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Abstract

Clinical and public health microbiology is increasingly utilising whole genome sequencing
(WGS) technology and this has lead to the development of a myriad of analysis tools and
bioinformatics pipelines. Single nucleotide polymorphism (SNP) analysis is an approach used
for strain characterisation and determining isolate relatedness. However, in order to ensure the
development of robust methodologies suitable for clinical application of this technology,
accurate, reproducible, traceable and benchmarked analysis pipelines are necessary. To date,
the approach to benchmarking of these has been largely ad-hoc with new pipelines

benchmarked on their own datasets with limited comparisons to previously published pipelines.

In this study, Snpdragon, a fast and accurate SNP calling pipeline is introduced. Written in
Nextflow, Snpdragon is capable of handling small to very large and incrementally growing
datasets. Snpdragon is benchmarked using previously published datasets against six other all-
in-one microbial SNP calling pipelines, Lyveset, Lyveset2, Snippy, SPANDX, BactSNP and
Nesoni. The effect of dataset choice on performance measures is demonstrated to highlight

some of the issues associated with the current available benchmarking approaches.

The establishment of an agreed upon gold-standard benchmarking process for microbial variant
analysis is becoming increasingly important to aid in its robust application, improve
transparency of pipeline performance under different settings and direct future improvements

and development.

Snpdragon is available at https://github.com/FordeGenomics/SNPdragon.
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Impact statement

Whole-genome sequencing has become increasingly popular in infectious disease diagnostics
and surveillance. The resolution provided by single nucleotide polymorphism (SNP) analyses
provides the highest level of insight into strain characteristics and relatedness. Numerous
approaches to SNP analysis have been developed but with no established gold-standard
benchmarking approach, choice of bioinformatics pipeline tends to come down to laboratory
or researcher preference. To support the clinical application of this technology, accurate,
transparent, auditable, reproducible and benchmarked pipelines are necessary. Therefore,
Snpdragon has been developed in Nextflow to allow transparency, auditability and
reproducibility and has been benchmarked against six other all-in-one pipelines using a number
of previously published benchmarking datasets. The variability of performance measures
across different datasets is shown and illustrates the need for a robust, fair and uniform

approach to benchmarking.

Data Summary

1. Previously sequenced reads for Escherichia coli O25b:H4-ST131 strain EC958 are
available in BioProject PRINA362676. BioSample accession numbers for the three
benchmarking isolates are:

o EC958: SAMNO06245884
e MS6573: SAMNO06245879
e MS6574: SAMNO06245880
2. Accession numbers for reference genomes against the E. coli O25b:H4-ST131 strain

EC958 benchmark are detailed in table 2.
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3. Simulated benchmarking data previously described by Yoshimura et al. is available at

http://platanus.bio.titech.ac.jp/bactsnp (1).

4. Simulated datasets  previously described by Bush et al. is available at

http://dx.doi.org/10.5287/bodleian: AmMNXrj YN8 (2).

5. Real sequencing benchmarking datasets previously described by Bush et al. are

available at http://dx.doi.org/10.5287/bodleian:nrmv8k5r8 (2).
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79  Introduction

80  Microbial whole genome sequencing (WGS) is increasingly being used to support pathogen
81  detection, surveillance, and diagnostics (1, 3). WGS provides the highest level of genomic
82  resolution which allows for the ability to distinguish between closely related isolates and infer
83  potential transmission events (1). Characterisation of isolates at the whole genome level in
84  combination with clinical and epidemiological information can greatly benefit public health
85  microbiology activities (4). There are many examples of the various advantages of WGS in
86  pathogen detection and surveillance and perhaps the most recent is its usefulness in tracking
87  community transmission of SARS-CoV-2 (3, 5). The application of WGS in public health
88  microbiology is now progressing from proof-of-concept to implementation, particularly in
89  food-borne pathogen surveillance and antimicrobial resistant bacterial outbreak detection (6,
90 7).

91

92  Determining isolate relatedness typically involves examining single nucleotide polymorphisms
93  (SNPs). A typical SNP calling workflow includes the following steps: 1. Quality Control; 2.
94  Read mapping; 3. Variant calling; 4. Variant filtering; 5. Downstream analysis (phylogenetic

95  reconstruction and pairwise SNP difference clustering) (figure 1).

