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 2 

Abstract 26 

Clinical and public health microbiology is increasingly utilising whole genome sequencing 27 

(WGS) technology and this has lead to the development of a myriad of analysis tools and 28 

bioinformatics pipelines. Single nucleotide polymorphism (SNP) analysis is an approach used 29 

for strain characterisation and determining isolate relatedness. However, in order to ensure the 30 

development of robust methodologies suitable for clinical application of this technology, 31 

accurate, reproducible, traceable and benchmarked analysis pipelines are necessary. To date, 32 

the approach to benchmarking of these has been largely ad-hoc with new pipelines 33 

benchmarked on their own datasets with limited comparisons to previously published pipelines. 34 

 35 

In this study, Snpdragon, a fast and accurate SNP calling pipeline is introduced. Written in 36 

Nextflow, Snpdragon is capable of handling small to very large and incrementally growing 37 

datasets. Snpdragon is benchmarked using previously published datasets against six other all-38 

in-one microbial SNP calling pipelines, Lyveset, Lyveset2, Snippy, SPANDx, BactSNP and 39 

Nesoni. The effect of dataset choice on performance measures is demonstrated to highlight 40 

some of the issues associated with the current available benchmarking approaches.  41 

 42 

The establishment of an agreed upon gold-standard benchmarking process for microbial variant 43 

analysis is becoming increasingly important to aid in its robust application, improve 44 

transparency of pipeline performance under different settings and direct future improvements 45 

and development. 46 

 47 

Snpdragon is available at https://github.com/FordeGenomics/SNPdragon. 48 
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Impact statement 49 

Whole-genome sequencing has become increasingly popular in infectious disease diagnostics 50 

and surveillance. The resolution provided by single nucleotide polymorphism (SNP) analyses 51 

provides the highest level of insight into strain characteristics and relatedness. Numerous 52 

approaches to SNP analysis have been developed but with no established gold-standard 53 

benchmarking approach, choice of bioinformatics pipeline tends to come down to laboratory 54 

or researcher preference. To support the clinical application of this technology, accurate, 55 

transparent, auditable, reproducible and benchmarked pipelines are necessary. Therefore, 56 

Snpdragon has been developed in Nextflow to allow transparency, auditability and 57 

reproducibility and has been benchmarked against six other all-in-one pipelines using a number 58 

of previously published benchmarking datasets. The variability of performance measures 59 

across different datasets is shown and illustrates the need for a robust, fair and uniform 60 

approach to benchmarking.  61 

 62 

Data Summary 63 

1. Previously sequenced reads for Escherichia coli O25b:H4-ST131 strain EC958 are 64 

available in BioProject PRJNA362676. BioSample accession numbers for the three 65 

benchmarking isolates are: 66 

• EC958: SAMN06245884 67 

• MS6573: SAMN06245879 68 

• MS6574: SAMN06245880 69 

2. Accession numbers for reference genomes against the E. coli O25b:H4-ST131 strain 70 

EC958 benchmark are detailed in table 2.   71 
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3. Simulated benchmarking data previously described by Yoshimura et al. is available at 72 

http://platanus.bio.titech.ac.jp/bactsnp (1). 73 

4. Simulated datasets  previously described by Bush et al. is available at 74 

http://dx.doi.org/10.5287/bodleian:AmNXrjYN8 (2). 75 

5. Real sequencing benchmarking datasets previously described by Bush et al. are 76 

available at http://dx.doi.org/10.5287/bodleian:nrmv8k5r8 (2). 77 

  78 
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Introduction 79 

Microbial whole genome sequencing (WGS) is increasingly being used to support pathogen 80 

detection, surveillance, and diagnostics (1, 3). WGS provides the highest level of genomic 81 

resolution which allows for the ability to distinguish between closely related isolates and infer 82 

potential transmission events (1). Characterisation of isolates at the whole genome level in 83 

combination with clinical and epidemiological information can greatly benefit public health 84 

microbiology activities (4). There are many examples of the various advantages of WGS in 85 

pathogen detection and surveillance and perhaps the most recent is its usefulness in tracking 86 

community transmission of SARS-CoV-2 (3, 5). The application of WGS in public health 87 

microbiology is now progressing from proof-of-concept to implementation, particularly in 88 

food-borne pathogen surveillance and antimicrobial resistant bacterial outbreak detection (6, 89 

