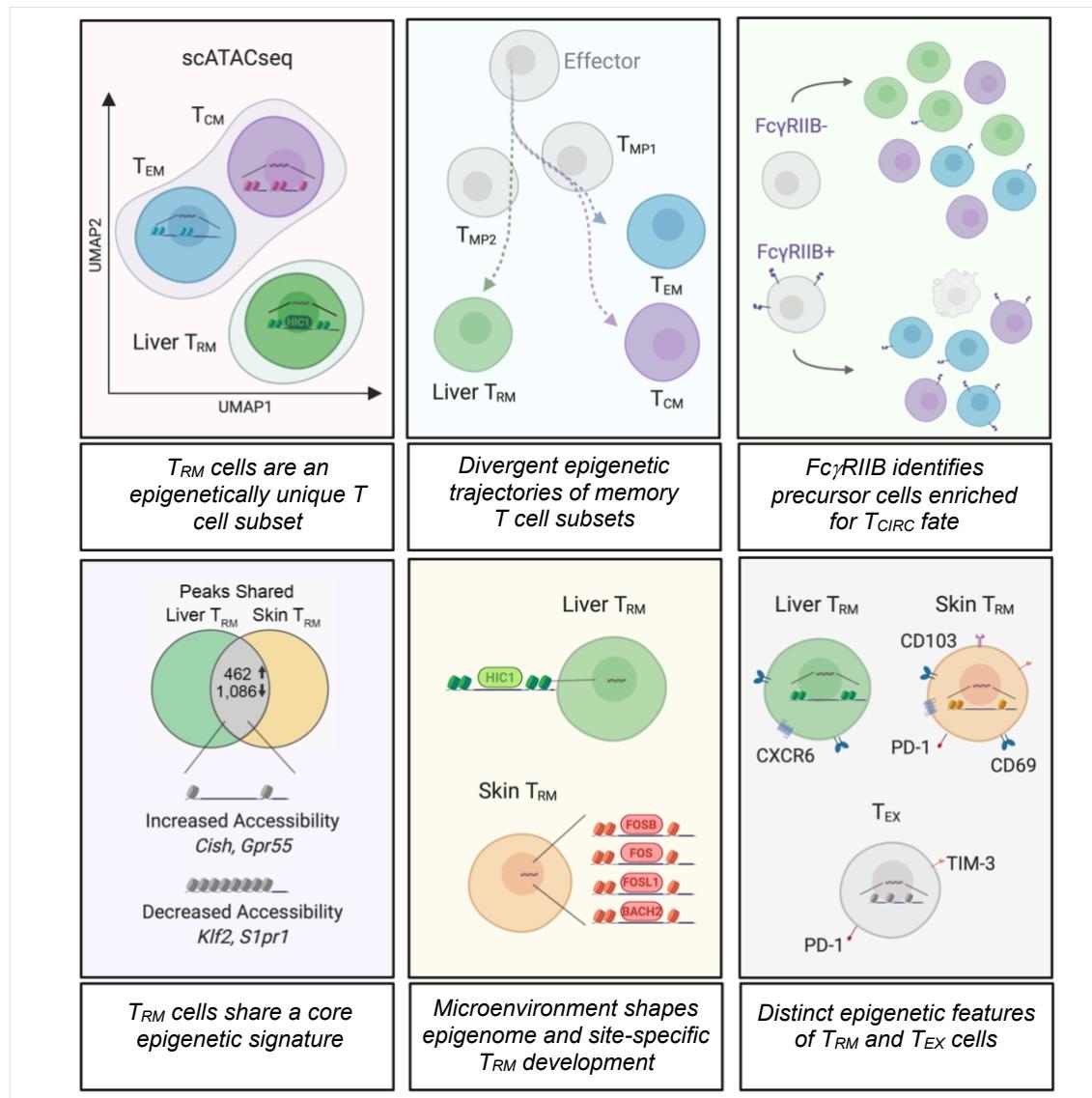


1 **A unique epigenomic landscape defines CD8⁺ tissue-resident memory T cells**

2
3
4 Frank A. Buquicchio^{1,2,7}, Raissa Fonseca^{3,7}, Julia A. Belk^{1,4}, Maximilien Evrard³, Andreas Obers³,
5 Yanyan Qi¹, Bence Daniel¹, Kathryn E. Yost¹, Ansuman T. Satpathy^{1,2,5,6,8,##*} and Laura K.
6 Mackay^{3,8,##*}

7
8 ¹Department of Pathology, Stanford University, Stanford, CA, USA. ²Program in Immunology,
9 Stanford University, Stanford, CA, USA. ³Department of Microbiology and Immunology, The
10 University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne,
11 VIC, Australia. ⁴Department of Computer Science, Stanford University, Stanford, CA, USA.
12 ⁵Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA. ⁶Gladstone-
13 UCSF Institute of Genomic Immunology, San Francisco, CA, USA.


14 ⁷ These authors contributed equally to this work.

15 ⁸ These authors jointly directed this work.

16 [#] Co-corresponding authors

17
18 *Correspondence should be addressed to L.K.M. (lkmackay@unimelb.edu.au) or A.T.S.
19 (satpathy@stanford.edu)

20 Graphical Abstract

21 Highlights

- scATAC atlas reveals the epigenetic variance of memory CD8 $^{+}$ T cell subsets over the course of acute infection
- Early bifurcation of memory precursors leads to circulating versus tissue-resident cell fates
- Integrating transcriptional and epigenetic analyses identified organ-specific T_{RM} cell regulators including HIC1 and BACH2
- Epigenetic distinction of T_{RM} cells and T_{EX} cell subsets

28 **Summary**

29

30 Memory T cells provide rapid and long-term protection against infection and tumors. The memory
31 CD8⁺ T cell repertoire contains phenotypically and transcriptionally heterogeneous subsets with
32 specialized functions and recirculation patterns. While these T cell populations have been well
33 characterized in terms of differentiation potential and function, the epigenetic changes underlying
34 memory T cell fate determination and tissue-residency remain largely unexplored. Here, we
35 examined the single-cell chromatin landscape of CD8⁺ T cells over the course of acute viral
36 infection. We reveal an early bifurcation of memory precursors displaying distinct chromatin
37 accessibility and define epigenetic trajectories that lead to a circulating (T_{CIRC}) or tissue-resident
38 memory T (T_{RM}) cell fate. While T_{RM} cells displayed a conserved epigenetic signature across
39 organs, we demonstrate that these cells exhibit tissue-specific signatures and identify transcription
40 factors that regulate T_{RM} cell populations in a site-specific manner. Moreover, we demonstrate that
41 T_{RM} cells and exhausted T (T_{EX}) cells are distinct epigenetic lineages that are distinguishable early
42 in their differentiation. Together, these findings show that T_{RM} cell development is accompanied
43 by dynamic alterations in chromatin accessibility that direct a unique transcriptional program
44 resulting in a tissue-adapted and functionally distinct T cell state.

45

46

47

48 **Key words**

49 Tissue-resident memory T cells, peripheral immunity, single-cell genomics, epigenetic analysis

50 **Introduction**

51

52 CD8⁺ T cells are key mediators of protective immunity against infectious diseases and tumors.
53 Following antigen encounter, activated T cells can infiltrate sites of infection where they mediate
54 pathogen control. Disease resolution is followed by the generation of heterogeneous memory T
55 cells with specialized functions and recirculation patterns. Whereas some memory T cells circulate
56 throughout the blood and lymphatics (including central (T_{CM}) and effector (T_{EM}) memory T cells),
57 others are permanently stationed in peripheral organs. These non-migratory tissue-resident
58 memory T (T_{RM}) cells have been identified in virtually all tissues across species, and are critical
59 for infection and cancer control (Masopust and Soerens, 2019; Okla et al., 2021).

60

61 Over recent years, high-throughput sequencing technologies have been used to define
62 transcriptional and epigenetic changes associated with T cell differentiation in various settings
63 (Joshi et al., 2007; Kallies et al., 2009; Mackay et al., 2016; Milner et al., 2017, 2020; Pauken et
64 al., 2016; Roychoudhuri et al., 2016; Sen et al., 2016; Skon et al., 2013; Utzschneider et al., 2020;
65 Zhou et al., 2010). Gene expression analyses and protein profiling have demonstrated that
66 variations in tissue microenvironments, cytokine exposure, antigen persistence, and TCR signal
67 strength poise T cells at different stages and shape the effector response, culminating in the
68 development of heterogeneous circulating memory (T_{CIRC}) and T_{RM} cell subsets (Beura et al.,
69 2018; Christo et al., 2021; Joshi et al., 2007; Kumar et al., 2017; Mackay et al., 2016; Masopust et
70 al., 2010; Sarkar et al., 2008; Solouki et al., 2020; Wakim et al., 2010). These populations of
71 memory T cells display distinct stemness and functional abilities, and together provide optimal
72 immune protection and long-term immunity against pathogens and tumors (Behr et al., 2020;
73 Christo et al., 2021; Fonseca et al., 2020; Jameson and Masopust, 2009; Kaech and Cui, 2012;
74 Park et al., 2019; Sallusto et al., 1999). In certain contexts, such as chronic infections or persistent
75 tumors, continuous T cell stimulation prompts terminal differentiation leading to the development
76 of exhausted T (T_{EX}) cells that display increased expression of inhibitory receptors and reduced
77 functional ability as compared to memory T cell populations (Im et al., 2016; Mackay et al., 2012a;
78 McLane et al., 2019; Miller et al., 2019; Paley et al., 2012).

79

80 Accordingly, dynamic genome-wide changes in DNA methylation and chromatin accessibility
81 observed during T_{CIRC} development has demonstrated the complex determination of effector and
82 memory T cell fates in both mice and humans (Akondy et al., 2017; Araki et al., 2009; Scharer et
83 al., 2013). Most recently, epigenomic profiling of single cells has demonstrated changes in *cis*-
84 and *trans*-regulatory elements associated with regulation of gene expression in individual cell
85 types, allowing for reconstruction of trajectories associated with cellular differentiation (Lareau et
86 al., 2019; Satpathy et al., 2019). While it is known that heterogeneous T_{CIRC}, T_{EX} and T_{RM} cells
87 exist and rely on distinct transcriptional circuitries, the epigenomic changes steering their
88 ontogeny, as well as when their differentiation trajectories diverge is not known. Moreover, our
89 understanding of the collective epigenetic variation of T_{RM} cells across different tissues remains
90 unexplored.

91

92 Here, we used the single-cell assay for transposase accessible chromatin with sequencing
93 (scATAC-seq) to examine the dynamic genome-scale changes in chromatin accessibility that occur
94 in CD8⁺ T cells over the course of viral infection. We found subset-specific variations in the
95 epigenetic landscape of memory T cells that are generated in response to acute LCMV infection,
96 with differences in *cis*-regulatory element accessibility being established early post-infection in
97 memory precursor populations. Increased *Fcgr2b* locus accessibility reflected the dynamics of
98 Fc γ RIIB expression in T cells *in vivo*, allowing the selection of memory precursors with enhanced
99 capacity to generate either T_{CIRC} or T_{RM} cells in the liver. Whereas T_{RM} cells were epigenetically
100 distinct from their circulating counterparts and exhibited conserved features between tissues, our
101 analyses also revealed transcription factors that regulate T_{RM} cell formation in a tissue-specific
102 manner. Moreover, despite confirming considerable phenotypic similarities between T_{RM} and T_{EX}
103 cells, we demonstrated that T_{RM} cells display a distinct chromatin landscape that share relatively
104 few features with T_{EX} cell subsets. Together, our data indicate that distinct epigenetic landscapes
105 accompany memory T cell differentiation and form the basis of the transcriptional and functional
106 differences associated with unique T cell ontogenies. Additionally, we provide a [public genome](#)
107 [browser](#) for interrogating the chromatin accessibility profiles of effector and memory CD8⁺ T cell
108 populations, which will facilitate future investigations.

109

110

111 **Results**

112

113 *T_{RM} cells are an epigenetically distinct subset of memory T cells*

114

115 To investigate the epigenetic landscape of CD8⁺ memory T cell populations, we first utilized a
116 model of acute LCMV infection (Armstrong strain) in combination with adoptive transfer of TCR
117 transgenic CD8⁺ T cells. To this end, we transferred naïve congenically labelled CD45.1⁺ P14 cells
118 specific for LCMVgp33-41 into C57BL/6 mice that were infected with LCMV to generate antigen-
119 specific memory CD8⁺ T cells across organs. At 30 d post infection (p.i.), T_{EM} and T_{CM} P14 cells
120 were isolated from the spleen, and T_{EM}, T_{CM} and T_{RM} P14 cells were isolated from the liver,
121 alongside P14 cells from naive animals (**Figure S1A**). Naïve and memory P14 cell populations
122 were then subjected to scATAC-seq (Satpathy et al., 2019) (**Figure 1A**). In total, 15,740 single
123 cells passed quality control filters of at least 1,000 unique fragments per cell and a transcription
124 start site (TSS) enrichment score greater than or equal to 5 (**Figure S1B**). To analyse memory T
125 cell epigenetic profiles, we utilised ArchR (Granja et al., 2021): (1) for dimensionality reduction
126 using Latent Sematic Indexing (LSI), Uniform Manifold Approximation and Projection (UMAP)
127 embedding and cell clustering (Becht et al., 2019; Cusanovich et al., 2015); (2) to analyze changes
128 in accessibility of individual regions in the genome ('peaks'); (3) to calculate deviation in
129 accessibility for transcription factor (TF) motifs; (4) to visualize aligned ATAC-seq reads; (5) to
130 predict 'marker peaks/genes' or changes in accessibility that are specific to a given cluster; (6) to
131 model differential gene expression using gene activity score ('gene score') and (7) to perform
132 pseudo-time differentiation trajectory analysis to model epigenetic changes that occur over the
133 course of a projected differentiation trajectory (**Figure 1B**).

134

135 T cell visualization by UMAP revealed four major clusters (**Figure 1C**). These projected clusters
136 nearly exclusively aligned with sorted T cell subsets, suggesting that scATAC-seq accurately
137 identifies the epigenetic heterogeneity within CD8⁺ memory T cells (**Figure S1C**). Thus, cluster
138 identity was assigned according to the sorted T cell population represented in each cluster (naïve
139 T cells (C1), T_{EM} (C2), T_{RM} (C3) and T_{CM} (C4) cells). Whereas our analyses revealed
140 comparatively little distinction between the chromatin state of T_{CM} and T_{EM} cells regardless of
141 tissue origin, T_{RM} cells derived from the liver comprised a discrete cluster, positioned separately

142 from the T_{CIRC} cell populations (**Figure 1C**). To identify epigenetic differences between T_{CIRC} and
143 T_{RM} cells, we compared each memory T cell cluster to naïve T cells to identify differences in peak
144 accessibility and compared these peak sets across the three memory clusters. This analysis showed
145 that each cluster exhibited unique peak accessibility changes that were not observed in the other
146 respective clusters, as well as a peak set that was shared across memory T cells. Importantly, the
147 number of peaks exclusive to the T_{RM} cell cluster (2,424 increased, 4,007 decreased) was similar
148 in magnitude to the number of T_{CM} (2,213, 1,276) and T_{EM} (2,491, 7,552) cell-exclusive peaks,
149 further confirming that T_{RM} cells are an epigenetically distinct subset of memory T cells, while
150 T_{CM} and T_{EM} cells shared proportionally higher number of peaks (2,120, 2,416), supporting the
151 increased epigenetic similarity observed between these clusters (**Figure 1D**).
152

153 To link differentially accessible ATAC-seq peaks to genes, we examined gene-level accessibility
154 changes, both across the gene body and in linked distal sites, by gene score(Granja et al., 2021;
155 Pliner et al., 2018). Direct comparison of gene scores between T_{RM} and T_{CM} and/or T_{EM} cell
156 clusters revealed the expected differential accessibility in peaks corresponding to *Klf2*, *Ccr7*, *Sell*,
157 *Slpr5*, *Zeb2* and *Cx3cr1*, genes all known to be downregulated in T_{RM} cells as compared to
158 circulating populations (**Figure 1E**). Importantly, the downregulation of KLF2 and its target
159 S1PR1, as well as ZEB2 and S1PR5, are known to be critical to halt tissue egress in order for T_{RM}
160 cells to develop in organs (Evrard et al., 2022; Mackay et al., 2013; Skon et al., 2013). Our data
161 also revealed the differential accessibility of genes with no known role in liver T_{RM} cell formation
162 such as *Fcgr2b* and *Hic1*, as well as increased accessibility of adhesion-related genes such *Chn2*,
163 *Cdh1*, *Itga9*, and *Gpr55*, a G-protein coupled receptor known to regulate intraepithelial
164 lymphocyte (IEL) migration (Sumida et al., 2017) in T_{RM} cells (**Figure 1E and 1F**). Diminished
165 gene scores of *Ccr7* and *Sell* were also observed in T_{EM} relative to T_{CM} clusters (*Sell*; L2fc = -.327,
166 FDR = 2.45. *Ccr7*; L2fc = -.820, FDR = 24.20) as well as increased accessibility in *Slpr5* and
167 *Zeb2* loci in T_{EM} cells (**Figure S1D and S1E**) in line with the anticipated expression pattern of
168 these molecules.
169

170 Reduced accessibility at the *Klf2* and *Slpr1* loci in T_{RM} cells was accompanied by decreased KLF2
171 motif accessibility (**Figure 1G and 1H**). Conversely, while the *Hic1* locus displayed increased
172 accessibility in T_{RM} cells, the HIC1 motif was significantly less accessible in this population,

173 consistent with its role as a transcriptional repressor (Pinte et al., 2004) (**Figure 1F and 1H**).
174 Similarly, the transcriptional repressor BLIMP-1, encoded by *Prdm1*, displayed decreased motif
175 accessibility in the T_{EM} cell subset and increased *Prdm1* gene score (**Figure S1F-S1H**), supporting
176 previous findings that demonstrated the expression and major role for this TF in T_{EM} development
177 by promoting CD8⁺ T cell proliferative response and differentiation (Rutishauser et al., 2009).
178 Moreover, while reduced expression of BLIMP-1 is observed in T_{RM} cells, BLIMP-1 and HOBIT
179 deficiency was shown to be detrimental for LCMV-specific T_{RM} cell formation in the liver
180 (Mackay et al., 2016). Together, our data demonstrate that T_{RM} cells are an epigenetically distinct
181 memory T cell subset and the ability of scATAC-seq to identify unique features of memory T cell
182 subsets at the chromatin level.

183

184 *Memory T cell subsets display distinct epigenetic trajectories*

185

186 Recent evidence suggests that T_{RM} cell fate is determined early during infection (Kok et al., 2020,
187 2021; Kurd et al., 2020; Mani et al., 2019; Milner et al., 2017). We sought to understand the
188 progression of epigenetic changes during T cell differentiation and to determine whether
189 progenitors that preferentially give rise to either T_{CIRC} or T_{RM} cell populations could be identified.
190 For this, we focused our analyses on the liver, an organ comprising T_{RM}, T_{EM} and T_{CM} cell
191 population (Fernandez-Ruiz et al., 2016), and sorted P14 cells at 7, 14, and 30 d following LCMV
192 infection, alongside T_{EM} and T_{CM} P14 cells from the spleen. At 14 d p.i., we sorted both CD69-
193 and CD69⁺ cells from the liver to more finely define the CD69⁺ T_{RM} cell-poised population (**Figure**
194 **S2A**). As above, samples were subjected to scATAC-seq, analyzed, and visualized by UMAP
195 alongside naïve P14 cells from non-infected mice (**Figure 2A**).

196

197 We found that early effector P14 cells isolated at 7 d p.i. were highly heterogenous and fell into
198 three distinct clusters (C2, C3, C4). Whereas C2 was comprised almost solely of 7 d p.i. cells and
199 denoted as effector T cells (T_{EFF}) (by abundance at 7 d p.i. and by loss of accessibility at the *Il7r*
200 and *Il2* loci), other cells isolated from this timepoint clustered together with cells isolated at 14 d
201 p.i. in C3 or C4 (**Figure 2A and S2B**) indicating the early divergence of T_{RM} and T_{CIRC} precursors
202 following infection. We denoted C3 and C4 as memory precursor cells (T_{MP}); CD69⁺ cells isolated
203 at 14 d p.i. were nearly exclusively contained within C3 (T_{MP-1}), indicating close relation to the

204 TRM-exclusive clusters, whereas CD69⁺ samples were distributed between C3 and C4 (T_{MP-1} and
205 T_{MP-2}, respectively; **Figure S2B**). We identified genes with cluster-specific accessibility increases
206 in potential *cis*-regulatory elements, including *Zeb2* in T_{EM} cells, *Ccr7* in T_{CM} cells, and *Fasl* and
207 *P2rx7* in T_{RM} cells (**Figure S2B**). Accordingly, correlation analysis of these marker peaks
208 supported the epigenetic similarity of T_{MP-1} and T_{RM} cells indicating an association between these
209 populations (**Figure 2B**). Moreover, T_{MP-1} exhibited a higher gene score in the T_{RM} cell-associated
210 gene *Cxcr6* (Fernandez-Ruiz et al., 2016; Wein et al., 2019) and decreased gene score in *Slpr1*
211 when compared to T_{MP-2}, further suggesting that the T_{MP-1} cluster precedes T_{RM} cell differentiation
212 (**Figure 2C**).

