

1 **Systematic benchmarking of ‘all-in-one’ microbial SNP calling pipelines**

2 **Authors:**

3 Caitlin Falconer¹, Thom Cuddihy¹, Scott A. Beatson^{2,4}, David L. Paterson^{1,2}, Patrick NA.

4 Harris^{1,2,3}, Brian M. Forde^{1,2*}

5

6 **Affiliations:**

7 1. University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research and, QLD,
8 Australia

9 2. Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD,
10 Australia

11 3. Central Microbiology, Pathology Queensland, Royal Brisbane & Women’s Hospital, QLD,
12 Australia

13 4. School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD,
14 Australia

15

16

17 ***Corresponding author:** B M. Forde; University of Queensland Centre for Clinical
18 Research, Building 71/918 Royal Brisbane & Women's Hospital Campus, Herston, QLD,
19 4029; **Email:** b.forde@uq.edu.au; **Tel:** +61 (0) 7 3346 5474

20

21 **ORCID:** 0000-0002-0476-7714 (CF); 0000-0002-2895-0345 (PNAH); 0000-0002-2264-
22 4785 (BMF); 0000-0002-1806-3283 (SAB); 0000-0003-2079-4437 (DLP);

23

24 **Keywords:** Bacterial genomics, benchmarking, bioinformatics, infectious disease
25 surveillance, single nucleotide polymorphism, whole genome sequencing

26 **Abstract**

27 Clinical and public health microbiology is increasingly utilising whole genome sequencing
28 (WGS) technology and this has lead to the development of a myriad of analysis tools and
29 bioinformatics pipelines. Single nucleotide polymorphism (SNP) analysis is an approach used
30 for strain characterisation and determining isolate relatedness. However, in order to ensure the
31 development of robust methodologies suitable for clinical application of this technology,
32 accurate, reproducible, traceable and benchmarked analysis pipelines are necessary. To date,
33 the approach to benchmarking of these has been largely ad-hoc with new pipelines
34 benchmarked on their own datasets with limited comparisons to previously published pipelines.

35

36 In this study, Snpdragon, a fast and accurate SNP calling pipeline is introduced. Written in
37 Nextflow, Snpdragon is capable of handling small to very large and incrementally growing
38 datasets. Snpdragon is benchmarked using previously published datasets against six other all-
39 in-one microbial SNP calling pipelines, Lyveset, Lyveset2, Snippy, SPANDx, BactSNP and
40 Nesoni. The effect of dataset choice on performance measures is demonstrated to highlight
41 some of the issues associated with the current available benchmarking approaches.

42

43 The establishment of an agreed upon gold-standard benchmarking process for microbial variant
44 analysis is becoming increasingly important to aid in its robust application, improve
45 transparency of pipeline performance under different settings and direct future improvements
46 and development.

47

48 Snpdragon is available at <https://github.com/FordeGenomics/SNPdragon>.

49 **Impact statement**

50 Whole-genome sequencing has become increasingly popular in infectious disease diagnostics
51 and surveillance. The resolution provided by single nucleotide polymorphism (SNP) analyses
52 provides the highest level of insight into strain characteristics and relatedness. Numerous
53 approaches to SNP analysis have been developed but with no established gold-standard
54 benchmarking approach, choice of bioinformatics pipeline tends to come down to laboratory
55 or researcher preference. To support the clinical application of this technology, accurate,
56 transparent, auditable, reproducible and benchmarked pipelines are necessary. Therefore,
57 Snpdragon has been developed in Nextflow to allow transparency, auditability and
58 reproducibility and has been benchmarked against six other all-in-one pipelines using a number
59 of previously published benchmarking datasets. The variability of performance measures
60 across different datasets is shown and illustrates the need for a robust, fair and uniform
61 approach to benchmarking.

62

63 **Data Summary**

64 1. Previously sequenced reads for *Escherichia coli* O25b:H4-ST131 strain EC958 are
65 available in BioProject PRJNA362676. BioSample accession numbers for the three
66 benchmarking isolates are:

67

- EC958: SAMN06245884
- MS6573: SAMN06245879
- MS6574: SAMN06245880

68 2. Accession numbers for reference genomes against the *E. coli* O25b:H4-ST131 strain
69 EC958 benchmark are detailed in table 2.

72 3. Simulated benchmarking data previously described by Yoshimura et al. is available at
73 <http://platanus.bio.titech.ac.jp/bactsnp> (1).

74 4. Simulated datasets previously described by Bush et al. is available at
75 <http://dx.doi.org/10.5287/bodleian:AmNXrjYN8> (2).

76 5. Real sequencing benchmarking datasets previously described by Bush et al. are
77 available at <http://dx.doi.org/10.5287/bodleian:nrmv8k5r8> (2).

78

79 **Introduction**

80 Microbial whole genome sequencing (WGS) is increasingly being used to support pathogen
81 detection, surveillance, and diagnostics (1, 3). WGS provides the highest level of genomic
82 resolution which allows for the ability to distinguish between closely related isolates and infer
83 potential transmission events (1). Characterisation of isolates at the whole genome level in
84 combination with clinical and epidemiological information can greatly benefit public health
85 microbiology activities (4). There are many examples of the various advantages of WGS in
86 pathogen detection and surveillance and perhaps the most recent is its usefulness in tracking
87 community transmission of SARS-CoV-2 (3, 5). The application of WGS in public health
88 microbiology is now progressing from proof-of-concept to implementation, particularly in
89 food-borne pathogen surveillance and antimicrobial resistant bacterial outbreak detection (6,
90 7).

91

92 Determining isolate relatedness typically involves examining single nucleotide polymorphisms
93 (SNPs). A typical SNP calling workflow includes the following steps: 1. Quality Control; 2.
94 Read mapping; 3. Variant calling; 4. Variant filtering; 5. Downstream analysis (phylogenetic
95 reconstruction and pairwise SNP difference clustering) (figure 1).

96 By comparing SNPs present within the core genome (the shared region common to all isolates
97 under evaluation), potential transmission events can be identified (8, 9). This information may
98 be used to classify potential outbreak events and when combined with epidemiological data
99 may inform infection prevention and control practices (8). In order to classify isolates as
100 ‘related’ thresholds based on the number of core SNP differences are applied (10). The selected
101 threshold will depend on various factors including species, strain, and clinical context.
102 Nucleotide mutation rates can vary during different stages of an infection or may be under
103 different selection pressures such as antimicrobial exposure (10). Laboratory processes during

104 culturing (e.g. single colony picks vs sweeps) may also affect the diversity of samples sent for
105 WGS (10). Various studies have used SNP thresholds ranging from 0 for *Yersinia* species to
106 over 35 for *Pseudomonas aeruginosa* and a recently published implementation study applied
107 SNP thresholds of < 16 for multi-drug resistant *Staphylococcus aureus* and < 26 for the other
108 species in the study including vancomycin-resistant *Enterococci*, extended spectrum beta-
109 lactamase (ESBL) producing *Klebsiella pneumoniae* and ESBL-producing *Escherichia coli*
110 (11, 12). Similar cutoffs were also found using a number of different methods such as Poisson
111 distributions (25 SNPs for *E. coli*), within patient maximum diversity (17 SNPs for *E. coli*),
112 with and without recombination SNP distance changes (20 SNPs for *Enterococcus faecium*)
113 and linear mixed models (13 core genome SNPs for methicillin-resistance *Staphylococcus*
114 *aureus*) (13-15). Due to the shortcomings of these hard cut-off approaches, more probabilistic
115 methods are being explored to consider variable mutation rates and incorporating other
116 epidemiological information (10).

117
118 Horizontal gene transfer can also affect apparent SNP level relatedness and masking of
119 prophage and recombination regions has been previously suggested (10, 16). However, there
120 is not yet a consensus on this approach. A recent systematic analysis for real-time genomics
121 based tracking of MDR bacteria in the healthcare environment found masking of prophages
122 had minimal effect while masking of recombination may lead to erroneous conclusions of
123 isolate relatedness (11).

124
125 Other analysis decisions that may impact results include the choice of reference genome. A
126 high quality closed reference genome that is closely related to the isolates of interest can reduce
127 the potential for mis-mapping and maximises the size of the core genome (11). Large diverse

128 datasets may also reduce the size of the core-genome resulting in fewer sites available for
129 pairwise comparison (11).

130

131 Irrespective of the chosen thresholds, references or genome masking approaches, using SNP
132 differences to identify transmission events relies on accurate variant calling. Numerous
133 bioinformatics pipelines are available that implement different approaches for read mapping,
134 variant calling and variant filtering with the aim of maximising the number of true positive
135 SNP calls and minimising false positives and false negatives. BactSNP, Lyveset, Lyveset2,
136 Nesoni, Snippy and SPANDx are all-on-one pipelines targeted at microbial genomics that
137 perform mapping, variant calling, variant filtering as well as various down-stream analyses
138 (table 1) (1, 9, 17-19).

139

140 Previous benchmarking studies have been conducted on some of these pipelines. However,
141 there is currently no established ‘gold-standard’ approach to benchmarking, and this has
142 resulted in benchmarking studies being performed on several different datasets with conflicting
143 performance outcomes, making comparisons between these studies difficult (1, 2). The absence
144 of an established methodology and gold-standard benchmarking approach has been highlighted
145 as a key risk to wide-spread implementation of microbial WGS-based diagnostics and
146 surveillance and may be slowing its adoption in routine public health (7, 16).

