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Abstract

Network analysis provides new and important insights into the function of complex
systems such as the brain by examining structural and functional networks constructed from
diffusion Magnetic Resonance Imaging (AMRI), functional MRI (fMRI) and
Electro/Magnetoencephalography (E/MEG) data. Although network models can shed light on
cognition and pathology, questions remain regarding the importance of these findings, due in
part to the reproducibility of the core measurements and subsequent modeling strategies. In order
to ensure that results are reproducible, we need a better understanding of within- and between-
subject variability over long periods of time. Here, we analyze a longitudinal, 8 session, multi-
modal (dAMRI, and simultaneous EEG-fMRI), and multiple task imaging data set. We first
investigate the reproducibility of individual brain connections and network measures and find
that across all modalities, within-subject reproducibility is higher than between-subject
reproducibility, reaffirming the ability to detect individual differences in network structure in
both structural and functional human brain networks. We see high variability in the
reproducibility of pairwise connections between brain regions, but observe that in EEG-derived
networks, during both rest and task, alpha-band connectivity is consistently more reproducible
than networks derived from other frequency bands. Further, reproducible connections correspond
to strong connections. Structural networks show a higher reliability in network statistics than
functional networks, and certain measures such as synchronizability and eigenvector centrality
are consistently less reliable than other network measures across all modalities. Finally, we find
that structural dMRI networks outperform functional networks in their ability to identify
individuals using a fingerprinting analysis. Our results highlight that functional networks likely

reflect state-dependent variability not present in structural networks, and that the analysis of
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either structural or functional networks to study individual differences should depend on whether

or not one wants to take into account state dependencies of the observed networks.

Keywords:
Brain Networks, Reproducibility, Fingerprinting, Multi-modal Imaging
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1 Introduction

The introduction of network theory to neuroscience has increased our understanding of
the brain’s functional and structural organization. This powerful tool has given new insights into
how higher order brain functions arise (Bassett and Sporns, 2017; Park and Friston, 2013) and
how changes can lead to pathology (Fornito et al., 2015). However, questions have been raised
regarding the reliability of brain network properties given the effects of noise in the signal,
particularly in fMRI (Laumann et al., 2016; Power et al., 2018, 2012). Still, despite the presence
of noise, brain networks have been found to exhibit consistent properties over time among
individual network connections and in higher order properties, such as the clustering coefficient,
characteristic path length, and assortativity, for structural connectivity as measured with dMRI
(Bassett et al., 2011; Bonilha et al., 2015; Buchanan et al., 2014; Biirgel et al., 2006; Malykhin et
al., 2008), fMRI (Amunts et al., 2000; Braun et al., 2012; Deuker et al., 2009; Du et al., 2015;
Elliott et al., 2019; Gordon et al., 2017; Gratton et al., 2018; Laumann et al., 2015; Mangin et al.,
2004; Noble et al., 2017, 2019; Pannunzi et al., 2017; Rypma and D’Esposito, 1999; Shah et al.,
2016) and EEG/MEG (Deuker et al., 2009; Hardmeier et al., 2014; Kuntzelman and Miskovic,
2017). Unfortunately, most studies thus far have been limited to the analysis of a single imaging
modality and/or few scanning sessions, raising questions about how reliable these properties are
over longer times and across modalities.

While it is clear that there is some level of reliability in network properties within an
individual over time, it is also important to understand how the state of the brain (e.g., resting
wakefulness versus active task situations (Fox et al., 2005)), and the neural methodology (e.g.,
fMRI versus EEG) contributes to this reliability across multiple days. The “resting” brain (e.g.,

default mode network) is a state that has been shown to be metabolically demanding (Raichle et
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94  al., 2001) and associated not only with task performance (e.g., Tian et al., 2012) but also disease
95 (e.g., Sorgetal., 2007), very much similar to task-related activity; however, the “resting” brain is
96  fundamentally different from task-related activity, as engagement in a task requires precise
97  recruitment of and coordination between regions of the brain (Fox et al., 2005). Also, in a field
98  with a variety of diverse methodologies (e.g., fMRI, EEG, MEG, PET, etc), neuroscience
99  researchers draw conclusions from methods that are measuring fundamentally different neural
100  properties. For example, fMRI is an indirect measurement of neural activity, as it measures
101  oxygenation and neural activity is inferred. Whereas EEG, a “direct” measurement, is measured
102 on the scalp and filtered by a variety of tissues and bone separating the scalp from the brain. In
103 terms of reliability, experimental design and task demands have shown to contribute to reliability
104  in fMRI (Bennett and Miller, 2013, 2010), and EEG suffers from a large variety of factors that
105  could impact reliability as well (McEvoy et al., 2000). However, there is no study, to our
106  knowledge, that has measured reliability of network structure derived from both fMRI and EEG
107  data collected at the same time over many sessions.
108 In addition to studying reliability within an individual over time, one can also ask about
109  how network properties differ between individuals. Indeed, recent work has shown that brain
110  networks can provide insight into the unique features associated with a person (Bansal et al.,
111 2018b, 2018a; Gordon et al., 2017; Seitzman et al., 2019). A giant leap toward the goal of
112 understanding differences in brain networks was made with the finding that functional brain
113 activity has unique features that can identify a person in a group, similar to a fingerprint (Finn et
114 al., 2015). This fingerprinting property has also been found in structural connectomes (Powell et
115 al., 2018; Yeh et al., 2016). Fingerprinting is important because it allows neuroimaging analyses

116  to focus on the individual and not only on group-level differences (Finn et al., 2015).
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117 To further understand reliability in brain networks over time, across different states, and
118  across modalities, we quantified within- and between-subject reliability in a rich longitudinal and
119  multi-modal dataset consisting of dMRI and simultaneous EEG-fMRI recording during resting-
120  state and multiple tasks. Importantly, the data set studied here was part of a larger study

121  examining naturalistic sleep variability in individuals (Thurman et al., 2018). Here, we do not
122 focus on the effects of variation in sleep pressure, but instead note that due to the study design,
123 subjects varied in the amount of sleep pressure they experienced during each imaging session,
124 presumably augmenting variability within- and between-subjects’ functional brain network over
125  time. We examine both structural and functional brain networks in this data set to study

126  reliability of individual connections and higher order network statistics. To create structural

127  networks, dMRI imaging was used to perform tractography and network connections were

128  defined as the density of streamlines between brain regions. fMRI networks were constructed
129  using the Pearson-Product Correlation to quantify the magnitude of the statistical relationship in
130  the BOLD signal between brain regions. For EEG, the time-series signal from each sensor was
131  first separated into traditional frequency bands of & (1-3 Hz), 6 (4-7 Hz), o (8-13 Hz), B (14-30
132 Hz) and y (30-60 Hz), and functional connectivity was calculated using the debiased-weighted
133 Phase-Lag Index (dwPLI) which quantifies phase synchronization between sensors based on the
134 consistency of the lag between the instantaneous phases of two sensors (Vinck et al., 2011).