213

214 Next, we constructed differentiation trajectories using the T_{EFF} cluster as a starting point to
215 computationally order T cell clusters along a pseudotime axis. Here, single cells are aligned to the
216 trajectory by calculating the nearest cell-to-trajectory distance, which allows cells to be ordered by
217 their determined position in pseudotime (Granja et al., 2021). Our analysis thus far suggested that
218 T_{MP-1} (C3) preceded T_{RM} cell development, whereas T_{MP-2} (C4) bore closer similarity to T_{CIRC} (T_{EM}
219 and T_{CM}) cell clusters. As such, our pseudotime trajectories navigated through these T_{MP} clusters,
220 from T_{EFF} → T_{MP-1} → T_{RM}, or from T_{EFF} → T_{MP-2} → T_{CM} and T_{EM} cell populations (**Figure 2D**).
221

222

223 We observed several expected changes along these developmental trajectories, including a
224 progressive loss in *Slpr1* gene score along the T_{EFF} → T_{RM} trajectory, coupled with increased
225 *Slpr1* gene score from T_{EFF} → T_{CM} and T_{EFF} → T_{EM} (**Figure 2E**). Further, *Cxcr6* and *Sell* followed
226 anticipated trends, with *Cxcr6* gene score increasing in the T_{EFF} → T_{RM} trajectory, while remaining
227 relatively consistent in T_{EFF} → T_{EM}. *Sell* accessibility decreased from T_{EFF} → T_{RM} but remained
228 accessible in the T_{EFF} → T_{CM} trajectory (**Figure 2C and 2D**). Gene accessibility changes in *Sell*
229 and *Cxcr6* were reflective of protein expression changes observed by flow cytometry at the same
230 time points (**Figure S2E**). Trajectory analysis demonstrated a decrease in the *Tbx21* (encoding T-
231 BET) gene score along the T_{EFF} → T_{RM} trajectory (**Figure 2F**), aligning with previous work
232 showing T-BET downregulation during T_{RM} cell development (Laidlaw et al., 2014; Mackay et
233 al., 2015). Additionally, we found an increase in the TCF7 motif accessibility along the T_{EFF} →
234 T_{CM} trajectory, corroborating the known role of this TF in promoting T_{CM} differentiation (Gattinoni
et al., 2009; Jeannet et al., 2010) (**Figure 2G**).

235
236 Global changes in gene score and motif accessibility across pseudotime from T_{EFF} to either T_{CM} or
237 T_{RM} cells revealed several patterns between these developmental pathways. In the T_{EFF} → T_{MP-2}
238 → T_{CM} trajectory, the accessibility of *Id3*, *Tcf7*, *Lef1*, and *Sell* progressively increased along this
239 path, together with increased motif accessibility in differentiated T_{CM} as anticipated (**Figure 2H**).
240 In the T_{EFF} → T_{MP-1} → T_{RM} trajectory, *Cx3cr1* and *Klrg1* accessibility was lost early in the T_{EFF} →
241 T_{MP-1} transition, consistent with evidence showing the inability of CX3CR1⁺KLRG1⁺ effector T
242 cells to give rise to T_{RM} cells (Gerlach et al., 2016; Herndler-Brandstetter et al., 2018) (**Figure 2I**).
243 Similarly, KLF2 motif accessibility was lost along the T_{RM} cell transition whereas BHLHE40 motif
244 accessibility was gained during the T_{MP-1} to T_{RM} cell transition (**Figure 2I**), consistent with the
245 observed role of BHLHE40 in this subset (Li et al., 2019). Consistent with changes observed in
246 cells isolated from the liver at day 30 post infection, an increase in *Hic1* gene score was observed
247 in T_{RM} cells over pseudotime (**Figure 2J**), followed by a reduction in motif accessibility of HIC1
248 sites in T_{RM} cells, with opposite trends in T_{EFF} → T_{CM} (**Figure 2K**), suggesting that HIC1 represses
249 target gene accessibility early in T_{RM} cell differentiation.
250
251 While HIC1 is known to regulate the IEL population in the small intestine (Burrows et al., 2017),
252 whether this transcription factor is required for liver T_{RM} cell development is not known. To
253 investigate the functional relevance of HIC1 in liver T_{RM} cell development, we used CRISPR-Cas9
254 to ablate HIC1 in P14 cells that were subsequently transferred into LCMV infected recipients
255 (**Figure 2L**). Importantly, we found that the genetic deletion of HIC1 resulted in significant
256 reduction of CD69⁺ T cells in the liver as early as 9d p.i. (**Figure S2F-S2H**). At 30d p.i., HIC1-
257 deficient liver T_{RM} cells were further depleted, with decreased effect of HIC deletion on T_{CIRC}
258 populations (**Figure 2M-2N and S2I**), suggesting that HIC1 is a critical regulator of T_{RM} cell
259 differentiation. Together, these data support previous findings (Kok et al., 2020; Kurd et al., 2020;
260 Milner et al., 2020) and reinforce the notion that T_{RM} cell fate may be sealed early post T cell
261 activation (Kok et al., 2021).
262
263 *FcγRIIB expression identifies precursors enriched for the T_{CIRC} cell fate*
264

265 Our trajectory analyses indicated that a subset of T cells may be poised for T_{RM} cell differentiation
266 at early stages following infection. To identify surface markers that would allow for the isolation
267 of putative T_{RM} cell precursors, we investigated genes encoding cell surface markers with
268 differential accessibility in T_{MP-1} relative to T_{MP-2} cell clusters (**Figure 3A**). To account for
269 potential heterogeneity within the T_{MP} clusters, we also accounted for whether these genes were
270 also differentially accessible in fully differentiated T_{RM} cells relative to T_{CIRC} cells. Among the
271 genes observed, *Cx3cr1* and *Slpr5* showed increased gene scores in T_{MP-2} and T_{CIRC} relative to
272 T_{MP-1} and T_{RM} cells, indicating the presence of an effector population poised for T_{CIRC} cell
273 differentiation (**Figure 3B**). We also observed significantly decreased accessibility of *Fcgr2b*
274 ($Fc\gamma$ RIIB) in both T_{MP-2} and T_{RM} cells relative to T_{MP-1} and T_{CIRC} cells (**Figure 3B and S3A**).
275 $Fc\gamma$ RIIB is a low-affinity Fc receptor known to act as an inhibitory receptor in $CD8^+$ T cells and
276 promote apoptosis (Morris et al., 2020; Starbeck-Miller et al., 2014), although its role in T_{RM} cell
277 differentiation has not been explored.

278
279 Given the concomitant lack of *Fcgr2b* accessibility in T_{MP-2} and T_{RM} cells, we hypothesized that
280 we may be able to identify T_{RM} -poised precursors based on the surface expression of this marker.
281 To observe $Fc\gamma$ RIIB expression dynamics *in vivo*, we transferred P14 cells into LCMV infected
282 mice and analysed $Fc\gamma$ RIIB expression on P14 cells at various times p.i. Notably, the dynamics of
283 *Fcgr2b* gene score in our predicted pseudotime trajectories closely reflected $Fc\gamma$ RIIB expression
284 by flow cytometry in the putative T_{RM} , T_{CM} , and T_{EM} cell populations over the course of infection
285 (**Figure 3C and 3D**). Additionally, the comparison of $Fc\gamma$ RIIB expression in memory T cell
286 populations demonstrated increased expression in T_{CIRC} cells over time, with highest expression
287 detected in the liver T_{EM} cell subset (**Figure S3B and S3C**).
288

289 We next asked whether the lack of $Fc\gamma$ RIIB expression marked a population of precursor cells that
290 might preferentially give rise to T_{RM} cells. For this, P14 cells were isolated from the spleen 7 d
291 after LCMV infection and sort-purified populations of $Fc\gamma$ RIIB $^-$ or $Fc\gamma$ RIIB $^+$ P14 cells were
292 transferred into infection-matched recipients (**Figure 3E**). At 30 d post-transfer, we observed a
293 global reduction of $Fc\gamma$ RIIB $^+$ T cells (**Figure 3F**) consistent with their increased apoptotic
294 potential (Morris et al., 2020), while $Fc\gamma$ RIIB expression remained consistent as per the transferred
295 population (**Figure S3D**). Interestingly, we found that the progeny of $Fc\gamma$ RIIB $^+$ cells displayed an

296 increased proportion of T_{CM} and T_{EM} cells and an impaired conversion to the CD69⁺ T_{RM} cell
297 phenotype (**Figure 3G-3I**). Accordingly, Fc γ RIIB⁻ showed an increased propensity to form T_{RM}
298 cells at the detriment of either T_{CM} cell population in the liver. Together, these data indicate that
299 differential Fc γ RIIB expression allows the identification of effector cells that appear to be
300 differentially poised to navigate distinct memory T cell trajectories.

301

302 *T_{RM} cells share a core epigenetic signature across tissues*

303

304 Our data thus far demonstrates that liver T_{RM} cells display a distinct epigenetic signature compared
305 to their circulating counterparts derived from both the liver and spleen. Despite considerable
306 variation of T_{RM} cells between organs, these cells exhibit a core transcriptional signature that is
307 shared across tissues and species (Kumar et al., 2017; Mackay et al., 2016; Milner et al., 2017).
308 Therefore, we sought to understand the extent of epigenetic similarity between CD8⁺ T_{RM} cells in
309 different tissues and for this we compared liver T_{RM} cells to those derived from the skin. These
310 populations represent extremes in T_{RM} cell-associated phenotypic and transcriptional variation, as
311 driven by differential responsiveness to the cytokine TGF- β . Beyond upregulation of the integrin
312 CD103, TGF- β governs a suite of transcriptional changes in the TGF- β -responsive skin T_{RM} cell
313 population, in addition to restraining their functional capacity (Christo et al., 2021).

314

315 To define epigenetic features that are conserved between liver and skin T_{RM} cells, we utilized a
316 model of HSV skin infection to induce a skin T_{RM} cell population. To this end, CD45.1⁺ gBT-I T
317 cells specific for HSV gB₄₉₈₋₅₀₅ were transferred into C57BL/6 mice that were infected with HSV
318 on the skin flank. At 14 and 30 d post HSV infection, gBT-I T_{RM} cells were isolated from the skin
319 as defined by the expression of CD69 and CD103, alongside circulating gBT-I T cells (T_{CIRC})
320 derived from the skin-draining lymph node (dLN) (**Figure S4A**). Sort-purified cells were subjected
321 to scATAC-seq and data was subsequently integrated with the aforementioned LCMV T cell
322 dataset comprising spleen naïve and memory T cell subsets, and liver effector and memory T cell
323 subsets (**Figure 4A**). As expected, liver and skin T_{RM} cells clustered separately, reflective of the
324 major differences in their tissue microenvironment and phenotype. Differences were also observed
325 in the clustering of T_{CIRC} cell populations, with clusters being defined by the model of infection
326 (**Figure S4B**). Heatmap visualization of gene scores highlighted genes that were uniquely

327 regulated in each cluster, as well as genes that were shared between skin (C2) and liver (C3) T_{RM}
328 cells, including *Xcl1*, *Cdh1*, *Acvr1b*, and *Tnfsf11 (Rankl)* (**Figure 4B**). As expected, skin T_{RM} cells
329 had increased accessibility in genes related to TGF-β signalling (*Tgfb2*, *Tgfb3*), skin homing and
330 adhesion molecules (*Ccr4*, *Ccr8*, *Itgae*) and genes previously shown to be preferentially expressed
331 in skin T_{RM} cells (*Cish*, *Litaf*, *Pdcld1*, *Havcr2*). The loss in accessibility in genes that antagonize
332 T_{RM} cell development (*Klf2*, *Slpr1*) could be observed within both T_{RM} cell clusters, together with
333 an increased gene score in *Xcl1* and *Chn2*, genes identified as part of the core T_{RM} gene signature
334 that is shared across organs (Mackay et al., 2016) (**Figure 4C and S4C-S4D**).

335
336 We next sought to determine if T_{RM} cells residing different organs had conserved accessibility in
337 *cis*-regulatory elements. We identified significant changes in peaks relative to naïve T cells (C1)
338 for all clusters and determined the extent to which sets of peaks were common across different
339 clusters. Similar to the conservation of peaks in LCMV-induced memory subsets (**Figure 1D**),
340 there was a strong conservation of *cis*-regulatory elements that exhibited changes in accessibility
341 in all memory clusters relative to naïve (1,800 increased, 5,089 decreased) (**Figure 4D**). Across
342 all peaks with significant changes in peak accessibility, 462 were increased and 1,082 decreased
343 exclusively in both liver and skin T_{RM} cells. Mapping those 1,544 peaks back to genes revealed
344 the genes with the most numerous changes in *cis*-regulatory element accessibility; expectedly, *Klf2*
345 and *Slpr1* exhibited the most losses in peaks accessibility in T_{RM} cells. Among the genes with the
346 most gains in *cis*-regulatory element accessibility were *Gpr55*, a G protein-coupled receptor that
347 negatively regulates IEL T cell migration (Sumida et al., 2017) and *Cish* (**Figure 4E and 4F**), a
348 negative regulator of TCR signalling (Palmer et al., 2015). Interestingly, we also observed
349 conserved gains in peak accessibility at the *Tgfb1* locus in both skin and liver T_{RM} cells (**Figure**
350 **4E**), which is intriguing given the opposing effect of TGFβ signalling on regulating T_{RM} cell
351 development in these tissues (Christo et al., 2021).

352
353 To further understand gene-level accessibility changes unique to T_{RM} cells, we identified genes
354 with significant changes in gene score relative to naïve T cells that did not appear in any other
355 memory cluster (**Figure S4E**). In total, there were 64 genes with differential accessibility
356 exclusively observed in both skin and liver T_{RM} cells. The 41 genes with increased accessibility in
357 T_{RM} cells included the residency-associated chemokine *Xcl1*, cytokines *Il22* and *Tnfsf10*, and genes

358 associated with cell adhesion (*Cd93*, *Gpr55*) or modulation of cytokine and TCR signalling (*Cish*,
359 *Socs2*, *Tnfsf9*, *Rgs1*). We also analyzed whether T_{RM} cell-exclusive *cis*-regulatory elements shared
360 transcription factor motifs that may control gene expression associated with changes in
361 accessibility (**Figure 4G**). We observed a broad enrichment of motifs belonging to transcription
362 factors from the bZIP family, with AP-1 motifs contributing to 30-40% of the 462 peaks with
363 increased accessibility. In contrast, a reduction in KLF motifs was the most significantly enriched
364 within the 1,062 peaks with decreased accessibility, in line with the role of KLF2 in antagonizing
365 T_{RM} cell development (Skon et al., 2013). Together, these data indicate that a conserved epigenetic
366 signature defines the T_{RM} cell population.

367

368 *Local microenvironment shapes the epigenome and promotes site-specific T_{RM} cell development*

369

370 While T_{RM} cells shared an epigenetic signature across organs, it is well known that T_{RM} cells in
371 different tissues exhibit discordant phenotypes and are regulated by distinct molecular cues
372 (Christo et al., 2021; Fonseca et al., 2020; Frizzell et al., 2020; Kumar et al., 2017). Using our
373 scATAC-seq data, we sought to determine the changes in chromatin landscape between T_{RM} cells
374 from different organs and identify unique transcriptional regulators that may account for such
375 differences. First, to determine the extent to which the chromatin state of skin and liver T_{RM} cells
376 diverge, we compared with differential peak accessibility and gene scores between skin and liver
377 T_{RM} cells (relative to T_{CIRC}) (**Figure S5A**). In line with increased *P2rx7* mRNA levels (Mackay et
378 al., 2016) (**Figure S5B**) and its known requirement for liver T_{RM} cell development (Stark et al.,
379 2018), the *P2rx7* locus displayed increased accessibility in liver T_{RM} cells. In addition, we observed
380 increased *Ahr* and *Ccr8* gene scores in skin T_{RM} cells, with a similar trend observed at the mRNA
381 level (**Figure S5A and S5B**), fitting with the known roles for AHR and CCR8 in skin T_{RM} cell
382 development (McCully et al., 2018; Zaid et al., 2014). Accordingly, molecular signature analysis
383 of enriched motifs (MSigDB) in skin versus liver T_{RM} cells indicated participation of TGF- β
384 signalling in skin T_{RM} cells, while liver T_{RM} cell motifs displayed enrichment in pathways related
385 to IFN signalling (**Figure S5C**), confirming previous findings on the dependency of these
386 respective cytokines for T_{RM} cell formation (Christo et al., 2021; Hirai et al., 2020; Holz et al.,
387 2020; Mackay et al., 2013).

388

389 Next, we sought to identify putative T_{RM} cell regulators by combining transcriptional data from
390 GSE70813 and epigenetic data to reveal transcription factors with both increased RNA expression
391 and motif accessibility in a tissue-specific manner (**Figure 5A**). Compared to liver T_{RM} cells, skin
392 T_{RM} cells had increased expression and accessibility in AP-1 family members, including JUN,
393 JUNB, JUND, FOS, FOSB, FOSL1, and FOSL2, suggesting that one or more of these factors may
394 specifically influence skin T_{RM} cell development. Of note, these comparisons also uncovered
395 certain motifs with increased accessibility in skin compared to liver T_{RM} cells, but did not exhibit
396 observable differential gene expression between these two T_{RM} subsets, such as BACH2.
397 Accordingly, gene expression analysis comparing T_{RM} and T_{CIRC} cell subsets demonstrated that
398 skin T_{RM} cells showed increased gene expression for *Fos*, *Fosb*, *Fosl1* and *Fosl2*, in addition to a
399 small reduction in *Bach2* expression when compared to other T cell subsets, including liver T_{RM}
400 cells (**Figure S5D**). This indicated a potential role for these transcription factors in skin T_{RM} cells
401 that is not reflected in transcriptional data. As a confirmatory approach, we generated the list of
402 peaks with increased accessibility exclusively in skin T_{RM} cells when compared to liver T_{RM} cells
403 (relative to respective T_{CIRC} cell populations) and used the HOMER motif analysis to determine
404 motif enrichment within skin T_{RM} -exclusive peaks (**Figure 5B**). Here, AP-1 motifs were found in
405 around 40% of peaks and the BACH2 motif was also amongst the top 10 enriched in the 2,663
406 peaks evaluated. When observed across memory T cell subsets, our data revealed that skin T_{RM}
407 cells display the highest motif accessibility for FOS, FOSB, FOSL1, and BACH2 relative to all
408 memory populations sequenced, indicating a putative role for these transcription factors in skin
409 T_{RM} cell development (**Figure 5C and S5E-S5F**).

410
411 Based on these data, we hypothesized that FOS family members, specifically FOS, FOSB and
412 FOSL1, may uniquely regulate skin T_{RM} cells, in addition to their established role in controlling
413 TCR-induced genes and T cell expansion (Roychoudhuri et al., 2016). To test this, we used
414 CRISPR-Cas9 to ablate either *Fos*, *Fosb*, *Fosl1* or *Fosl2* in effector P14 cells and then cells were
415 co-transferred together with cells edited with a control guide, into LCMV-infected mice (**Figure**
416 **5D**). To induce skin T_{RM} cells following LCMV infection, mice were treated with 2,4-
417 dinitrofluorobenzene (DNFB) on the skin as previously described (Frizzell et al., 2020). Ablation
418 of *Fosb* led to a general decrease in memory P14 cell formation in comparison to respective
419 controls 30 d p.i. (**Figure S5G**). To observe location-specific defects in memory T cell formation,

420 we compared the number of *Fosb*-deleted and control-edited cells in the skin and liver to
421 normalized splenic cell numbers, and found a dominant defect in skin T_{RM} cell formation (**Figure**
422 **5E**). Similarly, the deletion of *Fos* and *Fosl1* (**Figure 5F and 5G**) revealed a loss of the skin T_{RM}
423 cells population, whereas the deletion of *Fosl2* did not impact memory T cell formation (**Figure**
424 **S5H**), consistent with the lack of changes in motif accessibility observed in T_{RM} cells.

