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Abstract

As interest in unsupervised deep learning models for the analysis of gene expression data has grown, an increasing
number of methods have been developed to make these deep learning models more interpretable. These methods can
be separated into two groups: (1) post hoc analyses of black box models through feature attribution methods and (2)
approaches to build inherently interpretable models through biologically-constrained architectures. In this work, we
argue that these approaches are not mutually exclusive, but can in fact be usefully combined. We propose a novel
unsupervised pathway attribution method, which better identifies major sources of transcriptomic variation than prior
methods when combined with biologically-constrained neural network models. We demonstrate how principled feature
attributions aid in the analysis of a variety of single cell datasets. Finally, we apply our approach to a large dataset of
post-mortem brain samples from patients with Alzheimer’s disease, and show that it identifies Mitochondrial Respiratory
Complex I as an important factor in this disease.

1 Background
As technologies to measure gene expression in biological samples have advanced over the last several decades, the tools
and methods to extract biological meaning from these high-dimensional measurements have developed in parallel [1].
The increasing number of available samples in large transcriptomic compendia has enabled deep learning as a viable
option for reference mapping [2], data integration [3], dimensionality reduction and visualization [4]. In particular,
unsupervised machine learning approaches to solve these problems have become popular. For instance, tools like scVI use
variational autoencoders (VAEs) to help analyze single cell RNA-seq data [5]. Similarly, variational autoencoders have
been used to learn low-dimensional embeddings of bulk cancer RNA-seq data, improving the prediction of drug response
[6]. Deterministic autoencoders have also been used in transcriptomic analyses, including the application of denoising
autoencoders to large Pseudomonas aeruginosa and yeast datasets [7, 8]. While these deep learning approaches all are
capable of modeling complex systems with high fidelity, they unfortunately share the drawback of lacking interpretability.
Their latent embeddings do not have inherent biological meaning, and further methods are required to understand
mechanisms captured by these models [9].

Two competing trends have emerged to “open the black box” and elucidate the biological mechanisms learned by
these models, and have so far been framed as orthogonal approaches. The first trend could be described as post hoc
interpretability, and aims to identify which genes were the most important contributors to each latent variable learned
by an autoencoder. A variety of methods have been used to do this interpretation, and range from the use of feature
attribution methods [10–12] to the direct analysis of weights in shallower autoencoders. For instance, Dincer et al. [13]
apply the feature attribution method Integrated Gradients [12] to the latent variables of VAEs to identify the most
important genes for each latent dimension, while Way et al. [14] measure the magnitude of each input weight to shallow,
non-linear autoencoders. Likewise, in single cell analysis, Svensson et al. [15] modify a popular VAE architecture to have a
linear decoder, allowing enrichment tests to be run using the magnitude of weights in that linear decoder. Despite the
successes of these approaches, these types of analyses may be very difficult as autoencoders are known to learn entangled
representations, meaning that each latent variable may capture multiple biological processes [16]. Furthermore, generating
feature attributions for dozens or hundreds of latent variables may be computationally inefficient.

Another recent trend could be described as biologically-constrained modeling, and aims to create models with latent
spaces that are inherently interpretable. These models use prior information to define sparse connections between input

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490535doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490535
http://creativecommons.org/licenses/by-nc-nd/4.0/


nodes corresponding to genes, and latent nodes corresponding to biological pathways (or other pre-defined groups). These
biologically-constrained networks have been used in a supervised setting to improve the prediction of survival or treatment
resistance from cancer gene expression or mutational status [17, 18], and to improve Genome Wide Association studies by
aggregating the effects of single nucleotide polymorphisms (SNPs) into SNP sets [19]. In particular, a variety of recent
works have proposed using biologicaly-constrained autoencoders to model gene expression data [20–22].

This paper aims to demonstrate that these two trends in biological interpretability are not mutually exclusive, and that
principled attribution methods improve the analysis of interpretable, unsupervised models of gene expression analysis by
quantifying the importance of pathways. We first propose a novel, fully-unsupervised attribution method and demonstrate
how it can be used to identify important pathways in transcriptomic datasets when combined with biologically-constrained
autoencoders. This allows for fully unsupervised analysis of gene expression data. We then show how existing, feature-level
attribution approaches still provide useful information for annotated, unsupervised models. Finally, we apply our approach
to a large transcriptomic compendium of post-mortem brain data from patients with Alzheimer’s disease and demonstrate
how our approach can identify Mitochondrial Respiratory Complex I as a potential drug target for this disease.

2 Results

2.1 Overview of PAUSE approach
Our approach, principled attribution for unsupervised gene expression analysis (PAUSE), aims to improve the utility
of “interpretable” deep autoencoder models using techniques from the area of feature attribution. By “interpretable”
autoencoder model, we refer to any model that learns a latent representation with dimensions that correspond to biological
pathways or functions (Fig. 1a). This encompasses models trained with special regularization [20], as well as models with
biologically-defined architectures [22]. We focus on two types of attributions for these models: pathway-level attribution
(Fig. 1b) and gene-level attribution (Fig. 1c).

While interpretable autoencoder models have latent nodes corresponding to biological pathways, there is no clear-cut
way to identify which pathways are the most important in a dataset. For Principal Components Analysis (PCA), a classical
approach to unsupervised gene expression analysis, the eigenvalues of each principal component indicate how much variance
in the original expression space is explained by that component. While autoencoders learn latent variables (or distributions,
in the case of variational autoencoders), there is no obvious correspondence that reveals how much variance is explained by
each latent dimension. Using approaches from game theory for credit allocation among players in cooperative games, we
derive a novel pathway attribution that can be thought of analogously to the eigenvalue in PCA, in the sense that this
attribution value shows how much variance in the original gene expression space is explained by each latent pathway. By
posing the reduction in reconstruction error as the reward to be allocated in a cooperative game in which the pathways are
the players (see Methods for more details), solution concepts like the Shapley value [23] or Aumann-Shapley value [24] can
be used to provide pathway attributions.

Additionally, although the latent factors of biologically-constrained autoencoders are more interpretable than the latent
factors of standard autoencoders, in the sense that they represent the expression only of genes within their annotated
pathway, these latent variables are often not fully interpretable on their own. For example, the pathway module variational
autoencoder (pmVAE) architecture [22] learns multiple latent variables for each pathway, which helps to encode more
biologically relevant information. However, this approach provides no way for understanding the differences between the
different nodes within a given pathway module. Are these latent variables sub-pathways supported by different genes
with different expression patterns? Furthermore, if there are important pathways in an expression dataset that are not
represented in the knowledge base used to define the model architecture, can we still identify these pathways? We propose
generating gene attributions, again using feature attribution techniques based on the Shapley or Aumann-Shapley value,
to identify the genes contributing to important learned pathway embeddings, or to identify the genes contributing to
densely connected auxiliary pathways.

2.2 Pathway attributions accurately identify major sources of variation
To empirically validate that the pathways identified by our pathway attributions correspond to the most important sources
of variation in real gene expression datasets, we adapt two benchmarks from the feature attribution literature [25]. The first
is an imputation benchmark, and measures the extent to which the reconstruction error of a trained biologically-constrained
autoencoder model increases when the learned embeddings for each pathway are replaced with an uninformative mean
imputation. The better an attribution method ranks important pathways, the more quickly the reconstruction error
will increase. The second benchmark is a retrain benchmark, and measures the extent to which pathways identified as
important can reconstruct gene expression space when used to train a new model. Attributions that do a better job of
ranking pathways will decrease the reconstruction error more quickly.