7).  90 

 91 

Determining isolate relatedness typically involves examining single nucleotide polymorphisms 92 

(SNPs). A typical SNP calling workflow includes the following steps: 1. Quality Control; 2. 93 

Read mapping; 3. Variant calling; 4. Variant filtering; 5. Downstream analysis (phylogenetic 94 

reconstruction and pairwise SNP difference clustering) (figure 1). 95 

By comparing SNPs present within the core genome (the shared region common to all isolates 96 

under evaluation), potential transmission events can be identified (8, 9). This information may 97 

be used to classify potential outbreak events and when combined with epidemiological data 98 

may inform infection prevention and control practices (8). In order to classify isolates as 99 

‘related’ thresholds based on the number of core SNP differences are applied (10). The selected 100 

threshold will depend on various factors including species, strain, and clinical context. 101 

Nucleotide mutation rates can vary during different stages of an infection or may be under 102 

different selection pressures such as antimicrobial exposure (10). Laboratory processes during 103 
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 6 

culturing (e.g. single colony picks vs sweeps) may also affect the diversity of samples sent for 104 

WGS (10). Various studies have used SNP thresholds ranging from 0 for Yersinia species to 105 

over 35 for Pseudomonas aeruginosa and a recently published implementation study applied 106 

SNP thresholds of < 16 for multi-drug resistant Staphylococcus aureus and < 26 for the other 107 

species in the study including vancomycin-resistant Enterococci, extended spectrum beta-108 

lactamase (ESBL) producing Klebsiella pneumoniae and ESBL-producing Escherichia coli 109 

(11, 12). Similar cutoffs were also found using a number of different methods such as Poisson 110 

distributions (25 SNPs for E. coli), within patient maximum diversity (17 SNPs for E. coli), 111 

with and without recombination SNP distance changes (20 SNPs for Enterococcus faecium) 112 

and linear mixed models (13 core genome SNPs for methicillin-resistance Staphylococcus 113 

aureus) (13-15). Due to the shortcomings of these hard cut-off approaches, more probabilistic 114 

methods are being explored to consider variable mutation rates and incorporating other 115 

epidemiological information (10).  116 

 117 

Horizontal gene transfer can also affect apparent SNP level relatedness and masking of 118 

prophage and recombination regions has been previously suggested (10, 16). However, there 119 

is not yet a consensus on this approach. A recent systematic analysis for real-time genomics 120 

based tracking of MDR bacteria in the healthcare environment found masking of prophages 121 

had minimal effect while masking of recombination may lead to erroneous conclusions of 122 

isolate relatedness (11).  123 

 124 

Other analysis decisions that may impact results include the choice of reference genome. A 125 

high quality closed reference genome that is closely related to the isolates of interest can reduce 126 

the potential for mis-mapping and maximises the size of the core genome (11). Large diverse 127 
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datasets may also reduce the size of the core-genome resulting in fewer sites available for 128 

pairwise comparison (11). 129 

 130 

Irrespective of the chosen thresholds, references or genome masking approaches, using SNP 131 

differences to identify transmission events relies on accurate variant calling. Numerous 132 

bioinformatics pipelines are available that implement different approaches for read mapping, 133 

variant calling and variant filtering with the aim of maximising the number of true positive 134 

SNP calls and minimising false positives and false negatives. BactSNP, Lyveset, Lyveset2, 135 

Nesoni, Snippy and SPANDx are all-on-one pipelines targeted at microbial genomics that 136 

perform mapping, variant calling, variant filtering as well as various down-stream analyses 137 

