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Abstract 20 

Despite extensive efforts to address it, the vastness of uncharacterized ‘dark matter’ microbial 21 
genetic diversity can impact short-read sequencing based metagenomic studies. Population-22 
specific biases in genomic reference databases can further compound this problem. Leveraging 23 
advances in long-read and Hi-C technologies, we deeply characterized 109 gut microbiomes from 24 
three ethnicities in Singapore to comprehensively reconstruct 4,497 medium and high-quality 25 
metagenome assembled genomes, 1,708 of which were missing in short-read only analysis and 26 
with >28´ N50 improvement. Species-level clustering identified 70 (>10% of total) novel gut 27 
species out of 685, improved reference genomes for 363 species (53% of total), and discovered 28 
3,413 strains that are unique to these populations. Among the top 10 most abundant gut bacteria 29 
in our study, one of the species and >80% of all strains were not represented in existing 30 
databases. Annotation of biosynthetic gene clusters (BGCs) uncovered more than 27,000 BGCs 31 
with a large fraction (36-88%) not represented in current databases, and with several unique 32 
clusters predicted to produce bacteriocins that could significantly alter microbiome community 33 
structure. These results reveal the significant uncharacterized gut microbial diversity in Southeast 34 
Asian populations and highlight the utility of hybrid metagenomic references for bioprospecting 35 
and disease-focused studies.   36 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2022. ; https://doi.org/10.1101/2022.05.05.490740doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.05.490740
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 37 

While estimates for microbial diversity on Earth vary widely, studies suggest that there are nearly 38 
a million prokaryotic species of which only around 20,000 have been cultured1,2. The use of 39 
culture-free metagenomic techniques has therefore been key to unravel this ‘dark matter’ of 40 
genetic diversity on Earth. Microbial communities in a wide-range of biospheres have been 41 
explored, including terrestrial3, aquatic4 and extreme environments5, as well as plant, animal and 42 
human-associated microbiomes6. Improvements in metagenomic assembly workflows7–11 and 43 
computing resources have further enabled the assembly of these large datasets to construct 44 
metagenome-assembled genomes (MAGs) that serve to augment isolate-based reference 45 
genome databases12,13. Despite this, existing databases only represent approximately 48,000 46 
species with genome sequences, and the accuracy and completeness of short-read based MAGs 47 
is frequently lower than isolate-based references2. 48 

Human gut metagenomes represent an area of intense scientific interest due to their 49 
association with various cancers, metabolic, immunological and neurological disease 50 
conditions14,15. Metagenome-wide association studies frequently rely on the completeness of 51 
reference genomes to correctly assign short reads to taxa, and link microbial genes and function 52 
to diseases16. In particular, existing studies suggest that there might be key population-specific 53 
differences in metagenomic associations with various diseases17–19. The availability of a large 54 
number of short-read metagenomic datasets (e.g. >20,000 for human gut in public repositories) 55 
has spurred the generation of MAG reference collections based on short-read assembly13,20–22. 56 
While these studies have added an impressive collection of genomes to existing databases, it is 57 
unclear yet if they are representative of the genetic diversity seen in gut metagenomes around 58 
the world. In addition, recent advances in sequencing assays (e.g. Hi-C23, read cloud24), hybrid25 59 
and long-read metagenomic analysis26 have sought to address the shortcomings of short-read 60 
metagenomics, and opened the possibility that long-read based MAGs can provide near-61 
complete genomes rivaling isolate genomes in quality. As access to genome sequencing becomes 62 
democratized and gut metagenomes are explored in understudied populations, the strategy and 63 
value for establishing population-specific MAG references remains an open question. 64 

Leveraging the availability of a multi-ethnic (Chinese, Malay and Indian) healthy adult 65 
cohort representing major Asian populations in Singapore, a city-state with high population 66 
density, we deeply characterized 109 gut metagenomes with state-of-the-art short read, long 67 
read and Hi-C technologies (Singapore Platinum Metagenomes Project – SPMP). The resulting 68 
datasets were assembled to produce high-quality references that significantly improve existing 69 
databases in assembly quality (>28´ N50 improvement), helped identify 70 previously 70 
uncharacterized gut microbial species (>10% novel) and more than 3,400 strains in Southeast 71 
Asian populations, and uncovered thousands of novel BGCs that serve as a resource for 72 
bioprospecting. The ability to substantially augment existing databases through in-depth hybrid 73 
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metagenomic analysis highlights the value of this strategy, the importance of uncharacterized 74 
microbial diversity in Asia, and serves as a template for population-specific ‘platinum’ 75 
metagenome references for precision medicine programs around the world. 76 

Results 77 

Generation of a population-specific high quality gut microbial reference catalog 78 

To explore the utility of various metagenomic strategies for generating a high-quality gut 79 
microbial reference database for a population, subjects from an existing multi-omics study in 80 
Singapore27 were recruited to provide stool samples with informed consent (n=109; 81 
Supplementary File 1, Methods). Samples were collected using a kit designed for preserving 82 
anaerobes, DNA was extracted with a protocol optimized for high molecular weight, and shotgun 83 
sequencing was performed using short (Illumina, 2´151bp, average depth=9.4Gbp, 84 
Supplementary File 2) and long read (Oxford Nanopore Technologies - ONT, median N50=8.6kbp, 85 
average depth=5.8Gbp, Supplementary File 2) technologies, along with high-throughput 86 
chromosome conformation capture (Hi-C) analysis for a subset of samples (n=24; Supplementary 87 
Figure 1, Supplementary File 2, Methods). The distribution of taxa in both sequencing 88 
technologies (Illumina and ONT) were confirmed to be highly concordant (median correlation 89 
coefficient r=0.90), enabling joint analysis of both datasets (Supplementary Figure 2).  90 