Previous approaches to identifying important pathways in autoencoder models have been limited in a variety of
ways. For example, previous papers have used supervised metrics like logistic regression accuracy or Bayes factors to
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Fig. 1 | Biologically structured networks combine with game-theoretic attributions to create more inter-
pretable unsupervised models. While inherently interpretable models and post-hoc interpretability methods like
feature attribution have traditionally been framed as orthogonal approaches to creating biologically meaningful models,
these approaches are in fact mutually beneficial. Our approach, principled attribution for unsupervised gene expression
analysis (PAUSE), combines biologically-constrained autoencoders with principled attributions to improve the unsupervised
analysis of gene expression data. a, Biologically-constrained “interpretable” autoencoders use prior knowledge to define
sparse connections in a deep autoencoder, such that latent variables correspond to the activity of biological pathways.
b, We propose a novel unsupervised pathway attribution method to identify the most important pathways for a given
dataset, leading to an intuitive quantification corresponding to the amount of variance explained by the pathway. c,
Gene attributions increase the interpretability of latent pathways, identifying distinct sub-pathways and finding biological
pathways not present in the prior constraints.
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Fig. 2 | PAUSE pathway attributions accurrately identify the major sources of variation in single cell
datasets. To verify that our novel pathway attribution method (“PAUSE” in the plots above) is capable of identifying the
major sources of transcriptomic variation across a variety of datasets, we apply two benchmarks of pathway identification.
The first (a), termed our impute benchmark, measures how much the reconstruction error of a biologically-constrained
autoencoder model increases as important pathways are replaced with an uniformative, imputed baseline. Better methods
will increase the error faster, leading to a larger area under the curve (AUC). The second benchmark (b), termed our
retrain benchmark, measures how well a model can reconstruct the observed expression when retrained using only the
most important pathways. Better methods will decrease the error faster, leading to a smaller AUC. The AUCs for both
the impute (c-e) and retrain (f-h) benchmarks are shown for ten separate train/test splits across three separate single cell
gene expression datasets (intestinal cells, peripheral blood monocytes, and Jurkat cells). In each experiment, the PAUSE
loss attribution method significantly outperforms other methods. The other methods shown here are logistic regression
score (LR), Kullback–Leibler divergence (KLD), random ranking, and latent space variance (LSV). The boxes in c-h mark
the quartiles (25th, 50th, and 75th percentiles) of the distribution, while the whiskers extend to show the minimum and
maximum of the distribution (excluding outliers).

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490535doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490535
http://creativecommons.org/licenses/by-nc-nd/4.0/


a b

0.5 0.6 0.7 0.8 0.9 1.0
LR Score

0.000

0.001

0.002

0.003

0.004

Lo
ss

 A
tt

ri
b
u
ti
on

ANTIVIRAL_MECHANISM_BY_IFN_STIMULATED_GENES

CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM

PEPTIDE_LIGAND_BINDING_RECEPTORS

PERK_REGULATES_GENE_EXPRESSION

DNA_REPAIR

INTERFERON_GAMMA_SIGNALING

INTERFERON_ALPHA_BETA_SIGNALING

INTERFERON_SIGNALING

Unique to PAUSE Common to both

Unique to LR score

PBMC Top Pathways

Fig. 3 | PAUSE loss attribution reveals biologically relevant pathways that overlap with pathways found
using a supervised approach. Comparison of top pathways found using PAUSE loss attribution (y-axis, unsupervised)
and logistic regression (LR) score (x-axis, supervised) in PBMC (a) and Intestinal (b) datasets. Gene sets in the blue
rectangles are those ranked in the top 10 only by PAUSE, those in the yellow rectangles are ranked in the top 10 only by
LR score, and those in the green rectangles are ranked in the top 10 by both methods. The size of the dots indicates gene
set size.

identify important pathways [20, 22]. While these approaches have been used to successfully identify important pathways,
calculating these metrics depends on having labeled data, which means that this analysis is not truly unsupervised. In
terms of fully unsupervised approaches, Higgins et al. [16] have proposed finding important latent factors of variation by
measuring the Kullback–Leibler (KL) divergence between the learned latent distribution in VAEs and the prior distributions.
While this approach does not require labeled data, it can only be applied to VAE models, and can not be applied to
standard, deterministic autoencoders. Another fully unsupervised approach to ranking important pathways examines the
L2 norm of the weights connecting each latent pathway to the reconstruction output; however, this metric is obviously
limited to models with linear decoders [21]. Unlike all of these approaches, our proposed pathway attribution (see Methods)
is both fully unsupervised, meaning it requires no labeled data, and model agnostic, meaning it can be applied to any
model regardless of architecture or implementation details.

The three datasets used in the two benchmarks were selected because they have labels corresponding to known
perturbations applied to the cells, which allowed us to compare the information gleaned from our fully unsupervised
analysis to that highlighted by supervised methods. These datasets have also been extensively analyzed in previous,
related work, and include a dataset of peripheral blood monocytes (PBMC) stimulated with interferon-β [26], a dataset of
intestinal epithelial cells stimulated with Salmonella enterica and Heligmosomoides polygyrus [27], and a dataset of Jurkat
cells stimulated with a combination of anti-CD3/anti-CD28 antibodies to induce T cell activation [28] (see Methods for
more details, including data preprocessing). The particular model architecture trained for this benchmark was a pathway
module VAE (pmVAE), which is a sparse variational autoencoder model with deep, non-linear encoders and decoders [22].

Across both benchmarks and all three datasets, our pathway attribution method consistently identified the most
important sources of dataset-wide transcriptomic variation better than previous approaches (two-sided Wilcoxon signed
rank test, p=1.95 × 10−3, statistic=0.0). Remarkably, we also found that our pathway loss attributions outperformed
directly examining the L2 norm of the decoder weights in an architecture with a linear decoder (see Supplementary Fig. 1).
In conclusion, our benchmark demonstrates that our pathway attribution method is able to accurately identify the major
sources of transcriptomic variation across different datasets and autoencoder architectures, showing the benefit of using
prinicpled attributions in conjunction with biologically-constrained models.
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2.3 Pathway attributions identify biologically relevant pathways
After demonstrating in the previous section that our pathway attributions were capable of accurately identifying the major
sources of transcriptomic variation in three scRNA-seq datasets, we wanted to demonstrate that these major sources of
transcriptomic variation corresponded to biologically interesting pathways. We therefore compared the top pathways found
by our unsupervised approach to the top pathways according to a more conventional, supervised analysis (Fig. 3).

We first considered a biologically-constrained VAE (pmVAE, see Methods) trained on a dataset of peripheral blood
mononuclear cells (PBMCs), where the PBMCs were either untreated as controls or stimulated with interferon-β [26].
The latent nodes of this model were defined using Reactome pathways [29]. Because this is a well-studied dataset with a
known ground truth perturbation, we know that pathways related to interferon-β (IFN-β) stimulation should be important,
and because we have control/stimulated labels for the cells, we can compare the pathways identified as important by our
unsupervised analysis with the pathways identified by supervised analysis. For a supervised metric of pathway importance,
we considered the accuracy attained by a logistic regression model trained on the pathway latent nodes to differentiate
stimulated and controlled cells [22].

We find that our fully unsupervised pathway attributions are able to identify many of the same pathways as supervised
approaches, without requiring access to labeled data (See Fig. 3a). For example, we see that the Reactome pathways
“Cytokine Signaling in Immune system,” “IFN Signaling,” and “IFN alpha/beta signaling,” are in the list of top ten pathways
identified by both approaches. More interestingly, we can also examine where the pathway rankings are discordant. For
example, “IFN Gamma Signaling” is a top pathway according to the supervised approach, but not according to our
unsupervised rankings. This demonstrates why our unsupervised approach can complement the supervised approach even
when labels are present. Although certain genes are regulated by both type I and type II IFNs, other genes are expected
to be selectively regulated by either type I or type II IFNs [30]. Looking at our unsupervised attributions shows that while
there may be significant enough differences in expression of genes in the “IFN Gamma Signaling” pathway to differentiate
stimulated and unstimulated cells, this pathway is not one of the major sources of variation in the dataset, at least when
compared to pathways more directly related to IFN-β signaling. Therefore, in addition to being useful when labeled data
is not present, our unsupervised attributions can provide additional utility even when labels are present by explicitly
quantifying the amount of variance in the observed data explained by each pathway.

We next considered a VAE (again with latent modules defined by Reactome pathways) trained on a dataset of mouse
intestinal epithelial cells where control cells were untreated, and stimulated cells had been exposed to the parasitic
roundworm Heligmosomoides polygyrus [27]. Again, there is substantial overlap in the top pathways identified by our
unsupervised approach and supervised metrics (Figure 3b). For example, the Reactome pathway “Innate Immune Response”
is the most important pathway according to both supervised and unsupervised attributions. Next, we again can look to
see where these approaches are discordant in their rankings.