135 In the current work we evaluate: 1) which brain connections and network measures are
136  most reliable within- and between-individuals; 2) how reliability varies across state and

137  modality; and 3) how the different imaging modalities, dMRI, fMRI, and EEG, perform in a
138  fingerprinting analysis to identify an individual.

139
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140 2 Material and methods

141 2.1 Participants

142 The University of California, Santa Barbara (UCSB) Human Subjects Committee (#16—
143 0154) and Army Research Laboratory Human Research Protections Office (#14—098) approved
144 all procedures, and all participants provided informed written consent. Research was conducted
145  in accordance with the declarations of Helsinki. The data presented in this manuscript represent a
146  subset of data collected as part of a large-scale, longitudinal experimental that collected bi-

147  weekly structural and functional brain data. A full description of the study can be found in

148  (Thurman et al., 2018). Here we analyze data from 27 healthy participants who were recruited
149 by word of mouth and local advertisements. Note that by study design, participants were

150  excluded from the multi-session segment of the study if they did not experience sleep variability.
151  Data is accessible upon request as far as allowed by the security policy and guidelines

152  established with the ethics committee of the US Army Research Laboratory Human Research
153  Protection Program.

154

155 2.2 Data Description

156 Over the course of 16 weeks, subjects were asked to complete 8 recording sessions

157  involving dMRI and simultaneous EEG-fMRI. For each session, simultaneous EEG-fMRI

158  recording consisted of a 5-minute resting state and 10 tasks with varying levels of cognitive
159  demand; specifically:

160 Dot Probe Task (Dot) (Sipos et al., 2014);

161  Dynamic Attention Task (DYN 1-4) with four repetitions of the same task (Yantis et al., 2002);

162  Modular Math (MOD) (Mattarella-Micke et al., 2011);
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163 Psychomotor Vigilance Task (PVT) (Loh et al., 2004), and;

164  Visual Working Memory (VWM 1-3) with three repetitions of the same task (Luck and Vogel,
165  1997).

166 Table 1 shows the average number of subjects and sessions for each imaging modality.
167  When analyzing the EEG-fMRI data, we analyzed only six sessions of data. This was done in
168  order to make a trade-off between maximizing the number of subjects and number of sessions,
169  since not all subjects participated in all 8 sessions. Detailed information on the number of

170  subjects and sessions for functional data can be found in Tables 2 and 3. Lastly, for the

171  fingerprinting analysis using dMRI data, we used 25 subjects, all of which had an equal number
172 of sessions (8 sessions). For the fingerprinting analysis using fMRI data, 15 subjects were

173 included with all 6 sessions of resting-state and task recordings, and for the EEG data, we used

174 26 subjects with resting-state and all tasks over 6 sessions.

Table 1. Average number of subjects and sessions per imaging modality

Imaging Modality Subjects Sessions

dMRI 25 8

fMRI 23.1 6

EEG 27 6
Table 2. Number of subjects and sessions for each task per EEG and fMRI

Task EEG Subjects fMRI Subjects Sessions

Resting-State 27 26 6
DOT 27 25 6
DYN-1 27 27 6
DYN-2 27 27 6
DYN-3 27 26 6
DYN-4 27 20 6
MOD 27 17 6
PVT 27 19 6
VWM-1 27 27 6
VWM-2 27 23 6
VWM-3 27 17 6
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Fingerprinting Subjects Sessions Tasks Included
dMRI 25 8 n/a
fMRI 15 6 Yes
EEG 27 6 Yes

2.3 fMRI Acquisition and Preprocessing

Functional neuroimaging data were acquired on a 3T Siemens Prisma MRI using an
echo-planar imaging (EPI) sequence (3mm slice thickness, 64 coronal slices, field of view
(FoV)=192 x 192 mm, repetition time (TR)=910 ms, echo time (TE)=32 ms, flip angle=52°, and
voxel size: 3 x 3 x 3 mm). For repeated scans, a T1-weighted structural image was also acquired
using a high-resolution magnetization prepared rapid acquisition gradient echo (MPRAGE)
sequence (TR= 2500 ms, TE=2.22 ms, and FoV= 241 x 241 mm with a spatial resolution of .9 x
.9 x .9 mm), for use in coregistration and normalization.

fMRI BOLD images were preprocessed using Advanced Normalization Tools (ANTSs)
(Avants et al., 2009). Physiological artifacts including respiration and cardiac cycle effects were
corrected using the retrospective correction of physiological motion effects method,
RETROICOR (Glover et al., 2000), implemented in MEAP v1.5 (Cieslak et al., 2018). Head
motion was estimated using antsMotionCorr, and the motion correction was completed as
follows: (1) An unbiased BOLD template was created within each session by averaging the
motion-corrected BOLD time series from each run. (2) The BOLD templates were coregistered
to the corresponding T1-weighted high resolution structural images, collected in each session. (3)
Each session was spatially normalized to a custom study-specific multi-modal template which
included T1-weighted, T2-weighted and GFA images from twenty-four quasi-randomly selected

participants chosen to match the study population. (4) The template was then affine-transformed
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195  to the coordinate space of the MNI152 Asymmetric template. (5) Finally, the fMRI volumes

196  were transformed using the estimated head motion correction, BOLD template coregistration,
197  BOLD-to-T1w coregistration and spatial normalization into MNI space using a single Hamming
198  weighted sinc interpolation. After these transformations, the final step in the preprocessing was
199  to extract time-series from fMRI scans for functional connectivity analyses. Two atlases were
200  used to reduce the 3D volume data into 221 nodal time series data: (1) the cortical Schaefer 200
201  atlas (Schaefer et al., 2018) which was derived from intrinsic functional connectivity in resting
202  state fMRI and (2) 21 subcortical regions from the Harvard-Oxford atlas based on anatomical
203  boundaries (Makris et al., 2006). As the atlases are in MNI coordinate space, voxels within each
204  labelled region of the atlases were simply averaged, and time series were extracted for the

205  following connectivity analyses.