We next compared the commonly used short-read strategy for building MAG reference 91 
collections13,20–22, with a recently proposed hybrid assembly strategy25, for their utility in building 92 
a population-specific database (Methods). From a cost perspective, we noted that the hybrid 93 
strategy required <$150 in additional sequencing costs per sample (~100% increase in total cost) 94 
and marginal increase in cloud computing cost per sample (Supplementary Note 1). This in turn 95 
was observed to result in >61% increase in the number of genomes produced per sample (>15 96 
additional MAGs; Figure 1A) with the hybrid strategy, with some samples yielding >80 genomes. 97 
Overall, 4,497 MAGs were obtained with hybrid assembly for 109 samples, versus 2,789 MAGs 98 
with short-reads alone (Supplementary File 3), with several abundant gut bacterial genera having 99 
enhanced representation within hybrid assemblies (e.g. Bifidobacterium, Faecalibacterium and 100 
Blautia; Figure 1B). This was observed to substantially improve read assignment to the reference 101 
genome database, ensuring that much fewer genomes were not detected, and with computed 102 
relative abundances being more consistent for hybrid assemblies versus short-read assemblies 103 
(Figure 1C). Overall, hybrid assemblies consistently improved the recovery of genomes across 104 
genera, with no significant bias to any specific genera, highlighting the versatility of this approach 105 
(Supplementary Figure 3). 106 

Incorporation of long-read data in hybrid assemblies enabled marked improvements in 107 
assembly contiguity (>28´) as reported previously25, with an average N50 of 339kbp (L50=12) 108 
with hybrid assembly relative to an N50 of 12kbp with short reads alone (Figure 1D). This was 109 
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also accompanied by a notably lower level of chimerism (<10% vs >20% with short-read 110 
assemblies) and similar annotated gene lengths as short-read assemblies (Supplementary Figure 111 
4), suggesting that hybrid assemblies are robust to indel errors in long reads. Overall, this 112 
provided higher quality genomes based on MIMAG critera28 after binning10, where many hybrid 113 
MAGs had correctly reconstructed rRNA genes29, and no such MAGs were obtained with short-114 
read only assembly (Figure 1E, Methods). To assess if the quality of MAGs could be improved 115 
further, Hi-C data was used to assist in contig binning30–35. This was found to marginally increase 116 
the proportion of high-quality MAGs obtained, and double the proportion of near-complete 117 
genomes, with similar average assembly contiguity (Supplementary Figure 5, Supplementary 118 
File 3). As the per sample cost of Hi-C analysis is currently high (>$500), studies for generating 119 
population-specific references will need to consider this cost-benefit tradeoff. 120 

Hybrid assembled genomes in SPMP were assigned taxonomy based on the Genome 121 
Taxonomy Database2 (GTDB) and compared to existing reference genomes to assess their utility. 122 
SPMP genomes were found to provide notably improved references for most GTDB species, for 123 
both isolates (>6´ increase in N50) as well as uncultivated organisms (>13´; Figure 1F).  While 124 
the improvement in assembly is expected for uncultivated organisms that are primarily 125 
assembled using short-read metagenomics, the observed improvement for isolates (albeit 126 
smaller, Wilcoxon p-value=1.25´10-11) is noteworthy as long-read sequencing is commonly used 127 
and the assembly problem is expected to be simpler. Overall, SPMP genomes provided high-128 
quality references for 110 GTDB species, 46 of which have isolates, highlighting the value of a 129 
‘platinum’ metagenomics approach for augmenting existing reference genome databases (Figure 130 
1G).   131 

Asian gut metagenomes harbor substantial uncharacterized gut microbial diversity  132 