Examining the top ten pathways according to supervised attributions, we see that the pathway “MHC Class II Antigen
Presentation” is a top pathway, despite not being highly ranked by our unsupervised metric (Figure 3b). This pathway is
particularly biologically plausible as an important process in this dataset, as the MHC Class II complex is constitutively
expressed in the upper villi of the small intestine, indicating a potential role as non-professional antigen presenting cells for
intestinal epithelial cells [31]. Previous work has shown that in both epithelial cells and in other cell types, expression
of the MHC Class II complex is regulated in response to pathogen exposure [32, 33]. The fact that this pathway is
highlighted by supervised attributions, but not by our unsupervised approach, shows that these two approaches (supervised
and unsupervised) should be considered complementary. While our PAUSE attributions can help identify the pathways
responsible for explaining the largest quantities of variation in a given dataset, supervised attributions can help identify
specific differences in expression between known groups.

2.4 Gene attributions increase latent node interpretability
In addition to identifying important pathways, the interpretability of biologically-constrained models can be enhanced
through the application of gene attribution values. These gene attribution values help identify which gene expression
values are important determinants of each learned pathway representation. For example, previous work has analysed the
expression of Jurkat cells, an immortalized human T lymphocyte cell line, when stimulated with anti-CD3 and anti-CD28
antibodies to induce T cell activation [28]. This prior analysis trained a pathway module VAE (pmVAE) to reconstruct the
expression of these cells, and found that having multiple nodes in each pathway module led to embeddings that were more
discriminative for T cell activation [22]. This raises the question of whether multiple nodes may be necessary in order to
distinguish different processes of the biology of T cell activation.

We therefore generated gene attributions to understand the expression programs represented by the multiple nodes
present within given pathway modules. The two most important genes for each of the four latent nodes in the TCR
signaling module were PTPRC and PTPN22 (Supplementary Fig. 2). PTPRC enocdes a tyrosine phosphatase commonly
known as CD45 antigen, while PTPN22 codes for another protein tyrosine phosphatase commonly known as PEP. These
genes are known to play an important, albeit complex, role in proximal TCR signaling, regulating the activity of Src family
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Fig. 4 | Gene attributions increase latent variable interpretability and differentiate TCR signaling pathway
expression programs. Gene level attributions help to gain a deeper understanding of the expression programs represented
by the latent variables of a biologically-constrained autoencoder trained on a dataset of Jurkat cells stimulated with
anti-CD3 and anti-CD28 antibodies. a, Pairwise correlations between the four latent variables in the pathway module
corresponding to T cell receptor signaling. b-c Gene attribution dependence plots for the two most important genes for
TCR Signaling Latent Node 1. e-f Gene attribution dependence plots for the two most important genes for TCR Signaling
Latent Node 2. d Jurkat cells plotted by their PTPRC and PTPN22 expression levels display distinct sub-populations,
including cells where PTPRC and PTPN22 are co-expressed, and cells where only one or the other is expressed.
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kinases downstream of T cell receptor activation [34].
Looking at the pairwise correlations between the activations of each of the four latent nodes in the TCR Signaling

pathway module over all cells (see Fig. 4a), we see that while many of the pairs of nodes have a high degree of correlation
or anti-correlation (potentially indicating redundancy between these nodes), Node 1 and Node 2 have a relatively low
correlation (Pearson’s R = 0.11). We can plot gene attributions for the top two genes for Node 1 (Fig. 4b,c) and Node 2
(Fig. 4e,f) in order to understand what precisely is being represented by the different nodes of the pathway module.

We see that Node 1’s output is high when PTPRC’s expression is high (Fig. 4b), and low when PTPN22 expression is
high (Fig. 4c). This means that in cells where PTPRC and PTPN22 are co-expressed, the contributions of these two genes
will cancel out and the latent node’s activation will have a low magnitude. Node 2’s output, in contrast, is highly negative
when PTPRC expression is high (Fig. 4e) and highly negative when PTPN22 expression is high (Fig. 4f). Directly
examining the expression values of PTPRC and PTPN22 across the cells in this dataset, we see that there are distinct
populations of cells where PTPRC and PTPNN2 are coexpressed, and other populations where they are not (Fig. 4d).
This example represents a common situation in biology – the genes in a particular annotated pathway are not perfectly
correlated and co-expressed as a single block across all cell types. Rather, the pathway comprises a variety of distinct
subprograms. The utility of gene attributions is in allowing multiple nodes to be modeled for each pathway in a fully
deep and non-linear manner. After modeling, gene attributions can then be used to help us understand what the specific
sub-processes a model has learned to represent within a particular pathway.

In addition to differentiating sub-processes within an annotated pathway module, another use for gene attributions
is identifying biological processes learned by unannotated, densely-connected latent nodes. In addition to latent nodes
corresponding to annotated biological pathways, densely connected nodes or modules can be jointly modeled to capture
novel biology. In order to verify that densely connected nodes could identify biological expression programs not represented
in prior knowledge bases, we modeled a dataset where we know the ground truth perturbations (PBMCs stimulated with
IFN-β). We omitted the particular pathways that should have been most relevant for the perturbation, but included
a densely-connected module with several nodes capable of representing expression from all genes. When we used gene
attributions to identify the important expression contributors for these densely-connected, unannotated nodes, we found
that they corresponded to the expected ground truth biology (Supplementary Fig. 3). Specifically, the 50 most important
genes for each densely connected node were significantly enriched for multiple pathways corresponding to biological ground
truth (Supplementary Fig. 4). As a control experiment, we repeated this procedure, but instead of omitting pathways that
correspond to known biological ground truth, we omitted pathways that we expect to be unrelated to the given perturbation.
As an example, we look at removing the Reactome pathway ’Regulation of PLK1 Activity at G2/M Transition’, which is
involved in regulating a number of cellular proteins during mitosis [29]. We then again used gene attributions to identify
the most important expression contributors to the densely-connected nodes (Supplementary Fig. 5). In this case, we found
no significant pathway enrichments for the top 50 genes for any of the auxiliary nodes. This control experiment shows that
densely-connected nodes can specifically represent unknown, novel sources of biological variation, rather than all missing
pathway information. Gene attributions allow these densely-connected nodes to be inspected to understand biological
signal not represented in prior knowledge.

In conclusion, while pathway attributions help give a high-level view of important processes in gene expression datasets,
gene attributions help elucidate particular mechanisms in greater detail. Furthermore, these attributions can help identify
novel biology in cases where the prior knowledge used to define the biologically-constrained model is mismatched with the
expression programs present in the dataset being modeled.

2.5 PAUSE identifies mitochondrial oxidative phosphorylation as an important process in
Alzheimer’s brain samples

After testing the PAUSE approach by applying it to a variety of single cell datasets with known perturbations and
well-characterized downstream effects, we wanted to use our PAUSE approach to gain insight into the biology of Alzheimer’s
disease (AD). AD is the most common form of dementia, and accounts for an estimated 60–70% of worldwide cases
[35]. Clinically, AD manifests with memory loss and cognitive decline, while neuropathologically AD is associated with
amyloid-β (Aβ) plaques and abnormal tau tangles in the brain [36]. We therefore applied PAUSE to a large collection
of postmortem brain RNA-sequencing measurements from patients with AD, assembled by the AMP-AD (Accelerating
Medicines Partnership Alzheimer’s Disease) consortium. This dataset includes brain samples from a variety of sources,
including the Religious Orders Study/Memory and Aging Project (ROSMAP) [37], Adult Changes in Thought (ACT) [38],
Mount Sinai Brain Bank (MSBB), and Harvard Brain Tissue Resource Center (HBTRC) studies (see Methods for more
detail).