(table 1) (1, 9, 17-19).  138 

 139 

Previous benchmarking studies have been conducted on some of these pipelines. However, 140 

there is currently no established ‘gold-standard’ approach to benchmarking, and this has 141 

resulted in benchmarking studies being performed on several different datasets with conflicting 142 

performance outcomes, making comparisons between these studies difficult (1, 2). The absence 143 

of an established methodology and gold-standard benchmarking approach has been highlighted 144 

as a key risk to wide-spread implementation of microbial WGS-based diagnostics and 145 

surveillance and may be slowing its adoption in routine public health (7, 16).  146 

 147 

In this study, we describe a novel SNP calling pipeline, Snpdragon, which addresses observed 148 

limitations in existing methodologies (available at 149 

https://github.com/FordeGenomics/SNPdragon). Leveraging datasets previously used to 150 

benchmark various microbial SNP calling applications we systematically compare 151 

performance of Snpdragon and six all-in-one pipelines BactSNP, Lyveset, Lyveset2, Nesoni, 152 
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SPANDx and Snippy (1, 9, 17-19). Finally, we highlight the issues surrounding current 153 

benchmarking approaches and propose a number of solutions which will become increasingly 154 

critical as this technology is integrated into clinical practice.155 
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Methods 156 

Snpdragon 157 

Snpdragon is a SNP calling pipeline implemented in Nextflow and available to be deployed in Docker 158 

and Singularity containers (20, 21). It uses BWA-mem for read mapping, Samtools for coverage and 159 

Freebayes for variant calling (22-24). Post-filtering of variant calls is performed in a Python program 160 

to report high confidence SNPs. Standard SNP filters are applied with setting comparisons to the 161 

other all-in-one pipelines detailed in table 1. SNPs not passing filter thresholds are labelled in the 162 

output variant call format (vcf) files: 163 

• FAIL_AF: Alternate allele fraction (alternate count/depth) >= 0.5 and < 0.75 164 

• FAIL_AF0.5: Alternate allele fraction < 0.5 165 

• FAIL_DEPTH: Read depth at position < 10 166 

• FAIL_MQM: Mean mapping quality at position < 30 167 

• FAIL_RB: Read balance/strand bias fails if the ratio of alternate alleles on the forward and 168 

reverse strands is < 0.05. 169 

Presence/absence matrices and alignment files are generated using the high confidence SNP positions 170 

and populated based on all unfiltered SNPs detected in each sample. Optional additional filters 171 

include excluding SNPs detected in cliffs. A cliff is classified as a region with a rapid change in 172 

aligned read depth and may be the result of sequence anomalies, poor read mapping, repeat regions 173 

and breakpoints at positions of large structural rearrangements. The algorithm for the detection of 174 

cliffs has been implemented as described in Katz et al. (9). Briefly, a linear trend line for read 175 

coverage in window of 10bp is calculated and a region is masked if the slope of the line is >= 3 or <= 176 

3 and the fit of the line (R2) is >= 0.7. SNPs occurring in high density (which may be the result of 177 

mis-mapping or recombination) can also be filtered (25). A sliding window approach is implemented 178 

to optionally exclude SNPs occurring at a frequency of 3 or more in a 10bp window. 179 

 180 
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To optimise memory usage and runtime of the Python program an integer representation of the 181 

IUPAC alphabet was developed. Float data types are then used to represent ‘SNP addresses’ which 182 

are a combination of a position and the allele. For example, 1.1 represents position 1 with a base call 183 

A. The use of Nextflow also allows for the rapid analysis of very large datasets that may have 184 

incremental additions as more isolates are added to a collection, a scenario common to the application 185 

of WGS in pathogen surveillance in public health. 186 

 187 

Snpdragon produces the following final output files: 188 

• core_snp.fasta – Core SNP multiple sequence alignment (MSA) 189 

• full_snp.fasta – Full SNP MSA including accessory genome (missing positions in each sample 190 

denoted with ‘N’) 191 

• full_aln.fasta – Mutated reference pseudo-genome MSA 192 

• snp_dist.csv – Pairwise SNP distance matrix 193 

• snp_matrix.csv – SNP position matrix (SNP sites by samples) 194 

• core_stats.csv – Number of positions and percent of reference genome coverage for each 195 

sample  196 

 197 

Intermediate files including all bams, pileups and raw and filtered vcf’s are also output but can be 198 

optionally cleaned at each step if storage space is a limitation in large analyses. 199 