147

148 In this study, we describe a novel SNP calling pipeline, Snpdragon, which addresses observed
149 limitations in existing methodologies (available at
150 <https://github.com/FordeGenomics/SNPdragon>). Leveraging datasets previously used to
151 benchmark various microbial SNP calling applications we systematically compare
152 performance of Snpdragon and six all-in-one pipelines BactSNP, Lyveset, Lyveset2, Nesoni,

153 SPANDx and Snippy (1, 9, 17-19). Finally, we highlight the issues surrounding current
154 benchmarking approaches and propose a number of solutions which will become increasingly
155 critical as this technology is integrated into clinical practice.

156 **Methods**

157 **Snpdragon**

158 Snpdragon is a SNP calling pipeline implemented in Nextflow and available to be deployed in Docker
159 and Singularity containers (20, 21). It uses BWA-mem for read mapping, Samtools for coverage and
160 Freebayes for variant calling (22-24). Post-filtering of variant calls is performed in a Python program
161 to report high confidence SNPs. Standard SNP filters are applied with setting comparisons to the
162 other all-in-one pipelines detailed in table 1. SNPs not passing filter thresholds are labelled in the
163 output variant call format (vcf) files:

- 164 • FAIL_AF: Alternate allele fraction (alternate count/depth) ≥ 0.5 and < 0.75
- 165 • FAIL_AF0.5: Alternate allele fraction < 0.5
- 166 • FAIL_DEPTH: Read depth at position < 10
- 167 • FAIL_MQM: Mean mapping quality at position < 30
- 168 • FAIL_RB: Read balance/strand bias fails if the ratio of alternate alleles on the forward and
169 reverse strands is < 0.05 .

170 Presence/absence matrices and alignment files are generated using the high confidence SNP positions
171 and populated based on all unfiltered SNPs detected in each sample. Optional additional filters
172 include excluding SNPs detected in cliffs. A cliff is classified as a region with a rapid change in
173 aligned read depth and may be the result of sequence anomalies, poor read mapping, repeat regions
174 and breakpoints at positions of large structural rearrangements. The algorithm for the detection of
175 cliffs has been implemented as described in Katz et al. (9). Briefly, a linear trend line for read
176 coverage in window of 10bp is calculated and a region is masked if the slope of the line is ≥ 3 or \leq
177 3 and the fit of the line (R^2) is ≥ 0.7 . SNPs occurring in high density (which may be the result of
178 mis-mapping or recombination) can also be filtered (25). A sliding window approach is implemented
179 to optionally exclude SNPs occurring at a frequency of 3 or more in a 10bp window.

180

181 To optimise memory usage and runtime of the Python program an integer representation of the
182 IUPAC alphabet was developed. Float data types are then used to represent ‘SNP addresses’ which
183 are a combination of a position and the allele. For example, 1.1 represents position 1 with a base call
184 A. The use of Nextflow also allows for the rapid analysis of very large datasets that may have
185 incremental additions as more isolates are added to a collection, a scenario common to the application
186 of WGS in pathogen surveillance in public health.

187

188 Snpdragon produces the following final output files:

- 189 • core.snp.fasta – Core SNP multiple sequence alignment (MSA)
- 190 • full.snp.fasta – Full SNP MSA including accessory genome (missing positions in each sample
191 denoted with ‘N’)
- 192 • full_aln.fasta – Mutated reference pseudo-genome MSA
- 193 •.snp_dist.csv – Pairwise SNP distance matrix
- 194 •.snp_matrix.csv – SNP position matrix (SNP sites by samples)
- 195 • core_stats.csv – Number of positions and percent of reference genome coverage for each
196 sample

197

198 Intermediate files including all bams, pileups and raw and filtered vcf’s are also output but can be
199 optionally cleaned at each step if storage space is a limitation in large analyses.

200

201 **Benchmarking datasets**

202 Previously published benchmarking datasets are combined to systematically compare the
203 performance of Snpdragon, BactSNP v1.1.0, Lyveset v1.1.4g, Lyveset2 v2.0.1, Nesoni v0.132,
204 SPANDx v4.0.2 and Snippy v4.6.0 (1, 9, 17-19).

205

206

207 *EC958*

208 The EC958 dataset consists of three previously isolates of the *E. coli* ST131 strain EC958 (26, 27).
209 These three isolates (EC958, MS6573 and MS6574) are nearly identical with EC958 differing from
210 MS6573 and MS6574 by a single SNP and MS6573 and MS6574 identical. These were mapped to
211 references of decreasing similarity calculated using fastANI which are detailed in table 2 (28).

212

213 *Yoshimura*

214 The Yoshimura dataset consists of 12 simulated experiments each with 10 samples representing *E.*
215 *coli*, *Neisseria meningitidis* and *S. aureus* aligned to increasingly distant reference genomes from
216 99.9% identity to 97% identity previously described in Yoshimura et al. (1).

217

218 *Bush-simulated*

219 The Bush-simulated dataset is a collection of 251 isolates from 10 species with SNPs simulated as
220 described in Bush et al. (2). Results from the benchmarking of the six all-in-one pipelines in this study
221 were also combined with expanded benchmarking results from Bush et al. on the 150bp simulated
222 reads (2).

223

224 *Bush-real*

225 The Bush-real dataset consists of 18 publicly available sequencing experiments. Methods for
226 generating this dataset are described in Bush et al. (2). The ground truth for comparison was
227 previously generated using an intersect of SNP calls using ParSNP and Nucmer (29, 30). SNP calls
228 made by only one of these tools were classified as ambiguous and excluded from benchmarking
229 calculations.

230

231 **Compute environment**

232 BactSNP, Lyveset, Lyveset2, Nesoni, SPANDx and Snippy were run using default settings with 16
233 cores and 128G of available RAM. Snpdragon was run using default settings on EC958 and
234 Yoshimura datasets. Three separate results for Snpdragon were generated on the Bush-simulated and
235 Bush-real dataset to benchmark the effect of: 1. excluding SNPs occurring in cliffs and clusters; 2.
236 excluding only SNPs called in cliffs; and 3. including all SNPs irrespective of cliffs and clusters.

237

238 **Concordance and performance metrics**

239 Pipelines were assessed based on concordance to a ‘ground truth’ set. True positive (TP), false
240 positive (FP) and false negative (FN) counts were reported and used to calculate recall, precision and
241 F₁ score.

242

$$Recall = \frac{TP}{TP + FN}$$

243

$$Precision = \frac{TP}{TP + FP}$$

244

245

$$F_1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

246

247 Recall is a measure of how well all actual (true) positives are captured (at the cost of higher false
248 positives) while precision or the positive predictive value is a measure of how well only true positives
249 are captured (at the cost of false negatives). The F₁ score is the harmonic mean of precision and recall
250 with poorest performance at 0 and the highest score of 1 and is suited to situations where there is a
251 high rate of true negatives, and which are not a relevant measure (i.e. non-variant positions) (31).

252 Pairwise core SNP distance matrices were calculated using snp-dist (32). Run-time and memory
253 usage based on resident set size (RSS) are also reported.

254

255 It should be noted that different analyses tools may represent the same variants in different ways.
256 ‘Complex’ variants and multi-nucleotide polymorphisms (MNPs) are output by some variant calling

257 tools including Freebayes. These can be regularised in the VCF file using vcfallelicprimitives module
258 in vcflib (33). In any case, the pipelines benchmarked in this study reported primitive SNP
259 representations and no additional filtering of the variant calls was performed.

260

261 **Results**

262 **Concordance benchmarks**

263 *EC958*

264 All pipelines recalled the single true SNP difference between EC958 and MS6573 and MS6574
265 irrespective of the reference strain. Snpdragon and BactSNP showed high precision reporting only
266 the single known SNP and no false positives irrespective of the reference genome. The other tested
267 pipelines however had poorer performance with more distant reference genomes. Lyveset, Lyveset2,
268 Nesoni, SPANDx and Snippy showed lower F_1 scores due to false positives being reported when
269 using more distant reference genomes (figure 2). Increasing numbers of pairwise SNP differences
270 due to these false positives is shown in supplementary table S1.

271

272 *Yoshimura*

273 Snpdragon and SPANDx had the highest median combined F_1 score (figure 3 and supplementary
274 table S2). Performance scores declined with increasingly distant reference genomes for all pipelines,
275 though Snippy was most impacted (figure 3). The decline in performance on more distant reference
276 genomes was generally due to a decline in recall (related to increasing numbers of false negative SNP
277 calls) for BactSNP, Lyveset, Lyveset2, Nesoni, Snpdragon and SPANDx (figure 3A). Snippy
278 however showed a decline in precision as a result of higher rates of false positive SNP calls. On the
279 most distant reference genomes tested (97% similarity), recall scores for Lyveset and Lyveset2 were
280 below 0.4 possibly due to too stringent filtering causing higher false negative counts.

281

282 *Bush-simulated*

283 Combined median F_1 scores were highest for BactSNP and Snpdragon with optional settings to
284 discard SNPs in cliffs followed by Snpdragon with no additional optional filtering (figure 4). Lyveset,
285 Lyveset2 and Snpdragon (with additional filtering to exclude SNPs in cliffs and clusters) showed

286 poorest performance on this dataset. This largely appears to be related to a decline in recall which
287 was particularly evident on the *Listeria* samples.