96 By comparing SNPs present within the core genome (the shared region common to all isolates
97  under evaluation), potential transmission events can be identified (8, 9). This information may
98 be used to classify potential outbreak events and when combined with epidemiological data
99 may inform infection prevention and control practices (8). In order to classify isolates as
100  ‘related’ thresholds based on the number of core SNP differences are applied (10). The selected
101  threshold will depend on various factors including species, strain, and clinical context.
102  Nucleotide mutation rates can vary during different stages of an infection or may be under

103  different selection pressures such as antimicrobial exposure (10). Laboratory processes during
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104  culturing (e.g. single colony picks vs sweeps) may also affect the diversity of samples sent for
105 WGS (10). Various studies have used SNP thresholds ranging from 0 for Yersinia species to
106  over 35 for Pseudomonas aeruginosa and a recently published implementation study applied
107  SNP thresholds of < 16 for multi-drug resistant Staphylococcus aureus and < 26 for the other
108  species in the study including vancomycin-resistant Enterococci, extended spectrum beta-
109 lactamase (ESBL) producing Klebsiella pneumoniae and ESBL-producing Escherichia coli
110 (11, 12). Similar cutoffs were also found using a number of different methods such as Poisson
111  distributions (25 SNPs for E. coli), within patient maximum diversity (17 SNPs for E. coli),
112 with and without recombination SNP distance changes (20 SNPs for Enterococcus faecium)
113 and linear mixed models (13 core genome SNPs for methicillin-resistance Staphylococcus
114 aureus) (13-15). Due to the shortcomings of these hard cut-off approaches, more probabilistic
115 methods are being explored to consider variable mutation rates and incorporating other
116  epidemiological information (10).

117

118 Horizontal gene transfer can also affect apparent SNP level relatedness and masking of
119  prophage and recombination regions has been previously suggested (10, 16). However, there
120  is not yet a consensus on this approach. A recent systematic analysis for real-time genomics
121  based tracking of MDR bacteria in the healthcare environment found masking of prophages
122 had minimal effect while masking of recombination may lead to erroneous conclusions of
123  isolate relatedness (11).

124

125  Other analysis decisions that may impact results include the choice of reference genome. A
126  high quality closed reference genome that is closely related to the isolates of interest can reduce

127  the potential for mis-mapping and maximises the size of the core genome (11). Large diverse
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128 datasets may also reduce the size of the core-genome resulting in fewer sites available for
129  pairwise comparison (11).

130

131  Irrespective of the chosen thresholds, references or genome masking approaches, using SNP
132  differences to identify transmission events relies on accurate variant calling. Numerous
133  bioinformatics pipelines are available that implement different approaches for read mapping,
134  variant calling and variant filtering with the aim of maximising the number of true positive
135  SNP calls and minimising false positives and false negatives. BactSNP, Lyveset, Lyveset2,
136  Nesoni, Snippy and SPANDx are all-on-one pipelines targeted at microbial genomics that
137  perform mapping, variant calling, variant filtering as well as various down-stream analyses
138 (table 1) (1,9, 17-19).

139

140  Previous benchmarking studies have been conducted on some of these pipelines. However,
141  there is currently no established ‘gold-standard’ approach to benchmarking, and this has
142  resulted in benchmarking studies being performed on several different datasets with conflicting
143  performance outcomes, making comparisons between these studies difficult (1, 2). The absence
144  of an established methodology and gold-standard benchmarking approach has been highlighted
145 as a key risk to wide-spread implementation of microbial WGS-based diagnostics and
146  surveillance and may be slowing its adoption in routine public health (7, 16).