206 To assess functional connectivity among ROIs, mean regional time-courses were

207  extracted and standardized using the nilearn package (Abraham et al., 2014) in Python 2.7, and
208  confound regression was then conducted. In particular, the time series for each region was

209  detrended by regressing the time series on the mean as well as both linear and quadratic trends.
210  There were a total of 16 confound regressors, which included: head motion, global signal, white
211  matter, cerebrospinal fluid and derivatives, quadratics and squared derivatives. This functional
212 connectivity preprocessing pipeline was selected based on conclusions from prior work that

213 examined performance across multiple commonly used preprocessing pipelines for mitigating
214  motion artifact in functional BOLD connectivity analyses (Ciric et al., 2017; Lydon-Staley et al.,
215 2018).

216 To construct the fMRI networks, the signal from all voxels within a brain region were

217  averaged, and the Pearson Product Correlation (R) between two brain regions was calculated as

10
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R — cov(x,y)

el (1)

219  where x and y represent the time-series data from two different regions and o is the variance of

218

220  the time series. To account for negative correlations, the absolute value of the correlations was
221  used to construct weighted functional connectivity matrices.

222

223 2.4 EEG Acquisition and Preprocessing

224 Continuous EEG recordings were captured simultaneously with an fMRI-compatible

225  EEG equipped with standard Ag/AgClI electrodes from 64 sites on the scalp oriented in a 10-20
226  scheme system (Brain Products, Gilching, Germany). Initial fMRI pulse and

227  ballistocardiographic artifact correction was completed in BrainAnalyzer 2 (Brain Products,

228  Gilching, Germany) using classic subtraction and filtering approaches (Allen et al., 2000, 1998).
229  These mid-level processed EEG measurements were then further processed using in-house

230  software in MATLAB (Mathworks, Inc., Natick, MA, USA) and the EEGLAB toolbox (Delorme
231  and Makeig, 2004; Mullen et al., 2013). Despite the subtraction and filtering approaches applied,
232 residual artifact from the fMRI pulse persisted. To remove these lingering artifacts, we

233 developed a new cleaning pipeline.

234 Our cleaning pipeline included steps tailored to remove common EEG artifact (e.g., eye
235  blinks, muscle-related activity) and then targeted the high frequency noise in the 16-19 Hz and
236  34-38 Hz range. EEG data were bandpass filtered between 0.75 Hz and 50 Hz using a Finite

237  Impulse Response (FIR) filter. Next, EEGLAB’s automated clean_rawdata function was used to
238  determine channels that differed substantially from the estimated signal (derived from other

239  channels) or had consistent flat-lining. Then, the EEG data were subjected to an Independent

11
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240  Component Analysis (ICA) decomposition and the ADJUST algorithm (Mognon et al., 2011)
241  was used to remove ICA components associated with stereotyped noise. Following I[CA

242  decomposition, bad channels were interpolated using spherical interpolation. As a final step in
243 EEG preprocessing, the EEG data were subjected to Artifact Subspace Reconstruction (ASR)
244  (Chang et al., 2020; Mullen et al., 2015), which we used to target the aforementioned residual
245  high frequency noise from the fMRI artifact. This method, in combination with the ICA cleaning
246  method allows for the targeting of both stationary and non-stationary persistent artifacts. To
247  deploy ASR on the dataset, we first created a “clean” reference signal from each subject’s EEG
248  data by: 1) concatenating EEG segments that were at least 1000ms long with amplitude below
249 100pV, (2) and notch filtering (FIR) the EEG between 16-19 Hz and 34-38 Hz. Following the
250  creation of the reference signal, ASR was then used to reconstruct the EEG that contained large
251  fluctuations greater than 5 standard deviations beyond the reference signal (in 500ms chunks).
252  Lastly, the data were re-referenced to a common average reference.

253 To construct EEG networks, the signal from each sensor was separated into standard
254  frequency bands corresponding to & (1-3Hz), 6 (4-7Hz), a (8-13Hz), B (15-30Hz) and y (30-
255  60Hz) with a Butterworth filter (8" order) followed by Hilbert transformation. Weighted

256  functional connectivity adjacency matrices were constructed for each frequency band using the
257  de-biased weighted phase-lag index (dwPLI) (Vinck et al., 2011). Each node in the adjacency
258  matrix corresponds to a channel with the weight representing the strength (phase-lag) of the
259  connection. Specifically, dwPLI is calculated as,

Y Y IXDIX))
YL Y HXDI(X)]

260 dwPLI = (2)

12
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261  where /(X)) corresponds to the imaginary component of time series data (X) from channel i.

262  Specifically, dwPLI is the sum of all pairwise products of the magnitudes of the imaginary

263  components. In addition, dwPLI accounts for any bias due to the number of data points.

264

265 2.5 dMRI Acquisition and Preprocessing

266 Diffusion spectrum imaging (DSI) scans were acquired for each session. DSI scans

267  sampled 258 directions using a Q5 half-shell acquisition scheme with a maximum b-value of
268 5,000 and an isotropic voxel size of 2.4 mm. Minimal preprocessing was carried out on the DSI
269  scans and was restricted to motion correction. Following a similar procedure to the fMRI motion
270  correction, motion was first assessed and applied for all of the b0 volumes, and a template was
271  created for each scan composed of the average of the b0 volumes. Next, the b0 volumes and

272  vectors were transformed using the estimated head motion correction, b0 template coregistration,
273 b0 template-to-T1w coregistration and spatial normalization into MNI space using a single

274  Hamming weighted sinc interpolation.

275 Fiber tracking was performed in DSI Studio (www.dsi-studio.labsolver.org) with an

276  angular cutoff of 35°, step size of 1.0 mm, minimum length of 10 mm, spin density function

277  smoothing of 0, and a maximum length of 250 mm. Deterministic fiber tracking was performed
278  until 500,000 streamlines were reconstructed for each session. As with the fMRI volume data,
279  streamline counts were estimated in 200 nodes using the same Schaefer 200 atlas (Schaefer et al.,
280  2018) and 21 subcortical regions part of the Harvard-Oxford atlas (Makris et al., 2006).