425

426 To next investigate the role of the transcriptional repressor BACH2 in skin T_{RM} cell formation, we
427 ablated this transcription factor in effector P14 cells via CRISPR-Cas9 and co-transferred edited
428 cells and control cells into LCMV-infected DNFB-treated recipient mice (**Figure 5H**). Akin to our
429 findings above, we observed a pronounced defect in BACH2-deleted T cells specifically in the
430 skin, as compared to those isolated from the spleen or liver (**Figure 5H and S5I**). Together, this
431 demonstrates the utility of integrating transcriptional and epigenetic analysis to identify major
432 regulators of tissue-specific T cell development. Further, scATAC-seq enabled the identification
433 of differential BACH2 activity where RNA-seq could not, highlighting the utility of scATAC-seq
434 in nominating novel transcriptional regulators of cell state.

435

436 *T_{RM} and T_{EX} cells are epigenetically distinct*

437

438 A canonical feature of T_{RM} cells is their elevated expression of inhibitory receptors as compared
439 to circulating memory T cells. This is particularly striking for skin T_{RM} cells, which share several
440 phenotypic characteristics with T_{EX} cells generated in response to chronic viral infection,
441 presenting similar reduced capacity for cytokine production (Christo et al., 2021). To directly
442 compare T_{EX} and memory T cell subsets, we transferred congenically marked naïve CD8⁺ P14
443 cells into C57Bl/6 recipient mice infected with LCMV Armstrong or LCMV Clone-13 (Cl-13)
444 infection, a widely used model for inducing CD8⁺ T cell exhaustion, or gBT-I cells after HSV
445 infection (**Figure 6A**). Based on exhaustion and memory T cell markers (**Figure S6A**), UMAP
446 visualization revealed four major clusters (**Figure 6A**), with skin gBT-I T_{RM} cells exhibiting
447 similar expression of the checkpoint molecules PD1 and TIM3 as splenic P14 cells isolated from
448 mice infected with LCMV Clone-13 (Cl-13) (**Figure 6B**). In contrast, liver T_{RM} cells generated in
449 response to acute LCMV do not express PD1 or TIM3 to the same extent (**Figure 6A and 6B**).
450 Further, tumor-infiltrating lymphocytes (TIL) have also been reported to have a T_{RM} cell-like

451 transcriptional profile (Djenidi et al., 2015; Malik et al., 2017; Milner et al., 2017; Nizard et al.,
452 2017; Park et al., 2019; Savas et al., 2018). The seemingly convergent phenotypic profiles of T_{RM}
453 and T_{EX} cells has led to speculation that T_{EX} and T_{RM} cell lineages are related (Blank et al., 2019).
454 It is unclear however, the extent to which the chromatin state of T_{RM} and T_{EX} cells overlap, or
455 when these subsets diverge during T cell differentiation.

456

457 To assess epigenetic differences between these subsets, we analyzed scATAC-seq data from gp33
458 tetramer⁺ CD8⁺ T cells from LCMV Cl-13 infected mice at 8 and 21 d p.i. from GSE188670
459 (Daniel et al., 2021) together with our scATAC-seq data of liver and skin T_{RM} cells, as generated
460 by LCMV Armstrong and HSV infections, respectively (**Figure 6C**). These integrated datasets
461 revealed that T_{EX} cells separated into 5 distinct clusters; cells isolated at 8 d p.i. were primarily
462 classified as C4 or C5, and cells isolated at 21 d p.i. mostly inhabited C3, C10, and C11 (**Figure**
463 **S6B**). To separate stem-like T_{EX} cells, intermediate T_{EX} cells, and terminal T_{EX} cells (Raju et al.,
464 2021), we used *Havcr2*, *Cx3cr1*, *Pdcd1*, and *Tcf7* gene scores, identifying C3, C11 and C10
465 respectively (**Figure 6D**). Notably, LCMV Cl-13-induced T_{EX} cells clustered separately from cells
466 isolated from LCMV Armstrong infected hosts at all stages of differentiation, highlighting distinct
467 chromatin states for T_{RM} and T_{EX} cells (**Figure 6E**).

468

469 Next, we sought to compare gene and motif accessibility for transcription factors commonly
470 associated with T cell exhaustion in T_{EX} and T_{RM} cells. We found that *Tox* gene scores in both skin
471 and liver T_{RM} cells were reduced in comparison to all T_{EX} subsets (**Figure 6F**), supporting low
472 *Tox* expression in T_{RM} cells (**Figure S6C**). Additionally, similar to the expression at the protein
473 level, increased *Tcf7* gene score was observed in stem-like T_{EX} cells and liver T_{RM} cells (**Figure**
474 **6G**), consistent with the increased stemness observed in these populations that maintain increased
475 differentiation capacity. Motif deviation for several T_{EX}-associated transcription factors, TCF1,
476 IRF4, and EOMES, were highest in T_{EX} clusters (**Figure S6D**). RUNX3, however, exhibited the
477 highest motif deviation in the skin T_{RM} cell population, consistent with its required role for
478 residency in several tissues (Milner and Goldrath, 2018) (**Figure S6D**).

479

480 To more broadly understand the shared epigenetic regulation of T_{RM} and T_{EX} cells, we compared
481 peaks with significantly increased or decreased accessibility in each T cell subset relative to T_{EFF}

482 cells generated after LCMV Armstrong infection. First, we compared shared T_{RM} peaks
483 (significant peaks present in both liver and skin T_{RM}) to shared T_{EX} cell peaks (significant peaks
484 present in all three T_{EX} subsets isolated 21 d p.i.), i.e. T_{RM} and T_{EX} programs, respectively. This
485 analysis showed that among the 1,510 peaks that have increased accessibility in both T_{RM} subsets,
486 only 177 were shared with the T_{EX} program (2,640 peaks) (**Figure 6H**). We assigned these 177
487 peaks to the nearest gene and ordered the genes with the most assigned peaks; *Slc24a5*, a cation
488 exchanger, and *Sesn3*, a stress-sensing protein that can promote NKR recognition in CD8⁺ T cells
489 (Pereira et al., 2020), were the most commonly assigned genes with 3 peaks each (**Figure S6E**).
490 Comparing the T_{EX} program to individual skin or liver T_{RM} cell peaks sets yielded similar results
491 (272 shared of 4,579 total peaks in skin T_{RM} cells; 1,263 shared of 19,385 total peaks in liver T_{RM}
492 cells) with skin T_{RM} and liver T_{RM} cells sharing 5.94% and 6.51% peaks with T_{EX} cells,
493 respectively (**Figure 6I**). Interestingly, 2 of the 272 peaks that skin T_{RM} cells share with T_{EX} are
494 nearest to the *Pdcd1* gene; one peak ~23kb from the TSS of *Pdcd1* is a known T_{EX} enhancer that
495 mediates sustained PD1 expression, previously thought to be specific to T_{EX} cells (Pauken et al.,
496 2016; Sen et al., 2016) (**Figure 6J**). The presence of this peak in both skin T_{RM} and gp33-specific
497 CD8⁺ T_{EX} cells could potentially explain the constitutive expression of PD1 in both T cell subsets.
498

499 Finally, we then compared the peak set of skin and liver T_{RM} clusters with each individual T_{EX}
500 cluster to determine which T_{EX} cell population most closely shared the epigenetic features of T_{RM}
501 cells. Interestingly, skin T_{RM} cells exhibited similar amounts of significant increased or decreased
502 peaks with the three T_{EX} subsets, while liver T_{RM} cells shared mostly peaks with stem-like T_{EX}
503 cells (**Figure 6K and L**), potentially due to stem-like T_{EX} cells being the most “memory-like” of
504 the T_{EX} cell subsets. Altogether, our results indicate that even though T_{RM} cells may share
505 phenotypic similarities with exhausted T cells, epigenetic analyses demonstrate major differences
506 in gene accessibility changes throughout development that define specific memory or exhausted T
507 cell subsets.

508

509

510 **Discussion**

511

512 Here, we utilized scATAC-seq to examine epigenetic changes that occur over the course of the T
513 cell response against acute, local and systemic, or chronic viral infections. Our data defines the
514 epigenetic variation between individual T cell subsets at various stages of infection and reveals an
515 early divergence of memory precursors destined for a circulating or tissue-resident cell fate. We
516 demonstrate that T_{RM} cells are an epigenetically distinct T cell subset that share a conserved
517 epigenetic signature across organs, as well as tissue-specific epigenetic variation. Together, our
518 findings highlight the dramatic changes in chromatin landscape that underlie cellular
519 differentiation, as well as the resolution of scATAC-seq to finely distinguish individual
520 populations within the CD8 $^{+}$ T cell pool (Lareau et al., 2019; Satpathy et al., 2019). Differences
521 in chromatin accessibility across effector and memory T cells can be further interrogated in our
522 [public genome browser](#), allowing visualization of scATAC-seq reads in specific gene loci to
523 investigate T cell biology.

524

525 Our data supports a model by which memory T cell fate is determined early post infection,
526 supporting previous findings that demonstrate early fate decision for T_{RM} cell generation in the
527 skin and gut (Kok et al., 2020; Milner et al., 2020). Using trajectory analyses, we modelled gene
528 and transcription factor motif accessibility over time in effector, memory precursors and memory
529 T cells, providing a genome-wide view of changes in the epigenome over the course of memory T
530 cell differentiation. Importantly, by looking at genes with increased accessibility in the T_{RM} -poised
531 memory precursor cluster we identified major epigenetic divergences defining early effector
532 commitment to the T_{RM} and T_{CIRC} cell populations. Specifically, we uncovered the differential
533 expression of Fc γ RIIB between T_{RM} and T_{CIRC} cells that is retained from their respective
534 precursors. These findings allowed the selection of an effector population with enhanced capacity
535 for generating each of those subsets, adding to the previous characterization of the role of Fc γ RIIB
536 in triggering apoptosis to limit T cell mediated immunity (Morris et al., 2020).

537

538 We identified a common epigenetic signature conserved between T_{RM} cells from different organs,
539 consisting of key gene regulatory networks that contribute to T cell retention, in addition to reduced
540 ability to traffic in the blood and secondary lymphoid organs. In addition to this conserved T_{RM}
541 cell program (Kumar et al., 2017; Mackay et al., 2016; Milner et al., 2017), cells residing in
542 different organs exhibit divergent phenotypes and functional capacities as shaped by extrinsic cues

543 in their distinct tissue microenvironments (Fonseca et al., 2020; Frizzell et al., 2020). We leveraged
544 our chromatin accessibility data to identify potential transcriptional regulators that support tissue-
545 specific TRM cell formation and validated the role of several transcription factors including HIC1,
546 as well as AP-1 factors, FOSB, BACH2, FOS, and FOSL1, adding to their previously established
547 role in T cell memory by regulating the availability of AP-1 motifs to limit the expression of TCR-
548 driven genes during T cell effector responses (Roychoudhuri et al., 2016; Yukawa et al., 2020).
549 Together, these results support the concept that epigenetic differences can underlie tissue-specific
550 modulation of gene expression and that interrogation of these changes can reveal novel, tissue-
551 specific transcriptional regulation.

552

553 TRM cells generated in response to acute infection and T_{EX} cells in tumors and in chronic infection
554 share considerable phenotypic overlap (Christo et al., 2021; Milner et al., 2017, 2020). Skin TRM
555 cells, in particular, display restricted functional capacity and increased inhibitory receptor
556 expression, characteristics that are typically associated with the T_{EX} cell lineage (Christo et al.,
557 2021; Park et al., 2019). A longstanding question has been whether the phenotypic and functional
558 overlap between skin TRM cells and T_{EX} cells is indicative of a shared epigenetic state or a
559 convergence of cell types. Here, epigenetic analysis of TRM and T_{EX} subsets demonstrated that
560 despite expression similarities in the expression of certain co-inhibitory receptors such as PD-1,
561 the epigenetic state of TRM, TCIRC and T_{EX} subsets are ultimately distinct. Our detailed analysis
562 demonstrated that despite similarities in the accessibility of certain genes, the majority of the
563 epigenetic changes occurring in T_{EX} cells are not present in skin or liver TRM cells.

564

565 Understanding the regulation and differentiation of TRM cells is critical to informing the design of
566 therapies that aim to modulate tissue immunity. Our data demonstrates that TRM cells are an
567 epigenetically distinct T cell subset that arise from epigenetically poised precursors generated
568 early after infection, as well as revealing novel regulators of TRM cell differentiation. Altogether,
569 our results provide critical insights into TRM cell differentiation and phenotype and will act as
570 resource for further investigation into events that precede TRM, TCIRC and T_{EX} cell differentiation,
571 and epigenetic regulators that contribute to TRM cell maintenance and function.

572 **Acknowledgements.** We thank the Flow Cytometry Unit and Bioresources Facility at Peter
573 Doherty Institute (University of Melbourne) for technical assistance and the Stanford Functional
574 Genomics Facility for sequencing support. This work was supported by an Institutional Training
575 Grant 5T32AI007290 (F.A.B.), a Howard Hughes Medical Institute and Bill & Melinda Gates
576 International Research Scholarship OPP1175796 (L.K.M.), National Health and Medical Research
577 Council (NHMRC) AP1113293 (L.K.M.), the National Institutes of Health (NIH) K08CA230188,
578 U01CA260852, and UM1HG012076 (A.T.S.), the Parker Institute for Cancer Immunotherapy
579 (A.T.S.), a Career Award for Medical Scientists from the Burroughs Wellcome Fund (A.T.S), and
580 a Pew-Stewart Scholars for Cancer Research Award (A.T.S). L.K.M is a Senior Medical Research
581 Fellow supported by the Sylvia and Charles Viertel Charitable Foundation.

582

583 **Author contributions.** F.A.B., R.F, J.A.B., M.E., A.O., Y.Q., B.D. and K.E.Y. performed
584 experiments and analyzed data; A.T.S. and L.K.M. provided supervision; F.A.B, R.F., A.T.S, and
585 L.K.M. contributed to experimental design. F.A.B, R.F., A.T.S, and L.K.M. prepared the
586 manuscript. A.T.S. and L.K.M. provided funding and led the research program.

587

588 **Declaration of interests.** A.T.S. is a scientific founder of Immunai and founder of Cartography
589 Biosciences and receives research funding from Merck Research Laboratories, 10x Genomics, and
590 Allogene Therapeutics.

591 **Figure legends**

592

593 **Figure 1. TRM cells display a unique epigenetic landscape amidst memory T cell subsets. (A-H)** Congenically marked naïve CD8⁺ P14 cells were transferred into C57Bl/6 naïve recipient mice
594 followed by LCMV Armstrong infection. T_{CM} (CD62L⁺ CD69⁻), T_{EM} (CD62L⁻CD69⁻) and T_{RM}
595 (CD62L⁻CD69⁺) cells were flow sorted from the spleen and liver 30 d p.i. and scATACseq was
596 performed. **(A)** Experimental schematics of scATACseq droplets and representative flow plots of
597 sorted populations from spleen and liver. **(B)** Analyses performed in single-cell chromatin
598 accessibility data using ArchR. **(C)** UMAP projection of memory T cells. **(D)** Venn diagram of
599 differential peaks in identified clusters individually compared to naive cluster (\log_2 FC > 1, FDR
600 > 10). **(E)** Gene score volcano plots identifying genes with significantly different accessibility
601 (\log_2 FC > 1, FDR > 10) between TRM and TEM or T_{CM} memory clusters; notable genes annotated
602 manually. **(F)** UMAP depicting relative gene accessibility (gene score) across clusters. **(G)** *Klf2*
603 and *Slpr1* genome tracks (height normalized) and **(H)** KLF2 and HIC1 motif deviation in indicated
604 clusters.

605

606

607 **Figure 2. Distinct epigenetic trajectories define T_{CIRC} and TRM cell development. (A-K)**
608 Congenically marked naïve CD8⁺ P14 cells were transferred into C57Bl/6 naïve recipient mice
609 followed by LCMV Armstrong infection. P14 cells were sorted from the liver at 7 d (total P14
610 cells), 14 d (CD69⁻ and CD69⁺), alongside TRM (CD62L⁻CD69⁺), T_{CM} (CD62L⁺ CD69⁻) and T_{EM}
611 (CD62L⁻CD69⁻) from the liver and spleen at 30 d p.i. and scATACseq was performed. **(A)** UMAP
612 projection of scATAC profiles of flow sorted populations. **(B)** Marker peak heatmap identifying
613 cis-regulatory elements uniquely active in individual clusters; peaks in or linked to notable genes
614 are annotated and colored by cluster. **(C)** *Cxcr6* and *Slpr1* gene scores in individual clusters. **(D)**
615 Predicted differentiation trajectories of identified memory clusters. **(E)** *Slpr1* and **(F)** *Tbx21* gene
616 score over pseudotime for individual trajectories. **(G)** Motif accessibility of TCF7 over pseudotime
617 during T_{CM} and TRM cell epigenetic trajectories. **(H)** Heatmaps with dynamic gene score (left) and
618 **(I)** motif accessibility (right) over pseudotime during T_{CM} and TRM differentiation trajectories;
619 notable genes and motifs that appear in the trajectory are annotated near their approximate position
620 in pseudotime. **(J)** *Hic1* gene score and **(K)** motif accessibility over pseudotime. **(L-N)** Control
621 (sgCtrl) or *Hic1* (sgHic1) ablation was performed using CRISPR-Cas9 in distinct congenically

622 marked naïve CD8⁺ P14 cells. Cells were then transferred into LCMV infected recipients and
623 isolated from the spleen and liver 30 d p.i. **(L)** Experimental schematics. **(M)** Log2 fold change of
624 sgHic1 and sgCtrl indicated cell subsets normalized to the spleen and **(N)** Representative flow
625 plots of transferred cells for the indicated subsets in liver. Data is representative from **(L-N)** 2
626 independent experiments with n=10 mice each. In **(M)** symbols represent individual mice. Box
627 plots show the median, interquartile range and minimum/maximum whiskers. *** p≤0.001, One-
628 way ANOVA with Bonferroni post-test.

629

630 **Figure 3. FcγRIIB expression identify memory precursors with TcIRC cell differentiation**
631 **bias. (A-C)** Congenically marked naïve CD8⁺ P14 cells were transferred into C57Bl/6 naïve
632 recipient mice followed by LCMV Armstrong infection. P14 cells were flow sorted: from the liver
633 at 7 d p.i., CD69- and CD69⁺ at 14 d p.i. and T_{CM}, T_{EM} and T_{RM} from the spleen and liver at 30 d
634 p.i. and scATACseq was performed. **(A)** UMAP projection of scATACseq profiles of flow sorted
635 populations with memory T cell precursor clusters (T_{MP-1} and T_{MP-2}) highlighted. **(B)** Gene score
636 volcano plots identifying genes with significantly different accessibility (log2 fold change > 1,
637 FDR > 10) between TcIRC and T_{RM} clusters with similar changes in T_{MP-2} and T_{MP-1} clusters;
638 notable genes were annotated manually. **(C)** *Fcgr2b* gene score over pseudotime for individual
639 trajectories and **(D)** flow cytometry analysis of FcγRIIB expression at indicated time points. **(E-I)**
640 Congenically marked naïve CD8⁺ P14 cells were transferred into C57Bl/6 naïve recipient mice
641 followed by LCMV Armstrong infection. FcγRIIB⁻ and FcγRIIB⁺ effector P14 cells were flow
642 sorted from the spleen at 7 d p.i. and transferred into infection matched recipients. Transferred
643 cells were isolated from the spleen and liver 30 d p.i. **(E)** Experimental schematics. **(F)** Total
644 number of T_{CM}, T_{EM} and T_{RM} P14 cells generated from FcγRIIB⁻ and FcγRIIB⁺ precursors and **(G)**
645 Representative flow plots of CD69 and CD62L expression. **(H)** CD69 expression of FcγRIIB⁻ and
646 FcγRIIB⁺ T cell progeny in the liver 30 d p.i. **(I)** Proportion of T_{CM} or T_{EM} and T_{RM} cells formed
647 by FcγRIIB⁻ and FcγRIIB⁺ transferred cells. Data is pooled from 2 independent experiments with
648 n=5 mice each. In **(D)** symbols represent mean. In **(F, H, I)** symbols represent individual mice.
649 Bars represent mean. * p≤0.05, ** p≤ 0.01, *** p≤0.001, two-tailed Student's t test.