147

148 In this study, we describe a novel SNP calling pipeline, Snpdragon, which addresses observed
149  limitations in existing methodologies (available at

150  https://github.com/FordeGenomics/SNPdragon). Leveraging datasets previously used to

151  benchmark various microbial SNP calling applications we systematically compare

152  performance of Snpdragon and six all-in-one pipelines BactSNP, Lyveset, Lyveset2, Nesoni,
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153  SPANDx and Snippy (1, 9, 17-19). Finally, we highlight the issues surrounding current
154  benchmarking approaches and propose a number of solutions which will become increasingly

155  critical as this technology is integrated into clinical practice.
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Methods
Snpdragon
Snpdragon is a SNP calling pipeline implemented in Nextflow and available to be deployed in Docker
and Singularity containers (20, 21). It uses BWA-mem for read mapping, Samtools for coverage and
Freebayes for variant calling (22-24). Post-filtering of variant calls is performed in a Python program
to report high confidence SNPs. Standard SNP filters are applied with setting comparisons to the
other all-in-one pipelines detailed in table 1. SNPs not passing filter thresholds are labelled in the
output variant call format (vcf) files:

e FAIL_AF: Alternate allele fraction (alternate count/depth) >= 0.5 and < 0.75

e FAIL_AFO0.5: Alternate allele fraction < 0.5

e FAIL_DEPTH: Read depth at position < 10

e FAIL _MQM: Mean mapping quality at position < 30

¢ FAIL_RB: Read balance/strand bias fails if the ratio of alternate alleles on the forward and

reverse strands is < 0.05.

Presence/absence matrices and alignment files are generated using the high confidence SNP positions
and populated based on all unfiltered SNPs detected in each sample. Optional additional filters
include excluding SNPs detected in cliffs. A cliff is classified as a region with a rapid change in
aligned read depth and may be the result of sequence anomalies, poor read mapping, repeat regions
and breakpoints at positions of large structural rearrangements. The algorithm for the detection of
cliffs has been implemented as described in Katz et al. (9). Briefly, a linear trend line for read
coverage in window of 10bp is calculated and a region is masked if the slope of the line is >= 3 or <=
3 and the fit of the line (R?) is >= 0.7. SNPs occurring in high density (which may be the result of
mis-mapping or recombination) can also be filtered (25). A sliding window approach is implemented

to optionally exclude SNPs occurring at a frequency of 3 or more in a 10bp window.
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To optimise memory usage and runtime of the Python program an integer representation of the
IUPAC alphabet was developed. Float data types are then used to represent ‘SNP addresses’ which
are a combination of a position and the allele. For example, 1.1 represents position 1 with a base call
A. The use of Nextflow also allows for the rapid analysis of very large datasets that may have
incremental additions as more isolates are added to a collection, a scenario common to the application

of WGS in pathogen surveillance in public health.

Snpdragon produces the following final output files:

core_snp.fasta — Core SNP multiple sequence alignment (MSA)

e full_snp.fasta— Full SNP MSA including accessory genome (missing positions in each sample
denoted with ‘N”)

o full_aln.fasta — Mutated reference pseudo-genome MSA

e snp_dist.csv — Pairwise SNP distance matrix

e snp_matrix.csv — SNP position matrix (SNP sites by samples)

e core_stats.csv — Number of positions and percent of reference genome coverage for each

sample

Intermediate files including all bams, pileups and raw and filtered vcf’s are also output but can be

optionally cleaned at each step if storage space is a limitation in large analyses.

Benchmarking datasets
Previously published benchmarking datasets are combined to systematically compare the
performance of Snpdragon, BactSNP v1.1.0, Lyveset v1.1.4g, Lyveset2 v2.0.1, Nesoni v0.132,

SPANDXx v4.0.2 and Snippy v4.6.0 (1, 9, 17-19).

10
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EC958

The EC958 dataset consists of three previously isolates of the E. coli ST131 strain EC958 (26, 27).
These three isolates (EC958, MS6573 and MS6574) are nearly identical with EC958 differing from
MS6573 and MS6574 by a single SNP and MS6573 and MS6574 identical. These were mapped to

references of decreasing similarity calculated using fastANI which are detailed in table 2 (28).

Yoshimura
The Yoshimura dataset consists of 12 simulated experiments each with 10 samples representing E.
coli, Neiserria meningitidis and S. aureus aligned to increasingly distant reference genomes from

99.9% identity to 97% identity previously described in Yoshimura et al. (1).