281  Connectivity matrices were then normalized by dividing the number of streamlines (7) between
282  region i and j, by the combined volumes (v) of region i and j,

Tyj

T vi+vj )

283 A 3)

13
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284 2.6 Graph Theoretical Analysis

285 We calculated nine commonly used and diverse graph metrics on each weighted dMRI,
286  fMRI and EEG network. The graph metrics are: degree, clustering coefficient, characteristic path
287  length, small-world propensity, global and local efficiency, synchronizability, spectral radius,
288  and eigenvector centrality. See supplemental for detailed description of each network measure.
289 2.7 Degree

290 The weighted node degree (k;) is defined as the sum of all connections of a node

291  (Rubinov and Sporns, 2010),
292 ki=YienWij, @

293 where W is the weighted adjacency matrix of a network with N nodes.

294

295 2.8 Clustering Coefficient

296 The weighted clustering coefficient (C) for node i is the intensity of triangles in a
297  network (Onnela et al., 2005) and is calculated as,

298

299 Ci = = 2jn(Wij Wi ]h) ()

l(bl 1)

300  where W is the weighted adjacency matrix and b is the number of edges for node i.

301

302 2.9 Characteristic Path Length

303 The characteristic path length (L) is the average shortest path length between all nodes

304  (Rubinov and Sporns, 2010),

14
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Z Z]EN JEI! dl]

305 , (6)

306  where dj} is the is the distance between nodes i and j. To calculate d; , we first take the inverse

ij »
307  of the edge weights to transform the weight to a measure of length (i.e., to transform a strong

308  connection strength to a short length). We then determine the shortest path between nodes i and j
309  (using the inverted weights), and d;; is the sum of the inverse of the edge weights along this

310  shortest path.

311

312 2.10 Small-World Propensity

313 Small-world propensity (¢) quantifies the extent to which a network displays small-

314  worldness, a network property that combines the presence of local clustering with a short path

315  length, while factoring in variation in network density (Muldoon et al., 2016). Small-worldness

316 s calculated as,

317 ¢ =1- #, 7

318

319 AC — Clatt—Cobs ’ )
Clatt—Crand

320

11 AL — Lobs—Lrand ’ )

Liatt—Lrand
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322 where Cops is the observed clustering coefficient and Loss is the observed characteristic path

323 length of the network; Cian, Lianr, Crana, and Lrang are clustering coefficient and characteristic path
324  length from lattice and random networks with the same number of nodes and edge distribution.
325

326  2.11 Global and Local Efficiency

327 The efficiency of a node is the inverse of the path length (Rubinov and Sporns, 2010).
328  Global efficiency (E,) is the inverse shortest path length,

Yjen,j=i(dij) ™
N-1

1
329 E, = N diieN ) (10)

330 where dj} is the previously defined distance between node i and ;.

331

332 Local efficiency (£)) is the global efficiency computed on the neighborhood of node i,

Yjhen,j=i Wijwin[df(N)]™H/3
ki(ki—1) ’

1
333 Ey = —~ Yien an

334 where w;; and wi is strength of the connection between node i to j and 4, respectively, and dj,
335  (Ni) is the length of the shortest path between nodes j and 4 that contains only neighbors of node
336 i

337

338  2.12 Synchronizability

339 Synchronizability is a measure of linear stability for a network of coupled dynamical
340  systems (Motter et al., 2005),

A2

341 S=-=,
An

(12)
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342 where A>is the second smallest eigenvalue of the unnormalized Laplacian matrix (L) and 4, 1s its

343  largest eigenvalue. The Laplacian is calculated as,
344 L=D-W, (13)

345 where D is the degree matrix of the weighted adjacency matrix, W.

346

347  2.13 Spectral Radius

348 The spectral radius measures the ease with which diffusion process can occur in a

349  network. The spectral radius is calculated as,

350 p(W) = max{|A4], ..., [4,]}, (14)

351  where |4| corresponds to the absolute value of the eigenvalues of a network.

352

353 2.14 Eigenvector Centrality

354 Eigenvector centrality (EC;) measures how influential a node is in a network, with a high
355  value indicating a node is connected to other highly influential nodes (Newman, 2008). The

356  eigenvector centrality of node i is given by the i-th entry in the dominant eigenvector, which is

357  the vector v=[vy,...vy] that solves
My = WoT
358 1V v, (15)

359  where 4, is the largest eigenvalue of the weighted adjacency matrix, W.

360

361  2.15 Intra-class Correlation

362 The intra-class correlation (ICC) is a measure used to quantify the test-retest reliability of

363  ameasure. We used the ICC to measure the consistency of individual connections across the

17
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364  dMRI, fMRI and EEG networks and across the graph metrics for each network. To accomplish
365 this, we calculated two variants of the ICC, the within (ICCy)- and between (ICCy)-subjects (Wei

366  etal., 2004). ICC,, and ICC, are, respectively, calculated as,

367
368 ICCy, = ]*5MS+;$A1;11:-?11]\42—1)EM5 ’ (16)
369

370 ICC, = J(SMS—EMS) 17)

J*SMS+I*RMS (IJ—I1-])EMS’

371

372 where [ is the number of subjects and J is the number of sessions, SMS, RMS and EMS represent
373 the ANOVA measures of mean square error between sessions, subjects, and due to error,

374  respectively. The reliability of a measurement is considered: 1) “poor” if the ICC values is less
375  than 0.4; 2) “fair” for ICC values between 0.4 and 0.6; 3) “good” for ICC values between 0.6 and
376  0.8; and 4) “excellent if ICC values exceed 0.8.