By encompassing three major Asian ethnicities (Chinese, Malay, Indian) in Singapore we 133 
anticipated that the SPMP would be a useful resource to explore Southeast Asian gut microbial 134 
diversity, and tested the idea of population-specific MAG reference catalogs (Supplementary 135 
Figure 6). Subsampling based rarefaction analysis with SPMP MAGs showed that with as few as 136 
a 100 subjects, >90% of the estimated recoverable (at the genomic level) gut microbial species 137 
diversity of the Singaporean population was represented in the SPMP catalog (Figure 2A, 138 
Methods). Similarly, with a reference genome collection that is 1/6th the size of a public gut 139 
microbial reference database13 (UHGG; 18Gb vs 3Gb), SPMP can be used to identify more gut 140 
bacterial reads from an independent Singaporean study (manuscript under review; 92% vs 91%), 141 
and classify substantially more reads at the genome-level when database sizes are similar (81% 142 
vs 67%; Supplementary Figure 7). These results indicate that while the urban populations in 143 
Singapore have broadly similar representation of gut microbes, their genome sequences are still 144 
substantially distinct to impact mapping-based gut metagenome analyses. 145 
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To understand microbiome variability across ethnicities and its utility to discover new 146 
biological insights, we used multivariate regression analysis36 to explore relationships between 147 
gut metagenome composition and demographic factors (e.g. sex, age, ethnicity). Interestingly, 148 
more than 60% of the taxonomic associations discovered (91 out of 133; FDR-adjusted p-149 
value<0.05) were related to ethnicity, with 23 gender-specific and 19 age-based associations 150 
(Supplementary File 4). We then aggregated SPMP MAGs into species-level clusters (SLCs, 95% 151 
identity), annotating them with publicly available reference genome collections (Supplementary 152 
Figure 8, Methods) to identify 70 putative new species for which no genomes have been available 153 
previously, despite large-scale MAG generation efforts2,13 (Figure 2B). Surprisingly, these putative 154 
new species represent >10% of the species-level clusters obtained (n=685) and are in addition to 155 
the 363 clusters that only have MAGs and no isolate genomes in existing databases (GTDB: 156 
https://gtdb.ecogenomic.org/, based on systematic analysis of curated genomes in RefSeq: 157 
https://www.ncbi.nlm.nih.gov/refseq/ and GenBank: https://www.ncbi.nlm.nih.gov/genbank/). 158 
More than 50% of the novel SLCs (38 out of 70) were only assembled with hybrid assembly and 159 
were missing in short-read assemblies. In addition, hybrid assemblies provided a >13´ median 160 
N50 improvement overall, generating nearly all of the high-quality and near-complete genomes 161 
for the novel SLCs (19 out of 20), highlighting the utility of this strategy for capturing microbial 162 
diversity. In comparison to a recently published resource for under-represented East and South 163 
Asian populations22 we found that most species were still novel (87%, 61/70) emphasizing the 164 
importance of generating population-specific references.  165 

Among the novel SLCs, in addition to representatives in nearly all orders commonly 166 
containing gut microbes (e.g. Bacteroidales), we noted that 17 could be classified to the order 167 
Coriobacteriales while an additional 7 were assigned to Christensenellales, both of which are 168 
relatively understudied gut bacterial orders with high diversity in general and few isolates 169 
(Supplementary Figure 9). Additionally, three novel SLCs with high-quality MAGs represent the 170 
only available genomes for the corresponding genera (SLC637 – closest match Phocaeicola, <83% 171 
identity; SLC487 and SLC667 – closest match Butyricicoccus, <81% identity), while one of the 172 
novel SLCs is among the top 10 most abundant SLCs within the gut microbiomes of SPMP subjects 173 
(SLC612; Supplementary Figure 10). We noted that SLC612 is significantly more abundant in the 174 
gut microbiomes of Singaporean populations than in western subjects, potentially explaining why 175 
it was not assembled in previous large-scale studies, and emphasizing the need for population-176 
specific references for even common gut bacteria (Supplementary Figure 10). 177 

At the strain-level (99% identity), SPMP genomes were notably unique compared to 178 
>200,000 genomes in the UHGG database, with 3,413 novel strains out of 3,891 (87% novel, 179 
Methods). Among the top 20 most abundant gut bacterial species in SPMP, less than 20% of the 180 
strains were represented in UHGG, with only the keystone gut commensal Bacteroides uniformis 181 
having >40% of its strains being represented by genomes from other populations (Figure 2C). For 182 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2022. ; https://doi.org/10.1101/2022.05.05.490740doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.05.490740
http://creativecommons.org/licenses/by-nc-nd/4.0/


species that are extensively characterized due to their use as probiotics such as Bifidobacterium 183 
adolescentis and Bifidobacterium longum, we noted that while many strain genomes have been 184 
obtained from isolates (>30; Supplementary Figure 11), SPMP MAGs reveal an even greater 185 
uncharacterized diversity in the Singaporean population (>50 novel strains; Figure 2C, 186 
Supplementary Figure 11) that could be leveraged for probiotic discovery. 187 

To explore the utility of the SPMP database for bioprospecting and discovering secondary 188 
metabolic pathways that may be important for gut microbiome structure and function, we 189 
combined comparative37 and deep learning38 based approaches for annotating biosynthetic gene 190 
clusters with high stringency filters (BGCs, Methods). In total, we identified 27,084 BGCs 191 
(DeepBGC: 23,175; antiSMASH: 3,909) that grouped into 16,055 gene cluster families by BiG-192 
SCAPE39 (GCFs; Figure 2D). More than 90% of the GCFs (15,134) did not display similarity to 193 
previously known BGCs in curated standard databases (antiSMASH and MIBiG) and were not 194 
found in annotations within an extensive collection of gut microbial reference genomes (HRGM, 195 
Methods), highlighting the value of using complementary algorithms for bioprospecting in new 196 
populations. We estimated that >85% of SPMP GCFs were not represented in curated databases, 197 
even when only a higher confidence set of predictions from antiSMASH was considered, while 198 
49% of GCFs were novel even after taking into account more extensive HRGM antiSMASH 199 
annotations (Supplementary Figure 12, 13).  200 