Bush-simulated

The Bush-simulated dataset is a collection of 251 isolates from 10 species with SNPs simulated as
described in Bush et al. (2). Results from the benchmarking of the six all-in-one pipelines in this study
were also combined with expanded benchmarking results from Bush et al. on the 150bp simulated

reads (2).

Bush-real

The Bush-real dataset consists of 18 publicly available sequencing experiments. Methods for
generating this dataset are described in Bush et al. (2). The ground truth for comparison was
previously generated using an intersect of SNP calls using ParSNP and Nucmer (29, 30). SNP calls
made by only one of these tools were classified as ambiguous and excluded from benchmarking

calculations.

Compute environment

11
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BactSNP, Lyveset, Lyveset2, Nesoni, SPANDx and Snippy were run using default settings with 16
cores and 128G of available RAM. Snpdragon was run using default settings on EC958 and
Yoshimura datasets. Three separate results for Snpdragon were generated on the Bush-simulated and
Bush-real dataset to benchmark the effect of: 1. excluding SNPs occurring in cliffs and clusters; 2.

excluding only SNPs called in cliffs; and 3. including all SNPs irrespective of cliffs and clusters.

Concordance and performance metrics
Pipelines were assessed based on concordance to a ‘ground truth’ set. True positive (TP), false

positive (FP) and false negative (FN) counts were reported and used to calculate recall, precision and

F1 score.
Recall = —
ecatt = TP F FN
procision — TP
recision = TP n FP

Precision X Recall

Precision + Recall

Recall is a measure of how well all actual (true) positives are captured (at the cost of higher false
positives) while precision or the positive predictive value is a measure of how well only true positives
are captured (at the cost of false negatives). The F1 score is the harmonic mean of precision and recall
with poorest performance at 0 and the highest score of 1 and is suited to situations where there is a
high rate of true negatives, and which are not a relevant measure (i.e. non-variant positions) (31).
Pairwise core SNP distance matrices were calculated using snp-dist (32). Run-time and memory

usage based on resident set size (RSS) are also reported.

It should be noted that different analyses tools may represent the same variants in different ways.

‘Complex’ variants and multi-nucleotide polymorphisms (MNPs) are output by some variant calling

12
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tools including Freebayes. These can be regularised in the VCF file using vcfallelicprimitives module
in vcflib (33). In any case, the pipelines benchmarked in this study reported primitive SNP

representations and no additional filtering of the variant calls was performed.

13
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Results

Concordance benchmarks

EC958

All pipelines recalled the single true SNP difference between EC958 and MS6573 and MS6574
irrespective of the reference strain. Snpdragon and BactSNP showed high precision reporting only
the single known SNP and no false positives irrespective of the reference genome. The other tested
pipelines however had poorer performance with more distant reference genomes. Lyveset, Lyveset2,
Nesoni, SPANDx and Snippy showed lower F1 scores due to false positives being reported when
using more distant reference genomes (figure 2). Increasing numbers of pairwise SNP differences

due to these false positives is shown in supplementary table S1.

Yoshimura

Snpdragon and SPANDx had the highest median combined F1 score (figure 3 and supplementary
table S2). Performance scores declined with increasingly distant reference genomes for all pipelines,
though Snippy was most impacted (figure 3). The decline in performance on more distant reference
genomes was generally due to a decline in recall (related to increasing numbers of false negative SNP
calls) for BactSNP, Lyveset, Lyveset2, Nesoni, Snpdragon and SPANDx (figure 3A). Snippy
however showed a decline in precision as a result of higher rates of false positive SNP calls. On the
most distant reference genomes tested (97% similarity), recall scores for Lyveset and Lyveset2 were

below 0.4 possibly due to too stringent filtering causing higher false negative counts.

Bush-simulated
Combined median F1 scores were highest for BactSNP and Snpdragon with optional settings to
discard SNPs in cliffs followed by Snpdragon with no additional optional filtering (figure 4). Lyveset,

Lyveset2 and Snpdragon (with additional filtering to exclude SNPs in cliffs and clusters) showed

14
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poorest performance on this dataset. This largely appears to be related to a decline in recall which

was particularly evident on the Listeria samples.