377

378  2.16 Fingerprinting Analysis

379 To perform a fingerprinting analysis, as in Finn et al., 2015, we quantified the degree of
380  similarity between networks. This analysis was performed separately for each of the dMRI,

381 fMRI and EEG modalities. Connectivity matrices were converted for each individual and run
382  into a vector using the values from the upper triangle of the matrix resulting in vectors of 1 x
383 24,310 for dMRI and fMRI, and 1x 2,016 for EEG. Thus each vector, p, represents a single

384  connectivity matrix for a given subject during a given session, and for functional matrices, in a

385  given state (task/rest).
18
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386 Next, separately within each modality, for each connectivity matrix (representing a
387  subject, session, and state), we calculated the pairwise similarity between two vectors, p and g,
388  using the Euclidian distance to create a dis-similarity matrix (D) where

389

390

391 Dyq = \/Z(p —q)?, (18)

392  and each entry in Dpq, corresponds to the dis-similarity between the brain network p to gq.

393  However, since the Euclidian distance formally assesses dis-similarity and we were interested in
394  evaluating similarity, we converted from a dis-similarity to a similarity (S) measure by

395

max(D)— Dpgq
396 Spq =

max(D) '’ (19)

397  where max(D) corresponds to the largest value in matrix D. This normalization ensures that the
398  similarity matrix S € [0 1].

399 In order to perform a fingerprinting analysis, for each vector, p, we then looked for the
400  entry Sy, with the highest similarity value. If for this entry, the vectors p and g were from the
401  same individual (but could be from different sessions or states), then the fingerprinting analysis
402  was classified to be successful at identifying the individual.

403 Fingerprinting performance for each imaging modality was assessed using two measures.
404  The first measure quantifies the overall fingerprinting accuracy across subjects, and was

405  calculated as the percentage of matrices which were successful in identifying an individual.

406  While this measure is useful from a classification standpoint, we were also interested in the level

407  of separation between matrices within versus between individuals. Therefore, in the second
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408  measure, we assessed the separability (7) of each modality. The separability of each matrix, Tp,

409  was defined to be

410 T, = min S, — max S (20)
p within—subject{ pq} between—subject{ pq}r

411  where the first term is constrained to ¢ from the same subject as p, and the second term is

412 constrained to q from all subjects other than p. The resulting values of 7' € [-1 1], where a value
413 of 1 indicates perfect similarity within a subject across sessions and no similarity to other

414  subjects and, conversely, -1 indicates no similarity across runs within a subject.

415

416  2.17 Statistical Tests

417 Analysis of variance (ANOVA) was used to quantify the magnitude difference in ICC
418  scores and the difference in the magnitude of the network similarity. Corresponding p-values
419  were corrected for multiple comparison using Boneferroni correction. The Brain Connectivity
420  Toolbox was used to calculate network measures (Rubinov and Sporns, 2010). All analyses were
421  conducted in MATLAB 2017b.

422

423 3 Results

424 We analyzed the reproducibility of brain network properties derived from structural and
425  functional brain imaging using the intra-class correlation (/CC). For the dMRI analysis, this

426  involved analyzing brain networks from 25 subjects across 8 sessions for a total of 200 structural
427  networks. For the fMRI and EEG analysis, a tradeoff between maximizing subjects and sessions
428  was made across resting-state and tasks resulting in a range from 17-26 subjects, each with 6
429  sessions (see Methods section for details).

430
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431 3.1 Reliability of Individual Connections

432 We first assessed the reliability of individual connections between brain regions or

433  sensors. We calculated the ICC within a subject (ICCy) and between subjects (ICCyp) for each
434  connection across the three imaging modalities. As expected, we found that across imaging

435  modalities, individual network connections are more reliable within- than between-subjects

436  (Figure 1A and B). Across imaging modalities, individual edges exhibit high variability in their
437  reliability scores, with ICCy values ranging from poor (< 0.4) to excellent (> 0.8) reliability
438  (Figure 1A). By contrast, ICCy scores had consistently poor (< 0.2) reliability across all imaging
439  modalities (Figure 1B). For dMRI, the mean ICCy, was 0.21 £ 0.24 (SD) and the mean ICCy
440  score was -1x10#+ 0.01 (SD). For resting-state fMRI the mean ICCy, was 0.23 + 0.13(SD).

441  Lastly, for the EEG the a-band had the highest mean ICCy, (0.39 + 0.16(SD) compared to the
442  other frequencies (5: 0.03 £ 0.05(SD); 6: 0.09 £ 0.08(SD); B: 0.20 £ 0.12(SD); y: 0.10 +

443 0.07(SD)). An ANOVA assessing differences across imaging modalities found significant

444  differences in the ICCw (Fe 85249 = 2241; peorrected << 0.001). One important feature is the long-
445  tail distribution in the dMRI ICCy, indicating that a small number of connections have excellent
446 (> 0.8) reliability. We additionally looked to see if there was a relationship between connection
447  strength and reliability (Figure 1C-E).

448
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Figure 1. Reliability of individual connections. (A) Distribution of ICCy and (B) ICCy for dMRI
and resting-state fMRI and EEG frequency bands. For each violin plot, the central dot indicates
the median, and the line indicates the 25th to 75th percentiles. (C-E) Cumulative distribution
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453  plots showing the proportion of connections and corresponding connection strength from the top
454  10% (most reliable) and bottom 10% (least reliable) of ICCy scores for (C) dMRI; Resting-State
455 (D) fMRI and (E) EEG-a.. F-H) Average reliability of connection within and between cognitive
456  systems for (F) dMRI and (G) resting-state fMRI. H) Differences in average ICC,, scores across
457  cognitive systems between dMRI minus the fMRI. (I) Connections with ICCy, scores in top 10%
458 for 6, 0, a, B and y frequency bands plotted on the scalp for resting-state EEG. Cognitive

459  systems are defined as Cont: Control A/B/C, Default: Default Mode A/B/C, DorsAttn: Dorsal
460  Attention A/B, Limbic, SalVentAtt: Salience/Ventral Attention A/B, SomMot: Somatomotor
461  A/B, Subcortical, TempPar: Temporal Parietal, VisCent: Visual Central, VisPer: Visual