While a significant fraction of GCFs were predicted to encode for saccharides (N=5,888, 201 
37%), in line with their important functions in microbe-microbe and microbe-host interactions40, 202 
many novel GCFs appear to encode diverse bioactive compounds such as ribosomally translated 203 
and post translationally modified peptides (RiPPs), polyketides and non-ribosomal peptides 204 
(NRPs)  (Figure 2D), some of which may have antimicrobial function (Supplementary Note 2). In 205 
particular, a group of GCFs not represented in curated databases was predicted to synthesize a 206 
bacteriocin in a Blautia species, with 3 distinct gene configurations and genes encoding enzymes 207 
for peptide modification (radical SAM superfamily) and ABC transporter genes (GCF382/271/37, 208 
Figure 2E). Analyzing the structure of the microbial community in samples with and without the 209 
novel GCFs identified distinct networks, with presence of GCF382/271/37 associated with strong 210 
negative correlations between the Blautia species and multiple Faecalibacterium species 211 
including Faecalibacterium prausnitzii (Figure 2F, Methods). Together with the known role of 212 
Faecalibacterium species in gut health41-42, these observations highlight the importance of 213 
comprehensively identifying secondary metabolic pathways for understanding gut metagenome 214 
function in human diseases. 215 

Discussion 216 

Despite the growing number of gut microbiome studies worldwide, including from remote 217 
populations in the Americas43 and hunter-gatherer tribes in Africa44, the gut microbial diversity 218 
of Asian populations remains understudied45. Singapore represents a microcosm of multiple 219 
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major Asian ethnic populations (Chinese, Malay and Indian) living in the shared environment of 220 
a modern metropolis. While there has been extensive study of gut metagenomes of ethnic 221 
Chinese individuals from China, fewer studies have involved individuals from Southeast Asia and 222 
India. The SPMP can thus represent an important reference for these populations, in addition to 223 
Singaporean studies. More broadly, we anticipate that the microbial diversity seen in SPMP might 224 
be similar to what would be observed in other major urban centers in Asia (e.g. New Delhi, 225 
Jakarta, Tokyo, Hong Kong), but is likely the ‘tip of the iceberg’ when considering rural and 226 
nomadic populations.  227 

Various parameters are likely to define the appropriate strategy for a study similar to 228 
SPMP in other countries, including cost, targeted quality of reference genomes, ease of 229 
technology access, and availability of sufficient number of samples from a representative 230 
baseline cohort in the country. While we attempted to employ multiple different technologies 231 
for SPMP to get high-quality assemblies, we chose the middle-ground in terms of cost and 232 
accessibility as this is an important consideration for many countries. In particular, even higher-233 
quality metagenomic assemblies are possible if HiFi reads from the Pacific Biosciences Sequel IIe 234 
system are available46. Also, the recent announcement of higher-quality reads from ONT could 235 
help improve assembly further and reduce costs47. Even as the sequencing landscape is 236 
constantly changing, the results from our study suggest that high-quality population-specific 237 
metagenomic references are already feasible with a modest-sized cohort and limited sequencing 238 
resources. 239 

The advantages of having high-quality references for metagenomics are similar to what 240 
other areas of genetics and studies in model organisms have benefited from i.e. substantially 241 
reduced cost and effort in future studies by: (i) allowing the use of short reads or a single 242 
sequencing assay/technology, (ii) enabling increased sensitivity in identification of genomic 243 
features using reference-based approaches (e.g. taxonomic classifiers for metagenomics), (iii) 244 
ensuring that there are fewer ‘dark matter’ reads whose origin is unknown. We envisage that 245 
efforts such as SPMP will benefit the scientific community by spurring greater adoption of 246 
reference-based analyses in metagenome-wide association studies48,49. Additionally, as we noted 247 
in Figures 1F and 1G, the quality of genomes that can be obtained using metagenomics is now 248 
comparable or better than what can be obtained from the sequencing of microbial isolates, 249 
especially with short reads. This can galvanize efforts to genetically map microbial ecosystems in 250 
diverse biospheres, further contributing to the references available to study human 251 
microbiomes, and understanding of strain sharing between humans and the environment. As 252 
sequencing costs, ease of use and accessibility of new technologies, and metagenomic assembly 253 
algorithms improve, we can expect that a majority of the high-quality microbial references that 254 
will be used in the future would be obtained through metagenomics, thus helping to bridge the 255 
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knowledge gap for the hundreds of thousands of microbial species that are estimated to be there 256 
on Earth. 257 

The detection of 70 putative novel species in SPMP is perhaps not surprising given the unexplored 258 
microbial diversity and the limitations of current genetic databases. However, it is noteworthy 259 
that this is still a substantial fraction of the species detected in this study (>10%, Figure 2B), and 260 
while some of these species are not frequently detected across individuals, one of them was in 261 
the top 10 most abundant gut bacterial species, while others may still play a significant role in 262 
the biology of some individuals by being sporadically abundant (e.g. SLC665 which is among the 263 
top 20 most abundant species in 5% of subjects). Not surprisingly, at the strain-level an even 264 
larger fraction of the observed genetic diversity was novel, but what was notable was that this 265 
was true even for the more abundant and well-studied species in the gut microbiome (e.g. 266 
Bacteroides uniformis and Bifidobacterium adolescentis, Figure 2C). These observations highlight 267 
the overall value of such studies for discovering probiotic strains that could be leveraged for 268 
population health, with modest investments in metagenomic analysis cost (<$40,000), making it 269 
feasible for national microbiome projects around the world. 270 