In the combined results on with the expanded 150bp simulated dataset from Bush et al. BactSNP
showed highest performance based on median F1 score following by Snpdragon (with settings to
exclude only SNPs occurring in cliffs) (figure 5). The Snippy results from Bush et al. could not be
replicated, with the results in the paper scoring slightly higher than ours. Nesoni performed similarly

to Snippy on this dataset.

Bush-real

BactSNP, Snpdragon (with no additional filtering and with filtering to exclude SNPs occurring in
cliffs) and Snippy performed similarly on the Bush-real dataset (figure 6). Lyveset and Lyveset2
showed poorest performance with the lowest median F1 scores. The decline in performance was
generally related to poorer recall, particularly on more distant reference genomes (figure 6A). One

sample (rbhstw00167) also scored very poorly on precision in every pipeline.

Computational benchmarks

Snippy had the fastest median runtime on all datasets (figure 7A, figure 8A and figure 9A). Snpdragon
was also one of the most rapid on the EC958 and Y oshimura datasets. Runtime for Snpdragon on the
Bush-real dataset was mostly affected by whether the additional SNP cluster and cliff finding were
used (figure 9A). SPANDx and Lyveset had the highest median runtimes. SPANDx also required the
most amount of memory followed by Lyveset2 while the other pipelines tested had lower and
generally similar memory requirements across each of the datasets (figure 7B, figure 8B and figure

9B).

15
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Discussion
A newly introduced pipeline Snpdragon and six additional all-in-one pipelines BactSNP, Lyveset,
Lyveset2, Nesoni, SPANDx and Snippy were systematically evaluated for performance using a
combination of new and previously published benchmarking datasets. Only all-in-one pipelines were
included due to the popularity of such pipelines for their ease of use and internal filtering designed to
improve accuracy of the reported variant calls. These pipelines were benchmarked not only to
evaluate performance but to also explore potential issues in the current benchmarking approaches.
The current lack of guidelines for evaluating microbial variant calling pipelines has resulted in diverse
and inconsistent approaches in the literature (34). To establish a gold-standard benchmarking
approach, real datasets with verified known variants are required (35, 36). For the development of
high-quality benchmarking datasets, the following criteria has been proposed (16, 34, 35, 37):

o Relevance: Does the dataset contain the characteristics (variants) of interest

o Representativeness: Does the dataset cover the breadth of possible sample types and features

in the study space to establish the stability of the analysis approach

o Non-redundancy: Exclude overlaps and duplications

o Experimentally verified cases: The ground truth is known

o Positive and negative cases: The characteristic under investigation is present and absent in

different samples

o Scalability: For testing performance on different dataset sizes

o Reusability: For reproducibility and data sharing
To accurately assess performance of bioinformatics pipelines on any dataset, the ground truth is
needed (37). Simulated datasets are attractive for this reason, where features of interest (e.g. SNPSs)
are introduced in-silico at known positions. However, simulated datasets may not always be
representative and may not model all features or potential sources of errors present in real data.
Alternatively, using real datasets in benchmarking is problematic as the ground truth is often

unknown and instead comparisons are performed against the results of existing methods (35).
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The datasets used in this study consisted of a mix of simulated and real data with different
characteristics. The EC958 dataset consisted of sequencing data from three almost identical E. coli
ST131 isolates with a known single SNP difference that had been previously well characterised (26,
27). The Yoshimura dataset was a simulated dataset of 10 samples from three different species with
SNPs introduced in-silico at known locations and represented both gram-negative and gram-positive
bacteria (1). The Bush-simulated and Bush-real datasets were a diverse collection of publicly
available isolates and matching closed reference genomes. In the simulated dataset, SNPs were
introduced in-silico resulting in ~8000-25000 SNPs per genome with a median distance of ~60-120
bases between SNPs as described previously (2). This represents a much higher SNP rate than the
other datasets which were designed to reflect more closely related isolates in an outbreak or
transmission event setting. Similarly, the Bush-real dataset consisted of samples with matched closed
reference genomes of 87.7% to 99.1% identity with ~8000-13000 SNPs between the sample and the

matched reference (2).