650

651 **Figure 4. T_{RM} cells share a common epigenetic signature across tissues. (A-G)** Congenically
652 marked naïve CD8⁺ P14 cells were transferred into C57Bl/6 naïve recipient mice followed by

653 LCMV Armstrong infection. P14 cells were flow sorted: from the liver at 7 d p.i., CD69- and
654 CD69⁺ at 14 d p.i. and T_{CM}, T_{EM} and T_{RM} from the spleen and liver at 30 d p.i. Congenically
655 marked naïve CD8⁺ gBT-I cells were transferred into C57Bl/6 naïve recipient mice followed by
656 HSV infection. gBT-I cells were flow sorted: from the axillary LN and from the skin
657 (CD69⁺CD103⁺) at 14 and 30 d p.i., and scATACseq was performed. **(A)** UMAP projection and
658 **(B)** Marker gene heatmap identifying genes that are uniquely accessible in each cluster; notable
659 marker genes for each cluster annotated manually. **(C)** Histogram distribution of cluster gene
660 scores for *Klf2*, *S1pr1*, *Xcl1* and *Cnh2*. **(D)** UpSet plot of shared peak sets in memory cells
661 compared to naïve cells. **(E)** Common genes with most peak changes in T_{RM} cells relative to naïve
662 cells. **(F)** Genome track of *Cish* in cluster aggregated scATAC-seq data (height normalized). **(G)**
663 HOMER motif enrichment analysis of shared T_{RM} cluster peaks.

664

665 **Figure 5. Tissue-specific epigenetic signatures depicts transcriptional regulators of T_{RM} cell**

666 **development.** **(A-C)** Congenically marked naïve CD8⁺ P14 cells were transferred into C57Bl/6

667 naïve recipient mice followed by LCMV Armstrong infection. P14 cells were flow sorted: from

668 the liver at 7 d p.i., CD69- and CD69⁺ at 14 d p.i. and T_{CM}, T_{EM} and T_{RM} from the spleen and liver

669 at 30 d p.i. Congenically marked naïve CD8⁺ gBT-I cells were transferred into C57Bl/6 naïve

670 recipient mice followed by HSV infection. gBT-I cells were flow sorted: from the axillary LN and

671 from the skin (CD69⁺CD103⁺) at 14 and 30 d p.i., and scATACseq was performed. **(A)**

672 Transcription factors enriched in significant T_{RM} cell motif deviations were selected and paired

673 with DEGs between skin and liver T_{RM} cells normalized to gene expression in T_{CM} cells from

674 GSE70813. **(B)** HOMER motif enrichment analysis of skin T_{RM} exclusive peaks. **(C)** FOSB, FOS,

675 FOSL1 and BACH2 motif deviations in indicated populations of memory T cells. **(D-H)** Distinct

676 congenically marked naïve CD8⁺ P14 cells were *in vitro* activated, and ablation of specific targets

677 was performed using CRISPR-Cas9. Cells were then transferred into LCMV infected recipients

678 that were treated with DNFB on the skin. Transferred cells were isolated from the spleen, liver and

679 skin 30 d p.i. **(D)** Experimental schematics. Log2 FC of cells edited with **(E)** sgFosb, **(F)** sgFos,

680 **(G)** sgFosl1 and **(H)** sgBach2 in the indicated tissues relative to sgCtrl normalized to the spleen.

681 Data is pooled from **(D-H)** 2 independent experiments with n=5-6 mice each. In **(E-H)** symbols

682 represent individual mice. Box plots show the median, interquartile range and minimum/maximum

683 whiskers. * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$, ns $p > 0.05$, One-way ANOVA with Bonferroni post-
684 test.

685

686 **Figure 6. TRM cells are epigenetically distinct from T_{EX} cells. (A, B)** Congenically marked naïve
687 CD8⁺ P14 cells were transferred into C57Bl/6 recipient mice followed by LCMV Armstrong or
688 LCMV Clone-13 infection. Congenically marked naïve gBT-I cells were transferred into C57Bl/6
689 recipient mice followed by HSV infection. Spleen, liver and skin of infected mice were harvested
690 at indicated timepoints for flow cytometry. **(A)** Experimental schematics and UMAP projection of
691 the indicated T cell populations in tissues based on flow cytometric analysis. **(B)** UMAP depicting
692 expression of indicated markers across clusters. **(C-L)** Congenically marked naïve CD8⁺ P14 or
693 gBT-I cells were transferred into C57Bl/6 recipient mice followed by LCMV Armstrong or HSV
694 infection respectively. A separate group of naïve C57Bl/6 mice were infected with LCMV Clone-
695 13. Total P14 cells were flow sorted from the liver at 7 d p.i., CD69⁺ at 14 d p.i. and TRM cells at
696 30 d p.i. gBT-I cells were flow sorted from the skin (CD69⁺CD103⁺) at 30 d p.i. Endogenous gp33⁺
697 cells were flow sorted from the spleen of Clone-13 infected mice at 8 and 21 d p.i. scATACseq
698 was performed in isolated populations. **(C)** Experimental schematic and UMAP projection based
699 on scATACseq analysis. **(D)** UMAP depicting relative gene accessibility (gene score) across
700 clusters. **(E)** Heatmap identifying peaks that are uniquely accessible in each cluster relative to all
701 clusters. **(F)** *Tox* and **(G)** *Tcf7* gene scores in TRM and T_{EX} clusters. **(H)** Venn diagram depicting
702 similar peaks with increased or decreased accessibility in TRM and T_{EX} cells and **(I)** specific peaks
703 shared with liver or skin TRM and T_{EX} cells. **(J)** *Pdcd1* genome tracks of cluster aggregated
704 scATAC-seq data (height normalized); peaks with qualitative height differences highlighted. **(K)**
705 UpSet plot of skin or **(L)** liver TRM cluster shared peak sets with exhausted T cell subsets compared
706 to effector T cells.

707 **Supplementary Figure legends**

708

709 **Figure S1 (Related to Figure 1). Epigenetic variation of memory T cell subsets following**
710 **LCMV infection. (A-H)** Congenically marked naïve CD8⁺ P14 cells were transferred into naïve
711 recipient mice followed by LCMV Armstrong infection. T_{CM} (CD62L⁺ CD69⁻), T_{EM} (CD62L⁻
712 CD69⁻) and T_{RM} (CD62L⁻CD69⁺) cells were flow sorted from the spleen and liver 30 d p.i. and
713 scATACseq was performed. **(A)** Summary of antigen expression among CD8⁺ T cell subsets for
714 each marker contained in the cell sort antibody panel. **(B)** Representative quality control plots. **(C)**
715 Cluster composition by sample identity based on CD8⁺ T cell subsets sorted. **(D)** Gene score
716 volcano plots identifying genes with different accessibility (\log_2 FC > 1, FDR > 10) between T_{EM}
717 and T_{CM} memory clusters; notable genes annotated manually. **(E)** Genome tracks of *S1pr5* and
718 *Zeb2* (height normalized). **(F)** BLIMP-1 motif deviation, **(G)** UMAP depicting relative gene
719 accessibility (gene score) across clusters and **(H)** cluster aggregated genome track of scATAC-seq
720 data (height normalized).

721

722 **Figure S2 (Related to Figure 2). Epigenetic and phenotypic variations drive development of**
723 **distinct memory T cell subsets. (A-D)** Congenically marked naïve CD8⁺ P14 cells were
724 transferred into naïve recipient mice followed by LCMV Armstrong infection. P14 cells were flow
725 sorted: from the liver at 7 d p.i., CD69- and CD69⁺ at 14 d p.i. and T_{CM}, T_{EM} and T_{RM} from the
726 spleen and liver at 30 d p.i. and scATACseq was performed. **(A)** Experimental schematics and
727 representative flow plots of sorted populations from the liver 14 d p.i. **(B)** Cluster composition by
728 sample identity. **(C)** Genome tracks of *Cxcr6* and *Sell* (height normalized). **(D)** *Cxcr6* and *Sell*
729 gene score over pseudotime for individual trajectories. **(E)** Flow cytometry analysis of CXCR6
730 and CD62L expression by CD8⁺ P14 cells after LCMV Armstrong infection at indicated time
731 points. **(F-I)** Control (sgCtrl) or *Hic1* (sgHic1) ablation was performed using CRISPR-Cas9 in
732 distinct congenically marked naïve CD8⁺ P14 cells. Cells were then transferred into LCMV
733 infected recipients and isolated from the spleen and liver 9 and 30 d p.i. **(F)** Experimental
734 schematics and **(G)** Log2 FC of sgHic1 and sgCtrl indicated cell subsets normalized to the spleen
735 at 9 d p.i. **(H-I)** Representative flow plots of transferred cells **(H)** in the spleen and liver 9 d p.i.
736 and **(I)** in the indicated subsets in the spleen 30 d p.i. Data is representative of **(E)** 2 independent
737 experiments with n=5 mice each and **(F-I)** 2 independent experiments with n=6-10 mice each. In

738 **(G)** symbols represent individual mice. Box plots show the median, interquartile range and
739 minimum/maximum whiskers. *** $p \leq 0.001$, One-way ANOVA with Bonferroni post-test.

740

741 **Figure S3 (Related to Figure 3). Fc γ RIIB expression reflects gene accessibility in T cell**
742 **subsets.** **(A)** Congenically marked naïve CD8 $^{+}$ P14 cells were transferred into naïve recipient mice
743 followed by LCMV Armstrong infection. P14 cells were flow sorted: from the liver at 7 d p.i.,
744 CD69 $^{-}$ and CD69 $^{+}$ at 14 d p.i. and T_{CM}, T_{EM} and T_{RM} from the spleen and liver at 30 d p.i. and
745 scATACseq was performed. Genome tracks of *Fcgr2b* (height normalized). **(B, C)** Congenically
746 marked naïve CD8 $^{+}$ P14 cells were transferred into naïve recipient mice followed by LCMV
747 Armstrong infection and isolated 30 days later from the spleen and liver. **(B)** Experimental
748 schematics and representative flow plots of CD69 and Fc γ RIIB expression in the spleen and liver.
749 **(C)** Fc γ RIIB expression by T_{CM}, T_{EM} and T_{RM} subsets. **(D)** Congenically marked naïve CD8 $^{+}$ P14
750 cells were transferred into naïve recipient mice followed by LCMV Armstrong infection. Fc γ RIIB $^{-}$
751 and Fc γ RIIB $^{+}$ effector P14 cells were flow sorted from the spleen at 7 d p.i. and transferred into
752 infection matched recipients. Transferred cells were isolated from the liver 30 d p.i. Experimental
753 schematics and Fc γ RIIB expression in isolated progeny. Data is pooled from 2 independent
754 experiments with $n=5$ mice each. In **(C, D)** symbols represent individual mice. Bars represent
755 mean. ** $p \leq 0.01$, *** $p \leq 0.001$, One-way ANOVA with Bonferroni post-test.

756

757 **Figure S4 (Related to Figure 4). T_{RM} cells display a conserved epigenetic profile across**
758 **tissues.** **(A-E)** Congenically marked naïve CD8 $^{+}$ P14 T cells were transferred into naïve recipient
759 mice followed by LCMV Armstrong infection. P14 T cells were flow sorted: from the liver at 7 d
760 p.i., CD69 $^{-}$ and CD69 $^{+}$ at 14 d p.i. and T_{CM}, T_{EM} and T_{RM} from the spleen and liver at 30 d p.i.
761 Congenically marked naïve CD8 $^{+}$ gBT-I T cells were transferred into naïve recipient mice
762 followed by HSV infection. gBT-I T cells were flow sorted: from the skin-draining (axillary) LN
763 and from the skin (CD69 $^{+}$ CD103 $^{+}$) at 14 and 30 d p.i., and scATACseq was performed. **(A)**
764 Experimental schematic and representative flow plots of sorted populations from skin and skin-
765 draining LN 14 and 30 d p.i. **(B)** Cluster composition by sample identity. **(C)** Dot plot depicting
766 liver and skin T_{RM} exclusive gene scores relative to naïve cells. **(D)** *Cish*, *Tnfrsf10* and *Bach2* gene
767 scores in individual indicated clusters. **(E)** Genes with significant gene score differences
768 exclusively in skin and liver T_{RM} cells relative to naïve.

769

770 **Figure S5 (Related to Figure 5). Epigenetic profile reveals tissue-exclusive pathways and**
771 **requirements for TRM cell development. (A, C, E, F)** Congenically marked naïve CD8⁺ P14 T
772 cells or gBT-I T cells were transferred into naïve recipient mice followed by LCMV Armstrong or
773 HSV infection, respectively. P14 TRM cells were flow sorted from the liver and gBT-I TRM cells
774 were flow sorted from the skin at 30 d p.i. scATACseq was performed in isolated populations.
775 Volcano plot depicting differences between skin and liver TRM cells exclusive gene peaks and gene
776 scores. **(A)** Volcano plot depicting differences between skin and liver TRM cells exclusive peaks
777 and gene scores. **(B)** Indicated genes log counts per million (logCPM) in skin and liver TRM cells
778 from GSE70813. **(C)** Pathway analysis of liver and skin TRM cell exclusive motifs enriched in the
779 2020 Molecular Signature Database (MSigDB). **(D)** Indicated genes log counts per million
780 (logCPM) in spleen TCM and TEM cells, liver TRM cells and skin TRM cells from GSE70813. **(E)**
781 Volcano plot depicting skin and liver TRM cell exclusive motifs. **(F)** FOSL2 motif deviation in
782 indicated populations of memory T cells. **(G-I)** Distinct congenically marked naïve CD8⁺ P14 cells
783 were *in vitro* activated, and ablation of specific targets was performed using CRISPR-Cas9. Cells
784 were then transferred into LCMV infected recipients that were treated with DNFB on the skin.
785 Transferred cells were isolated from the spleen, liver and skin 30 d p.i. **(G)** Representative flow
786 plots of sgFosb and sgCtrl transferred cells. **(H)** Log2 FC of sgFosl2 and sgCtrl cells. **(I)**
787 Representative flow plots of sgBach2 and sgCtrl transferred cells. Data is pooled from **(G-I)** 2
788 independent experiments with n=5-6 mice each. In **(G-I)** symbols represent individual mice. Box
789 plots show the median, interquartile range and minimum/maximum whiskers. * p≤ 0.05, ** p≤
790 0.01, *** p≤0.001, One-way ANOVA with Bonferroni post-test.
791

792

793 **Figure S6 (Related to Figure 6). TRM and TEX cell subsets are epigenetically distinct. (A, C)**
794 Congenically marked naïve CD8⁺ P14 cells were transferred into recipient mice followed by
795 LCMV Armstrong or LCMV Clone-13 infection. Congenically marked naïve gBT-I cells were
796 transferred into recipient mice followed by HSV infection. Spleen, liver and skin of infected mice
797 were harvested at indicated timepoints for flow cytometry. **(A)** Summary of the antibody panel
798 utilized for clustering CD8⁺ T cell subsets in Fig. 6a. **(B, D, E)** Congenically marked naïve CD8⁺
799 P14 cells were transferred into recipient mice followed by LCMV Armstrong. Congenically
marked naïve gBT-I cells were transferred into recipient mice followed by HSV infection. Naïve

800 mice were infected with LCMV Clone-13. Endogenous gp33⁺ cells were flow sorted from the
801 spleen at 8 and 21 d p.i. scATACseq was performed in isolated populations. **(B)** Cluster
802 composition by sample identity. **(C)** Shown is TOX expression in T cell clusters. **(D)** *Tcf7*, *Irf4*,
803 *Runx3* and *Eomes* motif deviation in indicated T cell clusters. **(E)** Gene assignment of peaks with
804 increased accessibility in both T_{RM} and T_{EX} cell subsets relative to Arm T_{EFF} cells.
805

806 **Material and Methods**

807

808 **Mice.** C57BL/6, gBT-I.CD45.1. P14.CD45.1 and P14.CD45.1.2 mice were bred in the Department
809 of Microbiology and Immunology at the University of Melbourne. Six- to eight-week-old
810 C56BL/6 were used for experiments. All experiments were approved by the University of
811 Melbourne Animal Ethics Committee.

812

813 **Adoptive cell transfers, infections and DNFB treatment.** For naïve transgenic T cell transfers,
814 cells were isolated from lymph nodes and spleen and transferred intravenously (i.v.) to C57BL/6
815 mice at 5×10^4 cells per recipient. Skin infections were done by skin scarification with
816 1×10^6 plaque-forming units (PFU) of HSV-1 KOS as described⁸¹. LCMV Armstrong infections
817 were done by intraperitoneal injection of 2×10^5 PFU to establish acute infections. LCMV Clone-
818 13 experiments were done by i.v. injection of 1×10^6 PFU to establish chronic infections. For
819 treatment with 1-Fluoro-2,4-dinitrobenzene (DNFB), mice were shaved and depilated before
820 treatment with 15 μ l of DNFB (Sigma-Aldrich) diluted at 0.25% in acetone:oil (4:1) on the skin
821 as described(Mackay et al., 2012b) or on the ears 3 d after LCMV infection.

822

823 **Organ processing, flow cytometry, and cell sorting.** Spleens were processed through metal
824 meshes into single-cell suspensions followed by red blood cell lysis. Skin samples were excised
825 and incubated at 37°C for 90 min in dispase (2.5 mg/ml; Roche) or in liberase (0.25 mg/ml; Sigma)
826 followed by separation of epidermis and dermis. Chopped samples were incubated at 37°C for 30
827 min in collagenase III (3 mg/ml; Worthington). Liver samples were excised and meshed into
828 single-cell suspensions through 70 μ m meshes. Leukocytes were isolated using Percoll (35%;
829 Sigma Aldrich). Single cell suspensions were stained with conjugated antibodies for flow
830 cytometry or cell sorting. For intracellular staining of cytokines and transcription factors, cells
831 were fixed and permeabilized using the Foxp3 Transcription factor Staining buffer set (Invitrogen)
832 as per manufacturer's instructions. The following antibodies from BD Biosciences, Biolegend,
833 Cell signalling or Thermo Fisher Scientific were used: anti-CD45.1 (A20), anti-CD45.2 (104),
834 anti-CD8 α (53-6.7), anti-CD8 β (YTS1 56.7.7), anti-CD3 (500A2), anti-V α 2 (B20.1), anti-CD44
835 (IM7), anti-CD127 (A7R34), anti-CXCR6 (SA051D1), anti-CX3CR1 (SA011F11), anti-CD62L
836 (MEL-14), anti-CD69 (H1.2F3), anti-CD103 (2E7), anti-PD-1 (29F.1A12), anti-Ly6C (HK1.4),

837 anti-TCR β (H57-597), anti-TIM-3 (RMT3-23), anti-CD43 (1B11), anti-Ly108 (330-AJ), anti-
838 CD38 (90), anti-CD49a (HMa1), anti-CD32b (AT130-2), anti-gp33 tetramer, anti-TOX
839 (TXRX10), anti-TCF7 (C63D9), anti-MHC-II (M5/114.15.2), anti-CD73 (TY/11.8), anti-LAG3
840 (C9B7W), anti-KLRG1 (2F1). Cell viability was determined using Ghost Dye Red 780 (Tonbo
841 Biosciences). Flow cytometry was performed on a LSRFortessa (BD Biosciences) or an Aurora
842 (Cytek) and analyzed with FlowJo software (TreeStar) or Omiq. For cell sorting experiments, P14
843 and gBT-I cells were isolated from the spleen, liver and skin as indicated and sorted using a
844 FACSaria III (BD Biosciences).