 200 

Benchmarking datasets 201 

Previously published benchmarking datasets are combined to systematically compare the 202 

performance of Snpdragon, BactSNP v1.1.0, Lyveset v1.1.4g, Lyveset2 v2.0.1, Nesoni v0.132, 203 

SPANDx v4.0.2 and Snippy v4.6.0 (1, 9, 17-19).  204 

 205 

 206 
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EC958 207 

The EC958 dataset consists of three previously isolates of the E. coli ST131 strain EC958 (26, 27). 208 

These three isolates (EC958, MS6573 and MS6574) are nearly identical with EC958 differing from 209 

MS6573 and MS6574 by a single SNP and MS6573 and MS6574 identical. These were mapped to 210 

references of decreasing similarity calculated using fastANI which are detailed in table 2 (28). 211 

 212 

Yoshimura 213 

The Yoshimura dataset consists of 12 simulated experiments each with 10 samples representing E. 214 

coli, Neiserria meningitidis and S. aureus aligned to increasingly distant reference genomes from 215 

99.9% identity to 97% identity previously described in Yoshimura et al. (1).  216 

 217 

Bush-simulated 218 

The Bush-simulated dataset is a collection of 251 isolates from 10 species with SNPs simulated as 219 

described in Bush et al. (2). Results from the benchmarking of the six all-in-one pipelines in this study 220 

were also combined with expanded benchmarking results from Bush et al. on the 150bp simulated 221 

reads (2).  222 

 223 

Bush-real 224 

The Bush-real dataset consists of 18 publicly available sequencing experiments. Methods for 225 

generating this dataset are described in Bush et al. (2). The ground truth for comparison was 226 

previously generated using an intersect of SNP calls using ParSNP and Nucmer (29, 30). SNP calls 227 

made by only one of these tools were classified as ambiguous and excluded from benchmarking 228 

calculations.  229 

 230 

Compute environment 231 
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 12 

 BactSNP, Lyveset, Lyveset2, Nesoni, SPANDx and Snippy were run using default settings with 16 232 

cores and 128G of available RAM. Snpdragon was run using default settings on EC958 and 233 

Yoshimura datasets. Three separate results for Snpdragon were generated on the Bush-simulated and 234 

Bush-real dataset to benchmark the effect of: 1. excluding SNPs occurring in cliffs and clusters; 2. 235 

excluding only SNPs called in cliffs; and 3. including all SNPs irrespective of cliffs and clusters. 236 

 237 

Concordance and performance metrics 238 

Pipelines were assessed based on concordance to a ‘ground truth’ set. True positive (TP), false 239 

positive (FP) and false negative (FN) counts were reported and used to calculate recall, precision and 240 

F1 score.  241 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 242 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 243 

 244 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 245 

 246 

Recall is a measure of how well all actual (true) positives are captured (at the cost of higher false 247 

positives) while precision or the positive predictive value is a measure of how well only true positives 248 

are captured (at the cost of false negatives). The F1 score is the harmonic mean of precision and recall 249 

with poorest performance at 0 and the highest score of 1 and is suited to situations where there is a 250 

high rate of true negatives, and which are not a relevant measure (i.e. non-variant positions) (31). 251 

Pairwise core SNP distance matrices were calculated using snp-dist (32). Run-time and memory 252 

usage based on resident set size (RSS) are also reported.  253 

 254 

It should be noted that different analyses tools may represent the same variants in different ways. 255 

‘Complex’ variants and multi-nucleotide polymorphisms (MNPs) are output by some variant calling 256 
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tools including Freebayes. These can be regularised in the VCF file using vcfallelicprimitives module 257 

in vcflib (33). In any case, the pipelines benchmarked in this study reported primitive SNP 258 

representations and no additional filtering of the variant calls was performed. 259 