For the Bush-simulated and Bush-real datasets, the ground-truth was established by taking an
intersection of the results of two assembly-based methods ParSNP and Nucmer (29, 30). While this
may be a reasonable approach given the limitations of establishing the known truth for the real
datasets, the risk is that the process of benchmarking may become an exercise in concordance with
existing methods rather than reflecting true accuracy (35). Using the union of calls may not
necessarily reflect true calls if both methods were susceptible to the same biases (34). Additionally,
sites were labelled as ambiguous and excluded from benchmarking counts if only one of ParSNP or

Nucmer reported a SNP and this may result in under-estimation of false positive rates (38).

This work highlights the difficulties when attempting to interpret different benchmarking studies

where the performance of one pipeline on one dataset is not replicated on other datasets and therefore
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results may not be generalisable. As has been previously demonstrated, accuracy declined with more
distant reference genome, however, the results show some pipelines were more affected than others
(39). For example, on EC958 lower F1 scores were observed for all pipelines except Snpdragon and
BactSNP on increasingly distant reference genomes (figure 2). Poorer performance with the other
pipelines on this dataset was related to higher rates of false positive SNP calls. The clinical
implications of these false positives can be seen in the pairwise core SNP difference matrices
(supplementary table S1). In some cases, the number of SNPs reported between these almost identical
samples was above the threshold typically used to define isolates as part of a cluster (11). On the
Yoshimura dataset, Snippy was the most affected, followed by Lyveset and Lyveset2 by the dis-
similarity of the reference genome, but for different reasons. While the precision of Snippy declined
due to increasing numbers of false positive SNPs, the recall of Lyveset and Lyveset2 declined due to
higher false negative counts (figure 3A). The results on the Bush-simulated and Bush-real datasets
however showed the precision of Snippy was less affected by distance to the reference genome (but
instead a showed a proportionate decline in recall) (figure 6A). Overall, Snpdragon and BactSNP

showed the most stable performance across all datasets and reference types.

The poorer recall across all datasets for Lyveset and Lyveset2 may be related to stricter internal SNP
filtering resulting in higher numbers of ‘real” SNPs being discarded. Similarly, with the additional
filters to exclude SNPs in cliffs and clusters in Snpdragon, a similar decline in recall was observed
but only on the Bush-simulated and Bush-real datasets highlighting the difficulties in generalising

single benchmarking results across different datasets (figure 4A and 6A).

These results also demonstrated the usefulness of using a variety of benchmarking metrics for
comparison. While the F1 score is useful to report a balance between recall and precision, reporting
separate measures provides insight into the underlying causes of the poorer performance (e.g. high

false negatives vs high false positives) which varied between pipelines and across datasets.
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The lack of a standardised approach to benchmarking may be slowing implementation of microbial
WGS in clinical practice. A criteria for development benchmarking datasets has been proposed by
Sarkar et al. and the Global Microbial Identifier (GMI) working group are in ongoing development
of an SOP for the validation of benchmarking datasets (35, 40). While simulated datasets are useful,
they may not fully represent all characteristics present on real sequencing data that can be potential
sources of error and bias. Therefore, building experimentally validated benchmarking datasets such
as through Sanger sequencing will be important to generate known ground truths as was done in a

recent study comparing several pipelines on Mycobacterium tuberculosis (41).

Conclusion

This study sought to survey the current landscape of prominent benchmarking studies for the analysis
of microbial SNP calling and to comprehensively evaluate a range of all-in-one pipelines. The results
highlight the difficulty in comparing results between different benchmarking approaches and the
effect of dataset choice. The growing interest in the routine application of microbial WGS for AMR
surveillance, outbreak investigation and diagnostics should motivate the development of a gold-

standard benchmarking approach.
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Table 1. Benchmarked all-in-one variant calling pipelines targeted to analysis of microbial genomic datasets.