845
846 **CRISPR-Cas9 Gene Editing of CD8 $^{+}$ T cells.** Single guide RNA (sgRNA) targeting: *CD19* (5'-
847 AAUGUCUCAGACCAUAUGGG-3'), *Hic1* (5'-AGUGUGCGGAAAGCGCGGAG-3', 5'-
848 CUUGUGCGACGUGAUCAUCG-3'), *Fos* (5'-TGTCAACCGTGGGGATAAAGTTGG-3', 5'-
849 GGTCTGCGATGGGGCACGGAGG-3'), *Fosb* (5'-AGACAGGTACTGAGACTCGGCCGG-
850 3', 5'-GTTGACCCCTTATGACATGCCAGG-3'), *Fosl1* (5'-
851 GGAACCGGGACCGAGCTCCGGGG-3', 5'-GCTGCGCGGGCGACCGTACGGG-3'),
852 *Fosl2* (5'-GACGAGGTGTCAAAGTTCCCAGG-3', 5'-GGACATGGAGGTGATCACTGTGG-
853 3'), *Bach2* (5'-TGCAGGAACTCAGCACAGCGG-3', 5'-
854 GATGTTGGCACAGTGGACTGTGG-3') were purchased from Synthego (CRISPRRevolution
855 sgRNA EZ Kit). sgRNA/Cas9 RNPs were formed by incubating 0.3nmol of sgRNA with 0.6 ml
856 Alt-R S.p. Cas9 nuclease V3 (10 mg/ml; Integrated DNA Technologies) for 10 min at room
857 temperature. P14 cells were *in vitro* activated with anti-CD3 and anti-CD28 (5 μ g/ml) for 24 hours.
858 *In vitro* activated or naïve P14 cells were resuspended in 20 μ l of P3 (P3 Primary Cell 4D-
859 Nucleofector X Kit; Lonza), mixed with sgRNA/Cas9 RNP and electroporated using a Lonza 4D-
860 Nucleofector system (CM137) as previously described (Nüssing et al., 2020). Cells were expanded
861 for 72 hours in the presence of IL-2 (25U/ml; Peprotech). Naïve and *in vitro* activated edited cells
862 were mixed at a 1:1 ratio and 5×10^5 cells were transferred i.v. into LCMV-infected recipients.

863
864 **scATAC-seq library preparation and sequencing.** Sorted T cell populations were thawed, then
865 subjected to the 10x Chromium scATAC protocol (<https://support.10xgenomics.com/single-cell-atac>). In short, nuclei were isolated and partitioned into gel-bead emulsions that allow barcoded
866 transposition to happen at single cell scale. Following transposition, the emulsions were broken,

868 the product was cleaned and libraries were prepared for Illumina sequencing. Libraries were
869 sequenced on the Illumina HiSeq 4000.

870
871 **scATAC-seq computational analysis.** Fastq files were trimmed, aligned to the mm10 reference
872 genome, and deduplicated using the 10X genomics cellranger-atac count pipeline. Fragments files
873 for each sample, containing the unique aligned reads passing filter for each cell barcode, were then
874 loaded into ArchR for downstream analysis (Granja et al., 2021). Doublet identification and
875 removal, cell calling, clustering, peak calling, and motif analysis was performed using the default
876 ArchR workflow. After initial clustering, there was often a small cluster of contaminating non-T
877 cells -- these were manually identified, removed, and the remaining cells were reclustered
878 following the same procedure. Marker features were identified using Archr `getMarkerFeatures`.
879 GeneScore visualizations were performed using the ArchR implementation of Magic imputation.
880 Motifs enriched in specific peak sets were analyzed using the HOMER (Heinz et al., 2010)
881 `findMotifsGenome.pl` utility. For these analyses, the indicated peak set was compared to a
882 background peak set consisting of the ArchR union peak set for that group of samples. Therefore,
883 the motifs identified represent motifs enriched relative to the rest of the peaks in these samples,
884 rather than motifs enriched in, for example, T cells in general.

885
886 **RNA-Seq Analysis.** For TF expression analysis, previously generated RNA-seq count matrixes
887 were analyzed using DESeq2 (Love et al., 2014) using the default parameters. TRM samples were
888 compared to their respective TCIRC populations using the ‘results’ function with $\alpha=0.05$.

889
890 **Statistical analysis.** Statistical analyses were performed by one- or two-way analysis of variance
891 (ANOVA) test followed by Bonferroni’s post-test or by two-tailed Student’s *t* test using Prism 9
892 (GraphPad) as indicated in figure legends. *P* values were represented by * $p < 0.05$; ** $p < 0.01$;
893 *** $p < 0.001$; **** $p < 0.0001$; ns (not significant) $p > 0.05$. Results represent means \pm SEM.

894
895 **Data availability.** All original data is available from the corresponding author upon reasonable
896 request. Sequencing data is available in the Gene Expression Omnibus database under accession
897 code GSE199799. Source Data are provided in the online version of the manuscript. Code
898 available upon request.

899 **References**

900 Akondy, R.S., Fitch, M., Edupuganti, S., Yang, S., Kissick, H.T., Li, K.W., Youngblood, B.A.,
901 Abdelsamed, H.A., McGuire, D.J., Cohen, K.W., et al. (2017). Origin and differentiation of
902 human memory CD8 T cells after vaccination. *Nature* *552*, 362–367.

903 Araki, K., Turner, A.P., Shaffer, V.O., Gangappa, S., Keller, S.A., Bachmann, M.F., Larsen,
904 C.P., and Ahmed, R. (2009). mTOR regulates memory CD8 T-cell differentiation. *Nature* *460*,
905 108–112.

906 Becht, E., McInnes, L., Healy, J., Dutertre, C.A., Kwok, I.W.H., Ng, L.G., Ginhoux, F., and
907 Newell, E.W. (2019). Dimensionality reduction for visualizing single-cell data using UMAP.
908 *Nat. Biotechnol.* *37*, 38–47.

909 Behr, F.M., Parga-Vidal, L., Kragten, N.A.M., van Dam, T.J.P., Wesselink, T.H., Sheridan, B.S.,
910 Arens, R., van Lier, R.A.W., Stark, R., and van Gisbergen, K.P.J.M. (2020). Tissue-resident
911 memory CD8+ T cells shape local and systemic secondary T cell responses. *Nat. Immunol.*
912 Beura, L.K., Wijeyesinghe, S., Thompson, E.A., Macchietto, M.G., Rosato, P.C., Pierson, M.J.,
913 Schenkel, J.M., Mitchell, J.S., Vezys, V., Fife, B.T., et al. (2018). T Cells in Nonlymphoid
914 Tissues Give Rise to Lymph-Node-Resident Memory T Cells. *Immunity* *48*, 327-338.e5.

915 Blank, C.U., Haining, W.N., Held, W., Hogan, P.G., Kallies, A., Lugli, E., Lynn, R.C., Philip,
916 M., Rao, A., Restifo, N.P., et al. (2019). Defining ‘T cell exhaustion.’ *Nat. Rev. Immunol.* *19*,
917 665–674.

918 Burrows, K., Antignano, F., Bramhall, M., Chenery, A., Scheer, S., Korinek, V., Underhill,
919 T.M., and Zaph, C. (2017). The transcriptional repressor HIC1 regulates intestinal immune
920 homeostasis. *Mucosal Immunol.* *10*, 1518–1528.

921 Christo, S.N., Evrard, M., Park, S.L., Gandolfo, L.C., Burn, T.N., Fonseca, R., Newman, D.M.,
922 Alexandre, Y.O., Collins, N., Zamudio, N.M., et al. (2021). Discrete tissue microenvironments
923 instruct diversity in resident memory T cell function and plasticity. *Nat. Immunol.* *22*.

924 Cusanovich, D.A., Daza, R., Adey, A., Pliner, H.A., Christiansen, L., Gunderson, K.L.,
925 Steemers, F.J., Trapnell, C., and Shendure, J. (2015). Multiplex single-cell profiling of chromatin
926 accessibility by combinatorial cellular indexing. *Science* (80-.). *348*, 910–914.

927 Daniel, B., Yost, K.E., Sandor, K., Xia, Y., Qi, Y., Hiam-Galvez, K.J., Meier, S.L., Belk, J.A.,
928 Giles, J.R., Wherry, E.J., et al. (2021). Divergent clonal differentiation trajectories of T cell
929 exhaustion. *BioRxiv* *2021.12.16.472900*.

930 Djenidi, F., Adam, J., Goubar, A., Durgeau, A., Meurice, G., de Montpréville, V., Validire, P.,
931 Besse, B., and Mami-Chouaib, F. (2015). CD8 + CD103 + Tumor–Infiltrating Lymphocytes Are
932 Tumor-Specific Tissue-Resident Memory T Cells and a Prognostic Factor for Survival in Lung
933 Cancer Patients . *J. Immunol.* *194*, 3475–3486.

934 Evrard, M., Wynne-Jones, E., Peng, C., Kato, Y., Christo, S.N., Fonseca, R., Park, S.L., Burn,
935 T.N., Osman, M., Devi, S., et al. (2022). Sphingosine 1-phosphate receptor 5 (S1PR5) regulates
936 the peripheral retention of tissue-resident lymphocytes. *J. Exp. Med.* *219*.

937 Fernandez-Ruiz, D., Ng, W.Y., Holz, L.E., Ma, J.Z., Zaid, A., Wong, Y.C., Lau, L.S., Mollard,
938 V., Cozijnsen, A., Collins, N., et al. (2016). Liver-Resident Memory CD8+ T Cells Form a
939 Front-Line Defense against Malaria Liver-Stage Infection. *Immunity* *45*, 889–902.

940 Fonseca, R., Beura, L.K., Quarnstrom, C.F., Ghoneim, H.E., Fan, Y., Zebley, C.C., Scott, M.C.,
941 Fares-Frederickson, N.J., Wijeyesinghe, S., Thompson, E.A., et al. (2020). Developmental
942 plasticity allows outside-in immune responses by resident memory T cells. *Nat. Immunol.* *21*,
943 412–421.

944 Frizzell, H., Fonseca, R., Christo, S.N., Evrard, M., Cruz-Gomez, S., Zanluqui, N.G., von
945 Scheidt, B., Freestone, D., Park, S.L., McWilliam, H.E.G., et al. (2020). Organ-specific isoform
946 selection of fatty acid-binding proteins in tissue-resident lymphocytes. *Sci. Immunol.* *5*.

947 Gattinoni, L., Zhong, X.S., Palmer, D.C., Ji, Y., Hinrichs, C.S., Yu, Z., Wrzesinski, C., Boni, A.,
948 Cassard, L., Garvin, L.M., et al. (2009). Wnt signaling arrests effector T cell differentiation and
949 generates CD8 + memory stem cells. *Nat. Med.* *15*, 808–813.

950 Gerlach, C., Moseman, E.A., Loughhead, S.M., Alvarez, D., Zwijnenburg, A.J., Waanders, L.,
951 Garg, R., de la Torre, J.C., and von Andrian, U.H. (2016). The Chemokine Receptor CX3CR1
952 Defines Three Antigen-Experienced CD8 T Cell Subsets with Distinct Roles in Immune
953 Surveillance and Homeostasis. *Immunity* *45*, 1270–1284.

954 Granja, J.M., Corces, M.R., Pierce, S.E., Bagdatli, S.T., Choudhry, H., Chang, H.Y., and
955 Greenleaf, W.J. (2021). ArchR is a scalable software package for integrative single-cell
956 chromatin accessibility analysis. *Nat. Genet.* *53*, 403–411.

957 Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C.,
958 Singh, H., and Glass, C.K. (2010). Simple Combinations of Lineage-Determining Transcription
959 Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. *Mol.*
960 *Cell* *38*, 576–589.

961 Herndler-Brandstetter, D., Ishigame, H., Shinnakasu, R., Plajer, V., Stecher, C., Zhao, J.,
962 Lietzenmayer, M., Kroehling, L., Takumi, A., Kometani, K., et al. (2018). KLRG1+ Effector
963 CD8+ T Cells Lose KLRG1, Differentiate into All Memory T Cell Lineages, and Convey
964 Enhanced Protective Immunity. *Immunity* 48, 716-729.e8.

965 Hirai, T., Yang, Y., Zenke, Y., Li, H., Chaudhri, V.K., De La Cruz Diaz, J.S., Zhou, P.Y.,
966 Nguyen, B.A.T., Bartholin, L., Workman, C.J., et al. (2020). Competition for Active TGF β
967 Cytokine Allows for Selective Retention of Antigen-Specific Tissue- Resident Memory T Cells
968 in the Epidermal Niche. *Immunity* 54, 84-98.e5.

969 Holz, L.E., Chua, Y.C., de Menezes, M.N., Anderson, R.J., Draper, S.L., Compton, B.J., Chan,
970 S.T.S., Mathew, J., Li, J., Kedzierski, L., et al. (2020). Glycolipid-peptide vaccination induces
971 liver-resident memory CD8+ T cells that protect against rodent malaria. *Sci. Immunol.* 5, 1–14.

972 Im, S.J., Hashimoto, M., Gerner, M.Y., Lee, J., Kissick, H.T., Burger, M.C., Shan, Q., Hale, J.S.,
973 Lee, J., Nasti, T.H., et al. (2016). Defining CD8 + T cells that provide the proliferative burst after
974 PD-1 therapy. *Nature* 537, 417–421.

975 Jameson, S.C., and Masopust, D. (2009). Diversity in T Cell Memory: An Embarrassment of
976 Riches. *Immunity* 31, 859–871.

977 Jeannet, G., Boudousquié, C., Gardiol, N., Kang, J., Huelsken, J., and Held, W. (2010). Essential
978 role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory.
979 *Proc. Natl. Acad. Sci. U. S. A.* 107, 9777–9782.

980 Joshi, N.S., Cui, W., Chandele, A., Lee, H.K., Urso, D.R., Hagman, J., Gapin, L., and Kaech,
981 S.M. (2007). Inflammation Directs Memory Precursor and Short-Lived Effector CD8+ T Cell
982 Fates via the Graded Expression of T-bet Transcription Factor. *Immunity* 27, 281–295.

983 Kaech, S.M., and Cui, W. (2012). Transcriptional control of effector and memory CD8+ T cell
984 differentiation. *Nat. Rev. Immunol.* 12, 749–761.

985 Kallies, A., Xin, A., Belz, G.T., and Nutt, S.L. (2009). Blimp-1 Transcription Factor Is Required
986 for the Differentiation of Effector CD8+ T Cells and Memory Responses. *Immunity* 31, 283–
987 295.

988 Kok, L., Dijkgraaf, F.E., Urbanus, J., Bresser, K., Vredevoogd, D.W., Cardoso, R.F., Perié, L.,
989 Beltman, J.B., and Schumacher, T.N. (2020). A committed tissue-resident memory T cell
990 precursor within the circulating CD8+ effector T cell pool. *J. Exp. Med.* 217.

991 Kok, L., Masopust, D., and Schumacher, T.N. (2021). The precursors of CD8+ tissue resident

992 memory T cells: from lymphoid organs to infected tissues. *Nat. Rev. Immunol.* *0123456789*.

993 Kumar, B. V., Ma, W., Miron, M., Granot, T., Guyer, R.S., Carpenter, D.J., Senda, T., Sun, X.,

994 Ho, S.H., Lerner, H., et al. (2017). Human Tissue-Resident Memory T Cells Are Defined by

995 Core Transcriptional and Functional Signatures in Lymphoid and Mucosal Sites. *Cell Rep.* *20*,

996 2921–2934.

997 Kurd, N.S., He, Z., Louis, T.L., Milner, J.J., Omilusik, K.D., Jin, W., Tsai, M.S., Widjaja, C.E.,

998 Kanbar, J.N., Olvera, J.G., et al. (2020). Early precursors and molecular determinants of tissue-

999 resident memory CD8+ T lymphocytes revealed by single-cell RNA sequencing. *Sci. Immunol.*

1000 *5*, eaaz6894.

1001 Laidlaw, B.J., Zhang, N., Marshall, H.D., Staron, M.M., Guan, T., Hu, Y., Cauley, L.S., Craft, J.,

1002 and Kaech, S.M. (2014). CD4+ T Cell Help Guides Formation of CD103+ Lung-Resident

1003 Memory CD8+ T Cells during Influenza Viral Infection. *Immunity* *41*, 633–645.

1004 Lareau, C.A., Duarte, F.M., Chew, J.G., Kartha, V.K., Burkett, Z.D., Kohlway, A.S., Pokholok,

1005 D., Aryee, M.J., Steemers, F.J., Lebofsky, R., et al. (2019). Droplet-based combinatorial

1006 indexing for massive-scale single-cell chromatin accessibility. *Nat. Biotechnol.* *37*, 916–924.

1007 Li, C., Zhu, B., Son, Y.M., Wang, Z., Jiang, L., Xiang, M., Ye, Z., Beckermann, K.E., Wu, Y.,

1008 Jenkins, J.W., et al. (2019). The Transcription Factor Blh40 Programs Mitochondrial

1009 Regulation of Resident CD8+ T Cell Fitness and Functionality. *Immunity* *51*, 491–507.e7.

1010 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and

1011 dispersion for RNA-seq data with DESeq2. *Genome Biol.* *15*, 1–21.

1012 Mackay, L.K., Wakim, L., van Vliet, C.J., Jones, C.M., Mueller, S.N., Bannard, O., Fearon,

1013 D.T., Heath, W.R., and Carbone, F.R. (2012a). Maintenance of T Cell Function in the Face of

1014 Chronic Antigen Stimulation and Repeated Reactivation for a Latent Virus Infection. *J.*

1015 *Immunol.* *188*, 2173–2178.

1016 Mackay, L.K., Stock, A.T., Ma, J.Z., Jones, C.M., Kent, S.J., Mueller, S.N., Heath, W.R.,

1017 Carbone, F.R., and Gebhardt, T. (2012b). Long-lived epithelial immunity by tissue-resident

1018 memory T (TRM) cells in the absence of persisting local antigen presentation. *Proc. Natl. Acad.*

1019 *Sci. U. S. A.* *109*, 7037–7042.

1020 Mackay, L.K., Rahimpour, A., Ma, J.Z., Collins, N., Stock, A.T., Hafon, M.L., Vega-Ramos, J.,

1021 Lauzurica, P., Mueller, S.N., Stefanovic, T., et al. (2013). The developmental pathway for

1022 CD103+ CD8+ tissue-resident memory T cells of skin. *Nat. Immunol.* *14*, 1294–1301.

1023 Mackay, L.K., Wynne-Jones, E., Freestone, D., Pellicci, D.G., Mielke, L.A., Newman, D.M.,
1024 Braun, A., Masson, F., Kallies, A., Belz, G.T., et al. (2015). T-box Transcription Factors
1025 Combine with the Cytokines TGF- β and IL-15 to Control Tissue-Resident Memory T Cell Fate.
1026 *Immunity* 43, 1101–1111.

1027 Mackay, L.K., Minnich, M., Kragten, N.A.M., Liao, Y., Nota, B., Seillet, C., Zaid, A., Man, K.,
1028 Preston, S., Freestone, D., et al. (2016). Hobit and Blimp1 instruct a universal transcriptional
1029 program of tissue residency in lymphocytes. *Science* (80-). 352, 459–463.

1030 Malik, B.T., Byrne, K.T., Vella, J.L., Zhang, P., Shabaneh, T.B., Steinberg, S.M., Molodtsov,
1031 A.K., Bowers, J.S., Angeles, C. V., Paulos, C.M., et al. (2017). Resident memory T cells in the
1032 skin mediate durable immunity to melanoma. *Sci. Immunol.* 2, 1–12.

1033 Mani, V., Bromley, S.K., Äijö, T., Mora-Buch, R., Carrizosa, E., Warner, R.D., Hamze, M., Sen,
1034 D.R., Chasse, A.Y., Lorant, A., et al. (2019). Migratory DCs activate TGF- β to precondition
1035 naïve CD8+ T cells for tissue-resident memory fate. *Science* (80-). 366, eaav5728.

1036 Masopust, D., and Soerens, A.G. (2019). Tissue-Resident T Cells and Other Resident
1037 Leukocytes. *Annu. Rev. Immunol.* 37, 521–546.

1038 Masopust, D., Choo, D., Vezys, V., Wherry, E.J., Duraiswamy, J., Akondy, R., Wang, J., Casey,
1039 K.A., Barber, D.L., Kawamura, K.S., et al. (2010). Dynamic T cell migration program provides
1040 resident memory within intestinal epithelium. *J. Exp. Med.* 207, 553–564.

1041 McCully, M.L., Ladell, K., Andrews, R., Jones, R.E., Miners, K.L., Roger, L., Baird, D.M.,
1042 Cameron, M.J., Jessop, Z.M., Whitaker, I.S., et al. (2018). CCR8 Expression Defines Tissue-
1043 Resident Memory T Cells in Human Skin. *J. Immunol.* ji1701377.

1044 McLane, L.M., Abdel-Hakeem, M.S., and Wherry, E.J. (2019). CD8 T Cell Exhaustion During
1045 Chronic Viral Infection and Cancer. *Annu. Rev. Immunol.* 37, 457–495.

1046 Miller, B.C., Sen, D.R., Al Abosy, R., Bi, K., Virkud, Y. V., LaFleur, M.W., Yates, K.B., Lako,
1047 A., Felt, K., Naik, G.S., et al. (2019). Subsets of exhausted CD8+ T cells differentially mediate
1048 tumor control and respond to checkpoint blockade. *Nat. Immunol.* 20, 326–336.