Because of the diversity of data sources combined in this dataset, it was essential to account for batch effects so that
the embedding learned by our model represented true biological variation rather than technical artifacts. When a standard
pmVAE model is trained on the data, we see that the latent space separates samples predominantly according to the data
source from which the samples were derived (Figure 5b). To control for these dataset effects, we therefore modified the
pmVAE architecture to be a conditional pathway module VAE (cpmVAE) (Figure 1a, Figure 5a). In addition to the set
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Fig. 5 | PAUSE analysis highlights the importance of Mitochondrial Respiratory Complex I in Alzheimer’s
disease. a, A conditional pathway module VAE (cpmVAE) is trained to integrate human post-mortem brain tissue samples
from multiple Alzheimer’s disease (AD) studies. b, TSNE plot of the latent space of a pathway module VAE (pmVAE)
trained without batch effect correction by conditioning on study ID. c, TSNE plot of the latent space of a cpmVAE trained
with batch effect correction by conditioning on study ID. d, Most important pathway latent variables in cpmVAE model
according to PAUSE pathway loss attribution. Error bars indicate the standard deviation over local attributions e, Most
important gene expression contributors for top pathway (Oxidative Phosphorylation Node 3). Gene names bolded and
in red encode proteins in Mitochondrial Respiratory Complex I. Error bars indicate the standard deviation over local
attribution magnitudes.
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of gene expression values corresponding to a particular pathway, each module takes as an additional input a vector of
labels describing any unwanted sources of technical variation (like data source identity). By explicitly encoding the batch
effects in these variables, the model is free to learn biological information in the latent space. When our cpmVAE model
is trained on the data, we see that there is less separation in the latent space on the basis of source dataset (Figure 5c,
Supplementary Fig. 6). To assess the quality of the embedding learned by our cpmVAE model and further “sanity check”
our approach, we showed that our cpmVAE model reconstructed the original gene expression space more accurately than a
standard pmVAE model, had less clustering by dataset source, and was more predictive of the neuropathological phenotype
information we had for a small subset of samples than the original gene expression space (Supplementary Fig. 6).

When we generate PAUSE pathway attributions to interrogate the latent space learned by our cpmVAE model, we can
see that the single pathway explaining the most observed variation in the biological latent space is the Hallmark Oxidative
Phosphorylation pathway (Fig. 5d). Oxidative phosphorylation in the mitochondria is one of the major metabolic processes
responsible for generating the ATP necessary for neuronal function, and dysregulation and differential expression of this
pathway has previously been linked to AD [39]. While primary defects in oxidative phosphorylation are not thought to be
likely causes of AD, and mitochondrial dysfunction is in fact thought to be the result of Aβ and tau protein accumulation
[40], these changes in expression of oxidative phosphorylation genes likely play an important role in the pathophysiology of
AD [41]. Furthermore, the expression of this pathway varies not only between patients with AD and without AD, but also
varies greatly across AD patients, suggesting that this pathway may be related to the heterogeneity of clinical phenotypes
observed in AD patients [42].

After identifying several nodes related to oxidative phosphorylation as the top general processes in this dataset, we
used gene attributions to further interrogate the specific function represented in the top pathway node, which is Oxidative
Phosphorylation Node 3. We can visualize the individual gene attributions for this node using a summary plot (Fig. 5e).
When we look at the top 20 genes by gene attribution, we see four genes, NDUFS3, NDUFA3, NDUFS7, and NDUFA2, that
are all part of mitochondrial respiratory Complex I, which is responsible for the oxidation of NADH in the mitochondria
[43].

2.6 Experimental validation of PAUSE analysis identifies mitochondrial Complex I as a
potential AD therapeutic target

Unlike the single cell datasets with clear ground truth perturbations and well-studied downstream effects examined in
the prior analyses, the biology underlying the differences in gene expression in real-world samples from patients with
AD is less clearly characterized. Therefore, in order to verify that the genes and pathways identified by PAUSE are
biologically-relevant, we could not reference a known ground truth, and had to experimentally validate our findings.

To gain insight into the biological relevance of the genes identified by our PAUSE analysis of the Alzheimer’s brain
expression data, we used the nematode C. elegans, a well-established animal model of Aβ proteotoxicity [44]. We conducted
experiments with GMC101, a transgenic worm line displaying an age-associated aggregation of human Aβ1-42 peptide
resulting in rapid onset of age-associated paralysis. A stringent reciprocal best hits (RBH) approach (BLAST e-value
≤ 10−30; details in Methods) was used to identify nematode orthologs for human genes.

We used RNAi via bacterial feeding to reduce expression of 13 C. elegans genes encoding homologs of human Complex
I proteins in animals expressing toxic Aβ. This resulted in a striking delay in paralysis relative to control animals treated
with empty vector (EV) RNAi (Figure 6) (details in Methods). Suppression of paralysis by knockdown of Complex I
genes was comparable, or often exceeded, the suppression of paralysis by our positive control, RNAi knockdown of the
insulin-like receptor gene daf-2 (Figure 6), one of the strongest known suppressors of Aβ toxicity in worms [45].

3 Discussion
By combining principled attributions with pathway-based representations, our PAUSE approach enables the interpretable
and fully unsupervised analysis of gene expression datasets. In both the single cell and the bulk RNA-seq datasets
analyzed, we found that the major sources of variation quantified by our pathway attribution approach corresponded to
biologically-meaningful processes, as confirmed by known ground-truth perturbations in the single cell analyses and by
experimental validation in the AD dataset. Unlike existing methods, our pathway attributions do not depend on having
labeled data to identify important pathways. This enables fully unsupervised data exploration, and can complement
supervised analyses when labels are present. Furthermore, this approach can be applied to arbitrarily deep networks,
unlike existing methods which depend on having a fully linear network or a linear decoder.

An important limitation of our unsupervised pathway attributions is that they do not always capture all pathways that
differ significantly between two groups of interest, if those pathways do not represent major sources of expression variation
(see Fig. 3b). We emphasize that our unsupervised attribution method measures a different quantity than supervised
approaches, and should be considered a complementary approach rather than a replacement in applications where labeled
data are present.
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a b

Fig. 6 | C. elegans Aβ proteotoxicity assay validates importance of mitochondrial Complex I genes. a,
Paralysis curves for the reciprocal best orthologs of human Complex I genes. All tested RNAi conditions significantly
suppress paralysis. b, The same data as in a plotted as the median day of paralysis for each population of worms. Half of
the conditions showed even stronger suppression than daf-2 RNAi conditions. Error bars indicate standard error of the
mean across experiments. * p-value < 0.05. ** p-value < 0.01. *** p-value < 0.001.
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An assumption of our approach is that pathway databases provide good representations of the underlying biology of
the system being modeled, which is an assumption shared by any method that incorporates pathway information into the
modeling architecture. We note, however, that our incorporation of gene attributions specifically helps to alleviate this
problem. Our gene attributions, like the pathway attributions, can be applied to arbitrarily deep networks, and allow for
the biological interpretation of models with multiple latent variables per pathway. These attributions also allow the user to
understand what biology is captured by the model in densely connected nodes that are not associated with a particular
pathway.

Importantly, PAUSE was able to identify mitochondrial Complex I as a critical factor mediating Aβ-related pathophysi-
ology in AD, pointing to the promise of mild inhibition of Complex I as a potential new paradigm for developing future
AD therapeutics. This finding is supported by prior data indicating that mild inhibition of Complex I reduced Aβ and tau
levels in mouse models of familial AD [46], that diets rich in capsaicin — a natural product that can inhibit Complex I —
are associated with lower serum Aβ levels in the elderly [47], and that capsaicin reduced AD-associated changes in the
hippocampus of rats with type 2 diabetes [48].

4 Conclusions
We anticipate that our approach of combining principled attributions with interpretable model architectures will prove to
be a broadly useful strategy in domains beyond gene expression. Rather than viewing attribution methods or biologically-
meaningful representations as individual panaceas for machine learning interpretability, we hope that researchers will view
these approaches as composable tools, each addressing unique needs. For example, principled feature attribution methods
are currently applied to computer vision models, but most of these methods generate attributions at the level of pixels,
which are not the most human-interpretable features and struggle to represent higher-level concepts [49, 50]. On the other
hand, generative models like GANs can more clearly illustrate complex patterns differentiating domains, but lack the
rigorous quantification of feature attribution methods [49, 51]. We believe future work that is able to rigorously quantify
contributions of human-interpretable concepts in deep learning models will be useful in domains like microscopy, computer
vision, and digital pathology.