Finally, the identification of >23,000 BGCs in the SPMP database that were not represented in 271 
existing annotated databases (88% of total, Figure 2D) highlights that we are only scratching the 272 
surface in terms of harnessing microbial pathways and functions for synthetic biology and 273 
biotechnology applications. This was made possible by the high-contiguity of our hybrid 274 
assemblies (>28´ N50 relative to short-read assemblies), and the characterization of distinct, 275 
underrepresented South-East Asian populations in SPMP harboring substantial novelty relative 276 
to curated BGC databases (>85%) and annotated reference genomes (49%, Supplementary 277 
Figure 12, 13). The gut microbiome by virtue of being a dynamic, host-associated community with 278 
high diversity of microbes is a rich hunting ground for host-modulating, macro-nutrient 279 
catabolizing and micro-nutrient synthesizing functions50,51. In addition, homeostasis in the gut 280 
microbiome may be maintained by key members of the community through the selective 281 
expression of antimicrobial peptides52 (AMPs), and correspondingly we identified hundreds of 282 
novel BGCs encoding putative bacteriocins, sactipeptides, lanthipeptides and lassopeptides that 283 
can now be further characterized (Supplementary Note 2). Notably, we found evidence that the 284 
presence of a BGC in a common Blautia species is associated with significant changes in overall 285 
gut microbiome community structure for SPMP subjects (Figure 2F). Together these results 286 
highlight the potential for novel AMPs discovered in SPMP to provide genetic templates for 287 
further optimization, and subsequent use to modulate the gut microbiome, or as new 288 
antimicrobials to target multi-drug resistant pathogens.    289 
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Figure Legends 290 

Figure 1. Assembly strategy for high-quality microbiome references. (A) Boxplots showing the 291 
number of MAGs obtained across metagenomic datasets using short-read and hybrid assemblies 292 
(n=109). (B) Stacked barchart showing genus-specific breakdown of the number of MAGs 293 
obtained using short-read and hybrid assemblies (left) and boxplots for corresponding relative 294 
abundances of the genera (right). (C) Scatter-plot showing the relative abundance of 295 
Bifidobacterium genomes estimated using short-read or hybrid assemblies for a sample (y-axis) 296 
versus corresponding relative abundances obtained using the default Kraken2 database (x-axis). 297 
(D) Violin plots showing the distribution of a contiguity metric (N50 – largest contig size where 298 
>50% of the genome is in larger contigs) for short-read and hybrid assembly based MAGs. (E) 299 
Stacked barcharts showing the relative proportion of MAGs satisfying different MIMAG quality 300 
standards with short-read and hybrid assemblies of SPMP datasets. (F) Violin plots showing the 301 
relative improvement in contiguity (N50) obtained using hybrid assembly MAGs from SPMP 302 
relative to matched genomes in the GTDB database. (G) Barcharts showing the number of GTDB 303 
reference genomes which were improved from medium to high MIMAG quality using SPMP 304 
MAGs. Center lines in the boxplots represent median values, box limits represent upper and 305 
lower quartile values, whiskers represent 1.5 times the interquartile range above the upper 306 
quartile and below the lower quartile, and all data points are represented as dots in the figures. 307 

Figure 2. Characterization of novel species, strains and gene families in SPMP genomes. (A) 308 
Collection curve analysis showing that the SPMP database covers a substantial fraction of the 309 
species level diversity in its MAGs. (B) Pie-chart showing the breakdown of species-level clusters 310 
in SPMP that have an isolate genome, only have MAGs (uncultivated) and are novel compared to 311 
genomes in public databases (UHGG, GTDB, SGB). (C) Stacked barcharts showing the number of 312 
SPMP strains that have an isolate genome, only have MAGs (uncultivated) and are novel 313 
compared to all UHGG genomes (>200,000, <99% ANI). The species shown are the top 20 in terms 314 
of median relative abundance in SPMP (most abundant on the left). (D) Stacked barcharts 315 
showing the number of BGCs (top) and GCFs (bottom) in different product classes that are 316 
present or absent in existing annotations comprising of the antiSMASH and MiBIG databases as 317 
well as antiSMASH annotations from HRGM. Inset piecharts show the overall breakdown. (E) 318 
Synteny plots showing the conservation of gene order and orientation (colored arrows, 319 
relatedness shown by vertical lines) for a novel GCF (GCF382) and related families. (F) Network 320 
diagrams depicting correlations between gut microbial species (nodes – species, edges – 321 
significant correlations) and overall microbiome structure in SPMP metagenomes when stratified 322 
based on presence or absence of GCF 382/271/37 (or missing the corresponding transporter 323 
gene) in a Blautia species (enlarged teal node, solid edges to correlated species, dashed edges 324 
between other nodes).   325 
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Methods  326 