1049 Milner, J.J., and Goldrath, A.W. (2018). Transcriptional programming of tissue-resident memory
1050 CD8+ T cells. *Curr. Opin. Immunol.* 51, 162–169.

1051 Milner, J.J., Toma, C., Yu, B., Zhang, K., Omilusik, K., Phan, A.T., Wang, D., Getzler, A.J.,
1052 Nguyen, T., Crotty, S., et al. (2017). Runx3 programs CD8+ T cell residency in non-lymphoid
1053 tissues and tumours. *Nature* 552, 253–257.

1054 Milner, J.J., Toma, C., He, Z., Kurd, N.S., Nguyen, Q.P., McDonald, B., Quezada, L., Widjaja,
1055 C.E., Witherden, D.A., Crowl, J.T., et al. (2020). Heterogenous Populations of Tissue-Resident
1056 CD8+ T Cells Are Generated in Response to Infection and Malignancy. *Immunity* 52, 808-
1057 824.e7.

1058 Morris, A.B., Farley, C.R., Pinelli, D.F., Adams, L.E., Cragg, M.S., Boss, J.M., Scharer, C.D.,
1059 Fribourg, M., Cravedi, P., Heeger, P.S., et al. (2020). Signaling through the Inhibitory Fc
1060 Receptor Fc γ RIIB Induces CD8+ T Cell Apoptosis to Limit T Cell Immunity. *Immunity* 52, 136-
1061 150.e6.

1062 Nizard, M., Roussel, H., Diniz, M.O., Karaki, S., Tran, T., Voron, T., Dransart, E., Sandoval, F.,
1063 Riquet, M., Rance, B., et al. (2017). Induction of resident memory T cells enhances the efficacy
1064 of cancer vaccine. *Nat. Commun.* 8.

1065 Nüssing, S., House, I.G., Kearney, C.J., Chen, A.X.Y., Vervoort, S.J., Beavis, P.A., Oliaro, J.,
1066 Johnstone, R.W., Trapani, J.A., and Parish, I.A. (2020). Efficient CRISPR/Cas9 Gene Editing in
1067 Uncultured Naive Mouse T Cells for In Vivo Studies. *J. Immunol.* 204, 2308–2315.

1068 Okla, K., Farber, D.L., and Zou, W. (2021). Tissue-resident memory T cells in tumor immunity
1069 and immunotherapy. *J. Exp. Med.* 218, 1–14.

1070 Paley, M.A., Kroy, D.C., Odorizzi, P.M., Johnnidis, J.B., Dolfi, D. V., Barnett, B.E., Bikoff,
1071 E.K., Robertson, E.J., Lauer, G.M., Reiner, S.L., et al. (2012). Progenitor and terminal subsets of
1072 CD8+ T cells cooperate to contain chronic viral infection. *Science* (80-). 338, 1220–1225.

1073 Palmer, D.C., Guittard, G.C., Franco, Z., Crompton, J.G., Eil, R.L., Patel, S.J., Ji, Y., Van
1074 Panhuys, N., Klebanoff, C.A., Sukumar, M., et al. (2015). Cish actively silences TCR signaling
1075 in CD8+ T cells to maintain tumor tolerance. *J. Exp. Med.* 212, 2095–2113.

1076 Park, S.L., Buzzai, A., Rautela, J., Hor, J.L., Hochheiser, K., Effern, M., McBain, N., Wagner,
1077 T., Edwards, J., McConville, R., et al. (2019). Tissue-resident memory CD8+ T cells promote
1078 melanoma–immune equilibrium in skin. *Nature* 565, 366–371.

1079 Pauken, K.E., Odorizzi, P.M., Manne, S., Khan, O., Chen, Z., Kurachi, M., Bartman, C.,
1080 Bengsch, B., Wherry, E.J., Sammons, M.A., et al. (2016). Epigenetic stability of exhausted T
1081 cells limits durability of reinvigoration by PD-1 blockade. *Science* (80-). 354, 1160–1165.

1082 Pereira, B.I., De Maeyer, R.P.H., Covre, L.P., Nehar-Belaid, D., Lanna, A., Ward, S., Marches,
1083 R., Chambers, E.S., Gomes, D.C.O., Riddell, N.E., et al. (2020). Sestrins induce natural killer
1084 function in senescent-like CD8+ T cells. *Nat. Immunol.* 21, 684–694.

1085 Pinte, S., Stankovic-Valentin, N., Beltour, S., Rood, B.R., Guérardel, C., and Leprince, D.
1086 (2004). The tumor suppressor gene HIC1 (hypermethylated in cancer 1) is a sequence-specific
1087 transcriptional repressor: Definition of its consensus binding sequence and analysis of its DNA
1088 binding and repressive properties. *J. Biol. Chem.* *279*, 38313–38324.

1089 Pliner, H.A., Packer, J.S., McFaline-Figueroa, J.L., Cusanovich, D.A., Daza, R.M., Aghamirzaie,
1090 D., Srivatsan, S., Qiu, X., Jackson, D., Minkina, A., et al. (2018). Cicero Predicts cis-Regulatory
1091 DNA Interactions from Single-Cell Chromatin Accessibility Data. *Mol. Cell* *71*, 858–871.e8.

1092 Raju, S., Xia, Y., Daniel, B., Yost, K.E., Bradshaw, E., Tonc, E., Verbaro, D.J., Kometani, K.,
1093 Yokoyama, W.M., Kurosaki, T., et al. (2021). Identification of a T-bet hi Quiescent Exhausted
1094 CD8 T Cell Subpopulation That Can Differentiate into TIM3 + CX3CR1 + Effectors and
1095 Memory-like Cells. *J. Immunol.* *206*, 2924–2936.

1096 Roychoudhuri, R., Clever, D., Li, P., Wakabayashi, Y., Quinn, K.M., Klebanoff, C.A., Ji, Y.,
1097 Sukumar, M., Eil, R.L., Yu, Z., et al. (2016). BACH2 regulates CD8 + T cell differentiation by
1098 controlling access of AP-1 factors to enhancers. *Nat. Immunol.* *17*, 851–860.

1099 Rutishauser, R.L., Martins, G.A., Kalachikov, S., Chandele, A., Parish, I.A., Meffre, E., Jacob,
1100 J., Calame, K., and Kaech, S.M. (2009). Transcriptional Repressor Blimp-1 Promotes CD8+ T
1101 Cell Terminal Differentiation and Represses the Acquisition of Central Memory T Cell
1102 Properties. *Immunity* *31*, 296–308.

1103 Sallusto, F., Lenig, D., Förster, R., Lipp, M., and Lanzavecchia, A. (1999). Two subsets of
1104 memory T lymphocytes with distinct homing potential and effector functions. *Nature* *401*, 708–
1105 712.

1106 Sarkar, S., Kalia, V., Haining, W.N., Konieczny, B.T., Subramaniam, S., and Ahmed, R. (2008).
1107 Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. *J.*
1108 *Exp. Med.* *205*, 625–640.

1109 Satpathy, A.T., Granja, J.M., Yost, K.E., Qi, Y., Meschi, F., McDermott, G.P., Olsen, B.N.,
1110 Mumbach, M.R., Pierce, S.E., Corces, M.R., et al. (2019). Massively parallel single-cell
1111 chromatin landscapes of human immune cell development and intratumoral T cell exhaustion.
1112 *Nat. Biotechnol.* *37*, 925–936.

1113 Savas, P., Virassamy, B., Ye, C., Salim, A., Mintoff, C.P., Caramia, F., Salgado, R., Byrne, D.J.,
1114 Teo, Z.L., Dushyanthen, S., et al. (2018). Single-cell profiling of breast cancer T cells reveals a
1115 tissue-resident memory subset associated with improved prognosis. *Nat. Med.* *24*, 986–993.

1116 Scharer, C.D., Barwick, B.G., Youngblood, B.A., Ahmed, R., and Boss, J.M. (2013). Global
1117 DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function. *J. Immunol.* *191*,
1118 3419–3429.

1119 Sen, D.R., Kaminski, J., Barnitz, R.A., Kurachi, M., Gerdemann, U., Yates, K.B., Tsao, H.W.,
1120 Godec, J., LaFleur, M.W., Brown, F.D., et al. (2016). The epigenetic landscape of T cell
1121 exhaustion. *Science* (80-). *354*, 1165–1169.

1122 Skon, C.N., Lee, J.Y., Anderson, K.G., Masopust, D., Hogquist, K.A., and Jameson, S.C. (2013).
1123 Transcriptional downregulation of S1pr1 is required for the establishment of resident memory
1124 CD8+ T cells. *Nat. Immunol.* *14*, 1285–1293.

1125 Solouki, S., Huang, W., Elmore, J., Limper, C., Huang, F., and August, A. (2020). TCR Signal
1126 Strength and Antigen Affinity Regulate CD8 + Memory T Cells . *J. Immunol.* *ji1901167*.

1127 Starbeck-Miller, G.R., Badovinac, V.P., Barber, D.L., and Harty, J.T. (2014). Cutting Edge:
1128 Expression of Fc γ RIIB Tempers Memory CD8 T Cell Function In Vivo. *J. Immunol.* *192*, 35–
1129 39.

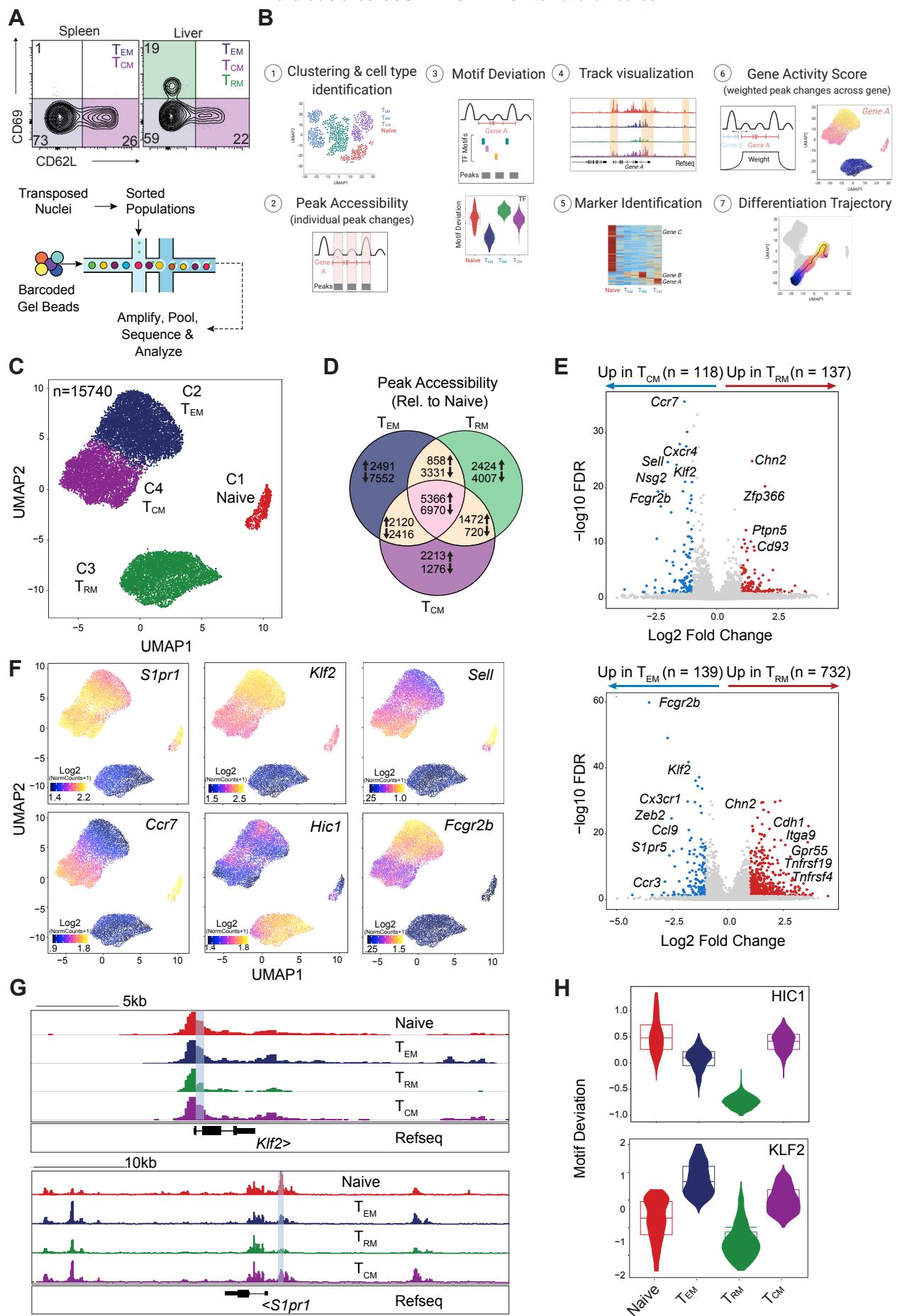
1130 Stark, R., Wesselink, T.H., Behr, F.M., Kragten, N.A.M., Arens, R., Koch-Nolte, F., van
1131 Gisbergen, K.P.J.M., and van Lier, R.A.W. (2018). TRM maintenance is regulated by tissue
1132 damage via P2RX7. *Sci. Immunol.* *3*.

1133 Sumida, H., Lu, E., Chen, H., Yang, Q., Mackie, K., and Cyster, J.G. (2017). GPR55 regulates
1134 intraepithelial lymphocyte migration dynamics and susceptibility to intestinal damage. *Sci.*
1135 *Immunol.* *2*, 1–16.

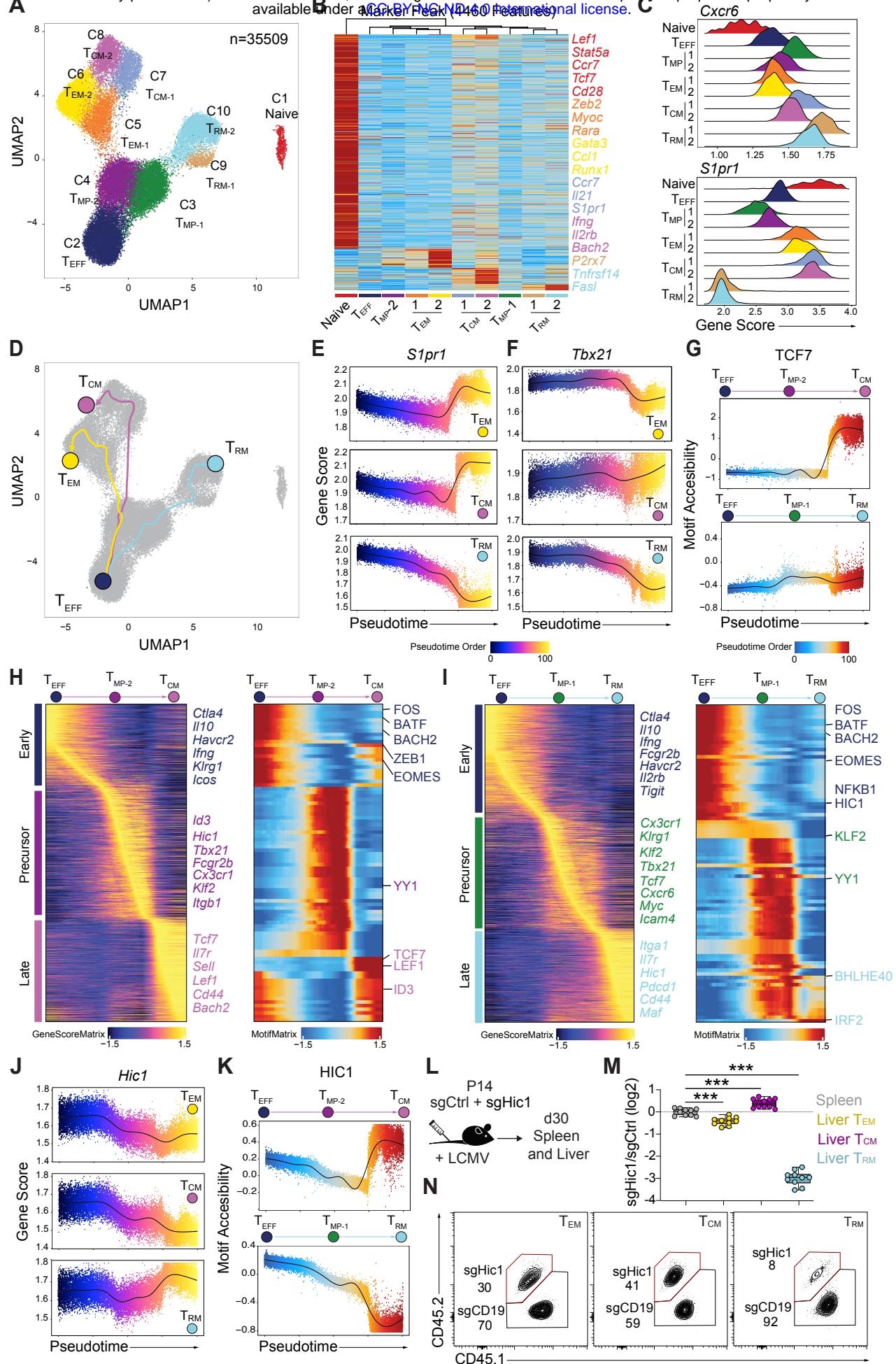
1136 Utzschneider, D.T., Gabriel, S.S., Chisanga, D., Gloury, R., Gubser, P.M., Vasanthakumar, A.,
1137 Shi, W., and Kallies, A. (2020). Early precursor T cells establish and propagate T cell exhaustion
1138 in chronic infection. *Nat. Immunol.*

1139 Wakim, L.M., Woodward-Davis, A., and Bevan, M.J. (2010). Memory T cells persisting within
1140 the brain after local infection show functional adaptations to their tissue of residence. *Proc. Natl.*
1141 *Acad. Sci. U. S. A.* *107*, 17872–17879.

1142 Wein, A.N., McMaster, S.R., Takamura, S., Dunbar, P.R., Cartwright, E.K., Hayward, S.L.,
1143 McManus, D.T., Shimaoka, T., Ueha, S., Tsukui, T., et al. (2019). CXCR6 regulates localization
1144 of tissue-resident memory CD8 T cells to the airways. *J. Exp. Med.* *216*, 2748–2762.


1145 Yukawa, M., Jagannathan, S., Vallabh, S., Kartashov, A. V., Chen, X., Weirauch, M.T.,
1146 Weirauch, M.T., Weirauch, M.T., Weirauch, M.T., Barski, A., et al. (2020). AP-1 activity

1147 induced by co-stimulation is required for chromatin opening during T cell activation. *J. Exp.*
1148 *Med.* *217*.


1149 Zaid, A., Mackay, L.K., Rahimpour, A., Braun, A., Veldhoen, M., Carbone, F.R., Manton, J.H.,
1150 Heath, W.R., and Mueller, S.N. (2014). Persistence of skin-resident memory T cells within an
1151 epidermal niche. *Proc. Natl. Acad. Sci. U. S. A.* *111*, 5307–5312.

1152 Zhou, X., Yu, S., Zhao, D.M., Harty, J.T., Badovinac, V.P., and Xue, H.H. (2010).
1153 Differentiation and Persistence of Memory CD8+ T Cells Depend on T Cell Factor 1. *Immunity*
1154 *33*, 229–240.