Additionally, while biological pathways represent one useful representation, they will not necessarily be the only
meaningful representation for all data types. For example, in the area of computer vision, researchers have proposed using
additional labeled data to train medical image models with representations encoding high-level clinical concepts, such as
the presence or absence of bone spurs in x-ray images of knees for osteoarthritis severity determination [52]. Future work
defining other useful conceptual representations will be helpful in biological applications, while finding methods such as the
sparsely-constrained architectures used in this manuscript to learn representations without the need for costly additional
labels will be useful in other domains.

5 Acknowledgements
The results published here are in part based on data obtained from the AD Knowledge Portal (https://adknowledgeportal.org).
Access to these datasets may be obtained after registering for a Synapse.org account, agreeing to acknowledge data used in
any publications, and submitting a data-use certificate (separately as needed for each dataset). Our study uses the following
datasets (with listed Synapse IDs; URLs): ACT (syn5759376), ROSMAP (syn3219045; https://doi.org/10.1038/s41593-
018-0154-9), MSBB (syn3159438), Mayo Clinic Brain Bank (syn5550404; https://doi.org/10.1038/sdata.2016.89), and the
Harvard Brain Tissue Resource Center (HBTRC) study (syn3159435) .

6 Methods

6.1 Model Architectures
Biologically interpretable autoencoders are unsupervised deep learning models with latent variables corresponding to
known biological pathways or other gene groupings. Methods to create biologically interpretable autoencoders can be
grouped into two broad strategies.

The first involves directly modifying the architecture of a network with sparse, masked connections. This approach is
taken by methods such as VEGA (VAE Enhanced by Gene Annotations) [21], which masks the weights in the linear decoder
of a variational autoencoder (VAE) so that each latent variable is only connected to genes in the pathway represented by
that latent variable. The second involves a “soft” modification of the network weights using weight regularization during
training. For example, the expiMap method (explainable programmable mapper), which is also a VAE with a linear
decoder, allows all connections from all latent variables in its decoder to potentially have non-zero weight, but adds an L1
regularization penalty specifically to the weights corresponding to genes not present in the original pathway definitions [20].
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In our experiments, we primarily used a fully deep architecture similar to that proposed in the pathway module
variational autoencoder (pmVAE) approach [22]. This autoencoder network’s encoder and decoder both have multiple
non-linear layers. To better describe these networks, we can start with a description of a typical, unmodified VAE [53].
Standard VAEs are a pair of neural networks, an encoder with parameters θ and a decoder with parameters ψ, optimized
to learn a low-dimensional distribution over latent variables z from high-dimensional data x, such as gene expression data.
These networks are trained by stochastic gradient descent to maximize the variational lower bound on the likelihood of the
data:

logpθ(x) ≥ Eq(z|x;θ)[logp(x|z;ψ)]−KL(q(z|x; θ)||p(z)) = −LELBO. (1)

In order to learn a low-dimensional latent space z that corresponds to biological pathways, the pmVAE approach uses
sparse masked weight matrices to separate the weights of the encoder and decoder neural networks into non-interacting
modules for each pathway. These modules may have multiple hidden layers in both the encoder and decoder network,
and may have multiple latent variables associated with each pathway. The network’s first layer is masked with a binary
assignment mask, which ensures that each gene is only connected with non-zero weight to the hidden nodes of the
modules corresponding to its pathways. Each subsequent layer is masked with a binary separation mask, which is a block
diagonal matrix ensuring that non-zero connections only occur within pathway modules. In addition to the sparse masking
modifications made to the encoder and decoder architectures, the pmVAE method also alters the training objective to add
a local reconstruction loss:

L(local)
recon =

1

K

∑
p

N

Np
∥x̂(p) − x(p)∥22, (2)

where x̂(p) is the reconstructed expression of the genes in pathway (p), x(p) is the observed expression of the genes in
pathway (p), N

Np
is a weighting term to weight each module’s local reconstruction loss dependent on the number of genes

in a particular module Np compared to the total number of genes N , and K is the total number of modules considered.
In our experiments on bulk RNA-seq brain data, the brain gene expression samples were compiled from multiple data

sources. In order to disentangle the batch effects, represented by a vector c, from the biological variation of interest, we
wanted to train a conditional pathway module VAE (cpmVAE), and therefore maximize the conditional variational lower
bound objective:

logpθ(x|c) ≥ Eq(z|x,c;θ)[logp(x|c, z;ψ)]−KL(q(z|x, c; θ)||p(z|c)) = −Lc
ELBO. (3)

These condition labels are passed to each pathway module in the encoder, and again to each pathway module in the
decoder. In order to ensure that the learned embedding is fully independent of the unwanted sources of variation encoded
in the conditional labels, we add a regularization term to the loss based on the Hilbert Schmidt independence criterion
(HSIC) between the latent embedding z and the dataset labels c [54, 55]. Therefore, our total loss function optimized for
the cpmVAE architecture is:

Ltotal = Lc
ELBO + L(local)

recon + LHSIC. (4)

We implemented our cpmVAE model (and the pmVAE models) using the PyTorch deep learning library [56]. For both
the cpmVAE and pmVAE models, we included BatchNorm1D layers following all but the final layers of both the encoder and
decoder networks. We optimized the networks using an Adam optimizer with an initial learning rate of 0.001, and decreased
the learning rate by a factor of 10 following each epoch if there was not a decrease in global reconstruction error on a
held out validation set. All models were trained for 200 epochs, and the model checkpoint with the lowest reconstruction
error on a held out validation set was used for downstream analysis. For single cell benchmark experiments, each pathway
module had a hidden layer of 12 nodes, followed by a pathway latent space of 1 node. For all other experiments, each
pathway module had a hidden layer of 12 nodes, followed by a pathway latent space of 4 nodes.

For the cpmVAE experiments, the HSIC loss was multiplied by a factor of 1× 106, to ensure this term was around
equal magnitude with the other loss terms.

Finally, for our experiments involving models with linear decoders (see Supplementary Fig. 1), we used the Interpretable
Autoencoder architecture proposed by Rybakov et al. [57]. This model is similar to the expiMap method [20], but is a
deterministic autoencoder rather than a VAE. We trained these networks using the code from the intercode repository
(https://github.com/theislab/intercode), and for both experiments the network was trained using the hyperparameters
described in (https://github.com/theislab/intercode/blob/main/notebooks/intercode-api-Kang18.ipynb): 80 epochs with a
batch size of 62 samples, a learning rate of 0.001, and the regularization hyperparameters of λ0 = 0.1, λ1 = 0.93, λ2 = 0.0,
λ3 = 0.57.
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6.2 Attributions
Feature attribution is one of the largest and most well-studied classes of methods for machine learning interpretability.
Methods in this class are based on concepts from cooperative game theory, like the Shapley value [23] and Aumann-Shapley
value [24]. By framing the output of a complex, black box model as a game, and the input features as players in that game,
these concepts can be used to understand which input features of a model most impacted that model’s predictions. For
example, the feature attribution method SHAP defines a cooperative game to be the expected value of a machine learning
model evaluated on a sample of interest, conditional on the features present in each coalition, and then uses the Shapley
value to allocate credit to those features [10]. Another feature attribution method, Integrated Gradients, calculates an
Aumann-Shapley value by integrating the gradient of the model’s output with respect to its input features, and can be
used when machine learning models are differentiable, such as neural network models [12].