462  Peripheral.

463

464 We next assessed if for AMRI and resting-state fMRI there is an association between

465 ICCy scores and cognitive systems. First, we mapped edgewise scores and then averaged over
466  edges within each of the 17 cognitive systems from the Schaefer 200 layout combined with 21
467  subcortical regions from Harvard-Oxford atlas. As a trend, connections within a cognitive system
468  for dMRI and resting-state fMRI exhibited the strongest reliability as can be seen from the figure
469  because of the high values along the diagonal (Figure 1F and G, respectively). However, a direct
470  comparison between dMRI and fMRI showed distinct distribution of reliability across cognitive
471  systems. dMRI reliability was stronger within the Frontal-Parietal Control system and between
472  the Visual, Default Mode, and Temporal Parietal systems (red entries in Figure 1H), while in
473  fMRI, stronger values were distributed between cognitive systems (blue entries in Figure 1H).
474  For the EEG data we could not perform the same mapping to cognitive systems, so instead

475  resting-state ICCy scores from the top 10% ICCw distribution are plotted onto the scalp (Figure
476  1I).

477 Given the different cognitive demands associated with task performance, one might

478  expect reliability scores during task states to differ from those at rest. However, when we

479  examined task induced changes in reliability, we found that task associated ICCy and ICCy

480  values for fMRI and EEG scores exhibited similar pattern to resting-state (Figures 2 and 3,
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481  respectively). To test for changes, we assessed an ICC x Task ANOVA and found that the ICC x
482  Task interaction was significant (F;0,501380 = 1242, peorrected << 0.001). For the EEG, we

483  additionally added frequency as a variable in our ANOVA design and found that the ICC x Task
484  x Frequency interaction was significant (F4o, 207790 = 140, peorrected << 0.001) with the a--band

485  having the highest ICC,, scores.
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Figure 2. Reliability of individual connections within-subjects (ICCy) for fMRI and EEG
frequency bands across tasks: DOT, PVT, MOD, VWM-1:3, and DYN-1:4. For each violin plot,
the central dot indicates the median, and the line indicates the 25th to 75th percentiles. DOT: Dot
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Probe Task; DYN: Dynamic Attention Task; MOD: Modular Math Task; PVT: Psychomotor
Vigilance Task; VWM 1-3: Visual Working Memory.
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495  Figure 3. Reliability of individual connections between-subjects (ICCyp) for fMRI and EEG
496  frequency bands across tasks: DOT, PVT, MOD, VWM-1:3, and DYN-1:4. For each violin plot,
497  the central dot indicates the median, and the line indicates the 25th to 75th percentiles. DOT: Dot

27


https://doi.org/10.1101/2022.05.03.490544
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.03.490544; this version posted May 4, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

498  Probe Task; DYN: Dynamic Attention Task; MOD: Modular Math Task; PVT: Psychomotor
499  Vigilance Task; VWM 1-3: Visual Working Memory.

500

501

502 Similarly, we assessed if for task fMRI there is an association between ICCy scores and
503  cognitive systems. We mapped edgewise scores to the 17 cognitive systems in the same manner
504  as for the resting-state and plotted the difference between the ICC,, values during task and

505  resting-state in Figure 4. We generally observed higher reliability during task states, and found
506  that for tasks with repeated sessions, the ICCy progressively increased from resting-state as the
507  sessions progressed (Figure 4 VWM and DYN tasks). For task EEG data, ICC,, scores from the
508  top 10% of the ICCy distribution were plotted onto the scalp and we did not notice any overt
509  reconfiguration in scalp distribution from resting-state to task (Figure 5).

510

511

512

513

514
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Figure 4. fMRI changes in reliability from resting-state for each task: DOT, PVT, MOD, VWM-

0.2

0.2

1:3, and DYN-1:4. Connections are mapped unto 17 cognitive systems from Schaefer cortical

and Harvard-Oxford subcortical atlas. DOT: Dot Probe Task; DYN: Dynamic Attention Task;
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MOD: Modular Math Task; PVT: Psychomotor Vigilance Task; VWM 1-3: Visual Working
Memory.

DYN-3 DYN-2 DYN-1 VWM-3 VWM-2 VWM-1 PVT MOD Resting-State

DYN-4

Figure 5. Scalp distribution across tasks for top 10% of ICCy scores. For Resting-State and each
task: DOT, PVT, MOD, VWM-1:3, and DYN-1:4, (10 in total), connections with ICCy, scores in
top 10% for &, 6, a, B and y frequency bands are plotted on the scalp. DOT: Dot Probe Task;
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531 DYN: Dynamic Attention Task; MOD: Modular Math Task; PVT: Psychomotor Vigilance Task;
532 VWM 1-3: Visual Working Memory.

533

534 3.2 Reliability of Network Measures

535 We next assessed the reliability of higher order network properties. For each brain

536  network, nine measures were calculated along with their corresponding ICCy, and ICCy, scores.
537  We found significant differences between modalities in ICCy, (Fe66 = 45; p-corrected << 0.001).
538  Asshown in Figure 6 A, across all imaging modalities and network properties, the dMRI

539  exhibited the highest ICCy, scores (0.71 £ 0.06 (SD)) . By comparison, resting-state fMRI

540  exhibited relatively poor reproducibility (0.35 £ 0.12 (SD)), and EEG’s reproducibility was

541  frequency dependent with the a-band having the highest ICC,, scores (0.43 £ 0.09 (SD)). ICC,

542  scores across all modalities were close to zero (Figure 6B).
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546  Figure 6. Graph Measures for dIMRI and Resting-State fMRI and EEG for (A) ICCy, and (B)
547  ICCy values.
548
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549 We next assessed if performing a task alters the reliability of network measures (Figure
550 7). For fMRI, we evaluated the Task x Network Measure x ICC ANOVA design and found

551  significant interactions between Task x ICC (Fss0 = 99, peorrected << 0.001) and Network Measure
552 xICC (F0,80 = 9.88, peorrected << 0.001) (Figure 7A). For the EEG, we evaluated the Task x