288

289 In the combined results on with the expanded 150bp simulated dataset from Bush et al. BactSNP
290 showed highest performance based on median F_1 score following by Snpdragon (with settings to
291 exclude only SNPs occurring in cliffs) (figure 5). The Snippy results from Bush et al. could not be
292 replicated, with the results in the paper scoring slightly higher than ours. Nesoni performed similarly
293 to Snippy on this dataset.

294

295 *Bush-real*

296 BactSNP, Snpdragon (with no additional filtering and with filtering to exclude SNPs occurring in
297 cliffs) and Snippy performed similarly on the Bush-real dataset (figure 6). Lyveset and Lyveset2
298 showed poorest performance with the lowest median F_1 scores. The decline in performance was
299 generally related to poorer recall, particularly on more distant reference genomes (figure 6A). One
300 sample (rbhstw00167) also scored very poorly on precision in every pipeline.

301

302 **Computational benchmarks**

303 Snippy had the fastest median runtime on all datasets (figure 7A, figure 8A and figure 9A). Snpdragon
304 was also one of the most rapid on the EC958 and Yoshimura datasets. Runtime for Snpdragon on the
305 Bush-real dataset was mostly affected by whether the additional SNP cluster and cliff finding were
306 used (figure 9A). SPANDx and Lyveset had the highest median runtimes. SPANDx also required the
307 most amount of memory followed by Lyveset2 while the other pipelines tested had lower and
308 generally similar memory requirements across each of the datasets (figure 7B, figure 8B and figure
309 9B).

310

311 **Discussion**

312 A newly introduced pipeline Snpdragon and six additional all-in-one pipelines BactSNP, Lyveset,
313 Lyveset2, Nesoni, SPANDx and Snippy were systematically evaluated for performance using a
314 combination of new and previously published benchmarking datasets. Only all-in-one pipelines were
315 included due to the popularity of such pipelines for their ease of use and internal filtering designed to
316 improve accuracy of the reported variant calls. These pipelines were benchmarked not only to
317 evaluate performance but to also explore potential issues in the current benchmarking approaches.
318 The current lack of guidelines for evaluating microbial variant calling pipelines has resulted in diverse
319 and inconsistent approaches in the literature (34). To establish a gold-standard benchmarking
320 approach, real datasets with verified known variants are required (35, 36). For the development of
321 high-quality benchmarking datasets, the following criteria has been proposed (16, 34, 35, 37):

- 322 ○ Relevance: Does the dataset contain the characteristics (variants) of interest
- 323 ○ Representativeness: Does the dataset cover the breadth of possible sample types and features
324 in the study space to establish the stability of the analysis approach
- 325 ○ Non-redundancy: Exclude overlaps and duplications
- 326 ○ Experimentally verified cases: The ground truth is known
- 327 ○ Positive and negative cases: The characteristic under investigation is present and absent in
328 different samples
- 329 ○ Scalability: For testing performance on different dataset sizes
- 330 ○ Reusability: For reproducibility and data sharing

331 To accurately assess performance of bioinformatics pipelines on any dataset, the ground truth is
332 needed (37). Simulated datasets are attractive for this reason, where features of interest (e.g. SNPs)
333 are introduced in-silico at known positions. However, simulated datasets may not always be
334 representative and may not model all features or potential sources of errors present in real data.
335 Alternatively, using real datasets in benchmarking is problematic as the ground truth is often
336 unknown and instead comparisons are performed against the results of existing methods (35).

337

338 The datasets used in this study consisted of a mix of simulated and real data with different
339 characteristics. The EC958 dataset consisted of sequencing data from three almost identical *E. coli*
340 ST131 isolates with a known single SNP difference that had been previously well characterised (26,
341 27). The Yoshimura dataset was a simulated dataset of 10 samples from three different species with
342 SNPs introduced *in-silico* at known locations and represented both gram-negative and gram-positive
343 bacteria (1). The Bush-simulated and Bush-real datasets were a diverse collection of publicly
344 available isolates and matching closed reference genomes. In the simulated dataset, SNPs were
345 introduced *in-silico* resulting in ~8000-25000 SNPs per genome with a median distance of ~60-120
346 bases between SNPs as described previously (2). This represents a much higher SNP rate than the
347 other datasets which were designed to reflect more closely related isolates in an outbreak or
348 transmission event setting. Similarly, the Bush-real dataset consisted of samples with matched closed
349 reference genomes of 87.7% to 99.1% identity with ~8000-13000 SNPs between the sample and the
350 matched reference (2).

351

352 For the Bush-simulated and Bush-real datasets, the ground-truth was established by taking an
353 intersection of the results of two assembly-based methods ParSNP and Nucmer (29, 30). While this
354 may be a reasonable approach given the limitations of establishing the known truth for the real
355 datasets, the risk is that the process of benchmarking may become an exercise in concordance with
356 existing methods rather than reflecting true accuracy (35). Using the union of calls may not
357 necessarily reflect true calls if both methods were susceptible to the same biases (34). Additionally,
358 sites were labelled as ambiguous and excluded from benchmarking counts if only one of ParSNP or
359 Nucmer reported a SNP and this may result in under-estimation of false positive rates (38).

360

361 This work highlights the difficulties when attempting to interpret different benchmarking studies
362 where the performance of one pipeline on one dataset is not replicated on other datasets and therefore

363 results may not be generalisable. As has been previously demonstrated, accuracy declined with more
364 distant reference genome, however, the results show some pipelines were more affected than others
365 (39). For example, on EC958 lower F_1 scores were observed for all pipelines except Snpdragon and
366 BactSNP on increasingly distant reference genomes (figure 2). Poorer performance with the other
367 pipelines on this dataset was related to higher rates of false positive SNP calls. The clinical
368 implications of these false positives can be seen in the pairwise core SNP difference matrices
369 (supplementary table S1). In some cases, the number of SNPs reported between these almost identical
370 samples was above the threshold typically used to define isolates as part of a cluster (11). On the
371 Yoshimura dataset, Snippy was the most affected, followed by Lyveset and Lyveset2 by the dis-
372 similarity of the reference genome, but for different reasons. While the precision of Snippy declined
373 due to increasing numbers of false positive SNPs, the recall of Lyveset and Lyveset2 declined due to
374 higher false negative counts (figure 3A). The results on the Bush-simulated and Bush-real datasets
375 however showed the precision of Snippy was less affected by distance to the reference genome (but
376 instead showed a proportionate decline in recall) (figure 6A). Overall, Snpdragon and BactSNP
377 showed the most stable performance across all datasets and reference types.

378

379 The poorer recall across all datasets for Lyveset and Lyveset2 may be related to stricter internal SNP
380 filtering resulting in higher numbers of ‘real’ SNPs being discarded. Similarly, with the additional
381 filters to exclude SNPs in cliffs and clusters in Snpdragon, a similar decline in recall was observed
382 but only on the Bush-simulated and Bush-real datasets highlighting the difficulties in generalising
383 single benchmarking results across different datasets (figure 4A and 6A).

384

385 These results also demonstrated the usefulness of using a variety of benchmarking metrics for
386 comparison. While the F_1 score is useful to report a balance between recall and precision, reporting
387 separate measures provides insight into the underlying causes of the poorer performance (e.g. high
388 false negatives vs high false positives) which varied between pipelines and across datasets.

389

390 The lack of a standardised approach to benchmarking may be slowing implementation of microbial
391 WGS in clinical practice. A criteria for development benchmarking datasets has been proposed by
392 Sarkar et al. and the Global Microbial Identifier (GMI) working group are in ongoing development
393 of an SOP for the validation of benchmarking datasets (35, 40). While simulated datasets are useful,
394 they may not fully represent all characteristics present on real sequencing data that can be potential
395 sources of error and bias. Therefore, building experimentally validated benchmarking datasets such
396 as through Sanger sequencing will be important to generate known ground truths as was done in a
397 recent study comparing several pipelines on *Mycobacterium tuberculosis* (41).

398

399 **Conclusion**

400 This study sought to survey the current landscape of prominent benchmarking studies for the analysis
401 of microbial SNP calling and to comprehensively evaluate a range of all-in-one pipelines. The results
402 highlight the difficulty in comparing results between different benchmarking approaches and the
403 effect of dataset choice. The growing interest in the routine application of microbial WGS for AMR
404 surveillance, outbreak investigation and diagnostics should motivate the development of a gold-
405 standard benchmarking approach.