QUAL=30, FS=60

Pipeline Version | Release Aligner SNP Def_ault optional - caller Additional features Link Ref
tested date caller settings
BWA- Creates assemblies and
BactSNP | 1.1.0 2018 mem Samtools | AF=0.9, Depth=10 maps reads back to | https:/github.com/IEKAdN/BactSNP @
pseudogenome
LyveSet | 1.1.4g | 2017 | SMALT | Varscan | AF=0.75, Depth=10 Optional cliff masking, | . ithub com/iskatz/lyve-SET 9)
optional phage masking
LyveSet2 | 2.0.1 2018 SMALT | Varscan | AF=0.75, Depth=10 Op'glonal cliff masl_<lng, https://github.com/Iskatz/lyve-SET 9)
optional phage masking
Nesoni 0.132 2015 Bowtie2 | Freebayes | pvar=0.9 https://q_lthub.com{Vlctorlan-Blomformatlcs-
Consortium/nesoni (19)
. BWA- Depth=10, AF=0.9, . .
Snippy 4.6.0 2020 mem Freebayes QUAL=100 https://github.com/tseemann/snippy (17)
MAPQ=10/30,
BWA.- BASEQ=10/10, Option cliff masking,
Snpdragon | 1.0.0 2022 Freebayes | AF=0.1/0.75, optional SNP cluster | https://github.com/FordeGenomics/SNPdragon
mem o
Depth=10/10, filtering
strand_balance=0/0.05
QualByDepth=10, . .
BWA- _ Calls indels, optional L
SPANDx | 4.0.2 2021 mem GATK RMSMAPQ=30, SNP cluster filtering https://github.com/dsarov/SPANDXx (18)
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520 Table 2. Reference genomes used in the EC958 benchmarking dataset and the percent identity against

521  the three included samples.

Reference name Identity (%) Accession
EC958 100 NZ_HG941718.1
ECJJ1886 99.9 CP006784.1
SE15 99.5 AP009378.1
uTI89 98.3 CP000243.1
IAI39 97.2 Cu928164.2

E. coli K12 96.8 U00096.3

SE11 96.7 AP009240.1
Sakai 96.5 BA000007.3
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Figure 1. A typical variant calling bioinformatics pipeline. Quality control is measured using FastQC
and reads may be trimmed of poor-quality bases (42). Reads are mapped to a chosen reference
genome followed by variant calling. Coverage or pileup calculations may also be performed to
determine the depth which is the number of reads covering each base in the reference genome. Variant
filtering is applied to discard low confidence variant calls based on various measures such as depth,
base quality, mapping quality, ratio of the variant to the reference allele (ratio of support/allele
fraction) and read bias (only forward or reverse reads reporting a variant). Results are reported in a

human readable format in addition to files suitable for other downstream analyses.
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the pipelines against increasingly distance reference genomes from 99.9% similarity to 97%
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544  Figure 4. A) Precision vs Recall scatter plot and B) F1 score boxplot on the Bush-simulated dataset
545  ordered based on median combined F1 scores (2). Snpdragon = filtering to exclude both SNPs

546  occurring in cliffs and in high density SNP clusters. Snpdragon* = optional filtering settings to
547  exclude SNPs occurring in cliffs. Snpdragon” = no additional optional filtering settings.
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550  Figure 5. F1 scores on combined results of BactSNP, Lyveset, Lyveset2, Nesoni, Snpdragon,
551  Snippy and Bush-et al. supplementary results on the 150bp simulated data (2). Results for the new
552  pipelines analysed in this study are highlighted. Snpdragon = filtering to exclude both SNPs
553  occurring in cliffs and in high density SNP clusters. Snpdragon* = optional filtering settings to
554  exclude SNPs occurring in cliffs. Snpdragon” = no additional optional filtering settings.
555
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Figure 6. A) Precision vs Recall scatter plot and B) Boxplot of F1 scores on Bush-real dataset

ordered by median F1score (2). Snpdragon = filtering to exclude both SNPs occurring in cliffs and

in high density SNP clusters. Snpdragon* = optional filtering settings to exclude SNPs occurring in

cliffs. Snpdragon” = no additional optional filtering settings.
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Figure 7. A) Runtime on E. coli ST131 dataset. B) Resident set size (RSS) on EC958 dataset.
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566  Figure 8. A) Runtime and B) RSS on the Yoshimura dataset (1).
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Figure 9. A) Runtime and B) RSS plot on the Bush-real dataset (2).
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