

43 **Abstract**

44 Network analysis provides new and important insights into the function of complex
45 systems such as the brain by examining structural and functional networks constructed from
46 diffusion Magnetic Resonance Imaging (dMRI), functional MRI (fMRI) and
47 Electro/Magnetoencephalography (E/MEG) data. Although network models can shed light on
48 cognition and pathology, questions remain regarding the importance of these findings, due in
49 part to the reproducibility of the core measurements and subsequent modeling strategies. In order
50 to ensure that results are reproducible, we need a better understanding of within- and between-
51 subject variability over long periods of time. Here, we analyze a longitudinal, 8 session, multi-
52 modal (dMRI, and simultaneous EEG-fMRI), and multiple task imaging data set. We first
53 investigate the reproducibility of individual brain connections and network measures and find
54 that across all modalities, within-subject reproducibility is higher than between-subject
55 reproducibility, reaffirming the ability to detect individual differences in network structure in
56 both structural and functional human brain networks. We see high variability in the
57 reproducibility of pairwise connections between brain regions, but observe that in EEG-derived
58 networks, during both rest and task, alpha-band connectivity is consistently more reproducible
59 than networks derived from other frequency bands. Further, reproducible connections correspond
60 to strong connections. Structural networks show a higher reliability in network statistics than
61 functional networks, and certain measures such as synchronizability and eigenvector centrality
62 are consistently less reliable than other network measures across all modalities. Finally, we find
63 that structural dMRI networks outperform functional networks in their ability to identify
64 individuals using a fingerprinting analysis. Our results highlight that functional networks likely
65 reflect state-dependent variability not present in structural networks, and that the analysis of

66 either structural or functional networks to study individual differences should depend on whether
67 or not one wants to take into account state dependencies of the observed networks.

68

69 **Keywords:**
70 Brain Networks, Reproducibility, Fingerprinting, Multi-modal Imaging

71 **1 Introduction**

72 The introduction of network theory to neuroscience has increased our understanding of
73 the brain's functional and structural organization. This powerful tool has given new insights into
74 how higher order brain functions arise (Bassett and Sporns, 2017; Park and Friston, 2013) and
75 how changes can lead to pathology (Fornito et al., 2015). However, questions have been raised
76 regarding the reliability of brain network properties given the effects of noise in the signal,
77 particularly in fMRI (Laumann et al., 2016; Power et al., 2018, 2012). Still, despite the presence
78 of noise, brain networks have been found to exhibit consistent properties over time among
79 individual network connections and in higher order properties, such as the clustering coefficient,
80 characteristic path length, and assortativity, for structural connectivity as measured with dMRI
81 (Bassett et al., 2011; Bonilha et al., 2015; Buchanan et al., 2014; Bürgel et al., 2006; Malykhin et
82 al., 2008), fMRI (Amunts et al., 2000; Braun et al., 2012; Deuker et al., 2009; Du et al., 2015;
83 Elliott et al., 2019; Gordon et al., 2017; Gratton et al., 2018; Laumann et al., 2015; Mangin et al.,
84 2004; Noble et al., 2017, 2019; Pannunzi et al., 2017; Rypma and D'Esposito, 1999; Shah et al.,
85 2016) and EEG/MEG (Deuker et al., 2009; Hardmeier et al., 2014; Kuntzelman and Miskovic,
86 2017). Unfortunately, most studies thus far have been limited to the analysis of a single imaging
87 modality and/or few scanning sessions, raising questions about how reliable these properties are
88 over longer times and across modalities.

89 While it is clear that there is some level of reliability in network properties within an
90 individual over time, it is also important to understand how the state of the brain (e.g., resting
91 wakefulness versus active task situations (Fox et al., 2005)), and the neural methodology (e.g.,
92 fMRI versus EEG) contributes to this reliability across multiple days. The "resting" brain (e.g.,
93 default mode network) is a state that has been shown to be metabolically demanding (Raichle et

94 al., 2001) and associated not only with task performance (e.g., Tian et al., 2012) but also disease
95 (e.g., Sorg et al., 2007), very much similar to task-related activity; however, the “resting” brain is
96 fundamentally different from task-related activity, as engagement in a task requires precise
97 recruitment of and coordination between regions of the brain (Fox et al., 2005). Also, in a field
98 with a variety of diverse methodologies (e.g., fMRI, EEG, MEG, PET, etc), neuroscience
99 researchers draw conclusions from methods that are measuring fundamentally different neural
100 properties. For example, fMRI is an indirect measurement of neural activity, as it measures
101 oxygenation and neural activity is inferred. Whereas EEG, a “direct” measurement, is measured
102 on the scalp and filtered by a variety of tissues and bone separating the scalp from the brain. In
103 terms of reliability, experimental design and task demands have shown to contribute to reliability
104 in fMRI (Bennett and Miller, 2013, 2010), and EEG suffers from a large variety of factors that
105 could impact reliability as well (McEvoy et al., 2000). However, there is no study, to our
106 knowledge, that has measured reliability of network structure derived from both fMRI and EEG
107 data collected at the same time over many sessions.

108 In addition to studying reliability within an individual over time, one can also ask about
109 how network properties differ between individuals. Indeed, recent work has shown that brain
110 networks can provide insight into the unique features associated with a person (Bansal et al.,
111 2018b, 2018a; Gordon et al., 2017; Seitzman et al., 2019). A giant leap toward the goal of
112 understanding differences in brain networks was made with the finding that functional brain
113 activity has unique features that can identify a person in a group, similar to a fingerprint (Finn et
114 al., 2015). This fingerprinting property has also been found in structural connectomes (Powell et
115 al., 2018; Yeh et al., 2016). Fingerprinting is important because it allows neuroimaging analyses
116 to focus on the individual and not only on group-level differences (Finn et al., 2015).

117 To further understand reliability in brain networks over time, across different states, and
118 across modalities, we quantified within- and between-subject reliability in a rich longitudinal and
119 multi-modal dataset consisting of dMRI and simultaneous EEG-fMRI recording during resting-
120 state and multiple tasks. Importantly, the data set studied here was part of a larger study
121 examining naturalistic sleep variability in individuals (Thurman et al., 2018). Here, we do not
122 focus on the effects of variation in sleep pressure, but instead note that due to the study design,
123 subjects varied in the amount of sleep pressure they experienced during each imaging session,
124 presumably augmenting variability within- and between-subjects' functional brain network over
125 time. We examine both structural and functional brain networks in this data set to study
126 reliability of individual connections and higher order network statistics. To create structural
127 networks, dMRI imaging was used to perform tractography and network connections were
128 defined as the density of streamlines between brain regions. fMRI networks were constructed
129 using the Pearson-Product Correlation to quantify the magnitude of the statistical relationship in
130 the BOLD signal between brain regions. For EEG, the time-series signal from each sensor was
131 first separated into traditional frequency bands of δ (1-3 Hz), θ (4-7 Hz), α (8-13 Hz), β (14-30
132 Hz) and γ (30-60 Hz), and functional connectivity was calculated using the debiased-weighted
133 Phase-Lag Index (dwPLI) which quantifies phase synchronization between sensors based on the
134 consistency of the lag between the instantaneous phases of two sensors (Vinck et al., 2011).

135 In the current work we evaluate: 1) which brain connections and network measures are
136 most reliable within- and between-individuals; 2) how reliability varies across state and
137 modality; and 3) how the different imaging modalities, dMRI, fMRI, and EEG, perform in a
138 fingerprinting analysis to identify an individual.

139

140 **2 Material and methods**

141 *2.1 Participants*

142 The University of California, Santa Barbara (UCSB) Human Subjects Committee (#16–
143 0154) and Army Research Laboratory Human Research Protections Office (#14–098) approved
144 all procedures, and all participants provided informed written consent. Research was conducted
145 in accordance with the declarations of Helsinki. The data presented in this manuscript represent a
146 subset of data collected as part of a large-scale, longitudinal experimental that collected bi-
147 weekly structural and functional brain data. A full description of the study can be found in
148 (Thurman et al., 2018). Here we analyze data from 27 healthy participants who were recruited
149 by word of mouth and local advertisements. Note that by study design, participants were
150 excluded from the multi-session segment of the study if they did not experience sleep variability.
151 Data is accessible upon request as far as allowed by the security policy and guidelines
152 established with the ethics committee of the US Army Research Laboratory Human Research
153 Protection Program.

154

155 *2.2 Data Description*

156 Over the course of 16 weeks, subjects were asked to complete 8 recording sessions
157 involving dMRI and simultaneous EEG-fMRI. For each session, simultaneous EEG-fMRI
158 recording consisted of a 5-minute resting state and 10 tasks with varying levels of cognitive
159 demand; specifically:
160 Dot Probe Task (Dot) (Sipos et al., 2014);
161 Dynamic Attention Task (DYN 1-4) with four repetitions of the same task (Yantis et al., 2002);
162 Modular Math (MOD) (Mattarella-Micke et al., 2011);

163 Psychomotor Vigilance Task (PVT) (Loh et al., 2004), and;
164 Visual Working Memory (VWM 1-3) with three repetitions of the same task (Luck and Vogel,
165 1997).

166 Table 1 shows the average number of subjects and sessions for each imaging modality.

167 When analyzing the EEG-fMRI data, we analyzed only six sessions of data. This was done in
168 order to make a trade-off between maximizing the number of subjects and number of sessions,
169 since not all subjects participated in all 8 sessions. Detailed information on the number of
170 subjects and sessions for functional data can be found in Tables 2 and 3. Lastly, for the
171 fingerprinting analysis using dMRI data, we used 25 subjects, all of which had an equal number
172 of sessions (8 sessions). For the fingerprinting analysis using fMRI data, 15 subjects were
173 included with all 6 sessions of resting-state and task recordings, and for the EEG data, we used
174 26 subjects with resting-state and all tasks over 6 sessions.

Table 1. Average number of subjects and sessions per imaging modality

Imaging Modality	Subjects	Sessions
dMRI	25	8
fMRI	23.1	6
EEG	27	6

Table 2. Number of subjects and sessions for each task per EEG and fMRI

Task	EEG Subjects	fMRI Subjects	Sessions
Resting-State	27	26	6
DOT	27	25	6
DYN-1	27	27	6
DYN-2	27	27	6
DYN-3	27	26	6
DYN-4	27	20	6
MOD	27	17	6
PVT	27	19	6
VWM-1	27	27	6
VWM-2	27	23	6
VWM-3	27	17	6

Table 3. Number of subjects and sessions for fingerprinting

Fingerprinting	Subjects	Sessions	Tasks Included
dMRI	25	8	n/a
fMRI	15	6	Yes
EEG	27	6	Yes

175

176 *2.3 fMRI Acquisition and Preprocessing*

177 Functional neuroimaging data were acquired on a 3T Siemens Prisma MRI using an
178 echo-planar imaging (EPI) sequence (3mm slice thickness, 64 coronal slices, field of view
179 (FoV)=192 x 192 mm, repetition time (TR)=910 ms, echo time (TE)=32 ms, flip angle=52°, and
180 voxel size: 3 x 3 x 3 mm). For repeated scans, a T1-weighted structural image was also acquired
181 using a high-resolution magnetization prepared rapid acquisition gradient echo (MPRAGE)
182 sequence (TR= 2500 ms, TE=2.22 ms, and FoV= 241 x 241 mm with a spatial resolution of .9 x
183 .9 x .9 mm), for use in coregistration and normalization.

184 fMRI BOLD images were preprocessed using Advanced Normalization Tools (ANTs)
185 (Avants et al., 2009). Physiological artifacts including respiration and cardiac cycle effects were
186 corrected using the retrospective correction of physiological motion effects method,
187 RETROICOR (Glover et al., 2000), implemented in MEAP v1.5 (Cieslak et al., 2018). Head
188 motion was estimated using antsMotionCorr, and the motion correction was completed as
189 follows: (1) An unbiased BOLD template was created within each session by averaging the
190 motion-corrected BOLD time series from each run. (2) The BOLD templates were coregistered
191 to the corresponding T1-weighted high resolution structural images, collected in each session. (3)
192 Each session was spatially normalized to a custom study-specific multi-modal template which
193 included T1-weighted, T2-weighted and GFA images from twenty-four quasi-randomly selected
194 participants chosen to match the study population. (4) The template was then affine-transformed

195 to the coordinate space of the MNI152 Asymmetric template. (5) Finally, the fMRI volumes
196 were transformed using the estimated head motion correction, BOLD template coregistration,
197 BOLD-to-T1w coregistration and spatial normalization into MNI space using a single Hamming
198 weighted sinc interpolation. After these transformations, the final step in the preprocessing was
199 to extract time-series from fMRI scans for functional connectivity analyses. Two atlases were
200 used to reduce the 3D volume data into 221 nodal time series data: (1) the cortical Schaefer 200
201 atlas (Schaefer et al., 2018) which was derived from intrinsic functional connectivity in resting
202 state fMRI and (2) 21 subcortical regions from the Harvard-Oxford atlas based on anatomical
203 boundaries (Makris et al., 2006). As the atlases are in MNI coordinate space, voxels within each
204 labelled region of the atlases were simply averaged, and time series were extracted for the
205 following connectivity analyses.