We first propose a novel attribution method to understand which latent factors are important in unsupervised neural
networks, based on Integrated Gradients [12] and the Aumann-Shapley value [24]. However, rather than attributing the
output of a supervised machine learning model to its input features, we attribute the reconstruction loss of an autoencoder
model to its latent features. To make our formulation general enough to encompass both variational and standard
autoencoders, we define an encoder network f : Rd 7→ Rh and a decoder network g : Rh 7→ Rd. For a decoder, we can
define the reconstruction error, ℓ(z) = ∥x− g(z)∥22, as a function of a latent input z, which is either a sample drawn from
the distribution parameterized by the encoder network given an input sample x in the case of a variational autoencoder,
or simply the deterministic embedding of the encoder network in the case of a standard autoencoder. To quantify the
contribution of a particular latent node i (which in the case of an interpretable autoencoder, corresponds to a biological
pathway), we can therefore apply the following formula to get a local pathway importance value:

ϕpathway
i (z) = (zi − z′i)×

∫ 1

α=0

∂ℓ(z′ + α(z − z′))

∂zi
dα, (5)

where z is the value of the learned pathway embedding for a particular sample, z′ is a baseline value for that embedding,
such as a vector of all 0s or the mean of that embedding’s value over the dataset, and α is a scalar representing the distance
on the straight-line path being integrated between the baseline and the actual value of the sample.

These local attributions have a variety of desirable properties [12], such as completeness, meaning that the attributions
for each pathway node sum to the difference between the reconstruction error of the model at the input z (when the pathway
information is “present”) and the baseline z′ (when the pathway information is “absent”). Completeness is important in
that it gives the attributions a natural scale: each pathway’s attribution represents the amount of variance explained by
the model for the original sample that can be credited to that pathway. These local attributions are also implementation
invariant, meaning the attributions are always identical for two functionally equivalent networks. This is important, in
that it ensures the attributions reflect real functional differences between networks, rather than relying on artifacts based
on particularities of the model employed.

To go from local pathway importance (the contribution of a particular pathway for a particular sample) to global
pathway importance (the contribution of a pathway over an entire dataset), we can take the expected value of the local
attributions over the samples in the original data:

Φpathway
i = Ez∼D[ϕ

pathway
i (z)]. (6)

Since these attributions can be calculated so efficiently, rather than sampling we calculate the local attributions for
every point in the dataset. Because the local attributions allocate the reduction in the sample-level reconstruction error
to each pathway, the global attributions allocate the reduction in the dataset-level reconstruction error to each pathway.
Since the mean squared error is proportional to the variance in the original expression space explained by the model,
allocating the reconstruction error to each pathway tells us how much variance is explained by each pathway.

For our gene-level attributions, we want to understand which genes are important contributors to each of the latent
pathway nodes. For a particular node in the latent space k that we wish to explain, we define the function fk(x) : Rd 7→ R
as the kth node in the encoder network’s latent space. We can therefore quantify gene j’s contribution to pathway node k
by applying the Integrated Gradients formula to this function to get:

ϕgene,k
j (x) = (xj − x′j)×

∫ 1

α=0

∂fk(x
′ + α(x− x′))

∂xj
dα, (7)

where x is the observed expression for a particular sample, x′ is a baseline value for gene expression, such as a vector of all
0s or the average gene expression over the dataset, and α is a scalar representing the distance on the straight-line path
being integrated between the baseline and the actual value of the sample.

To summarize local gene attributions into global gene attributions, we take the average of the magnitude of the local
attributions over the samples in the original data:
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Φgene,k
j = Ex∼D[|ϕgene,k

j (x)|]. (8)

It is necessary to average the magnitudes rather than the raw values for gene attributions to avoid cancellation effects
from attributions with different signs [25]. This was not a problem for pathway attributions, as all attributions should
have the same sign, as adding more pathway information should never increase the loss.

All attributions were calculated using the Path Explain repository (https://github.com/suinleelab/path_explain),
which is a Python library for explaining feature importances and feature interactions in deep neural networks using path
attribution methods [58–60]. All attributions were generated using the “attributions” method of the PyTorch explainer;
the argument “num_samples” was set to 200, while the argument “use_expectation” was set to “FALSE.”

6.3 Pathway gene set definition
We use pathway modules defined by gene set annotations from the Reactome database for all single cell experiments [29].
This database contains a total of 674 gene sets (with a median gene set size of 27 genes). The number of gene sets included
for a given model depends on the dataset. For all single cell datasets, we only include gene sets that contain a minimum of
13 genes from the given dataset. This yields a total of 200 gene sets for the PBMC INF-β dataset, 129 gene sets for the
Intestinal Epithelium dataset, and 341 gene sets for the Jurkat Anti-CD3/Anti-CD28 dataset.

For the bulk Alzheimer’s brain expression expermients, the pathway module architecture of the networks was defined
using the Hallmark gene sets from MSigDB. These pathways are highly curated to “summarize and represent specific
well-defined biological states or processes and display coherent expression” [61].

6.4 Single cell expression datasets
PBMC INF-β
This dataset, from Kang et al. [26], contains human peripheral blood mononuclear cells (PBMCs) from eight patients with
Lupus who were either treated with INF-β or left untreated as a control. We followed the same preprocessing steps taken
in prior analysis of this dataset [22, 57], which consists of library size normalization, removal of low variance genes and
log transformation. After preprocessing, the final dataset we use contains 13,576 samples with 979 genes. The dataset
contains 6359 control and 7217 stimulated cells.

Intestinal Epithelium
This dataset, from Haber et al. [27], profiles the response of mouse small intestinal epithelial cells to pathogen exposures,
specifically Salmonella enterica and H. polygyrus. Here, we include healthy control cells and cells 10 days after being infected
with H. polygyrus. Preprocessing was the same as that used by Weinberger and Lin [62], and involved retaining only the top
2000 most highly variable genes followed by library size normalization and log transformation. After preprocessing, the final
dataset we use contains 5951 samples with 2000 genes. The dataset contains 3240 control and 2711 H.polygyrus-stimulated
cells.

Jurkat Anti-CD3/Anti-CD28
This dataset, from Datlinger et al. [28], contains human Jurkat cells (immortalized T-lymphoctyes) that were either
starved or stimulated with anti-CD3 and anti-CD28 antibodies. Preprocessing follows the approach described in Gut et al.
[22], who filter out genes and cells with low expression, perform library size normalization and log transformation, and
filter out low variance genes. After preprocessing, the final dataset we use contains 1288 samples with 2139 genes. This
dataset contains 607 control and 681 stimulated cells.

6.5 Bulk brain expression datasets
For experiments with AD, we used data from the ROSMAP, ACT, HBTRC, MAYO, and MSBB studies. Around half
of the people in each cohort had been diagnosed with dementia by the time of death. ROSMAP RNA-Seq data and
MSBB RNA-Seq data were made available by Sage Bionetworks on the AMP-AD Knowledge Portal23 with Synapse
IDs syn3505732 and syn7391833, respectively. The ACT RNA-Seq data20 was collected by the Allen Institute for Brain
Science, Kaiser Permanente Washington Health Research Institute (KPWHRI), and the University of Washington (UW),
and it was made available with Synapse ID syn5759376. Mayo Clinic Brain Bank data was made available at Synapse ID
(syn5550404; https://doi.org/10.1038/sdata.2016.89), and the Harvard Brain Tissue Resource Center (HBTRC) study
was made available at the following Synapse ID (syn3159435). In each study, we used the protein-coding genes that have
a nonzero RNA-Seq read count in at least one-third of the samples. Overlapping these genes across the three studies
resulted in 16,252 genes which we used in our experiments. We used normalized and log-transformed RNA-Seq read counts
for all datasets. For the subset of samples with neuropathology data, MSBB neuropathology data was made available
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by the AMP-AD Knowledge Portal of Sage Bionetworks through synapse.org with Synapse ID syn6101474. We accessed
neuropathology data from the ROSMAP and ACT studies through data use agreements.