260 
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Results 261 

Concordance benchmarks 262 

EC958 263 

All pipelines recalled the single true SNP difference between EC958 and MS6573 and MS6574 264 

irrespective of the reference strain. Snpdragon and BactSNP showed high precision reporting only 265 

the single known SNP and no false positives irrespective of the reference genome. The other tested 266 

pipelines however had poorer performance with more distant reference genomes. Lyveset, Lyveset2, 267 

Nesoni, SPANDx and Snippy showed lower F1 scores due to false positives being reported when 268 

using more distant reference genomes (figure 2). Increasing numbers of pairwise SNP differences 269 

due to these false positives is shown in supplementary table S1. 270 

 271 

Yoshimura 272 

Snpdragon and SPANDx had the highest median combined F1 score (figure 3 and supplementary 273 

table S2). Performance scores declined with increasingly distant reference genomes for all pipelines, 274 

though Snippy was most impacted (figure 3). The decline in performance on more distant reference 275 

genomes was generally due to a decline in recall (related to increasing numbers of false negative SNP 276 

calls) for BactSNP, Lyveset, Lyveset2, Nesoni, Snpdragon and SPANDx (figure 3A). Snippy 277 

however showed a decline in precision as a result of higher rates of false positive SNP calls. On the 278 

most distant reference genomes tested (97% similarity), recall scores for Lyveset and Lyveset2 were 279 

below 0.4 possibly due to too stringent filtering causing higher false negative counts.  280 

 281 

Bush-simulated 282 

Combined median F1 scores were highest for BactSNP and Snpdragon with optional settings to 283 

discard SNPs in cliffs followed by Snpdragon with no additional optional filtering (figure 4). Lyveset, 284 

Lyveset2 and Snpdragon (with additional filtering to exclude SNPs in cliffs and clusters) showed 285 
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poorest performance on this dataset. This largely appears to be related to a decline in recall which 286 

was particularly evident on the Listeria samples.  287 

 288 

In the combined results on with the expanded 150bp simulated dataset from Bush et al. BactSNP 289 

showed highest performance based on median F1 score following by Snpdragon (with settings to 290 

exclude only SNPs occurring in cliffs) (figure 5). The Snippy results from Bush et al. could not be 291 

replicated, with the results in the paper scoring slightly higher than ours. Nesoni performed similarly 292 

to Snippy on this dataset.  293 

 294 

Bush-real 295 

BactSNP, Snpdragon (with no additional filtering and with filtering to exclude SNPs occurring in 296 

cliffs) and Snippy performed similarly on the Bush-real dataset (figure 6). Lyveset and Lyveset2 297 

showed poorest performance with the lowest median F1 scores. The decline in performance was 298 

generally related to poorer recall, particularly on more distant reference genomes (figure 6A). One 299 

sample (rbhstw00167) also scored very poorly on precision in every pipeline.  300 

 301 

Computational benchmarks 302 

Snippy had the fastest median runtime on all datasets (figure 7A, figure 8A and figure 9A). Snpdragon 303 

was also one of the most rapid on the EC958 and Yoshimura datasets. Runtime for Snpdragon on the 304 

Bush-real dataset was mostly affected by whether the additional SNP cluster and cliff finding were 305 

used (figure 9A). SPANDx and Lyveset had the highest median runtimes. SPANDx also required the 306 

most amount of memory followed by Lyveset2 while the other pipelines tested had lower and 307 

generally similar memory requirements across each of the datasets (figure 7B, figure 8B and figure 308 

9B).  309 

  310 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 6, 2022. ; https://doi.org/10.1101/2022.05.05.487569doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.05.487569
http://creativecommons.org/licenses/by/4.0/


 16 

Discussion 311 

A newly introduced pipeline Snpdragon and six additional all-in-one pipelines BactSNP, Lyveset, 312 

Lyveset2, Nesoni, SPANDx and Snippy were systematically evaluated for performance using a 313 

combination of new and previously published benchmarking datasets. Only all-in-one pipelines were 314 

included due to the popularity of such pipelines for their ease of use and internal filtering designed to 315 

improve accuracy of the reported variant calls. These pipelines were benchmarked not only to 316 

evaluate performance but to also explore potential issues in the current benchmarking approaches. 317 