206 To assess functional connectivity among ROIs, mean regional time-courses were
207 extracted and standardized using the nilearn package (Abraham et al., 2014) in Python 2.7, and
208 confound regression was then conducted. In particular, the time series for each region was
209 detrended by regressing the time series on the mean as well as both linear and quadratic trends.
210 There were a total of 16 confound regressors, which included: head motion, global signal, white
211 matter, cerebrospinal fluid and derivatives, quadratics and squared derivatives. This functional
212 connectivity preprocessing pipeline was selected based on conclusions from prior work that
213 examined performance across multiple commonly used preprocessing pipelines for mitigating
214 motion artifact in functional BOLD connectivity analyses (Circi et al., 2017; Lydon-Staley et al.,
215 2018).

216 To construct the fMRI networks, the signal from all voxels within a brain region were
217 averaged, and the Pearson Product Correlation (R) between two brain regions was calculated as

218
$$R = \frac{\text{cov}(x,y)}{\sqrt{\sigma_x \sigma_y}}, \quad (1)$$

219 where x and y represent the time-series data from two different regions and σ is the variance of
220 the time series. To account for negative correlations, the absolute value of the correlations was
221 used to construct weighted functional connectivity matrices.

222

223 *2.4 EEG Acquisition and Preprocessing*

224 Continuous EEG recordings were captured simultaneously with an fMRI-compatible
225 EEG equipped with standard Ag/AgCl electrodes from 64 sites on the scalp oriented in a 10-20
226 scheme system (Brain Products, Gilching, Germany). Initial fMRI pulse and
227 ballistocardiographic artifact correction was completed in BrainAnalyzer 2 (Brain Products,
228 Gilching, Germany) using classic subtraction and filtering approaches (Allen et al., 2000, 1998).
229 These mid-level processed EEG measurements were then further processed using in-house
230 software in MATLAB (Mathworks, Inc., Natick, MA, USA) and the EEGLAB toolbox (Delorme
231 and Makeig, 2004; Mullen et al., 2013). Despite the subtraction and filtering approaches applied,
232 residual artifact from the fMRI pulse persisted. To remove these lingering artifacts, we
233 developed a new cleaning pipeline.

234 Our cleaning pipeline included steps tailored to remove common EEG artifact (e.g., eye
235 blinks, muscle-related activity) and then targeted the high frequency noise in the 16-19 Hz and
236 34-38 Hz range. EEG data were bandpass filtered between 0.75 Hz and 50 Hz using a Finite
237 Impulse Response (FIR) filter. Next, EEGLAB's automated `clean_rawdata` function was used to
238 determine channels that differed substantially from the estimated signal (derived from other
239 channels) or had consistent flat-lining. Then, the EEG data were subjected to an Independent

240 Component Analysis (ICA) decomposition and the ADJUST algorithm (Mognon et al., 2011)
241 was used to remove ICA components associated with stereotyped noise. Following ICA
242 decomposition, bad channels were interpolated using spherical interpolation. As a final step in
243 EEG preprocessing, the EEG data were subjected to Artifact Subspace Reconstruction (ASR)
244 (Chang et al., 2020; Mullen et al., 2015), which we used to target the aforementioned residual
245 high frequency noise from the fMRI artifact. This method, in combination with the ICA cleaning
246 method allows for the targeting of both stationary and non-stationary persistent artifacts. To
247 deploy ASR on the dataset, we first created a “clean” reference signal from each subject’s EEG
248 data by: 1) concatenating EEG segments that were at least 1000ms long with amplitude below
249 $100\mu\text{V}$, (2) and notch filtering (FIR) the EEG between 16-19 Hz and 34-38 Hz. Following the
250 creation of the reference signal, ASR was then used to reconstruct the EEG that contained large
251 fluctuations greater than 5 standard deviations beyond the reference signal (in 500ms chunks).
252 Lastly, the data were re-referenced to a common average reference.

253 To construct EEG networks, the signal from each sensor was separated into standard
254 frequency bands corresponding to δ (1-3Hz), θ (4-7Hz), α (8-13Hz), β (15-30Hz) and γ (30-
255 60Hz) with a Butterworth filter (8th order) followed by Hilbert transformation. Weighted
256 functional connectivity adjacency matrices were constructed for each frequency band using the
257 de-biased weighted phase-lag index (dwPLI) (Vinck et al., 2011). Each node in the adjacency
258 matrix corresponds to a channel with the weight representing the strength (phase-lag) of the
259 connection. Specifically, dwPLI is calculated as,

$$260 \quad dwPLI = \frac{\sum_{i=1}^N \sum_{j \neq i} I(X_i)I(X_j)}{\sum_{i=1}^N \sum_{j \neq i} |I(X_i)I(X_j)|}, \quad (2)$$

261 where $I(X_i)$ corresponds to the imaginary component of time series data (X) from channel i .

262 Specifically, dwPLI is the sum of all pairwise products of the magnitudes of the imaginary
263 components. In addition, dwPLI accounts for any bias due to the number of data points.

264

265 *2.5 dMRI Acquisition and Preprocessing*

266 Diffusion spectrum imaging (DSI) scans were acquired for each session. DSI scans
267 sampled 258 directions using a Q5 half-shell acquisition scheme with a maximum b-value of
268 5,000 and an isotropic voxel size of 2.4 mm. Minimal preprocessing was carried out on the DSI
269 scans and was restricted to motion correction. Following a similar procedure to the fMRI motion
270 correction, motion was first assessed and applied for all of the b0 volumes, and a template was
271 created for each scan composed of the average of the b0 volumes. Next, the b0 volumes and
272 vectors were transformed using the estimated head motion correction, b0 template coregistration,
273 b0 template-to-T1w coregistration and spatial normalization into MNI space using a single
274 Hamming weighted sinc interpolation.

275 Fiber tracking was performed in DSI Studio (www.dsi-studio.labsolver.org) with an
276 angular cutoff of 35°, step size of 1.0 mm, minimum length of 10 mm, spin density function
277 smoothing of 0, and a maximum length of 250 mm. Deterministic fiber tracking was performed
278 until 500,000 streamlines were reconstructed for each session. As with the fMRI volume data,
279 streamline counts were estimated in 200 nodes using the same Schaefer 200 atlas (Schaefer et al.,
280 2018) and 21 subcortical regions part of the Harvard-Oxford atlas (Makris et al., 2006).
281 Connectivity matrices were then normalized by dividing the number of streamlines (T) between
282 region i and j , by the combined volumes (v) of region i and j ,

283
$$A_{ij} = \frac{T_{ij}}{v_i + v_j}. \quad (3)$$

284 2.6 *Graph Theoretical Analysis*

285 We calculated nine commonly used and diverse graph metrics on each weighted dMRI,
286 fMRI and EEG network. The graph metrics are: degree, clustering coefficient, characteristic path
287 length, small-world propensity, global and local efficiency, synchronizability, spectral radius,
288 and eigenvector centrality. See supplemental for detailed description of each network measure.

289 2.7 *Degree*

290 The weighted node degree (k_i) is defined as the sum of all connections of a node
291 (Rubinov and Sporns, 2010),

292
$$k_i = \sum_{j \in N} W_{ij}, \quad (4)$$

293 where W is the weighted adjacency matrix of a network with N nodes.

294

295 2.8 *Clustering Coefficient*

296 The weighted clustering coefficient (C) for node i is the intensity of triangles in a
297 network (Onnela et al., 2005) and is calculated as,

298

299
$$C_i = \frac{1}{b_i(b_i-1)} \sum_{j,h} (W_{ij} W_{ih} W_{jh})^{1/3}, \quad (5)$$

300 where W is the weighted adjacency matrix and b is the number of edges for node i .

301

302 2.9 *Characteristic Path Length*

303 The characteristic path length (L) is the average shortest path length between all nodes
304 (Rubinov and Sporns, 2010),

305
$$L = \frac{1}{N} \sum_{i \in N} \frac{\sum_{j \in N, j \neq i} d_{ij}^w}{N-1}, \quad (6)$$

306 where d_{ij}^w is the is the distance between nodes i and j . To calculate d_{ij}^w , we first take the inverse
307 of the edge weights to transform the weight to a measure of length (i.e., to transform a strong
308 connection strength to a short length). We then determine the shortest path between nodes i and j
309 (using the inverted weights), and d_{ij}^w is the sum of the inverse of the edge weights along this
310 shortest path.

311

312 *2.10 Small-World Propensity*

313 Small-world propensity (ϕ) quantifies the extent to which a network displays small-
314 worldness, a network property that combines the presence of local clustering with a short path
315 length, while factoring in variation in network density (Muldoon et al., 2016). Small-worldness
316 is calculated as,

317
$$\phi = 1 - \sqrt{\frac{\Delta_C^2 + \Delta_L^2}{2}}, \quad (7)$$

318

319
$$\Delta_C = \frac{C_{latt} - C_{obs}}{C_{latt} - C_{rand}}, \quad (8)$$

320

321
$$\Delta_L = \frac{L_{obs} - L_{rand}}{L_{latt} - L_{rand}}, \quad (9)$$

322 where C_{obs} is the observed clustering coefficient and L_{obs} is the observed characteristic path
323 length of the network; C_{latt} , L_{latt} , C_{rand} , and L_{rand} are clustering coefficient and characteristic path
324 length from lattice and random networks with the same number of nodes and edge distribution.

325

326 *2.11 Global and Local Efficiency*

327 The efficiency of a node is the inverse of the path length (Rubinov and Sporns, 2010).

328 Global efficiency (E_g) is the inverse shortest path length,

329

$$E_g = \frac{1}{N} \sum_{i \in N} \frac{\sum_{j \in N, j \neq i} (d_{ij}^w)^{-1}}{N-1}, \quad (10)$$

330 where d_{ij}^w is the previously defined distance between node i and j .

331

332 Local efficiency (E_l) is the global efficiency computed on the neighborhood of node i ,

333

$$E_l = \frac{1}{N} \sum_{i \in N} \frac{\sum_{j, h \in N, j \neq i} (w_{ij} w_{ih} [d_{jh}^w(N_i)]^{-1})^{1/3}}{k_i(k_i-1)}, \quad (11)$$

334 where w_{ij} and w_{ih} is strength of the connection between node i to j and h , respectively, and d_{jh}
335 (N_i) is the length of the shortest path between nodes j and h that contains only neighbors of node
336 i .

337

338 *2.12 Synchronizability*

339 Synchronizability is a measure of linear stability for a network of coupled dynamical
340 systems (Motter et al., 2005),

341

$$S = \frac{\lambda_2}{\lambda_n}, \quad (12)$$

342 where λ_2 is the second smallest eigenvalue of the unnormalized Laplacian matrix (L) and λ_n is its
343 largest eigenvalue. The Laplacian is calculated as,

344
$$L = D - W, \quad (13)$$

345 where D is the degree matrix of the weighted adjacency matrix, W .

346

347 *2.13 Spectral Radius*

348 The spectral radius measures the ease with which diffusion process can occur in a
349 network. The spectral radius is calculated as,

350
$$\rho(W) = \max\{|\lambda_1|, \dots, |\lambda_n|\}, \quad (14)$$

351 where $|\lambda|$ corresponds to the absolute value of the eigenvalues of a network.

352

353 *2.14 Eigenvector Centrality*

354 Eigenvector centrality (EC_i) measures how influential a node is in a network, with a high
355 value indicating a node is connected to other highly influential nodes (Newman, 2008). The
356 eigenvector centrality of node i is given by the i -th entry in the dominant eigenvector, which is
357 the vector $v = [v_1, \dots, v_N]$ that solves

358
$$\lambda_1 v = W v^T, \quad (15)$$

359 where λ_1 is the largest eigenvalue of the weighted adjacency matrix, W .

360

361 *2.15 Intra-class Correlation*

362 The intra-class correlation (ICC) is a measure used to quantify the test-retest reliability of
363 a measure. We used the ICC to measure the consistency of individual connections across the

364 dMRI, fMRI and EEG networks and across the graph metrics for each network. To accomplish
365 this, we calculated two variants of the ICC, the within (ICC_w)- and between (ICC_b)-subjects (Wei
366 et al., 2004). ICC_w and ICC_b are, respectively, calculated as,

367

$$368 \quad ICC_w = \frac{I(RMS-EMS)}{J*SMS+I*RMS+(IJ-I-J)EMS}, \quad (16)$$

369

$$370 \quad ICC_b = \frac{J(SMS-EMS)}{J*SMS+I*RMS (IJ-I-J)EMS}, \quad (17)$$

371

372 where I is the number of subjects and J is the number of sessions, SMS , RMS and EMS represent
373 the ANOVA measures of mean square error between sessions, subjects, and due to error,
374 respectively. The reliability of a measurement is considered: 1) “poor” if the ICC values is less
375 than 0.4; 2) “fair” for ICC values between 0.4 and 0.6; 3) “good” for ICC values between 0.6 and
376 0.8; and 4) “excellent if ICC values exceed 0.8.

377

378 2.16 Fingerprinting Analysis

379 To perform a fingerprinting analysis, as in Finn *et al.*, 2015, we quantified the degree of
380 similarity between networks. This analysis was performed separately for each of the dMRI,
381 fMRI and EEG modalities. Connectivity matrices were converted for each individual and run
382 into a vector using the values from the upper triangle of the matrix resulting in vectors of 1 x
383 24,310 for dMRI and fMRI, and 1x 2,016 for EEG. Thus each vector, p , represents a single
384 connectivity matrix for a given subject during a given session, and for functional matrices, in a
385 given state (task/rest).