406

407 **References**

1. Yoshimura D, Kajitani R, Gotoh Y, Katahira K, Okuno M, Ogura Y, et al. Evaluation of SNP calling methods for closely related bacterial isolates and a novel high-accuracy pipeline: BactSNP. *Microb Genom*. 2019;5(5).
2. Bush SJ, Foster D, Eyre DW, Clark EL, De Maio N, Shaw LP, et al. Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism–calling pipelines. *GigaScience*. 2020;9(2).
3. Black A, MacCannell DR, Sibley TR, Bedford T. Ten recommendations for supporting open pathogen genomic analysis in public health. *Nature Medicine*. 2020;26(6):832-41.
4. Van Goethem N, Descamps T, Devleesschauwer B, Roosens NHC, Boon NAM, Van Oyen H, et al. Status and potential of bacterial genomics for public health practice: a scoping review. *Implementation Science*. 2019;14(1):79.
5. Gordon LG, Elliott TM, Forde B, Mitchell B, Russo PL, Paterson DL, et al. Budget impact analysis of routinely using whole-genomic sequencing of six multidrug-resistant bacterial pathogens in Queensland, Australia. *BMJ Open*. 2021;11(2):e041968.
6. Lee XJ, Elliott TM, Harris PNA, Douglas J, Henderson B, Watson C, et al. Clinical and Economic Outcomes of Genome Sequencing Availability on Containing a Hospital Outbreak of Resistant *Escherichia coli* in Australia. *Value in Health*. 2020;23(8):994-1002.
7. National Microbial Genomics Framework 2019-2022. 2019.
8. Roberts LW, Catchpoole E, Jennison AV, Bergh H, Hume A, Heney C, et al. Genomic analysis of carbapenemase-producing Enterobacteriaceae in Queensland reveals widespread transmission of bla (IMP-4) on an IncHI2 plasmid. *Microb Genom*. 2020;6(1).
9. Katz LS, Griswold T, Williams-Newkirk AJ, Wagner D, Petkau A, Sieffert C, et al. A Comparative Analysis of the Lyve-SET Phylogenomics Pipeline for Genomic Epidemiology of Foodborne Pathogens. *Frontiers in Microbiology*. 2017;8(375).
10. Stimson J, Gardy J, Mathema B, Crudu V, Cohen T, Colijn C. Beyond the SNP Threshold: Identifying Outbreak Clusters Using Inferred Transmissions. *Molecular Biology and Evolution*. 2019;36(3):587-603.
11. Gorrie CL, Da Silva AG, Ingle DJ, Higgs C, Seemann T, Stinear TP, et al. Key parameters for genomics-based real-time detection and tracking of multidrug-resistant bacteria: a systematic analysis. *The Lancet Microbe*. 2021.
12. Schürch AC, Arredondo-Alonso S, Willems RJL, Goering RV. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. *Clin Microbiol Infect*. 2018;24(4):350-4.

442 13. Ludden C, Coll F, Gouliouris T, Restif O, Blane B, Blackwell GA, et al. Defining nosocomial
443 transmission of *Escherichia coli* and antimicrobial resistance genes: a genomic surveillance
444 study. *Lancet Microbe*. 2021;2(9):e472-e80.

445 14. Gouliouris T, Coll F, Ludden C, Blane B, Raven KE, Naydenova P, et al. Quantifying
446 acquisition and transmission of *Enterococcus faecium* using genomic surveillance. *Nat*
447 *Microbiol*. 2021;6(1):103-11.

448 15. Coll F, Raven KE, Knight GM, Blane B, Harrison EM, Leek D, et al. Definition of a genetic
449 relatedness cutoff to exclude recent transmission of meticillin-resistant *Staphylococcus*
450 *aureus*: a genomic epidemiology analysis. *Lancet Microbe*. 2020;1(8):e328-e35.

451 16. Saltykova A, Mattheus W, Bertrand S, Roosens NHC, Marchal K, De Keersmaecker SCJ.
452 Detailed Evaluation of Data Analysis Tools for Subtyping of Bacterial Isolates Based on
453 Whole Genome Sequencing: *Neisseria meningitidis* as a Proof of Concept. *Frontiers in*
454 *Microbiology*. 2019;10(2897).

455 17. T S. Snippy: Fast bacterial variant calling from NGS reads. 2015.

456 18. Sarovich DS, Price EP. SPANDx: a genomics pipeline for comparative analysis of large
457 haploid whole genome re-sequencing datasets. *BMC Research Notes*. 2014;7(1):618.

458 19. Victorian-Bioinformatics-Consortium. Nesoni. 2013.

459 20. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow
460 enables reproducible computational workflows. *Nature Biotechnology*. 2017;35(4):316-9.

461 21. Merkel D. Docker: lightweight Linux containers for consistent development and deployment.
462 *Linux Journal*. 2014;2014.

463 22. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform.
464 *Bioinformatics*. 2009;25(14):1754-60.

465 23. Garrison E MG. Haplotype-based variant detection from short-read sequencing. *arXiv*
466 preprint. 2012;arXiv:1207.3907 [q-bio.GN].

467 24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
468 Alignment/Map format and SAMtools. *Bioinformatics*. 2009;25(16):2078-9.

469 25. Bush SJ. Generalizable characteristics of false-positive bacterial variant calls. *Microbial*
470 *Genomics*. 2021;7(8).

471 26. Forde BM, Ben Zakour NL, Stanton-Cook M, Phan M-D, Totsika M, Peters KM, et al. The
472 complete genome sequence of *Escherichia coli* EC958: a high quality reference sequence for
473 the globally disseminated multidrug resistant *E. coli* O25b:H4-ST131 clone. *PLoS One*.
474 2014;9(8):e104400-e.

475 27. Phan MD, Nhu NTK, Achard MES, Forde BM, Hong KW, Chong TM, et al. Modifications in
476 the pmrB gene are the primary mechanism for the development of chromosomally encoded

477 resistance to polymyxins in uropathogenic *Escherichia coli*. *J Antimicrob Chemother*.
478 2017;72(10):2729-36.

479 28. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI
480 analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nature*
481 *Communications*. 2018;9(1):5114.

482 29. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome
483 alignment and visualization of thousands of intraspecific microbial genomes. *Genome*
484 *Biology*. 2014;15(11):524.

485 30. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: A fast
486 and versatile genome alignment system. *PLOS Computational Biology*.
487 2018;14(1):e1005944.

488 31. Takahashi K, Yamamoto K, Kuchiba A, Koyama T. Confidence interval for micro-averaged
489 F1 and macro-averaged F1 scores. *Applied Intelligence*. 2021.

490 32. Seeman T KF, Page A. *snp-dists*.

491 33. Garrison E, Kronenberg ZN, Dawson ET, Pedersen BS, Prins P. *Vcflib* and tools for
492 processing the VCF variant call format. *bioRxiv*. 2021:2021.05.21.445151.

493 34. Olson ND, Lund SP, Colman RE, Foster JT, Sahl JW, Schupp JM, et al. Best practices for
494 evaluating single nucleotide variant calling methods for microbial genomics. *Front Genet*.
495 2015;6:235-.

496 35. Sarkar A, Yang Y, Vihinen M. Variation benchmark datasets: update, criteria, quality and
497 applications. *Database*. 2020;2020.

498 36. Zhao S, Agafonov O, Azab A, Stokowy T, Hovig E. Accuracy and efficiency of germline
499 variant calling pipelines for human genome data. *Scientific Reports*. 2020;10(1):20222.

500 37. Krishnan V, Utiramerur S, Ng Z, Datta S, Snyder MP, Ashley EA. Benchmarking workflows
501 to assess performance and suitability of germline variant calling pipelines in clinical
502 diagnostic assays. *BMC Bioinformatics*. 2021;22(1):85.

503 38. Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, et al. Integrating human
504 sequence data sets provides a resource of benchmark SNP and indel genotype calls. *Nature*
505 *Biotechnology*. 2014;32(3):246-51.

506 39. Gorrie CL, Da Silva AG, Ingle DJ, Higgs C, Seemann T, Stinear TP, et al. Key parameters for
507 genomics-based real-time detection and tracking of multidrug-resistant bacteria: a systematic
508 analysis. *The Lancet Microbe*. 2021;2(11):e575-e83.

509 40. 12th Global Microbial Identifier Initiative Meeting Report. Global Microbial Identifier; 2019
510 June 2019.

511 41. Walter KS, Colijn C, Cohen T, Mathema B, Liu Q, Bowers J, et al. Genomic variant-
512 identification methods may alter *Mycobacterium tuberculosis* transmission inferences. *Microb*
513 *Genom.* 2020;6(8).

514 42. Andrews S. FastQC: a quality control tool for high throughput sequence data. Available
515 online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>. 2010.

516

517 **Tables**

518 Table 1. Benchmarked all-in-one variant calling pipelines targeted to analysis of microbial genomic datasets.

Pipeline	Version tested	Release date	Aligner	SNP caller	Default optional caller settings	Additional features	Link	Ref
BactSNP	1.1.0	2018	BWA-mem	Samtools	AF=0.9, Depth=10	Creates assemblies and maps reads back to pseudogenome	https://github.com/IEkAdN/BactSNP	(1)
LyveSet	1.1.4g	2017	SMALT	Varscan	AF=0.75, Depth=10	Optional cliff masking, optional phage masking	https://github.com/lskatz/lyve-SET	(9)
LyveSet2	2.0.1	2018	SMALT	Varscan	AF=0.75, Depth=10	Optional cliff masking, optional phage masking	https://github.com/lskatz/lyve-SET	(9)
Nesoni	0.132	2015	Bowtie2	Freebayes	pvar=0.9		https://github.com/Victorian-Bioinformatics-Consortium/nesoni	(19)
Snippy	4.6.0	2020	BWA-mem	Freebayes	Depth=10, AF=0.9, QUAL=100		https://github.com/tseemann/snippy	(17)
Snpdragon	1.0.0	2022	BWA-mem	Freebayes	MAPQ=10/30, BASEQ=10/10, AF=0.1/0.75, Depth=10/10, strand_balance=0/0.05	Option cliff masking, optional SNP cluster filtering	https://github.com/FordeGenomics/SPANDx	
SPANDx	4.0.2	2021	BWA-mem	GATK	QualByDepth=10, RMSMAPQ=30, QUAL=30, FS=60	Calls indels, optional SNP cluster filtering	https://github.com/dsarov/SPANDx	(18)