Subject recruitment 327 

Subjects for this study were recruited based on recall from a community-based multi-ethnic 328 
prospective cohort27 that is part of the Singapore Population Health Studies project (SPHS -329 
formerly Singapore Consortium of Cohort Studies). Subjects in SPHS were recruited to participate 330 
in the National Health Survey, where subjects were selected at random using age- and gender- 331 
stratified sampling to obtain a representative sample set of residents in the country. At the point 332 
of recruitment in 2008, subjects did not have any pre-existing major health conditions 333 
(cardiovascular disease, mental illness, diabetes, stroke, renal failure, hypertension and cancer) 334 
based on self-reporting27. The ethnicity of each subject was confirmed verbally so that all four 335 
grandparents of the subject belonged to the same ethnic group. Informed consent was obtained 336 
from all participants and the associated protocols for this study were approved by the National 337 
University of Singapore Institutional Review Board (IRB reference number H-17-026).  338 

Sample collection  339 

Fecal samples were collected from healthy subjects using the BioCollectorTM kit (The 340 
BioCollective, Colorado, USA). Samples were kept at -20°C until they were brought into an 341 
anaerobic chamber (atmosphere of N2 (75%), CO2 (20%) and H2 (5%)). Fecal samples were 342 
homogenized and subsamples transferred into sterile 2 mL centrifuge tubes.  343 

DNA extraction  344 

Genomic DNA was extracted from fecal material (0.25 g wet weight) using the QIAamp Power 345 
Fecal Pro DNA kit (QIAGEN GmbH, Cat. No. 51804) and was quantified using Qubit dsDNA BR 346 
Assay Kit (Thermo Fisher Scientific, Cat. No. Q32853). Integrity of the extracted DNA was verified 347 
using 0.5% agarose gel electrophoresis.  348 

Illumina library preparation and sequencing 349 

Metagenomic libraries were prepared with a standard DNA input of 50ng across all samples, 350 
using NEBNext® Ultra™ II FS DNA Library Prep Kit for Illumina (New England Biolabs, Cat. No. 351 
E7805), according to the manufacturer’s instructions. The reaction volumes were, however, 352 
scaled to a quarter of the recommended volumes for cost effectiveness. Barcoding and 353 
enrichment of libraries was carried out using NEBNext® Multiplex Oligos for Illumina® (96 Unique 354 
Dual Index Primer Pairs; New England Biolabs, Cat. No. E6440). Paired-end sequencing (2´151bp 355 
reads) was carried out on the Illumina HiSeq4K platform.  356 

ONT library preparation and sequencing 357 

Purity and integrity of DNA was assessed and ensured to fall within recommended ranges before 358 
library preparation. To preserve the integrity of DNA, the shearing step was omitted and DNA 359 
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was used directly for DNA repair and end-prep. Single-plex libraries were prepared using 1D 360 
sequencing kit (Oxford Nanopore Technologies, SQK-LSK108 or SQK-LSK109) according to the “1D 361 
Genomic DNA by ligation” protocol. For samples that were multiplexed (12-plex), the native 362 
barcoding kit (Oxford Nanopore Technologies, EXP-NBD103 or EXP-NBD104 and EXP-NBD114) 363 
was used and libraries were prepared according to the “Native barcoding genomic DNA” 364 
protocol. Both native barcode ligation and adapter ligation steps were extended to 30 min 365 
instead of 10 min. Single-plex samples were sequenced on either the MinION or GridION machine 366 
with either FLO-MIN106D or MIN106 revD flowcells. Multiplex samples were sequenced on the 367 
PromethION machine with FLO-PRO002 flowcells. Raw reads were basecalled with the latest 368 
version of the basecaller available at the point of sequencing (Guppy v3.0.4 to v3.2.6). Basecalled 369 
nanopore reads were demultiplexed and filtered for adapters with qcat (v1.1.0 370 
https://github.com/nanoporetech/qcat).  371 

Hi-C library preparation and sequencing 372 

Hi-C libraries were generated using Phase Genomics ProxiMeta kit (version 3.0), based on the 373 
standard protocol. Briefly, 500 mg fecal material was crosslinked for 15 minutes at room 374 
temperature with end-over-end mixing in 1 mL of ProxiMeta crosslinking solution. Once 375 
crosslinking reaction was terminated, quenched fecal material was rinsed. Sample was 376 
resuspended and a low-speed spin was used to clear large debris. Chromatin was bound to SPRI 377 
beads and incubated for 1 hour with 150 µL of ProxiMeta fragmentation buffer and 11 µL of 378 
ProxiMeta fragmentation enzyme. Once washed, beads were resuspended with 100 µL of 379 
ProxiMeta Ligation Buffer supplemented with 5 µL of Proximity ligation enzyme and incubated 380 
for 4 hours. After reversing crosslinks, the free DNA was purified with SPRI and Hi-C junctions 381 
were bound to streptavidin beads and washed to remove unbound DNA.  Washed beads were 382 
used to prepare paired-end deep sequencing libraries using ProxiMeta Library preparation 383 
reagents. Paired-end sequencing (2´151bp reads) was carried out on the Illumina HiSeq4K 384 
platform. 385 

Sequence quality assessment 386 

Illumina and ONT read statistics were generated with Fastq-Scan (v0.4.1, 387 
https://github.com/rpetit3/fastq-scan) and NanoStat53 (v1.4.0), respectively. To assess 388 
taxonomic concordance, Illumina and ONT reads were classified with Kraken254 (v2.1.1, UHGG 389 
database13) and relative abundances were estimated with Bracken55 (v2.6.1) at the species level 390 
(option -l R7) to compute Pearson correlation coefficients per sample. 391 