386 Next, separately within each modality, for each connectivity matrix (representing a
387 subject, session, and state), we calculated the pairwise similarity between two vectors, p and q ,
388 using the Euclidian distance to create a dis-similarity matrix (D) where

389

390

391
$$D_{pq} = \sqrt{\sum(p - q)^2}, \quad (18)$$

392 and each entry in D_{pq} , corresponds to the dis-similarity between the brain network p to q .

393 However, since the Euclidian distance formally assesses dis-similarity and we were interested in
394 evaluating similarity, we converted from a dis-similarity to a similarity (S) measure by

395

396
$$S_{pq} = \frac{\max(D) - D_{pq}}{\max(D)}, \quad (19)$$

397 where $\max(D)$ corresponds to the largest value in matrix D . This normalization ensures that the
398 similarity matrix $S \in [0, 1]$.

399 In order to perform a fingerprinting analysis, for each vector, p , we then looked for the
400 entry S_{pq} with the highest similarity value. If for this entry, the vectors p and q were from the
401 same individual (but could be from different sessions or states), then the fingerprinting analysis
402 was classified to be successful at identifying the individual.

403 Fingerprinting performance for each imaging modality was assessed using two measures.

404 The first measure quantifies the overall fingerprinting accuracy across subjects, and was
405 calculated as the percentage of matrices which were successful in identifying an individual.

406 While this measure is useful from a classification standpoint, we were also interested in the level
407 of separation between matrices within versus between individuals. Therefore, in the second

408 measure, we assessed the separability (T) of each modality. The separability of each matrix, T_p ,
409 was defined to be

410
$$T_p = \min_{within-subject} \{S_{pq}\} - \max_{between-subject} \{S_{pq}\}, \quad (20)$$

411 where the first term is constrained to q from the same subject as p , and the second term is
412 constrained to q from all subjects other than p . The resulting values of $T \in [-1, 1]$, where a value
413 of 1 indicates perfect similarity within a subject across sessions and no similarity to other
414 subjects and, conversely, -1 indicates no similarity across runs within a subject.

415

416 **2.17 Statistical Tests**

417 Analysis of variance (ANOVA) was used to quantify the magnitude difference in ICC
418 scores and the difference in the magnitude of the network similarity. Corresponding p-values
419 were corrected for multiple comparison using Bonferroni correction. The Brain Connectivity
420 Toolbox was used to calculate network measures (Rubinov and Sporns, 2010). All analyses were
421 conducted in MATLAB 2017b.

422

423 **3 Results**

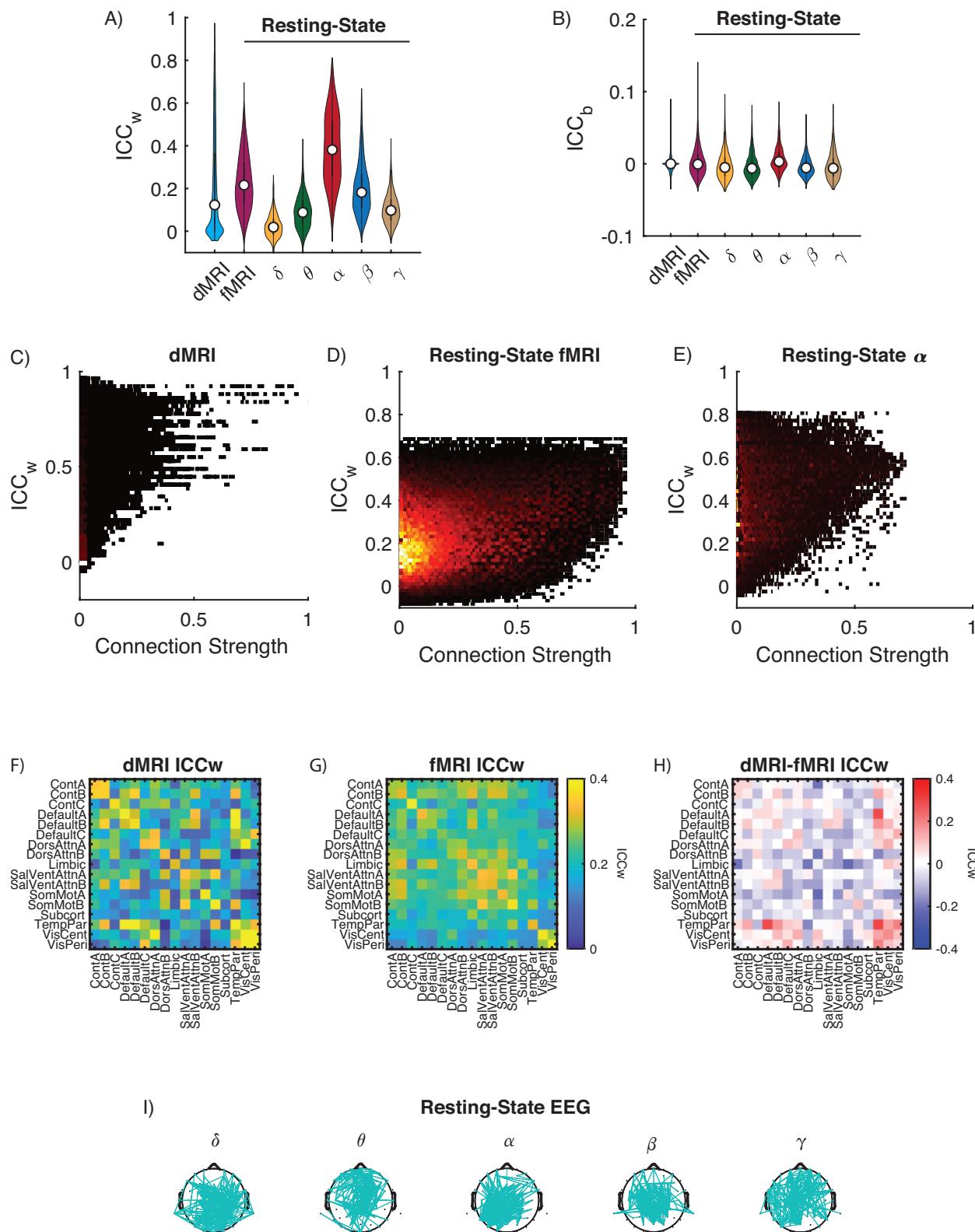
424 We analyzed the reproducibility of brain network properties derived from structural and
425 functional brain imaging using the intra-class correlation (ICC). For the dMRI analysis, this
426 involved analyzing brain networks from 25 subjects across 8 sessions for a total of 200 structural
427 networks. For the fMRI and EEG analysis, a tradeoff between maximizing subjects and sessions
428 was made across resting-state and tasks resulting in a range from 17-26 subjects, each with 6
429 sessions (see Methods section for details).

430

431 3.1 Reliability of Individual Connections

432 We first assessed the reliability of individual connections between brain regions or
433 sensors. We calculated the ICC within a subject (ICC_w) and between subjects (ICC_b) for each
434 connection across the three imaging modalities. As expected, we found that across imaging
435 modalities, individual network connections are more reliable within- than between-subjects
436 (Figure 1A and B). Across imaging modalities, individual edges exhibit high variability in their
437 reliability scores, with ICC_w values ranging from poor (< 0.4) to excellent (> 0.8) reliability
438 (Figure 1A). By contrast, ICC_b scores had consistently poor (< 0.2) reliability across all imaging
439 modalities (Figure 1B). For dMRI, the mean ICC_w was 0.21 ± 0.24 (SD) and the mean ICC_b
440 score was $-1 \times 10^{-4} \pm 0.01$ (SD). For resting-state fMRI the mean ICC_w was 0.23 ± 0.13 (SD).
441 Lastly, for the EEG the α -band had the highest mean ICC_w (0.39 ± 0.16 (SD) compared to the
442 other frequencies (δ : 0.03 ± 0.05 (SD); θ : 0.09 ± 0.08 (SD); β : 0.20 ± 0.12 (SD); γ : $0.10 \pm$
443 0.07 (SD)). An ANOVA assessing differences across imaging modalities found significant
444 differences in the ICC_w ($F_{6,85249} = 2241$; $p_{\text{corrected}} << 0.001$). One important feature is the long-
445 tail distribution in the dMRI ICC_w indicating that a small number of connections have excellent
446 (> 0.8) reliability. We additionally looked to see if there was a relationship between connection
447 strength and reliability (Figure 1C-E).

448



449

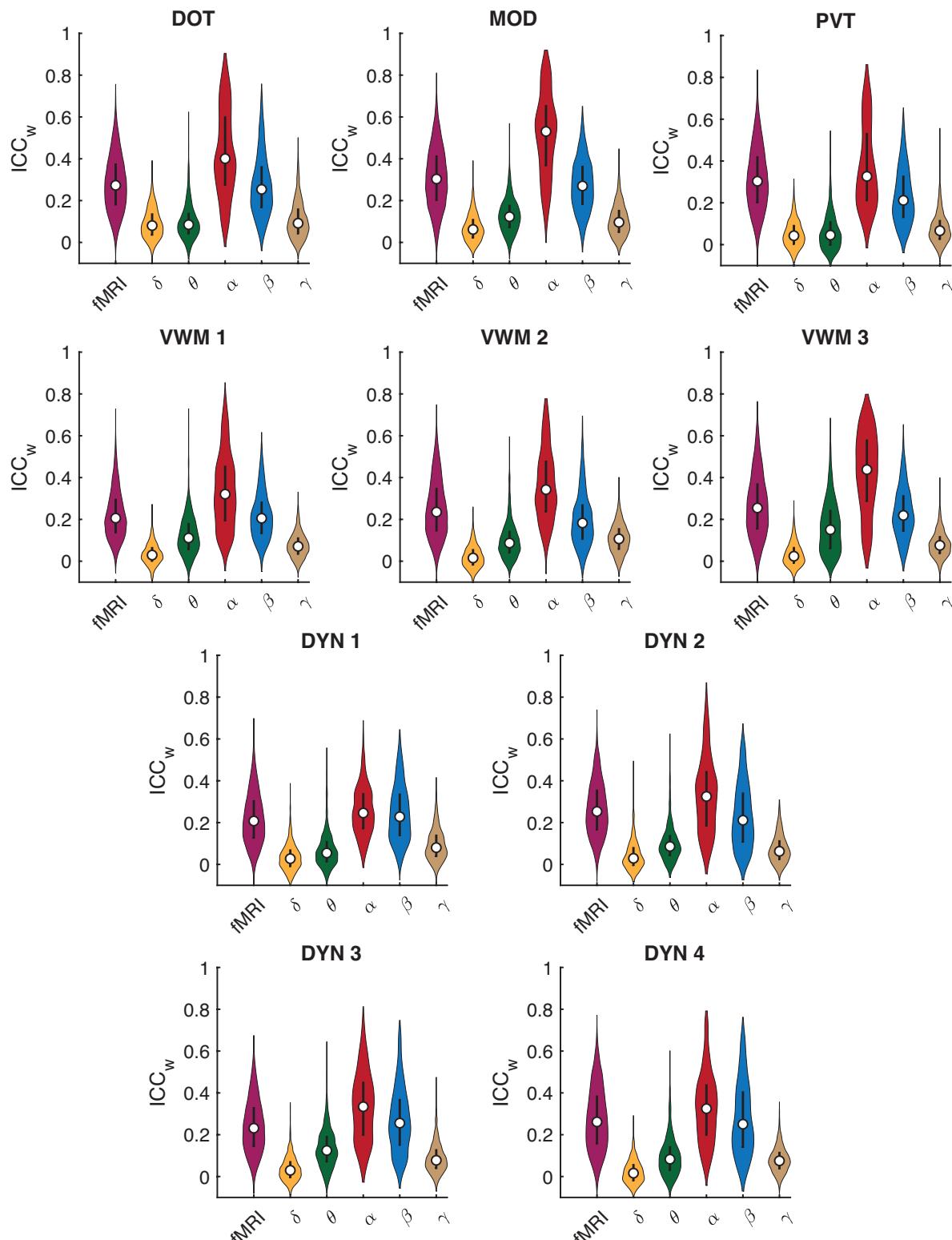
450 **Figure 1.** Reliability of individual connections. (A) Distribution of ICC_w and (B) ICC_b for dMRI
 451 and resting-state fMRI and EEG frequency bands. For each violin plot, the central dot indicates
 452 the median, and the line indicates the 25th to 75th percentiles. (C-E) Cumulative distribution

453 plots showing the proportion of connections and corresponding connection strength from the top
454 10% (most reliable) and bottom 10% (least reliable) of ICC_w scores for (C) dMRI; Resting-State
455 (D) fMRI and (E) EEG- α . F-H) Average reliability of connection within and between cognitive
456 systems for (F) dMRI and (G) resting-state fMRI. H) Differences in average ICC_w scores across
457 cognitive systems between dMRI minus the fMRI. (I) Connections with ICC_w scores in top 10%
458 for δ , θ , α , β and γ frequency bands plotted on the scalp for resting-state EEG. Cognitive
459 systems are defined as Cont: Control A/B/C, Default: Default Mode A/B/C, DorsAttn: Dorsal
460 Attention A/B, Limbic, SalVentAtt: Salience/Ventral Attention A/B, SomMot: Somatomotor
461 A/B, Subcortical, TempPar: Temporal Parietal, VisCent: Visual Central, VisPer: Visual
462 Peripheral.
463

464 We next assessed if for dMRI and resting-state fMRI there is an association between
465 ICC_w scores and cognitive systems. First, we mapped edgewise scores and then averaged over
466 edges within each of the 17 cognitive systems from the Schaefer 200 layout combined with 21
467 subcortical regions from Harvard-Oxford atlas. As a trend, connections within a cognitive system
468 for dMRI and resting-state fMRI exhibited the strongest reliability as can be seen from the figure
469 because of the high values along the diagonal (Figure 1F and G, respectively). However, a direct
470 comparison between dMRI and fMRI showed distinct distribution of reliability across cognitive
471 systems. dMRI reliability was stronger within the Frontal-Parietal Control system and between
472 the Visual, Default Mode, and Temporal Parietal systems (red entries in Figure 1H), while in
473 fMRI, stronger values were distributed between cognitive systems (blue entries in Figure 1H).
474 For the EEG data we could not perform the same mapping to cognitive systems, so instead
475 resting-state ICC_w scores from the top 10% ICC_w distribution are plotted onto the scalp (Figure
476 1I).