553  Frequency x Network Measure x ICC ANOVA design, and we found a significant interaction
554  between Task x Frequency (F 32,792 = 5.35, peorrected < 0.001) and Frequency x Network Measure
555  (F40,792=6.33, peorrected < 0.001) (Figure 7A). From Figure 7 it is apparent that the a.-band is the
556  most consistent across resting- and task-state, while the f-band shows an increase in ICCy in the
557  task-states. It is also worth noting that Synchronizability and Eigenvector Centrality exhibited
558  weaker ICCy, scores relative to the other metrics across resting- and task-states for both fMRI

559 and EEG.
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561  Figure 7. ICC values for network measures across task and resting-state. (A) ICCy, and (B) ICCy
562  values across tasks for fMRI and EEG frequency bands.
563

564 3.3 Fingerprinting Analysis
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565 Our analysis so far has confirmed that dMRI networks are more reliable within a subject
566  than fMRI and EEG networks. We therefore, expect that AMRI networks will have a higher

567  probability of being able to identify an individual from a group, similar to a fingerprint (Finn et
568 al., 2015). For functional networks, we would similarly expect the same of a.-band EEG

569  networks, given their relatively higher reliability scores. In order to fingerprint an individual,
570  brain networks from the individual should be more similar to each other across runs relative to
571  networks obtained from other individuals. To formally assess the similarity between brain

572  networks, we measured similarity using the Euclidian distance (Methods). Our results indicate
573  that fingerprinting was not uniform across all derived networks (Fs,168 = 3402, pcorrected << 0.001).
574  As expected, structural dAMRI networks had the highest accuracy, but for functional networks,

575  fMRI networks performed better than a-band EEG derived networks, and in fact, within EEG

576  networks, B-band networks had the highest fingerprinting accuracy (Figure 8A).
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579  Figure 8. Fingerprinting performance across imaging modalities. (A) Proportion of networks

580 that were correctly matched to the corresponding individual for dIMRI, fMRI, and EEG derived
581  brain networks. (B) Separability of each network in being matched to corresponding individual.
582  For each violin plot, the central dot indicates the median, and the line indicates the 25th to 75th
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583  percentiles.

584

585 However, this analysis does not tell us about the separability across the networks derived
586  from the different imaging modalities. Here we define separability as the difference in similarity
587  between the minimum within-subject value for a network to the maximum between subject

588  similarity for that network (Methods). Therefore, positive separability values indicate that a

589  particular network for an individual is always more similar to other networks from that

590 individual and negative values indicate the opposite. Separability values across imaging

591  modalities were found to be significantly different (Fe,10093 = 8618; peorrected << 0.001). In

592  addition, despite dIMRI and fMRI having similar accuracy in fingerprinting, dMRI networks

593  were more separable than fMRI and EEG (dMRI: 0.14 + 0.04 (SD); fMRI: -0.26 £ 0.27 (SD); 6 ,
594 0,0, pandy: <-0.85 (mean)) (Figure 8B).

595

596 4 Discussion

597 In the current work, we analyzed the reproducibility of multimodal and multi-task

598  structural and functional brain networks in a unique longitudinal and multi-modal data set with
599  simultaneous EEG-fMRI recordings. In our analysis, each subject contained brain networks

600  derived from dMRI, fMRI and EEG data, allowing us to assess how reliability differed in brain
601  networks derived from different modalities and across task states.

602

603 4.1 Edgewise Reliability Differences Between dMRI, fMRI, and EEG

604 We first assessed the reliability of individual connections in the structural and functional
605  brain networks and found stronger within- than between-subject reliability across all imaging

606  modalities, in line with previous results (Birn et al., 2013; Noble et al., 2019, 2017; O’Connor et
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607 al., 2017; Pannunzi et al., 2017; Shehzad et al., 2009). The most reliable connections were also
608  the ones that tended to be the strongest, corroborating previous findings in fMRI networks

609  (Noble et al., 2017; Pannunzi et al., 2017). In addition, these connections when mapped on to
610  cognitive systems, exhibited distinct patterning. As a trend, for dIMRI and resting-state fMRI,
611  connections within a cognitive system exhibited the strongest reliability, consistent with previous
612  studies in functional networks (Birn et al., 2013; Noble et al., 2017; O’Connor et al., 2017;

613  Shehzad et al., 2009). However, a direct comparison between dMRI and resting-state fMRI

614  showed distinct distribution of reliability across cognitive systems. dMRI reliability was

615  strongest within the Frontal-Parietal Control system and between the Visual to Default Mode and
616  Temporal Parietal system, while in resting-state fMRI stronger values were distributed between
617  cognitive systems.

618 When assessing task mediated changes, we found an increase in reliability across most
619 tasks relative to resting-state in fMRI networks. In addition, we observed an increase in this

620  reliability across multiple sessions of a given task, potentially indicative of an effect of learning
621  the task. This finding compliments results from a previous study that found adding task-state
622  fMRI networks improves predictive outcomes relative to resting-states fMRI (Gao et al., 2019).
623 For EEG, the a- and B-bands had the highest reliability scores for both resting- and task-
624  states, confirming previous results (Kuntzelman and Miskovic, 2017). The strong reliability for
625  the a- and B-band could be due to the fact that these frequencies are consistently activity, while
626  the other frequency bands tend to have transient activity. In a similar manner to fMRI, EEG

627  reliability increased during a task, but this increase was primarily in the a- and B-bands. In

628  addition, we found no major changes when we mapped connections on the scalp from resting-

629  state to task-state. This could be due to the low spatial resolution of EEG (Nunez et al., 1997).
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630

631 4.2 Reliability of Graph Theoretical Measures

632 When examining the reliability of higher order network properties, we found that

633  network properties had overall stronger reliability scores than individual connections in line with
634  previous findings of Braun et al., 2012. This might lead one to ask how the prevalence of low
635  reliability scores across most connections could produce fair to excellent reliability in higher
636  order network properties? This result could be due to the fact that edges with higher reliability
637  scores are associated with the stronger connections. Our graph theoretical properties are

638  dependent on connection strength, and the stronger the connection, the more variance it accounts
639  for in the higher order network values. Thus, despite most connections having poor reliability,
640  the few strong connections with good to excellent reproducibility have a disproportionately

641  higher impact on the reliability of a network measure. The notable exception is that in fMRI and
642  EEG, synchronizability and eigenvector centrality had lower reliability scores than the other

643  network properties. One possible reason for this is that these measures, particularly eigenvector
644  centrality, are very sensitive to the state of the subject (Lohmann et al., 2010). These results

645 indicate these measures might be more sensitive to detecting meaningful differences between
646  individuals in studies where one is attempting to link functional brain connectivity to task

647  performance or behavior.