The current lack of guidelines for evaluating microbial variant calling pipelines has resulted in diverse 318 

and inconsistent approaches in the literature (34). To establish a gold-standard benchmarking 319 

approach, real datasets with verified known variants are required (35, 36). For the development of 320 

high-quality benchmarking datasets, the following criteria has been proposed (16, 34, 35, 37): 321 

o Relevance: Does the dataset contain the characteristics (variants) of interest 322 

o Representativeness: Does the dataset cover the breadth of possible sample types and features 323 

in the study space to establish the stability of the analysis approach  324 

o Non-redundancy: Exclude overlaps and duplications 325 

o Experimentally verified cases: The ground truth is known 326 

o Positive and negative cases: The characteristic under investigation is present and absent in 327 

different samples 328 

o Scalability: For testing performance on different dataset sizes 329 

o Reusability: For reproducibility and data sharing 330 

To accurately assess performance of bioinformatics pipelines on any dataset, the ground truth is 331 

needed (37). Simulated datasets are attractive for this reason, where features of interest (e.g. SNPs) 332 

are introduced in-silico at known positions. However, simulated datasets may not always be 333 

representative and may not model all features or potential sources of errors present in real data. 334 

Alternatively, using real datasets in benchmarking is problematic as the ground truth is often 335 

unknown and instead comparisons are performed against the results of existing methods (35).  336 
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 337 

The datasets used in this study consisted of a mix of simulated and real data with different 338 

characteristics. The EC958 dataset consisted of sequencing data from three almost identical E. coli 339 

ST131 isolates with a known single SNP difference that had been previously well characterised (26, 340 

27). The Yoshimura dataset was a simulated dataset of 10 samples from three different species with 341 

SNPs introduced in-silico at known locations and represented both gram-negative and gram-positive 342 

bacteria (1). The Bush-simulated and Bush-real datasets were a diverse collection of publicly 343 

available isolates and matching closed reference genomes. In the simulated dataset, SNPs were 344 

introduced in-silico resulting in ~8000-25000 SNPs per genome with a median distance of ~60-120 345 

bases between SNPs as described previously (2). This represents a much higher SNP rate than the 346 

other datasets which were designed to reflect more closely related isolates in an outbreak or 347 

transmission event setting. Similarly, the Bush-real dataset consisted of samples with matched closed 348 

reference genomes of 87.7% to 99.1% identity with ~8000-13000 SNPs between the sample and the 349 

matched reference (2).  350 

 351 

For the Bush-simulated and Bush-real datasets, the ground-truth was established by taking an 352 

intersection of the results of two assembly-based methods ParSNP and Nucmer (29, 30). While this 353 

may be a reasonable approach given the limitations of establishing the known truth for the real 354 

datasets, the risk is that the process of benchmarking may become an exercise in concordance with 355 

existing methods rather than reflecting true accuracy (35). Using the union of calls may not 356 

necessarily reflect true calls if both methods were susceptible to the same biases (34). Additionally, 357 

sites were labelled as ambiguous and excluded from benchmarking counts if only one of ParSNP or 358 

Nucmer reported a SNP and this may result in under-estimation of false positive rates (38). 359 

 360 

This work highlights the difficulties when attempting to interpret different benchmarking studies 361 

where the performance of one pipeline on one dataset is not replicated on other datasets and therefore 362 
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results may not be generalisable. As has been previously demonstrated, accuracy declined with more 363 

distant reference genome, however, the results show some pipelines were more affected than others 364 

(39). For example, on EC958 lower F1 scores were observed for all pipelines except Snpdragon and 365 

BactSNP on increasingly distant reference genomes (figure 2). Poorer performance with the other 366 

pipelines on this dataset was related to higher rates of false positive SNP calls. The clinical 367 

implications of these false positives can be seen in the pairwise core SNP difference matrices 368 

(supplementary table S1). In some cases, the number of SNPs reported between these almost identical 369 

samples was above the threshold typically used to define isolates as part of a cluster (11). On the 370 