477 Given the different cognitive demands associated with task performance, one might
478 expect reliability scores during task states to differ from those at rest. However, when we
479 examined task induced changes in reliability, we found that task associated ICC_w and ICC_b
480 values for fMRI and EEG scores exhibited similar pattern to resting-state (Figures 2 and 3,

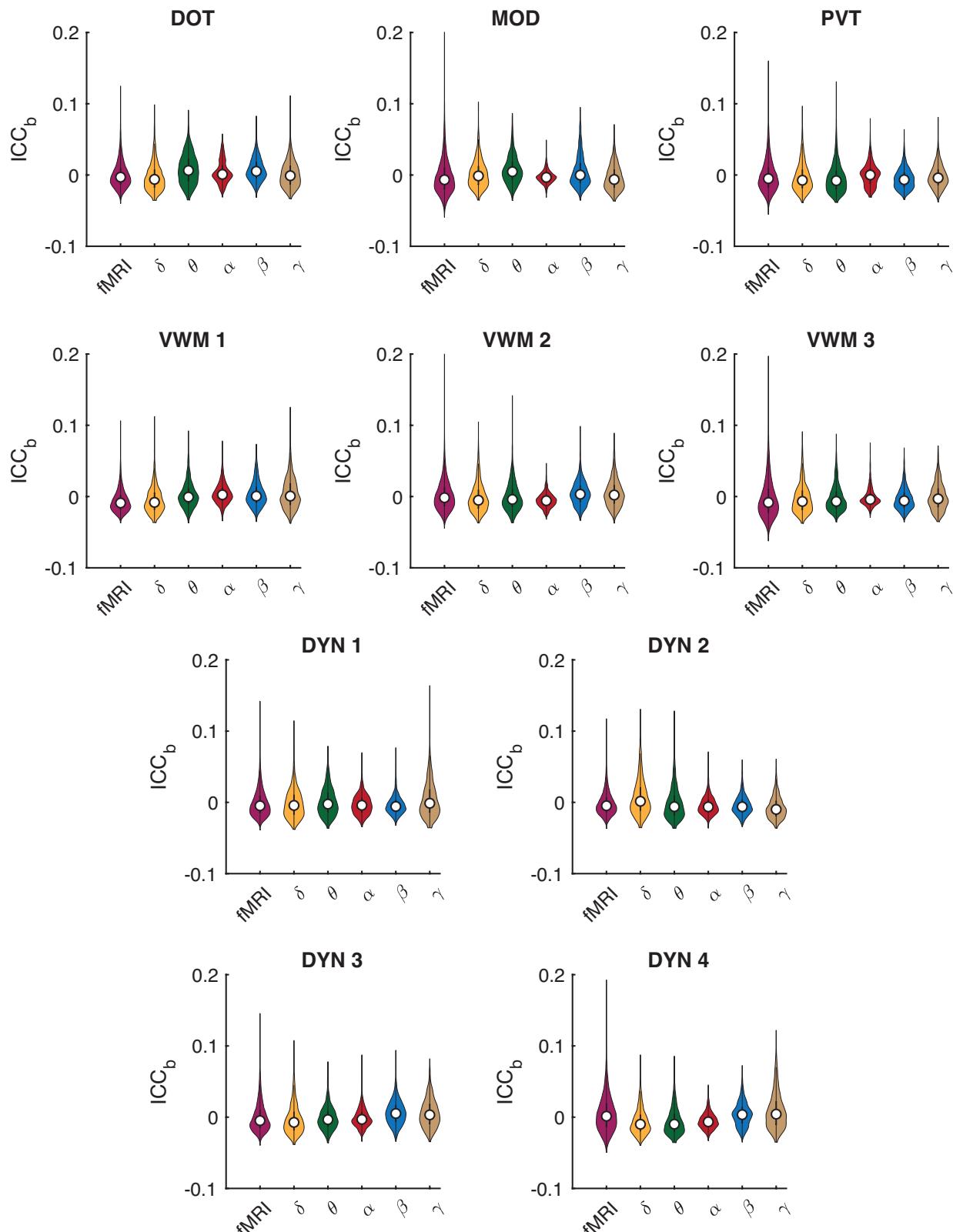
481 respectively). To test for changes, we assessed an ICC x Task ANOVA and found that the ICC x
482 Task interaction was significant ($F_{10,501389} = 1242$, $p_{\text{corrected}} << 0.001$). For the EEG, we
483 additionally added frequency as a variable in our ANOVA design and found that the ICC x Task
484 x Frequency interaction was significant ($F_{40, 201190} = 140$, $p_{\text{corrected}} << 0.001$) with the α -band
485 having the highest ICC_w scores.



486

487 **Figure 2.** Reliability of individual connections within-subjects (ICC_w) for fMRI and EEG
488 frequency bands across tasks: DOT, PVT, MOD, VWM-1:3, and DYN-1:4. For each violin plot,
489 the central dot indicates the median, and the line indicates the 25th to 75th percentiles. DOT: Dot

490 Probe Task; DYN: Dynamic Attention Task; MOD: Modular Math Task; PVT: Psychomotor
491 Vigilance Task; VWM 1-3: Visual Working Memory.
492
493



494
495
496
497

Figure 3. Reliability of individual connections between-subjects (ICC_b) for fMRI and EEG frequency bands across tasks: DOT, PVT, MOD, VWM-1:3, and DYN-1:4. For each violin plot, the central dot indicates the median, and the line indicates the 25th to 75th percentiles. DOT: Dot

498 Probe Task; DYN: Dynamic Attention Task; MOD: Modular Math Task; PVT: Psychomotor
499 Vigilance Task; VWM 1-3: Visual Working Memory.

500

501

502 Similarly, we assessed if for task fMRI there is an association between ICC_w scores and
503 cognitive systems. We mapped edgewise scores to the 17 cognitive systems in the same manner
504 as for the resting-state and plotted the difference between the ICC_w values during task and
505 resting-state in Figure 4. We generally observed higher reliability during task states, and found
506 that for tasks with repeated sessions, the ICC_w progressively increased from resting-state as the
507 sessions progressed (Figure 4 VWM and DYN tasks). For task EEG data, ICC_w scores from the
508 top 10% of the ICC_w distribution were plotted onto the scalp and we did not notice any overt
509 reconfiguration in scalp distribution from resting-state to task (Figure 5).

510

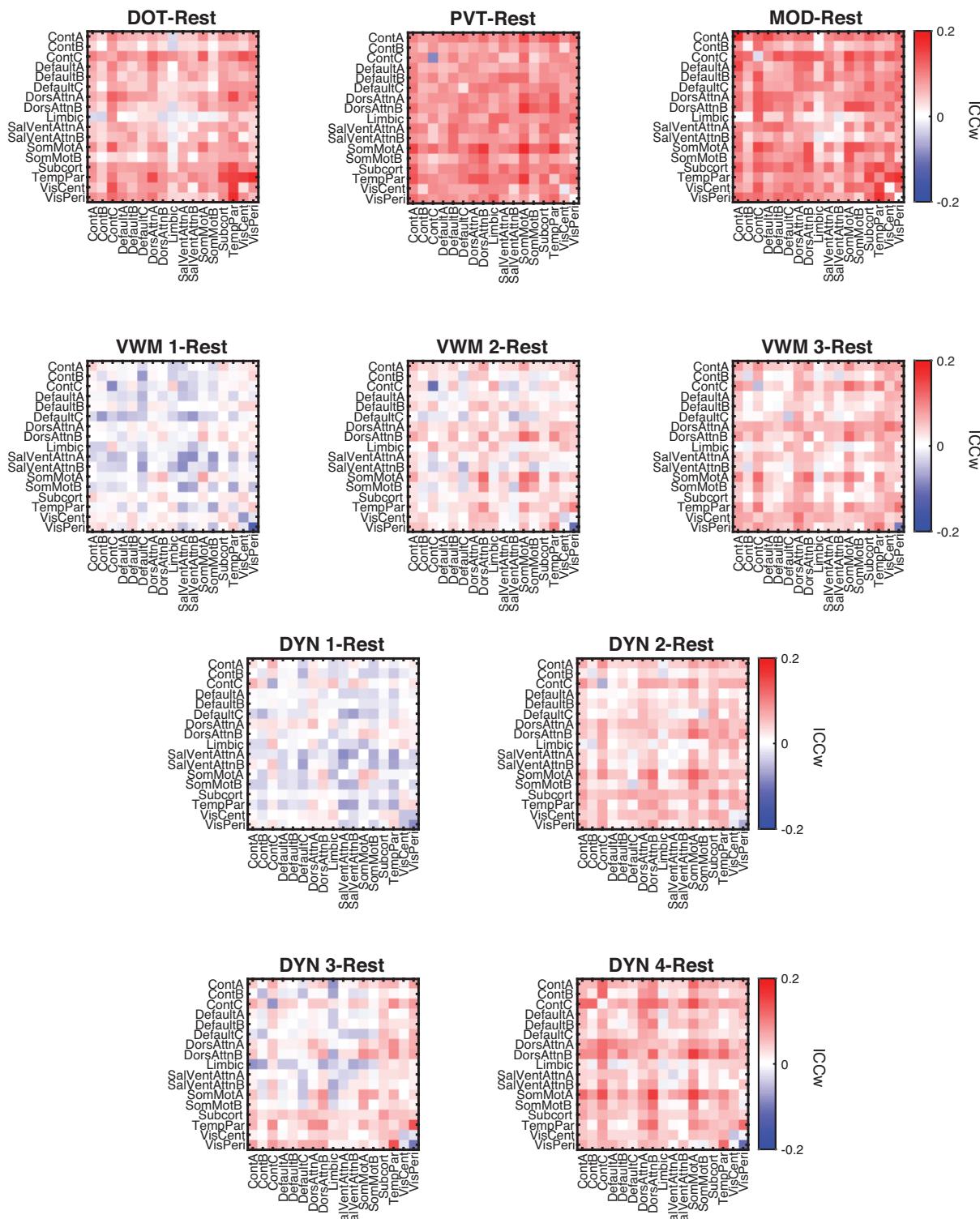
511

512

513

514

515

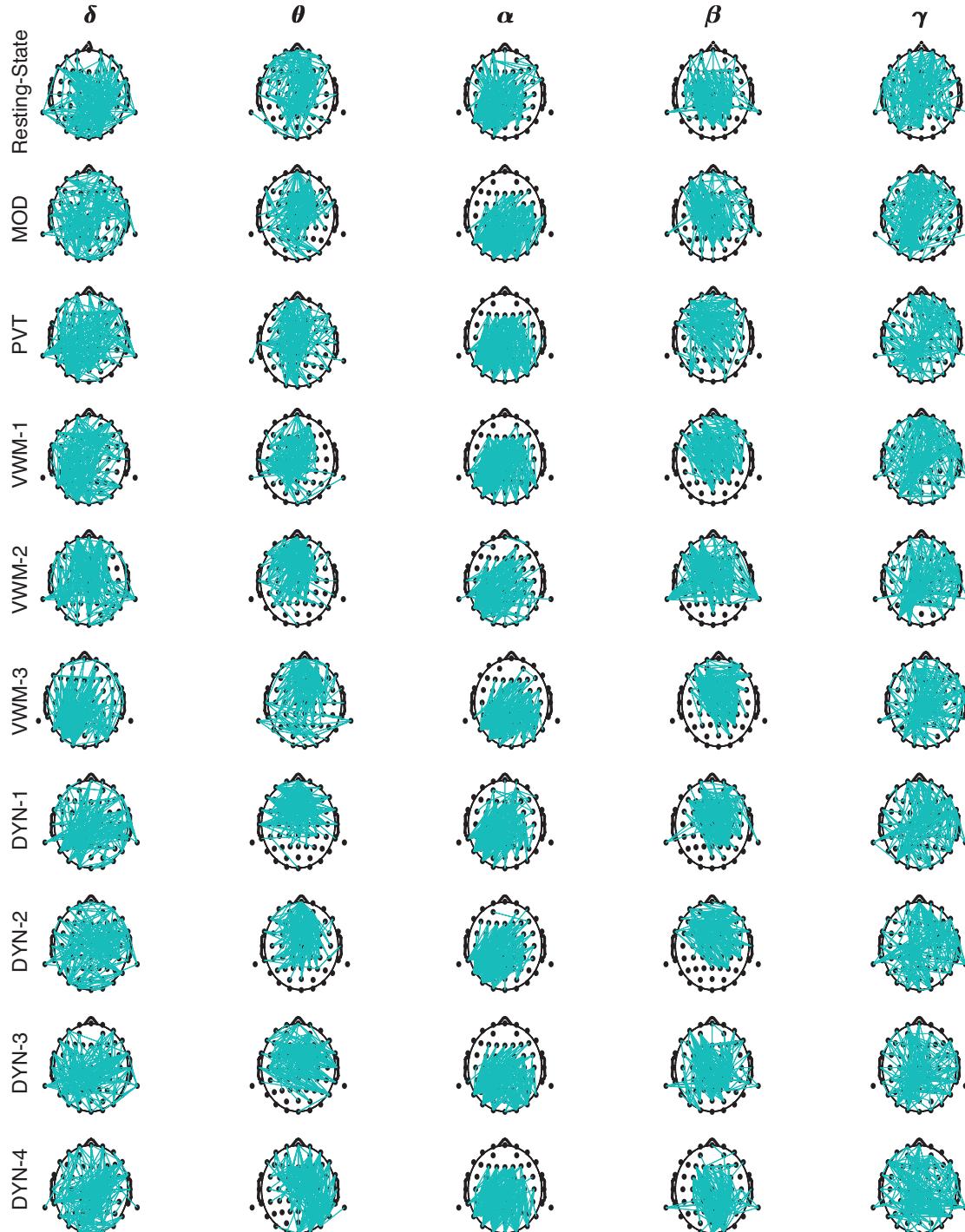


516
517
518
519
520
521

Figure 4. fMRI changes in reliability from resting-state for each task: DOT, PVT, MOD, VWM-1:3, and DYN-1:4. Connections are mapped unto 17 cognitive systems from Schaefer cortical and Harvard-Oxford subcortical atlas. DOT: Dot Probe Task; DYN: Dynamic Attention Task;