1155

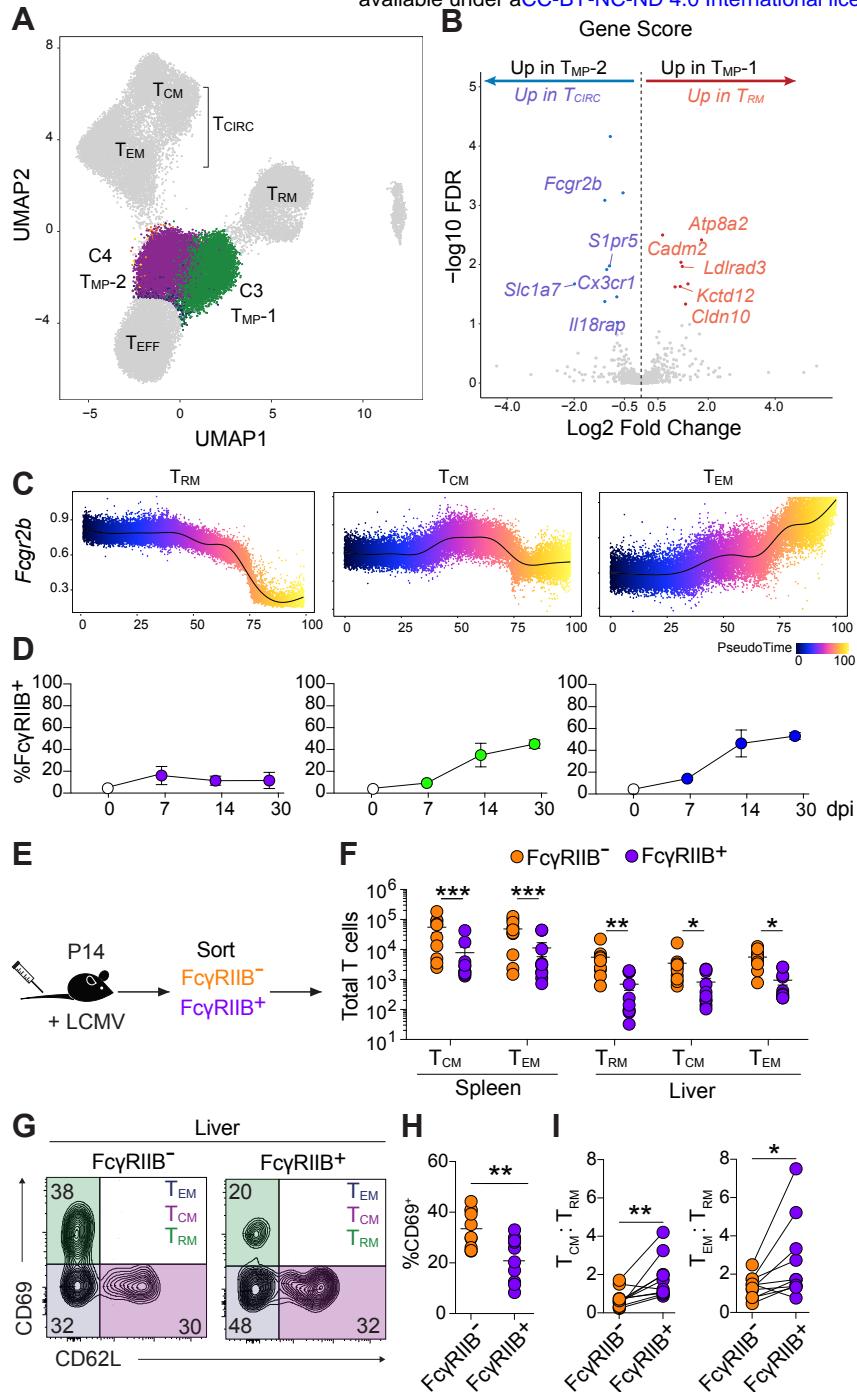
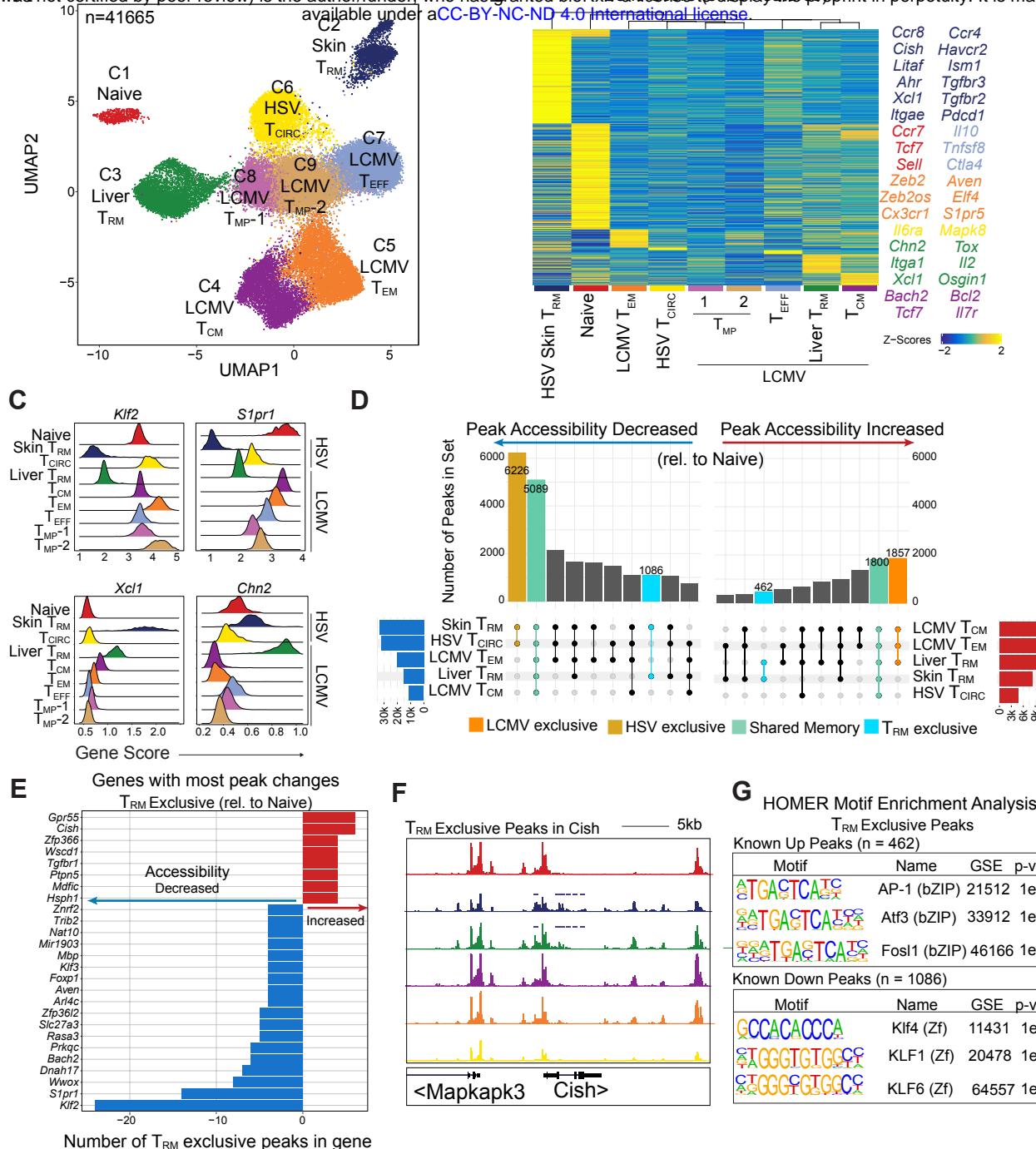


Figure 2. Distinct epigenetic trajectories define T_{CM} and T_{RM} cell development. bioRxiv preprint doi: <https://doi.org/10.1101/2022.05.04.490680>; this version posted May 6, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [aCC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).


Figure 3. Fc γ RIIB expression identify memory precursors

bioRxiv preprint doi: <https://doi.org/10.1101/2022.05.06.490680>; this version posted May 6, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

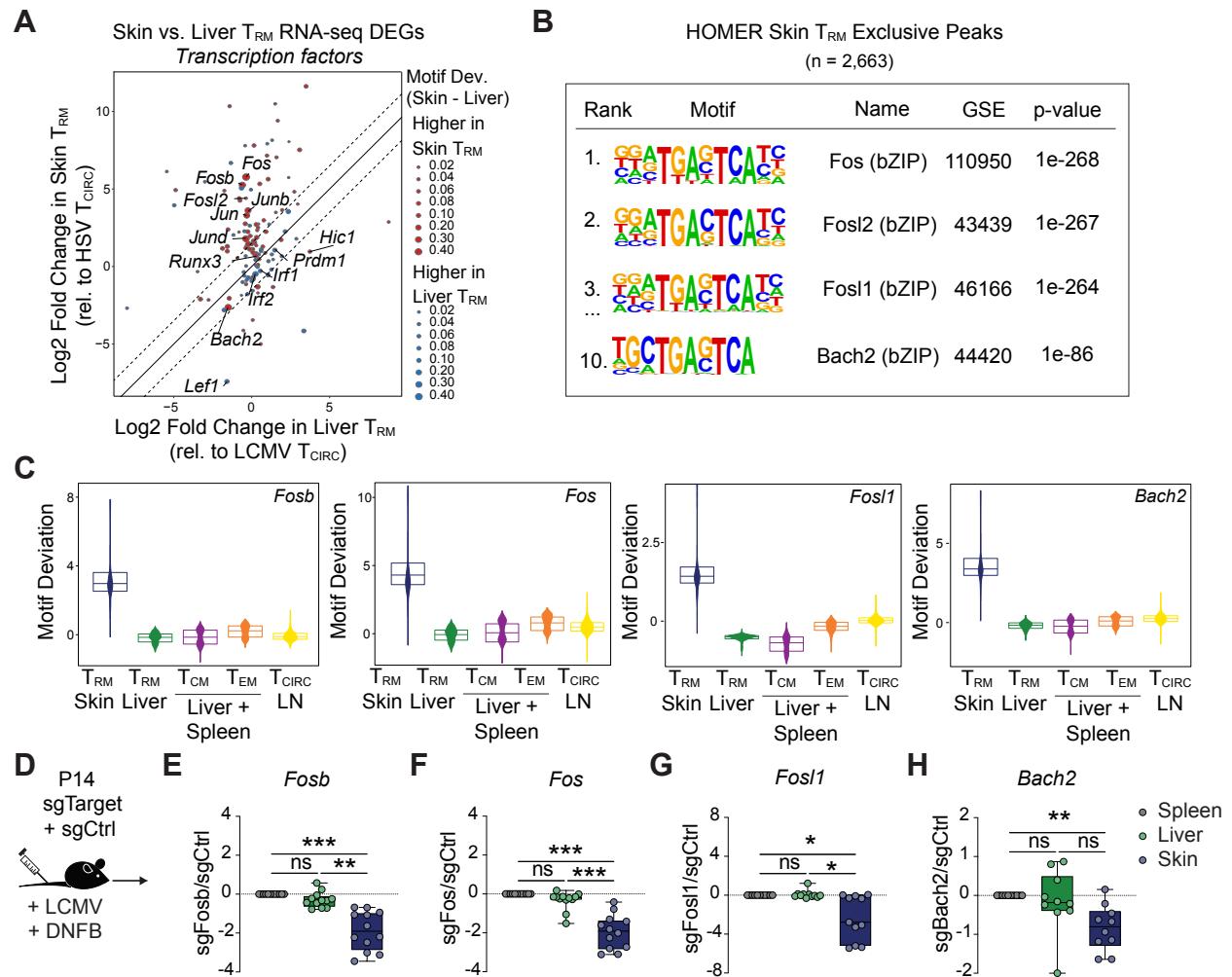


Figure 4. T_{RM} cells share a common epigenetic signature across tissues.

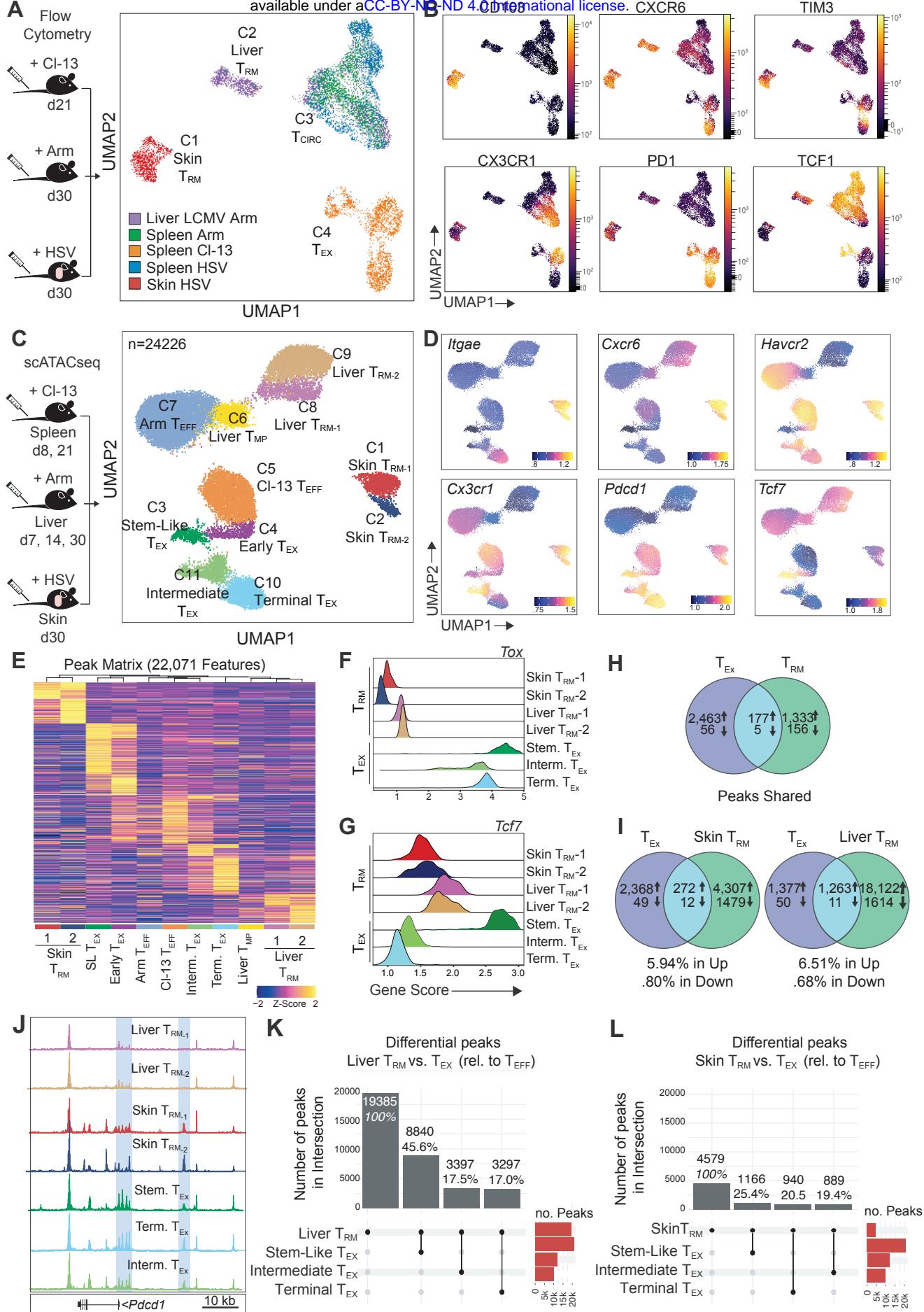
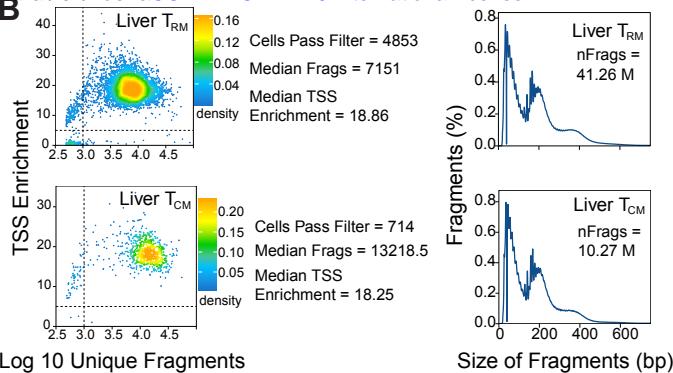
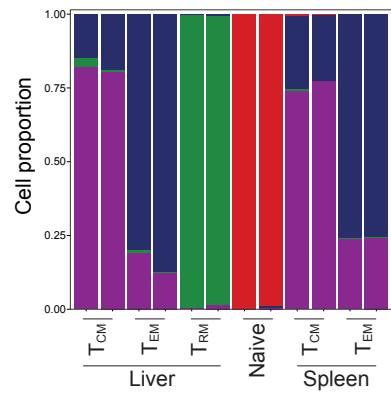

bioRxiv preprint doi: <https://doi.org/10.1101/2022.05.04.490680>; this version posted May 6, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 5. Tissue-specific epigenetic signatures depicts transcriptional regulators of T cell development
 bioRxiv preprint doi: <https://doi.org/10.1101/2022.05.04.490680>; this version posted May 6, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

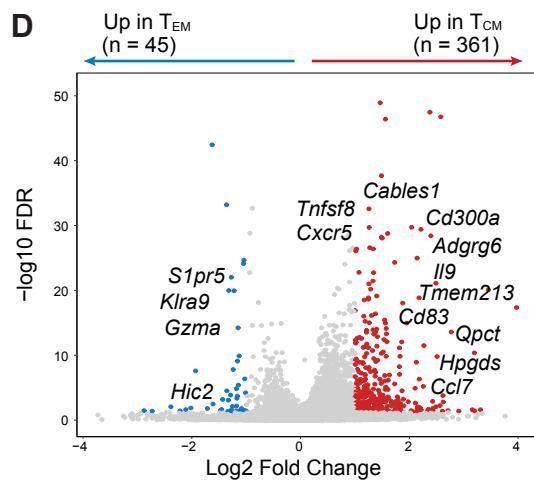
Figure 6. T_{RM} cells are epigenetically distinct from T_{EX} cells. bioRxiv preprint doi: <https://doi.org/10.1101/2022.05.04.490680>; this version posted May 6, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

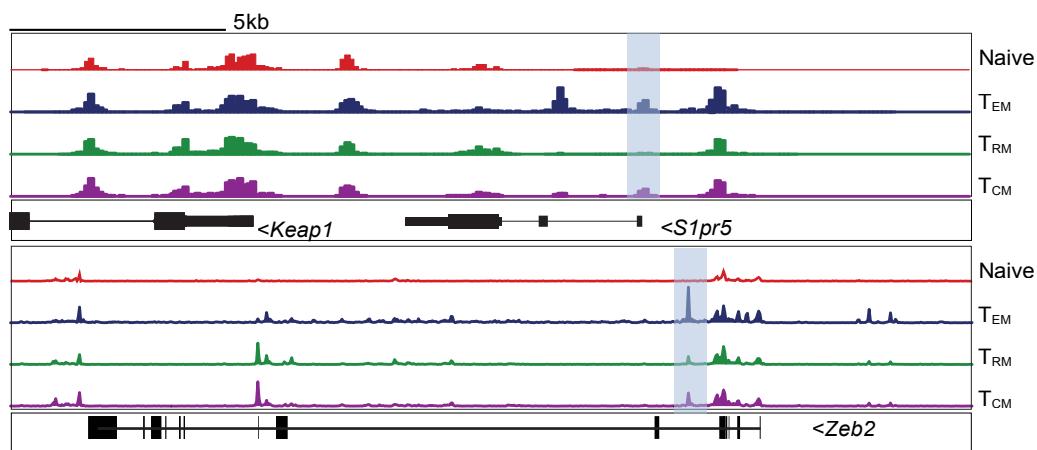

Figure S1 (Related to Figure 1). Epigenetic variation of memory T cell subsets following LCMV infection

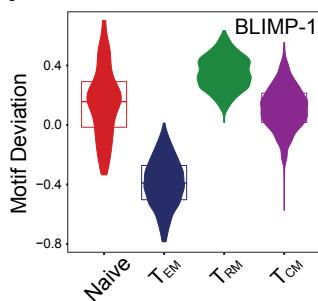
bioRxiv preprint doi: <https://doi.org/10.1101/2022.05.04.490680>; this version posted May 6, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

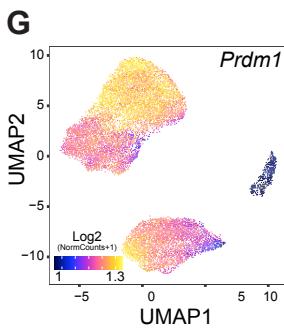

A

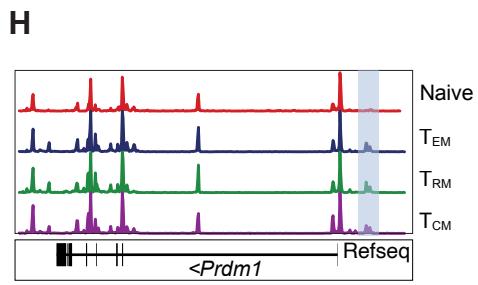
Sort Panel				
	Naive	T _{CM}	T _{EM}	T _{RM}
CD45.1	+	+	+	+
CD8a	+	+	+	+
Vα2	+	+	+	+
CD44	-	+	+	+
CD127	+	+	+	+/−
CD62L	+	+	-	-
CD69	-	-	-	+
CXCR6	-	-	-	+