Metagenomic assembly and binning 392 

Illumina reads were assembled using MEGAHIT8 (v1.04, default parameters) and hybrid 393 
metagenomic assemblies were generated with Illumina and ONT data using OPERA-MS25 (v0.9.0, 394 
--polish). Contigs were binned with MetaBAT210 (v2.12.1, default parameters). Hi-C binning was 395 
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provided by Phase Genomics using its internal pipeline with MetaBAT results for hybrid 396 
assemblies as a starting point. Assembly bins were evaluated based on MIMAG standards28, with 397 
contamination, completeness and N50 values determined with CheckM56 (v1.04), and non-398 
coding RNA annotations from barrnap (https://github.com/tseemann/barrnap) (v0.9) and 399 
tRNAscan-SE57 (v2.0.5, default parameters). Assembly bins with contamination <10% and 400 
completeness >50% were designated as medium quality MAGs, those with contamination <5% 401 
and completeness >90% as near complete MAGs, and additionally near complete MAGs with 402 
complete 5S, 16S and 23S rRNA genes and at least 18 unique tRNA genes were classified as high 403 
quality MAGs. All other bins were classified as low quality and were removed from further 404 
analyses. In total, 4,497 medium quality, near complete and high quality MAGs were designated 405 
as being part of the SPMP database. Hybrid and short-reads assembly based MAGs were further 406 
assessed for chimerism with GUNC58 (v1.0.4, detailed output). Coding sequence lengths obtained 407 
from Prodigal59 (v2.6.3) calls were compared between the two datasets to assess the potential 408 
impact of long read indel errors on gene annotation. Concordant with prior work showing that 409 
hybrid metagenomic assemblies can have high base-pair accuracy25, we also noted that SPMP 410 
MAGs independently assembled from distinct individual gut metagenomes could exhibit high 411 
average nucleotide identity (>99.99%, consistent with Q40 quality). 412 

Annotation of MAGs with the Genome Taxonomy Database 413 

The SPMP database was compared to the GTDB database2 (release 95) using GTDBtk’s60 (v1.4.1) 414 
ani_rep command with default arguments, which leverages MASH61 (v2.3) to provide pairwise 415 
genome-wide similarity values between all query MAGs and GTDB sequences. Only pairs with 416 
MASH distance £0.05 were retained and used to define the best match for each SPMP MAG based 417 
on minimum MASH distance. GTDB matches were classified based on their metadata as being 418 
uncultivated (“derived from environmental sample” or “derived from metagenome”) or based 419 
on isolate strains. Both N50 values and MIMAG classifications were extracted from GTDB 420 
metadata. MAGs were placed into a phylogenetic tree using GTDB_TK (v1.4.1) with classify_wf 421 
(default options), based on pplacer_taxonomy values. To assess novelty in light of the latest 422 
human gut metagenome database, we further compared our MAGs to the 5,414 representative 423 
genomes from the Human Reference Gut Microbiome catalog (HRGM)22 with a similar MASH 424 
analysis (Supplementary File 5).  425 

Species and strain-level clustering 426 

MAGs were clustered at the species (95%) and strain-level (99%) based on average nucleotide 427 
identity estimates (ANI; using MASH with sketch size of 10k and k-mer size of 21bp) with 428 
agglomerative clustering (sklearn v0.23.2, AgglomerativeClustering function, options: 429 
linkage="single", n_clusters=None, compute_full_tree=True, affinity="precomputed"). For each 430 
cluster, representative MAGs were defined using the highest eigen centrality value based on a 431 
weighted network graph produced by networkx (v2.5; eigenvector_centrality function). Strain-432 
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level clustering was done jointly with all species-level matches from the UHGG database (v1.0, 433 
ANI threshold of 95%). Phylogenetic analysis at the strain-level was conducted using the 434 
biopython Phylo package62, based on pairwise distances generated with FastANI63 (v1.32). 435 
Phylogenetic trees were visualized using FigTree (tree.bio.ed.ac.uk/software/figtree). 436 

Species assignment 437 

Species-level clusters (SLCs) were assigned putative species name and types based on 438 
comparisons with multiple databases, including GTDB, Pasolli et al64 (SGB) and Almeida et al13 439 
(UHGG). SLCs types were defined as, (i) isolate: if GTDB match to an isolate was found (mash 440 
distance £0.05), (ii) uncultivated: if a match to any database was found, but no isolates, (iii) novel: 441 
if no matches were found. SLCs were assigned putative species names based on a majority rule 442 
for MAGs in the cluster, with preference for GTDB ids (Supplementary Figure 8).  443 

Species abundance and rarefaction analysis 444 

Representative MAGs for SLCs were used to create a custom Kraken65 (v2.1.1) database 445 
(https://github.com/DerrickWood/kraken2/wiki/Manual#custom-databases) and relative 446 
abundances for SLCs were estimated for each sample using Bracken55 (v2.6.0, default 447 
parameters). Rarefaction analysis for estimating overall species diversity was done using the R 448 
package iNext66 (v2.1.7, q=0, datatype="incidence_raw" and endpoint=300), based on converting 449 
SLC relative abundance values from Bracken into presence-absence values at a threshold of 450 
0.05%. 451 