522 MOD: Modular Math Task; PVT: Psychomotor Vigilance Task; VWM 1-3: Visual Working
523 Memory.

524
525



526
527

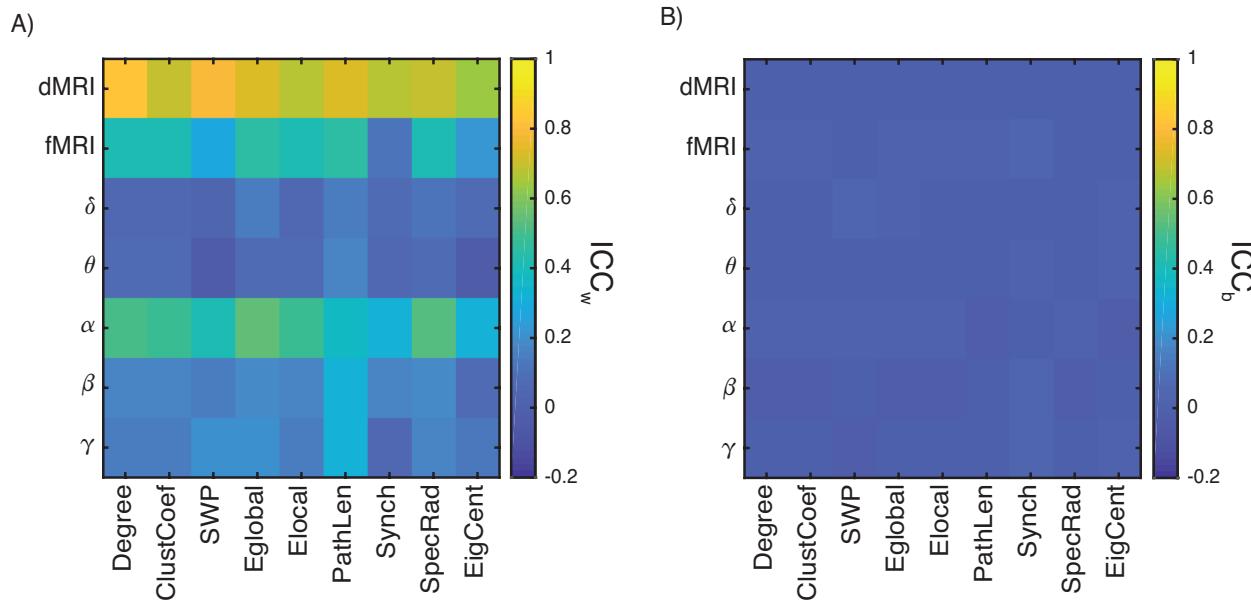
528 **Figure 5.** Scalp distribution across tasks for top 10% of ICC_w scores. For Resting-State and each
529 task: DOT, PVT, MOD, VWM-1:3, and DYN-1:4, (10 in total), connections with ICC_w scores in
530 top 10% for δ , θ , α , β and γ frequency bands are plotted on the scalp. DOT: Dot Probe Task;

531 DYN: Dynamic Attention Task; MOD: Modular Math Task; PVT: Psychomotor Vigilance Task;
532 VWM 1-3: Visual Working Memory.
533

534 *3.2 Reliability of Network Measures*

535 We next assessed the reliability of higher order network properties. For each brain
536 network, nine measures were calculated along with their corresponding ICC_w and ICC_b scores.
537 We found significant differences between modalities in ICC_w ($F_{6,66} = 45$; p-corrected $<< 0.001$).
538 As shown in Figure 6 A, across all imaging modalities and network properties, the dMRI
539 exhibited the highest ICC_w scores (0.71 ± 0.06 (SD)). By comparison, resting-state fMRI
540 exhibited relatively poor reproducibility (0.35 ± 0.12 (SD)), and EEG's reproducibility was
541 frequency dependent with the α -band having the highest ICC_w scores (0.43 ± 0.09 (SD)). ICC_b
542 scores across all modalities were close to zero (Figure 6B).

543

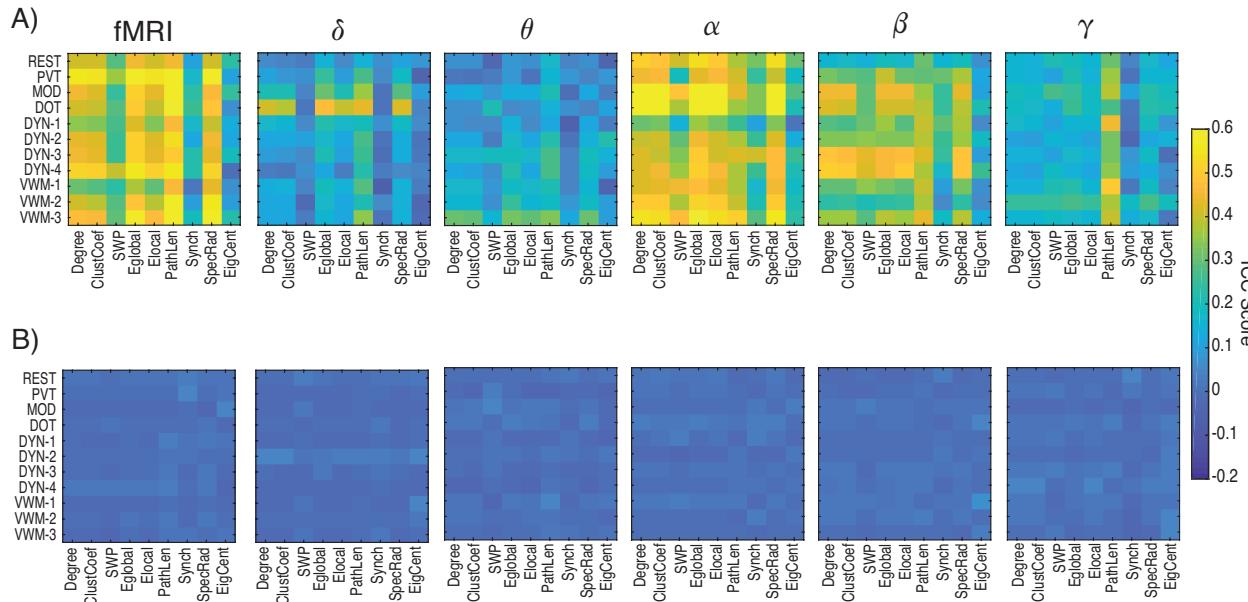


544

545

546 **Figure 6.** Graph Measures for dMRI and Resting-State fMRI and EEG for (A) ICC_w and (B)
547 ICC_b values.
548

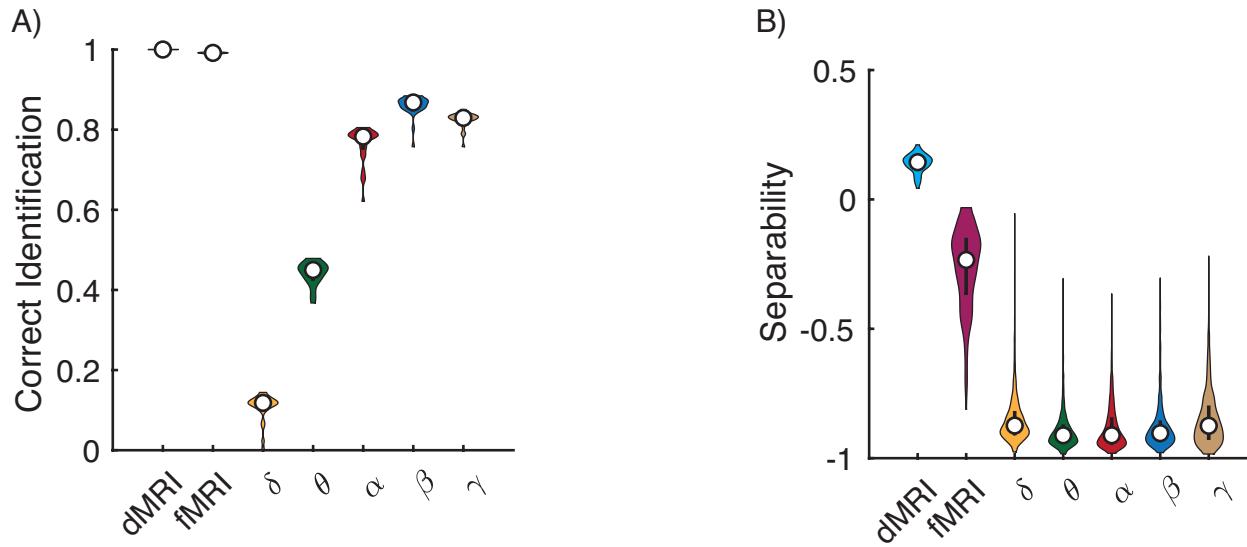
549 We next assessed if performing a task alters the reliability of network measures (Figure
550 7). For fMRI, we evaluated the Task x Network Measure x ICC ANOVA design and found
551 significant interactions between Task x ICC ($F_{8,80} = 99$, $p_{\text{corrected}} << 0.001$) and Network Measure
552 x ICC ($F_{10,80} = 9.88$, $p_{\text{corrected}} << 0.001$) (Figure 7A). For the EEG, we evaluated the Task x
553 Frequency x Network Measure x ICC ANOVA design, and we found a significant interaction
554 between Task x Frequency ($F_{32,792} = 5.35$, $p_{\text{corrected}} < 0.001$) and Frequency x Network Measure
555 ($F_{40,792} = 6.33$, $p_{\text{corrected}} < 0.001$) (Figure 7A). From Figure 7 it is apparent that the α -band is the
556 most consistent across resting- and task-state, while the β -band shows an increase in ICC_w in the
557 task-states. It is also worth noting that Synchronizability and Eigenvector Centrality exhibited
558 weaker ICC_w scores relative to the other metrics across resting- and task-states for both fMRI
559 and EEG.



560
561 **Figure 7.** ICC values for network measures across task and resting-state. (A) ICC_w and (B) ICC_b
562 values across tasks for fMRI and EEG frequency bands.
563

564 3.3 Fingerprinting Analysis

565 Our analysis so far has confirmed that dMRI networks are more reliable within a subject
566 than fMRI and EEG networks. We therefore, expect that dMRI networks will have a higher
567 probability of being able to identify an individual from a group, similar to a fingerprint (Finn et
568 al., 2015). For functional networks, we would similarly expect the same of α -band EEG
569 networks, given their relatively higher reliability scores. In order to fingerprint an individual,
570 brain networks from the individual should be more similar to each other across runs relative to
571 networks obtained from other individuals. To formally assess the similarity between brain
572 networks, we measured similarity using the Euclidian distance (Methods). Our results indicate
573 that fingerprinting was not uniform across all derived networks ($F_{6,168} = 3402$, $p_{\text{corrected}} << 0.001$).
574 As expected, structural dMRI networks had the highest accuracy, but for functional networks,
575 fMRI networks performed better than α -band EEG derived networks, and in fact, within EEG
576 networks, β -band networks had the highest fingerprinting accuracy (Figure 8A).
577



578
579 **Figure 8.** Fingerprinting performance across imaging modalities. (A) Proportion of networks
580 that were correctly matched to the corresponding individual for dMRI, fMRI, and EEG derived
581 brain networks. (B) Separability of each network in being matched to corresponding individual.
582 For each violin plot, the central dot indicates the median, and the line indicates the 25th to 75th

583 percentiles.

584

585 However, this analysis does not tell us about the separability across the networks derived
586 from the different imaging modalities. Here we define separability as the difference in similarity
587 between the minimum within-subject value for a network to the maximum between subject
588 similarity for that network (Methods). Therefore, positive separability values indicate that a
589 particular network for an individual is always more similar to other networks from that
590 individual and negative values indicate the opposite. Separability values across imaging
591 modalities were found to be significantly different ($F_{6,10093} = 8618$; $p_{\text{corrected}} << 0.001$). In
592 addition, despite dMRI and fMRI having similar accuracy in fingerprinting, dMRI networks
593 were more separable than fMRI and EEG (dMRI: 0.14 ± 0.04 (SD); fMRI: -0.26 ± 0.27 (SD); δ ,
594 θ , α , β and γ : < -0.85 (mean)) (Figure 8B).