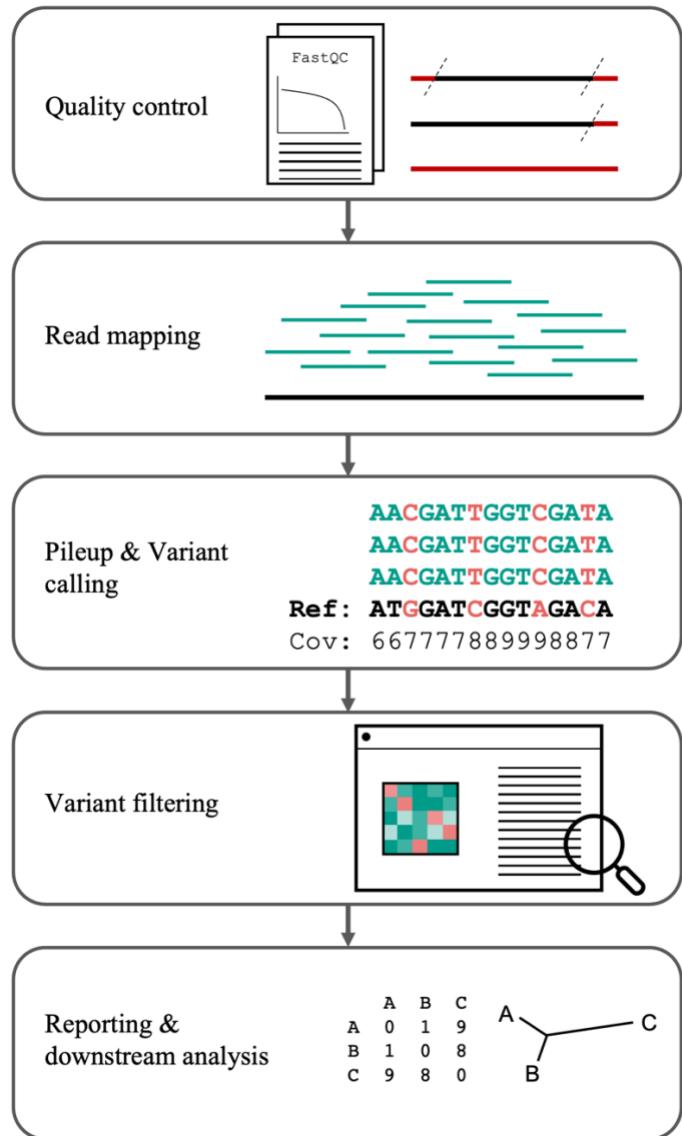
519

520 Table 2. Reference genomes used in the EC958 benchmarking dataset and the percent identity against
521 the three included samples.

Reference name	Identity (%)	Accession
EC958	100	NZ_HG941718.1
ECJJ1886	99.9	CP006784.1
SE15	99.5	AP009378.1
UTI89	98.3	CP000243.1
IAI39	97.2	CU928164.2
<i>E. coli</i> K12	96.8	U00096.3
SE11	96.7	AP009240.1
Sakai	96.5	BA000007.3

522

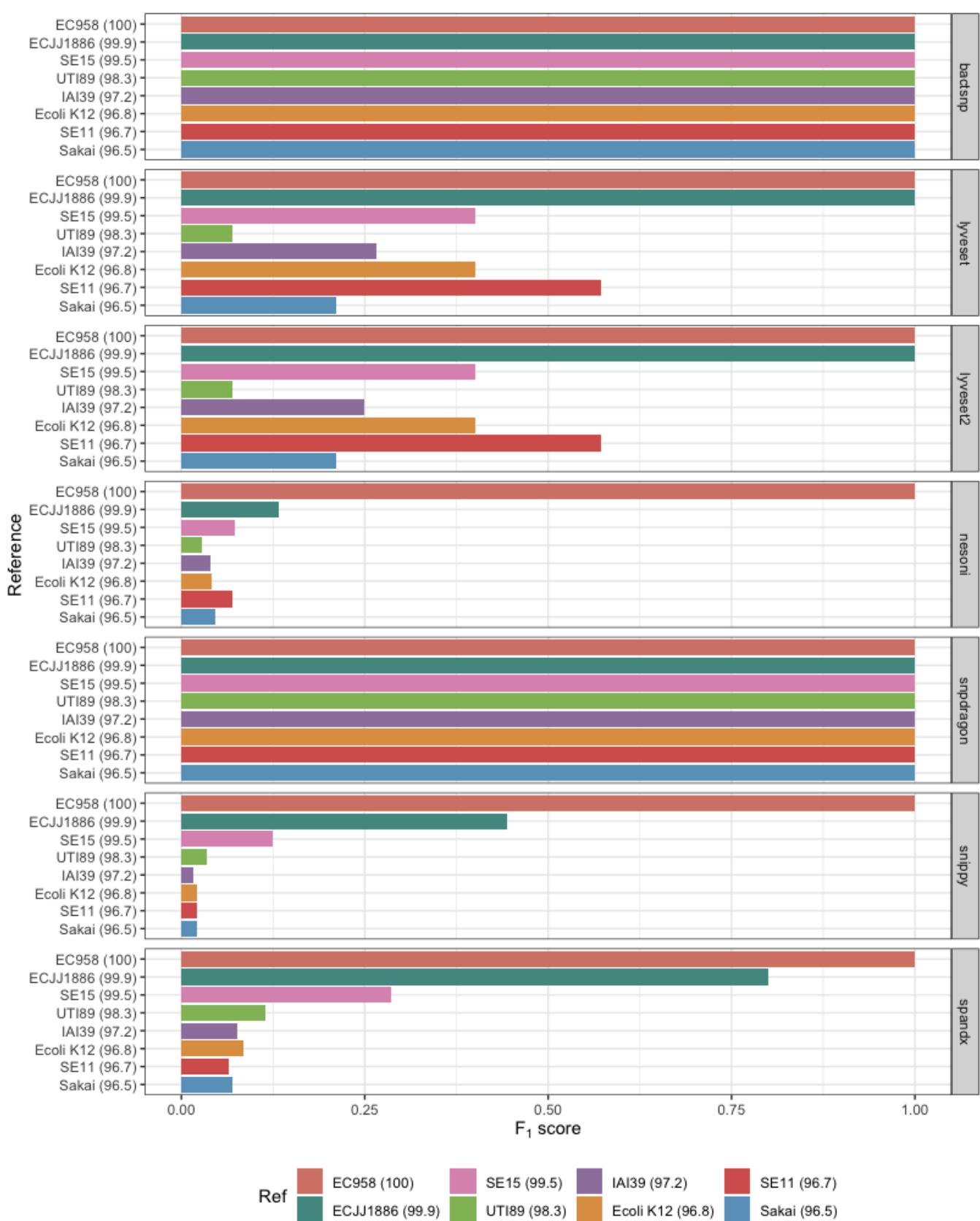
523 **Figures**



524

525 Figure 1. A typical variant calling bioinformatics pipeline. Quality control is measured using FastQC
526 and reads may be trimmed of poor-quality bases (42). Reads are mapped to a chosen reference
527 genome followed by variant calling. Coverage or pileup calculations may also be performed to
528 determine the depth which is the number of reads covering each base in the reference genome. Variant
529 filtering is applied to discard low confidence variant calls based on various measures such as depth,
530 base quality, mapping quality, ratio of the variant to the reference allele (ratio of support/allele
531 fraction) and read bias (only forward or reverse reads reporting a variant). Results are reported in a
532 human readable format in addition to files suitable for other downstream analyses.