Yoshimura dataset, Snippy was the most affected, followed by Lyveset and Lyveset2 by the dis-371 

similarity of the reference genome, but for different reasons. While the precision of Snippy declined 372 

due to increasing numbers of false positive SNPs, the recall of Lyveset and Lyveset2 declined due to 373 

higher false negative counts (figure 3A). The results on the Bush-simulated and Bush-real datasets 374 

however showed the precision of Snippy was less affected by distance to the reference genome (but 375 

instead a showed a proportionate decline in recall) (figure 6A). Overall, Snpdragon and BactSNP 376 

showed the most stable performance across all datasets and reference types. 377 

 378 

The poorer recall across all datasets for Lyveset and Lyveset2 may be related to stricter internal SNP 379 

filtering resulting in higher numbers of ‘real’ SNPs being discarded. Similarly, with the additional 380 

filters to exclude SNPs in cliffs and clusters in Snpdragon, a similar decline in recall was observed 381 

but only on the Bush-simulated and Bush-real datasets highlighting the difficulties in generalising 382 

single benchmarking results across different datasets (figure 4A and 6A). 383 

 384 

These results also demonstrated the usefulness of using a variety of benchmarking metrics for 385 

comparison. While the F1 score is useful to report a balance between recall and precision, reporting 386 

separate measures provides insight into the underlying causes of the poorer performance (e.g. high 387 

false negatives vs high false positives) which varied between pipelines and across datasets. 388 
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 389 

The lack of a standardised approach to benchmarking may be slowing implementation of microbial 390 

WGS in clinical practice. A criteria for development benchmarking datasets has been proposed by 391 

Sarkar et al. and the Global Microbial Identifier (GMI) working group are in ongoing development 392 

of an SOP for the validation of benchmarking datasets (35, 40). While simulated datasets are useful, 393 

they may not fully represent all characteristics present on real sequencing data that can be potential 394 

sources of error and bias. Therefore, building experimentally validated benchmarking datasets such 395 

as through Sanger sequencing will be important to generate known ground truths as was done in a 396 

recent study comparing several pipelines on Mycobacterium tuberculosis (41). 397 

  398 

Conclusion 399 

This study sought to survey the current landscape of prominent benchmarking studies for the analysis 400 

of microbial SNP calling and to comprehensively evaluate a range of all-in-one pipelines. The results 401 

highlight the difficulty in comparing results between different benchmarking approaches and the 402 

effect of dataset choice. The growing interest in the routine application of microbial WGS for AMR 403 

surveillance, outbreak investigation and diagnostics should motivate the development of a gold-404 

standard benchmarking approach. 405 

  406 
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Tables 517 

Table 1. Benchmarked all-in-one variant calling pipelines targeted to analysis of microbial genomic datasets. 518 

Pipeline 
Version 

tested 

Release 

date 
Aligner 

SNP 

caller 

Default optional caller 

settings 
Additional features Link Ref 

BactSNP 1.1.0 2018 
BWA-

mem 
Samtools AF=0.9, Depth=10 

Creates assemblies and 

maps reads back to 

pseudogenome 

https://github.com/IEkAdN/BactSNP  (1) 

LyveSet 1.1.4g 2017 SMALT Varscan AF=0.75, Depth=10 
Optional cliff masking, 

optional phage masking 
https://github.com/lskatz/lyve-SET  (9) 

LyveSet2 2.0.1 2018 SMALT Varscan AF=0.75, Depth=10 
Optional cliff masking, 

optional phage masking 
https://github.com/lskatz/lyve-SET  (9) 

Nesoni 0.132 2015 Bowtie2 Freebayes pvar=0.9   
https://github.com/Victorian-Bioinformatics-

Consortium/nesoni  

 

(19) 

Snippy 4.6.0 2020 
BWA-

mem 
Freebayes 

Depth=10, AF=0.9, 

QUAL=100 
  https://github.com/tseemann/snippy  

 

(17) 