6.6 Benchmark experiments
To benchmark how well our PAUSE pathway attributions identified important factors of latent variation explaining the
observed gene expression measurements, we adapted two benchmarks of feature importance from the feature attribution
literature [10]. The first benchmark, our impute benchmark, measures how much the reconstruction error of a model
increases when the pathways identified as important by an attribution measure are removed from a model. After training
a pmVAE model [22] (12 nodes in a single hidden layer, and a single latent node for each module) on each of the 3 single
cell RNA-seq datasets, pathways were ranked by one of five methods: (1) PAUSE attributions; (2) LR score, the accuracy
of a logistic regression model trained to classify the ground truth perturbation using the latent pathway information [22,
57]; (3) KL Divergence between the learned posterior distribution and the isotropic gaussian prior; (4) Random; and (5)
the magnitude of the learned latent space scale parameter for each pathway. After attaining a pathway ranking for each
method, pathway information is removed by masking the real latent embeddings with a constant value. The increase in
reconstruction error over the dataset is then measured after each pathway is removed. Attribution methods that do a better
job of identifying important pathways will increase the reconstruction error more quickly, leading to a larger area under
the curve. These curves were summarized using the scikit-learn metrics auc function [63]. The second benchmark, which
we termed a retrain benchmark, follows the same initial steps as the impute benchmark (train models and rank pathways),
but then trains new models using only modules corresponding to the top pathways. In this benchmark, methods that
perform better will decrease the reconstruction error more quickly as pathway modules are added. Finally, to benchmark
the models with linear decoders, we followed the same steps as the impute benchmark, but trained the intercode models as
described above in the section on Model Architectures, rather than pmVAE models.

6.7 Sanity checks for bulk expression cpmVAE model
Before interpreting the learned embedding for our conditional pathway module VAE (cpmVAE) model trained on the
AD dataset, we wanted to perform several sanity checks to ensure the model was sufficiently plausible and reliable. We
first wanted to ensure that our proposed architecture (cpmVAE) was able to reconstruct the data with at least the same
accuracy as the previously proposed, non-conditional pmVAE model. We therefore randomly split the data into a train set
(75% of samples) and a test set (25% of samples), trained both a pmVAE and a cpmVAE on the training set for 50 epochs,
and measured the reconstruction error on the held out test set for each model. We repeated this procedure a total of
10 times with different random train/test splits, and compared the distribution of test reconstruction errors for the two
models (Supplementary Fig. 6a). We found that the distribution of test reconstruction errors attained with the cpmVAE
model was lower than the distribution of test reconstruction errors attained by the previously proposed pmVAE model
(Wilcoxon rank-sums test statistic = 1.96, p = 0.049).

Next, we wanted to ensure that the dataset integration was successful, and that the conditioning and HSIC regularization
indeed led to a pathway embedding that encoded less information about the data sources than the standard pmVAE
embedding. To measure how clustered cells were according to dataset source in the latent space, we first embedded the
pathway latent spaces of the cpmVAE model and the pmVAE model into 2 dimensions using the scikit-learn implementation
of TSNE with the perplexity parameter set to 40.0 [63, 64]. We then applied k-means clustering to the latent space (with
k set to the number of true data sources), and computed the adjusted Rand index (ARI) of the clustering [65]. When
we compare the distribution of ARIs for the pmVAE embedding to the distribution of ARIs for the cpmVAE embedding
(Supplementary Fig. 6b), we see that the embedding learned by the cpmVAE model has significantly less clustering
according to dataset source (Wilcoxon rank-sums test statistic = 3.78, p = 1.57× 10−4).

Finally, after demonstrating that the cpmVAE model removed unwanted sources of variation from its pathway embedding,
we wanted to ensure that our cpmVAE embedding still retained biological information. For a small subset of the brain
expression samples (664 samples), associated amyloid-β protein density measurements via immunohistochemistry (Aβ IHC)
were available. To ensure that biological information related to neuropathological phenotype was not being lost by our
model, we wanted to measure how well Aβ IHC could be predicted from the latent space, as compared to the original
full transcriptomic representation. Our hypothesis was that if the biologically relevant information in the latent space
was being preserved, prediction of Aβ density should be no worse when using the cpmVAE embedding than when using
the original gene space embedding. For 20 random train/test splits of the data, we compared the Spearman correlation
between predicted and actual Aβ density for linear models trained on the full gene expression measurements to the
Spearman correlation between predicted and actual Aβ density for linear models trained only on the cpmVAE pathway
embeddings (Supplementary Fig. 6c). All linear models were trained using the scikit-learn RidgeCV function [63], with a
hyperparameter search for alpha values ranging from 1e-3 to 1e2. We see that the cpmVAE embedding features actually
lead to significantly more predictive models of Aβ density than the original gene expression features (Wilcoxon rank-sums
test statistic = 2.81, p = 4.90× 10−3).
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6.8 Identification of C. elegans homologs
To enable biological testing of the human genes identified using our computational analysis, we obtained the Reciprocal
Best Hits (RBHs) between human and C. elegans. We first identified all unique protein sequences for each potential marker
gene using the biomaRt R package available on CRAN [66, 67]. Then, we used the NCBI BLAST tool to identify the
C. elegans orthologs for each complete human protein query sequence [68, 69]. We downloaded the C. elegans protein
sequences from wormbase.org/species/c_elegans (release WS266). We took into account only the protein pairs mapped
from human to C. elegans with a BLAST e-value smaller than 10−30. For each C. elegans isoform, we identified the
corresponding human genes, again using the NCBI BLAST tool, and used only the orthologs that achieved a BLAST
e-value smaller than 10−30. This process resulted in high-confidence RBHs for us to test in C. elegans.

6.9 C. elegans strain, cultivation, and RNAi treatment
Standard procedures for C. elegans strain maintenance and manipulation were used, as previously described [70, 71]. All
experiments were performed using the GMC101 strain expressing the human Aβ1-42 peptide under the unc-54 promoter
[72]. Experimental worm populations of GMC101 animals were obtained from the Caenorhabditis Genetics Center (CGC)
and cultivated on NGM plates with OP50 E. coli at 15C [72, 73]. Care was taken to ensure that the animals were never
starved and the plates remained free of contamination.

The gene-specific RNAi clones were obtained from the commercial Ahringer or Vidal C. elegans RNAi-feeding libraries
(BioScience, Nottingham, UK). Each bacterial clone was struck-out onto LB plates containing carbenicillin (50 ug/ml) and
tetracycline (10 ug/ml). Single colonies were then seeded into 5 ml LB + carbenicillin (50 ug/ml) and tetracycline (10
ug/ml) for growth overnight on a 37C rotator. 100 ul of each overnight culture was then inoculated into 10 ml of LB
containing carbenicillin (50 ug/ml) and tetracycline (10 ug/ml) and IPTG (5mM) and incubated on a 37C rotator for 4
hours. Each bacterial growth was then centrifuged at 3500 X G for 25 minutes, decanted, and the pellet resuspended in
0.5 ml of LB containing carbenicillin (50 ug/ml), tetracycline (10 ug/ml), and IPTG (5 mM). To verify that the RNAi
plasmid DNA contained the expected gene target, each RNAi clone was purified and assessed through PCR (polymerase
chain reaction) with sequence-specific primers or through Sanger sequencing.

6.10 Nematode paralysis assays
Paralysis assays were performed by visually inspecting recordings of the animals daily to determine if they were capable of
normal locomotion or if they were paralyzed and unable to transit the agar plate. A custom-built robotic system, the
WormBot [74], was equipped with a digital camera and was used to obtain images of individual wells of a 12 well-plate
at 10-minute intervals over the entire course of the experiment. Each well contained 30-40 individual GMC101 animals
expressing Aβ. Using a custom-built web interface that enabled manual annotation of serial images from each plate, the
age at which each animal stopped moving could be easily determined. We applied this system to the transgenic Aβ model
line GMC101 to determine the time of paralysis onset for each individual animal across all RNAi experiments. Statistical
significance of mean paralysis time-points between RNAi conditions was determined by a weighted log-rank test [75, 76].
All key results were independently verified using standard manual microdissection methodologies.

Prior to loading on the experimental plates, animal populations were propagated on high-growth plates seeded with
NA22 E. coli. Worm populations were developmentally synchronized by hypochlorite treatment, and the remaining eggs
were deposited on unseeded plates overnight. Synchronized larval stage 1 animals were washed off unseeded plates and
moved onto standard C. elegans RNAi plates containing carbenicillin (50 mg/ml), tetracycline (10 mg/ml), and IPTG (5
mM) 48h at 20C. These developmentally synchronized, late larval stage 4-populations were then washed and transferred
to their respective RNAi conditions on 12-well plates. We used standard RNAi conditions plus FuDR (100 ug/ml) to
prevent progeny and nystatin (200 mg/ml) to prevent fungal growth [70]. Each RNAi condition was tested in 2-3 wells as
technical replicates. At least three biological replicates, each started on different weeks, were conducted for each RNAi
clone. Animals were maintained at ambient room temperature (generally 22-24C) over the course of the paralysis assay.