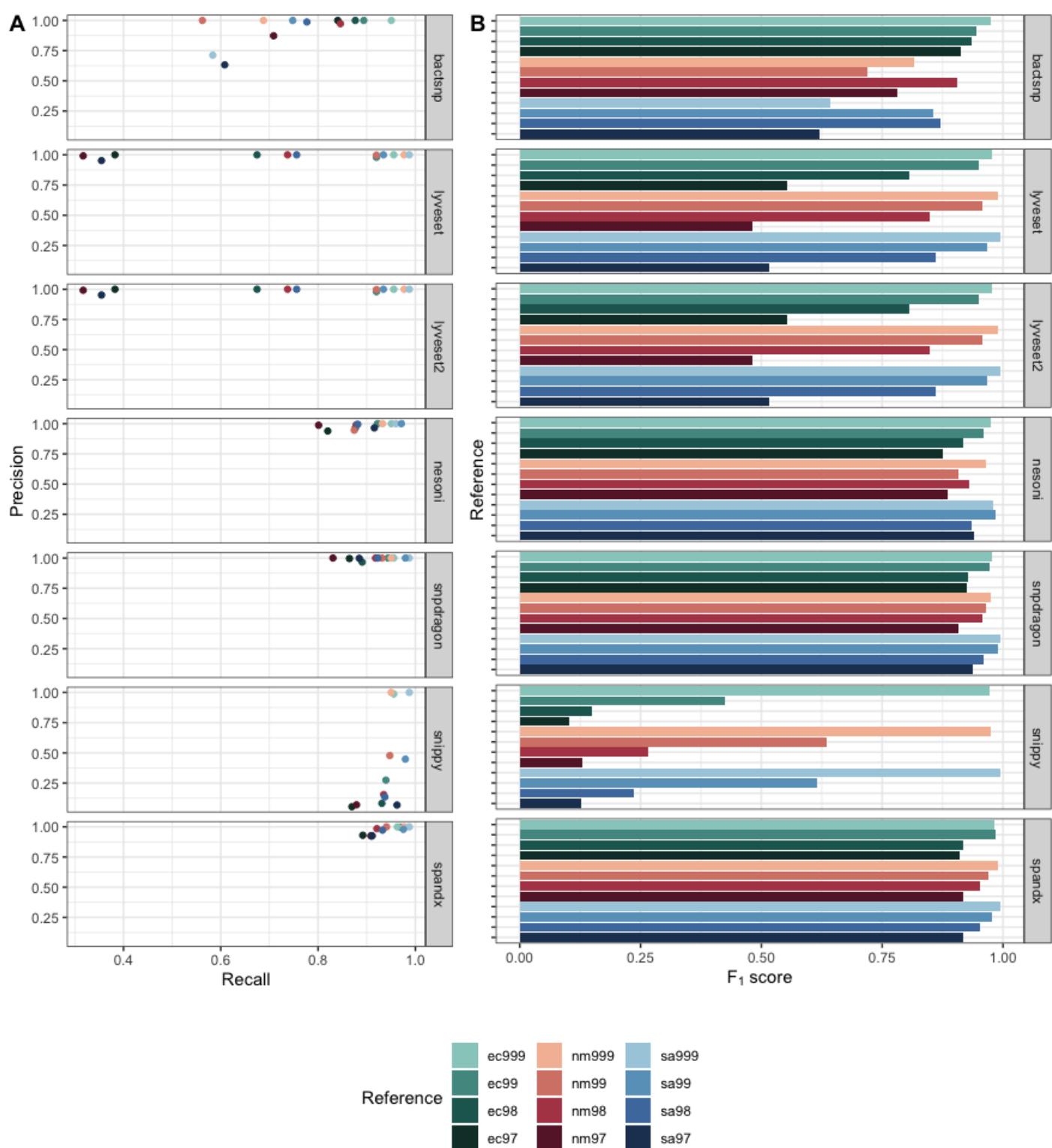
533



534

535 Figure 2. F1 score for BactSNP, Lyveset, Lyveset2, Nesoni, Snpdragon, Snippy and SPANDx on the
 536 EC958 dataset against increasingly distant reference genomes.

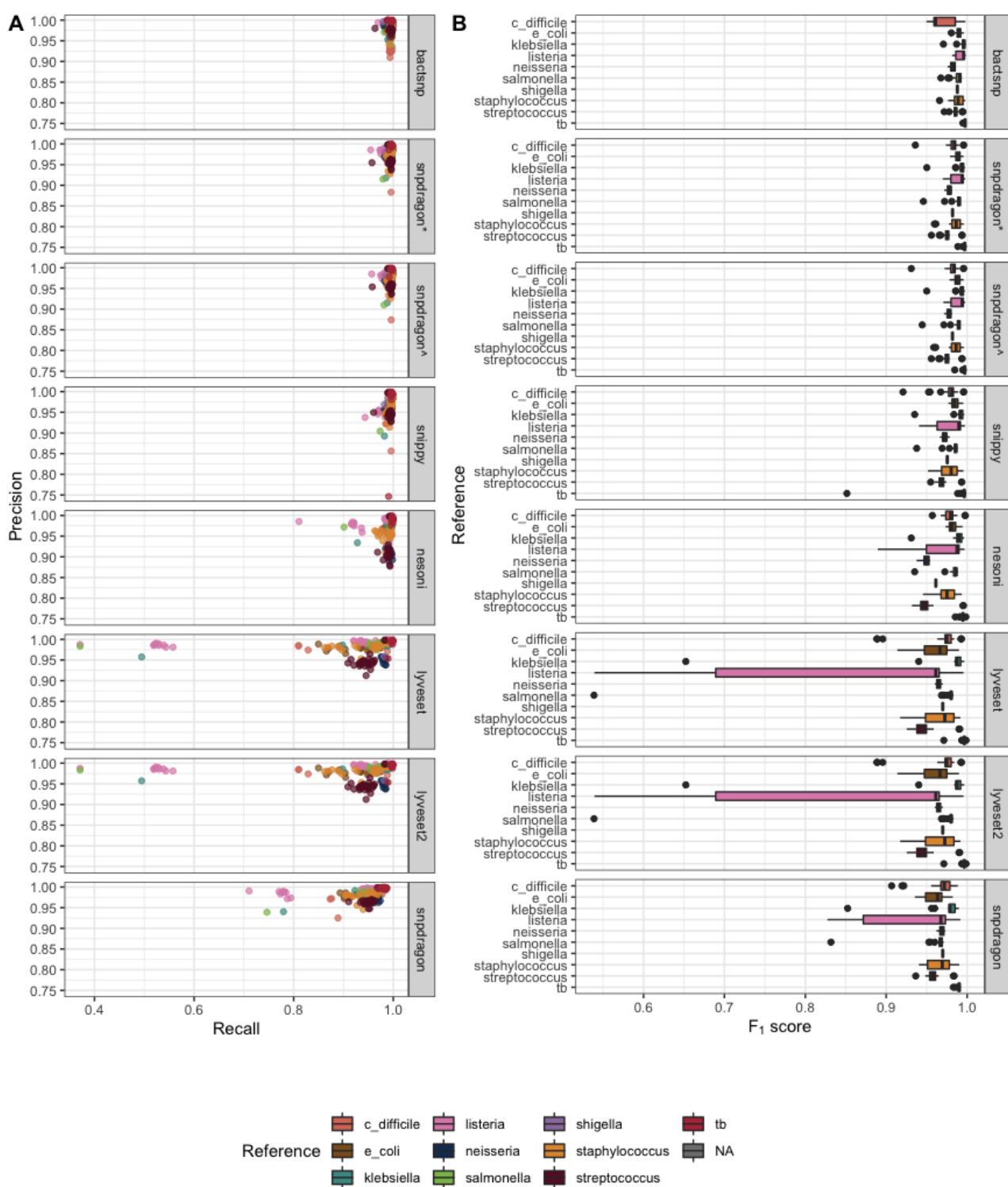
537



538

539 Figure 3. A) Precision vs Recall scatter plot and B) F₁ score on the Yoshimura dataset for each of
 540 the pipelines against increasingly distance reference genomes from 99.9% similarity to 97%
 541 similarity (1).

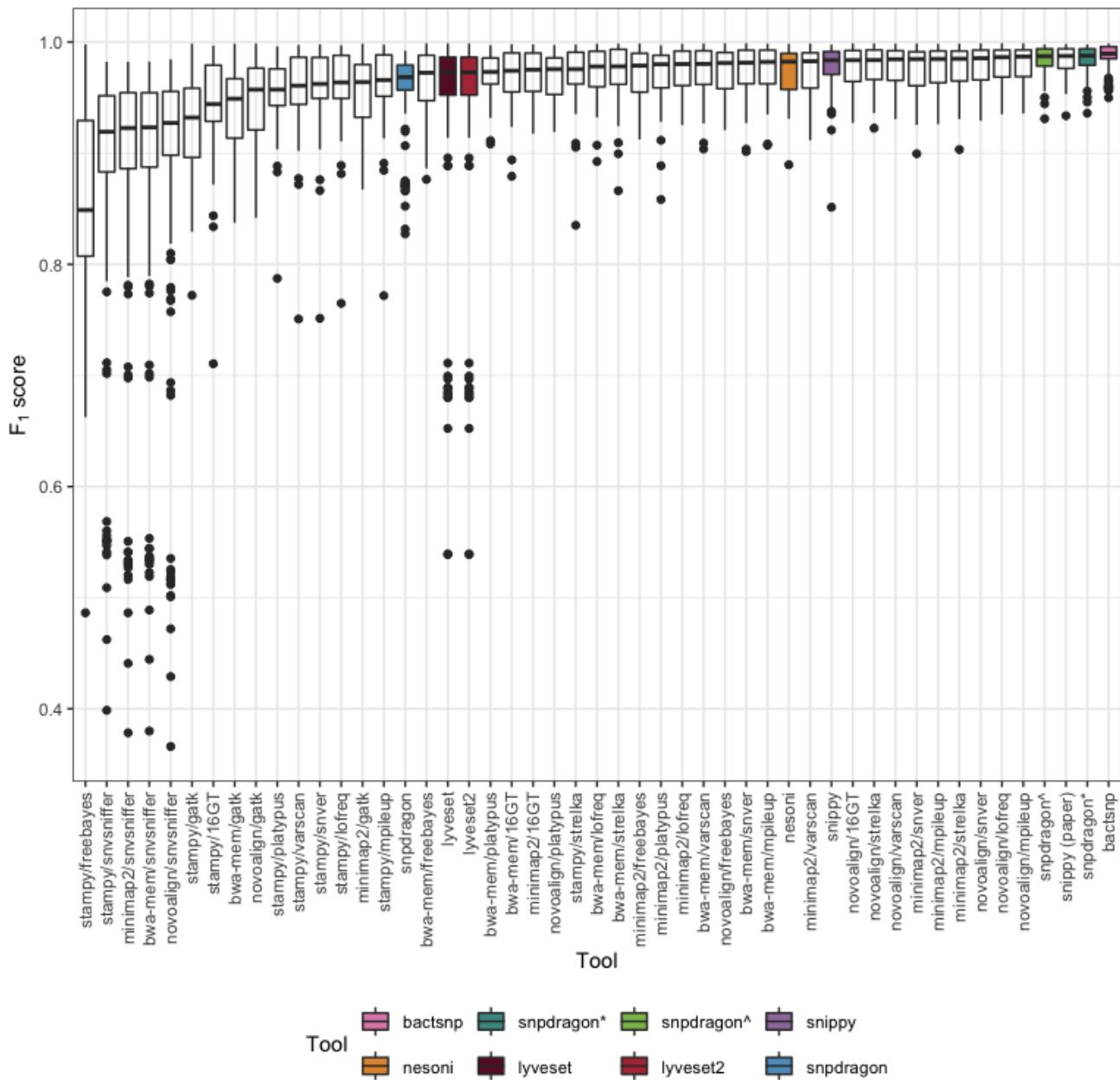
542



543

544 Figure 4. A) Precision vs Recall scatter plot and B) F1 score boxplot on the Bush-simulated dataset
 545 ordered based on median combined F1 scores (2). Snpdragon = filtering to exclude both SNPs
 546 occurring in cliffs and in high density SNP clusters. Snpdragon* = optional filtering settings to
 547 exclude SNPs occurring in cliffs. Snpdragon^ = no additional optional filtering settings.