Snpdragon 1.0.0 2022 
BWA-

mem 
Freebayes 

MAPQ=10/30, 

BASEQ=10/10, 

AF=0.1/0.75, 

Depth=10/10, 

strand_balance=0/0.05 

Option cliff masking, 

optional SNP cluster 

filtering 

 https://github.com/FordeGenomics/SNPdragon   

SPANDx 4.0.2 2021 
BWA-

mem 
GATK 

QualByDepth=10, 

RMSMAPQ=30, 

QUAL=30, FS=60 

Calls indels, optional 

SNP cluster filtering 
https://github.com/dsarov/SPANDx 

 

(18) 

519 
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Table 2. Reference genomes used in the EC958 benchmarking dataset and the percent identity against 520 

the three included samples. 521 

Reference name Identity (%) Accession 

EC958 100 NZ_HG941718.1 

ECJJ1886 99.9 CP006784.1 

SE15 99.5 AP009378.1 

UTI89 98.3 CP000243.1 

IAI39 97.2 CU928164.2 

E. coli K12 96.8 U00096.3 

SE11 96.7 AP009240.1 

Sakai 96.5 BA000007.3 

  522 
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Figures 523 

 524 

Figure 1. A typical variant calling bioinformatics pipeline. Quality control is measured using FastQC 525 

and reads may be trimmed of poor-quality bases (42). Reads are mapped to a chosen reference 526 

genome followed by variant calling. Coverage or pileup calculations may also be performed to 527 

determine the depth which is the number of reads covering each base in the reference genome. Variant 528 

filtering is applied to discard low confidence variant calls based on various measures such as depth, 529 

base quality, mapping quality, ratio of the variant to the reference allele (ratio of support/allele 530 

fraction) and read bias (only forward or reverse reads reporting a variant). Results are reported in a 531 

human readable format in addition to files suitable for other downstream analyses. 532 
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534 

Figure 2. F1 score for BactSNP, Lyveset, Lyveset2, Nesoni, Snpdragon, Snippy and SPANDx on the 535 

EC958 dataset against increasingly distant reference genomes. 536 

  537 
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538 

Figure 3. A) Precision vs Recall scatter plot and B) F1 score on the Yoshimura dataset for each of 539 

the pipelines against increasingly distance reference genomes from 99.9% similarity to 97% 540 

similarity (1). 541 
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 543 

Figure 4. A) Precision vs Recall scatter plot and B) F1 score boxplot on the Bush-simulated dataset 544 

ordered based on median combined F1 scores (2). Snpdragon = filtering to exclude both SNPs 545 

occurring in cliffs and in high density SNP clusters. Snpdragon* = optional filtering settings to 546 

exclude SNPs occurring in cliffs. Snpdragon^ = no additional optional filtering settings. 547 

  548 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 6, 2022. ; https://doi.org/10.1101/2022.05.05.487569doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.05.487569
http://creativecommons.org/licenses/by/4.0/


 30 

549 

Figure 5. F1 scores on combined results of BactSNP, Lyveset, Lyveset2, Nesoni, Snpdragon, 550 

Snippy and Bush-et al. supplementary results on the 150bp simulated data (2). Results for the new 551 

pipelines analysed in this study are highlighted. Snpdragon = filtering to exclude both SNPs 552 

occurring in cliffs and in high density SNP clusters. Snpdragon* = optional filtering settings to 553 

exclude SNPs occurring in cliffs. Snpdragon^ = no additional optional filtering settings. 554 
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 556 

Figure 6. A) Precision vs Recall scatter plot and B) Boxplot of F1 scores on Bush-real dataset 557 

ordered by median F1 score (2). Snpdragon = filtering to exclude both SNPs occurring in cliffs and 558 

in high density SNP clusters. Snpdragon* = optional filtering settings to exclude SNPs occurring in 559 

cliffs. Snpdragon^ = no additional optional filtering settings. 560 
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 562 

Figure 7. A) Runtime on E. coli ST131 dataset. B) Resident set size (RSS) on EC958 dataset. 563 
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 565 

Figure 8. A) Runtime and B) RSS on the Yoshimura dataset (1). 566 
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Figure 9. A) Runtime and B) RSS plot on the Bush-real dataset (2). 569 
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