6.11 Code Availability
Code to reproduce results and figures is available at: https://github.com/suinleelab/PAUSE.
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Supplementary Fig. 1 | Impute benchmark for VAE architecture with a linear decoder. a, As top pathways
ranked by our PAUSE Loss Attribution, ranked by the L2 norm of the weights in the decoder, or ranked randomly are
removed by mean imputation, the reconstruction error (MSE) of a VAE with a linear decoder trained on the PBMC
dataset [26] increases. Error bars indicate the standard deviation when the benchmark is re-run over 10 independent
randomizations of the dataset into train/val/test splits. b, Summary of the area under the imputation curves in a for loss
attribution and L2 norm. The boxes mark the quartiles (25th, 50th, and 75th percentiles) of the distribution, while the
whiskers extend to show the minimum and maximum of the distribution (excluding outliers). Loss attribution identifies
important pathways significantly better than the L2 norm (Wilcoxon rank-sums test statistic = 2.19, p = 0.028). c,d,
These subpanels show the same information as a,b, where this time the benchmark (again using a VAE with a linear
decoder) is run on the dataset of stimulated Jurkat cells [28]. Again, PAUSE identifies important pathways significantly
better than the L2 norm (Wilcoxon rank-sums test statistic = 1.97, p = 0.049).
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Supplementary Fig. 2 | Summary plot of top genes for TCR Signaling Module. The four summary plots show
swarmplots of the distributions of gene attributions for the four nodes in the TCR Signaling module for a pmVAE model
trained on the single cell dataset of CD3/CD28-stimulated Jurkat cells. Each point is a single sample, the x-axis of each
plot shows the attribution for that gene for that sample, and the color encoding shows whether the expression level of that
gene is high or low in the sample.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490535doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490535
http://creativecommons.org/licenses/by-nc-nd/4.0/


Auxiliary Node 1

Auxiliary Node 3 Auxiliary Node 4

a b Auxiliary Node 2

c d

0.0 0.5 1.0 1.5 2.0 2.5
Mean Absolute Gene Attribution

IFITM3
PLA2G7

OAS1
IFIT3
IFIT1
IFI27
IFIT2
GBP4
IFI35
GBP5

0.0 0.5 1.0 1.5 2.0 2.5
Mean Absolute Gene Attribution

IFITM3
OAS1

PLA2G7
SSB

ISG20
GBP1

SQRDL
GBP2
IFI35
IFIT1

0.0 0.5 1.0 1.5 2.0 2.5
Mean Absolute Gene Attribution

PLA2G7
IL8

H2AFZ
SSB

OASL
SQRDL

FTL
IFITM3

HIST1H2AC
OAS1

0.0 0.5 1.0 1.5 2.0 2.5
Mean Absolute Gene Attribution

IL8
H2AFZ

PLA2G7
OAS1
ISG20
OASL
IFIT1
SSB

IFITM3
HIST1H2AC

Supplementary Fig. 3 | Inteferon-related genes are identified as top genes in auxiliary nodes when Inteferon-
related pathways are not included as pathway modules In this experiment, we trained the network without main
Interferon-related pathways: [’REACTOME ANTIVIRAL MECHANISM BY IFN STIMULATED GENES’, ’REACTOME
DDX58 IFIH1 MEDIATED INDUCTION OF INTERFERON ALPHA BETA’, ’REACTOME INTERFERON GAMMA
SIGNALING’, ’REACTOME INTERFERON ALPHA BETA SIGNALING’, ’REACTOME INTERFERON SIGNALING’]
for the PBMC single cell dataset. We then examined the densely connected auxiliary pathway, which is comprised of 4
pathway nodes. Shown here are the top 10 most important genes by mean absolute gene attribution value for each of the
four nodes, with error bars representing standard deviation.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490535doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490535
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 2 4 6 8
log10(p)

Interferon alpha/beta signaling

Interferon Signaling

Cytokine Signaling in Immune system

Interferon gamma signaling

Immune System

0 2 4 6 8
log10(p)

Interferon Signaling

Interferon alpha/beta signaling

Cytokine Signaling in Immune system

Interferon gamma signaling

0 2 4 6 8
log10(p)

Interferon alpha/beta signaling

Interferon Signaling

Interferon gamma signaling

Cytokine Signaling in Immune system

0 2 4 6 8
log10(p)

Cytokine Signaling in Immune system

Interferon alpha/beta signaling

Interferon Signaling

Auxiliary Node 1

Auxiliary Node 3 Auxiliary Node 4

a b Auxiliary Node 2

c d

Supplementary Fig. 4 | Interferon-related pathway enrichments are found in auxiliary node top genes when
Interferon-related pathways are not included as pathway modules. For each of the four auxiliary nodes (when
the network is trained without Interferon pathway information), we generated gene-level attributions to obtain the top 50
most important genes for each node. We then used the STRING database [77] to analyze Reactome pathway enrichments
for these top genes for each node compared to all genes in the dataset. In plots a-d, we show −log10 p values for pathways
with p < 0.05 when corrected for multiple testing using the Benjamini–Hochberg procedure.
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Supplementary Fig. 5 | Genes from the pathway ’Regulation of PLK1 Activity at G2/M Transition’ are not
identified as top genes in auxiliary nodes when this pathway is not included as a pathway module. In this
experiment, we trained the network without the pathway ’REACTOME REGULATION OF PK1 ACTIVITY AT G2/M
TRANSITION’ for the PBMC single cell dataset. We then examined the densely connected auxiliary pathway, which is
comprised of 4 pathway nodes. Shown here are the top 10 most important genes by mean absolute gene attribution value
for each of the four nodes, with error bars representing standard deviation.
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Supplementary Fig. 6 | Sanity checks ensure biological validity of cpmVAE model on AD data. a, Comparison
of reconstruction error attained by pmVAE model and our conditional pmVAE (cpmVAE) model on the AD dataset. For
10 different random train/test splits, we trained both a pmVAE and a cpmVAE on the training set for 50 epochs, measured
the reconstruction on the held out test set for each model, and compared the distribution of test reconstruction errors for
the two models. The distribution of test reconstruction errors attained with the cpmVAE model is significantly lower than
the distribution of test reconstruction errors attained by the previously proposed pmVAE model (Wilcoxon rank-sums test
statistic = 1.96, p = 0.049). b, Comparison of adjusted Rand indices (ARIs) of latent space clusters by dataset source
between pmVAE and cpmVAE models. The distribution of ARIs for the pmVAE embeddings were significantly larger than
the distribution of ARIs for the cpmVAE embeddings, indicating that the embedding learned by the cpmVAE model has
significantly less clustering according to dataset source (Wilcoxon rank-sums test statistic = 3.78, p = 1.57× 10−4). c, For
20 random train/test splits of the AD data, we compared the Spearman correlation between predicted and actual Aβ density
for linear models trained on the full gene expression measurements to the Spearman correlation between predicted and
actual Aβ density for linear models trained only on the cpmVAE pathway embeddings. The cpmVAE embedding features
lead to significantly more predictive models of Aβ density than the original gene expression features (Wilcoxon rank-sums
test statistic = 2.81, p = 4.90× 10−3). In each plot, the boxes mark the quartiles (25th, 50th, and 75th percentiles) of the
distribution, while the whiskers extend to show the minimum and maximum of the distribution (excluding outliers).
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Supplementary Fig. 7 | Full plots of impute and retrain benchmarks for single cell datasets. Reconstruction
error is shown for impute (top row) and retrain (bottom row) benchmarks for Intestinal (a,d), PBMC (b,e) and Jurkat
(c,f) single cell datasets. Bars represent standard deviation. Besides PAUSE loss attribution, the other methods shown
here are logistic regression score (LR), Kullback–Leibler divergence (KLD), random ranking, and latent space variance
(LSV).
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