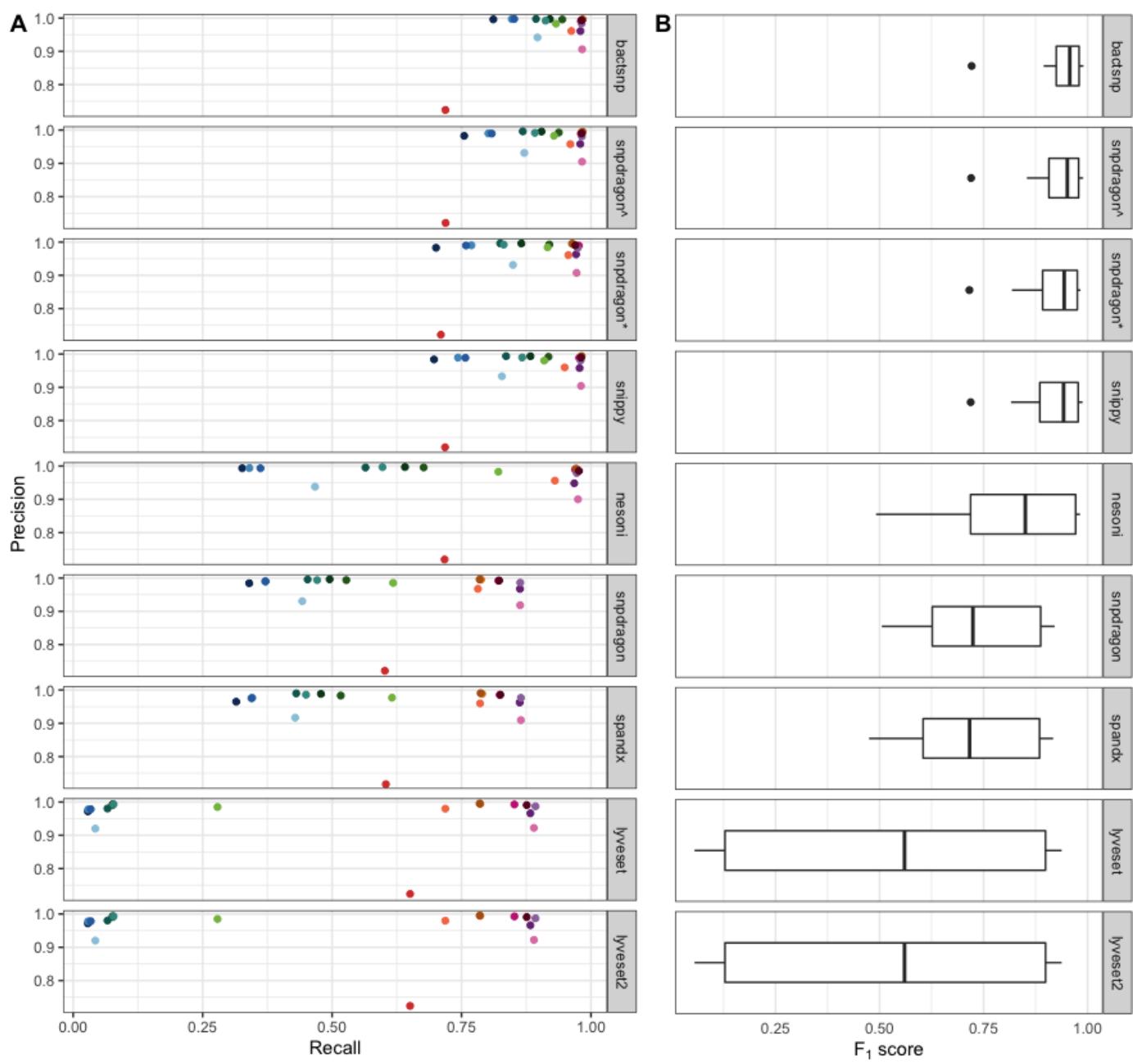
548



549

550 Figure 5. F1 scores on combined results of BactSNP, Lyveset, Lyveset2, Nesoni, Snpdragon,
 551 Snippy and Bush-et al. supplementary results on the 150bp simulated data (2). Results for the new
 552 pipelines analysed in this study are highlighted. Snpdragon = filtering to exclude both SNPs
 553 occurring in cliffs and in high density SNP clusters. Snpdragon* = optional filtering settings to
 554 exclude SNPs occurring in cliffs. Snpdragon^ = no additional optional filtering settings.

555

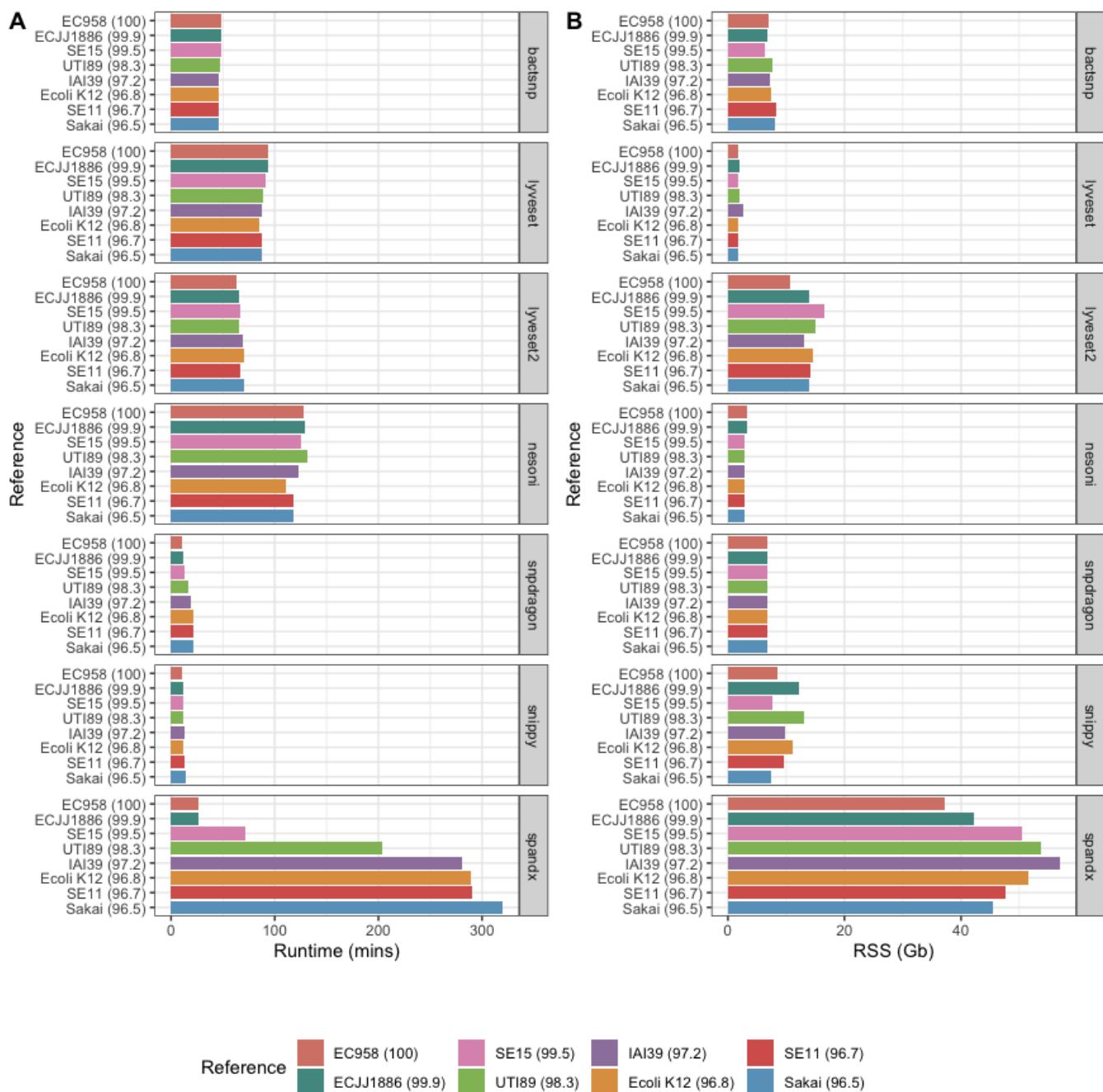


Reference	• mgh78578 (99.1)	• rhb10c07 (98.4)	• cft073 (96.6)	• rbhstw00309 (90.8)	• rbhstw00340 (88.5)
	• rbhstw00128 (99.1)	• rhb11c04 (98.4)	• rbhstw00189 (93.9)	• rbhstw00350 (90.8)	• rbhstw00059 (87.7)
	• rhb14c01 (99.1)	• rbhstw00167 (97.6)	• rbhstw00053 (91)	• rbhstw00029 (89.2)	
	• rbhstw00122 (98.4)	• rbhstw00277 (96.8)	• rbhstw00127 (90.9)	• rbhstw00131 (88.5)	

556

557 Figure 6. A) Precision vs Recall scatter plot and B) Boxplot of F1 scores on Bush-real dataset
 558 ordered by median F1 score (2). Snpdragon = filtering to exclude both SNPs occurring in cliffs and
 559 in high density SNP clusters. Snpdragon* = optional filtering settings to exclude SNPs occurring in
 560 cliffs. Snpdragon^ = no additional optional filtering settings.