595

596 **4 Discussion**

597 In the current work, we analyzed the reproducibility of multimodal and multi-task
598 structural and functional brain networks in a unique longitudinal and multi-modal data set with
599 simultaneous EEG-fMRI recordings. In our analysis, each subject contained brain networks
600 derived from dMRI, fMRI and EEG data, allowing us to assess how reliability differed in brain
601 networks derived from different modalities and across task states.

602

603 *4.1 Edgewise Reliability Differences Between dMRI, fMRI, and EEG*

604 We first assessed the reliability of individual connections in the structural and functional
605 brain networks and found stronger within- than between-subject reliability across all imaging
606 modalities, in line with previous results (Birn et al., 2013; Noble et al., 2019, 2017; O'Connor et

607 al., 2017; Pannunzi et al., 2017; Shehzad et al., 2009). The most reliable connections were also
608 the ones that tended to be the strongest, corroborating previous findings in fMRI networks
609 (Noble et al., 2017; Pannunzi et al., 2017). In addition, these connections when mapped on to
610 cognitive systems, exhibited distinct patterning. As a trend, for dMRI and resting-state fMRI,
611 connections within a cognitive system exhibited the strongest reliability, consistent with previous
612 studies in functional networks (Birn et al., 2013; Noble et al., 2017; O'Connor et al., 2017;
613 Shehzad et al., 2009). However, a direct comparison between dMRI and resting-state fMRI
614 showed distinct distribution of reliability across cognitive systems. dMRI reliability was
615 strongest within the Frontal-Parietal Control system and between the Visual to Default Mode and
616 Temporal Parietal system, while in resting-state fMRI stronger values were distributed between
617 cognitive systems.

618 When assessing task mediated changes, we found an increase in reliability across most
619 tasks relative to resting-state in fMRI networks. In addition, we observed an increase in this
620 reliability across multiple sessions of a given task, potentially indicative of an effect of learning
621 the task. This finding complements results from a previous study that found adding task-state
622 fMRI networks improves predictive outcomes relative to resting-states fMRI (Gao et al., 2019).

623 For EEG, the α - and β -bands had the highest reliability scores for both resting- and task-
624 states, confirming previous results (Kuntzelman and Miskovic, 2017). The strong reliability for
625 the α - and β -band could be due to the fact that these frequencies are consistently activity, while
626 the other frequency bands tend to have transient activity. In a similar manner to fMRI, EEG
627 reliability increased during a task, but this increase was primarily in the α - and β -bands. In
628 addition, we found no major changes when we mapped connections on the scalp from resting-
629 state to task-state. This could be due to the low spatial resolution of EEG (Nunez et al., 1997).

630

631 *4.2 Reliability of Graph Theoretical Measures*

632 When examining the reliability of higher order network properties, we found that
633 network properties had overall stronger reliability scores than individual connections in line with
634 previous findings of Braun et al., 2012. This might lead one to ask how the prevalence of low
635 reliability scores across most connections could produce fair to excellent reliability in higher
636 order network properties? This result could be due to the fact that edges with higher reliability
637 scores are associated with the stronger connections. Our graph theoretical properties are
638 dependent on connection strength, and the stronger the connection, the more variance it accounts
639 for in the higher order network values. Thus, despite most connections having poor reliability,
640 the few strong connections with good to excellent reproducibility have a disproportionately
641 higher impact on the reliability of a network measure. The notable exception is that in fMRI and
642 EEG, synchronizability and eigenvector centrality had lower reliability scores than the other
643 network properties. One possible reason for this is that these measures, particularly eigenvector
644 centrality, are very sensitive to the state of the subject (Lohmann et al., 2010). These results
645 indicate these measures might be more sensitive to detecting meaningful differences between
646 individuals in studies where one is attempting to link functional brain connectivity to task
647 performance or behavior.

648 We also found task associated differences in reliability for the fMRI and EEG. However
649 for the EEG, the strongest increases in reliability were in the α - and β -bands. However, in
650 contrast to Deuker et al., 2009 we did not find a corresponding increase in ICC_w scores in the δ
651 and θ bands with task.

652

653

654 *4.3 Fingerprinting*

655 We found that dMRI and fMRI outperformed EEG derived networks in fingerprinting.

656 However, the separability was not equal across these networks, with dMRI outperforming all

657 functional networks. This is likely due to the fact that, unlike functional connectivity, structural

658 connectivity is not state dependent.

659 It has been found that brain activity measured with fMRI is stable over time (Braga and

660 Buckner, 2017; Gratton et al., 2018; Horien et al., 2019; Laumann et al., 2015) and in fMRI,

661 within-subject variance can be reduced with high quality data with long scan times (~15 minutes)

662 and multiple sessions (Birn et al., 2013; Laumann et al., 2015; Noble et al., 2017; Pannunzi et al.,

663 2017). It has been argued that large amounts of data are needed in order to differentiate between

664 true and artifact induced variance (Gordon et al., 2017; Power et al., 2012) and previous studies

665 have found that reliability increases with more data (Anderson et al., 2011; Birn et al., 2013;

666 Laumann et al., 2015; Noble et al., 2017; Shou et al., 2013). This high quality data is important

667 because Horien *et al.*, 2019 found that motion characteristics can be unique to an individual and

668 can fingerprint a subject at a level greater than chance. In our data, individual scan times were

669 limited to approximately 5 minutes, but data was collected over multiple sessions for a relatively

670 large number of subjects, suggesting that we might expect more reliable results. However, our

671 observation of the relatively weak accuracy and separability of EEG (a more direct measure of

672 neuronal activity than fMRI) in fingerprinting an individual raises questions as to whether the

673 increase in fingerprinting performance in fMRI on long time scans is based on neuronal activity.

674 Also, respiration induced artifacts in fMRI exhibit the same stability over time (Power et al.,

675 2019), which could also lead to increased reliability measurements.

676 Our direct comparison of fingerprinting between structural and functional networks
677 indicates that structural networks more sensitive. In addition, these results indicate that the
678 patterning in structural connectivity is far more unique to an individual than those in
679 corresponding functional networks. These results suggest that structural networks might have
680 more discriminative power than functional networks.

681 Unique brain connectivity features have previously been proposed to play a role in
682 differences underlying behavior and cognition (Kanai and Rees, 2011). Specifically, difference
683 in behavioral performance in motor and decision associated tasks are correlated with fractional
684 anisotropy of the corpus callosum (Johansen-Berg et al., 2007; Westerhausen et al., 2006), optic
685 radiation (Tuch et al., 2005) and grey matter density (Van Gaal et al., 2011). Cortical thickness
686 within the superior parietal lobes has been found to be correlated with the rate of switching in a
687 perception based task (Kanai et al., 2010). In addition structural features unique to an individual
688 lead to characteristic brain functional activity in modeling analysis and task performance (Bansal
689 et al., 2019, 2018a).

690

691 *4.4 On Reliability, Confounding Variables, and Utility*

692 Is a connection with poor reliability good or bad? To answer this, we need to be mindful
693 of the goal at hand. First and foremost, we need to make sure that reliability values are not due to
694 noise in the signal. On the other hand, if we are confident that low reliability is a genuine part of
695 the signal, then that is also a very informative finding. The seminal work of Poldrack et al., 2015
696 found that functional connectivity exhibits a high level of variability within the same person over
697 the course of a year. Along these lines, Noble et al., 2017 found that functional connections with
698 strong reliability are not very informative when it pertains to predicting behavior. However, we

699 need to be mindful that this is an effect limited to functional connectivity. Therefore, structural
700 connections and/or higher-order network metrics might exhibit a stronger association between
701 reliability and behavior. Also, finding highly reproducible brain connections and/or measures
702 might be very important if we are looking for deviations from expected values that could be used
703 as biomarkers for disease identification/progression. Alternatively, connections and/or measures
704 with low reliability might be useful for studying individual differences and making correlations
705 between structure and performance/behavior.

706 But, even beyond reliability and noise, our functional results could, along with previous
707 literature, reflect the natural day-to-day changes in our brain. Neuroplastic changes in the brain
708 are the hallmark of learning and memory (Lamprecht and LeDoux, 2004), and these changes or
709 natural fluctuations and modifications in the *neural code* (Fairhall et al., 2001), reflecting
710 learning and memory could be reflected in functional connectivity. Indeed, there are many
711 examples of rapid neuroplastic changes in the brain that results in functional connectivity
712 changes (e.g., Nierhaus et al., 2019), but see Perich et al., 2018 as an alternative theory.
713 Moreover, in this particular dataset, individuals were recruited to capture substantial variability
714 in sleep without experimental manipulation. While there is a substantial literature on brain
715 related decrements due to sleep deprivation (Boonstra et al., 2007; Hudson et al., 2020) little is
716 known about naturalistic fluctuations in sleep (Moturu et al., 2011; Thurman et al., 2018). These
717 individuals, instead could be more “plastic” (or “stationary”) than other individuals. Future
718 studies may disentangle these alternatives from a *reliability* explanation of our results.

719 fMRI-based analysis has been around for over two decades, but its clinical use has been
720 limited, raising questions about its usefulness as a diagnostic tool. In addition, given that the
721 effectiveness of any diagnostic tool is only as useful as it can be applied to an individual, then in

722 this regard, structural networks should take a more prominent role in medicine. Regardless, one
723 must consider how measures of reliability relate to the modality being studied, the state of the
724 brain, and the question at hand in order to meaningfully ask questions about how brain networks
725 change with disease or how individual differences in structure relate to performance and
726 behavior.

727

728 **Acknowledgements**

729 Funding: This research was supported by mission funding to the US CCDC Army Research
730 Laboratory as well as sponsored by the Army Research Office and accomplished under
731 Cooperative Agreement Numbers W911NF-10-D-0022 and W911NF-10-D-0002. Additional
732 support was provided through University at Buffalo startup funding. The views and conclusions
733 contained in this document are those of the authors and should not be interpreted as representing
734 the official policies, either expressed or implied, of the Army Research Laboratory or the US
735 Government.

736

737 **References**

738 Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A.,
739 Thirion, B., Varoquaux, G., 2014. Machine learning for neuroimaging with scikit-learn.
740 Front. Neuroinform. <https://doi.org/10.3389/fninf.2014.00014>
741 Allen, P.J., Josephs, O., Turner, R., 2000. A method for removing imaging artifact from
742 continuous EEG recorded during functional MRI. Neuroimage.
743 <https://doi.org/10.1006/nimg.2000.0599>
744 Allen, P.J., Polizzi, G., Krakow, K., Fish, D.R., Lemieux, L., 1998. Identification of EEG events

745 in the MR scanner: The problem of pulse artifact and a method for its subtraction.

746 Neuroimage. <https://doi.org/10.1006/nimg.1998.0361>

747 Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., Zilles, K., 2000. Brodmann's areas 17

748 and 18 brought into stereotaxic space - Where and how variable? Neuroimage.

749 <https://doi.org/10.1006/nimg.1999.0516>

750 Anderson, J.S., Ferguson, M.A., Lopez-Larson, M., Yurgelun-Todd, D., 2011. Reproducibility of

751 single-subject functional connectivity measurements. Am. J. Neuroradiol.

752 <https://doi.org/10.3174/ajnr.A2330>

753 Avants, B.B., Tustison, N.J., Song, G., Gee, J.C., 2009. ANTS: Open-source tools for

754 normalization and neuroanatomy. IEEE Trans. Biomed. Eng.

755 <https://doi.org/10.1007/s12021-011-9109-y>

756 Bansal, K., Garcia, J.O., Tompson, S.H., Verstynen, T., Vettel, J.M., Muldoon, S.F., 2019.

757 Cognitive chimera states in human brain networks. Sci. Adv.

758 <https://doi.org/10.1126/sciadv.aau8535>

759 Bansal, K., Medaglia, J.D., Bassett, D.S., Vettel, J.M., Muldoon, S.F., 2018a. Data-driven brain

760 network models differentiate variability across language tasks. PLoS Comput. Biol.

761 <https://doi.org/10.1371/journal.pcbi.1006487>

762 Bansal, K., Nakuci, J., Muldoon, S.F., 2018b. Personalized brain network models for assessing

763 structure-function relationships. Curr. Opin. Neurobiol. 52, 1–13.

764 <https://doi.org/10.1016/J.CONB.2018.04.014>

765 Bassett, D.S., Brown, J.A., Deshpande, V., Carlson, J.M., Grafton, S.T., 2011. Conserved and

766 variable architecture of human white matter connectivity. Neuroimage.

767 <https://doi.org/10.1016/j.neuroimage.2010.09.006>

768 Bassett, D.S., Sporns, O., 2017. Network neuroscience. *Nat. Neurosci.* 20, 353–364.

769 <https://doi.org/10.1038/nn.4502>

770 Birn, R.M., Molloy, E.K., Patriat, R., Parker, T., Meier, T.B., Kirk, G.R., Nair, V.A., Meyerand,

771 M.E., Prabhakaran, V., 2013. The effect of scan length on the reliability of resting-state

772 fMRI connectivity estimates. *Neuroimage*.

