastANI®® (v1.32).
436  Phylogenetic trees were visualized using FigTree (tree.bio.ed.ac.uk/software/figtree).

437  Species assignment

438  Species-level clusters (SLCs) were assigned putative species name and types based on
439  comparisons with multiple databases, including GTDB, Pasolli et al®* (SGB) and Almeida et al*3
440 (UHGG). SLCs types were defined as, (i) isolate: if GTDB match to an isolate was found (mash
441  distance <0.05), (ii) uncultivated: if a match to any database was found, but no isolates, (iii) novel:
442  if no matches were found. SLCs were assigned putative species names based on a majority rule
443  for MAGs in the cluster, with preference for GTDB ids (Supplementary Figure 8).

444  Species abundance and rarefaction analysis

445  Representative MAGs for SLCs were used to create a custom Kraken® (v2.1.1) database
446  (https://github.com/DerrickWood/kraken2/wiki/Manual#custom-databases) and relative
447  abundances for SLCs were estimated for each sample using Bracken® (v2.6.0, default

448  parameters). Rarefaction analysis for estimating overall species diversity was done using the R
449  package iNext®® (v2.1.7, q=0, datatype="incidence_raw" and endpoint=300), based on converting
450  SLC relative abundance values from Bracken into presence-absence values at a threshold of
451  0.05%.

452  Multivariate regression analysis

453  Genus-level abundances for each sample were provided as input for R package MaaslLin23®
454  (v1.4.0) along with sample metadata (age, sex and ethnicity), and significant associations were
455  determined by combining 3 MaasLin2 runs with a compound Poisson linear model.

456  Biosynthetic gene cluster identification and clustering

457  Biosynthetic gene clusters (BGCs) in the SPMP database were identified using antiSMASH®’
458  (v5.1.2, --genefinding-tool prodigal-m --cb-general --ch-knownclusters --cb-subclusters --asf --
459  pfam2go --smcog-trees) and DeepBGC3® (v0.1.18, prodigal-meta-mode). BGCs with only one
460 identified gene and with length <2kbp were removed for both sets of results. For antiSMASH this
461  provided a set of 3,909 BGCs. DeepBGC results which overlapped with antiSMASH were removed
462  if the genomic coordinates of both BGCs overlapped by >30% in either direction. DeepBGC
463 candidates were further filtered for i) being categorized with a known product class and ii)
464  containing at least one known biosynthetic pfam or TIGRFAM protein domain as defined by
465  Cimermancic et al®, providing an additional set of 23,175 BGCs.

466  All 27,084 BGCs (3,909 from antiSMASH + 23,175 from DeepBGC) were first categorized into
467  different product classes: ribosomally synthesized and post-translationally modified peptides
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468  (RiPPs), nonribosomal peptide synthetases (NRPs), polyketide synthases (PKS), saccharides and
469  others based on the labels reported by each algorithm. We further unified the antiSMASH and
470 DeepBGC product class labels to integrate both datasets (Supplementary Table 1). A fraction of
471  mined BGCs were labeled as “hybrids” because antiSMASH or DeepBGC associated them with
472  two different product classes e.g. “bacteriocin;T1PKS”. The BGCs in each product class were
473  grouped into gene cluster families (GCFs) by sequence similarity using BiG-SCAPE3° (v1.01, --
474  include_singletons --mix --no_classify --cutoffs 0.3). A total of 16,055 GCFs were defined by this
475  approach and for each GCF we took the smallest BGC member as a representative of the family.
476  Gene cluster diagrams of BGCs were created using Clinker®.

477  BGCs in SPMP were classified as novel via a two-step approach. Firstly, BGC sequences were
478  required to have <80% similarity to any existing sequence in the antiSMASH and MIBiG 2.07°
479  databases using the clusterblast results from antiSMASH. Secondly, BGC annotations were
480 compared to antiSMASH annotations from a comprehensive gut microbial genome collection
481  (HRGM) using the standalone clusterblast software’! (v 1.1.0), to identify SPMP matches based
482  ona80% similarity threshold, similar to the approach described in Gallagher et al”2.

483  Characterization of antimicrobial peptides and impact on microbiome structure

484  Antimicrobial activities of putative peptides encoded by novel RiPP BGCs in SPMP were predicted
485  using an ensemble voting approach with four different antimicrobial peptide (AMP) prediction
486  models: AMPscanner’? (v2, convolutional neural network), AmpGram’* (random forest model),
487  AMPDiscover’”> (based on quantitative sequence activity models) and ABPDiscover
488  (https://biocom-ampdiscover.cicese.mx/). Peptides predicted by antiSMASH in these RiPP BGCs
489  were translated and all amino acid sequences with a length greater than 10 but lesser than 200
490  were used as inputs into these four models. Peptides were classified as AMPs if they received
491  votes from both AMPscanner and AmpGram, and at least one vote from either AMPDiscover or
492  ABPDiscover, and corresponding RiPP BGCs contained a transporter protein. The performance of
493  this ensemble approach was evaluated using 78 known AMP sequences and 78 scrambled non-
494  AMP sequences taken from the AmpGram benchmark dataset’®. For our evaluation dataset, we
495 identified and removed all sequences that were found in the training sets of AMPscanner,
496  AmpGram, AMPDiscover and ABPDiscover using seqgkit’® (v0.11.0) and samtools faidx (v1.9). The
497  percentage hydrophobicity and overall charge of selected peptide sequences was determined
498  using the antimicrobial peptide calculator in the antimicrobial peptide database 3 (APD3;
499  https://aps.unmc.edu/prediction).

500 To associate BGC presence/absence patterns with microbial community structure, correlation
501 analysis (Fastspar’’ v1.0.0, parameters: --iterations 100 --exclude_iterations 20, p-values from
502 1000 bootstrap replicates and permutation testing) was done based on SLC abundance profiles
503  across samples (species with medium abundance <0.1% filtered out). Correlations in the network
504  were kept if they had an associated p-value <0.05.
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505 Data and source code availability

506  Shotgun metagenomic sequencing data (lllumina and ONT) are available from the European
507  Nucleotide Archive (ENA — https://www.ebi.ac.uk/ena/browser/home) under project accession

508 number PRJEB49168. Source code for scripts used to analyze the data are available in a GitHub
509  project at https://github.com/CSB5/SPMP.
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