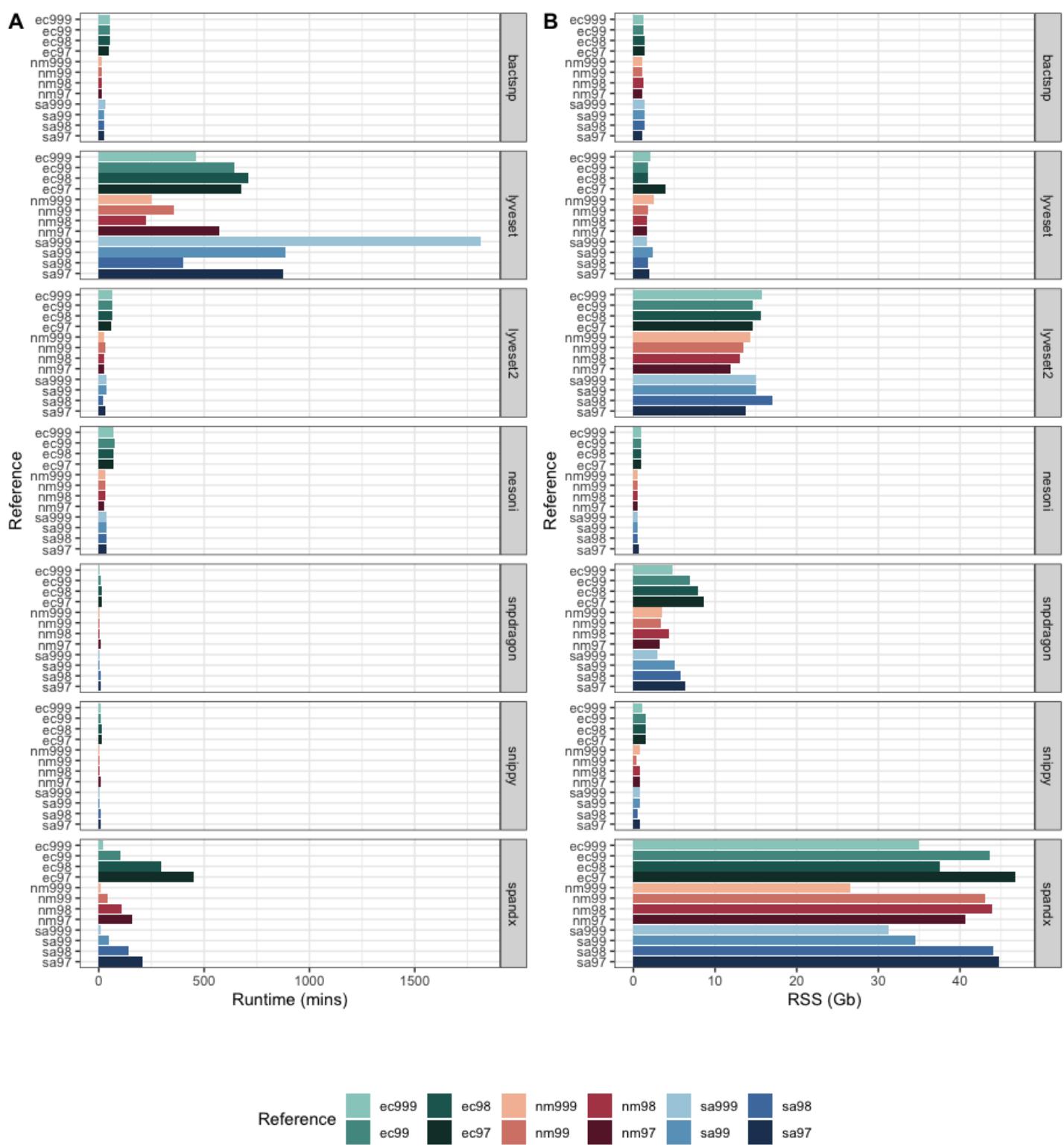
561



562

563 Figure 7. A) Runtime on E. coli ST131 dataset. B) Resident set size (RSS) on EC958 dataset.

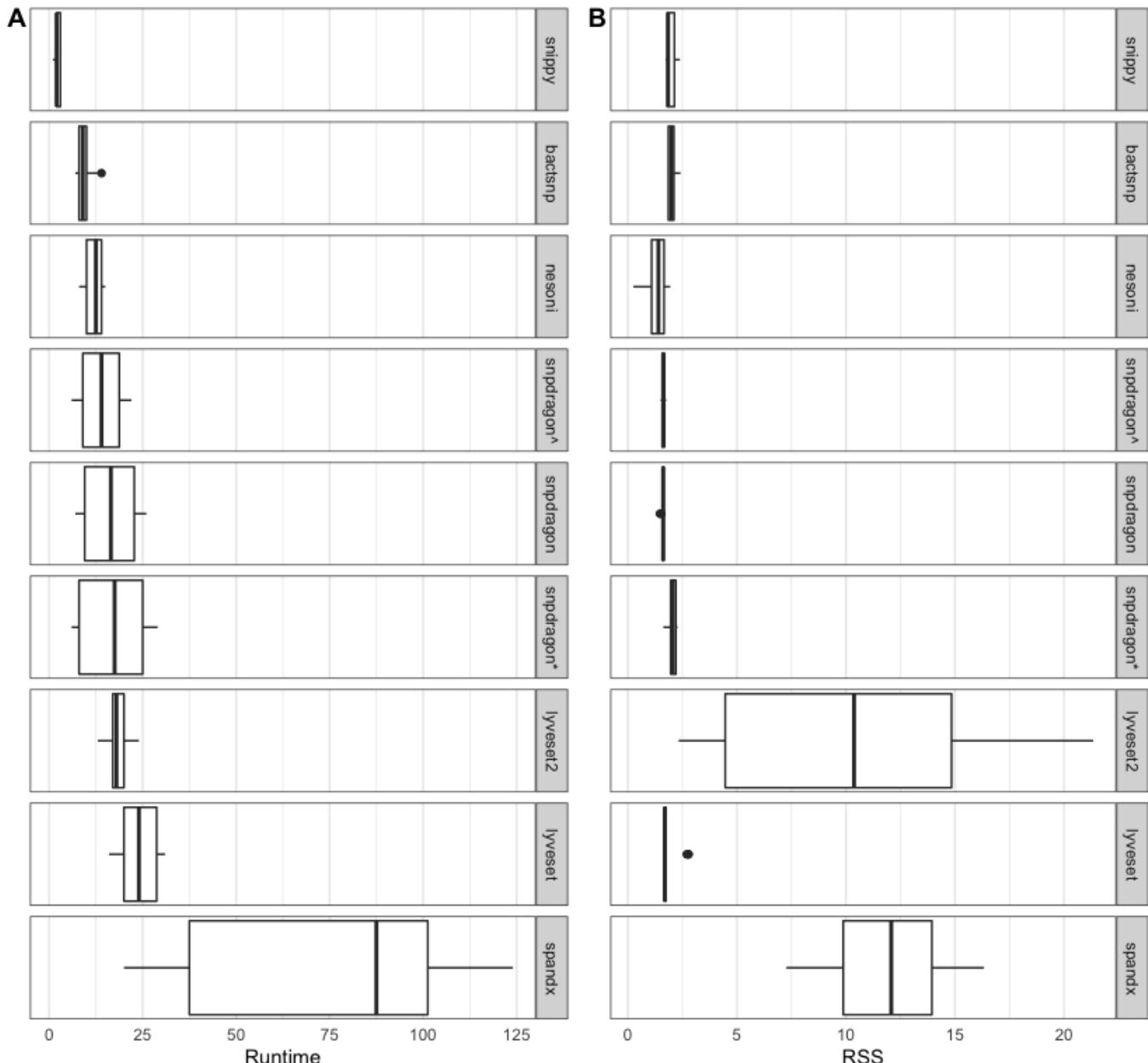
564



566

566 Figure 8. A) Runtime and B) RSS on the Yoshimura dataset (1).

567



568

569 Figure 9. A) Runtime and B) RSS plot on the Bush-real dataset (2).

570

571