Multivariate regression analysis 452 

Genus-level abundances for each sample were provided as input for R package MaasLin236 453 
(v1.4.0) along with sample metadata (age, sex and ethnicity), and significant associations were 454 
determined by combining 3 MaasLin2 runs with a compound Poisson linear model.  455 

Biosynthetic gene cluster identification and clustering 456 

Biosynthetic gene clusters (BGCs) in the SPMP database were identified using antiSMASH67 457 
(v5.1.2, --genefinding-tool prodigal-m --cb-general --cb-knownclusters --cb-subclusters --asf --458 
pfam2go --smcog-trees) and DeepBGC38 (v0.1.18, prodigal-meta-mode). BGCs with only one 459 
identified gene and with length <2kbp were removed for both sets of results. For antiSMASH this 460 
provided a set of 3,909 BGCs. DeepBGC results which overlapped with antiSMASH were removed 461 
if the genomic coordinates of both BGCs overlapped by ≥30% in either direction. DeepBGC 462 
candidates were further filtered for i) being categorized with a known product class and ii) 463 
containing at least one known biosynthetic pfam or TIGRFAM protein domain as defined by 464 
Cimermancic et al68, providing an additional set of 23,175 BGCs.  465 

All 27,084 BGCs (3,909 from antiSMASH + 23,175 from DeepBGC) were first categorized into 466 
different product classes: ribosomally synthesized and post-translationally modified peptides 467 
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(RiPPs), nonribosomal peptide synthetases (NRPs), polyketide synthases (PKS), saccharides and 468 
others based on the labels reported by each algorithm. We further unified the antiSMASH and 469 
DeepBGC product class labels to integrate both datasets (Supplementary Table 1). A fraction of 470 
mined BGCs were labeled as “hybrids” because antiSMASH or DeepBGC associated them with 471 
two different product classes e.g. “bacteriocin;T1PKS”. The BGCs in each product class were 472 
grouped into gene cluster families (GCFs) by sequence similarity using BiG-SCAPE39 (v1.01, --473 
include_singletons --mix --no_classify --cutoffs 0.3). A total of 16,055 GCFs were defined by this 474 
approach and for each GCF we took the smallest BGC member as a representative of the family. 475 
Gene cluster diagrams of BGCs were created using Clinker69. 476 

BGCs in SPMP were classified as novel via a two-step approach. Firstly, BGC sequences were 477 
required to have <80% similarity to any existing sequence in the antiSMASH and MIBiG 2.070 478 
databases using the clusterblast results from antiSMASH. Secondly, BGC annotations were 479 
compared to  antiSMASH annotations from a comprehensive gut microbial genome collection 480 
(HRGM) using the standalone clusterblast software71 (v 1.1.0), to identify SPMP matches based 481 
on a 80%  similarity threshold, similar to the approach described in Gallagher et al72.   482 

Characterization of antimicrobial peptides and impact on microbiome structure  483 

Antimicrobial activities of putative peptides encoded by novel RiPP BGCs in SPMP were predicted 484 
using an ensemble voting approach with four different antimicrobial peptide (AMP) prediction 485 
models: AMPscanner73 (v2, convolutional neural network), AmpGram74 (random forest model), 486 
AMPDiscover75 (based on quantitative sequence activity models) and ABPDiscover 487 
(https://biocom-ampdiscover.cicese.mx/). Peptides predicted by antiSMASH in these RiPP BGCs 488 
were translated and all amino acid sequences with a length greater than 10 but lesser than 200 489 
were used as inputs into these four models. Peptides were classified as AMPs if they received 490 
votes from both AMPscanner and AmpGram, and at least one vote from either AMPDiscover or 491 
ABPDiscover, and corresponding RiPP BGCs contained a transporter protein. The performance of 492 
this ensemble approach was evaluated using 78 known AMP sequences and 78 scrambled non-493 
AMP sequences taken from the AmpGram benchmark dataset74. For our evaluation dataset, we 494 
identified and removed all sequences that were found in the training sets of AMPscanner, 495 
AmpGram, AMPDiscover and ABPDiscover using seqkit76 (v0.11.0) and samtools faidx (v1.9). The 496 
percentage hydrophobicity and overall charge of selected peptide sequences was determined 497 
using the antimicrobial peptide calculator in the antimicrobial peptide database 3 (APD3; 498 
https://aps.unmc.edu/prediction). 499 

To associate BGC presence/absence patterns with microbial community structure, correlation 500 
analysis (Fastspar77 v1.0.0,  parameters: --iterations 100 --exclude_iterations 20, p-values from 501 
1000 bootstrap replicates and permutation testing) was done based on SLC abundance profiles 502 
across samples (species with medium abundance ≤0.1% filtered out). Correlations in the network 503 
were kept if they had an associated p-value <0.05. 504 
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Data and source code availability 505 

Shotgun metagenomic sequencing data (Illumina and ONT) are available from the European 506 
Nucleotide Archive (ENA – https://www.ebi.ac.uk/ena/browser/home) under project accession 507 
number PRJEB49168. Source code for scripts used to analyze the data are available in a GitHub 508 
project at https://github.com/CSB5/SPMP.  509 
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