B

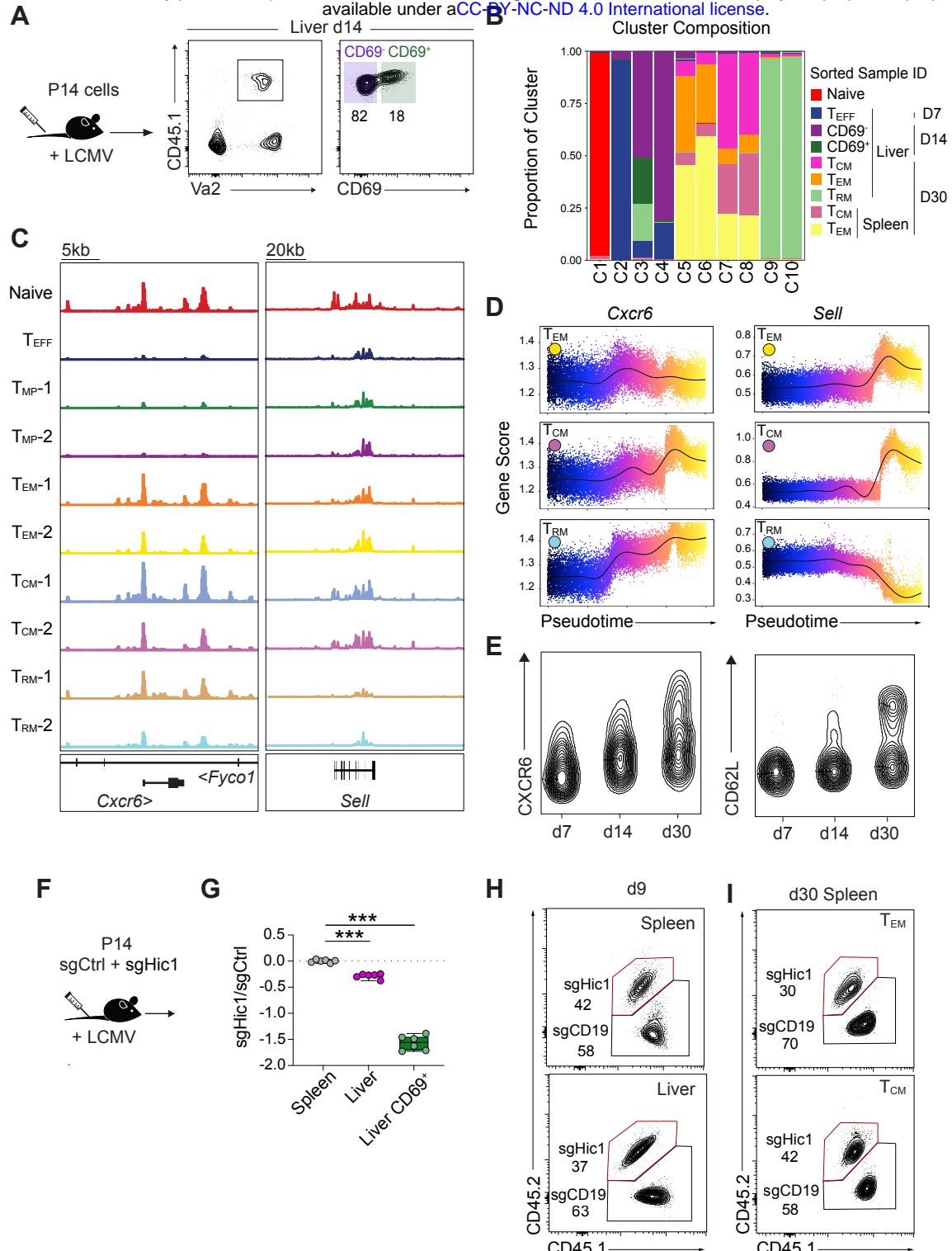

C


D

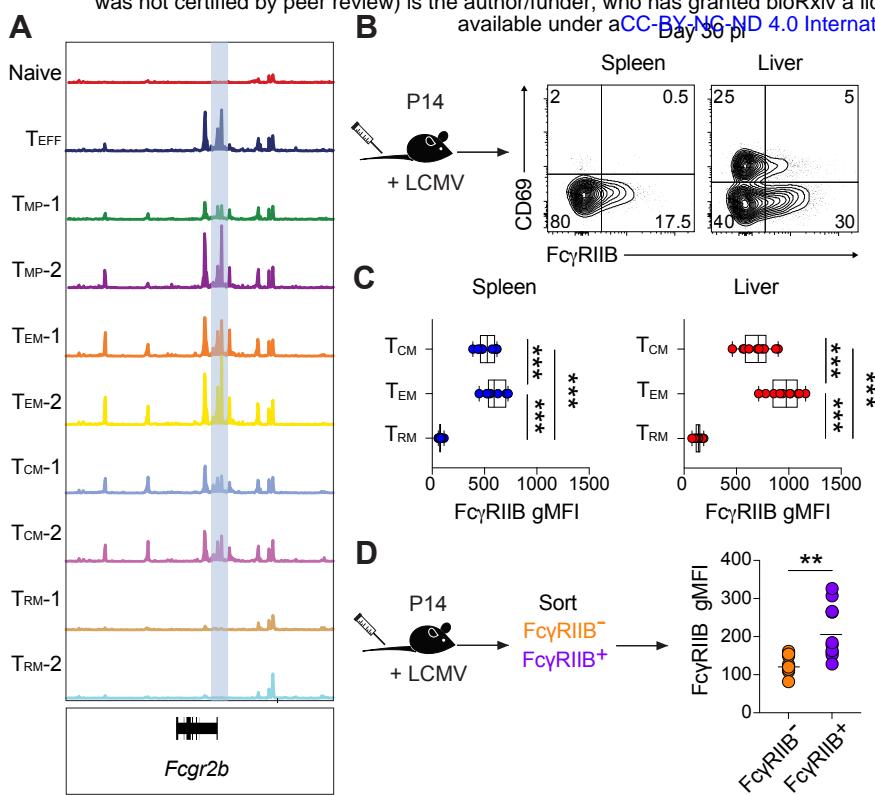

E


F

G

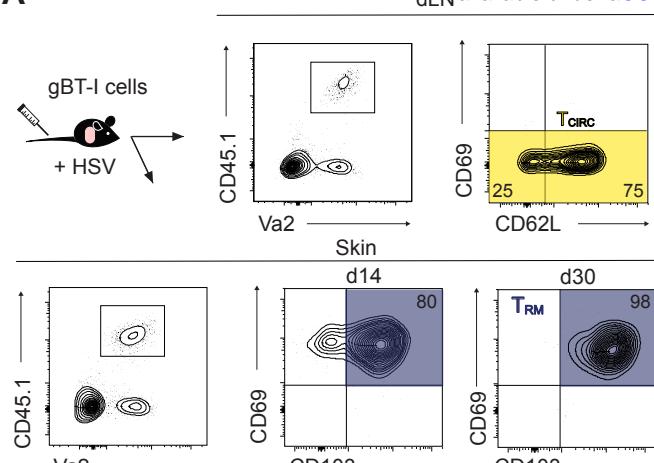


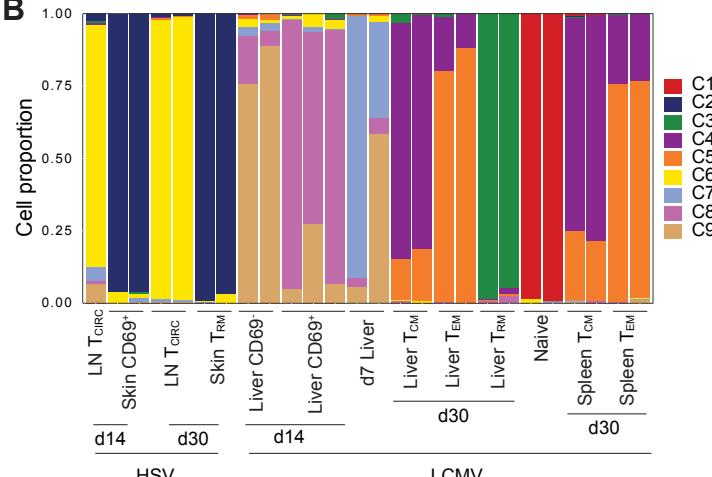
H


Figure S2 (Related to Figure 2). Epigenetic and phenotypic variations drive development of distinct memory T cell subsets

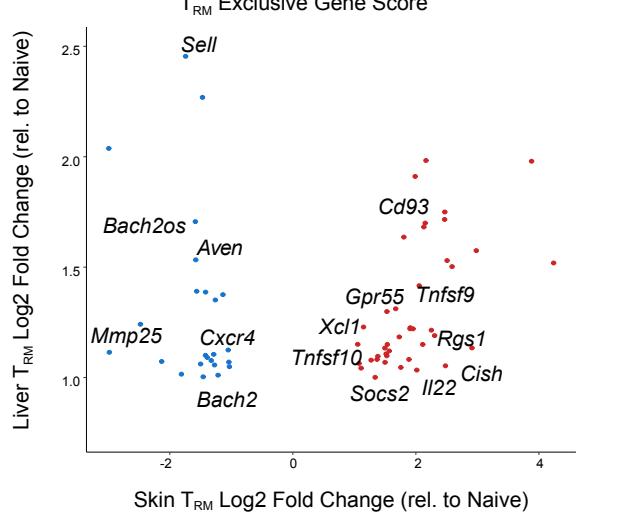
bioRxiv preprint doi: <https://doi.org/10.1101/2022.05.04.490660>; this version posted May 6, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

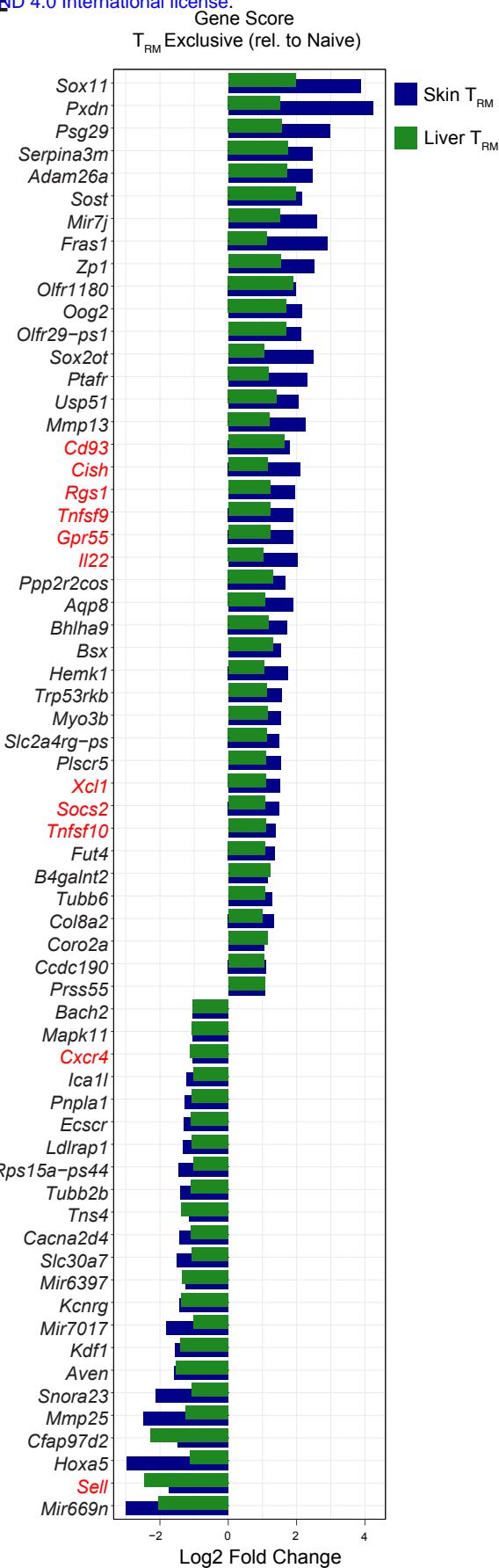
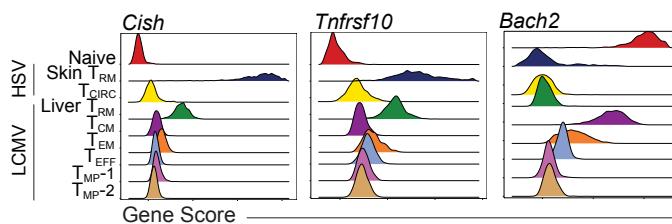
Figure S3 (Related to Figure 3). Fc γ RIIB expression reflects gene accessibility in T cell subsets

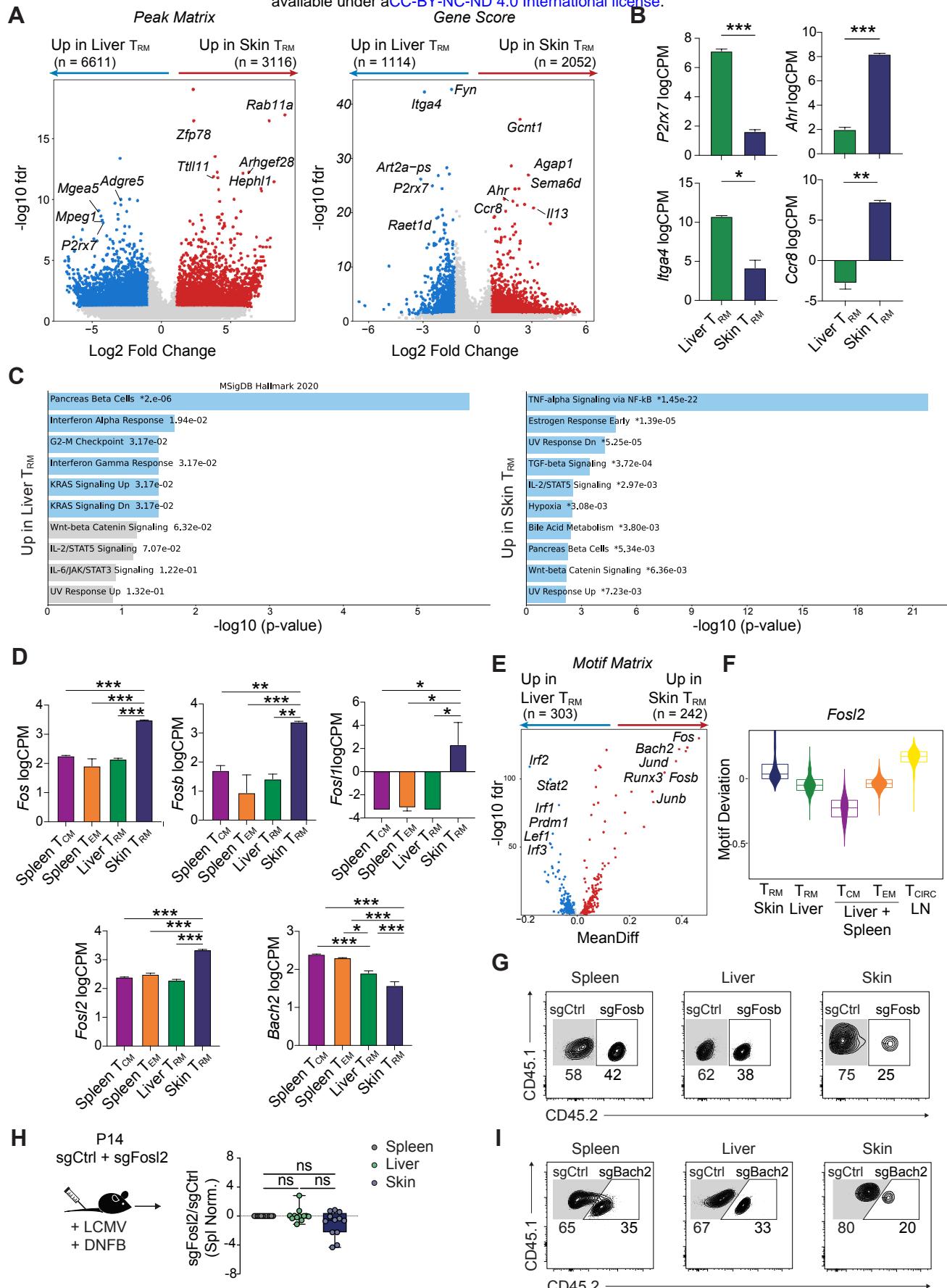

bioRxiv preprint doi: <https://doi.org/10.1101/2022.05.04.490680>; this version posted May 6, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


Figure S4 (Related to Figure 4). T_{RM} cells display a conserved epigenetic profile across tissues

bioRxiv preprint doi: <https://doi.org/10.1101/2022.05.04.490680>; this version posted May 6, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


A



B


C

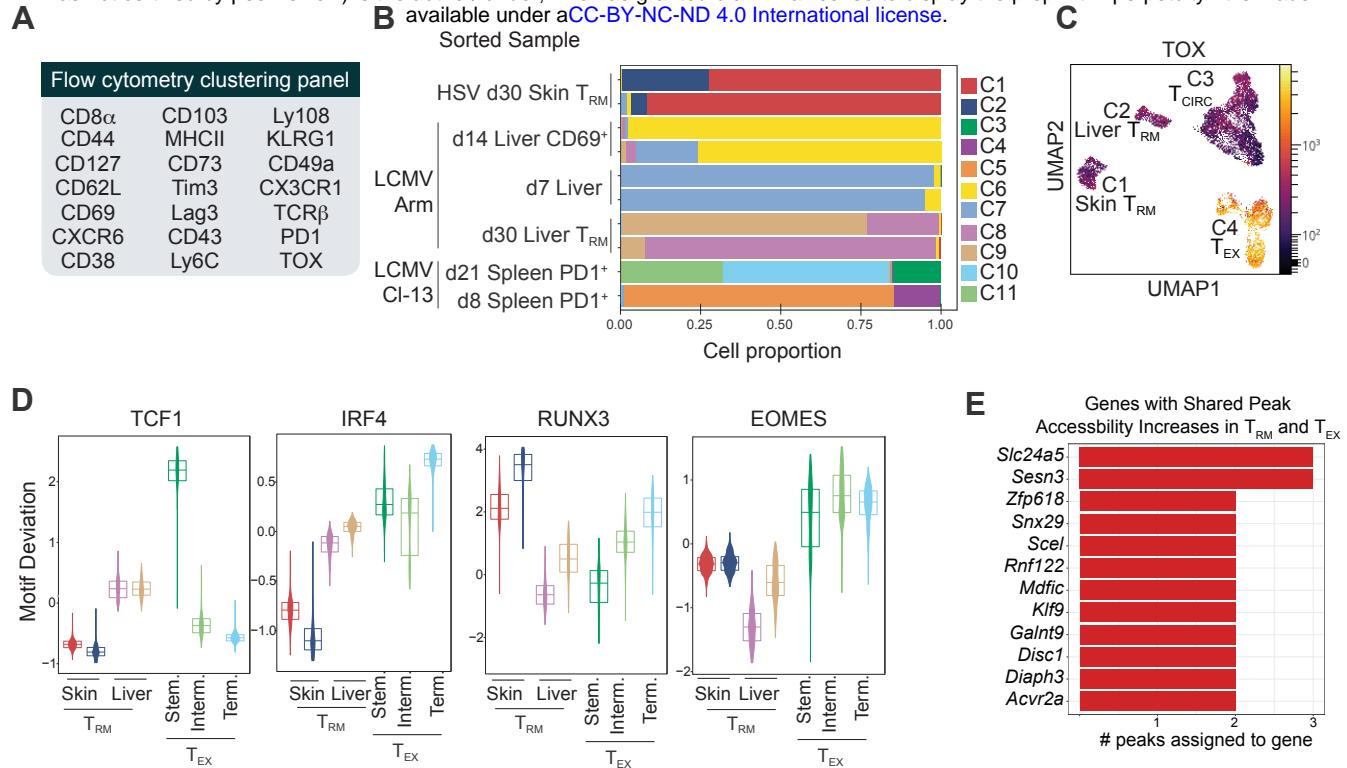

D

Figure S5 (Related to Figure 5). Epigenetic profile reveals tissue-exclusive pathways and environmental T cell development.
 bioRxiv preprint doi: <https://doi.org/10.1101/2022.05.04.490680>; this version posted May 6, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure S6 (Related to Figure 6). T_{RM} and T_{EX} cell subsets are epigenetically distinct
 bioRxiv preprint doi: <https://doi.org/10.1101/2022.05.04.490680>; this version posted May 8, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