773 <https://doi.org/10.1016/j.neuroimage.2013.05.099>

774 Bonilha, L., Gleichgerrcht, E., Fridriksson, J., Breedlove, J.L., Rorden, C., Nesland, T., Paulus,

775 W., Helms, G., Focke, N.K., 2015. Reproducibility of the structural brain connectome

776 derived from diffusion tensor imaging. *PLoS One*.

777 <https://doi.org/10.1371/journal.pone.0135247>

778 Boonstra, T.W., Stins, J.F., Daffertshofer, A., Beek, P.J., 2007. Effects of sleep deprivation on

779 neural functioning: An integrative review. *Cell. Mol. Life Sci.*

780 <https://doi.org/10.1007/s00018-007-6457-8>

781 Braga, R.M., Buckner, R.L., 2017. Parallel Interdigitated Distributed Networks within the

782 Individual Estimated by Intrinsic Functional Connectivity. *Neuron*.

783 <https://doi.org/10.1016/j.neuron.2017.06.038>

784 Braun, U., Plichta, M.M., Esslinger, C., Sauer, C., Haddad, L., Grimm, O., Mier, D., Mohnke, S.,

785 Heinz, A., Erk, S., Walter, H., Seiferth, N., Kirsch, P., Meyer-Lindenberg, A., 2012. Test-

786 retest reliability of resting-state connectivity network characteristics using fMRI and graph

787 theoretical measures. *Neuroimage* 59, 1404–1412.

788 <https://doi.org/10.1016/j.neuroimage.2011.08.044>

789 Buchanan, C.R., Pernet, C.R., Gorgolewski, K.J., Storkey, A.J., Bastin, M.E., 2014. Test-retest

790 reliability of structural brain networks from diffusion MRI. *Neuroimage*.

791 https://doi.org/10.1016/j.neuroimage.2013.09.054

792 Bürgel, U., Amunts, K., Hoemke, L., Mohlberg, H., Gilsbach, J.M., Zilles, K., 2006. White
793 matter fiber tracts of the human brain: Three-dimensional mapping at microscopic
794 resolution, topography and intersubject variability. *Neuroimage*.

795 https://doi.org/10.1016/j.neuroimage.2005.08.040

796 Chang, C.Y., Hsu, S.H., Pion-Tonachini, L., Jung, T.P., 2020. Evaluation of Artifact Subspace
797 Reconstruction for Automatic Artifact Components Removal in Multi-Channel EEG
798 Recordings. *IEEE Trans. Biomed. Eng.* <https://doi.org/10.1109/TBME.2019.2930186>

799 Cieslak, M., Ryan, W.S., Babenko, V., Erro, H., Rathbun, Z.M., Meiring, W., Kelsey, R.M.,
800 Blascovich, J., Grafton, S.T., 2018. Quantifying rapid changes in cardiovascular state with a
801 moving ensemble average. *Psychophysiology*. <https://doi.org/10.1111/psyp.13018>

802 Ciric, R., Wolf, D.H., Power, J.D., Roalf, D.R., Baum, G.L., Ruparel, K., Shinohara, R.T.,
803 Elliott, M.A., Eickhoff, S.B., Davatzikos, C., Gur, R.C., Gur, R.E., Bassett, D.S.,
804 Satterthwaite, T.D., 2017. Benchmarking of participant-level confound regression strategies
805 for the control of motion artifact in studies of functional connectivity. *Neuroimage*.

806 https://doi.org/10.1016/j.neuroimage.2017.03.020

807 Delorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single-trial
808 EEG dynamics including independent component analysis. *J. Neurosci. Methods*.
809 <https://doi.org/10.1016/j.jneumeth.2003.10.009>

810 Deuker, L., Bullmore, E.T., Smith, M., Christensen, S., Nathan, P.J., Rockstroh, B., Bassett,
811 D.S., 2009. Reproducibility of graph metrics of human brain functional networks.
812 *Neuroimage* 47, 1460–8. <https://doi.org/10.1016/j.neuroimage.2009.05.035>

813 Du, H.X., Liao, X.H., Lin, Q.X., Li, G.S., Chi, Y.Z., Liu, X., Yang, H.Z., Wang, Y., Xia, M.R.,

814 2015. Test-Retest Reliability of Graph Metrics in High-resolution Functional
815 Connectomics: A Resting-State Functional MRI Study. *CNS Neurosci. Ther.*
816 <https://doi.org/10.1111/cns.12431>

817 Elliott, M.L., Knodt, A.R., Cooke, M., Kim, M.J., Melzer, T.R., Keenan, R., Ireland, D.,
818 Ramrakha, S., Poulton, R., Caspi, A., Moffitt, T.E., Hariri, A.R., 2019. General functional
819 connectivity: Shared features of resting-state and task fMRI drive reliable and heritable
820 individual differences in functional brain networks. *Neuroimage* 189, 516–532.
821 <https://doi.org/10.1016/j.neuroimage.2019.01.068>

822 Fairhall, A.L., Lewen, G.D., Bialek, W., De Ruyter van Steveninck, R.R., 2001. Efficiency and
823 ambiguity in an adaptive neural code. *Nature*. <https://doi.org/10.1038/35090500>

824 Finn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., Papademetris, X.,
825 Todd Constable, R., 2015. Functional connectome fingerprinting: Identifying individuals
826 based on patterns of brain connectivity HHS Public Access. *Nat Neurosci* 18, 1664–1671.
827 <https://doi.org/10.1038/nn.4135>

828 Fornito, A., Zalesky, A., Breakspear, M., 2015. The connectomics of brain disorders. *Nat. Rev.*
829 *Neurosci.* 16, 159–172. <https://doi.org/10.1038/nrn3901>

830 Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E., 2005. The
831 human brain is intrinsically organized into dynamic, anticorrelated functional networks.
832 *Proc. Natl. Acad. Sci. U. S. A.* <https://doi.org/10.1073/pnas.0504136102>

833 Gao, S., Greene, A.S., Constable, R.T., Scheinost, D., 2019. Combining multiple connectomes
834 improves predictive modeling of phenotypic measures. *Neuroimage*.
835 <https://doi.org/10.1016/j.neuroimage.2019.116038>

836 Glover, G.H., Li, T.Q., Ress, D., 2000. Image-based method for retrospective correction of

837 physiological motion effects in fMRI: RETROICOR. *Magn. Reson. Med.*
838 [https://doi.org/10.1002/1522-2594\(200007\)44:1<162::AID-MRM23>3.0.CO;2-E](https://doi.org/10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E)

839 Gordon, E.M., Laumann, T.O., Gilmore, A.W., Newbold, D.J., Greene, D.J., Berg, J.J., Ortega,
840 M., Hoyt-Drazen, C., Gratton, C., Sun, H., Hampton, J.M., Coalson, R.S., Nguyen, A.L.,
841 McDermott, K.B., Shimony, J.S., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., Nelson,
842 S.M., Dosenbach, N.U.F., 2017. Precision Functional Mapping of Individual Human Brains.
843 *Neuron*. <https://doi.org/10.1016/j.neuron.2017.07.011>

844 Gratton, C., Laumann, T.O., Nielsen, A.N., Greene, D.J., Gordon, E.M., Gilmore, A.W., Nelson,
845 S.M., Coalson, R.S., Snyder, A.Z., Schlaggar, B.L., Dosenbach, N.U.F., Petersen, S.E.,
846 2018. Functional Brain Networks Are Dominated by Stable Group and Individual Factors,
847 Not Cognitive or Daily Variation. *Neuron*. <https://doi.org/10.1016/j.neuron.2018.03.035>

848 Hardmeier, M., Hatz, F., Bousleiman, H., Schindler, C., Stam, C.J., Fuhr, P., 2014.
849 Reproducibility of functional connectivity and graph measures based on the phase lag index
850 (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG. *PLoS One*.
851 <https://doi.org/10.1371/journal.pone.0108648>

852 Horien, C., Shen, X., Scheinost, D., Constable, R.T., 2019. The individual functional
853 connectome is unique and stable over months to years. *Neuroimage*.
854 <https://doi.org/10.1016/j.neuroimage.2019.02.002>

855 Hudson, A.N., Van Dongen, H.P.A., Honn, K.A., 2020. Sleep deprivation, vigilant attention, and
856 brain function: a review. *Neuropsychopharmacology*. <https://doi.org/10.1038/s41386-019-0432-6>

858 Johansen-Berg, H., Della-Maggiore, V., Behrens, T.E.J., Smith, S.M., Paus, T., 2007. Integrity
859 of white matter in the corpus callosum correlates with bimanual co-ordination skills.

860 Neuroimage. <https://doi.org/10.1016/j.neuroimage.2007.03.041>

861 Kanai, R., Bahrami, B., Rees, G., 2010. Human parietal cortex structure predicts individual
862 differences in perceptual rivalry. Curr. Biol. <https://doi.org/10.1016/j.cub.2010.07.027>

863 Kanai, R., Rees, G., 2011. The structural basis of inter-individual differences in human
864 behaviour and cognition. Nat. Rev. Neurosci. <https://doi.org/10.1038/nrn3000>

865 Kuntzelman, K., Miskovic, V., 2017. Reliability of graph metrics derived from resting-state
866 human EEG. Psychophysiology 54, 51–61. <https://doi.org/10.1111/psyp.12600>

867 Lamprecht, R., LeDoux, J., 2004. Structural plasticity and memory. Nat. Rev. Neurosci.
868 <https://doi.org/10.1038/nrn1301>

869 Laumann, T.O., Gordon, E.M., Adeyemo, B., Snyder, A.Z., Joo, S.J., Chen, M.Y., Gilmore,
870 A.W., McDermott, K.B., Nelson, S.M., Dosenbach, N.U.F., Schlaggar, B.L., Mumford,
871 J.A., Poldrack, R.A., Petersen, S.E., 2015. Functional System and Areal Organization of a
872 Highly Sampled Individual Human Brain. Neuron.
873 <https://doi.org/10.1016/j.neuron.2015.06.037>

874 Laumann, T.O., Snyder, A.Z., Mitra, A., Gordon, E.M., Gratton, C., Adeyemo, B., Gilmore,
875 A.W., Nelson, S.M., Berg, J.J., Greene, D.J., McCarthy, J.E., Tagliazucchi, E., Laufs, H.,
876 Schlaggar, B.L., Dosenbach, N.U.F., Petersen, S.E., 2016. On the Stability of BOLD fMRI
877 Correlations. Cereb. Cortex 1–14. <https://doi.org/10.1093/cercor/bhw265>

878 Loh, S., Lamond, N., Dorrian, J., Roach, G., Dawson, D., 2004. The validity of psychomotor
879 vigilance tasks of less than 10-minute duration. Behav. Res. Methods, Instruments, Comput.
880 <https://doi.org/10.3758/BF03195580>

881 Lohmann, G., Margulies, D.S., Horstmann, A., Pleger, B., Lepsien, J., Goldhahn, D., Schloegl,
882 H., Stumvoll, M., Villringer, A., Turner, R., 2010. Eigenvector centrality mapping for

883 analyzing connectivity patterns in fMRI data of the human brain. PLoS One.
884 <https://doi.org/10.1371/journal.pone.0010232>

885 Luck, S.J., Vogel, E.K., 1997. The capacity of visual working memory for features and
886 conjunctions. Nature. <https://doi.org/10.1038/36846>

887 Lydon-Staley, D.M., Ceric, R., Satterthwaite, T.D., Bassett, D.S., 2018. Evaluation of confound
888 regression strategies for the mitigation of micromovement artifact in studies of dynamic
889 resting-state functional connectivity and multilayer network modularity. Netw. Neurosci.
890 https://doi.org/10.1162/netn_a_00071

891 Makris, N., Goldstein, J.M., Kennedy, D., Hodge, S.M., Caviness, V.S., Faraone, S. V., Tsuang,
892 M.T., Seidman, L.J., 2006. Decreased volume of left and total anterior insular lobule in
893 schizophrenia. Schizophr. Res. <https://doi.org/10.1016/j.schres.2005.11.020>

894 Malykhin, N., Concha, L., Seres, P., Beaulieu, C., Coupland, N.J., 2008. Diffusion tensor
895 imaging tractography and reliability analysis for limbic and paralimbic white matter tracts.
896 Psychiatry Res. - Neuroimaging. <https://doi.org/10.1016/j.pscychresns.2007.11.007>

897 Mangin, J.F., Rivière, D., Cachia, A., Duchesnay, E., Cointepas, Y., Papadopoulos-Orfanos, D.,
898 Scifo, P., Ochiai, T., Brunelle, F., Régis, J., 2004. A framework to study the cortical folding
899 patterns, in: NeuroImage. <https://doi.org/10.1016/j.neuroimage.2004.07.019>

900 Mattarella-Micke, A., Mateo, J., Kozak, M.N., Foster, K., Beilock, S.L., 2011. Choke or Thrive?
901 The Relation Between Salivary Cortisol and Math Performance Depends on Individual
902 Differences in Working Memory and Math-Anxiety. Emotion.
903 <https://doi.org/10.1037/a0023224>

904 McEvoy, L., Smith, M., Gevins, A., 2000. Test-retest reliability of cognitive EEG. Clin.
905 Neurophysiol. 111.

906 Mognon, A., Jovicich, J., Bruzzone, L., Buiatti, M., 2011. ADJUST: An automatic EEG artifact
907 detector based on the joint use of spatial and temporal features. *Psychophysiology*.
908 <https://doi.org/10.1111/j.1469-8986.2010.01061.x>