648 We also found task associated differences in reliability for the fMRI and EEG. However
649  for the EEG, the strongest increases in reliability were in the o- and B-bands. However, in

650  contrast to Deuker et al., 2009 we did not find a corresponding increase in ICCy, scores in the &
651  and 0 bands with task.

652
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653

654 4.3 Fingerprinting

655 We found that dMRI and fMRI outperformed EEG derived networks in fingerprinting.
656  However, the separability was not equal across these networks, with dMRI outperforming all
657  functional networks. This is likely due to the fact that, unlike functional connectivity, structural
658  connectivity is not state dependent.

659 It has been found that brain activity measured with fMRI is stable over time (Braga and
660  Buckner, 2017; Gratton et al., 2018; Horien et al., 2019; Laumann et al., 2015) and in fMRI,

661  within-subject variance can be reduced with high quality data with long scan times (~15 minutes)
662  and multiple sessions (Birn et al., 2013; Laumann et al., 2015; Noble et al., 2017; Pannunzi et al.,
663  2017). It has been argued that large amounts of data are needed in order to differentiate between
664  true and artifact induced variance (Gordon et al., 2017; Power et al., 2012) and previous studies
665  have found that reliability increases with more data (Anderson et al., 2011; Birn et al., 2013;

666  Laumann et al., 2015; Noble et al., 2017; Shou et al., 2013). This high quality data is important
667  because Horien ef al., 2019 found that motion characteristics can be unique to an individual and
668  can fingerprint a subject at a level greater than chance. In our data, individual scan times were
669  limited to approximately 5 minutes, but data was collected over multiple sessions for a relatively
670 large number of subjects, suggesting that we might expect more reliable results. However, our
671  observation of the relatively weak accuracy and separability of EEG (a more direct measure of
672  neuronal activity than fMRI) in fingerprinting an individual raises questions as to whether the
673  increase in fingerprinting performance in fMRI on long time scans is based on neuronal activity.
674  Also, respiration induced artifacts in fMRI exhibit the same stability over time (Power et al.,

675  2019), which could also lead to increased reliability measurements.
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676 Our direct comparison of fingerprinting between structural and functional networks

677  indicates that structural networks more sensitive. In addition, these results indicate that the

678  patterning in structural connectivity is far more unique to an individual than those in

679  corresponding functional networks. These results suggest that structural networks might have
680  more discriminative power than functional networks.

681 Unique brain connectivity features have previously been proposed to play a role in

682  differences underlying behavior and cognition (Kanai and Rees, 2011). Specifically, difference
683  in behavioral performance in motor and decision associated tasks are correlated with fractional
684  anisotropy of the corpus callosum (Johansen-Berg et al., 2007; Westerhausen et al., 2006), optic
685  radiation (Tuch et al., 2005) and grey matter density (Van Gaal et al., 2011). Cortical thickness
686  within the superior parietal lobes has been found to be correlated with the rate of switching in a
687  perception based task (Kanai et al., 2010). In addition structural features unique to an individual
688 lead to characteristic brain functional activity in modeling analysis and task performance (Bansal
689 etal., 2019, 2018a).

690

691 4.4 On Reliability, Confounding Variables, and Utility

692 Is a connection with poor reliability good or bad? To answer this, we need to be mindful
693  of the goal at hand. First and foremost, we need to make sure that reliability values are not due to
694  noise in the signal. On the other hand, if we are confident that low reliability is a genuine part of
695  the signal, then that is also a very informative finding. The seminal work of Poldrack et al., 2015
696  found that functional connectivity exhibits a high level of variability within the same person over
697  the course of a year. Along these lines, Noble et al., 2017 found that functional connections with

698  strong reliability are not very informative when it pertains to predicting behavior. However, we

38


https://doi.org/10.1101/2022.05.03.490544
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.03.490544; this version posted May 4, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

699  need to be mindful that this is an effect limited to functional connectivity. Therefore, structural
700  connections and/or higher-order network metrics might exhibit a stronger association between
701  reliability and behavior. Also, finding highly reproducible brain connections and/or measures
702 might be very important if we are looking for deviations from expected values that could be used
703  as biomarkers for disease identification/progression. Alternatively, connections and/or measures
704  with low reliability might be useful for studying individual differences and making correlations
705  between structure and performance/behavior.

706 But, even beyond reliability and noise, our functional results could, along with previous
707  literature, reflect the natural day-to-day changes in our brain. Neuroplastic changes in the brain
708 are the hallmark of learning and memory (Lamprecht and LeDoux, 2004), and these changes or
709  natural fluctuations and modifications in the neural code (Fairhall et al., 2001), reflecting

710  learning and memory could be reflected in functional connectivity. Indeed, there are many

711  examples of rapid neuroplastic changes in the brain that results in functional connectivity

712 changes (e.g., Nierhaus et al., 2019), but see Perich et al., 2018 as an alternative theory.

713 Moreover, in this particular dataset, individuals were recruited to capture substantial variability
714 in sleep without experimental manipulation. While there is a substantial literature on brain

715  related decrements due to sleep deprivation (Boonstra et al., 2007; Hudson et al., 2020) little is
716  known about naturalistic fluctuations in sleep (Moturu et al., 2011; Thurman et al., 2018). These
717  individuals, instead could be more “plastic” (or “stationary’) than other individuals. Future

718  studies may disentangle these alternatives from a reliability explanation of our results.

719 fMRI-based analysis has been around for over two decades, but its clinical use has been
720  limited, raising questions about its usefulness as a diagnostic tool. In addition, given that the

721  effectiveness of any diagnostic tool is only as useful as it can be applied to an individual, then in
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722 this regard, structural networks should take a more prominent role in medicine. Regardless, one
723  must consider how measures of reliability relate to the modality being studied, the state of the
724 brain, and the question at hand in order to meaningfully ask questions about how brain networks
725  change with disease or how individual differences in structure relate to performance and

726  behavior.
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