909 Motter, A.E., Zhou, C., Kurths, J., 2005. Network synchronization, diffusion, and the paradox of
910 heterogeneity. *Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.*
911 <https://doi.org/10.1103/PhysRevE.71.016116>

912 Moturu, S.T., Khayal, I., Aharony, N., Pan, W., Pentland, A., 2011. Using Social Sensing to
913 Understand the Links between Sleep, Mood, and Sociability, in: 2011 IEEE Third
914 International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third
915 International Conference on Social Computing. pp. 208–214.
916 <https://doi.org/10.1109/PASSAT/SocialCom.2011.200>

917 Muldoon, S.F., Bridgeford, E.W., Bassett, D.S., Moreno, Y., Zhou, C.S., 2016. Small-World
918 Propensity and Weighted Brain Networks. *Sci. Rep.* 6, 22057.
919 <https://doi.org/10.1038/srep22057>

920 Mullen, T., Kothe, C., Chi, Y.M., Ojeda, A., Kerth, T., Makeig, S., Cauwenberghs, G., Jung,
921 T.P., 2013. Real-time modeling and 3D visualization of source dynamics and connectivity
922 using wearable EEG, in: Proceedings of the Annual International Conference of the IEEE
923 Engineering in Medicine and Biology Society, EMBS.
924 <https://doi.org/10.1109/EMBC.2013.6609968>

925 Mullen, T.R., Kothe, C.A.E., Chi, Y.M., Ojeda, A., Kerth, T., Makeig, S., Jung, T.P.,
926 Cauwenberghs, G., 2015. Real-time neuroimaging and cognitive monitoring using wearable
927 dry EEG. *IEEE Trans. Biomed. Eng.* <https://doi.org/10.1109/TBME.2015.2481482>

928 Newman, M.E.J., 2008. The mathematics of networks, in: The New Palgrave Dictionary of

929 Economics. <https://doi.org/doi:10.1057/9780230226203.1064>

930 Nierhaus, T., Vidaurre, C., Sannelli, C., Mueller, K.-R., Villringer, A., 2019. Immediate brain
931 plasticity after one hour of brain–computer interface (BCI). *J. Physiol.* n/a.
932 <https://doi.org/10.1113/JP278118>

933 Noble, S., Scheinost, D., Constable, R.T., 2019. A decade of test-retest reliability of functional
934 connectivity: A systematic review and meta-analysis. *Neuroimage* 203, 116157.
935 <https://doi.org/10.1016/j.neuroimage.2019.116157>

936 Noble, S., Spann, M.N., Tokoglu, F., Shen, X., Constable, R.T., Scheinost, D., 2017. Influences
937 on the Test-Retest Reliability of Functional Connectivity MRI and its Relationship with
938 Behavioral Utility. *Cereb. Cortex*. <https://doi.org/10.1093/cercor/bhx230>

939 Nunez, P.L., Srinivasan, R., Westdorp, A.F., Wijesinghe, R.S., Tucker, D.M., Silberstein, R.B.,
940 Cadusch, P.J., 1997. EEG coherency I: Statistics, reference electrode, volume conduction,
941 Laplacians, cortical imaging, and interpretation at multiple scales. *Electroencephalogr. Clin.*
942 *Neurophysiol.* [https://doi.org/10.1016/S0013-4694\(97\)00066-7](https://doi.org/10.1016/S0013-4694(97)00066-7)

943 O'Connor, D., Potler, N.V., Kovacs, M., Xu, T., Ai, L., Pellman, J., Vanderwal, T., Parra, L.C.,
944 Cohen, S., Ghosh, S., Escalera, J., Grant-Villegas, N., Osman, Y., Bui, A., Cameron
945 Craddock, R., Milham, M.P., 2017. The healthy brain network serial scanning initiative: A
946 resource for evaluating inter-individual differences and their reliabilities across scan
947 conditions and sessions. *Gigascience*. <https://doi.org/10.1093/gigascience/giw011>

948 Onnela, J.P., Saramäki, J., Kertész, J., Kaski, K., 2005. Intensity and coherence of motifs in
949 weighted complex networks. *Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.*
950 <https://doi.org/10.1103/PhysRevE.71.065103>

951 Pannunzi, M., Hindriks, R., Bettinardi, R.G., Wenger, E., Lisofsky, N., Martensson, J., Butler,

952 O., Filevich, E., Becker, M., Lochstet, M., Kühn, S., Deco, G., 2017. Resting-state fMRI
953 correlations: From link-wise unreliability to whole brain stability. *Neuroimage*.
954 <https://doi.org/10.1016/j.neuroimage.2017.06.006>

955 Park, H.J., Friston, K., 2013. Structural and functional brain networks: From connections to
956 cognition. *Science* (80-.). <https://doi.org/10.1126/science.1238411>

957 Perich, M.G., Gallego, J.A., Miller, L.E., 2018. A Neural Population Mechanism for Rapid
958 Learning. *Neuron*. <https://doi.org/10.1016/j.neuron.2018.09.030>

959 Poldrack, R.A., Laumann, T.O., Koyejo, O., Gregory, B., Hover, A., Chen, M.Y., Gorgolewski,
960 K.J., Luci, J., Joo, S.J., Boyd, R.L., Hunicke-Smith, S., Simpson, Z.B., Caven, T., Sochat,
961 V., Shine, J.M., Gordon, E., Snyder, A.Z., Adeyemo, B., Petersen, S.E., Glahn, D.C.,
962 Mckay, D.R., Curran, J.E., Göring, H.H.H., Carless, M.A., Blangero, J., Dougherty, R.,
963 Leemans, A., Handwerker, D.A., Frick, L., Marcotte, E.M., Mumford, J.A., 2015. Long-
964 term neural and physiological phenotyping of a single human. *Nat. Commun.*
965 <https://doi.org/10.1038/ncomms9885>

966 Powell, M.A., Garcia, J.O., Yeh, F.C., Vettel, J.M., Verstynen, T., 2018. Local connectome
967 phenotypes predict social, health, and cognitive factors. *Netw. Neurosci.*
968 https://doi.org/10.1162/netn_a_00031

969 Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious but
970 systematic correlations in functional connectivity MRI networks arise from subject motion.
971 *Neuroimage*. <https://doi.org/10.1016/j.neuroimage.2011.10.018>

972 Power, J.D., Lynch, C.J., Silver, B.M., Dubin, M.J., Martin, A., Jones, R.M., 2019. Distinctions
973 among real and apparent respiratory motions in human fMRI data. *Neuroimage*.
974 <https://doi.org/10.1016/j.neuroimage.2019.116041>

975 Power, J.D., Plitt, M., Gotts, S.J., Kundu, P., Voon, V., Bandettini, P.A., Martin, A., 2018.

976 Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial
977 and physical bases in multiecho data. Proc. Natl. Acad. Sci.

978 <https://doi.org/10.1073/pnas.1720985115>

979 Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L.,
980 2001. A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A.

981 <https://doi.org/10.1073/pnas.98.2.676>

982 Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: Uses and
983 interpretations. Neuroimage 52, 1059–1069.

984 <https://doi.org/10.1016/j.neuroimage.2009.10.003>

985 Rypma, B., D'Esposito, M., 1999. The roles of prefrontal brain regions in components of
986 working memory: effects of memory load and individual differences. Proc. Natl. Acad. Sci.
987 U. S. A.

988 Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, X.-N., Holmes, A.J., Eickhoff, S.B.,
989 Yeo, B.T.T., 2018. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic
990 Functional Connectivity MRI. Cereb. Cortex. <https://doi.org/10.1093/cercor/bhx179>

991 Seitzman, B.A., Gratton, C., Laumann, T.O., Gordon, E.M., Adeyemo, B., Dworetzky, A.,
992 Kraus, B.T., Gilmore, A.W., Berg, J.J., Ortega, M., Nguyen, A., Greene, D.J., McDermott,
993 K.B., Nelson, S.M., Lessov-Schlaggar, C.N., Schlaggar, B.L., Dosenbach, N.U.F., Petersen,
994 S.E., 2019. Trait-like variants in human functional brain networks. Proc. Natl. Acad. Sci. U.
995 S. A. <https://doi.org/10.1073/pnas.1902932116>

996 Shah, L.M., Cramer, J.A., Ferguson, M.A., Birn, R.M., Anderson, J.S., 2016. Reliability and
997 reproducibility of individual differences in functional connectivity acquired during task and

998 resting state. *Brain Behav.* <https://doi.org/10.1002/brb3.456>

999 Shehzad, Z., Kelly, A.M.C., Reiss, P.T., Gee, D.G., Gotimer, K., Uddin, L.Q., Lee, S.H.,

1000 Margulies, D.S., Roy, A.K., Biswal, B.B., Petkova, E., Castellanos, F.X., Milham, M.P.,

1001 2009. The resting brain: Unconstrained yet reliable. *Cereb. Cortex.*

1002 <https://doi.org/10.1093/cercor/bhn256>

1003 Shou, H., Eloyan, A., Lee, S., Zipunnikov, V., Crainiceanu, A.N., Nebel, M.B., Caffo, B.,

1004 Lindquist, M.A., Crainiceanu, C.M., 2013. Quantifying the reliability of image replication

1005 studies: The image intraclass correlation coefficient (I2C2). *Cogn. Affect. Behav. Neurosci.*

1006 <https://doi.org/10.3758/s13415-013-0196-0>

1007 Sipos, M.L., Bar-Haim, Y., Abend, R., Adler, A.B., Bliese, P.D., 2014. Postdeployment threat-

1008 related attention bias interacts with combat exposure to account for PTSD and anxiety

1009 symptoms in soldiers. *Depress. Anxiety.* <https://doi.org/10.1002/da.22157>

1010 Sorg, C., Riedl, V., Mühlau, M., Calhoun, V.D., Eichele, T., Läer, L., Drzezga, A., Förstl, H.,

1011 Kurz, A., Zimmer, C., Wohlschläger, A.M., 2007. Selective changes of resting-state

1012 networks in individuals at risk for Alzheimer's disease. *Proc. Natl. Acad. Sci.* 104,

1013 18760 LP – 18765. <https://doi.org/10.1073/pnas.0708803104>

1014 Thurman, S.M., Waslylyshyn, N., Roy, H., Lieberman, G., Garcia, J.O., Asturias, A., Okafor,

1015 G.N., Elliott, J.C., Giesbrecht, B., Grafton, S.T., Mednick, S.C., Vettel, J.M., 2018.

1016 Individual differences in compliance and agreement for sleep logs and wrist actigraphy: A

1017 longitudinal study of naturalistic sleep in healthy adults. *PLoS One.*

1018 <https://doi.org/10.1371/journal.pone.0191883>

1019 Tian, L., Ren, J., Zang, Y., 2012. Regional homogeneity of resting state fMRI signals predicts

1020 Stop signal task performance. *Neuroimage* 60, 539–544.

1021 https://doi.org/https://doi.org/10.1016/j.neuroimage.2011.11.098

1022 Tuch, D.S., Salat, D.H., Wisco, J.J., Zaleta, A.K., Hevelone, N.D., Rosas, H.D., 2005. Choice
1023 reaction time performance correlates with diffusion anisotropy in white matter pathways
1024 supporting visuospatial attention. Proc. Natl. Acad. Sci. U. S. A.

1025 https://doi.org/10.1073/pnas.0407259102

1026 Van Gaal, S., Scholte, H.S., Lamme, V.A.F., Fahrenfort, J.J., Ridderinkhof, K.R., 2011. Pre-
1027 SMA graymatter density predicts individual differences in action selection in the face of
1028 conscious and unconscious response conflict. J. Cogn. Neurosci.

1029 https://doi.org/10.1162/jocn.2010.21444

1030 Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F., Pennartz, C.M.A., 2011. An
1031 improved index of phase-synchronization for electrophysiological data in the presence of
1032 volume-conduction, noise and sample-size bias. Neuroimage 55, 1548–1565.

1033 https://doi.org/10.1016/j.neuroimage.2011.01.055

1034 Wei, X., Yoo, S.S., Dickey, C.C., Zou, K.H., Guttmann, C.R.G., Panych, L.P., 2004. Functional
1035 MRI of auditory verbal working memory: Long-term reproducibility analysis. Neuroimage.

1036 https://doi.org/10.1016/j.neuroimage.2003.10.039

1037 Westerhausen, R., Kreuder, F., Woerner, W., Huster, R.J., Smit, C.M., Schweiger, E., Wittling,
1038 W., 2006. Interhemispheric transfer time and structural properties of the corpus callosum.
1039 Neurosci. Lett. https://doi.org/10.1016/j.neulet.2006.09.028

1040 Yantis, S., Schwarzbach, J., Serences, J.T., Carlson, R.L., Steinmetz, M.A., Pekar, J.J., Courtney,
1041 S.M., 2002. Transient neural activity in human parietal cortex during spatial attention shifts.
1042 Nat. Neurosci. https://doi.org/10.1038/nn921

1043 Yeh, F.C., Vettel, J.M., Singh, A., Poczobut, B., Grafton, S.T., Erickson, K.I., Tseng, W.Y.I.,

1044 Verstynen, T.D., 2016. Quantifying Differences and Similarities in Whole-Brain White

1045 Matter Architecture Using Local Connectome Fingerprints. PLoS Comput. Biol.

1046 <https://doi.org/10.1371/journal.pcbi.1005203>

1047

1048

1049